
ETH Library

Exact global alignment using A*
with seed heuristic and match
pruning

Working Paper

Author(s):
Koerkamp, Ragnar Groot; Ivanov, Pesho

Publication date:
2022-09-23

Permanent link:
https://doi.org/10.3929/ethz-b-000595180

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
bioRxiv, https://doi.org/10.1101/2022.09.19.508631

Funding acknowledgement:
ETH-17 21-1 - A unifying theoretical framework for optimal sequence sketching: Towards fast, accurate, and interpretable
computation on biological sequences (ETHZ)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000595180
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2022.09.19.508631
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Exact global alignment using A*
with seed heuristic and match pruning
Ragnar Groot Koerkamp ∗,† and Pesho Ivanov ∗,†

Department of Computer Science, ETH Zurich, Switzerland

∗To whom correspondence should be addressed.
†These authors contributed equally to this work.

Abstract

Motivation. Sequence alignment has been a core problem in computational biology for the last half-century. It is an open
problem whether exact pairwise alignment is possible in linear time for related sequences (Medvedev, 2022b).
Methods. We solve exact global pairwise alignment with respect to edit distance by using the A? shortest path algorithm on
the edit graph. In order to efficiently align long sequences with high error rate, we extend the seed heuristic for A? (Ivanov
et al., 2022) with match chaining, inexact matches, and the novel match pruning optimization. We prove the correctness of
our algorithm and provide an efficient implementation in A*PA.
Results. We evaluate A*PA on synthetic data (random sequences of length n with uniform mutations with error rate e)
and on real long ONT reads of human data. On the synthetic data with e=5% and n≤107 bp, A*PA exhibits a near-linear
empirical runtime scaling of n1.08 and achieves >250× speedup compared to the leading exact aligners EDLIB and BIWFA.
Even for a high error rate of e=15%, the empirical scaling is n1.28 for n≤107 bp. On two real datasets, A*PA is the fastest
aligner for 58% of the alignments when the reads contain only sequencing errors, and for 17% of the alignments when the
reads also include biological variation.
Availability. github.com/RagnarGrootKoerkamp/astar-pairwise-aligner
Contact. ragnar.grootkoerkamp@inf.ethz.ch, pesho@inf.ethz.ch

1 Introduction
The problem of aligning one biological sequence to another has been
formulated over half a century ago (Needleman and Wunsch, 1970) and is
known as global pairwise alignment (Navarro, 2001). Pairwise alignment
has numerous applications in computational biology, such as genome
assembly, read mapping, variant detection, multiple sequence alignment,
and differential expression (Prjibelski et al., 2018). Despite the centrality
and age of pairwise alignment, “a major open problem is to implement
an algorithm with linear-like empirical scaling on inputs where the edit
distance is linear in n” (Medvedev, 2022b).

Alignment accuracy affects the subsequent analyses, so a common
goal is to find a shortest sequence of edit operations (insertions, deletions,
and substitutions of single letters) that transforms one sequence into
the other. Finding such a sequence of operations is at least as hard
as computing the edit distance, which has recently been proven to
not be computable in strongly subquadratic time, unless SETH is
false (Backurs and Indyk, 2015). Given that the number of sequencing
errors is proportional to the length, existing exact aligners are limited by
quadratic scaling not only in the worst case but also in practice. This is
a computational bottleneck given the growing amounts of biological data
and the increasing sequence lengths (Kucherov, 2019).

1.1 Related work on alignment

We outline algorithms for exact pairwise alignment and their fastest
implementations for biological sequences. Refer to Kucherov (2019) for
approximate, probabilistic, and non-edit distance algorithms and aligners.

(a)
Exponential band

(EDLIB)

(b)
Dijkstra

(c)
DT

(WFA)

(d)
DT+D&C
(BIWFA)

(e)
This work

(A*PA)

Fig. 1. Demonstration of the computed states by various optimal alignment
algorithms and corresponding aligners that implement them on synthetic data
(length n=500 bp, error rate e=20%). Blue-to-red coloring indicates the
order of computation. (a) Exponential banding algorithm (EDLIB), (b) Dijkstra,
(c) Diagonal transition/DT (WFA), (d) Diagonal transition with divide-and-
conquer/D&C (BIWFA), (e) A? with chaining seed heuristic and match pruning
(seed length k=5 and exact matches).

Dynamic programming. The standard approach to sequence alignment
is by successively aligning prefixes of the first sequence to prefixes of the
second. Vintsyuk (1968) was the first to introduce this O(nm) dynamic
programming (DP) approach for a comparing a pair speech signals with
n and m elements. Independently, it was applied to compute edit distance
for biological sequences (Needleman and Wunsch, 1970; Sankoff, 1972;
Sellers, 1974; Wagner and Fischer, 1974). This well-known algorithm is
implemented in modern aligners like SEQAN (Reinert et al., 2017) and
PARASAIL (Daily, 2016). Improving the performance of these quadratic
algorithms has been a central goal in later works.

© The Authors 2022. 1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.19.508631doi: bioRxiv preprint 

https://github.com/RagnarGrootKoerkamp/astar-pairwise-aligner
ragnar.grootkoerkamp@inf.ethz.ch
pesho@inf.ethz.ch
https://doi.org/10.1101/2022.09.19.508631
http://creativecommons.org/licenses/by/4.0/


2 R. Groot Koerkamp and P. Ivanov

Banding and bit-parallelization. When similar sequences are being
aligned, the whole DP table may not need to be computed. One
such output-sensitive algorithm is the banded algorithm of Ukkonen
(1985) (Fig. 1a) which considers only states near the diagonal within an
exponentially increasing band, and runs in O(ns) time, where s is the
edit distance between the sequences. This algorithm, combined with the
bit-parallel optimization by Myers (1999) is implemented by the EDLIB

aligner (Šošić and Šikić, 2017) that runs in O(ns/w) runtime, where w
is the machine word size (nowadays 32 or 64).

Diagonal transition and WFA. The O(ns) runtime complexity can
be improved using the algorithm independently discovered by Ukkonen
(1985) and Myers (1986) that is known as diagonal transition (Navarro,
2001) (Fig. 1c). It has an O(ns) runtime in the worst-case but only takes
expected O(n + s2) time under the assumption that the input sequences
are random (Myers, 1986). This algorithm has been extended to linear
and affine costs in the wavefront alignment (WFA) algorithm (Marco-Sola
et al., 2021) in a way similar to Gotoh (1982), and has been improved
to only require linear memory in BIWFA (Marco-Sola et al., 2022) by
combining it with the divide and conquer approach of Hirschberg (1975),
similar to Myers (1986) algorithm for unit edit costs (Fig. 1d). Note that
when each sequence letter has an error with a constant probability, the
total number of errors s is proportional to n, so that even these algorithms
have a quadratic runtime.

Shortest paths and A?. A pairwise alignment that minimizes edit
distance corresponds to a shortest path in the edit graph (Vintsyuk,
1968; Ukkonen, 1985). Assuming non-negative edit costs, a shortest path
can be found using Dijkstra’s algorithm (Ukkonen, 1985) (Fig. 1b) or
A? (Spouge, 1989). A? is an informed search algorithm which uses a task-
specific heuristic function to direct its search. Depending on the heuristic
function, a shortest path may be found significantly faster than by an
uninformed search such as Dijkstra’s algorithm. In the context of semi-
global sequence-to-graph alignment, A? has been used to empirically
scale sublinearly with the reference size for short reads (Ivanov et al.,
2020).

Seeds and matches. Seed-and-extend is a commonly used paradigm for
solving semi-global alignment approximately (Kucherov, 2019). Seeds
are also used to define and compute LCSk (Benson et al., 2014), a
generalization of longest common subsequence (LCS). In contrast, the
seed heuristic by Ivanov et al. (2022) speeds up finding an optimal
alignment by using seed matches to speed up the A? search. The seed
heuristic enables empirical near-linear scaling to long HiFi reads (up
to 30 kbp with 0.3% errors) (Ivanov et al., 2022). A limitation of the
existing seed heuristic is the low tolerance to increasing error rates due to
using only long exact matches without accounting for their order.

1.2 Contributions

Our algorithm exactly solves global pairwise alignment for edit distance
costs, also known as Levenshtein distance (Levenshtein et al., 1966). It
uses the A? algorithm to find a shortest path in the edit graph.

Seed heuristic. In order to handle higher error rates, we extend the seed
heuristic (Ivanov et al., 2022) to inexact matches, allowing up to 1 error
in each match. To handle cases with a large number of seed matches we
introduce match chaining, constraining the order in which seed matches
can be linked (Wilbur and Lipman, 1984; Benson et al., 2016). We prove
that our chaining seed heuristic with inexact matches is admissible, which
guarantees that A? finds a shortest path.

Match pruning. In order to reduce the number of states expanded by A?

we apply the multiple-path pruning observation of Poole and Mackworth

(2017): once a shortest path to a vertex has been found, no other paths
to this vertex can improve the global shortest path. We prove that when a
state at the start of a match is expanded, a shortest path to this state has
been found. Since no other path to this state can be shorter, we show that
we can prune (remove) the match, thus improving the seed heuristic. This
incremental heuristic search has some similarities to Real-time Adaptive
A? (Koenig and Likhachev, 2006).

