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ABSTRACT

The linewidth enhancement factor (LEF) describes the coupling between amplitude and phase fluctuations in a semiconductor laser and has
recently been shown to be a crucial component for frequency comb formation in addition to linewidth broadening. It necessarily arises from
causality, as famously formulated by the Kramers–Kronig relation, in media with nontrivial dependence of the susceptibility on intensity
variations. While thermal contributions are typically slow, and thus can often be excluded by suitably designing the dynamics of an
experiment, the many quantum contributions are harder to separate. In order to understand and, ultimately, design the LEF to suitable
values for frequency comb formation, soliton generation, or narrow laser linewidth, it is, therefore, important to systematically model all
these effects. In this comprehensive work, we introduce a general scheme for computing the LEF, which we employ with a nonequilibrium
Green’s function model. This direct method, based on simulating the system response under varying optical intensity and extracting the
dependence of the susceptibility to intensity fluctuations, can include all relevant electronic effects and predicts the LEF of an operating
quantum cascade laser to be in the range of 0.1–1, depending on laser bias and frequency. We also confirm that many-body effects, off-
resonant transitions, dispersive (Bloch) gain, counter-rotating terms, intensity-dependent transition energy, and precise subband distribu-
tions all significantly contribute and are important for accurate simulations of the LEF.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0111599

In a semiconductor laser, current injection modifies the carrier dis-
tribution, changing the imaginary part of the susceptibility—i.e., the
gain necessary for laser operation. As expressed by the Kramers–Kronig
relations, however, the real and imaginary parts of the susceptibility are
coupled, and the ratio of their change upon population injection dn is
quantified by the linewidth enhancement factor

a ¼ @v0=@dn
@v00=@dn

: (1)

This parameter was introduced by Henry in his celebrated paper1 to
explain the enhancement of the linewidth of these devices beyond the
Schawlow–Townes limit.2 Indeed, changes of the refractive index
accompanying the fluctuation in carrier density from the spontaneous
emission during laser operation act as a phase modulation of the laser
emission, thus further broadening the linewidth by a factor of 1þ a2.
However, this coupling between gain and refractive index is not lim-
ited in its effects to the laser linewidth but is also fundamental in many

other aspects of the laser dynamics such as frequency chirp or the
effect of optical feedback.3,4 It was also recently realized that the line-
width enhancement factor (LEF) played a key role in the formation of
optical frequency combs5,6 and solitons7,8 in media with fast gain satu-
ration as it can be seen, combined with gain saturation, as an optical
Kerr effect.

In the past 20 years, the quantum cascade laser (QCL) has
emerged as a powerful, compact, and versatile source of coherent mid-
IR radiations with a wide range of operation between 3 and 16lm of
wavelength covering the molecular fingerprint region of gases. As
QCLs exhibit an atomic-like joint density of state, it was immediately
noted that the value of their linewidth enhancement factor should be
very small if not vanishing.9 Indeed, measurements using a high fre-
quency modulation of a single frequency device yielded a small albeit
nonzero value.10 One source of confusion has been the fact that ther-
mal effects, larger in QCLs because of their high dissipation, is also
responsible for changes in the refractive index and lead to very
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significant contributions to the linewidth enhancement factor at low
frequencies.11

The physical origin of the LEF in a QCL is a nontrivial combina-
tion of both macroscopic and microscopic effects. While some of these
occur on different time scales, they can all significantly contribute to
the LEF. Broadly, these effects can be divided into those originating
from the electronic system and from the surrounding environment.
Gaining detailed information on the former is experimentally very
challenging. Therefore, in order to control the LEF of such devices, it
is necessary to understand the light–matter interaction via microscopic
modeling.

The LEF in mid-IR QCLs has been modeled for a reduced two-
or three-level system using density matrix models,13–15 which are
capable of capturing the coherences induced by the light–matter inter-
action, from which the complex susceptibility can be calculated. Using
a more general technique, Pereira studied the LEF of a three-level
quantum well system using nonequilibrium Green’s function (NEGF)
theory,16 which includes many-body quantum effects, such as carrier–
carrier interactions and self-energy (Lamb) shifts, and counter-
rotating terms. As mentioned above, other nonresonant transitions
also play a crucial role for correctly modeling the LEF.12 In these previ-
ous studies, several important effects have been identified and studied
separately, namely, dispersive gain,17,18 counter-rotating terms,19 non-
parabolicity,15 and the contribution from nonresonant transitions.12

However, until now, no model including all these effects have been
applied to the calculation of the LEF in a QCL, and thus, the relative
importance of these effects is still not known.

