
Diss. ETH No. 28876

TRIPLET UNRAVELING: A STOCHASTIC ALGORITHM
FOR LATTICE QUANTUM SYSTEMS

A thesis submitted to attain the degree of
Doctor of Sciences
(Dr. sc. ETH Zurich)

presented by
Romain Chessex

M. sc. in Physics, ETH Zurich
born on 01 September 1993

accepted on the recommendation of
Prof. Dr. Hans Christian Öttinger
Prof. Dr. Francesco Petruccione

Prof. Dr. Alexei Bazavov
Dr. Massimo Borrelli

2022



Copyright © 2022 Romain Chessex

Front cover by: Amandine Ischer
Artistic representation of a controlled exploration
of the Hilbert space with triplet unraveling.



For you, who dream of never-ending winters.





“Who wants to climb a mountain starts at
the bottom.”
— Chinese proverb





vii

Acknowledgements

This project would not have been possible without my advisor Hans Christian Öt-
tinger, who trusted and supported me with his great guidance. Hans Christian, thank
you for the liberty I was given in choosing the topic and direction of my work. I be-
lieve your precious advice and suggestions were essential. The many discussions we
had on quantum physics and beyond pushed me to understand in a deeper and more
intuitive way the insights of this work. Besides physics, I have broadened my knowl-
edge in many fields such as statistics and computer science. More importantly, your
idealistic approach of science gives me hope that new intuitive numerical tools can
still be developed, especially for quantum physics.

I would like to recognize the invaluable assistance of Massimo Borrelli for his
immense technical support and the huge amount of discussions we had. Massimo,
your bulletproof morale, permanent good mood, and continuous flow of ideas for
new project were very stimulating. You really helped me realize the versatility this
approach and put it in a broader context. Thank you for the huge amount of time
you invested in the detailed comments about this dissertation.

In addition, I wish to thank Francesco Petruccione and Alexei Bazavov who agreed
to be members of my doctoral examination committee and took the time to review
my research critically.

I would also like to thank my coworkers Alexander, Ioanna, Elia, Meisam, and all
the others for the moments we shared during these years spent together. Although
our different scientific backgrounds were not always exactly overlapping, it engendered
nice refreshing discussions during lunch breaks, lectures, and teaching assignments.
Many thanks to Martin for the IT support and coding tips, and to Patricia for helping
me find my way through the administrative maze.

To my family, especially my parents, I am very grateful for your dedication to my
education and for teaching me to never give up. Dad, you have always reminded me
to stay true to myself. Mom, thank you for the curiosity you have passed on to me.

Finally, to Amandine, I thank you with all my heart for your love and sincerity.
You have always believed in me and encouraged me to give the best of myself with
your unconditional support.





ix

Contents

Acknowledgements vii

Abstract xi

Résumé xiii

1 Introduction 1

2 Stochastic unraveling of quantum master equations 5
2.1 Stochastic numerical methods . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Stochastic methods for quantum systems . . . . . . . . . . . . 7

2.2 Dissipative quantum field theory . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Open quantum systems . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Linear quantum master equation . . . . . . . . . . . . . . . . . 11
2.2.3 Evolution operator . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Weak coupling limit . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Stochastic unraveling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Single-process unraveling . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Two-process unraveling . . . . . . . . . . . . . . . . . . . . . . 16

3 Triplet unraveling 19
3.1 Stochastic unraveling in Laplace domain . . . . . . . . . . . . . . . . . 19
3.2 Vanishing dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 A fixed-point iteration scheme . . . . . . . . . . . . . . . . . . 22
3.2.2 Steady-state stochastic unraveling . . . . . . . . . . . . . . . . 23

4 Ground-state calculations 25
4.1 The fixed-point iterative scheme . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Steady-state calculations: a short overview . . . . . . . . . . . 26
4.1.2 Paradigmatic models . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 General structure . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Main loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.3 Importance sampling . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.4 Initiator approximation . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Population control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1 Shift update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 Population plateaus . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.3 Spring constant . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



x

4.4 Efficiency and accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.1 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.2 Error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.3 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Concrete calculations and examples . . . . . . . . . . . . . . . . . . . . 46

5 Real-time dynamics 51
5.1 The magical formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.1 Reversible dynamics: a short overview . . . . . . . . . . . . . . 52
5.1.2 Paradigmatic models . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.1 General strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.2 The main loop . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.3 Evolution in Laplace domain . . . . . . . . . . . . . . . . . . . 59
5.2.4 Efficiency and complexity . . . . . . . . . . . . . . . . . . . . . 60

5.3 Population control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.1 Dynamical sign problem . . . . . . . . . . . . . . . . . . . . . . 61
5.3.2 Numerical parameters . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.3 Deadweight approximation . . . . . . . . . . . . . . . . . . . . 63

5.4 Inverse Laplace transformation . . . . . . . . . . . . . . . . . . . . . . 65
5.4.1 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4.2 Data fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Concrete calculations and examples . . . . . . . . . . . . . . . . . . . . 69

6 Summary and outlook 75

A Generalities 81
A.1 Sign problem: divergent signal . . . . . . . . . . . . . . . . . . . . . . 81
A.2 Derivation of the magical formula . . . . . . . . . . . . . . . . . . . . . 81
A.3 Computation of excited states . . . . . . . . . . . . . . . . . . . . . . . 82

B Laplace transform 85
B.1 The Zakian method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B.2 Dynamical properties in the Laplace domain . . . . . . . . . . . . . . . 85

C Dissipative quantum field theory 89
C.1 Quartic interaction theory . . . . . . . . . . . . . . . . . . . . . . . . . 89
C.2 Continuous treatment of the free dissipation . . . . . . . . . . . . . . . 90
C.3 The Schwinger model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Bibliography 95



xi

Abstract

Numerical stochastic methods are celebrated for their ability to provide reliable
solutions and accurate approximations of quantum problems. This success originates
from the use of random sampling to handle the evaluation of multi-dimensional inte-
grals, represent large matrices, or reproduce the intrinsic randomness of certain pro-
cesses. However, the sign problem plagues most of these stochastic methods due to an
attempt to replicate quantum features via classical algorithms. A near-cancellation of
positive and negative contributions to the quantum averages engenders instabilities
and prevents the numerical simulations from estimating values of physical observables.

In this thesis, we introduce a stochastic method to compute dynamical properties
of multi-dimensional lattice quantum systems, which relies on an intuitive importance
sampling procedure to partially overcome the sign problem. The theoretical founda-
tions rely on dissipative quantum field theory, which is characterized by a Hamiltonian
framework, together with a master equation approach and a natural regularization
mechanism realized through quantum dissipation. Our stochastic trajectories are im-
plemented by piecewise deterministic processes where continuous dynamics is inter-
spersed with two-process quantum jumps, providing better control over the number of
trajectories. The Hamiltonian formulation coupled with the quantum jump approach
defines a natural framework for essential importance sampling procedures, whose in-
terplay with efficient approximations reduces the severity of the sign problem as well
as the number of independent trajectories needed to obtain convergent results.

Our algorithm is called triplet unraveling for its fundamental similarities with
stochastic unraveling. We associate continuous dynamics and random jumps with a
free-interacting splitting rather than the usual reversible-irreversible splitting. This
trade enables the study of reversible quantum systems out of equilibrium and steady-
state properties, which is realized through small variations of a more general algo-
rithm. We present both variations with benchmarking models to test the ability
of the algorithms to handle critical issues, including the sign problem via impor-
tance sampling. The introduction of the deadweight approximation provides access
to the long-time dynamics of multi-dimensional reversible systems as opposed to most
similar methods. We foresee promising applications in multi-dimensional reversible
many-body physics with quantum quenches and critical phenomena. Independently,
this technique also offers an alternative approach to lattice quantum chromodynam-
ics, which has the benefit to compute quark dynamics on d- instead of a (d+ 1)-
dimensional lattice.
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Résumé

Les méthodes stochastiques numériques sont réputées pour leur aptitude à fournir des
solutions fiables et des approximations fidèles de problèmes quantiques. Ce succès est
dû à l’utilisation de l’échantillonnage aléatoire pour traiter l’évaluation d’intégrales
multidimensionnelles, représenter des matrices complexes ou reproduire des processus
aléatoires intrinsèques. Cependant, en raison d’une tentative de répliquer des carac-
téristiques quantiques via des algorithmes classiques, le problème du signe afflige la
plupart de ces méthodes stochastiques. Une quasi-annulation des contributions posi-
tives et négatives aux espérances quantiques engendre des instabilités qui empêchent
l’estimation d’observables physiques par des simulations numériques.

Dans cette thèse, nous proposons une méthode stochastique permettant de cal-
culer les propriétés dynamiques de systèmes quantiques multidimensionnels sur réseau
grâce à un échantillonnage préférentiel intuitif qui a pour effet de surmonter partielle-
ment le problème du signe. Les fondements théoriques s’appuient sur la théorie dis-
sipative des champs quantiques, qui est caractérisée par un cadre hamiltonien assorti
d’une approche d’équation maîtresse et d’un mécanisme de régularisation naturel
réalisé par dissipation quantique. Nos trajectoires stochastiques sont implémentées
au moyen de processus déterministes par morceaux dont la dynamique continue est
entrecoupée de sauts quantiques à deux processus, ce qui offre un meilleur contrôle du
nombre de trajectoires. La formulation hamiltonienne associée à l’approche par sauts
quantiques définit un cadre naturel pour les procédures d’échantillonnage préférentiel
essentielles. De plus, l’action réciproque avec des approximations performantes réduit
la complexité du problème du signe ainsi que le nombre de trajectoires indépendantes
nécessaires pour obtenir des résultats convergents.

Notre technique est appelée dévoilement par triplets par sa similitude fondamen-
tale avec le dévoilement stochastique. Elle associe la dynamique continue et les
sauts aléatoires à une partition libre–interactive plutôt qu’à la partition habituelle
réversible–irréversible. Ce changement permet d’étudier, grâce à des petites varia-
tions d’un algorithme plus général, les systèmes quantiques réversibles hors équilibre
et les propriétés d’états stationnaires. Nous présentons ces deux variantes à l’aide de
modèles de référence afin de tester la capacité des algorithmes à gérer des probléma-
tiques critiques, notamment le problème du signe via l’échantillonnage préférentiel.
L’introduction d’une approximation, appelée poids mort, donne accès à la dynamique
de systèmes réversibles multidimensionnels pour des temps longs, contrairement à la
plupart des méthodes similaires. Nous anticipons des applications prometteuses en
physique réversible multidimensionnelle à N corps en simulant des quenchs quan-
tiques et des phénomènes critiques. Indépendamment, cette technique offre également
une approche alternative à la chromodynamique quantique sur réseau, qui présente
l’avantage de calculer la dynamique des quarks sur un réseau en d dimensions au lieu
de d+ 1.
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1 Introduction

Computer simulations are extremely powerful tools allowing scientists to solve prob-
lems that are too complex to be solved analytically. The key to developing sophisti-
cated new numerical methods is to construct efficient and versatile computer simula-
tion techniques with innovative ideas to overcome common problems. This statement
is particularly true for simulations of complex systems where the accuracy is limited
by memory access or the raw number of operations performed per unit of time. The
focus should be on methods where intuition can be used to massively reduce the
computation effort with revolutionary and ingenious algorithmic ideas. Simulations
of quantum systems are known to be a challenging topic, especially when dealing
with large systems. The number of allowed configurations grows exponentially with
increasing system size and makes it impossible to store all these configurations in
a computer. A successful solution is to consider stochastic methods to represent
and compute the properties of such quantum models. These numerical techniques
denote a family of computational methods for calculating approximate numerical es-
timations using random processes. The general strategy is to simulate the quantum
systems stochastically and average over multiple independent simulations. The in-
trinsic statistical noise provides an estimate of the error of the quantum averages and
is computed via these independent simulations. This technique is intensively used for
high-precision studies from low- to high-energy physics, notably, in condensed matter
systems [1–4] and fundamental interactions between quarks [5–7].

A particularly useful approach to simulate those quantum systems stochastically
is to formulate them on a lattice, as opposed to the space-time continuum. Lattice
models were originally introduced in the context of condensed matter physics, where
the atoms of a crystal naturally form a lattice. These discretized models are ide-
ally studied by computational means due to the natural lattice representation in the
computer data. Some models are exactly solvable, and thus, offer insight into the
physics beyond what can be learned from perturbation theory. In condensed matter
physics, more specifically in the field of strongly-correlated particles, many models
exist, describing a large variety of physical effects. The most common models are
the Ising model, its generalization the Heisenberg model [8], the more complex Bose-
and Fermi-Hubbard models [9], and many variations of impurity models [10]. These
lattice models together with diverse stochastic methods [11, 12] have provided invalu-
able insights into phase transitions, magnetization, and zero-temperature behavior
of strongly-correlated many-body systems. Additionally, the recent introduction of
real-time stochastic simulation techniques [13–17] revealed many dynamical phenom-
ena, such as dynamics of quantum correlations, quenched many-body dynamics, and
dynamical phase transitions. In high-energy physics, a particularly interesting yet
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challenging topic concerns numerical methods for quantum chromodynamics (QCD)
on a lattice [18]. Lattice QCD is a formulation of the interaction between quarks and
gluons on discretized points of the space-time lattice, which provides an ideal nonper-
turbative framework to study quark confinement [19–21]. Because confinement has
never been proven analytically, lattice simulations are crucial to explore the details
of the confinement mechanism [5]. In practice, lattice QCD calculations stochasti-
cally produce samples of path integrals in Euclidean time, where sequences of field
configurations are generated randomly. The quantities of interest are evaluated using
the ensemble of generated configurations, whose statistical averages are computed.
The accuracy of these computations is highly dependent on computational resources
and accounts for a significant portion of the supercomputer-time consumed around
the world [22–25]. The main limitation is dictated by the number of lattice points
and through solving huge systems of linear equations encoding the quark-gluon inter-
actions [26–28]. 1 On current typical supercomputers, it is the memory bandwidth
needed to solve these linear systems that limits the size of the systems.

A prominent issue common to a vast majority of stochastic simulations in low-
to high-energy physics is the sign problem, a numerical artifact that prevents sim-
ulations from evaluating quantum averages. Essentially, it produces instabilities in
measurements that increase exponentially with simulation length and system size. It
is due to the inability of a classical algorithm to reproduce quantum features of the
system under study. Its origin is not clearly defined by a single quantum effect but it
usually manifests itself as a divergent signal. The sign problem plagues many models
and situations in computational physics [29, 30], for instance, in nuclear physics [31]
or lattice QCD at low energies where the nonperturbative effects are important [32].
Other examples of sign problems occur in bosonic nonrelativistic systems [33], or in
condensed matter physics [34, 35], in particular in the Hubbard model away from
half-filling or the Heisenberg model on a triangular lattice. Thus, the main challenge
for any new stochastic method is to construct an efficient scheme to circumvent,
overcome, or at least weaken the sign problem during the time scales explored by the
simulations.

As a natural setting for efficient numerical methods to overcome the sign prob-
lem, the theory of dissipative quantum fields [36–39] not only provides a substitute
to lattice quantum chromodynamics but also a possible solution to the memory bot-
tleneck. Dissipative quantum field theory (DQFT) was developed as an alternative
effective description of fundamental particles and their interactions where dissipa-
tion introduces a natural regularization mechanism for ultraviolet divergences. The
coupling with the environment acts as a regularization parameter for divergent ul-
traviolet contributions, where only the vanishing dissipation limit is interpreted as a
physical result. Additionally, its formulation on the momentum lattice provides an
infrared cutoff. The regularization parameters, namely the lattice spacing and the
friction, are only auxiliary parameters providing convergent results, and the physi-
cally relevant results are provided by the vanishing limit. This dissipative method
is nonperturbative in nature, which avoids the infamous problems of perturbation
theory. It is based on a quantum master equation whose solution is a density matrix

1The linear systems that have to be solved originate from the differential Dirac operator. As in
most partial differential equations solvers, the derivatives are replaced by finite difference methods.
Hence, the Dirac operator corresponds to a huge sparse matrix, whose inversion is the most expensive
part of the lattice quantum chromodynamics calculations. This inversion is performed using numerical
methods involving many multiplications of the Dirac operator with vectors of the Hilbert space. The
lattice calculations are essentially reduced to solving many systems of linear equations involving the
Dirac matrix.
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in a suitable second-quantization form. Its Hamiltonian approach implies that the
particles dynamics is computed on a d-dimensional grid as opposed to d+ 1 in lattice
QCD. Given the current lattice sizes [40, 41], it would roughly reduce the memory
requirement by two orders of magnitudes. Albeit originally formulated in the context
of high-energy physics, the simulation ideas for DQFT are completely general and
can be applied to condensed matter systems as well. Hence, we also expect DQFT to
reproduce the physics described by reversible strongly-correlated many-body models
on the lattice.

In the context of stochastic simulations of open quantum systems, unraveling
provides a numerical tool to solve quantum master equations, when the coupling to
the environment is small. Stochastic unraveling consists in constructing piecewise
deterministic processes whose realizations, or trajectories, experience continuous de-
terministic evolution interspersed with instantaneous random jumps. The statistical
average over a large number of independent realizations of these stochastic processes
reproduces the solution of a quantum master equation. Dissipative quantum field
theory sets a natural framework for stochastic unraveling due to its coupling to a
dissipative environment and its formulation in terms of a quantum master equation.
Besides the common quantum master equation approach, the link between DQFT
and unraveling lies in the fact that the weak coupling regime in which unraveling is
valid corresponds to the limit required by the dissipative quantum fields to reproduce
physical results.

From this combination, we develop a method called triplet unraveling to reproduce
the solution of the quantum master equation for many-particles systems. To address
the common difficulties mentioned earlier, we design a stochastic method that (i)
weakens the sign problem, (ii) includes importance sampling to reduce the computa-
tional cost and allow for algorithmic improvements, and (iii) is suited for computa-
tional clusters by an efficient parallel implementation that optimizes the spatial and
time computational efforts. Classical analogies to this quantum-jump approach would
be molecular dynamics in the reversible case and Brownian dynamics for dissipative
systems. The use of a preferred simulation basis reduces the diverging fluctuations.
The sign problem can be further diminished by an intuitive importance sampling
procedure, whose introduction is natural in the Hamiltonian framework combined
with a stochastic jump approach. Additionally, the expressions of the time-evolution
operators are formulated in the Laplace domain, which greatly simplifies the imple-
mentation of the stochastic jumps and enables the use of further approximations to
reduce the statistical noise. From an implementation point of view, our method is
highly parallelizable for computational clusters, that is a parallel execution on inde-
pendent logical processes with a minimal number of synchronization between these
processes. In the triplet unraveling algorithm, the data is structured in such a way
that the communication between processes is optimized, and the interacting effects
are implemented by this minimal information exchange.

The main practical challenges in developing this new method are the efficiency
of the procedure to overcome the sign problem, precise control over the trajectories
in the Hilbert space, and the effect of importance sampling. To address these main
difficulties, we consider prominent models in condensed matter without dissipation.
Unlike most investigations that are usually restricted to one-dimensional systems
or short times, a feature of our algorithm enables access to long-time properties of
multi-dimensional reversible quantum systems, which has been so far realized only
by a handful of numerical methods. Although real-time simulations are typically af-
fected by both a severe sign problem and poor control of the exploration of the Hilbert
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space, the use of importance sampling and specific approximations provide a feasi-
ble way to limit the impact of these issues. These simulations are possible with the
introduction of the so-called deadweight approximation that limits the exploration of
the Hilbert space to statistically important quantum state-jumps only. An additional
feature that highlights the versatility of the formulation in the Laplace domain is the
use of the evolution operators to compute also ground states of unknown Hamilto-
nians. The ground-state properties are calculated via a fixed point equation in the
Laplace domain, which provides an iterative method to obtain an estimation of the
ground state. As we will see, these ground states also serve as initial conditions for
high-energy physics simulations. This work provides a proof-of-feasibility for calcu-
lations of quantum systems using a quantum type of molecular dynamics method,
triplet unraveling. Besides exploring the capabilities of this novel approach for multi-
dimensional reversible quantum systems and ground states of unknown Hamiltonians,
we use this study as a starting point for exciting future applications in lattice quantum
chromodynamics.