Implementation. We efficiently implement our algorithm in the A*PA
aligner. In particular, we use contours (Hirschberg, 1977; Hunt and
Szymanski, 1977; Pavetić et al., 2017) to efficiently to compute the
chaining seed heuristic, and update them when pruning matches.

Scaling and performance. We compare the scaling and performance
of our algorithm to other exact aligners on synthetic data, consisting
of random genetic sequences with up to 15% uniform errors and up to
107 bases. We demonstrate that inexact matches and match chaining
enable scaling to higher error rates, while match pruning enables near-
linear scaling with length by reducing the number of expanded states to
not much more than the best path (Fig. 1e). Our empirical results show
that for e=5% and n=107 bp, A*PA outperforms the leading aligners
EDLIB (Šošić and Šikić, 2017) and BIWFA (Marco-Sola et al., 2022) by
more than 250 times.

We demonstrate a limited applicability of our algorithm to long Oxford
Nanopore (ONT) reads from human samples. A*PA is the fastest exact
aligner on 58% of the alignments on a dataset with only sequencing errors,
and on 17% of the alignments on a dataset with biological variation.

2 Preliminaries
This section provides background definitions which are used throughout
the paper.

Sequences. The input sequences A = a0a1 . . . ai . . . an−1 and B =

b0b1 . . . bj . . . bm−1 are over an alphabet Σ with 4 letters. We refer to
substrings ai . . . ai′−1 as Ai...i′ , to prefixes a0 . . . ai−1 as A<i, and to
suffixes ai . . . an−1 asA≥i. The edit distance ed(A,B) is the minimum
number of insertions, deletions, and substitutions of single letters needed
to convert A into B.

Edit graph. Let state 〈i, j〉 denote the subtask of aligning the prefix
A<i to the prefix B<j . The edit graph (also called alignment
graph) G(V,E) is a weighted directed graph with vertices V =

{〈i, j〉|0 ≤ i ≤ n, 0 ≤ j ≤ m} corresponding to all states, and edges
connecting tasks to subtasks: edge 〈i, j〉 → 〈i+1, j+1〉 has cost
0 if ai = bj (match) and 1 otherwise (substitution), and edges
〈i, j〉 → 〈i+1, j〉 (deletion) and 〈i, j〉 → 〈i, j+1〉 (insertion) have cost
1. We denote the root state 〈0, 0〉 by vs and the target state 〈n,m〉
by vt. For brevity we write f(〈i, j〉) as f〈i, j〉. The edit graph is a
natural representation of the alignment problem that provides a base for
all alignment algorithms.

Paths, alignments, seeds and matches. Any path from 〈i, j〉 to 〈i′, j′〉
in the edit graph G represents a pairwise alignment (or just alignment) of
the substrings Ai...i′ and Bj...j′ . We denote with d(u, v) the distance
between states u and v. A shortest path π∗ corresponds to an optimal
alignment, thus cost(π∗) = d(vs, vt) = ed(A,B). For a state u we
write g∗(u) := d(vs, u) and h∗(u) := d(u, vt) for the distance from the
start to u and from u to the target vt, respectively. We define a seed as a
substringAi...i′ ofA, and an exact match of a seed as an alignment of the
seed of cost 0.

Dijkstra and A?. Dijkstra’s algorithm (Dijkstra, 1959) finds a shortest
path from vs to vt by expanding vertices in order of increasing distance

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.19.508631doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.19.508631
http://creativecommons.org/licenses/by/4.0/


Exact global alignment using A* 3

(a) Seed heuristic (b) Chaining seed heuristic (c) Chaining seed heuristic + match pruning

Fig. 2. A demonstration of the seed heuristic, chaining seed heuristic, and match pruning. Sequence A is split into 5 seeds drawn as horizontal black segments ( ) on top.
Their exact matches in B are drawn as diagonal black segments ( ). The heuristic is evaluated at the blue state (u, ), based on the 4 remaining seeds. The dashed blue
paths show maximal length chains of seed matches (green columns, ). The seeds that are not matched (red columns, ) count towards the heuristic. (a) The seed heuristic
hsh(u) = 1 is the number of remaining seeds that do not have matches (s2). (b) The chaining seed heuristic hcsh(u) = 2 is the number of not matched remaining seeds
(s2 and s3) for a path going only down and to the right containing a maximal number of matches. (c) Once the start of a match is expanded (shown as green circles, ),
the match is pruned (marked with red cross, ), and future computations of the heuristic ignore it. This reduces the maximum chain of matches starting at u by 1 (s1) so
that ĥcsh(u) increases by 1.

g∗(u) from the start. The A? algorithm (Hart et al., 1968; Pearl, 1984),
instead, directs the search towards a target by expanding vertices in order
of increasing f(u) := g(u) + h(u), where h(u) is a heuristic function
that estimates the distance h∗(u) to the end and g(u) is the shortest length
of a path from vs to u found so far. A heuristic is admissible if it is a
lower bound on the remaining distance, h(u) ≤ h∗(u), which guarantees
that A? has found a shortest path as soon as it expands vt. Heuristic h1
dominates another heuristic h2 when h1(u) ≥ h2(u) for all vertices u.
A dominant heuristic will usually, but not always (Holte, 2010), expand
less vertices. Note that Dijkstra’s algorithm is equivalent to A? using a
heuristic that is always 0, and that both algorithms require non-negative
edge costs. Our variant of the A? algorithm is provided in Section 4.1.

Chains. A state u = 〈i, j〉 ∈ V precedes a state v = 〈i′, j′〉 ∈ V ,
denoted u � v, when i ≤ i′ and j ≤ j′. Similarly, a match m precedes
a match m′, denoted m � m′, when the end of m precedes the start
of m′. This makes the set of matches a partially ordered set. A state u
precedes a match m (denoted u � m) when it precedes the start of the
match. A chain of matches is a (possibly empty) sequence of matches
m1 � · · · � ml.

Contours. To efficiently calculate maximal chains of matches, contours
are used. Given a set of matchesM, S(u) is the number of matches in the
longest chain u � m0 � . . . , starting at u. The function S〈i, j〉 is non-
increasing in both i and j. Contours are the boundaries between regions
of states with S(u) = ` and S(u) < ` (see Fig. 3). Note that contour
` is completely determined by the set of matches m ∈ M for which
S(start(m)) = ` (Hirschberg, 1977). Hunt and Szymanski (1977) give
an algorithm to efficiently compute S whenM is the set of single-letter
matches betweenA andB, and Deorowicz and Grabowski (2014) give an
algorithm whenM is the set of k-mer exact matches.

3 Methods
In this section we define the seed heuristic with inexact matches and
chaining, and match pruning (see Fig. 2). We motivate each of these
extensions intuitively, define them formally, and prove that A? is
guaranteed to find a shortest path. We end with a reformulation of
our heuristic definitions that allows for more efficient computation.
Appendix A.9 contains a summary of the notation we use.

3.1 Overview

In order to find a minimal cost alignment of A and B, we use the A?

algorithm to find a shortest path from the starting state vs=〈0, 0〉 to
the target state vt=〈n,m〉 in the edit graph. We present two heuristic
functions, the seed heuristic and the chaining seed heuristic, and prove
that they are admissible, so that A? always finds a shortest path.

To define the seed heuristic hsh, we split A into short, non-
overlapping substrings (seeds) of fixed length k. Since the whole of
sequence A has to be aligned, each of the seeds also has to be aligned
somewhere. If a seed cannot be exactly matched in B without mistakes,
then at least one edit has to be made to align it. We first compute all
positions in B where each seed from A matches exactly. Then, a lower
bound on the edit distance between the remaining suffixes A≥i and B≥j
is given by the number of seeds entirely contained in A≥i that do not
match anywhere in B. An example is shown in Fig. 2a.

We improve the seed heuristic by enforcing that the seed matches
occur in the same order as their seeds occur in A, i.e., they form a chain.
Now, the number of upcoming errors is at least the minimal number of
remaining seeds that cannot be aligned on a single path to the target. The
chaining seed heuristic hcsh equals the number of remaining seeds minus
the maximum length of a chain of matches, see Fig. 2b.

To scale to larger error rates, we generalize both heuristics to use
inexact matches. For each seed from A, our algorithm finds all its inexact
matches in B with cost at most 1. Then, not using any match of a seed
will require at least r=2 edits for the seed to be eventually aligned.

Finally, we use match pruning: once we find a shortest path to a state
v, no shorter path to that state is possible. Since we are only looking for a
single shortest path, we may ignore any other path going to v. In particular,
when we are evaluating the heuristic h in some state u preceding v, and v
is at the start of a match, all paths containing the match are excluded, and
thus we may simply ignore (prune) this match for future computations of
the heuristic. This increases the value of the heuristic, as shown in Fig. 2c,
and leads to a significant reduction of the number of states being expanded
by the A?.

3.2 Seed heuristic and chaining seed heuristic

We start with the formal definitions of seeds and matches that are the basis
of our heuristic functions and algorithms.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.19.508631doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.19.508631
http://creativecommons.org/licenses/by/4.0/


4 R. Groot Koerkamp and P. Ivanov

Seeds. We split the sequence A into a set of consecutive non-overlapping
substrings (seeds) S = {s0, s1, s2, . . . sbn/kc−1}, such that each seed
sl = Alk...lk+k has length k. After aligning the first i letters of A,
the information for the heuristic will come from the remaining seeds
S≥i := {sl ∈ S | lk ≥ i} contained in the suffix A≥i.