In order to accurately model the LEF, we utilize an NEGF
model,20 which accounts for nonthermal subband distributions, non-
parabolicity,21 and many-body quantum effects. Since it includes all
relevant active region electronic quantum states in a basis-invariant
scheme, nonresonant contributions are accurately taken into account,
even when states are close to resonance. In addition, NEGF theory
goes beyond first order perturbation theory for scattering as well as
light–matter interaction, although the optical response is currently
limited in our model to a single frequency at a time, which is not a lim-
iting factor for the present study. The accuracy of the model with
respect to the experimental device is benchmarked in Fig. 1, where the
threshold current has been fitted by adjusting the interface roughness
parameters within the experimental uncertainty limits. It is clear that

the model can reproduce the output power and the transport well for
these parameters, which means that the nonlinear optical susceptibility
can be obtained with reasonable accuracy.

The main object to calculate is the dynamical lesser Green’s func-
tion, which is found through a Fourier expansion in harmonics h of
the laser frequency as G<mnðk;E; tÞ �

P
h G

<
mn;hðk;EÞe�ihxt .20

Relevant dynamical quantities can then be found via the higher-order
response of G<, such as the current density

JðzÞ ¼
X
h

Jhe
�ihxt ¼ � i

A

X
k

X
mn

JmnðzÞ
ð
dE
2p

X
h

G<mn;hðk; EÞe�ihxt :

(2)

Here, A is the device area, Jmn are matrix elements of the current oper-
ator,21 E and k are the energy and momentum, respectively, and h is
the Fourier expansion coefficient. The intensity gain g and the active
region contribution to the propagation constant b are, respectively,

gðxÞ ¼ � J1 þ J�1
ce0

ffiffiffiffi
er
p

FAC
; (3)

bðxÞ ¼ � J1 � J�1
2ce0

ffiffiffiffi
er
p

FAC
; (4)

where FAC denotes the alternating current (AC) field strength and
Dk ¼ b� i g2 is the complex wavevector due to the active medium. For
each value of the AC field strength, the steady-state values for the dif-
ferent harmonics G<mn;h and lesser self-energies R<

mn;hðk; EÞ up to a
certain truncation order Nh, are converged. The required Nh depends
on the frequency and the field strength required to reach gain clamp-
ing at a certain bias voltage. In these simulations, Nh � 2 was used.

The laser is modeled by sweeping the intracavity intensity for
each applied DC bias to find the gain clamping condition shown by
asterisks in Fig. 2. This allows the computation of the photo-driven
current and output power of the operating laser23 shown in Fig. 1. At
these operation points, the effect of a small change in the intracavity
intensity on g and b is then investigated, in order to deduce the LEF
using the relation (using d

ddn ¼ ddn
dI

d
dI)

a ¼ Rfd~nðIÞ=dIg
Ifd~nðIÞ=dIg ¼ �2

@b=@I
@g=@I

; (5)

a) b)

FIG. 1. (a) Conduction band structure and
the electron wavefunctions at an applied
bias of 10 V of the mid-infrared QCL
EV2016.22 The upper (orange) and lower
(blue) laser states are highlighted. (b)
Light–current–voltage curves obtained
from experimental measurements of a
DFB QCL at �20 �C heat sink tempera-
ture as well as NEGF simulations. Dashed
(solid) lines correspond to simulations with
(without) optical fields.

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 122, 021107 (2023); doi: 10.1063/5.0111599 122, 021107-2

VC Author(s) 2023

https://scitation.org/journal/apl


where ~n ¼ c
x b� i g2
� �

is the complex intensity-dependent refractive
index, and I is the intensity. The resulting LEF at operating conditions,
assuming a threshold gain of gth � 11 cm�1 calculated from the
threshold current of devices of different lengths, is shown in Fig. 3.
While a free-running QCL operates in the single-mode regime at the
frequency of peak gain xmax, a QCL operating as a frequency comb or
a single-mode distributed feedback (DFB) laser can host optical fre-
quencies also away from the gain peak. Furthermore, since xmax

changes with bias, it is important to consider the LEF as a function of
the emission frequency as highlighted in Fig. 3. The solid lines show
the evolution of the LEF at particular frequencies, at the alternating
current (AC) field strengths at gain clamping, corresponding to DFB
QCLs centered at those frequencies. In this case, the LEF increase line-
arly with bias. As the slope @g=@I is nearly constant with bias [see Fig.
2(b)], this is a result mainly of the increasing slope of b. We also show
the points at the frequency of the gain peak at four different biases in
Fig. 3. First we evaluate the LEF at a single frequency at a time, corre-
sponding to a DFB laser operating at approximately the same fre-
quency irrespective of bias, or the modes of a frequency comb. When