This work is structured as follows. Chapter 2 introduces the concepts of dissipative
quantum field theory and the key ingredients behind its development. Independently,
this chapter also describes stochastic unraveling and indicates how it can be used
in the framework of dissipative quantum field theory. An alternative splitting of
the deterministic and stochastic contributions is reviewed and forms the basis for
the methods described in the following chapters for ground-state calculations and
reversible dynamics. Chapter 3 concentrates on the link between unraveling and
dissipative quantum field theory to develop our fundamental numerical framework
using the alternate splitting introduced earlier and the properties of the Laplace
domain. Chapter 4 describes an algorithm based on this framework to compute
ground states of unknown Hamiltonians, and provides insights into the algorithmic
details. Chapter 5 introduces a real-time algorithm to compute reversible dynamics
of quantum many-body systems. It is again based on a special case of the general
technique exposed in Chapter 3. This chapter should be seen as (i) the introduction
of an efficient method to compute dynamical properties of reversible multidimensional
quantum systems, and (ii) a milestone for the possible future applications in quantum
chromodynamics. Chapter 6 concentrates on the future work and development of the
method by discussing the efficiency of the technique for reversible dynamics and
presenting the major challenges in fundamental particle simulations.
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2 Stochastic unraveling of
quantum master equations

The algorithm presented in this dissertation combines the theory of dissipative quan-
tum fields [36] with the numerical tools of stochastic unraveling [42]. As mentioned
in the introduction, we want to use the framework of DQFT to construct a stochastic
unraveling that allows us to simulate (i) steady-state, (ii) reversible, and potentially
(iii) high-energy properties of quantum systems using small variations of a common
general method. Because of similarities between the formulation of DQFT and open
quantum systems [43], unraveling is a natural approach to simulations of fundamental
particles coupled to a dissipative environment.

This chapter is separated into three sections. First, we briefly introduce the nec-
essary mathematical and statistical notation for simulating quantum systems using
a stochastic approach. Since our numerical approach consists of a quantum field
theoretical background combined with open quantum systems and stochastic meth-
ods, we want to have proper definitions of the basic concepts. To finish with this
introductory part, we give an intuitive overview of the sign problem [44] and the re-
lated issues due to its permanent involvement in stochastic simulations. In a second
stage, we introduce a thermodynamic approach to open quantum systems from which
the development of DQFT originates. This serves as a starting point for a concise
derivation of the fundamental equations on which our numerical scheme relies. In the
last section, we describe in details how to unravel a master equation and generalize
the standard single process unraveling to two-process unraveling in order to compute
nonsymmetrical correlation functions. By the end of the chapter, we will have all the
necessary theoretical and numerical tools to build our main algorithm.

2.1 Stochastic numerical methods
Stochastic numerical methods have been used with great success to calculate proper-
ties of quantum systems ranging from condensed matter [2, 45], to quantum chemistry
[3, 46], to lattice QCD [5–7]. A stochastic method is not a specific technique but a
general strategy for solving problems that are too complex for an analytical solution
to be found. These methods define a stochastic procedure that is applied iteratively
to construct a large number of samples that reproduce physical observations on aver-
age. Intuitively, stochastic numerical methods use properties of random numbers to
represent the solutions of complex problems through statistical averages.

2.1.1 Stochastic processes

Stochastic techniques are often constructed to reproduce specific stochastic processes.
A stochastic process is a family of random variables {X(t), t ∈ T }, where the set
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T is interpreted as time axis. For discrete-time processes, it holds T = N and for
continuous time, T = [t0, tmax]. To lighten the notation throughout this work, we
adopt the convention X(t) = Xt for time-dependent variables. The ensemble of
values {xt, t ∈ T }, called a trajectory, denotes a single realization xt of a process Xt

and represents one possible evolution of this process. The mean of a process Xt with
distribution function P (Xt) is defined as

E[Xt] =
∑
xt

xtP (Xt = xt), (2.1)

where the sum
∑
xt

denotes the sum over the set of possible values of the random
variable Xt at t fixed. Accordingly, the variance is defined as

Var[Xt] = E[(Xt − E[Xt])
2]. (2.2)

In this work, we consider a special type of stochastic process called piecewise de-
terministic process. The evolution of the piecewise deterministic process combines
random events, together with deterministic evolution. The deterministic part, which
is dictated by the solution of some differential equation is interrupted by instanta-
neous random jumps. With a slight abuse of notation, let us denote the piecewise
deterministic process with {Xt, t ∈ T }. The time evolution is defined through speci-
fying the following characteristics.

1. The deterministic dynamics is dictated by the solution of the general differential
equation

dxt
dt

= G(xt), (2.3)

where in this work, we assume the function G(x) to be linear in xt. The solution
leads to a deterministic evolution between two random events.

2. The event rate. Events occur instantaneously at rate r(xt) in a Poisson-like
fashion. We assume that the rate depends only on the current state of the
process.

3. The transition distribution at events. At each event, the state of the process
changes according to some transition rules. If at time t an event occurs, we
denote with xt− the state just prior to the event. After the event the state will
be taken from a transition distribution Ptran(X|Xt = xt−).

2.1.2 Estimators

For a general stochastic process Xt, a numerical stochastic method is an algorithm
that generates a set of NR independent trajectories x

(n)
t , with n = 1, 2, . . . ,NR.

Generally, we wish to estimate the expectation value E[f(Xt)] = ℓ, where f(Xt) is
a function that may depend explicitly on time. We construct an estimator for the
expectation value from independent trajectories as

ℓ ≈ f̄t =
1
NR

NR∑
n=1

f(x
(n)
t ), (2.4)
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where the estimator is exact for NR → ∞. Assuming a finite variance σ2 and NR

large, we define an estimator for the variance

Var[f(Xt)] ≈ V 2 =
1

NR − 1

NR∑
n=1

(
f(x

(n)
t ) − f̄t

)2
, (2.5)

which is also exact for NR → ∞. The standard error is defined as V /
√
NR.

One of the most useful variance reduction methods is importance sampling. In-
stead of generating realizations according to the probability density function P (Xt)
to estimate E[f(Xt)], it might be more efficient to generate independent realiza-
tions y(n)t from a density probability Q(Yt), with the original expectation value being
recovered as

ℓ =
∑
yt

f(yt)
P (Yt = yt)

Q(Yt = yt)
Q(Yt = yt). (2.6)

The estimator of the expectation value hence yields

f̄t =
1
NR

NR∑
n=1

f(y
(n)
t )

P (Yt = y
(n)
t )

Q(Yt = y
(n)
t )

. (2.7)

The main difficulty lies in choosing the distribution Q(·), since a poor choice may
seriously affect the accuracy of the estimate. The theoretical optimal choice for Q
is the one minimizing the variance, that is Q∗(·) = f(·)P (·)/ℓ. This optimal prob-
ability density function is generally very challenging to obtain a priori because the
expectation value ℓ is unknown. However, a deeper understanding of the underly-
ing stochastic process may provide new ideas to approximate the distribution Q(·),
possibly leading to a drastic reduction of the variance.

2.1.3 Stochastic methods for quantum systems

Quantum systems are generally described by state vectors in a complex Hilbert space
H. Assuming a system of many identical particles, let us label the number of particles
in state ν = 1, 2, . . . with nν , and define the state vector of the whole system with
the braket notation

|n1,n2, . . . ⟩. (2.8)

The vacuum, or zero vector, is denoted by |0⟩ and represents the absence of particles.
For bosons, nν can take any positive value whereas for fermions either 0 or 1. To
describe the time evolution of these state vectors, we need to specify a basis. We
introduce the Fock space as the complex vector space formed by any linear combina-
tion of vectors of the form of (2.8), which are called Fock states. We associated the
standard inner product

⟨n1,n2, . . . |n′
1,n′

2, . . . ⟩ =
∞∏
ν=1

δnν ,n′
ν
, (2.9)

with this basis in the Dirac bra-ket notation. We also define the creation and annihi-
lation operators and their representation in the Fock basis. For bosons, the creation
operator a†

ν increases the number of particles in state ν by one, that is

a†
ν |n1, . . . ,nν , . . . ⟩ =

√
nν + 1|n1, . . . ,nν + 1, . . . ⟩. (2.10)
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The annihilation operator aν lowers the number of particles by one or set it to 0
following the rule

aν |n1, . . . ,nν + 1, . . . ⟩ =
√
nν |n1, . . . ,nν , . . . ⟩. (2.11)

These operators fulfill the usual bosonic commutation algebra

[aν , a†
µ] = δν,µ, (2.12)

where all other combinations of operators vanish. For the fermions, due to the Pauli
principle, the creation b†

ν and annihilation bν operators anticommute

{bν , b†
µ} = δν,µ, {bν , bµ} = {b†

ν , b†
µ} = 0, (2.13)

and they act on fermionic Fock states as follows,

b†
ν |n1, . . . ,nν , . . . ⟩ = δnν ,0(−1)sν |n1, . . . ,nν + 1, . . . ⟩, (2.14)
bν |n1, . . . ,nν , . . . ⟩ = δnν ,1(−1)sν |n1, . . . ,nν − 1, . . . ⟩, (2.15)

with sν = n1 + n2 + · · · + nν−1.
What differentiates a classical stochastic method from a quantum one is the ef-

fort that must be provided to formulate a suitable stochastic algorithm representing
physical quantum processes. The challenge in conceiving these algorithms is to repro-
duce quantum features such as noncommutativity of observables or quantum particle
statistics (fermions and bosons) via classical processes. We express with |ψt⟩ ∈ H
a general state vector in the Hilbert whose dynamics is entirely determined by the
Hamiltonian H. We denote vector-valued quantum stochastic processes |Ψt⟩ with
upper case Greek letters and realizations with lower case letters |ψ(n)

t ⟩.
Since a quantum system of dimension d can be mapped to a classical system of

dimension d+ 1, classical stochastic methods are used to estimate properties of quan-
tum systems. Hence, the quantum observables are computed by multi-dimensional
integrals that involve classical weights, Boltzmann factors (see App. A.1 for more
details). However, there exist systems for which the sign of these statistical weights
is negative. In practical simulations, the contribution from two weights of opposite
signs may nearly cancel due to numerical reasons and fluctuate between positive and
negative values. These systems are said to suffer from a sign problem when the sever-
ity of the fluctuations grows with the size of the system and plagues the stochastic
evaluation of the integrals with an exponentially increasing cost of the sampling. The
sign problem may naturally occur in bosonic systems or spin Hamiltonians but is par-
ticularly severe for fermionic models as the anticommutation rules force a sign change
for particle exchanges. Appendix A.1 illustrates how a diverging signal is equivalent
to the presence of sign problem.

It has been shown that a generic solution is nondeterministic polynomial (NP)
hard [47]. However, the severity of the sign problem strongly depends on the basis
and the algorithm. Obviously, there would be no sign problem if we were able to
diagonalize the Hamiltonian and estimate the mean of an observable O with the
eigenbasis {|Ei⟩}i,

⟨O⟩ =
∑
i⟨Ei|O|Ei⟩e−βEi∑

i e
−βEi

. (2.16)

Unfortunately, it is nearly impossible to compute the eigenstates of any system in the
first place. However, the existence of the sign problem does not automatically rule out
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the possibility of simulating quantum systems stochastically as there exist strategies
to cope with it. In some basis, the sign problem is mild enough for the desired proper-
ties to be computed. In others, the exponential increase in computational cost needed
to overcome the sign problem can be slowed down until the observables are computed.
In addition to the basis, there are algorithmic features that reduce significantly sign
fluctuations. The approach described in this work uses a discrete simulation basis
with an efficient cancellation of statistical weights and includes further approxima-
tions to reduce the severity of fluctuations, resulting in delaying the appearance of
divergences. Moreover, the use of importance sampling massively reduces the number
of independent trajectories involved in the evaluation of observables.

For the real-time evolution of a quantum system, as opposed to imaginary-time
evolution t 7→ β ≡ it, the weights in a stochastic simulation become complex due
to the form of the time-evolution operator, e−iHt, and the corresponding Boltzmann
factors acquire a complex phase. When statistical weights are complex, fast oscillating
phases appear due to the noncancellation effect described above. The difficulty to
suppress this complex phase increases exponentially with time and eventually leads
to numerical instabilities in the estimation of observables. We refer to the increasing
cost of sampling for complex weights as the dynamical sign problem.

2.2 Dissipative quantum field theory

The thermodynamic quantum master equation developed in [39] characterizes the dy-
namics of dissipative quantum field theory. Quantum master equations are first-order
differential equations describing the time evolution of a density matrix representing
the statistical state of a quantum system. We start by making some general remarks
about open quantum systems and introduce the quantum master equations describing
these systems’ dynamics. Then, we follow the structure of [36] to present the main
theoretical concepts of dissipative quantum field theory. From the general thermody-
namic master equation, we derive a linear quantum master equation approximating
the dynamics and compute an expression for evolution superoperators. Finally, we
introduce a very useful approximation to further simplify our linear quantum master
equation to a more tractable version.

2.2.1 Open quantum systems

The theory of open quantum systems describes quantum mechanical systems coupled
to an external environment [43, 48]. The interactions between the system and the
environment depend on the microscopic details of the model and they typically in-
troduce decoherence and/or dissipation in the system’s reduced density matrix. In
order to ensure irreversible behavior, it is necessary that the environment contains
an infinite number of degrees of freedom. In practice, the exact treatment of such
systems is unfeasible due to the complexity of resolving the time evolution of the en-
vironment. Hence, the standard strategy is to focus on the evolution of the system’s
reduced density matrix and to model the details of the interactions between the sys-
tem and the environment as an averaged effect, while assuming that the state of the
reservoir does not change significantly. The lack of memory of the environment and
a weak coupling between the system and the environment are frequently employed
assumptions. They lead to more tractable equations describing the dynamics in the
form of quantum master equations for the reduced density matrix.

Following this general strategy, we describe the state of a quantum system at
time t coupled to an environment in terms of its reduced density matrix ρt. In this
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work, we are only interested in Markovian systems, i.e. dynamical systems where the
evolution from time t to t+ δt depends only on the state of the system at time t. In
these systems, the weak coupling regime allows us to write a linear equation for the
dynamics of the system, the Lindblad equation,

dρt
dt

= −i[H, ρt] +
∑
α

γα

(
LαρtL

†
α − 1

2{L†
αLα, ρt}

)
, (2.17)

where H is the Hamiltonian of the system, Lα, L†
α are the Lindblad operators mod-

eling transitions among the system’s energy eigenstates induced by the reservoir, and
γα are the decay rates associated to such transitions. These rates depend upon certain
details of the environment. The reversible dynamics is described by the commuta-
tor between the Hamiltonian and the density matrix whereas the irreversible part is
modeled by the second term. The validity of this equation depends on the separation
between the different time scales of the model. In order to neglect the memory effects
of the environment, one must assume a clear difference between the typical corre-
lation time of the environment fluctuations and the relaxation time of the system.
Moreover, as mentioned above, it is necessary to assume a weak coupling in order to
suppress correlations between the system and the environment.

The Lindblad master equation is widely used and known to describe open quan-
tum systems in the weak coupling regime accurately. Yet, the approximations and
assumptions made in its derivation [1, 45] indicate that there are quantum systems
needing to be described by a more complete quantum master equation. In particular,
the linearity of the Lindblad equation is usually motivated by practical arguments
because of the difficulty to solve a nonlinear quantum master equation but not by
strong physical and thermodynamics motivations. In this work, we consider a differ-
ent quantum master equation whose structure is based on thermodynamics arguments

dρt
dt

= −i[H, ρt] −
∑
α

∫ 1

0
fα(u)

(
[Qα, ρ1−u

t [Q†
α,µt]ρut ] + [Q†

α, ρut [Qα,µt]ρ1−u
t ]

)
du,

(2.18)
where the operators Qα represent the coupling of the system to the environment
and the fα(u) are real non-negative rate factors that have to be chosen a priori
very carefully. This master equation was first postulated in [39] to account for a
separate evolution of reversible and irreversible effects, where the authors showed
that under specific assumptions, a Lindblad-type master equation can be derived from
the general Eq. (2.18). The reversible dynamics is generated by the Hamiltonian of
the system H via the standard commutator. Conversely, the double commutators
inside the integral account for the irreversible effects via the free energy contribution
µt = H + kBT ln ρt. A classical analogy for this equation would be the Fokker–
Planck equation in which the diffusion terms associated with second-order derivatives
are represented by the double commutators. The thermodynamic arguments used to
postulate this equation as well as its geometrical structure ensure that the steady
state always converges to the correct solution. The integral over du accounts for the
correct entropy production and proper equilibrium state. The irreversible term is also
of Markovian-type because the geometrical structure of this equation is inspired by
classical nonequilibrium thermodynamics [49] for which memory effects are not taken
into account.
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2.2.2 Linear quantum master equation

To describe the dynamics of particles in contact with an external environment, DQFT
follows the general approach of open quantum systems by considering master equa-
tions. Here, we discuss how to obtain a tractable linear quantum master equation in
the case of a ϕ4 theory. Note that the same reasoning can be followed for more elabo-
rate interaction models. It is preferable to use a discrete and finite set of momentum
states to weaken the sign problem and to have an efficient weight cancellation. Hence,
we discretize the momenta into a d-dimensional lattice as

Kd = {k = (z1, . . . , zd)∆k such that zi ∈ Z, |zi| ≤ zmax ∀i} , (2.19)

where ∆k is the lattice spacing, and zmax∆k is a momentum cutoff. Eventually, we are
interested in the limits zmax → ∞, ∆k → 0, which correspond to an infinitely large
and dense lattice. As we saw earlier, the sign problem is base-dependent and because
we are using the Fock basis rather than the eigenbasis, we should expect instabilities.
However, the number of quantum states is finite due to the finite momentum lattice,
hence we can hope for an efficient cancellation of weights to weaken the sign problem.
As we will see, the finite set of basis vectors is sufficient to overcome the sign problem
only with an additional control mechanism for the exploration of the Hilbert space.

To be complete, we still need to specify the Hamiltonian H. In the Fock basis,
independently of the model, the Hamiltonian can be separated in the following form

H = H free +Hcoll, (2.20)

where the free part corresponds to the kinetic contribution. In a ϕ4-type of theory
with particle mass m, the free Hamiltonian is

H free =
∑

k∈Kd

ϵka
†
kak, (2.21)

where ϵk =
√
m2 + k2. According to our splitting of the Hamiltonian, we would also

have to specify the interactions between the particles, which are contained in the
collision Hamiltonian. However, for the purpose of introducing the general concepts
of DQFT and its connection to stochastic unraveling, we do not need an analytical
form of the collision Hamiltonian. For interested readers, the collision Hamiltonian is
given in App. C.1 in the case of the ϕ4 theory. The quantum electrodynamics (QED)
version in one spatial dimension is given in App. C.3. We encourage the reader to
inspect Chaps. 1 and 3 of [36] for the construction of these Hamiltonians.

The general thermodynamic master equation (2.18) serves as a starting point,
where the coupling operators Qα are chosen as annihilation operators ak so that the
control over high energy contributions has the wanted effect. Section 3.2.6 of [36]
gives examples of similar coupling operators for quantum electrodynamics. The rate
factors are chosen to be

fα(u) = βγke
−uβωk , (2.22)

where γk is the decay rate that increases with higher momenta. In analogy with our
general thermodynamics approach, this choice is motivated by a Boltzmann-factor
type of detailed balance with a heat bath. The exponential factor is chosen such that
the master equation is linear for the free theory, in absence of collisions. For the
concrete form of the decay rate, we have to realize that a commutator corresponds
in real space to a double derivative associated with a diffusion process. For instance,
the double derivative of the Schrödinger equation in position space corresponds to
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a commutator in the von Neumann equation. Hence, each commutator should be
associated with at least a k2 contribution to the decay rate, and we propose the
following expression

γk = γ0 + γk4, (2.23)

where γ0 should be small since we are interested in the limit of small dissipation. One
can show that within perturbation theory, this choice provides sufficient regularization
for the propagator in 3 spatial dimensions to be convergent. The γ0 is set to a nonzero
value because the contributions from k = 0 might still need regularization.

A linearization of Eq. (2.18) around the equilibrium in the limit of zero-temperature
yields for the deviation from equilibrium,

∆ρt = ρt − ρeq, (2.24)

the following linearized quantum master equation

d

dt
∆ρt = − i[H, ∆ρt] +

∑
k∈Kd

γk
(
2ak∆ρta

†
k − {a†

kak, ∆ρt}
)

−
∑

k∈Kd

γk
ωk

([
ak, ∆ρt[a

†
k,Hcoll]

]
+
[
a†

k, [ak,Hcoll]∆ρt
])

. (2.25)

The benefit of this master equation as opposed to a master equation for the density
matrix ρt is for practical reasons. Its solution for large times is guaranteed to be
the equilibrium state ρeq. Additionally, fast convergence to the solution with a per-
turbative expansion is to be expected in the case of a weak interaction. As for the
full thermodynamics quantum master equation, the trace conserving properties are
preserved but however, the dynamics is computed for the traceless ∆ρt. Because it
is part of the initial condition, the equilibrium state ρeq has to be computed with an
independent method. This will be the main goal of Chap. 4.