Seed alignment. An alignment of a seed s = Ai...i+k is a path πs in the
edit graph G from a state u=〈i, j〉 to a state v=〈i+k, j′〉, where i is the
start and i+k is the end of s. We refer to the cost of the alignment πs as
cost(πs).

Matches. In order to only consider good alignments of seeds, we fix a
threshold cost r called the seed potential. We define a match m as an
alignment of a seed with cost cost(m) < r. For each seed s, the set of
all of its matches isMs. The inequality is strict so thatMs = ∅ implies
that aligning the seed will incur cost at least r. LetM =

⋃
sMs denote

the set of all matches. With r=1 we allow only exact matches, while for
r=2 we allow both exact and inexact matches with one edit. In this paper
we do not consider larger r.

Next, we define two heuristic functions:

DEFINITION 1 (Seed heuristic). Given a set of matchesM with costs
less than r, the seed heuristic hMsh in a state u=〈i, j〉 is the minimal
total cost to independently align all remaining seeds: each seed is either
matched or incurs cost r if it cannot be matched inM:

hMsh(u) :=
∑
s∈S≥i

{
minm∈Ms cost(m) ifMs 6= ∅,
r otherwise.

(1)

DEFINITION 2 (Chaining seed heuristic). Given a set of matchesM of
costs less than r, the chaining seed heuristic hMcsh in a state u=〈i, j〉 is
the minimal cost to jointly align each remaining seed on a single path in
the edit graph:

hMcsh(u) := min
π∈G(u;vt)

∑
s∈S≥i

{
cost(πs) if πs ∈Ms,

r otherwise.
(2)

where π runs over all paths from u to vt, and πs is the shortest part of
the path π that is an alignment of the seed s.

We abbreviate hsh := hMsh and hcsh := hMcshwhenM is the set of all
matches of cost strictly less than r. For suchM, both heuristics guarantee
finding an optimal alignment.

THEOREM 1. The seed heuristic hsh and the chaining seed heuristic
hcsh are admissible.

The proof follows directly from the definitions and can be found in
Appendix A.1. As a consequence of the proof, hcsh(u) dominates hsh(u),
that is, hcsh(u) ≥ hsh(u) for all u. Hence hcsh(u) usually expands fewer
states, at the cost of being more complex to compute.

3.3 Seed heuristic as a maximization problem

In order to efficiently evaluate the seed heuristic, Eq. (1), we rewrite it
from a minimization of match costs to a maximization of match scores.
We first define a few new concepts, and then rewrite the equation into
form that will be simpler to compute.

Score. We define the score of a match m as score(m) := r − cost(m).
This is always positive since match costs are defined to be strictly less

than r. The score of a seed s is the maximal score of a match of s:

score(s) :=

{
maxm∈Ms score(m) ifMs 6= ∅,
0 otherwise.

(3)

The score of a state is the sum of the scores of the remaining seeds,

Ssh〈i, j〉 :=
∑
s∈S≥i

score(s). (4)

Potential. The potential P 〈i, j〉 is the value of the heuristic when there
are no matches, and is the maximal value the heuristic can take in a given
state:

P 〈i, j〉 := r · |S≥i|. (5)

Objective. Eq. (1) can now be rewritten in terms of potential and score,

hMsh(u)
(1)
=

∑
s∈S≥i

(
r −

{
maxm∈Ms r − cost(m) ifMs 6= ∅,
0 otherwise

)

= r · |S≥i| −
∑
s∈S≥i

{
maxm∈Ms score(m) ifMs 6= ∅,
0 otherwise

(3)
= r · |S≥i| −

∑
s∈S≥i

score(s)
(4),(5)
= P (u)− Ssh(u). (6)

The potential P (u) of a state is simple to compute, and the score Ssh(u)

can be computed by using layers.

Layer. Let layer L` be the set of states u with score Ssh(u) ≥ `.
Since Ssh is non-increasing in i and independent of j, and only changes
value at the start of seeds, L` is fully determined by largest i` such that
Ssh〈i`, ·〉 ≥ `. The score Ssh〈i, j〉 is then the largest ` such that i` ≥ i.

3.4 Chaining seed heuristic as a maximization problem

Similar to the seed heuristic, we rewrite Eq. (2) into a maximization form
that will be simpler to compute.

Chain score. The score of a chain is the sum of the scores of the matches
in the chain. Let Schain(m) be the maximum score of a chain starting
with match m. This satisfies the recursion

Schain(m) := score(m) + max
m�m′

Schain(m′). (7)

where this and the following maxima are taken as 0 when they are over an
empty set. For the chaining seed heuristic, the score at a state is

Scsh(u) := max
u�m

Schain(m). (8)

Objective. Similar to the seed heuristic, the chaining seed heuristic is
computed via the following equality,

hMcsh(u)
(2)
= min
π∈G(u;vt)

∑
s∈S≥i

(
r −

{
score(πs) if πs ∈Ms,

0 otherwise

)

= r · |S≥i| − max
π∈G(u;vt)

∑
s∈S≥i

{
score(πs) if πs ∈Ms,

0 otherwise

= r · |S≥i| − max
u�m1�···�ml

{
score(m1) + · · ·+ score(ml)

}
(5),(8)
= P (u)− Scsh(u). (9)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.19.508631doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.19.508631
http://creativecommons.org/licenses/by/4.0/


Exact global alignment using A* 5

(a) Before (b) After

Fig. 3. An example of the layers and contours used by the chaining seed heuristic
before and after the A? execution with match pruning for r=1 and seed length
k=3. Exact matches with score(m)=1 are shown as black diagonal segments ( ).
Contours are shown as horizontal and vertical black lines and indicate the bottom-
right boundaries of layers L` consisting of the states above/left of the contour
marked with `. States u between two contours have the same maximal number
of matches Scsh(u) on a chain to the end. The value of the heuristic is shown in
the background, from white (h=0) to darker grey. Expanded states are shown in
green ( ), open states in blue ( ), and pruned matches in red ( ). Note that pruning
matches during the A? execution shifts the contours and changes the layers.

Contours. Like fore the seed heuristic, we define layer L` as those
states u with score Scsh(u) at least `. The `th contour is the bottom-
right boundary of L` (see Fig. 3). A state u ∈ L` is dominant when
there is no state v ∈ L` with v 6= u and u � v. Both L` and the
corresponding contour are completely determined by the matches starting
in the dominant states. The following lemma makes this precise:

LEMMA 1. For ` > 0 the matches m with ` ≤ Schain(m) < ` + r

fully determine layer L`:

L` = {u | ∃m ∈M : u � m and ` ≤ Schain(m) < `+ r}. (10)

PROOF. It follows directly from Eq. (8) that L` = {u | ∃m ∈ M :

u � m and Schain(m) ≥ `}. Suppose that m has score Schain(m) ≥
`+ r. By definition, score(m) ≤ r, so by Eq. (7) there must be a match
m � m′ with Schain(m′) = Schain(m)−score(m) ≥ (`+r)−r = `.
This implies that u � m � m′, which allows m, and hence any match
with Schain(m) ≥ `+ r, to be omitted from consideration.

We will use this lemma to efficiently find the largest ` such that layer
L` contains a state u, which gives Scsh(u).

Note that the formulas for the chaining seed heuristic become
equivalent to those for the seed heuristic when the partial order
〈i, j〉 � 〈i′, j′〉 is redefined to mean i ≤ i′, ignoring the j-coordinate.

3.5 Match pruning

In order to reduce the number of states expanded by the A? algorithm,
we apply the multiple-path pruning observation: once a shortest path to a
vertex has been found, no other path to this vertex could possibly improve
the global shortest path (Poole and Mackworth, 2017). When A? expands
the start of a match we prune this match, so that the heuristic values of
preceding states do no longer benefit from it, thus getting deprioritized by
the A?. We define pruned variants of the seed heuristic and the chaining
seed heuristic that ignore pruned matches:

DEFINITION 3 (Match pruning). Let E be the set of expanded states
during the A? search, and letM\E be the set of unpruned matches, i.e.
those matches not starting in an expanded vertex. Then the pruning seed
heuristic is ĥsh := h

M\E
sh and the pruning chaining seed heuristic is

ĥcsh := h
M\E
csh .

The hat (ĥ) denotes the implicit dependency on the progress of the A?.
Even though match pruning breaks the admissibility of our heuristics for
some vertices, we prove that A? is sill guaranteed to find a shortest path:

THEOREM 2. A? with match pruning heuristic ĥsh or ĥcsh finds a
shortest path.

The proof can be found in Appendix A.2. Since the heuristic may
increase over time, our algorithm ensures that f is up-to-date when
expanding a state by reordering nodes with outdated f values (see
Remark 1 in Appendix A.2).

4 Algorithm
Our algorithm computes the shortest path in the edit graph using a variant
of A? that handles pruning (Section 4.1). This depends on the efficient
computation of the heuristics (Sections 4.2 and 4.3). Section 4.4 contains
further implementation notes.

At a high level, we first initialize the heuristic by finding all seeds and
matches and precomputing the potential P [i] and layers L`. Then we run
the A? search that evaluates the heuristic in many states, and updates the
heuristic whenever a match is pruned.