instead evaluating the LEF at xmax for every bias point, the opposite
trend is found, i.e., a decreasing LEF with bias. This rather nonintuitive
result can be explained with the fact that, as the frequency increases,
bðxmaxÞ moves closer to the inflection point, where the second deriv-
ative of bðxÞ changes sign, around 159meV [see Fig. 5(b)]. This
inflection point is expected from the real part of the susceptibility for a
two-level system crossing zero, but is here shifted in frequency due to
the presence nonresonant transitions. Therefore, the LEF decreases
toward higher frequencies. The red shift of x0 with intensity in Fig. 5(a)
is expected from dispersive gain.18 However, the inflection point in b is
further from the peak gain frequency and the shift of xmax is smaller
than expected from dispersive gain alone. Thus, other effects, such as
other transitions and an intensity-dependent transition energy, also
play important roles. Since the LEF is defined as the ratio between the
real and imaginary parts of dv=dI, the contributions to a are not addi-
tive. This means that failure to account for all these effects may lead to
significant differences in the calculated LEF. In the following, we will
therefore quantify other contributions to the LEF.

To lowest order, the main contribution to the LEF is a change in
inversion with intensity, phenomenologically given by

DNðIÞ ¼ DNð0Þ
1þ I=Isat

; (6)

where Isat is the saturation intensity. In this case, only the value of the
susceptibility at the laser frequency is important, and a symmetrical
gain curve is expected to yield a¼ 0. Therefore, the biggest contribu-
tion to the LEF is expected to be an asymmetry of the gain curve,
which in a QCL comes from two main factors: dispersive gain17 and
nonresonant transitions12 (which could or could not involve the any
of the laser states). The former effect is due to optical transitions
between initial and final states with different in-plane momenta, which
can occur as long as the scattering rate is faster than the stimulated
emission rate.18 It is most prominent when the initial and final state
populations are similar, i.e., close to gain clamping high above thresh-
old, and can have a pronounced effect on the LEF of a two-level sys-
tem.6,13,24 On the other hand, nonresonant transitions drastically
change the shape of the gain curve as well as the dispersion bðxÞ. In
addition, a change in optical intensity redistributes the carriers among
all levels, such that Dg and Db no longer have trivial dependencies on
the intensity. For example, b ¼ 0 does not imply a ¼ 0 as in the two-
level case, as explained below. In addition, there are multiple other fac-
tors that contribute to a in a QCL, such as nonparabolicity15 and
many-body effects.19 The counter-rotating terms in the expression for

FIG. 2. NEGF simulations of the gain and
dispersion b, in (a) as functions of bias
(from 220 to 290mV/period in steps of
5 mV/period) and vanishing optical power
and in (b) as functions of output power,
assuming a facet reflectivity of 30% for
the biases in (a). In (b), the frequency has
been fixed to �hx ¼ 150 meV ¼ 1210
cm�1, marked by the dashed line in (a).

FIG. 3. Linewidth enhancement factor at the gain clamping AC field, as a function
of bias. Solid lines show traces for four different frequencies, while the asterisks
show the values evaluated at the peak of the gain curve.
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the susceptibility make a considerable contribution to the LEF near
resonance, even for mid-IR transitions.19 Finally, effects that are usu-
ally overlooked are the intensity-dependent broadening, dipole
moment, and energy of the transition, of which we find the latter con-
tribute significantly to the LEF of the studied QCLs.

By comparing the results from the NEGF model to calculations
based on the density matrix formalism (see the supplementary mate-
rial), we can control for each physical process influencing the LEF. In
these calculations, all density-matrix variables are extracted from the
NEGF simulations at the respective bias, AC field, and frequency.
Specifically, the transition energy x0 is taken from the approximate
energy eigenstates diagonalizing the Hamiltonian including an energy
shift equal to the real part of the retarded self-energyRfRR

iiðEiÞg, eval-
uated at the eigenenergies Ei. The FWHM transition broadening is

taken as cij ¼
CiþCj

2 , where

Ci ¼ �2IfRR
iiðEiÞg (7)

is the FWHM lifetime broadening of level i, since this relation between
the individual level broadenings and the gain FWHM consistently
agrees well for the presented structure simulated with the NEGF
model.