2.2.3 Evolution operator

Given a general linear master equation of the type

d

dt
ρt = Lρt, (2.26)

its solution is given by
ρt = eLtρ0 ≡ Etρ0, (2.27)

for some initial density matrix ρ0. To solve the master equation (2.25), we want to
construct an expansion of the superoperator Et. For that purpose, we separate the
linear generator L into a free and a collision part, according to

Lfreeρ = −i[H free, ρ] +
∑

k∈Kd

γk
(
2akρa

†
k − {a†

kak, ρ}
)

, (2.28)

Lcollρ = −i[Hcoll, ρ] −
∑

k∈Kd

γk
ωk

(
[ak, ρ[a†

k,Hcoll]] + [a†
k, [ak,Hcoll]ρ]

)
. (2.29)

Inspired by the derivation of a piecewise deterministic process in [50], we start from
the expression

Et = E free
t e−rt −

[
Et−t′E free

t′ e−rt′
]t

0
, (2.30)
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where we introduced a rate parameter r. We can reformulate this expression using
d
dtEt = LEt (see App. A.2 for more details),

Et = E free
t e−rt +

∫ t

0
dt′Et−t′

(
1 + Lcoll

r

)
E free
t′ re−rt′ . (2.31)

The exponential term in the integral can be identified with an exponential time-step
distribution with mean 1/r

Pr(t) = re−rt. (2.32)

From this identification, we can interpret the above formula in a stochastic fashion.
The collisions, denoted by the term in brackets, occur stochastically at random time-
steps t′ taken from the probability distribution (2.32). Each collision is preceded by
a free continuous evolution. This procedure is repeated until the sum of the random
time-steps is larger than t. In practice, this scheme is not optimal because we have
to synchronize the sampling trajectories in order to perform measurements. These
measurements have to be estimated by configurations at a fixed time t, where the time-
steps are randomly chosen for each trajectory. It implies that the trajectories with
large random time-steps have to wait until the slower ones reach the synchronization
barrier. Hence, the evolution operator for a time t = Nt∆t has to be split into
small time-steps ∆t using the Trotter formula Et ≈

∏Nt
i=1 E∆t. Small time-steps ∆t are

necessary to avoid too large deviations. For computational reasons, we want to have
on average a single random time-step per application of E∆t, which implies ∆t ∼ 1/r.
This choice indicates that r should be chosen large which makes the scheme inefficient
for small interactions, where we would generally expect convergence with only a few
time-steps. Another issue with the expression (2.31) is the nested application of the
superoperator Et. One could further develop this equation by inserting this expression
into Et′−t which would eventually lead to a sum of convoluted terms (see Sec. 1.2.7.1
of [36]).

Alternately, we introduce the Laplace transform as a way to solve both of the
issues mentioned above. We recognize that the exponential term in Eq. (2.31) that
samples time-steps between collisions is natural in the Laplace domain, where all the
jumps occur at a fixed rate r. Furthermore, the convolutions in the time domain
are simple multiplications in the Laplace domain. Hence, we consider the Laplace
transform of the evolution operator (2.31) defined as

Rsρ =
∫ ∞

0
dt e−stEtρ. (2.33)

With the appropriate substitution, we get from (2.31) (see App. A.2 for details)

Rs = Rfree
s+r + Rs(r+ Lcoll)Rfree

s+r. (2.34)

Using the formal expansion for the inverse operator[
1 − (r+ Lcoll)Rfree

s+r

]−1
, (2.35)

we obtain our final expression for the evolution superoperator in the Laplace domain,

Rs =
∞∑
m=0

rm
[
Rfree
s+r

(
1 + Lcoll

r

)]m
Rfree
s+r. (2.36)
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We refer to Eq. (2.36) as the magical formula because it unifies a perturbative ex-
pansion and a numerical scheme in a single equation. If r = 0, the perturbative
expansion is recovered, because the mth term in the sum represents the correspond-
ing order in perturbation theory. Conversely, if r > 0, the sum can be interpreted
as the time-evolution operator of a numerical integration scheme with time-step 1/r.
Hence, truncating the magical formula at some term m =Mtrunc sets a natural time
limit for the numerical integration, which is tmax ∼ 1/smin ∼ Mtrunc

r . Even though the
expression for the magical formula resembles perturbation theory for r > 0, we insist
on the fact that it is nonperturbative in nature, in the sense that the perturbative
expansions are recovered for the specific case r = 0 only. Because we mix the con-
tributions from the whole time range, each summand in the magical formula should
be understood as a rearrangement of an infinite number of perturbative terms. Con-
versely, perturbation theory is interpreted as an integration numerical scheme with
infinitely large time-steps.

The Laplace transform constructs a superposition with positive coefficients of
density matrices at all times, hence losing the trace conservation property in the s
evolution, as shown by the expression

tr(Rsρeq) =
∫ ∞

0
e−stdt =

1
s

. (2.37)

This loss can be compensated by defining the proper formal density matrix ρ̃s in the
Laplace domain as

ρ̃s = sRsρ0, (2.38)

with ρ0 a general initial state. Note however that ρ̃s has a physical interpretation
only in the limit s → ∞ where it represents the initial state. Every finite value of
s cannot be interpreted as a density matrix describing a physical state due to the
mixing of contributions over the whole time domain. Yet, the object ρ̃s has formally
all the properties of a density matrix, namely, it is hermitian, positive, and its trace
is equal to one.

We are interested in the s-dependent correlation functions

s tr (BRs(Aρeq)) , (2.39)

where A and B are generic self-adjoint operators. Since, our linear master equation
(2.25) describes the dynamics for the deviation from equilibrium ∆ρt, the magical
formula should be applied only to the traceless matrices like ∆ρt. For numerical
simulations, we can use the following identity to simulate the magical formula with
traceless objects and still recover (2.39),

tr(Bρeq)tr(Aρeq) + tr(BRs∆ρ̃s). (2.40)

The matrix ρeq being known a priori, the traceless matrix ∆ρ̃s = s(A− tr(Aρeq))ρeq
can be constructed as an initial condition. We then need to evolve the quantity ∆ρ̃s
according to the magical formula.

2.2.4 Weak coupling limit

Because we are interested in the limit of vanishing dissipation to regularize the the-
ory, we can further simplify the master equation and the free evolution operator by
neglecting the contributions proportional to the decay rate γk in the correlation func-
tions of the type (2.39). Due to the truncation in the magical formula for numerical
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reasons, only a finite number of collision terms will contribute to the final averages.
Furthermore, the collision part (2.29) in the magical formula contributes linearly to
correlation functions. Hence, the irreversible part of the collisions does not contribute
substantially to the regularization mechanism in the weak dissipation regime. Fol-
lowing our general approach of minimal friction in order to smear the divergences,
we neglect all the linear contributions from the friction parameter. In that case,
we simplify the collision superoperator Lcoll with the so-called simplified irreversible
dynamics approximation and neglect the terms proportional to γk in the collisions,

Lcollρt = −i[Hcoll, ρt]. (2.41)

The friction provided in the free contribution is sufficient to regularize the ultraviolet
divergences from the high momenta. In a similar fashion, we can neglect the linear
contribution from the friction parameter in the expansion of the free evolution op-
erator Rfree

s+r in order to avoid unwanted exploration of the Hilbert space. Appendix
C.2 illustrates an example of how to treat the free evolution operator continuously in
the limit of vanishing dissipation. We expect this simplification to correspond to the
minimal dissipation needed to regularize the theory.

2.3 Stochastic unraveling
A standard approach to solving quantum master equations in the weak coupling
limit is stochastic unraveling, a class of Monte-Carlo-inspired methods that has found
many applications in open quantum systems [42, 51–53]. In this section, we review
the standard approach to unravel a Lindblad master equation with a quantum jump
approach. The choice of this equation is motivated by its simple structure but also
by its similarity with our final thermodynamic master equation (2.25). We follow the
description of stochastic unraveling in [42].

2.3.1 Single-process unraveling

The Lindblad equation for density matrices can be represented by a stochastic Schrö-
dinger equation for state vectors. This stochastic representation introduces a piece-
wise deterministic process |Ψt⟩ as the solution of the following differential equation,

d|Ψt⟩ = −iG|Ψt⟩dt+
∑
α

(
Lα|Ψt⟩

∥Lα|Ψt⟩∥
− |Ψt⟩

)
dNα(t). (2.42)

The linear operator G dictates the deterministic evolution and has the form

G|ψt⟩ = H|ψt⟩ − i

2
∑
α

γα (1 − |ψt⟩⟨ψt|)L†
αLα|ψt⟩. (2.43)

Conversely, the random events are characterized by the independent Poisson processes
Nα(t) satisfying

dNα(t)dNα′(t) = δα,α′dNα(t), E[dNα(t)] = γα∥Lα|Ψt⟩∥2dt. (2.44)

These relations imply that the dNα(t) are random numbers taking the possible val-
ues of 0 or 1. The first term on the right-hand side of Eq. (2.42) proportional to
dt describes a continuous evolution according to the Schrödinger type of equation,
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whereas the second term describes the jumps

|ψt⟩ 7→ Lα|ψt⟩
∥Lα|ψt⟩∥

, (2.45)

which occur at rate γα∥Lα|ψt⟩∥2.
If the initial state is pure, i.e. ρ0 = |ψ0⟩⟨ψ0|, the solution of the original master

equation (2.17) can be recovered at any time t from the stochastic equation for the
state vector |Ψt⟩. The solution in the form of a density matrix is recovered by taking
the statistical average

ρt = E[|Ψt⟩⟨Ψt|]. (2.46)

Since both the jumps and the continuous evolution preserve the norm, the solution’s
norm (2.46) remains unchanged on average. Eventually, one can show using Ito
calculus that the expectation value Eq. (2.46) solves the Lindblad equation.

2.3.2 Two-process unraveling

One of the advantages of unraveling lies in the fact that it can be generalized to
estimate multi-time correlation functions, that is mean values of operators taken at
different times. Multi-time correlation functions are a common tool for nonequilib-
rium processes. The computation of these correlation functions provides information
about the spectrum of the Hamiltonian at any time. Here, we generalize unraveling
to two-sided state-jumps, which allow us to estimate multi-time correlation functions.
To illustrate their usefulness, let us consider the two-time correlation function

tr(BEt2−t1AEt1−t0ρ0), (2.47)

where A, B are general operators, and Et1−t0 is the superoperator evolving the density
matrix from t0 to t1. Since the operators A and B are applied on only one side, the
resulting object to evolve from t1 to t2 is nonsymmetric. Because the single-sided
jumps produce exactly the same dynamics on both bra and ket vectors, we cannot
estimate the nonsymmetric matrices in the multi-time correlation functions (2.47)
with single-process unraveling. To be able to act differently on both sides of the
density matrix, we need to introduce a two-process unraveling acting on the general
dyadic |Φt⟩⟨Ψt|. The idea is to evolve simultaneously the bra and the ket vectors with
jumps occurring at the same time. The solution of the master equation is represented
by the general covariance matrix

E[|Ψt⟩⟨Φt|], (2.48)

where |Ψt⟩, |Φt⟩ are coupled stochastic processes. The continuous deterministic evo-
lution is given by the equations

d

dt
|ψt⟩ = −iH|ψt⟩ −

∑
α

γα

[
L†
αLα − ∥Lα|ψt⟩∥∥Lα|ϕt⟩∥

∥|ϕt⟩∥∥|ψt⟩∥

]
|ψt⟩ (2.49)

and
d

dt
|ϕt⟩ = −iH|ϕt⟩ −

∑
α

γα

[
L†
αLα − ∥Lα|ψt⟩∥∥Lα|ϕt⟩∥

∥|ϕt⟩∥∥|ψt⟩∥

]
|ϕt⟩, (2.50)
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where the second term is added to ensure that the bra and ket vectors stay normalized.
Similarly to the one-process unraveling, this term is exactly canceled by the jumps

|ψt⟩ 7→ ∥|ψt⟩∥
∥Lα|ψt⟩∥

Lα|ψt⟩,

|ϕt⟩ 7→ ∥|ϕt⟩∥
∥Lα|ϕt⟩∥

Lα|ϕt⟩, (2.51)

and occur at a rate 2γα ∥Lα|ψt⟩∥∥Lα|ϕt⟩∥
∥|ϕt⟩∥∥|ψt⟩∥ . It can be shown that this two-sided unravel-

ing mimics a generalized application of the superoperator Et to dyadics of the form
|ψt⟩⟨ϕt|. The multi-time correlation function (2.47) is calculated by unraveling the
initial density matrix from t0 to t1 using the procedure described above. The opera-
tor A is then introduced with a subsequent unraveling of the matrix represented by
AEt1ρ0. Finally, the operator B is applied.

With a final note, we anticipate the introduction of a new type of two-process un-
raveling in the next chapter. Dissipation will be included in the continuous evolution
and jumps will be associated with reversible interactions. Thus, simultaneous jumps
will be replaced by jumps either on the |ϕt⟩ or on the |ψt⟩ side in order to reproduce
reversible dynamics.
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3 Triplet unraveling

In the previous chapter, we introduced the basic concepts behind the stochastic un-
raveling of a quantum master equation and emphasized the two-process unraveling
to estimate multi-time correlation functions. Parallel to that, we described a theo-
retical framework for multi-particle systems that introduces a dissipative mechanism
to eliminate ultraviolet divergences. The dynamics is described by a linear quantum
master equation, whose solution in the Laplace domain takes the form of an infinite
resummation of a perturbative expansion. In this chapter, we construct an algorithm
called triplet unraveling, based on two-process unraveling to solve the quantum mas-
ter equation (2.25). The main advantage of the simplification 2.2.4 is the ability to
construct an unraveling that overcomes the sign problem and reproduces the solution
of the master equation where the dissipative part is contained in the continuous part
and the jumps are associated with the collision Hamiltonian. The construction of
such a numerical scheme is the topic of the following sections. The resulting numeri-
cal method has the major benefit to regularize the theory while evolving in d spatial
dimensions, where the time dimension is associated to the physical execution time of
the simulation. 1

Without dissipation, the formulation in the Laplace domain allows us to formu-
late a fixed-point equation for the ground state of H and use the ideas of the newly
introduced triplet unraveling. This study is possible due to the structural similarities
between this fixed-point equation and the magical formula. We can extend the ap-
plication of triplet unraveling to study steady-state properties of many-body physics
if we introduce a generalized splitting of the Hamiltonian.

This chapter is separated into two sections; the development of triplet unravel-
ing for general dissipative quantum field theoretical systems and the consequences
in the case of a vanishing dissipation. We begin by formally showing how the mag-
ical formula can be translated into a stochastic unraveling reproducing the solution
of the linear quantum master equation (2.25). In the second part, we introduce the
fixed-point equation in the Laplace domain to study steady-state properties. This ex-
pression is unraveled with the same line of reasoning as the first part due to structural
similarities with the magical formula.

3.1 Stochastic unraveling in Laplace domain

We construct an unraveling to solve the quantum master equation (2.25) based on
the magical formula. The structure of this formula is naturally suited for piecewise

1In connection with our original motivations, this scaling has to be put in perspective with lattice
QCD where the simulations evolve in d + 1 dimensions, with d spatial and one time dimensions.
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deterministic process because, in the Fock basis, the term Rfree
s+r is solved continu-

ously whereas (1 + Lcoll

r ) accounts for the random transitions. The jump term Lcoll

contains a Hamiltonian that acts on either side of the density matrix due to the
commutating nature of the reversible dynamics. In a similar fashion to the correla-
tion functions (2.39), the single-process unraveling cannot reproduce the commutator
with the Hamiltonian. Therefore, we need the two-process unraveling for the gen-
eral dyadic |Φt⟩⟨Ψt| to mimic the action of the commutator and, of course, estimate
multi-time correlation functions.

We consider the evolution of triplets (cm, |Φm⟩, |Ψm⟩), where cm is complex and
|Φm⟩, |Ψm⟩ are piecewise deterministic processes. Unlike usual unraveling where the
processes evolve in time, here, the evolution is performed with respect to a formal
iteration order m = 0, 1, . . . that corresponds to the m’th term in the sum of the
magical formula. We introduce a propagator whose fundamental role is to evolve the
triplets from m to m+ 1,

Tr,s = r

[
Rfree
s+r

(
1 + Lcoll

r

)]
. (3.1)

In such a scheme, besides the evolution step 1/r, we define a minimum smin value
associated to a maximum time tmax ∼ 1/smin that corresponds to a truncation Mtrunc
in the sum of the magical formula. If the truncation is large enough, i.e. if M trunc ≥
r/smin, we can approximate Eq. (2.36) with

Rsmin ≈
Mtrunc∑
m=0

[Tr,smin ]
m Rfree

smin+r. (3.2)

From this approximation, we can construct stochastic processes that eventually lead
to an estimation of the density matrix ρ̃s, Eq. (2.38). The evolution of these piecewise
deterministic processes alternates between continuous evolution according to the free
contribution Lfree (2.28) and random jumps associated with Lcoll (2.41). We construct
those processes such that for a very large number of iterations M trunc → ∞, the
application of the magical formula is reproduced and the density matrix is estimated
by

ρ̃s = s
∞∑
m=0

E [cm|Φm⟩⟨Ψm|] , (3.3)

where E[·] represents the statistical average. The continuous evolution associated
to the Rfree

s+r superoperator can be calculated exactly due to the choice of the Fock
basis to represent vectors in the Hilbert space, and it corresponds to a continuous
weight update. Between two continuous evolutions, the random jumps account for
the application of the superoperator

(
1 + Lcoll

r

)
. This application is implemented by

the two-sided jumps

|ϕm⟩⟨ψm| 7→ |ϕm⟩⟨ψm| − i

r

(
Hcoll|ϕm⟩⟨ψm| − |ϕm⟩⟨ψm|Hcoll

)
, (3.4)

which naturally occur for two-process unraveling. Preventing superposition of quan-
tum states ensures an efficient cancellation of weights and a controlled exploration of
the Hilbert space. To apply this superselection rule to the jumps, we decompose the
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collision Hamiltonian into the Fock basis {|ei⟩}i,

Hcoll =
∑
i,j
hcoll
ij |ei⟩⟨ej |, (3.5)

with hcoll
ij = ⟨ei|Hcoll|ej⟩. With this decomposition, the collision Hamiltonian is

interpreted as an operator producing transitions between Fock states, e.g. from |ej⟩
to |ei⟩ with

|ei⟩⟨ej |hcoll
ij |ek⟩ ∝ δk,j |ei⟩, (3.6)

with δk,j the Dirac delta function. Since the events occur at a fixed rate r in the
Laplace domain, the jumps (3.4) translate into the following rule: at each transi-
tion event, we select stochastically a single Fock state from the set generated by
Hcoll|ϕm⟩⟨ψm| − |ϕm⟩⟨ψm|Hcoll according to the amplitude of the matrix elements
|hcoll
ij /2r|. Note that the 1/2 factor accounts for the random selection between |ϕm⟩

and |ψm⟩. We refer to this general procedure as triplet unraveling. On a more
philosophical note, the consequences of this superselection rule are in line with the
particle ontology of dissipative quantum field theory. At any time, the system has a
well-defined particle content because superpositions are not allowed. The philosoph-
ical implications of such restrictions have been explored in [38].

3.2 Vanishing dissipation
Without dissipation, the triplet unraveling procedure described above allows us to
compute steady-state properties and reversible dynamics for Hamiltonians that are
not exactly solvable. Even though it might seem as a step backward, because we
introduced dissipation to regularize the theory, this scenario has multiple advantages.
It is still sensitive to the critical dynamical sign problem, hence, this simplification
allows us to test the ability of our algorithm to overcome this major issue. Addi-
tionally, it serves as a simplified situation to illustrate the efficiency of importance
sampling. As we will see now, it also provides a numerical framework to simulate the
ground state of an unknown Hamiltonian, which can be used as a method to obtain
the initial state ρeq in Eq. (2.39), for example.

We want to generalize the construction of an unraveling for Hamiltonians with
the form

H = H free +H int, (3.7)

where the free part is exactly solvable and the interacting part contains the rest of
the Hamiltonian. Note that the Hamiltonian does not necessarily describe funda-
mental particles and their collision rules. Therefore, we now refer to the collisions
between those fundamental particles as interactions with H int. With this splitting,
the preferred basis is given by the free eigenbasis whereas the interacting part of the
Hamiltonian, if considered as a perturbation to the free part, can be seen as inducing
transitions between free eigenstates. The superselection rule can be justified purely
for computational reasons where efficient cancellation of weights is necessary. The
other arguments used to justify the various simplifications to construct the unravel-
ing, e.g. simplified irreversible dynamics are obviously still valid in the case of zero
dissipation. Hence, we can naively apply our approach to reversible systems, that is
when γk = 0. In that case, the general master equation reduces to the von Neumann
equation

dρt
dt

= −i[H, ρt], (3.8)
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whose triplet unraveling is the topic of Chap. 5.