4.1 A? algorithm

We give our variant of the A? algorithm (Hart et al., 1968) that adds
steps A4 and A6a (marked as bold) to handle the pruning of matches.
All computed values of g are stored in a map, and all states in the front are
stored in a priority queue of tuples (v, g(v), f(v)) ordered by increasing
f .

A1. Set g(vs) = 0 in the map and initialize the priority queue with
(vs, g(vs)=0, f(vs)).

A2. Pop the tuple (u, g, f) with minimal f .
A3. If g > g(u), i.e. the value of g(u) in the map has decreased since

pushing the tuple, go to step 2. This is impossible for a consistent
heuristic.

A4. If f 6= f(u), reorder u: push (u, g(u), f(u)) and go to step 2.
This can only happen when f changes value, i.e. after pruning.

A5. If u = vt, terminate and report a best path.
A6. Otherwise, expand u:

a. Prune matches starting at u.
b. For each successor v of u, open v when either g(v) has not yet

been computed or when g(u) + d(u, v) < g(v). In this case,
update the value of g(v) in the map and insert (v, g(v), f(v)) in
the priority queue. Go to step 2. This makes u the parent of v.

Note that the heuristic is evaluated in steps A4 and A6b for the
computation of f(u) and f(v) respectively.

A vertex is called closed after it has been expanded for the first time,
and called open when it is present in the priority queue.

4.2 Computing the seed heuristic

We compute the seed heuristic using an array LS that contains for each
layer L` the layer start LS[`] := i` = max{i : Ssh〈i, ·〉 ≥ `}.

We give the algorithms to precompute LS, to evaluate the heuristic
using it, and to update it after pruning.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.19.508631doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.19.508631
http://creativecommons.org/licenses/by/4.0/


6 R. Groot Koerkamp and P. Ivanov

Precomputation.

R1. Compute the set of seeds S by splitting A into consecutive kmers.
R2. Build a hashmap containing all kmers of B.
R3. For each seed, find all matches via a lookup in the hashmap. In case

of inexact matches (r = 2), all sequences at distance 1 from each
seed are looked up independently. The matchesM are stored in a
hashmap keyed by the start of each match.

R4. Initialize the array of potentials P by iterating over the seeds
backwards.

R5. Initialize the array of layer starts LS by setting LS[0] = n and
iterating over the seeds backwards. For each seed s = Ai...i′ that
has matches, push score(s) copies of i to the end of LS.

Evaluating the heuristic in u = 〈i, j〉.

E1. Look up the potential P [i].
E2. Ssh(u)= max{` : LS[`] ≥ i} is found by a binary search over `.
E3. Return h(u) = P [i]− Ssh(u).

Pruning when expanding match start u = 〈i, j〉.

P1. Compute seedscoreold := score(s) and `old := Ssh(u).
P2. Remove all matches fromM that start at u.
P3. Compute seedscorenew := score(s) and set `new := `old −

seedscoreold + seedscorenew . If `new < `old, remove layers
LS[`new+1] toLS[`old] fromLS and shift down larger elements
LS[`] with ` > `old correspondingly.

4.3 Computing the chaining seed heuristic

The computation of the chaining seed heuristic is similar to that of the
seed heuristic. It involves a slightly more complicated array LM of layer
matches that associates to each layer L` a list of matches with score `:
LM [`] = {m ∈ M|Schain(m) = `}. The score Scsh(u) is then the
largest ` such that LM [`] contains a match m preceded by u.

Our algorithm for computing the chaining seed heuristic is similar to
the one for the seed heuristic (Section 4.2). Hence we highlight only the
steps which differ (e.g. step 2′ is used instead of 2 for the seed heuristic).

Precomputation.

R5′. Initialize LM by setting LM [0] = ∅. Iterate over all matches in
order of decreasing i of the match start, compute ` = Schain(m)

(see point 2′ below), and add m to LM [`].

Evaluating the heuristic in u = 〈i, j〉.

E2′. Because of Lemma 1, the score Scsh(u) can be computed using
binary search: Scsh(u) ≥ ` holds if and only if one of the layers
LM [`′] with ` ≤ `′ < `+ r contains a match m with u � m.
This is checked by simply iterating over all the matches in these
layers.

Pruning when expanding match start u = 〈i, j〉.

P2′. Compute `u = Scsh(u), and remove all matches that start at u
from layers LM [`u − r + 1] to LM [`u].

P3′. Iterate over increasing ` starting at ` = `u + 1 and recompute
`′ := Schain(m) ≤ ` for all matches m in LM [`]. Move
m from LM [`] to layer LM [`′] whenever `′ 6= `. Stop when
either r consecutive layers are unchanged, in which case no
further changes of Schain(m) can happen because of Eq. (7) and
score(m) ≤ r, or when all matches in r consecutive layers have
shifted down by the same amount, say ∆ := `− `′. In the latter
case, Schain(m) decreases by ∆ for all matches with score at

least `. We remove the emptied layers LM [`−∆ + 1] to LM [`]

so that all higher layers shift down by ∆.

4.4 Implementation

This section covers some implementation details which are necessary for
a good performance.

Bucket queue. We use a hashmap to store all computed values of g in the
A? algorithm. Since the edit costs are bounded integers, we implement
the priority queue using a bucket queue (Bertsekas, 1991). Unlike heaps,
this data structure has amortized constant time push and pop operations
since the difference between the value of consecutive pop operations is
bounded.

Greedy matching of letters. From a state 〈i, j〉 where ai = bj , it is
sufficient to only consider the matching edge to 〈i + 1, j + 1〉 (Allison,
1992; Ivanov et al., 2020), and ignore the insertion and deletion edges to
〈i, j + 1〉 and 〈i + 1, j〉. During alignment, we greedily match as many
letters as possible within the current seed before inserting only the last
opened state in the priority queue. We do not cross seed boundaries in
order to not interfere with match pruning. We include greedily matched
states in the reported number of expanded states.

Priority queue offset. Pruning the last match in a layer may cause an
increase of the heuristic in all states preceding the start u of the match.
This invalidates f values in the priority queue and causes reordering (step
A4). We skip most of the update operations by keeping a global offset to
the f -values in the priority queue, which is updated it when all states in
the priority queue precede u.

Split vector for layers. Pruning a match may lead to the removal of one
or more layers of the array of layer starts LS or the array of layer matches
LM , after which all higher layers are shifted down. To support this
efficiently, we use a split vector: a data structure that internally consists
of two stacks, one containing the layers before the last deletion, and one
containing the layers after the last deletion in reverse order. To delete a
layer, we move layers from the top of one of the stacks to the top of the
other, until the layer to be deleted is at the top of one of the stacks, and
then remove it. When layers are removed in decreasing order of `, this
takes linear total time.

Binary search hints. When we open v from its parent u in step A6b
of the A? algorithm, the value of h(v) is close to the value of h(u). In
particular, Ssh(v) (resp. Scsh(v)) is close to and at most the score in u.
Instead of a binary search (step E2), we do a linear search starting at the
value of ` = Ssh(u) (resp. ` = Scsh(u)).

We also speed up the binary search in the recomputation of f(u)

in the reordering check (step A4) by storing the last computed value
of hint(u) := Ssh(vs) − Ssh(u) (resp. Scsh(vs) − Scsh(u)) in
the hashmap. When evaluating Ssh(u), we start the linear search at
Ssh(vs) − hint(u) with a fallback to binary search in case the linear
search needs more than 5 iterations. Since hint(u) remains constant when
matches starting after u are pruned, it is a good starting point for the search
when only matches near the tip of the A? search are pruned.

Code correctness. Our implementation A*PA is written in Rust, contains
many assertions testing e.g. the correctness of our A? and layers data
structure implementation, and is tested for correctness and performance
on randomly-generated sequences. Correctness is checked against simpler
algorithms (Needleman-Wunsch) and other aligners (EDLIB, BIWFA).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.19.508631doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.19.508631
http://creativecommons.org/licenses/by/4.0/


Exact global alignment using A* 7

104 105 106 107

Sequence length [bp]

10 4

10 2

100

102

Runtime per alignment [s]

1.86

BiW
FA

n

CSH n1.08
Edlib

n
1.51

SH n1.08

(a) e=1%, exact matching

104 105 106 107

Sequence length [bp]

10 3

10 1

101

103
Runtime per alignment [s]

BiW
FA

n
1.97

CSH
n1.08

Edlib
n
1.72

SH
n1.08

(b) e=5%, exact matching

104 105 106 107

Sequence length [bp]

10 3

10 1

101

103

Runtime per alignment [s]

n
1.99

BiW
FA

CSH
n1.13

Edlib
n
1.77

SH
n

1.29

(c) e=10%, inexact matching

104 105 106 107

Sequence length [bp]

10 2

100

102

104
Runtime per alignment [s]

n

BiW
FA

1.99

CSH
n

1.28

Edlib
n
1.84

SH
n

1.45

(d) e=15%, inexact matching

Fig. 4. Log-log plots of the runtime for aligning synthetic sequences of increasing length for A*PA seed heuristic (SH), A*PA chaining seed heuristic (CSH), EDLIB ( ) and
BIWFA ( ). The slopes of the bottom (top) of the dark-grey cones correspond to linear (quadratic) growth. For e≤5%, SH ( ) and CSH ( ) use k=15, r=1. For e≥10%,
SH ( ) and CSH ( ) use k=15, r=2. The missing data points for SH at e=15% are due to exceeding the memory limit (30GB). Each runtime is the average over b107/nc
alignments.