In the simplest case, we adopt the rotating wave approximation
(RWA), neglect all nonresonant transitions, and use a two-level
Drude–Lorenz model to find the LEF at resonance (see the supple-
mentary material):

aRWAðx ¼ x0Þ ¼

1
c
dx0

dI
1

DN
dðDNÞ
dI

þ 2
zij

dzij
dI
� 1

c
dc
dI

: (8)

The transition energy �hx0 is commonly assumed to be intensity-
independent, with the conclusion that a¼ 0 at the center of the (sym-
metric) gain curve where Refvðx ¼ x0Þg ¼ 0. Equation 8 shows that
this is not the case when x0 changes as a result of intensity fluctua-
tions, due to redistribution of carriers or changes in mean field poten-
tial. This is actually expected from a diagonal transition, which is
usually employed in bound-to-continuum designs. We quantify this
effect for the present structure in the supplementary material.
Additionally, as shown in Fig. 4, although the gain varies in close rela-
tion to DN , it does not follow Eq. (6) very well. Already in this simplest
case, a can be as large as 0.04, or 10% of the value of the full simula-
tions, which shows the importance of including at least this effect in
analyses of the LEF for mid-IR QCLs.

Nonresonant transitions modify the susceptibility so that the last
equality in Eq. (8) does not hold. This is illustrated in Fig. 5(b), where
a good agreement with the NEGF model for b is only found when
nonresonant transitions are included; even then, a significant discrep-
ancy remains for the linewidth enhancement factor.

Adding the dispersive gain [see Eqs. (S10) and (S11) of the sup-
plementary material], the peak gain increases and red shifts.
Considering only the upper and lower laser states, this indeed leads to
a finite LEF at the peak of the gain curve [see Figs. 5(c) and 5(f)].
However, adding nonresonant transitions the gain becomes higher
and b shifts in the opposite direction as compared to the NEGF simu-
lations (see the supplementary material). This results in a worse agree-
ment for the LEF than for a single transition or nondispersive gain

calculations (it even predicts the wrong sign of the LEF at the peak of
the gain curve). The reasons for this inaccuracy could be the assump-
tion of constant subband temperatures and scattering rates, even for
states with large separation in energy and space (although this should
be compensated by the small dipole moment z12).

Regarding counter-rotating terms, we can estimate their contri-
bution by neglecting all factors but the change in inversion. In this
case, we obtain16

aCRðx ¼ x0Þ ¼
RfvCRg
IfvCRg ¼

c
2x0
� 0:05; (9)

i.e., a small positive contribution (assuming a transition FWHM
c � 0:1x0). This can be seen in Fig. S1 for the two-level approxima-
tion. However, nonresonant transitions give a large error to the RWA,
since the counter-rotating terms for those transitions are of similar
magnitude as the rotating ones. In contrast, for the dispersive gain
contributions, since they are inaccurate for the nonresonant transitions
in the employed approximations (average transition rates for all transi-
tions, and constant subband temperatures of T¼ 450K), the counter-
rotating terms contribute with additional errors, resulting in the LEF
actually agreeing slightly better under the RWA. This suggests that a
more elaborate treatment of the dispersive gain terms is needed, such
as including the actual subband occupation functions fiðEkÞ as well as
decoherence, dephasing, and momentum-dependent transition rates.

In conclusion, a wide range of effects contribute to the LEF in an
intersubband semiconductor laser, each of which can have significant
individual contributions. However, we find that the largest contribu-
tions come from nonresonant transitions, dispersive gain, counter-
rotating terms, and intensity-dependent transition energy. Other
effects, such as nonparabolicity (which has been included in all

FIG. 4. Intensity-dependence of the parameters for the lasing transition used in Eq.
(8), extracted from NEGF simulations. ntot ¼ nu þ nl and the total (FWHM)
ctot ¼ ðc2sp þ X2=2þ cscatt:

2Þ1=2, where csp (�6 � 10�5 meV) is the spontaneous
emission rate, X is the Rabi frequency, and cscatt:ð� 16 meV) is the (FWHM)
broadening only due to scattering.25 The green dashed line shows a fit to Eq. (6),
while the orange dashed lines shows cscatt:
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simulations), are also known to contribute significantly. This implies
that all these effects have to be accounted for when simulating the LEF
for a general structure. In addition, comparing density matrix calcula-
tions that include all of these effects to NEGF simulations that include
additional many-body effects and k-resolved subband distributions,
we find that a significant discrepancy to the full NEGF model results
remains. This sensitivity of the LEF to a multitude of complex and
inter-related quantum effects suggests that elaborate simulation
schemes, such as NEGF, are required for investigating optical nonli-
nearities in semiconductor devices, which are crucial for the develop-
ment of versatile mid-infrared frequency comb sources.

See the supplementary material that contains derivations of the
complex conductivity with dispersive gain, approximations of the LEF,
as well as a study of the intensity-dependence of the transition energy
in the NEGF model.
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