3.2.1 A fixed-point iteration scheme

Another very useful application of triplet unraveling concerns the symmetrized imagi-
nary-time version of the von Neumann equation, i.e. the equation obtained from the
transformation t 7→ it ≡ β. This transformation yields the Bloch equation

dρβ
dβ

= −1
2{H, ρβ}, β = 1/kBT , (3.9)

describing the temperature dependence of a system. The similarities between the
von Neumann equation and the Bloch equation motivate us to develop an unraveling
procedure to recover the solution of the latter. The formal solution of the Bloch
equation is given by

ρβ = e− β
2Hρ0e

− β
2H , (3.10)

with ρ0 the initial condition. For a vanishing and nondegenerate ground state energy,
if we write the general solution as a sum over the eigenstates {|Ei⟩}i,

ρβ =
∑
ij

cij(β = 0)e− β
2 (Ei+Ej)|Ei⟩⟨Ej |, (3.11)

we can recover the ground state for β → ∞, with

lim
β→∞

ρβ ∝ |E0⟩⟨E0|. (3.12)

This interest in the Bloch case is twofold. First, triplet unraveling is associated
with an effective numerical method to compute the ground state of an unknown
Hamiltonian without any prior knowledge of its structure. It is worth noting that
this feature is rarely found in the literature. With the decomposition (3.7), this
ground state method can be applied to various systems and models, ranging from
spin chains to higher dimensional many-body quantum models. Second, the solution
provides the initial condition for the quantum field theoretical computations (see ρeq
in Eq. (2.24)).

Here, we develop a fixed-point iteration scheme, based on the triplet unraveling to
compute the ground state density matrix of a general Hamiltonian of the form (3.7).
We start by noting that the Bloch equation is not a proper master equation, in the
sense that it does not preserve the trace. To recover a legitimate equation with trace
conserving properties, we add an energy shift

H → H − Sρ, (3.13)

where Sρ = tr(Hρ)/tr(ρ). Unfortunately, the trace conserving property was intro-
duced at the expense of a nonlinearity, which renders the computation of properties
over the whole β range difficult. Hence, we concentrate on the estimation of the
ground state only. We wish to construct a fixed-point equation for the ground state

lim
β→∞

ρβ = ρ∞, (3.14)

on which we iterate. From the steady-state equation

Lρ∞ ≡ −1
2{H, ρ∞} = 0, (3.15)
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we multiply both sides by an inverse temperature scale, 1/r, and recast this equation
in the following dimensionless form(

1 + L
r

)
ρ∞ = ρ∞. (3.16)

The superoperator L = Lfree +Lint is further decomposed into its free and interaction
part, Lfree and Lint, respectively. The above equation can eventually be rewritten as

r

(
1 + Lint

r

)
ρ∞ =

(
r− Lfree

)
ρ∞. (3.17)

The right-hand side of the above equation is the inverse of the Laplace transform of
eβLfree , i.e.

Rfree
r =

∫ ∞

0
eβLfree

e−rβdβ =
1

r− Lfree . (3.18)

Once replaced in Eq. (3.17), it leads to

rRfree
r

(
1 + Lint

r

)
ρ∞ = ρ∞, (3.19)

which is the fundamental equation for all our ground-state calculations. The strong
interest in this equation lies in its formal similarities with the structure of the magical
formula and the possibility to apply the ideas of triplet unraveling. In the next section,
we construct a similar unraveling for the fixed point ρ∞.

3.2.2 Steady-state stochastic unraveling

For systems with a large number of particles, the density matrix cannot be naively
stored on a computer. A solution is to represent the ground state ρ∞ stochastically
via an iterative version of the fixed-point equation (3.19),

rRfree
r

(
1 + Lfree

r

)
ρm = ρm+1, (3.20)

where 1/r is the evolution step and m = 0, 1, . . . is a formal iteration order. If
the initial state ρ0 is chosen close enough to the ground state, in the limit of large
m = m∗, we recover the ground state with

ρm∗ = ρm∗+1 ≈ ρ∞. (3.21)

Due to the similar structure to the magical formula, we use the ideas from triplet un-
raveling to estimate ρ∞. We consider the evolution of triplets (cm, |Φm⟩, |Ψm⟩), where
cm is real due to the imaginary-time evolution and |Φm⟩, |Ψm⟩ are coupled piecewise
deterministic processes. This stochastic unraveling is based on the evolution of tra-
jectories that are represented by triplets (cm, |ϕm⟩, |ψm⟩). These triplets alternate
between exact continuous evolution according to the free part and stochastic jumps
governed by H int. We construct these processes in such a way that it reproduces the
application of Eq. (3.20) on average. This construction guarantees to converge to the
solution of Eq. (3.19) for a large number of iterations m → ∞, where the fixed point
is recovered as the statistical average

ρ∞ = E[c∞|Φ∞⟩⟨Ψ∞|]. (3.22)
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As earlier, we choose to represent the realizations of stochastic processes |ϕm⟩, |ψm⟩
in the basis of the free Hamiltonian H free. This choice provides an exact solution
to the free evolution Rfree

r and consists in a deterministic weight update. The basis
also provides a natural interpretation for the stochastic contribution of the interact-
ing Hamiltonian H int in terms of state-jumps. Because we want to minimize the
correlation between the processes |ϕm⟩ and |ψm⟩, we consider the two-sided jumps

|ϕm⟩⟨ψm| → |ϕm⟩⟨ψm| − 1
2r
(
H int|ϕm⟩⟨ψm| + |ϕm⟩⟨ψm|H int

)
, (3.23)

which reproduces on average the application of the superoperator (1+ Lint

r ). In order
to slow down the exploration of the Hilbert space, we assume the same superselection
rule for the jumps and select randomly a single term in the Hamiltonian acting either
on |ϕm⟩ or |ψm⟩. The application and numerical analysis of this fixed-point method
will be carried out in Chap. 4.
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4 Ground-state calculations

In this chapter, we introduce an algorithm based on the unraveling of the fixed-point
iteration scheme developed in Sec. 3.2 which allows us to compute the ground state
of a quantum system in the form of a density matrix. The reason for developing a
method to compute the steady state of a system is twofold. The first is to underline
the efficiency of these ground-state calculations compared to other usual methods.
The second reason is to provide an initial condition for the dissipative quantum field
theoretical calculations (see Sec. 2.2). This technique is comparable in performance
to the recent density matrix quantum Monte Carlo technique (DMQMC) [35, 54–
58]. As opposed to the DMQMC technique whose time-step ∆t ∼ 1/r is bound by
an upper limit, our unraveling does not have a clear bound on the evolution step.
Our upper bound for 1/r depends on the prior knowledge about the structure of the
ground state, the better the insights, the lower the rate r. This freedom increases the
convergence speed and reduces the statistical error for an equivalent simulation time.

In what follows, we first recall the fixed-point iterative scheme presented previ-
ously as the basis for our stochastic unraveling. After specifying the paradigmatic
models, we decompose the algorithm into its main components and explain them in
details. Then follows a discussion on the possibility to improve the performance of
the algorithm with importance sampling and further approximations. We consider
the control over the number of trajectories and analyze the efficiency and accuracy
of the method. Finally, we show some concrete examples of ground-state calculations
for large systems.

4.1 The fixed-point iterative scheme
Let us start by recalling the main ideas behind the unraveling of the fixed-point
iteration scheme introduced in Sec. 3.2. This technique can be implemented as a
numerical solver to compute the zero-temperature ground state of a model described
by the Hamiltonian

H = H free +H int, (4.1)

where the term free corresponds to the solvable part of the Hamiltonian. With this
notation, the iterative fixed-point equation reads

rRfree
r

(
1 + Lint

r

)
ρm = ρm+1, (4.2)

with L = −1
2{H, ·}, Rr =

1
r−L and where ρm is the density matrix estimated at iter-

ation m. To unravel this equation, we consider triplets of the form (cm, |Φm⟩, |Ψm⟩),
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where cm is real and |Φm⟩, |Ψm⟩ are piecewise deterministic stochastic processes. The
triplets undergo alternately continuous evolution and random jump events reproduc-
ing the iterative application of Eq. (4.2). For a large number of iterations m, we
expect to retrieve the fixed point via

ρ∞ = lim
m→∞

E [cm|Φm⟩⟨Ψm|] , (4.3)

with E[·] the statistical average. Once the density matrix is estimated and the ground
state has been reached, relevant properties can be calculated. For a general observable
A the quantum average ⟨A⟩ is obtained via

⟨A⟩ = tr(Aρ∞). (4.4)

4.1.1 Steady-state calculations: a short overview

With current parallel computers, Monte Carlo (MC) methods allow us to study with
high accuracy steady-state properties of systems in many-body physics, quantum
chemistry, or nuclear physics [1, 2, 59].

For zero-temperature systems, the best method is probably variational Monte
Carlo [60, 61], which stochastically samples configurations to evaluate the expectation
values of a trial function. The main issue with this method is that the accuracy of the
results highly depends on the initial ansatz for the trial function and requires prior
knowledge of the structure of the ground state to obtain a precise result. This issue
is partly solved with projector Monte Carlo methods [62–67], such as diffusion Monte
Carlo and Green function Monte Carlo. These methods use a projector to enhance
the ground-state contribution from an initial trial function. To further improve the
quality of the results, the fixed-node approximation [68, 69] takes advantage of a prior
knowledge of the nodal structure of the ground state to reproduce the antisymmetry
of the wave function. The efficiency of this approximation obviously depends on
how precise the knowledge of the ground state is. While for bosons, these methods
have proven extremely successful and have provided nearly exact results [70–72],
fermionic simulations are seriously handicapped by the sign-problem [44, 73, 74].
Independently, full configuration interaction quantum Monte Carlo was introduced in
[56, 57] to investigate the zero-temperature properties of correlated electrons, without
any prior knowledge of the ground state. This projector method simulates stochastic
trajectories in the space of Slater determinants. This technique is based on an efficient
annihilation of undesired Monte Carlo walkers [46, 58] and overcomes the sign problem
without requiring any prior knowledge about the nodal structure of the many-body
wave-function.

For finite temperature systems, auxiliary field Monte Carlo [11, 12, 75, 76] and
path integral Monte Carlo [77–79] are both capable of simulating strongly interacting
particles. They express the partition function as a sum of paths in the Hilbert space,
with appropriate probabilities for sampling the paths. Even though the systems they
consider are not realistic, they helped understand the structure of neutron stars [80],
for example. Inspired by full configuration interaction quantum Monte Carlo, density
matrix quantum Monte Carlo has been developed in [35] to study finite tempera-
ture models of correlated fermions [54, 55]. Similarly to full configuration interaction
quantum Monte Carlo, this algorithm simulates stochastic trajectories in the space of
operators and estimates temperature-dependent density matrices. It offers indepen-
dent estimations for the density matrix elements, hence minimizing the correlations.
Moreover, this method offers the possibility to obtain estimates of the entanglement
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between different degrees of freedom of the system. Recently, DMQMC has been
generalized to open quantum systems described by a Lindblad-type master equation
and applied to dissipative quantum magnetism [81].

4.1.2 Paradigmatic models

Certain paradigmatic models are often used as a benchmark for novel approaches
to ground state simulations. These systems generally consider lattice models which
give enough freedom in the size of the system to perform exact diagonalization and
to test the performances on larger lattices. Furthermore, it is common that specific
configurations of these models are sensitive to the sign problem, allowing us to test
the efficiency in dealing with it. First, we consider the two-dimensional Heisenberg
model displaying magnetic behavior [82]. Despite the appeal of its simple formulation,
no rigorous general solution has been provided and it is still studied extensively by
Monte Carlo simulations [83, 84]. As an example of ground state computations in field
theoretical models, we also consider the more challenging Fermi-Hubbard model on
an L×L square lattice with periodic boundary conditions [9]. This model is of major
importance because it describes several important phenomena in solid state physics,
such as high-temperature superconductivity [85]. An exact general solution has never
been found although decades of study that have been spent on the Fermi-Hubbard
model [86].

Note that the basis choice is usually not unique in lattice models, because the
Hamiltonian is composed of multiple independent solvable parts. We selected a single
basis per model, but the simulations could have been performed in another basis,
corresponding to another splitting between the free and interacting parts.

Square Heisenberg model We consider a L × L square lattice with periodic
boundary conditions on which a spin-1/2 particle sits on each site. The Hamilto-
nian takes the form

H =
∑
⟨ν,µ⟩

Jxσxνσ
x
µ + Jyσyνσ

y
µ + Jzσzνσ

z
µ, (4.5)

where σx,σy,σz are the standard Pauli matrices and ⟨ν,µ⟩ denotes nearest neighbors
on the lattice. The Hamiltonian of the XXZ model is obtained by setting Jx = Jy =
2Jz = J ,

H =
J

2
∑
⟨a,b⟩

σ+a σ
−
b + σ−

a σ
+
b + σzaσ

z
b , (4.6)

where σ± = σx ± iσy. The splitting into a free and interacting part is chosen such
that

H free =
J

2
∑
⟨a,b⟩

σzaσ
z
b , H int =

J

2
∑
⟨a,b⟩

σ+a σ
−
b + σ−

a σ
+
b . (4.7)

We introduce the free eigenbasis as a tensor product of local eigenvectors of the
single-particle operator σz

|es1,...,sL×L⟩ = |s1⟩ ⊗ |s2⟩ ⊗ · · · ⊗ |sL×L⟩, (4.8)

where sν = szν = ±1. A free eigenstate describes a precise spin configuration of the
lattice, where each site is either in a state with spin up or down. The single-particle
operators σz and σ± act on the basis states according to the standard algebra of Pauli
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matrices

σz| ± 1⟩ = ±| ± 1⟩, σ±| ∓ 1⟩ = | ± 1⟩, σ±| ± 1⟩ = 0. (4.9)

Because the total spin operator is a conserved quantity, we can restrict ourselves
to subspaces of the Hilbert space with constant total spin. For the antiferromagnetic
case, the ground state has total spin zero, and we can therefore only consider states
with the same number of spins up and down. The number of allowed configurations
for a L×L lattice is given by the binomial(

L2

L2/2

)
, (4.10)

and the number of elements in the density matrix is(
L2

L2/2

)2

. (4.11)

Besides the ground state energy, a common observable is the staggered magnetization
per site defined as

M =
1
L2

L2∑
µ=1

(−1)xµ+yµSµ, (4.12)

where Sµ is the 3-dimensional spin operator on site µ and (xµ, yµ) are the coordinates
of the site µ on a square lattice. The squared staggered magnetization is defined as

⟨M2⟩ = ⟨M · M⟩, (4.13)

where ⟨·⟩ denotes the quantum average.

Triangular Heisenberg model The triangular Heisenberg model is based on the
square Heisenberg model with next-nearest neighbors interactions. Calculations with
this model usually display the effects of the sign problem. Its Hamiltonian reads

H =
∑

⟨⟨ν,µ⟩⟩
Jxσxνσ

x
µ + Jyσyνσ

y
µ + Jzσzνσ

z
µ, (4.14)

where ⟨⟨ν,µ⟩⟩ denotes the next-nearest neighbors on the lattice, meaning that each
point in the lattice has six neighbors. Such a lattice is displayed in Figure 4.1.

Figure 4.1: Illustration of a triangular 4 × 4 lattice. Each black dot
represents a spin on the lattice and has 6 neighbors.
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The total spin is conserved and the number of allowed configurations is given by
Eq. (4.10). However, since the lattice is triangular, the sign problem occurs. Its
presence can be explained by the fact that in three jumps, a triplet can be back to its
original position, which was not the case with the square lattice. With each minus
sign accompanying a jump, the triplets contribute to the averages with weights from
opposite signs. The consequence of these opposite contributions is a typical scenario
where the signal diverges because weights cannot cancel each other exactly. Due to
the rotation symmetry of the Hamiltonian, choosing the eigenbasis of σx or σz for the
free basis does not solve the sign problem. For both the triangular and the square
Heisenberg model, we assume J = 1 unless stated otherwise.

Hubbard model The L × L square Fermi-Hubbard Hamiltonian with periodic
boundary conditions is

H = −t
∑

σ={↑,↓}

∑
⟨ν,µ⟩

bσν
†bσµ + U

∑
ν

n↑
νn

↓
ν , (4.15)

where ν = 1, . . . ,L2 are the lattice sites, ⟨ν,µ⟩ denotes nearest neighbours on the
lattice, and nσν = bσν

†bσν counts the number of particles with spin σ at site ν. The
fermionic ladder operators bσν †, bσν follow the standard anti-commutation rules (2.13).
The splitting into a free and an interaction part is performed according to

H free = U
∑
ν

n↑
νn

↓
ν , H int = −t

∑
σ={↑,↓}

∑
⟨ν,µ⟩

bσν
†bσµ. (4.16)

Note that, unlike most approaches, we treat the kinetic hopping term as the interac-
tion and the Coulomb on-site potential as the free part of the Hamiltonian. This is
due to the Fock basis, however, we could perform a Bethe ansatz to write the Hamil-
tonian in a form where the role of the free and interacting parts are interchanged.
The Fock basis is spanned by the vectors

|n↑
1,n↓

1,n↑
2, . . . ,n↓

L2⟩ = b↑
1

†n
↑
1
b↓

1
†n

↓
1
b↑

2
†n

↑
2
. . . b↓

L2
†n

↓
L2 |0⟩, (4.17)

with |0⟩ the vacuum and where nσν can either take the value 0 or 1. We say that the
grid is half-filled when the number of electrons on the grid is L2. In that case, the
ground state consists in a linear combination of states where the number of spin up
electrons is exactly equal to the number of spin down. This reflects the fact that the
Coulomb energy is minimized when electrons are not on the same site. Noticing that
the Hamiltonian conserves the total spin, we can restrict ourselves to

# lattice config. ∼
(
L2

L2/2

)2

, (4.18)

due to the fact that the spins up and down are completely decoupled in the jumps.
This results in two L×L independent lattices, with L2/2 electrons on each.

4.2 The algorithm

We now present the details of the algorithm to unravel Eq. (4.2). We introduce the
general structure and describe how to obtain a ground state estimation with these
basic structural components. Then, we have a closer look at the main loop, the key
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component of the algorithm. And finally, we define an importance sampling procedure
and review the initiator approximation introduced in [57] that has a strong impact
on the severity of the sign problem.

4.2.1 General structure

Triplet unraveling considers the evolution of an ensemble of walkers, or trajectories, as
particular realizations of the stochastic processes (cm, |Φm⟩, |Ψm⟩) to statistically rep-
resent the density matrix. These walkers is the ensemble of triplets {(c(n), i(n), j(n))}n,
where c(n) is real, and i(n) ≡ |e(n)i ⟩ are the free Hamiltonian eigenbasis. Note that
we use the superscript n to denote the n’th independent trajectory of the ensemble.
We dropped the subscript m denoting the order of iteration because it did not carry
any special physical meaning. The triplets (c(n), i(n), j(n)) undergo alternately weight
updates to account for the continuous free evolution and stochastic state-jumps rep-
resenting the interactions. From this ensemble of trajectories, the average defined in
Eq. (4.3) is estimated via

ρ ≈ 1
N
∑
n

c(n)|i(n)⟩⟨j(n)|, (4.19)

where N =
∑
n c

(n)δi(n),j(n) is the normalization. To keep track of the number of
trajectories in our ensemble, we define the population P as the sum of the absolute
value of all the triplets in the ensemble,

P =
∑
n

|c(n)|. (4.20)

The general strategy to compute an estimation of the ground state |E0⟩⟨E0| con-
sists in three stages; an initialization, a convergence, and a sampling. The initial-
ization matches the initial triplet ensemble to the initial condition ρ0 such that Eq.
(4.19) holds. The only restriction on the initial condition is that it cannot be per-
pendicular to the ground state. However, in order to guarantee a fast convergence, it
is computationally efficient to start as close as possible to the ground state. Usually,
the system is initialized to the free ground state, which is by construction always
known. The details about the choice of the initial condition are developed in Sec.
4.4. The convergence is made of an iterative application of the so-called main loop
on the ensemble until the latter has reached the ground state. The main loop aims
at imitating the application of the superoperators in Eq. (4.2). A single loop is de-
composed into two steps, the spawnings or interactions and the free evolution. The
spawnings represent the random events followed by transitions encountered by the
piecewise deterministic processes, whereas the free evolution corresponds to the con-
tinuous deterministic evolution. Once the simulation has converged and the ground
state has emerged, the sampling stage occurs. From the converged ensemble, each
further application of the main loop produces an estimate of the mean value of an
observable A via tr(Aρ). Using Eq. (4.19), the mean value can be estimated from the
triplet ensemble {(c(n), i(n), j(n))}n with

tr(Aρ) ≈ 1
N
∑
n

c(n)ai(n)j(n) , (4.21)

with ai(n)j(n) = ⟨i(n)|A|j(n)⟩. Once the sampling stage is finished, one performs a
block analysis to decorrelate the samples and estimate the correct statistical error.
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Typically, we refer to such an estimation procedure as an independent simulation.
Multiple independent simulations are usually performed to estimate the statistical
error of intermediate results in a numerical analysis of the scheme.