5 Results
We implemented the algorithms from Section 2 in the aligner A*PA and
refer to the two of our algorithms as SH for seed heuristic, and CSH for
chaining seed heuristic. Here we empirically compare the runtime and
memory usage to the exact optimal aligners EDLIB and BIWFA on both
synthetic and real data. We demonstrate the benefit of match pruning on
the runtime scaling with sequence length, and the benefits from match
chaining and inexact matches on scaling to high error rates. All code,
evaluation scripts and data are available in the A*PA repository.

5.1 Setup

Synthetic data. We measure the performance of aligners on a set of
randomly-generated sequences. Each set is parametrized by the number
of sequence pairs, the sequence length n, and the error rate e. The first
sequence in a pair is generated by concatenating n i.i.d. letters from Σ.
The second sequence is generated by sequentially applying be·nc edit
operations (insertions, deletions, and substitutions with equal probability)
to the first sequence. Note that errors can cancel each other, so the final
distance between the sequences is usually less than be·nc. In order to
minimize the measurement errors, each test consists of a number of
sequence pairs.

Human data. We consider two datasets1 of Oxford Nanopore
Technologies (ONT) reads that are aligned to regions of the telomere-to-
telomere assembly of a human genome CHM13 (v1.1) (Nurk et al., 2022).
Statistics are shown in Table 1.

• CHM13: Human reads without biological variation. We randomly
sampled 50 reads of length at least 500 kbp from the first 12 GB

of the ultra-Long ONT reads that were used to assemble CHM13. We
removed soft clipped regions and paired each read to its corresponding
reference region in CHM132.

• NA12878: Human reads with biological variation. We consider
the long ONT MinION reads from a different reference sample
NA12878 (Bowden et al., 2019) which was used to evaluate
BIWFA (Marco-Sola et al., 2022). This dataset contains 48 reads
longer than 500 kbp that were mapped to CHM13.

Compared algorithms and aligners. We compare the seed heuristic
and chaining seed heuristic, implemented in A*PA, to the state-of-the-
art exact pairwise aligners BIWFA and EDLIB. In order to study the

1 https://github.com/RagnarGrootKoerkamp/
astar-pairwise-aligner/releases/tag/datasets
2 https://github.com/RagnarGrootKoerkamp/bam2seq

Biological
mutations

Length [ kbp] Error rate [%]

Dataset min mean max min mean max

CHM13 No 500 590 840 2.7 6.3 18.0

NA12878 Yes 502 624 1053 4.4 7.4 19.8

Table 1. Statistics on the real data: ONT reads from human samples.

performance of the A? heuristic functions and the pruning optimization,
we also compare to Dijkstra’s algorithm (which is equivalent to A? with
a zero heuristic) and to a no-pruning variant of A?, all implemented
in A*PA. The exact aligners SEQAN and PARASAIL are not included
in this evaluation since they have been outperformed by BIWFA and
EDLIB (Marco-Sola et al., 2021). We execute all aligners with unit edit
costs and compute not only the edit distance but also an optimal alignment.
See Appendix A.4 for aligner versions and parameters.

Execution. All evaluations are executed on Arch Linux on a single thread
on an Intel Core i7-10750H CPU @ 2.6GHz processor with
64 GB of memory and 6 cores, with hyper-threading and performance
mode disabled. We fix the CPU frequency to 2.6GHz and limit
the available memory per execution to 30 GB using ulimit -v

30000000. To speed up the evaluations, we run 3 jobs in parallel, pinned
to cores 0, 2, and 4.

Measurements. The runtime (wall-clock time) and memory usage
(resident set size) of each run are measured using time. The runtime
in all plots and tables refers to the average alignment time per pair of
sequences. To reduce startup overhead, we average faster alignments over
more pairs of sequences, as specified in the figure captions. Memory usage
is measured as the maximum used memory during the processing of the
whole input file. To estimate how algorithms scale with sequence length,
we calculate best fit polynomials via a linear fit in the log-log domain
using the least squares method.

Parameters for the A? heuristics. Longer sequences contain more
potential locations for off-path seed matches (i.e. lying outside of the
resulting optimal alignment). Each match takes time to be located and
stored, while also potentially worsening the heuristic. To keep the number
of matches low, longer seeds are to be preferred. On the other hand, to
handle higher error rates, a higher number of shorter reads is preferable.
For simplicity, we fix k=15 throughout our evaluations as a reasonable
trade-off between scaling to large n and scaling to high e. We use exact
matches (r=1) for low error rates (e≤5%), and inexact matches (r=2)
for high error rates (e≥10%). For human datasets we use r=2 since they
include sequences with error rates higher than 10%.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.19.508631doi: bioRxiv preprint 

https://github.com/RagnarGrootKoerkamp/astar-pairwise-aligner/releases/tag/datasets
https://github.com/RagnarGrootKoerkamp/astar-pairwise-aligner/releases/tag/datasets
https://github.com/RagnarGrootKoerkamp/bam2seq
https://doi.org/10.1101/2022.09.19.508631
http://creativecommons.org/licenses/by/4.0/


8 R. Groot Koerkamp and P. Ivanov

Runtime [s] Memory [MB]

Aligner Algorithm e = 1% 5% 10% 15% 1% 5% 10% 15%

EDLIB Banding, exponential search, bit-parallel 206 839 1653 3073 102 106 105 106

BIWFA Diagonal transition, divide & conquer 56.9 806 2799 5492 148 168 181 190

A*PA A?, match-pruning, seed heuristic 1.41 2.79 82.5 ML 434 548 4759 ML
A*PA A?, match-pruning, chaining seed heuristic 1.60 2.98 12.3 220 436 543 2369 4696

Table 2. Runtime and memory comparison on synthetic sequences of length n=107 bp for various error rates. ML stands for exceeding the memory
limit of 30GB. Note that we run our A? heuristics with exact matches ( ) when e≤5%, and with inexact matches ( ) when e≥10%.

Sequence pair

100

101

TL=102

Runtime [s]

Edlib
BiWFA
CSH
SH

(a) CHM13: ONT read errors

Sequence pair

100

101

TL=102

Runtime [s]

Edlib
BiWFA
CSH
SH

(b) NA12878: ONT read errors +
biological mutations

Fig. 5. Log plot comparison of the aligners’ runtime on real data. The data points
for each individual aligner are sorted by alignment time. Alignments that timed out
after 100 seconds are not shown.

5.2 Comparison on synthetic data

Here we compare the runtime scaling and performance of the exact
optimal aligners on synthetic data. Appendix A.5 compares the effects
of pruning and inexact matches, whereas Appendix A.6 compares SH and
CSH in terms of the number of expanded states.

Scaling with sequence length. First, we compare the aligners by runtime
scaling with sequence length n for various error rates e (Fig. 4).
As expected from the theoretical analysis, EDLIB and BIWFA scale
approximately quadratically regardless of the error rate. Unlike them, SH
and CSH scale subquadratically which explains why they are faster for
long enough sequences.

More specifically, for low error rates (e=1% and e=5%), both SH and
CSH with exact matches scale near-linearly with sequence length (best
fit n1.08 for n≤107), and the benefit from chaining is negligible.

For high error rates (e≥10%) and large n, the need to match the seeds
inexactly causes a significant number of off-path matches. These off-path
matches lower the value of the heuristics and prevent the punishment of
suboptimal paths. This causes SH to expand a super-linear number of
states (Appendix A.6). Chaining the matches enforces them to follow
the order of the seeds, which greatly reduces the negative effects of
the off-path matches, leading to only linearly many expanded states.
Nevertheless, the runtime scaling of CSH is super-linear as a result of the
increasing fraction of time (up to 93% for n=107) spent on reordering
states because of outdated f values after pruning.

Performance. Table 2 compares the runtime and memory of A*PA to
EDLIB and BIWFA for aligning a single pair of sequences of length
n=107. A? with CSH is more than 250 times faster than EDLIB and
BIWFA at e=5%. For low error rate (e≤5%), there is no significant
performance difference between SH and CSH. The memory usage of
A*PA for e≤5% is less than 600 MB for any n. At e=15%, CSH uses
at most 4.7 GB while SH goes out of memory (≥ 30 GB) because there
are too many expanded states to store.

5.3 Comparison on real data

In this section we compare the exact optimal aligners on long ONT
reads from our human datasets (Fig. 5). With the presented minimalistic
features, A*PA aligns some sequences faster than BIWFA and EDLIB,
but the high runtime variance makes it slower overall (Appendix A.7).

On the dataset without biological variation CHM13, SH is faster than
BIWFA and EDLIB on 58% of the alignments (29 of 50). On the dataset
with biological variation NA12878, SH outperforms BIWFA and EDLIB

on 17% of the alignments (8 of 48) and in other cases is over an order
of magnitude slower. In both datasets, SH and CSH time out for the
sequences with the highest edit distances, because they have an error rate
larger than the heuristic can handle efficiently (e ≥ r/k = 2/15 =

13.3%).
CSH usually explores fewer states than SH since chaining seed

heuristic dominates the seed heuristic. However, in certain cases CSH is
slower than SH since needs more time to update the heuristic after pruning
(Step 3′ in Section 4.3).

6 Discussion
Our graph-based approach to alignment differs considerably from
dynamic programming approaches, mainly because of the ability to
use information from the entire sequences. This additional information
enables radically more focused path-finding at the cost of more complex
algorithms.

Limitations. Our presented method has several limitations:

1. Complex regions trigger quadratic search. Since it is unlikely that
edit distance in general can be solved in strongly subquadratic time,
it is inevitable that there are inputs for which our algorithm requires
quadratic time. In particular, regions with high error rate, long indels,
and too many matches (Appendix A.8) are challenging and trigger
quadratic exploration.

2. High constant in runtime complexity. Despite the near-linear scaling
of the number of expanded states (Appendix A.6), A*PA only
outperforms EDLIB and BIWFA for sufficiently long sequences
( Fig. 4) due to the relatively high computational constant that the
A? search induces.

3. Complex parameter tuning. The performance of our algorithm
depends heavily on the sequences to be aligned and the corresponding
choice of parameters (whether to use chaining, the seed length k, and
whether to use inexact matches r). The parameter tuning (currently
very simple (Section 5.1) may require a more comprehensive
framework when introducing additional optimizations.

4. Real data. The efficiency of the presented algorithm has high
variability on real data (Section 5.3) due to high error rates, long
indels, and multiple repeats (demonstrated in Fig. 8). Further
optimizations are needed to align complex data.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.19.508631doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.19.508631
http://creativecommons.org/licenses/by/4.0/


Exact global alignment using A* 9

Future work. We foresee a multitude of extensions and optimizations
that may lead to efficient global aligning for production usage.

1. Performance. The practical performance of our A? approach could be
improved using multiple existing ideas from the alignment domain:
diagonal transition method, variable seed lengths, overlapping
seeds, combining heuristics with different seed lengths, gap costs
between matches in a chain (Ukkonen, 1985; Wilbur and Lipman,
1984), more aggressive pruning, and better parameter tuning. More
efficient implementations may be possible by using computational
domains (Spouge, 1989), bit-parallelization (Myers, 1999), and
SIMD (Marco-Sola et al., 2021).

2. Generalizations. Our method can be generalized to more expressive
cost models (non-unit costs, affine costs) and different alignment
types (semi-global, ends-free, and possibly local alignment).

3. Relaxations. Abandoning the optimality guarantee enables various
performance optimizations. Another relaxation of our algorithm
would be to validate the optimality of a given alignment more
efficiently than finding an optimal alignment from scratch.

4. Analysis. The near-linear scaling behaviour requires a thorough
theoretical analysis (Medvedev, 2022a). The fundamental question
that remains to be answered is: What sequences and what errors
can be tolerated while still scaling near-linearly with the sequence
length? We expect both theoretical and practical contributions to this
question.

7 Conclusion
We presented an algorithm with an implementation in A*PA solving
pairwise alignment between two sequences. The algorithm is based on
A? with a seed heuristic, inexact matching, match chaining, and match
pruning, which we proved to find an exact solution according to edit
distance. For random sequences with up to 15% uniform errors, the
runtime of A*PA scales near-linearly to very long sequences (107 bp)
and outperforms other exact aligners. We demonstrate that on real ONT
reads from a human genome, A*PA is faster than other aligners on only a
limited portion of the reads.

Acknowledgements
The authors are grateful to Mykola Akulov for his help with
producing Figs. 1 and 3, and to Benjamin Bichsel, Maximilian Mordig
and André Kahles for valuable feedback on various draft versions. We
thank Sergey Nurk for his help with the preparation of the human data.
Ragnar Groot Koerkamp is financed by ETH Grant ETH-17 21-1 to
Gunnar Rätsch.

References
Allison, L. (1992). Lazy dynamic-programming can be eager. Information

Processing Letters.
Backurs, A. and Indyk, P. (2015). Edit distance cannot be computed in

strongly subquadratic time (unless SETH is false). In Proceedings of the
forty-seventh annual ACM symposium on Theory of computing, pages
51–58.

Benson, G., Levy, A., and Shalom, R. (2014). Longest common
subsequence in k-length substrings.

Benson, G., Levy, A., Maimoni, S., Noifeld, D., and Shalom, B. R. (2016).
Lcsk: a refined similarity measure. Theoretical Computer Science, 638,
11–26.

Bertsekas, D. P. (1991). Linear network optimization: algorithms and
codes. MIT Press.

Bowden, R., Davies, R. W., Heger, A., Pagnamenta, A. T., de Cesare,
M., Oikkonen, L. E., Parkes, D., Freeman, C., Dhalla, F., Patel, S. Y.,
et al. (2019). Sequencing of human genomes with nanopore technology.
Nature communications, 10(1), 1–9.

Daily, J. (2016). Parasail: SIMD C library for global, semi-global, and
local pairwise sequence alignments. BMC Bioinformatics, 17(1), 1–11.

Deorowicz, S. and Grabowski, S. (2014). Efficient algorithms for the
longest common subsequence in k-length substrings. Information
Processing Letters, 114(11), 634–638.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.
Numerische mathematik, 1(1), 269–271.

Gotoh, O. (1982). An improved algorithm for matching biological
sequences. Journal of molecular biology, 162(3), 705–708.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the
heuristic determination of minimum cost paths. IEEE transactions on
Systems Science and Cybernetics, 4(2), 100–107.

Hirschberg, D. S. (1975). A linear space algorithm for computing
maximal common subsequences. Communications of the ACM, 18(6),
341–343.

Hirschberg, D. S. (1977). Algorithms for the longest common
subsequence problem. Journal of the ACM (JACM), 24(4), 664–675.

Holte, R. C. (2010). Common misconceptions concerning heuristic
search. In Third Annual Symposium on Combinatorial Search.

Hunt, J. W. and Szymanski, T. G. (1977). A fast algorithm for computing
longest common subsequences. Communications of the ACM, 20(5),
350–353.

Ivanov, P., Bichsel, B., Mustafa, H., Kahles, A., Rätsch, G., and
Vechev, M. T. (2020). AStarix: Fast and Optimal Sequence-to-Graph
Alignment. In RECOMB 2020.

Ivanov, P., Bichsel, B., and Vechev, M. (2022). Fast and Optimal
Sequence-to-Graph Alignment Guided by Seeds. In RECOMB 2022.

Koenig, S. and Likhachev, M. (2006). Real-time adaptive A*. In
Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems, pages 281–288.

Kucherov, G. (2019). Evolution of biosequence search algorithms: a brief
survey. Bioinformatics, 35(19), 3547–3552.

Levenshtein, V. I. et al. (1966). Binary codes capable of correcting
deletions, insertions, and reversals. In Soviet physics doklady,
volume 10, pages 707–710. Soviet Union.

Marco-Sola, S., Moure, J. C., Moreto, M., and Espinosa, A. (2021).
Fast gap-affine pairwise alignment using the wavefront algorithm.
Bioinformatics, 37(4), 456–463.

Marco-Sola, S., Eizenga, J. M., Guarracino, A., Paten, B., Garrison, E.,
and Moreto, M. (2022). Optimal gap-affine alignment in O(s) space.
bioRxiv.

Medvedev, P. (2022a). The limitations of the theoretical analysis of
applied algorithms. arXiv preprint:2205.01785.

Medvedev, P. (2022b). Theoretical analysis of edit distance algorithms:
an applied perspective. arXiv preprint:2204.09535.

Myers, E. W. (1986). An O(ND) difference algorithm and its variations.
Algorithmica, 1(1-4), 251–266.

Myers, G. (1999). A fast bit-vector algorithm for approximate string
matching based on dynamic programming. Journal of the ACM
(JACM), 46(3), 395–415.

Navarro, G. (2001). A guided tour to approximate string matching. ACM
computing surveys (CSUR), 33(1), 31–88.

Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable
to the search for similarities in the amino acid sequence of two proteins.
Journal of molecular biology, 48(3), 443–453.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.19.508631doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.19.508631
http://creativecommons.org/licenses/by/4.0/


10 R. Groot Koerkamp and P. Ivanov

Nurk, S., Koren, S., Rhie, A., Rautiainen, M., et al. (2022). The complete
sequence of a human genome. Science, 376(6588), 44–53.

Pavetić, F., Katanić, I., Matula, G., Žužić, G., and Šikić, M. (2017). Fast
and simple algorithms for computing both LCSk and LCSk+. arXiv
preprint:1705.07279.

Pearl, J. (1984). Heuristics: intelligent search strategies for computer
problem solving. Addison-Wesley Longman Publishing Co., Inc.

Poole, D. L. and Mackworth, A. K. (2017). Artificial Intelligence:
Foundations of Computational Agents. Cambridge University Press,
second edition.

Prjibelski, A. D., Korobeynikov, A. I., and Lapidus, A. L.
(2018). Sequence analysis. In Encyclopedia of Bioinformatics and
Computational Biology: ABC of Bioinformatics, pages 292–322.

Reinert, K., Dadi, T. H., Ehrhardt, M., Hauswedell, H., Mehringer, S.,
Rahn, R., Kim, J., Pockrandt, C., Winkler, J., Siragusa, E., et al. (2017).
The SeqAn C++ template library for efficient sequence analysis: a
resource for programmers. Journal of biotechnology, 261, 157–168.

Sankoff, D. (1972). Matching sequences under deletion/insertion
constraints. Proceedings of the National Academy of Sciences, 69(1),
4–6.