4.2.2 Main loop

We now discuss in details the main loop, which is illustrated by a flowchart in Fig.
4.2. The implementation of the spawning and free evolution steps of the main loop
is described below.

initialize

copy ρm

decompress

spawn

compress ρm and L
int

r
ρm

update weight

m ≥ Mmax?

end simulation

m 7→ m+ 1

store tr(Aρm)/tr(ρm)

main loop

yes

no

ρm+1

ρ0

ρm

ρm

. . .

. . .

Figure 4.2: Flowchart of the triplet unraveling algorithm. The or-
ange rectangle represents the main loop, the collection of blue rectan-
gles is the superoperator (1 + Lint

r ) and the free rRfree
r is represented

by the green rectangles.
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Spawning

1. Prespawning decompression.

2. For each unit-weight triplet (sign(c(n)), i(n), j(n)) either one of the two states is
chosen randomly. For instance, if i(n) is chosen, a new state k is spawned from
i(n) with uniform probability among the nt possible transitions with hint

i(n)k
=

⟨k|H int|i(n)⟩ ̸= 0. Then, the newly spawned triplet,[
−sign(c(n))

hint
i(n)k

r
nt, k, j(n)

]
, (4.22)

is added to the ensemble. Equivalently if j(n) is selected.

The spawning step numerically implements the stochastic application of the super-
operator (1 + Lint

r ). Prior to the execution of the spawnings, we perform a mod-
ification of the ensemble to improve the statistics without influencing the statis-
tical averages. A prespawning decompression splits each triplet (c, i, j) into child
triplets of weight unity in absolute value (sign(c), i, j) and a rest triplet with weight
cr = sign(c)(|c| − ⌊|c|⌋), with ⌊·⌋ the floor function. The rest triplet is remove from
the simulation with probability 1 − |cr| or its weight is updated to sign(c). Once all
the triplets have spawned exactly once, we can apply the free evolution step.

Free evolution

1. Triplets compression.

2. For each triplet (c(n), i(n), j(n)) a weight update is performed according to

c(n) 7→ r

r− S + (hfree
i(n)i(n) + hfree

j(n)j(n))/2
c(n), (4.23)

in order to account for the free evolution, with S the energy shift.

The free evolution step describes the continuous evolution of the piecewise stochas-
tic processes according to rRfree

r . Again, we first perform a modification of the en-
semble. A compression is applied on a decompressed ensemble and forms classes of
triplets according to the pair (i, j). Class representatives are then replaced by a single
triplet with weight being the sum of all the weights in the class.

Once the above steps are performed, an estimate of the average ⟨A⟩ can be cal-
culated according to (4.21). Once the desired population is reached, the shift has to
be updated according to the rule

Sm = Sm−1 − rξ log (Pm/Pm−1) , (4.24)

where Sm denotes the shift at loop m, ξ is a damping parameter and Pm is the
population. The shift update eventually helps to stabilize the population. The shift
is guaranteed to converge to the true ground state energy. A thorough analysis of the
shift dependence on the population dynamics is performed in Sec. 4.3.

4.2.3 Importance sampling

We introduce an importance sampling procedure to reduce the variance of our final
results without modifying the averages. The idea of this procedure is to restrict the
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exploration of the Hilbert space via the spawnings to only the region of interest for an
observable A. In order to have a measure of distance in the Hilbert space, we define
a dynamic norm nij between states i and j that will allow us to control how far the
triplets can explore around the desired region. Because the exploration is dictated
by the spawnings, this norm measures the minimum number of applications of H int

needed to jump from state i to state j. The efficiency of this importance sampling
procedure resides in the observation that most of the observables are sampled by
triplets with a dynamic norm strictly lower than two. Intuitively, one can imagine
this procedure as keeping the triplets close to the diagonal.

In order to implement this idea, we associate to each triplet two weights; a physical
weight and an ensemble weight. The physical weight, denoted by c, is the weight used
until now for physical averages of the type (4.21). The ensemble weight w is associated
to the number of spawnings performed by the triplet and represents the statistical
importance of the triplet in the ensemble. The two weights are related by a norm
dependent bias b ≡ b(nij) with the relation c = bw. In order to decrease the number
of triplets with a large dynamic norm, we have to reduce the number of spawnings
performed and hence, impose that the bias increases with an increasing norm. In
that case, triplets with a large dynamic norm have a low ensemble weight and spawn
less. Figure 4.3 illustrates an example of the spawning procedure for a triplet with
physical weight |c| = 6 and b = 2.

c w

(c, i, j)

�

c

|w| , i, j

�

�

c

|w| , i, j

�

�

c

|w| , i, j

�

Figure 4.3: Example of the decompression of a triplet (c, i, j) accord-
ing to the ensemble weight w. The triplet with |c| = 6 and bias b = 2
is split into ⌊|w|⌋ = 3 child triplets, with each child triplet spawning a
single triplet from ( c

|w| , i, j).

To be more concrete, the decompression has to be performed according to the
ensemble weights to reflect the number of spawnings. A triplet (c, i, j) is split into
⌊|w|⌋ child triplets with physical weight c/|w| and a rest triplet that survives with
probability |w| − ⌊|w|⌋. If the rest triplet survives, its weight is updated to c/|w|
otherwise it is removed from the simulation. Concerning the spawnings, for each
child triplet, a side is randomly chosen as well as a subsequent new state among all
the possible transitions. If the side i was chosen to spawn a new k, the newly spawned
triplet has the form [

− c(n)

|w(n)|
hint
i(n)k

r
ntTb, k, j(n)

]
, (4.25)
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with Tb = bij/bik the transition bias. This equation is the importance sampled
counterpart of Eq. (4.22).

A standard choice for the bias b is inspired by a harmonic interaction with spring
constant κ between the i and j. It is expressed as

b(nij) = exp
(
κn2

ij

)
, (4.26)

such that the initial ensemble is unbiased due to b(0) = 1. Note that the choice
of the definition of the dynamic norm is not unique. In some systems, it can be
computationally expensive to compute at every spawning event both the dynamic
norm of the original and the newly spawned triplets. As a solution, we can define an
equivalent norm that has a similar role. The only requirements for the dynamic norm
are (i) to be computationally cheap and (ii) to resemble the definition given above to
reduce the number of spawnings for unimportant triplets.

4.2.4 Initiator approximation

The initiator approximation introduced in [57] reduces the number of triplets needed
to have a convergent simulation when the sign problem occurs. The idea is to allow
the triplets to spawn a nonexisting triplet only if the original triplet has a weight
larger than a threshold cini or a dynamic norm strictly lower than nini. Those triplets
are called initiators. The only exception to this rule is if two non-initiators spawn
simultaneously the same pair. A non-initiator can become an initiator if its weight
reaches the threshold cini. In our framework, the approximation is implemented in
the compression and decompression. The initiator compression removes all the newly
created triplets that originate from non-initiators. Otherwise, a usual compression is
performed. Conversely, the initiator decompression upgrades to initiators all triplets
with weight larger cini or dynamic norm strictly lower than nini. It is followed by a
standard decompression. We assume the initiator parameter nini = 2 unless stated
otherwise.

4.3 Population control
Introduced earlier as the sum over the absolute value of the weight of all the triplets in
an ensemble, the population reflects the computational cost of each loop. Each triplet
spawns a number of children proportional to its weight, hence a larger population
accounts for a longer computational time. It is crucial to have good control over
the population dynamics in order to have a predictable execution time and to avoid
unnecessary growth of the ensemble size.

We here examine the tools to control the population dynamics. These tools in-
clude the shift update, which is parameterized by the initial shift and the damping
parameter ξ, and indirectly, the importance sampling via the spring constant. We
also review the population plateaus that are encountered in systems sensitive to the
sign problem. Unless stated otherwise, the damping parameter is set to ξ = 1.

4.3.1 Shift update

Because our method has similarities with the full configuration interaction quantum
Monte Carlo method, we can rely on the analysis done in [56] about the population
dynamics. We recall here the most important features and properties of the evolution
of the population and the main tool to control it, the shift.
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For a shift larger than the ground state energy S > E0, the ensemble size natu-
rally increases exponentially as it can be understood with Eq. (3.11), for which the
population would be ∑

ij

|cij(β = 0)|e
β
2 |Ei+Ej−2S|, (4.27)

which would increase exponentially for β → ∞. In the Laplace domain, the same con-
clusions can be drawn by considering the fixed-point equation and the decomposition
ρm =

∑
ij cij(m)|Ei⟩⟨Ej |. We find that the population at iteration m is∑

ij

|cij(m = 0)| (1 + |Ei +Ej − 2S|/2r)m , (4.28)

which diverges for m → ∞. The purpose of the shift update is hence to counteract
this natural increase by adjusting the shift to the ground state energy, which slows
down and eventually stops the growth.

In practice, the slowing down is achieved by updating the shift according to the
rule Eq. (4.24) once the desired population is reached. Figure 4.4 shows three exam-
ples of population dynamics with the corresponding estimation of the ground state
energy E0 for the 4 × 4 square Heisenberg model with r = 30. The initial shifts
were all set to S0 = −9 and the update was enabled at m/r = 1, 2, 4. For sign-

Figure 4.4: Upper panel: Estimation of the ground state energy
⟨E0⟩ for the 4 × 4 square Heisenberg model with r = 30. Lower panel:
Corresponding population dynamics with initial shift S0 = −9 and
update enabled at m/r = 1, 2, 4. The corresponding line colors are
blue, yellow, red, respectively.

free problems like the square Heisenberg, the shift can be updated anytime, and the
simulations are convergent for all populations. Conversely, for systems sensitive to
the sign problem, the population has to reach a typical plateau in order to provide



36 Chapter 4. Ground-state calculations

a convergent simulation. The shift can be updated only once the plateau is exited.
These population plateaus are considered in the next subsection.

4.3.2 Population plateaus

As mentioned earlier, the triangular Heisenberg model is a paradigmatic model to
study the sign problem. Due to the possibility of a triplet to jump back into its
original state after an odd number of iterations, and to the negative sign associated
to a spawning in Eq. (4.22), triplets with opposite weights cannot cancel exactly,
giving rise to the sign problem. Above a critical spawning rate, the instabilities
disappear because the cancellation rate is high enough to overcome the sign problem.
This critical value manifests itself as a population plateau as shown in Fig. 4.5. It
illustrates the population dynamics for the 4 × 4 triangular Heisenberg model with
r = 15 and various constant shifts.

Figure 4.5: Upper panel: Estimation of the ground state energy ⟨E0⟩
for the 4 × 4 triangular Heisenberg model with r = 15. Lower panel:
Corresponding population dynamics with various constant shifts and
an initial population of 160 triplets.

First, an exponential growth in the population occurs due to the rapid spreading
of the triplets in the Hilbert space. This initial spreading depends of course on the
choice of the initial shift as supported by Eq. (4.28) and the above figure. Then,
the triplet population stabilizes at a critical plateau height because of competing
contributions from triplets with opposite weight signs. Details can be found in [56]
about the dependence on the plateau height and length with respect to the initial
shift. Finally, a second exponential growth originating from a nonzero ground state
energy emerges, signaling that the ground state has been reached and the shift update
can be enabled. The closer the initial shift is to the ground state energy, the longer
the emergence of the ground state has to be during the plateau. This is due to a slow
initial spreading of the triplets in the Hilbert space. Hence, the ground state has to
reinforce itself before emerging from the divergent simulation. If the shift update is
enabled before the end of the population plateau, the simulations are not convergent
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because the ground state has not emerged, and the weight cancellation rate has not
reached the critical value.

An efficient way to shorten the length of the population plateau is to use the
initiator approximation. The population dynamics and the corresponding ground
state energy estimate are displayed in Fig. 4.6 for a 4 × 4 triangular Heisenberg
model with r = 15, S = −4, an initial population of 160 triplets and the initiator
approximation. As it is illustrated by the converged ground state energy estimations,

Figure 4.6: Upper panel: Estimation of the ground state energy ⟨E0⟩
for the 4 × 4 triangular Heisenberg model with r = 15, a constant
shift S = −4 and an initial population of 160 triplets. Lower panel:
Corresponding population dynamics with various initiator thresholds
cini.

the severity of the sign problem is weakened with the initiator approximation. The
reason is that the initiator approximation forbids the triplets contributing the most
to the sign problem to spawn, which improves the weight cancellation rate.

4.3.3 Spring constant

Importance sampling is introduced to decrease the statistical variance of the final
result by restricting the exploration of the Hilbert space only to regions that partici-
pate in the statistical averages. In fact, the main effect of the importance sampling is
to reduce the population of triplets with a large dynamical norm, leading to a lower
total population. The variance is effectively unchanged but the population is lowered,
hence the execution time to produce a given statistical error is shortened.

Figure 4.7 shows the dependence of the population dynamics on the spring con-
stant κ for the 4 × 4 square Heisenberg model. Since the shift is updated from
m/r = 2 for all the curves, the spring constant has a direct impact on the initial
spreading in the Hilbert space and therefore on the final population. For sign-free
systems, the shift update can be enabled during the initial exploration phase of the
Hilbert space, which affects the final population. Many triplets do not spread easily
due to the spring constant, and the total population is effectively lowered because
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Figure 4.7: Population dynamics for the 4 × 4 square Heisenberg
model with r = 15, an initial shift S0 = −9, and various spring con-
stants. The shift update was enabled at m/r = 2. Inset: Estimation
of the ground state squared staggered magnetization ⟨M2⟩ for the cor-
responding population dynamics.

the early shift update stabilizes the number of triplets to a lower level. As already
claimed, the variance of the final result is constant for all κ. The desired variance
reduction occurs by increasing the population to match the execution time without
importance sampling.

Conversely, for the triangular Heisenberg model, the spring constant has no direct
effect on the final population but rather on the variance. This is due to the impos-
sibility to update the shift before the plateaus are exited. Figure 4.8 illustrates the
effect of the importance sampling on the population dynamics for the 4 × 4 triangular
Heisenberg model. The same initial growth as for the square model is visible but the
importance sampling does not influence the height of the population plateau. The
weight cancellation rate has to be reached to overcome the sign problem leading to
the same plateau height. However, the inset shows a reduction of the noise which is
a consequence of the variance reduction method. Therefore, the effect of importance
sampling for systems sensitive to the sign problem is a reduction of the statistical
error and not a lowering of the plateau height.

It is worth noting that if the spring constant is chosen too large, some triplets that
should participate in the statistical averages might be removed from the simulation.
This can lead to a convergence to the wrong ground state, which is detectable by
an underestimation of the ground state energy. This can be viewed as a breaking of
ergodicity in the exploration of the Hilbert space by restricting the jumps to a specific
region. The exact value of the spring constant at which the exploration is no longer
ergodic increases with the population. Figure 4.9 illustrates the breaking of ergodicity
by plotting the estimate of the ground state energy for various spring constants for the
L = 8 Fermi-Hubbard ring. For this specific population, the breaking of ergodicity
occurs for κ ≥ 0.3 where the statistical errors become smaller than the systematic
ones. When the ground state energy is unknown, the typical strategy to assess when
the breaking of ergodicity occurs is to start with a large spring constant and decrease
it until the ground state energy becomes constant within the error bars.
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Figure 4.8: Population dynamics for the 4 × 4 triangular Heisenberg
model with r = 15, a constant shift S0 = −4, and with various spring
constants. Inset: Estimation of the ground state energy ⟨E0⟩ for the
corresponding population dynamics.

4.4 Efficiency and accuracy
The algorithmic complexity measures how the execution time scales with a given
population. Indirectly, it gives a useful quantitative scaling about the additional
computational time needed to reduce the statistical error. Most of the simulation
effort has to be performed during the spawning step, especially when computing the
allowed transitions and creating new states. Because the triplet population reflects
the number of spawning attempts performed in each loop, we can expect that the
algorithmic complexity scales linearly with the population, i.e. O(P ). One could
argue that the use of sorted ensembles implies the complexity O(P lnP ), however,
within the range of population accessible with current computers, the sorting steps of
the ensembles are negligible compared to the spawnings in terms of execution time.
Figure 4.10 illustrates the algorithmic complexity for the L = 8 Fermi-Hubbard ring
with t = 1, U = 20, and r = 64 at half-filling. As illustrated, the execution time is
determined by the linear relation with the triplet population, mainly controlled by the
shift update. Hence, after defining the desired population, we can tune the parameters
of the algorithm to improve the accuracy of the result for a given simulation time.

In this section, we show how to tune the parameters in order to optimize the
efficiency of the algorithm and perform a numerical analysis of the method. We first
examine the role of the initial conditions in the convergence rate, then we compare
the efficiency to other similar Monte Carlo methods. We conclude that in our Laplace
framework, the freedom to choose the parameter r can be used as a way to improve the
statistics of the final results and hence, the computational time. Finally, we study the
high parallelism of the algorithm, the implementation of the parallel programming,
and the speed-up in the simulation time.

4.4.1 Initial conditions

An ingenious choice of the initial state increases the convergence rate and hence,
reduces simulation time for a given variance. We can argue with Eq. (4.2) how an
initial state close to the ground state reduces the number of iterations needed to reach
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Figure 4.9: Estimations of the ground state energy ⟨E0⟩(κ) as a
function of the importance sampling spring constant κ for the L = 8
Fermi-Hubbard ring with t = 1, U = 20, and r = 64. Each point
was estimated over 3 · 104 iterations, and the population was about
1.5 · 105 triplets with r = 30. The error bars represent the statistical
errors computed over 30 independent simulations.

Figure 4.10: Example of the algorithmic complexity for the L = 8
Fermi-Hubbard ring with t = 1, U = 20, and r = 64. The complexity
is linear as the main part of the simulation is spent on generating the
spawnings. The errors were computed over 600 loops.

the fixed point. The standard choices include the infinite temperature density matrix

ρ0 ∼ 1, (4.29)

and the NGS degenerate free ground states {|Efree
0

(k)⟩}k,

ρ0 =
1

NGS

NGS∑
k=1

|Efree
0

(k)⟩⟨Efree
0

(k)|. (4.30)

Figures 4.11 & 4.12 compare the convergence rate between the two standard initial
conditions for the square 4 × 4 XXZ Heisenberg model. In the small interaction case
Jxy = 0.5, the convergence is much faster when starting from the free ground state,
whereas for medium interaction strengths Jxy = 1, the distinction is not clear. As
expected in the regime Jz ∼ Jxy, the interacting ground state is mainly composed
of off-diagonal triplets, as opposed to the perturbative regime for which the interact-
ing ground state is the free ground state with a small perturbation. These results
illustrate the efficiency of the method in the perturbative regime.
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Figure 4.11: Estimate of the ground state energy ⟨E0⟩ for the square
4×4 XXZ Heisenberg model with Jz = 1, various interaction strengths
Jxy, r = 15, and the two initial conditions described by Eqs. (4.29) &
(4.30). The errors were computed over 30 independent simulations for
a final population of 5 · 105.

4.4.2 Error estimation

The statistical errors of the measurements can be estimated by performing a block-
analysis on a single long chain of correlated estimations Am whose average value is
the mean value of the observable ⟨A⟩. The method considers a single simulation
composed of a convergence from the initial to the ground state involving Nconv steps
and subsequent sampling by a further application of the main loop to construct a
chain of Nsamp estimates. Since the estimates are correlated, they have to be block-
analyzed to extract the correct statistical error. A naive calculation of the standard
deviation from the correlated data will tend to underestimate the correct statistical
error. Starting from the original data series A(0)

m = Am, we iteratively create blocked
series by averaging over two elements of the previous iteration. The elements of the
iteration l are constructed via the equation

A(l)
m =

1
2
(
A
(l−1)
2m−1 +A

(l−1)
2m

)
, (4.31)

with m = 1, . . . ,Nsamp/2l. The mean remains unchanged and the new averaged
blocks are less correlated than the previous ones. The statistical error is estimated
by the standard error for the uncorrelated results,

σ
(l)
A =

√√√√Var(A(l))

N
(l)
b

, (4.32)

where N (l)
b is the number of blocks at iteration l and Var(A(l)) is the variance of the

blocked data at iteration l. This estimated error increases as a function of the block
size and converges to the correct one when the blocks become uncorrelated

σA = lim
l→∞

σ
(l)
A . (4.33)
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Figure 4.12: Estimate of the squared staggered magnetization ⟨M2⟩
for the square 4 × 4 XXZ Heisenberg model with Jz = Jxy = 1,
r = 15, and the two initial conditions described by Eqs. (4.29) &
(4.30). The errors were computed over 30 independent simulations for
a final population of 5 · 105.