Sellers, P. H. (1974). On the theory and computation of evolutionary
distances. SIAM Journal on Applied Mathematics, 26(4), 787–793.

Šošić, M. and Šikić, M. (2017). Edlib: a C/C++ library for fast, exact
sequence alignment using edit distance. Bioinformatics, 33(9), 1394–
1395.

Spouge, J. L. (1989). Speeding up dynamic programming algorithms for
finding optimal lattice paths. SIAM Journal on Applied Mathematics,
49(5), 1552–1566.

Ukkonen, E. (1985). Algorithms for approximate string matching.
Information and control, 64(1-3), 100–118.

Vintsyuk, T. K. (1968). Speech discrimination by dynamic programming.
Cybernetics, 4(1), 52–57.

Wagner, R. A. and Fischer, M. J. (1974). The string-to-string correction
problem. Journal of the ACM (JACM), 21(1), 168–173.

Wilbur, W. J. and Lipman, D. J. (1984). The context dependent
comparison of biological sequences. SIAM Journal on Applied
Mathematics, 44(3), 557–567.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.19.508631doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.19.508631
http://creativecommons.org/licenses/by/4.0/


Exact global alignment using A* 11

A Appendix

A.1 The seed heuristic and chaining seed heuristic are
admissible

THEOREM 3. The seed heuristic hsh and the chaining seed heuristic
hcsh are admissible.

PROOF. Let u=〈i, j〉 be any state in the edit graph G(V,E), and let π
be any path from u to the target t. A heuristic h is admissible if h(u) ≤
cost(π) for all u ∈ V and for all paths π.

We first show that hcsh is admissible. Each remaining seed in S≥i is
aligned somewhere by the path π. Since the seeds do not overlap, their
shortest alignments in π do not have overlapping edges. Each edge in π
has a non-negative cost, and hence

∑
s∈Si cost(πs) ≤ cost(π). The

alignment πs of each seed either has cost less than r and equals a match
inMs, or it has cost at least r otherwise. Together this implies that hMcsh
is a lower bound on the remaining cost h∗(u):

hMcsh(u) = min
π∈G(u;t)

∑
s∈S≥i

{
cost(πs) if πs ∈Ms,

r otherwise.

≤ min
π∈G(u;t)

∑
s∈S≥i

cost(πs) ≤ min
π∈G(u;t)

cost(π) = h∗(u).

(11)

We now show that the seed heuristic hMsh(u) is bounded above by hMcsh(u),
so that it is also admissible:

hMsh(u) =
∑
s∈S≥i

{
minm∈Ms cost(m) ifMs 6= ∅,
r otherwise.

≤
∑
s∈S≥i

min
π∈G(u;t)

{
cost(πs) if πs ∈Ms,

r otherwise.

≤ min
π∈G(u;t)

∑
s∈S≥i

{
cost(πs) if πs ∈Ms,

r otherwise.
= hMcsh(u).

A.2 Partially admissible heuristic

Here, we generalize the concept of an admissible heuristic to that of a
partially admissible heuristic that may change value as the A? progresses,
and even become inadmissible in some vertices. In Theorem 4 we show
that A? still finds a shortest path when used with a partial admissible
heuristic.

DEFINITION 4 (Fixed vertex). A fixed vertex is a closed vertex u to
which A? has found a shortest path, that is, g(u) = g∗(u).

A fixed vertex is never opened, and hence remains fixed.

DEFINITION 5 (Partial admissible). A heuristic ĥ is partially
admissible when there exists a shortest path π∗ from vs to vt for which at
any point during the A? and for any non-fixed vertex u ∈ π∗, the heuristic
in u is a lower bound on the remaining distance h∗(u): ĥ(u) ≤ h∗(u).

We follow the structure and notation of Hart et al. (1968) to prove that
A? finds a shortest path when used with a partially admissible heuristic.

LEMMA 2 (Generalization of Hart et al. (1968), Lemma 1). Assuming
vt is not fixed, there exists an open vertex n′ on π∗ with g(n′) = g∗(n′)

such that all vertices in π∗ following n′ are not fixed.

PROOF. Let n∗ be the last fixed vertex in π∗, and let n′ be its successor
on π∗. We have g(n′) = g∗(n′) since π∗ is a shortest path and n∗ was
expanded, and n′ is open by our choice of n∗.

COROLLARY 1 (Generalization of Hart et al. (1968), Corollary to
Lemma 1). Suppose that ĥ is partially admissible, and suppose A? has
not terminated. Then n′ as in Lemma 2 has f(n′) ≤ g∗(vt).

PROOF. By definition of f we have f(n′) = g(n′) + ĥ(n′). Since
n′ ∈ π∗ and π∗ does not contain any fixed vertices after n′, the partial
admissibility of ĥ implies ĥ(n′) ≤ h∗(n′). Thus, f(n′) = g(n′) +

ĥ(n′) = g∗(n′) + ĥ(n′) ≤ g∗(n′) + h∗(n′) = g∗(vt).

THEOREM 4. A? with a partially admissible heuristic finds a shortest
path.

PROOF. The proof of Theorem 1 in Hart et al. (1968) applies, with the
remark that we use the specific path π∗ and the specific vertex n′ from
Corollary 1, instead of an arbitrary shortest path P .

REMARK 1 (Monotone heuristic). We call ĥ(u) monotone when it does
not decrease as the A? progresses. To find the vertex u with minimal f(u),
we add step A4 to the A? algorithm in Section 4.1 to check whether the
value of f in the priority queue is still up to date. If f = f(u), we know
that for each vertex (v, gv , fv) in the queue we have f(u) ≤ fv ≤ f(v)

for all other open vertices v in the queue with stored value fv , ensuring
that u indeed has the minimal value of f value of all open vertices.

A.3 Match pruning preserves finding a shortest path

LEMMA 3. For both ĥshand ĥcsh, any expanded state at the start of a
seed is fixed.

PROOF. Let ĥ be either ĥsh or ĥcsh. We use a proof by contradiction.
Thus, suppose that a state u at the start of a seed has minimal f among
all open states, but the shortest path π∗ from vs to u has length g∗(u) <

g(u).
Let n 6= u be the last expanded state on π∗, and let v be its successor.

Let the unexpanded states of π∗ following n that are at the start of a
seed be v � w0 ≺ · · · ≺ wl = u, in this order. We will show that
f(v) < f(u), resulting in a contradiction with the fact that A? always
expands the open state with minimal f :

f(v) = g(v) + ĥ(v) = g∗(v) + ĥ(v) π∗ is a shortest path to v,

≤ g∗(w0) + ĥ(w0) proven in part 1,

≤ · · · ≤ g∗(wl) + ĥ(wl) proven in part 2,

= g∗(u) + ĥ(u) < g(u) + ĥ(u) = f(u) by contradiction.

Part 1: Proof of g∗(v) + h(v) ≤ g∗(w0) + h(w0). Since w0 is the
first start of a seed at or after v, the set of seeds following v is the same
as the set of seeds following u. Thus, the summation in ĥ(v) and ĥ(w0)

in Eq. (1) or Eq. (2) is over the same seeds. Since v � w0, this implies
ĥ(v) ≤ ĥ(w0) in both cases, and g∗(v) ≤ g∗(w0) since v � w0.

Part 2: Proof of g∗(wi)+ĥ(wi) ≤ g∗(wi+1)+ĥ(wi+1). Note that
wi and wi+1 are at the start of the same or consecutive seeds. In the first
case, ĥ(wi) ≤ ĥ(wi+1) follows by definition since wi � wi+1. Else,
we have ĥ(wi) ≤ ĥ(wi+1) + r. When d := d(wi, wi+1) < r, there is
an unpruned match m from wi to wi+1 in M − E of cost d, since wi is
not expanded. This implies ĥ(wi) ≤ ĥ(wi+1) + d, and we obtain

g∗(wi) + ĥ(wi) = (g∗(wi+1)− d) + ĥ(wi)

≤ (g∗(wi+1)−min(d, r)) + (ĥ(wi+1) + min(d, r))

= g∗(wi+1) + ĥ(wi+1).

LEMMA 4. The heuristics ĥcshand ĥshare partially-admissible.

PROOF. Let π∗ be a shortest path from s to vt. Let n be the last
expanded state on π∗ at the start of a seed. By Lemma 3 n is fixed. By

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.19.508631doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.19.508631
http://creativecommons.org/licenses/by/4.0/


12 R. Groot Koerkamp and P. Ivanov

choice of n, no states on π∗ following n are expanded, so no matches on
π∗ following n are pruned. The proof of Theorem 3 applies to the path π∗

without changes, implying that h(u) ≤ h∗(u) for all u on π∗ following
n, for both h = ĥsh and h = ĥcsh.

THEOREM 5. A? with match pruning heuristic ĥsh or ĥcsh finds a
shortest path.

PROOF. Follows from Theorem 3 in Appendix A.2 and Lemma 4.