To ensure that the error is estimated by a large sample, we require the number
of blocks to be larger than 30. Figure 4.13 displays the estimation of the square
magnetization ⟨M2⟩ for the 4 × 4 Heisenberg model with J = 1, r = 15 and κ = 1/10
as a function of the population. The estimations were computed in each case with a

Figure 4.13: Estimations of the squared staggered magnetization
⟨M2⟩ for the square 4 × 4 Heisenberg model with Jxy = Jz = 1. The
errors were estimated with a block analysis of 1.5 · 104 samples.

block analysis of a single chain of 1.5 · 104 samples.
The main competitor to our approach is the celebrated DMQMC technique [35],

which calculates the solution of the Bloch equation for any inverse temperature β.
The ground state corresponds to the low-temperature limit, i.e. β → ∞, which is
estimated by a long chain of correlated samples as described above. Unlike DMQMC,
our technique only allows access to the ground state since the solution for the whole
β range involves solving the nonlinearities introduced to preserve the norm (see Sec.
3.2). However, obtaining the ground state is faster for two reasons; the evolution
step 1/r has no clear upper bound and the freedom in the initial state improves the
convergence. For example, the choice of the initial state as the free ground state can be
compared to an interaction picture, where the free part is integrated exactly and the
dynamics is only in the interaction. The benefit of the interaction picture approach
is illustrated in Fig. 4.11, where in the case of a perturbative regime, the simulation
converges much faster. We note the efforts provided to construct an interaction



4.4. Efficiency and accuracy 43

picture with DMQMC in [55]. Concerning the absence of clear an upper bound on
the evolution step, an informal demonstration can be performed from the equation(
1 + L

r

)m
ρ∞ = ρ∞. For an initial density matrix ρ0 =

∑
ij cij(m = 0)|Ei⟩⟨Ej |, one

can estimate that the inverse evolution step must be larger than the pair of state in
the initial ensemble (i, j) that maximizes the quantity (Ei +Ej)/2. Concretely, we
found the following bound,

max
{ |Ei +Ej |

2

}
(i,j)∈ρ0

≲ r. (4.34)

We now argue why a large evolution step 1/r reduces the statistical error of the
final result. Once the simulation has converged, an iterative application of the main
loop produces the sequence of correlated data points. This correlated trajectory is
characterized by two parameters, the decorrelation time τ , related to the number
of iterations over the main loop Ndec between two decorrelated points via Ndec =
τr and the amplitude of the fluctuations around the average δA. Our simulations
showed that the amplitude of those large-scale fluctuations is independent of r and
can only be reduced by increasing the population. The variance can be written
as a combination of the two parameters as σ2 ∼ A2Ndec ∼ r, hence specifying its
dependence on r. For a constant number of data points, we increase the number
of independent samples by lowering the parameter r, hence decreasing the variance.
Figure 4.14 illustrates this behavior with the variance of the ground state energy
σ2
E for the 1 × 10 Fermi-Hubbard ring at half-filling. Various interaction strengths

were considered, and importance sampling was not used, i.e. κ = 0. The error
bars were estimated with 10 independent simulations, each with the same number
iteration m = 3.2 · 104 and the same population 105. The corresponding DMQMC
lower bound (Emax −Emin)/2 is illustrated by the dotted lines. The linear unit slope

Figure 4.14: Decorrelated relative variance of the ground state en-
ergy for the 1 × 10 Fermi-Hubbard ring at half-filling as a function of
the inverse evolution step r. The vertical dotted lines correspond to
the lower bounds dictated by the DMQMC approach.

is visible on the right-hand side of the figure while the transition to the minimum
value occurs when the decorrelation time approaches unity, i. e. when each data point
is uncorrelated from the previous ones. Further reducing r only increases the jump
amplitude, resulting in an increasing error on the left-hand side of the figure. This
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feature highlights once more the efficiency of the algorithm in a perturbative regime
where H free ≫ H int (U ≫ t).

4.4.3 Parallelism

Parallel computing provides a tool to distribute the computational load of a simula-
tion over multiple logical processors, called threads, in order to reduce the execution
time. Distributing the load allows for independent calculations to be performed simul-
taneously by having two types of memory structure. The shared memory is common
to all the threads whereas the distributed memory is associated to a single thread.
The challenges of parallel computing consist in an adequate load balancing between
the threads, memory synchronization, and overhead for communication between the
parallel parts. Figure 4.15 sketches the parallel implementation of an arbitrary pro-
gram where parallel regions are separated by serial executions of the program. The
length of these serial parts, or the overhead, is responsible for an upper limit in the
speedup of a program because shared memory has to be used for communication and
synchronization.
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Figure 4.15: Sketched execution of the parallel implementation of a
program. The parallel regions end with the memory synchronization
and are interspersed with serial parts.

The instabilities associated to the sign problem require a typical population pla-
teau usually characterized by a very large number of triplets. In order to evolve
these very large populations, we parallelize the algorithm, which results in a signifi-
cant computational speedup. The high parallelism of the triplet unraveling algorithm
resides in the fact that most of the execution time is spent on the spawning step. Be-
cause these spawnings are independent of one another, they can be distributed among
multiple computer processes and performed simultaneously. Only the compressions
require synchronization and communication between these processes1.

Parallel program flow The flow of this parallel program is illustrated in Fig.
4.16. Because each spawning is independent, we can distribute the total weight
among the threads such that each thread has approximately the same number of
spawnings to perform. The sorted triplet ensemble is separated into domains, whose

1We implemented the algorithm using C++ and designed it with modules to incorporate a parallel
implementation easily. The results in this dissertation were performed either on multicore personal
computers or on small computational clusters for the larger simulations. We developed a shared-
memory multiprocessing code using an OpenMP [87] interface that is well suited for C++ and
controls the load distribution efficiently.
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thread M − 1 thread M thread M + 1

NM triplets NM+1 triplets

decompression

children triplets children triplets

+ spawned + spawned

communication

synchronization

sorting
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N
′

M triplets N
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M+1 triplets

Figure 4.16: Flowchart of the parallel implementation of a single
main loop. The triplet ensemble is distributed between the threads,
where the triplets are illustrated by the blue rectangles. The decom-
pression and the spawning are performed in the distributed memories.
The synchronization ensures that all the spawned triplets have been
communicated to their correct thread. The sorting, the compression,
the free evolution, and the computation of observables can then be
performed in parallel.

borders are stored in the shared memory. Conversely, the newly spawned triplets
are stored in the distributed memory of the threads. The threads then have to
communicate and synchronize their memory in order to perform the compressions.
Because the borders between the thread domains are shared, each thread spawns and
calculates where the new triplet has to be subsequently sent. The procedure minimizes
communication because most of the triplets are spawned on the correct thread and do
not need to be communicated. Before the compression, the threads have to wait until
all the spawnings are performed and the triplets sent to the correct thread. Then,
the compressions can be performed independently by sorting the triplets locally and
merging them with the existing ones because they are all in their designated thread.
The free contribution, the measurements, and the collection of the ensemble statistics
do not produce any jump, implying that they are performed purely in parallel. The
measurement and the computation of the population are performed in parallel once
Rfree
s is applied and subsequently the shift is updated.

The synchronization is the bottleneck of this parallel implementation. Because
the program has to wait until all the triplets have been sent to the designated thread,
it is important to have a precise load balance. If all the threads have exactly the same
number of spawnings, no waiting is required and the total execution time is reduced.
This load balancing is translated into a careful choice of the borders between each
thread domain. Since the number of spawning events is proportional to the weight,
the adequate load balancing is found for an equal distribution of the weight between
the threads. In that way, all the threads arrive simultaneously at the synchronization
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barrier and no time is lost waiting for slower threads.

Speed-up To measure quantitatively how the parallel implementation affects the
execution time, we define the computational speed-up as a number indicating the
relative performance of two processes solving the same task. Here, we introduce
it as the ratio between the execution time for a given number of threads and the
execution time for a single thread. The speed-up is illustrated in Fig. 4.17 for the 4 × 4
Heisenberg model with Jz = Jxy = 1, r = 15, κ = 1/10, S0 = −9, and a shift update
enabled at m/r = 1. The errors were estimated over 10 independent simulations. The
increasing populations between the curves correspond to initial weights of 50, 500,
and 5000, respectively. These results were performed on a small computational cluster

Figure 4.17: Computational speed-up as a function of the number
of threads for the 4 × 4 Heisenberg model.

with only 32 threads available. The slowing down of the speed-up for a large number
of threads might be influenced by the limited number of processors in the cluster
causing some over-threading.

4.5 Concrete calculations and examples
In order to demonstrate the effectiveness and the versatility of the fixed-point quan-
tum Monte Carlo method, we illustrate some ground-state calculations for various
models, observables, and interaction strengths. We consider the paradigmatic models
defined earlier, namely the square Heisenberg model (4.5), the square Fermi-Hubbard
model (4.15), and the Fermi-Hubbard ring. We choose lattices big enough so that the
exact ground cannot be naively stored in the computer. These lattices are 6 × 6 for
the square Heisenberg, 4 × 4 for the Fermi-Hubbard at half-filling, and 1 × 20 for the
Fermi-Hubbard ring for which the density matrix has respectively 8.2 · 1019, 2.7 · 1016,
and 1.2 · 1021 elements. We simulated ground-state properties on a standard modern
laptop or a small computational cluster for a population of the order 106-107 triplets.

Our first example considers the squared staggered magnetization of the ground
state of the 6 × 6 square Heisenberg model described by the Hamiltonian (4.5). Fig-
ure 4.18 shows the convergence to the ground state squared staggered magnetization
for the 6 × 6 Heisenberg model with r = 30 and κ = 1/6. The initial population is
2 · 103 triplets with initial shift S0 = −19 and an update enabled at m/r = 3, which
produced an end population of 5.7 · 106 triplets. We did not use the initiator ap-
proximation and the errors were calculated over 100 independent simulations. These
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Figure 4.18: Estimate of the squared staggered magnetization ⟨M2⟩
for the 6 × 6 Heisenberg model with r = 30, κ = 1/6, and an initial
population of 1.6 · 103 triplets. The initial shift was S0 = −19 with
the update enabled at m/r = 3, which produced an end population
of 5.7 · 106 triplets. The reference solution was obtained in [73] via
a stochastic series expansion (SSE). Note that in the main plot, one
every 6 iterations is plotted.

Monte Carlo results are in agreement with the stochastic series expansion method
introduced in [73].

Following the structure of [88], we study the convergence of the ground state en-
ergy in the 4 × 4 Fermi-Hubbard model for the regime t = 1, U = 40. Remember
that within our method, the free Hamiltonian represents the Coulomb potential and
the interacting Hamiltonian the kinetic energy. Depending on which representation
basis we use, position or momentum, we can study the limit of weak and strong
Coulomb interaction. The intermediate regime is the more challenging regime where
both expressions of the Hamiltonian, in the space domain or in the momentum do-
main, are the hardest to solve. The number of matrix elements depends not only on
the size of the system but on the number of electrons on the lattice. This number
is maximized at half-filling, that is when the number of electrons is exactly equal to
the number of sites. The ground state is found for a linear combination of lattice
configurations with an equal number of spin up and spin down electrons. Figure
4.19 shows the convergence to the ground-state energy for the 4 × 4 Fermi-Hubbard
model with t = 1, U = 40 at half-filling. We set r = 4, κ = 1/40, and cinit = 1.8
for an initial population of 3 · 106 triplets with constant shift S0 = −1.3. The final
population is about 1.1 · 107 triplets. The errors were calculated over 30 independent
simulations. At half-filling the Hubbard model does not suffer from the sign problem,
hence the initiator approximation and the importance sampling are not necessary to
obtain convergent results. Though, they still drastically reduce the number of triplets
needed in the simulation.

Finally, the largest system we consider is the 1 × 20 Fermi-Hubbard ring with
various interaction strengths at half-filling. We compute the momentum distribution
n(k) of the ground state that is defined for a 1 ×L lattice by

n(k) = 1 − 1
2L

∑
ν,µ,σ

eik(µ−ν)⟨bσµbσν
†⟩, (4.35)
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Figure 4.19: Estimate of the ground state energy ⟨E0⟩ for the 4 × 4
Fermi-Hubbard model at half-filling with t = 1, U = 40. The param-
eters were r = 4, κ = 1/40, and cinit = 1.8 for an initial population
of 3 · 106 triplets with constant shift S0 = −1.3. The final population
was about 1.1 · 107 triplets. The reference energy was taken from Ref.
[89].

where ν, µ are the lattice sites, and k is the one-dimensional momentum of the
reciprocal lattice. Figure 4.20 shows the momentum distribution n(k) of the ground
state for the 1 × 20 Fermi-Hubbard ring at half-filling with r = 30, κ = 1/6. The
initial population is 104 triplets with initial shift S0 = −14, an update that started at
m/r = 2. The final population is about 1.2 · 106 triplets. The errors were estimated
over 30 independent simulations. In the limit U/t = 0, the distribution coincides

Figure 4.20: Momentum distribution n(k) of the ground state for
the L = 20 Fermi-Hubbard ring with various interaction strengths.

with the Fermi-Dirac distribution for a free fermionic gas. As expected, increasing
the Coulomb potential smears the sharp Fermi-Dirac distribution. Even though the
density matrix is larger than for the previous examples, we can simulate at smaller
U . The reason lies in the fact that the Hilbert space exploration is more easily
controllable via the spring constant because of the nearest-neighbor interaction.

As a concluding remark, we want to emphasize the power of unraveling in repre-
senting statistically the system, which is illustrated by the multiple orders of magni-
tude of difference between the population and the number of matrix elements. We
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were able to simulate the largest systems in the limit of weak interaction because our
method is most effective when the interaction strength is not too large.
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5 Real-time dynamics

The Monte Carlo method presented in the previous chapter was developed for steady-
state calculations and based on a fixed-point iteration scheme. In this chapter, we
study how to extend this methodology to simulate the reversible dynamics described
by the von Neumann equation. This is motivated, first, by recent experiments in
quantum systems out of equilibrium [90–93] that have revealed the need to develop
real-time simulation methods that reproduce these dynamical experiments. Second,
concerning the original motivation about fundamental particles, this study gives ac-
cess to benchmark models to test the performance of the algorithm in the challenging
context of reversible dynamics. Because it is the dissipative mechanism that drives
the system towards equilibrium, we expect reversible dynamics to be harder to solve
for large times due to the competing fast oscillating exponentials.

Similarly to the fixed-point iteration scheme, we assume the separation of the
Hamiltonian (3.7) and use the triplet unraveling framework to sample stochastic tra-
jectories in a certain configuration space representing the Hilbert space. The triplets
undergo alternately continuous deterministic evolution and random jumps. The al-
gorithm, based on the magical formula (2.36), has the same main structure, namely
a main loop which is iteratively applied to an ensemble of stochastic trajectories. In
order to cope with the large size of the configuration space, we need the free eigenbasis
as the discrete basis and the superselection rule. Similarly to all other stochastic tech-
niques for reversible quantum systems, the sign problem limits the computation of
long-time properties of the system. Our Laplace framework coupled with unraveling
allows us to introduce the deadweight approximation which reduces the severity of the
sign problem by damping the fast oscillating exponentials. Additionally, the impor-
tance sampling procedure introduced in the previous chapter based on the dynamic
norm helps to reduce the population needed to converge massively.

This chapter is structured in the same way as the previous one. First, we recall
the basic equations to describe the algorithm and provide a short overview of a few
other stochastic methods that are able to solve purely reversible dynamics in multi-
dimensional systems. Then, we introduce the dynamical algorithm in details and
make some remarks on its efficiency. In a third section, we discuss population control
and introduce the deadweight approximation. In section four, we examine the nu-
merical methods to invert the Laplace transform and conclude that in most cases, we
can simply extract the dynamical properties directly in the Laplace domain. Finally,
we illustrate how to extract these dynamical properties and control the population.
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5.1 The magical formula
We start by reviewing the triplet unraveling from Sec. 3.1 in order to reproduce the
solution of the von Neumann equation (3.8) describing purely reversible dynamics.
We use the splitting of the Hamiltonian introduced earlier,

H = H free +H int, (5.1)

where we recall that H free is the part of the Hamiltonian that can be solved exactly.
Note that in a general setting, this choice is not unique. As we saw previously, the
method is most effective for small interactions, hence, the choice of the basis influences
the accuracy of the result (see Sec. 5.5). The unraveling reproduces the application of
the magical formula (2.36), by considering the evolution of triplets (cm, |Φm⟩, |Ψm⟩),
where cm is complex and |Φm⟩, |Ψm⟩ are piecewise deterministic stochastic processes.
This evolution occurs according to a formal iteration order m = 0, 1, . . . with the
fundamental propagator

Tr,s = r

[
Rfree
s+r

(
1 + Lint

r

)]
. (5.2)

The stochastic processes undergo continuous evolution associated to rRfree
s+r and in-

terspersed with random jumps accounting for (1 + Lint

r ). A large number of such
iterations M trunc → ∞ (see Chap. 3) eventually satisfies

ρ̃s = s
∞∑
m=0

E[cm|Φm⟩⟨Ψm|], (5.3)

where ρ̃s is the density matrix in the Laplace domain defined by

ρ̃s = sRsρ0, (5.4)

with ρ0 an initial state. Once the density matrix has been estimated, we can calculate
correlation functions CABs , which usually take the form

CABs = tr(ABρ̃s), (5.5)

where A, B are self-adjoint operators.

5.1.1 Reversible dynamics: a short overview

Recent experiments in quantum systems out of equilibrium [90–97] have revealed the
need to develop real-time simulation methods. Due to the exponential growth of the
Hilbert space with the system size, only a few simulation techniques are available,
which are usually restricted to specific dimensions or use some approximations. In
one-dimensional systems, the most common tool to provide dynamical results is the
time-dependent density matrix renormalization group (tDMRG) method [98–100].
Due to a matrix product state representation of the ground state, this method con-
trols the size of the Hilbert space by keeping track of only a restricted number of
degrees of freedom. This method has established itself as a reliable tool for real-
time simulations in one-dimensional lattice systems. For higher dimensions, some
computational methods rely on simulating an approximation of the original model to
effectively reduce the size of the Hilbert space [101–103]. Nonequilibrium dynamical
mean-field theory [101, 104] now is the standard technique with multiple successful
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applications [105–109]. Other methods have proven their reputation with notable
success in quantum chemistry, such as those based on a Hartree–Fock approximation
[102, 110] or density functional theory [103].

Another way to cope with the growing size of the Hilbert space is to use stochastic
methods to sample stochastic trajectories in a configuration space. Although quantum
Monte Carlo (QMC) methods were originally formulated to study ground state and
equilibrium properties, dynamical adaptations have also been put forward. These are
based on a stochastic sampling of diagrammatic expansions of many-body Green’s
functions defined along a Keldysh contour [4, 13, 111]. All these methods, however,
have been limited in accessing long-time behavior by the well-known dynamical sign
problem. Notable exceptions are the inchworm algorithm presented in [15] and real-
time full configuration interaction QMC algorithm [3]. The first technique can access
medium-to-long-time t ≲ 10 dynamical properties, due to corrections of short-time
diagrams, whereas the second can allow for simulation times up to t ≲ 40, although
at the expense of probability conservation.

5.1.2 Paradigmatic models

To test the performance of our dynamical triplet unraveling, we consider three models;
the one-dimensional XXZ Heisenberg model, the quantum Ising chain, and the two-
dimensional transverse Ising model. A phase transition in the first model between
diffusive and ballistic propagation of excitations allows us to test the ability of the
method to recognize the two regimes. With the second model, we aim at measuring
confinement of spins of opposite signs that can be observed under specific conditions.
In this context, we will show how to extract the dynamical properties in such a
confined system. The confinement mechanism is strongly motivated by the more
challenging case of quark confinement in QCD. Because our method is a stochastic
method, we are not bound by the system’s dimension, and illustrate some examples
with two-dimensional lattices of the last model.