A.4 Aligner versions and parameters

A*PA. github.com/RagnarGrootKoerkamp/astar-pairwise-aligner (commit
550bbe5, and for human data commit 394b629 ), run as

astar-pairwise-aligner -i {input} --silent2

-k {k} -r {r} --algorithm {Dijkstra,SH,CSH}

[--no-prune]

BIWFA. github.com/smarco/WFA2-lib (commit ffa2439), run as

align_benchmark -i {input} -a edit-wfa

--wfa-memory-mode ultralow

EDLIB. We forked v1.2.7 at github.com/RagnarGrootKoerkamp/edlib
(commit b34805c) to support WFA’s input format. Run as

edlib-aligner -p -s {input}

A.5 Effect of pruning, chaining, and inexact matches

102 103 104 105

Sequence length [bp]

10 4

10 2

100

102

Runtime per alignment [s]

CSH n1.04
CSH (n

o prune)
n
2.28

Dijk
str

a
n
2.38

SH n1.03

SH (n
o prune)

n
2.29

(a) The effect of pruning on the
runtime scaling with n (e=5%,
k=15, exact matches). Note that
SH and CSH coincide almost
exactly.

0% 10% 20% 30%
Error rate

0

2

4

6

Runtime per alignment [s]

CSH (e
xa

ct
)

CSH (i
nex

ac
t)

Dijk
st

ra

SH (e
xa

ct
) SH (i

nex
ac

t)

(b) The effect of chaining and
inexact matching on the runtime
scaling with e (n=104, k=9,
averaged over 100 alignments).

Fig. 6. The effect of optimizations on runtime scaling on synthetic data.

The optimizations and generalizations of the seed heuristic (Section 2)
impact the performance in a complex way. Here we aim to provide
intuitive explanations (Fig. 6).

Pruning enables near-linear scaling with length. Fig. 6a shows that
match pruning has a crucial effect on the runtime scaling with length for
both SH and CSH. Essentially, this optimization changes the quadratic
runtime to near-linear runtime. The pruned variants of SH and CSH are
averaged over b107/nc sequence pairs, while the no-prune variants and
Dijkstra are averaged over b105/nc pairs.

Inexact matching and match chaining enable scaling to high error
rates. Fig. 6b shows that inexact matches can tolerate higher error rates.
Because of the larger number of matches, chaining is needed to preserve
the near-linear runtime. There are two distinctive modes of operation: the
runtime is close to constant up to a certain error rate, after which the
runtime grows linearly in e. Thus, our heuristics can direct the search up
to a certain fraction of errors, after which does a Dijkstra-like exploration

step for each additional error. A reasonable quantification of the effect
of different optimizations is to mark the error rate at which the heuristic
transfers to the second (slow) mode of operation. For n=104 and k=9,
Dijkstra starts a linear exploration at e=0%, SH and CSH with exact
matches start at around 12%, SH with inexact matches start at around
14%, and CSH with inexact matches start at around 27%.

A.6 Expanded states and equivalent band

SH CSH

e n 104 105 106 107 104 105 106 107

1% 1.08 1.08 1.08 1.08 1.07 1.07 1.07 1.07

5% 1.90 1.92 1.92 1.95 1.89 1.91 1.90 1.91

10% 2.85 2.88 3.16 16.6 2.79 2.80 2.81 2.82

15% 18.9 21.7 43.4 ML 18.5 20.1 20.4 20.3

Table 3. Equivalent band for aligning synthetic sequences of a given
length and error rate. Each cell averages over b107/nc alignments. ML
stands for exceeding the memory limit of 30GB.

Table 3 shows the equivalent band of each alignment: the number of
expanded states divided by n. An equivalent band of 1 is the theoretical
optimum for equal sequences, resulting from expanding only the states on
the main diagonal. The equivalent band for CSH is always lower than the
equivalent band for SH because the chaining seed heuristic dominates over
seed heuristic. In practice, this difference becomes significant for large
enough e and n (e>5% and n>105). The equivalent band of SH and
CSH is constant for e=1%, indicating a linear scaling with n. In other
cases (e≤5% for SH and e≤15% for CSH), the band increases slowly
with n, indicating a near-linear scaling.

A.7 Performance variation on human genome

104 105

Edit distance

100

101

TL=102

Runtime [s]

Edlib
BiWFA
CSH
SH

(a) CHM13

2 × 104 105

Edit distance

100

101

TL=102

Runtime [s]

Edlib
BiWFA
CSH
SH

(b) NA12878

Fig. 7. Log-log plots of the runtime for aligning real sequences from two datasets
of varying error distance. The sequence length varies between 500 kbp and
840 kbp for the CHM13 reads, and between 502 kbp and 1 053 kbp for the
NA12878 reads. Alignments that timed out after 100 seconds are shown at 100 s.
Parameters used for SH and CSH are k=15 and r=2.

Note that the BIWFA data points lie on a line, corresponding to
the expected runtime of BIWFA of O(s2). Furthermore, the runtime
of EDLIB can be seen to jump up around powers of two (214=16 384,
215=32 768, 216=65 536), corresponding to the exponential search of
the edit distance. EDLIB has a runtime complexity ofO(ns), and hence is
slower than BIWFA for small edit distances, but faster than BIWFA for
large edit distances.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.19.508631doi: bioRxiv preprint 

https://github.com/RagnarGrootKoerkamp/astar-pairwise-aligner
https://github.com/smarco/WFA2-lib
https://github.com/RagnarGrootKoerkamp/edlib
https://doi.org/10.1101/2022.09.19.508631
http://creativecommons.org/licenses/by/4.0/


Exact global alignment using A* 13

(a) High error rate (b) Long indel (c) Short repeats

Fig. 8. Expanded states by CSH (r=2, k=10) when aligning pairs of synthetic
sequences (n=1000) with 8% random mutations containing (a) a region of length
200 with larger error rate than the heuristic can efficiently account for (50%), (b) a
deletion of length 100, and (c) 60 mutated copies of a pattern of length 10. Seed
matches are shown in black and occur on the best paths and in the repeated region.
The order of expansion is shown by the color gradient from blue to red.

A.8 Complex alignments

Our algorithm finds optimal alignments very efficiently when both
the sequence and the errors are uniformly random and the error rate
is limited (Section 5). Nevertheless, since the alignment problem is
fundamentally unsolvable in strictly subquadratic time (Backurs and
Indyk, 2015), there are sequences which cannot be aligned fast. We give
three cases (Fig. 8) where the complexity of our algorithm degrades.

1. High error rate. When the error rate becomes too high (larger
than r/k), seeds can not increase the heuristic enough penalize all
errors. Each unpenalized error increases f and needs more states
to be searched, similar to Dijkstra. This can be mitigated by using
shorter seeds and/or inexact matches, at the cost of introducing more
matches.

2. Long indel. If there is a long insertion or deletion, the search has to
accumulate the high cost for the long indel. Our heuristics do not
account for long indels, and hence the search needs to expand states
until the end of the gap is reached. Again, this causes a big increase
of f and a search similar to Dijkstra. This may be improved in future
work by introducing a gap-cost term to the chaining seed heuristic
that penalizes gaps between consecutive matches in a chain.

3. Short repeats. When a short pattern repeats many times, this
can result in a quadratic number of matches. This makes the
corresponding seeds ineffective for the seed heuristic, and slows
down the computation and pruning of the chaining seed heuristic.
This can be partially mitigated by increasing the seed length and/or
exact matches, at the cost of reducing the potential of the heuristic.
Alternatively, seeds with too many matches could be completely
ignored.

A.9 Notation

Table 4 summarizes the notation used in this work.

Table 4. Notation used in this paper.

Object Notation
Sequences

Alphabet Σ = {A,C,G, T}
Sequences A = a0a1 . . . ai . . . an−1 ∈ Σ∗

B = b0b1 . . . bj . . . bm−1 ∈ Σ∗

Subsequence ai..i′ := aiai+1 . . . ai′−1

Edit distance ed(A,B)

Edit graph
Graph G = (V,E)

Vertices (states) u, v ∈ V = {〈i, j〉 | 0 ≤ i ≤ n, 0 ≤ j ≤ m}
Edges match/substitution 〈i, j〉 → 〈i+ 1, j + 1〉

deletion 〈i, j〉 → 〈i+ 1, j〉
insertion 〈i, j〉 → 〈i, j + 1〉

Distance d(u, v)

Path, alignment π : (u;v)

Shortest path π∗

Cost cost(π)

Preceding u � v, m1 � m2

A*
Start and target state vs, vt ∈ V
Distance from vs g∗= d(vs, ·)
Distance to vt h∗= d(·, vt)
Heuristic h

Best distance from start g

Estimated distance f = g + h

Admissible heuristic h ≤ h∗

Consistent heuristic h(u) ≤ d(u, v) + h(v)

Seeds and matches
Seed length and potential k, r
Seeds s ∈ S, sl = Al·k..(l+1)·k
Seeds in suffix S≥i
Matches (per seed) m ∈M,Ms

Cost of match 0 ≤ cost(m) < r

Score of match 0 < score(m) = r − cost(m) ≤ r
Score of seed score(s) = maxm∈Ms score(m)

Seed heuristic and chaining seed heuristic
Potential P 〈i, j〉 = r · |S≥i|
State score (sh) Ssh〈i, j〉 =

∑
s∈S≥i

score(s)

Chain score Schain(m) = maxm�m1�...
∑
i score(mi)

State score (csh) Scsh(u) = maxu�m Schain(m)

Seed heuristic hMsh(u) = P (u)− Ssh(u)

Chaining seed heuristic hMcsh(u) = P (u)− Scsh(u)

Layer L` = {u |Scsh(u) ≥ `}

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.19.508631doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.19.508631
http://creativecommons.org/licenses/by/4.0/