The one-dimensional XXZ model Our first model of interest is the XXZ Heisen-
berg chain with open boundary conditions. Concretely, the model describes spin-1/2
particles on a lattice of length L whose Hamiltonian is given by

H =
L−1∑
µ=1

Jxσxµσ
x
µ+1 + Jyσyµσ

y
µ+1 + Jzσzµσ

z
µ+1, (5.6)

where σx,σz are the standard Pauli matrices and the sum runs over the spins in the
chain. For this one-dimensional chain, we choose the basis of the Hilbert as a tensor
product of the eigenstates of the σz operators, that is

|es1,...,sL⟩ = |s1⟩ ⊗ |s2⟩ ⊗ · · · ⊗ |sL⟩, (5.7)

where sµ = szµ = ±1 are the eigenvalues of the operator σzµ on lattice site µ. The
single-particle operators σz and σ± act upon the basis states according to the standard
algebra of Pauli matrices

σz| ± 1⟩ = ±| ± 1⟩, σ±| ∓ 1⟩ = | ± 1⟩, σ±| ± 1⟩ = 0. (5.8)
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The choice of the basis sets the following splitting of the Hamiltonian into a free and
an interacting part, H = H free +H int, as follows

H free = Jz
L−1∑
µ=1

σzµσ
z
µ+1, H int = Jxy

L−1∑
µ

σ+µ σ
−
µ+1 + σ−

µ σ
+
µ+1, (5.9)

with σ±
µ = (σxµ ± iσyµ)/2 and where we imposed Jx = Jy = Jxy/2. The Hamiltonian

of an open one-dimensional chain conserves the total spin, thus, the number of allowed
lattice configurations depends on the initial state. Unless stated otherwise, for one-
dimensional systems, we consider the initial state

ρini = |ini⟩⟨ini|, (5.10)

with

|ini⟩ =
L/2⊗
µ=1

| + 1⟩µ
L⊗

µ=L/2+1
| − 1⟩µ. (5.11)

If the state (5.10) is considered, the number of configurations is maximized, that is

# lattice config. ∼
(
L
L/2

)
. (5.12)

This initial state is introduced to study the dynamical behavior of spin excitations
following an instantaneous quench. For Jz < Jxy, these excitations travel across the
chain ballistically, whereas for Jz > Jxy, propagation is slowed down by the strong
Jz field. The transition between the two regimes can be examined by considering the
s-evolution of the magnetization profile given by the correlation function

C
σz

µ
s = tr(σzµρ̃s) ≡ ⟨σzµ⟩s. (5.13)

The quantum Ising chain A ferromagnetic quantum Ising chain of length L
coupled to the transverse hx and longitudinal hz magnetic fields displays confinement
of pairs of spin with opposite signs. Confining interactions have the peculiar property
that two opposite charges are connected by a flux tube, or string, whose energy
increases linearly with separation [112]. Beyond a critical separation, the string can
break, creating new particle-antiparticle pairs. This breaking is energetically more
favorable because the energy in the string is equal to the mass of the particle pair.
This mechanism is known as string breaking and is the topic of many recent studies
[113–115]. The Hamiltonian of such a system is described by

H = −J
L−1∑
µ=1

σzµσ
z
µ+1 − hz

L∑
µ=1

σzµ − hx
L∑
µ=1

σxµ, (5.14)

where σx,σz are the standard Pauli matrices and the sum runs over the spins in the
chain. To study the confinement, we choose the same basis as for the XXZ Heisenberg
chain, that is (5.7). This implies the following splitting of the Hamiltonian into a free
part H free that is exactly solvable and an interacting part H int,

H free = −J
L−1∑
µ=1

σzµσ
z
µ+1 − hz

L∑
µ=1

σzµ, H int = −hx
L∑
µ=1

σ+µ + σ−
µ , (5.15)
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with σxµ = σ+µ + σ−
µ . This model has two phases with an ordered one for J > hx

and the transition occurring at J = hx. In the ordered phase, the ground state
is degenerate due to a spin symmetry breaking. These degenerate ground states
correspond to domain walls of various lengths, which are maximized for hx = hz = 0.
In this limit, the ground state is twofold degenerate |ψu =

⊗L
µ=1 | ↑⟩µ and |ψd⟩ =⊗L

µ=1 | ↓⟩µ. If we enable the longitudinal magnetic field hz, an energy gap is created
between the two ground states, due to an increase of energy of the state with the
spins aligned with the magnetic field.

As opposed to the Heisenberg Hamiltonian, the total spin is not conserved during
the evolution, due to the spin-flip operators in the interacting Ising Hamiltonian. The
allowed lattice configurations is hence not restricted to a constant number of spin up
or down, which implies that the number of these configurations given by

# lattice config. = 2L. (5.16)

Two-dimensional Ising model In the presence of a transverse field hx, the Hamil-
tonian of a two-dimensional Ising model of size L×L reads

H = −J
∑
⟨µ,ν⟩

σzµσ
z
ν − hx

L2∑
µ=1

σxµ, (5.17)

where ⟨µ, ν⟩ denotes the sum over the nearest neighbors. Similarly to the one-
dimensional counterpart, this model displays a quantum phase transition from a ferro-
magnetic to a paramagnetic state with the critical field value being hx = hc = 3.044J
[116]. Here, we are mainly interested in the average transverse magnetization

X =
1
L2

∑
µ

σxµ. (5.18)

As with many Hamiltonians we encountered, the choice of the basis is neither unique
nor obvious. One choice would be the same as above,

|esz
1,...,sz

L2
⟩ = |sz1⟩ ⊗ |sz2⟩ ⊗ · · · ⊗ |szL2⟩, (5.19)

where szµ = ±1 are the eigenvalues of the operator σzµ on lattice site µ. The interacting
Hamiltonian should be written then with the help of the relations σx = σ+ + σ−.
The other choice is to use the σx eigenbasis,

|esx
1 ,...,sx

L2
⟩ = |sx1⟩ ⊗ |sx2⟩ ⊗ · · · ⊗ |sxL2⟩, (5.20)

where sxµ = ±1 are the eigenvalues of the operator σxµ on lattice site µ and to use
σz = σ+ + σ−. Because the algorithm is the most effective in the weak coupling
regime, the choice of the basis, the basis in σz or σx, makes simulations easier for
the regimes J ≫ hx or J ≪ hx, respectively. The efficiency of a basis choice depends
also on the number of terms in the interacting Hamiltonian due to the stochastic
application of the interaction. If the Hamiltonian has a lot of terms, more samples
are needed to estimate the averages, and the simulations take longer. The first basis
has L2 terms, whereas in the second basis, contains 2L2 terms, however, the number
of lattice configurations is twice as low, that is

# lattice config. = 2L−1. (5.21)



56 Chapter 5. Real-time dynamics

More about this choice of basis can be found in Sec. 5.5.

5.2 The algorithm
Now that the basic theoretical ingredients have been introduced, we examine closely
the algorithm reproducing the dynamics generated by the magical formula. After
introducing the general structure, we explain all the steps and algorithmic features in
details. In the second part, we make some remarks on how to improve the efficiency
and discuss the parallelism and complexity of the method.

5.2.1 General strategy

Our algorithm is a dynamical variation of the fixed-point method introduced in Chap.
4, of which the overall algorithmic structure is preserved. This structure consists of a
core part, called the main loop, which aims at reproducing the application of the prop-
agator (3.1) and whose application is iterated on an ensemble of triplets until a stable
solution emerges. Two distinct steps form the main loop, the interaction and the free
evolution, representing the application of the super-operators (1 + Lint

r ) and rRfree
s+r

respectively. In order to implement these two steps, the algorithm considers the evo-
lution of an ensemble of triplets trajectories in the Hilbert space {(w(n)

m , i(n)m , j(n)m )}n,
where w(n)

m is the ensemble weight at iteration m (see Sec. 4.2.3) and i ≡ |i⟩, j ≡ |j⟩
are the eigenstates of the free Hamiltonian. Note that here the superscript n refers
to the index in the triplet ensemble. Formally, these triplets are formed by particular
realizations of the stochastic processes |Φm⟩, |Ψm⟩ described in Sec. 3.1. During this
evolution, the triplets repeatedly experience stochastic jumps at a rate r and continu-
ous weight updates according to the free von Neumann equation. The jumps account
for the interaction step, whereas the weight update corresponds to the solution of the
free von Neumann equation. Due to the choice basis with which the triplets are ex-
pressed, this free contribution is exactly solvable. At iteration m, the mth summand
in the magical formula, ρ̃m,s = sE[cm|Φm⟩⟨Ψm|], is recovered in average by

ρ̃m,s ≈ s
∑
n

b w(n)
m |i(n)m ⟩⟨j(n)m |, (5.22)

with b the importance sampling bias. In order to have an accurate measure of the
number of random jumps, we introduce the triplet unit of weight wu. We use these
parameters to define, at iteration m, the triplet population Pm roughly as the total
number of triplets with unit of weight wu, i.e.

Pm =
∑
n

 |w(n)
m |
wu

 , (5.23)

with ⌈·⌉ the ceiling function. As described below, the unit of weight wu also fixes the
initial triplet population of the statistical ensemble

Typically, correlation functions of the form of Eq. (5.5) are estimated by a pro-
cedure involving an initialization, an iteration on the main loop, and a computation
of correlation functions. The initialization begins by setting the triplets ensemble to
the initial state ρ0, e.g. Eq. (5.10). The normalization of the density matrix with
the parameter wu uniquely defines the initial population. The initial triplets with
weight w smaller in absolute value than wu are rounded to sign(w)wu with probabil-
ity |w|/wu or removed from the simulation. The initialization is then completed by
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the application of a free evolution step to the initial density matrix ρ0. The iteration
on the main loop involves M trunc applications of the interaction and free evolution
steps, with the cutoff M trunc being chosen prior to the simulation. At the end of each
loop m ≤ M trunc, the following quantity is calculated and stored,

tr(ABρ̃m,s) ≈ s
∑
n

b w(n)(AB)i(n)j(n) (5.24)

with (AB)i(n)j(n) = ⟨i(n)|AB|j(n)⟩. Once the iteration over the main loop is finished,
the correlation function CABs is calculated by summing over the contribution from all
loops, that is

CABs =
Mtrunc∑
m=1

tr(ABρ̃m,s). (5.25)

To be coherent with the terminology of the previous chapter, we call this three-stage
procedure an independent simulation. We need to perform multiple independent
simulations to estimate the statistical errors.

Deadweight approximation The dynamical sign problem manifests itself at in-
termediate times as numerical instabilities due to the fast oscillating exponentials. To
cope with the dynamical sign problem, we need to prevent statistically unimportant
triplets to contribute to the evolution, an idea on which the deadweight approximation
is based. To identify statistically irrelevant triplets, we introduce a threshold udw > 0
under which all triplets with a weight smaller in absolute value are not allowed to
spawn. However, because the free evolution is performed exactly, it does not worsen
the dynamical sign problem, hence all the triplets below the threshold are still allowed
to evolve freely. The triplets under this threshold are called inactive as opposed to
active. We can interpret these inactive triplets as an effective environment that is
needed in order to ensure the ergodicity in the exploration of the Hilbert space.

Compression and decompression Prior to the execution of both the spawning
step and the free evolution, we perform a modification of the ensemble to improve
the statistics without influencing the statistical averages. A prespawning decompres-
sion splits each single triplet (w, i, j) into child triplets of triplets with weight wu in
absolute value (sign(w)wu, i, j) and a rest triplet with weight wr = sgn(w)(|w/wu| −
⌊|w/wu|⌋) (⌊·⌋ is the floor function). The rest triplet is removed from the simulation
with probability 1 − |wr| or its weight is updated to sign(w)wu. A compression is
applied on a decompressed ensemble and forms classes of triplets according to the
pair (i, j). The representative of each class is then replaced by a single triplet with
weight being the sum of all the weights in the class.

5.2.2 The main loop

We now discuss in detail the main loop of our algorithm introduced in [53] and
depicted in Fig. 5.1. It evolves the ensemble of triplets {w(n)

m , i(n)m , j(n)m }n from iteration
m to m+ 1. To lighten the notation in this subsection, we don’t print the subscript m.
The loop is separated into two main steps, the spawnings reproducing the application
of the superoperator (1 + Lint

r ) and the free evolution reproducing the rRfree
s+r. Note

that we included the use of the importance sampling procedure described in Sec.
4.2.3.
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(w, i, j)

active triplet?

decompress

apply L
int

r

compress

no yes

. . .

. . .

apply R
free
s+r

Figure 5.1: Flowchart of the dynamical triplet unraveling algorithm
describing the application of the superoperator Lint/r. The orange
diamond represents the deadweight approximation.

Spawnings

1. Preparation to interaction.

(a) Deactivation of unimportant triplets (w(n), i(n), j(n)). If |w(n)| < udw, the
triplet becomes inactive. Inactive triplets do not experience any collision
and therefore only evolve freely.

(b) Prespawning decompression. The active triplets are split into Nc =
⌊|w(n)|/wu⌋ child triplets with weight w(n)/Nc.

2. Spawning. For each child triplet, a side is randomly chosen (quantum mechan-
ically, either i(n) or j(n)), and a new state k is selected with equal probability
among the nt possible spawning transitions. For instance, if i(n) is chosen, the
following triplet is added to the ensemble

(i
hint
i(n)k

r

w(n)

Nc
2ntTb, k, j(n)), (5.26)

where Tb = eκ(n
2
ij−n2

kj) is the transition bias, with nij the dynamic norm. If j(n)
is selected, an equivalent triplet is spawned.

Free evolution

1. Full compression. A class containing all the triplets associated to a specific
pair (i(n), j(n)) is replaced by a single triplet whose weight is the sum of all the
weights in the class.
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2. Weight update. For each class (w(n), i(n), j(n)), a weight update is performed,
accounting for the free evolution

w(n) 7→ r

s+ r+ i(hfree
i(n)i(n) − hfree

j(n)j(n))
w(n). (5.27)

The bias introduced by the importance sampling and realized through the spring
constant κ, modifies the weights of the triplets which do not correspond to the physical
weights used in averages. Those physical weights can be recovered by the expression
c = bw, which implies that for an operator A, the expectation values read

tr (Aρ̃) ≈
∑
n

w(n)eκn
2
ijAi(n)j(n) , (5.28)

with Ai(n)j(n) = ⟨i(n)|A|j(n)⟩ and where ρ̃ is represented by the ensemble {(w(n),
i(n), j(n))}n via Eq. (5.22). As for the steady-state case, the bias b corresponds to
b(nij) = exp(κn2

ij).

5.2.3 Evolution in Laplace domain

Typically, in the time domain, the evolution follows a pattern where the estimate
at time t serves as an input for the estimate at time t+ ∆t, and the time range is
constructed as the simulation evolves. Conversely, in the Laplace domain, each s
value is the result of an integration over the whole time domain, which means that
the efficiency of the method could be massively reduced if one is interested in a dense
range of s values to reconstruct ρ̃s. Due to the parametric nature of the variable s
in the simulations, one would naively need to perform an independent simulation for
every value of s to obtain its dependence on the correlation function CABs . However,
by noting that the s value appears only in the free part of the propagator, we can
build a procedure where the random spawnings are performed by a single instance
of the vectors (i(n), j(n)) and the weights for the whole s range are associated to this
single instance. The major part of the execution time is spent on the spawnings,
which means that most of the computational time could be spared when producing
data points for the whole s range if a single instance of the triplet vectors performs
the spawnings.

To be more concrete, let us consider two triplets (cm,s1 , |ϕm,s1⟩, |ψm,s1⟩) and (cm,s2 ,
|ϕm,s2⟩, |ψm,s2⟩), which have the exact same trajectory in the Hilbert space but for two
different values s1 ̸= s2. The only difference between the two is the application of the
free evolution Rfree

s+r, but they still produce two independent values of the correlation
function CABs . The idea is to avoid this redundancy by evolving a single instance of
the pair

(|ϕm⟩, |ψm⟩) = (|ϕm,s1⟩, |ψm,s1⟩) = (|ϕm,s2⟩, |ψm,s2⟩), ∀m (5.29)

for the quantum jumps and associating it to both cm,s1 and cm,s2 , which are evolved
freely separately according to Rfree

s1+r and Rfree
s2+r, respectively. This situation is de-

picted in Fig. 5.2. More generally, prior to the simulation we select a range of values
s1 < s2 < · · · < sNs and associate all the corresponding weights w0,s1 ,w0,s2 , . . . ,w0,sNs

to a single pair (|ϕ0⟩, |ψ0⟩) on which the jumps are performed.
In practice, we evolve an ensemble of (Ns + 2)-tuples {(w(n)

m,s1 ,w(n)
m,s2 , . . . ,w(n)

m,sNs
,

i
(n)
m , j(n)m )}n, where each (Ns + 2)-tuple represents Ns triplets each with a different
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Figure 5.2: Example of the evolution of realizations of two triplets
(cm,s1 , |ϕm,s1⟩, |ψm,s1⟩) (blue) and (cm,s2 , |ϕm,s2⟩, |ψm,s2⟩) (green)
having the exact same trajectory in the Hilbert space H but for two
different values s1 ̸= s2. The dashed lines represent the spawnings
and the solid line the free evolution. Note that only the free evolution
differs between the two triplets.

value of s. In this context, the spawnings rule Eq. (5.26) can be updated to

(v(n)m,s1 , v(n)m,s2 , . . . , v(n)m,sNs
, k(n)m , j(n)m ), v(n)m,si

= i
hint
i(n)k

r

w
(n)
m,si

Nc
2ntTb, (5.30)

The equivalent change for the free evolution (5.27) reads

w(n)
m,si

7→ r

s+ r+ i(hfree
i(n)i(n) − hfree

j(n)j(n))
w(n)
m,si

, ∀si = s1, s2, . . . , sNs . (5.31)

5.2.4 Efficiency and complexity

Because the real-time algorithm has essentially the same structure as the iterative
scheme, we expect the complexity and the parallel behavior to have a similar scaling.
Therefore, if the maximum triplet population is denoted with Pmax, we expect the
algorithm complexity to be linear in the population, i.e. O(Pmax/smin). The inverse
linear dependence on the s is due to larges times tmax ∼ 1/smin needing longer simu-
lations. See Sec. 4.4 for a more detailed discussion about the population dependence.
Concerning the parallel implementation of the algorithm, the same general parallel
flow is constructed by distributing the triplets in the ensemble such that each thread
has almost the same amount of weights, performing the spawnings locally and syn-
chronizing them to send the spawned triplets to the corresponding thread to perform
the annihilation locally. The speed-up is very similar to the one shown in Fig. 4.17. A
notable difference in the memory requirement involves the simultaneous simulations
for multiple s values. If we are interested in the range of values s1, s2, . . . , sNs , each
triplet has Ns weights, each corresponding to a single value of s.

Because the sign problem becomes more severe for large times, it is difficult to
produce a chain of correlated samples and estimate the error with a block analysis.
To estimate the error, we have to produce independent simulations. Because there
is no sampling stage in this variation of the algorithm, the rate parameter r simply
determines the convergence speed. A lower rate r implies a fast convergence.
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5.3 Population control
The population was defined earlier as the total number of triplets with a weight
larger than a unit of weight wu (see Eq. (5.23)). It reflects the number of spawning
attempts performed at each iteration over the main loop. Because each triplet spawns
a number of child triplets corresponding to its weight, we need to find efficient ways
to reduce population growth. Unlike with the steady state, the population cannot be
controlled by a shift because of the nonlinearity it would introduce. The effect of the
nonlinearity was not problematic in the steady-state framework because we restricted
ourselves to the converged value and not the convergence stage itself. In the current
context, however, every step of evolution is needed to obtain the correct final result.
We describe here the various tools at our disposal to control the population.

We start by examining in which regime the population control is the most challeng-
ing and conclude that the dynamical sign problem causes the population to diverge
especially for strong interactions and large times. We then study how to slow down
the exponential increase of the population via the parameters r, wu, and κ. Finally,
we observe that the population control issue can be resolved with the deadweight
approximation at the expense of introducing a small systematic error.

5.3.1 Dynamical sign problem

Before developing tools to control the population, we want to understand in which
regime its growth is problematic and to what extent. Because the exploration of the
Hilbert space is performed via the spawnings, we expect the interaction strength to
be a parameter on which the population dynamics is highly dependent. Another im-
portant parameter is the smin value, due to its similar role to the shift in the previous
chapter from a purely numerical perspective. With the correspondence 1/smin ∼ tmax,
we can assume that the population is more difficult to control for small s values be-
cause the errors propagate and accumulate with increasing time.

To understand how the population dynamics depends on these physical parame-
ters, we consider the L = 12 quantum Ising chain for J = 1, hz = 0.6 with r = 30,
κ = 0, and wu = 10−5. Figure 5.3 illustrates the population dynamics for various s
values and various interaction strengths hx. As expected, the population grows faster
for strong interactions which comes from the fact that the exploration of the Hilbert
space is more significant for spawnings with a large weight. This is reflected in the
difference between the two interaction strengths; for hx = 0.2, the random jumps
have larger weights according to the jump rule (5.26) and thus, a higher impact on
the population dynamics. The s value has a similar numerical effect to the shift, that
is the smaller the s the larger the population growth. The critical value scr above
which the population decreases depends of course on the interaction strength, which
in turn is connected to the sign problem. Any s value above this threshold does not
produce any instabilities, whereas below, for s small, the sign problem occurs and
the population diverges. Similarly to the shift explanation, the cancellation rate is
too small for the solution of the simulation to emerge when s is below the critical
value. Some triplets erroneously remain in the simulation and dangerously spawn
new triplets in the next iteration. The effect of noncancellation becomes exponen-
tially stronger as the algorithm tries to compensate for this excess weight, eventually
leading to a diverging population.
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Figure 5.3: Upper panels: Population dynamics for the quantum
Ising chain with J = 1, hz = 0.6, and various s values. The left column
shows results for hx = 0.2 whereas the right column for hx = 0.15. The
strength of the interaction modifies the population dynamics, whose
growth is heavily dependent on the interaction strength hx. Lower
panels: Corresponding convergence to the mean magnetization C

σz
L/2

s

at the center of the chain.

5.3.2 Numerical parameters

As we just saw, the population naturally decreases for large s values, which cor-
responds to small-to-medium times. Below a critical s value, the dynamical sign
problem is severe and causes the population to increase exponentially. Because we
want to compute the dynamical effects of quantum systems at large times that is
smin ≲ 10−1, we need to understand how we can slow down the population growth
by tuning the numerical parameters r, wu, and κ to obtain results at large times.
The role of the three parameter is illustrated in Fig. 5.4, in the case of the L = 12
quantum Ising chain for J = 1, hz = 0.6, hx = 0.2 and s = 1 with various choices
for the numerical parameters. As supported by the upper panel, a smaller r value
is adequate to weaken the effect of the sign problem on the population growth. The
parameter r affects the population dynamics exclusively during the weight update of
the free evolution. Because the free evolution resolves continuous processes of a time
scale 1/r, faster oscillations are taken into account when r increases. In analogy to
the above discussion about the small s values, the severity of the sign problem grows
stronger with smaller time scales (larger r). Note however that a very low parameter r
might induce some convergence issues because the scheme gets closer to perturbation
theory and the magical formula might not be able to recast perturbative expansions
into a convergent sum. As illustrated in the middle panel, the dependence between
the population dynamics and the unit of weight is linear with some secondary ef-
fects later during the simulation. The unit of weight wu measures a minimal weight
for which the triplets (w, i, j) are considered as a single entity. Below this critical
value |w| < wu, the triplets undergo a survival test, which removes the unimportant
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Figure 5.4: Population dynamics for the quantum Ising chain with
J = 1,hz = 0.6, and hx = 0.3 when varying the numerical parameters
of the simulation r (upper panel), wu (middle panel) and κ (lower
panel). Unless stated otherwise, the values are r = 30, wu = 10−5,
and κ = 0.

triplets from the simulation. Intuitively, a smaller unit of weight induces a larger
population and vice versa. Similar to the steady-state method, the importance sam-
pling was introduced to reduce the statistical variance of the final result by restricting
the exploration of the Hilbert space to only regions that participate to the statistical
averages. The choice of the importance sampling parameter κ, the spring constant,
has a direct impact on the population. In fact, the main effect of the importance
sampling is to reduce the population of triplets with a large dynamical norm, leading
to a lower total population as illustrated by the lower panel.

Nevertheless, if the spring constant is chosen too large, we observe a gap between
our estimation of the observable and its exact value, originating from the ergodicity
breaking that was explained in details in Sec. 4.3.3. Figure 5.5 illustrates this gap
for the mean magnetization C

σz
L/2

s in the L = 8 XXZ Heisenberg chain for Jz =
1.5, Jxy = 1 and s = 1/10. The error bars were calculated over 30 independent
simulations with r = 30, wu = 10−4, udw = 1.125 wu enabled at m/r = 6.

5.3.3 Deadweight approximation

To find a way to access large-times dynamical properties, we need to restrain the
growth of the population and eliminate the instabilities. This task is carried out by
the deadweight approximation that helps stabilize the simulations. The idea behind
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Figure 5.5: Estimation of the magnetization C
σz

L/2
s as a function of

the spring constant κ for the XXZ Heisenberg chain with Jz = 1.5,
Jxy = 1, and s = 1/10.

the deadweight approximation is to forbid all triplets with a weight smaller than
udw in absolute value to spawn, while still allowing them to evolve freely. This way,
the statistically unimportant triplets either stay inactive until they reach the critical
value or die if no jumps reinforce their weight. This approximation introduces a
systematic error that increases with a larger threshold udw. The following procedure
is introduced to minimize these deviations but still allow the population to be under
control; the threshold is set to udw = 0 at the beginning of the simulation, and
when the desired population is reached, the discrimination of unimportant triplet is
switched on with a nonzero value udw ̸= 0. Thus, the systematic error is optimized
to the computational capabilities because the systematic errors start to accumulate
only when the population reaches its maximum value. If the latter population is large
enough, we expect that the approximate contribution to the magical formula is only
a marginal portion of the final result.

To analyze this systematic error, as well as the role of the population control
parameter udw, we consider the L = 12 XXZ Heisenberg chain for Jxy = 1, Jz = 0.9
and smin = 1/20 with r = 30, κ = 2 and wu = 10−3. Figure 5.6 illustrates the
population dynamics and the convergence to the mean magnetization at the center
of the chain, C

σz
L/2

s = tr(σzL/2ρ̃s). The vertical lines in the upper panel represent the
iteration at which the approximation was enabled. The solid vertical line corresponds
to m/r = 8 and is associated to the solid lines, whereas the dot-dashed vertical line
situated at m/r = 4 is associated to the dot-dashed purple curve. Obviously, the
deadweight approximation slows down the population growth by removing unimpor-
tant triplets. The rate of the population growth after enabling the approximation
depends on the strength of the threshold udw, that is the stronger the threshold the
slower the increase. If udw is too large, the population can possibly decrease and the
triplets would eventually all be killed. This scenario has to be avoided because the
contributions that are estimated with a small number of triplets are more likely to
have non-negligible systematic errors. The lower panel illustrates the convergence to
the mean magnetization defined by Eq. (5.13) for various thresholds udw. The estima-
tion of magnetization at iteration m is computed with the density matrix

∑m
l=1 ρ̃m,s,

where ρ̃m,s was defined in Eq. (5.22) and the solution ρ̃s is recovered for m → ∞.
The exact solution is represented by the dashed black line, whereas the errors from
the stochastic simulations are depicted by the shaded areas. The errors were cal-
culated over 30 independent simulations and contain both the statistical errors and
the systematic ones. We do not observe any deviation from the exact result that
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Figure 5.6: Upper panel: Population dynamics for the XXZ Heisen-
berg model with smin = 1/20 and various values of the deadweight
udw. The approximation was enabled at m/r = 8 for the solid lines
and at m/r = 4 for the purple line. Lower panel: Corresponding con-
vergence to the mean magnetization C

σz
L/2

s at the center of the chain.
The exact result is depicted in the black dashed line. The systematic
error introduces by the deadweight approximation is not visible.

cannot be explained by the statistical errors. The systematic errors introduced by
the deadweight approximation are therefore negligible.

To understand the interplay between the importance sampling and the deadweight
approximation, we introduce Fig. 5.7, illustrating a udw analysis of the L = 10 XXZ
Heisenberg model for various κ with Jz = 0.9, Jxy = 1, smin = 1/10, and r = 30.
The deadweight approximation was enabled at m/r = 4. The sign problem and
the related divergences limited our choice of the minimum deadweight udw. The
dependence between the spring constant and the deadweight has to be tuned in order
to obtain optimal convergent simulations. Generally, improving the efficiency of the
simulations is a trade-off between the parameters κ and udw. If the spring constant
is large, the dead weight has to be chosen small, and vice versa. As an example,
if the observable is sampled by triplets away from the diagonal, it might be more
efficient to select a smaller spring constant κ and a larger deadweight udw to increase
the number of triplets with a high dynamic norm and hence reduce the variance. In
optimizing the parameters, one should start from large values and decrease them until
the final result becomes constant within the statistical error. If the systematic errors
become non-negligible, one can still perform an analysis of the udw dependence and
extrapolate the result for vanishing udw.

5.4 Inverse Laplace transformation
So far, all the quantities have been computed in the Laplace domain and the magical
formula has provided results in the s domain. Because the Laplace transform mixes
all the time scales, it would be preferable to extract the dynamical properties of our
quantum systems directly in the time domain. For that, we have two choices, the
first is to develop a similar algorithm in the time domain, i.e. an algorithm that
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Figure 5.7: Estimations of the magnetization C
σz

L/2
s for various dead

weights udw and spring constants κ. The model is the L = 10 XXZ
Heisenberg chain, with Jz = 0.9, Jxy = 1, smin = 1/10, and r = 30.
The errors were calculated over 100 independent simulations.

reproduces the superoperator in Eq. (2.31). The second is to transform the result
in the Laplace domain back into the time domain using a numerical inverse Laplace
transform. As we already saw in Sec. 2.2.3, the first solution is problematic, due to
the convolutions in the expression of the evolution superoperator and the inefficiency
in the weak coupling regime. The second solution is preferable and implies numerical
approximations of the inverse Laplace transform. These inverse methods are usually
stable only for short times and need a closed form of the function to invert. The
reason for these instabilities originates from the definition of the Laplace transform
that damps the signal exponentially for large times (see definition of the Laplace
transform (2.33)). Thus, the inverse Laplace transform has to increase the signal
exponentially, which converts small random noise into major instabilities [117, 118].
Surprisingly, the Zakian method to invert the Laplace transform is less sensitive to
these instabilities and provides accurate results for medium times.

In this section, we first introduce three numerical methods to invert a signal in
the s domain. We then define a procedure to apply these methods to the actual data
obtained from a simulation with the magical formula and test these methods with
concrete data. Finally, we briefly discuss how the same dynamical properties can
be extracted directly in the Laplace domain and conclude that the inverse Laplace
transform should be used as a tool to get an intuition about the dynamics of the
system.

5.4.1 Numerical methods

As we just mentioned, the inverse Laplace transform is very sensitive to small fluc-
tuations in the signal because these increase exponentially in the inverse procedure.
It is preferable to apply the inverse Laplace transform to systems characterized by
damped oscillations or out-of-equilibrium steady states where the signal oscillates
with a typical frequency ω > smin. In the worst case, we can expect the instabili-
ties to become relevant only after the first oscillation. Conversely, time signals that
increase in amplitude with time are completely out of reach by the inverse methods
because of the instabilities aforementioned.

The general strategy to inverse Laplace transform a collection of points in the s
domain is to obtain an analytic expression of a fit, to extrapolate over the whole s
range, and finally to use the expression for this function as an input for the numerical
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inverse methods. In the literature, multiple numerical methods can be found to
invert the Laplace transform. There exists a few that can be used for a large variety
of functions but they are usually computationally expensive and are defined in the
complex domain, which involves extrapolation of the data in the complex plane.
Here, we show that the Zakian method is best suited for the type of functions we
want to invert by comparing it to the Gaver-Stehfest method and the fast Fourier
transform (see [119, 120] for reviews on inverse numerical methods). The Zakian
method is described in details in App. B.1. It is fast to implement and has a single
parameter n to adjust. This parameter denotes a truncation in the infinite series used
to approximate the time function. For our simulations, we used n = 5.

Figure 5.8 illustrates the result of a numerical inverse Laplace transform using
Zakian, Gaver-Stehfest, and fast Fourier transform methods on various signals. The
first signal f1(t) = 0.8+ 0.2 cos(t) cos(t/4) approximates a typical scenario with two
oscillations of similar frequencies. The second signal f2(t) = (0.8 + 0.2 cos(t))e−t/4

reproduces a damped oscillation and the last signal f3(t) comes from simulation data
from the mean magnetization C

σz
L/2

s of a L = 8 quantum Ising chain with J = 1,
hz = 0.6, hx = 0.2 and smin = 1/10. The corresponding function in the time domain
f3(t) = ⟨σzL/2⟩t was simulated by an exact diagonalization. As shown in Fig. 5.8, the

Figure 5.8: Numerical inverse Laplace transforms of the functions
f̃1(s) (upper panel), f̃2(s) (middle panel), and f̃3(s) (lower panel)
using various methods. The functions f1(t) = 0.8+ 0.2 cos(t) cos(t/4)
and f2(t) = (0.8+ 0.2 cos(t))e−t/4 where inverted from the analytical
form in the Laplace domain. The signal f3(t) = ⟨σzL/2⟩t is the mean
magnetization at the center of the chain and was computed with exact
diagonalization for a quantum Ising chain.

Zakian method provides the best fit in all of the three test situations. Even for the
real data situation, which consists of a very slowly decaying cosine, the instabilities
occur only for t ∼ 5. The first oscillation can be measured with precision and relevant
dynamical properties can be extracted.
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5.4.2 Data fitting

In addition to the dependence on the method used, inverting a signal in the s domain
is highly sensitive to the fit and the extrapolation. Because the whole s range is
needed, this extrapolation has to be performed with caution. Noting that in the
Laplace domain, the signal usually takes the form f̃(s) = pnf

(s)/p′
nf
(s), where

pnf
(s) = α0 +α1s+ · · ·+αnf

snf is a polynomial of degree nf , we define the following
procedure to obtain a fit consistent with the signal in the time domain. First, we
assume the following form for the fit

fit ∼ s
pnf −1(s)

p′
nf
(s)

. (5.32)

Prior to any fitting, we note that a first parameter can be fixed because the limit
s → ∞ is usually known. Additionally, we can safely assume that the function
is smooth and has no poles, which implies that α′

i > 0 for any i = 1, . . . ,nf . The
procedure starts by fitting the signal with nf = 2, for which the parameters αi and α′

i

are optimized. The optimal parameters are then used as initial guesses for a fitting
with nf = 3. If the initial parameters were chosen carefully, the iterative scheme
should make the optimal parameters converge to a constant value. The iteration is
stopped when the parameters start to diverge. The upper panel of Fig. 5.9 shows a
signal in the Laplace domain together with the fits from the above procedure. The
lower panel displays the inverse Laplace transform with the Zakian method associated
with the same fits. The signal in the Laplace domain (grey crosses) was obtained

Figure 5.9: Upper panel: Fits of the mean magnetization f̃(s) ≡
C
σz

L/2
s quantum Ising chain. The fits have the form spnf −1(s)/pnf

.
The grey crosses are data from a stochastic simulation. Lower panel:
inverse Laplace transform corresponding to the fit in the upper panel.
The exact result was computed from an exact diagonalization.

from simulations of the mean magnetization C
σz

L/2
s for a L = 8 quantum Ising chain

with J = 1, hz = 0.6, hx = 0.2 and smin = 1/10. The error bars were calculated
over 30 independent simulations and the numerical parameters were r = 30, κ = 2,
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wu = 10−6 and udw = wu was enabled at m/r = 12. We notice that the results
depend strongly on the fit, which means that the signal in the time domain can be
trusted up t ∼ 5 at best, after which instabilities become important.

As a final remark, we want the reader to be aware of the careful interpretations
that can be done with results in the time domain obtained via an inverse Laplace
transform. Even though the main dynamical properties can be extracted, the final
result is strongly dependent on a lot of intermediate steps whose validity can only
be checked if the exact solution is known. To obtain accurate results of dynamical
properties such as frequencies or damping coefficients, it is preferable to compute them
directly in the Laplace domain. Appendix B.2 shows examples of how to extract these
properties from a signal in the Laplace domain. We insist that the Laplace dynamics
has to be considered as an equivalent way to compute the evolution of quantum
systems without loss of information. An educated reader certainly recognizes the
dynamical properties in a Laplace signal and knows how to extract them. Therefore,
we recommend using the inverse Laplace transform only as a guide to get an intuition
about the behavior of the quantities of interest.

5.5 Concrete calculations and examples
The insights of the previous sections allowed us to introduce an approximation that
resulted in convergent simulations for long times and to define a procedure for the
inversion of the Laplace transform. We can now focus on concrete problems whose
system size is too large to be solved by brute force. The observables we study evolve
according to the Hamiltonian Eqs. (5.6) and (5.14) that describe the XXZ Heisenberg
and the quantum Ising chains of length L, respectively. For the XXZ Heisenberg
model, we concentrate on highlighting the ability of the algorithm to measure a
phase transition in the propagation of excitations across the chain. For the quantum
Ising chain, we tune the parameters so that confinement of spins with opposite signs
can be observed by measuring dynamical quantities associated to this confined state.
Unless stated otherwise, we consider lattices of size L = 40, which is too large to be
stored in a computer. This maximum lattice size is constrained by the use of small
computational clusters to produce the results. The maximum number of triplets in
the simulations was about 106, which is only a small fraction of the typical size of the
corresponding density matrix. As an example, these matrices have 1.9 · 1022 entries
for the XXZ model and 1.2 · 1024 for the Ising model. We are able to simulate larger
systems in the Ising model mainly because the physics of confinement is local, in the
sense that the dynamics is a statistical mixture of a few similar states.

With our first concrete example, we illustrate the transition from ballistic to
suppressed propagation of spin excitations within the XXZ Heisenberg chain Eq.
(5.6) for different values of Jz. We prepare the initial density matrix in the domain
wall state (5.10), a highly excited state, where Jxy = 0, and instantaneously quench
the Hamiltonian to Jxy = 1. To follow the dynamics of the spin excitations, we
consider the magnetization profile

C
σz

µ
s = tr(σzµρ̃s), (5.33)

with µ the lattice site. Figure 5.10 illustrates the evolution of the absolute value of
the magnetization profile for Jxy = 1, smin = 1/10, in both the ballistic Jz = 0.6
(upper panel) and strongly interacting regime Jz = 1.5 (lower panel). The observables
were averaged over 100 independent simulations with r = 100, κ = 4, wu = 10−3,
and where udw = 1.5 wu was enabled at m/r = 12. The final population for each
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independent simulation was about 105 triplets. For Jz < Jxy the spin excitations

Figure 5.10: Dynamics of the absolute value of the magnetization
profile |Cσ

z
µ

s | in the Laplace domain for the XXZ Heisenberg chain
with Jxy = 1. Ballistic transport is visible in the upper panel whereas
transport is almost completely suppressed in the lower panel.

travel ballistically across the chain, independently of its length. On the contrary, for
Jz > Jxy, propagation is suppressed by the strong σz coupling which prevents the
spins to flip signs. To measure this sharp transition, we consider the Loschmidt echo,
defined in the time domain as |⟨ψ0|e−iHt|ψ0⟩|2. The echo measures the sensitivity of
a quantum evolution to perturbations by quantifying the return probability of the
initial state during the evolution. In the Laplace domain, it takes the form

L(s) = str(ρ0Rsρ0) ≡ tr(ρ0ρ̃s), (5.34)

where |ρ0⟩⟨ρ0| is the initial state. Figure 5.11 depicts the evolution of L(s) for the
L = 40 XXZ Heisenberg chain with Jxy = 1 and various Jz from the initial state
(5.10). The error bars were computed over 30 independent simulations with r = 30,
κ = 1, wu = 10−3, and where udw = 1.2 wu was enabled at m/r = 12. The final
triplet population was about 2 · 106 and the exact solution was obtained by solving
analytically for Jz = 0.

The suppression of transport around Jz = Jxy can be observed by the nonvanish-
ing probability of return in the limit s → 0. It supports the observation made in Fig.
5.10 and reproduces the results obtained for smaller systems via exact diagonalization
in [121].

Next, we study the confinement of a pair of opposite spins in the quantum Ising
chain. The confinement mechanism can be intuitively understood by remembering
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Figure 5.11: Dynamics of the Loschmidt echo L(s) in the Laplace
domain for the L = 40 XXZ Heisenberg chain with smin = 1/20,
Jxy = 1, and various strengths Jz.

that for a vanishing longitudinal field hz the ground state is degenerate due to a spin
flip symmetry and takes the form of domain walls of various sizes. If the longitudinal
field is set to hz ̸= 0, the ground state degeneracy breaks due to the energy gap
created between the spin domains. The spin domains along the field hz increase in
energy and hence the field acts as an attracting potential between the walls delimiting
a spin domain. This confinement can be observed with our algorithm by preparing the
initial state in Eq. (5.10) with no longitudinal field and instantaneously quenching
the Hamiltonian to hz ̸= 0. The initial state |ini⟩ is characterized by a spin kink
exactly in the middle of the chain. Figure 5.12 illustrates the evolution of the energy
density profile CHµ

s = tr(Hµρ̃s), in the Laplace domain with

Hµ = −Jσzµσzµ+1 − hx

2 (σxµ + σxµ+1) − hz

2 (σzµ + σzµ+1), (5.35)

with µ the lattice site for an L = 40 chain with J = 1, hx = 0.2, hz = 1.2, smin =
1/20, and starting from the initial state Eq. (5.10). The results were averaged over
30 independent simulations, with r = 30, κ = 3, wu = 4 · 10−6, and udw = 1.5 wu
enabled at m/r = 6. The absence of energy exchange and spin excitation propagation

Figure 5.12: Dynamics of the energy density profile C
Hµ
s in the

Laplace domain for the L = 40 quantum Ising chain with J = 1,
hx = 0.2, and hz = 1.2 starting from the initial state (5.10).

between the two domains can be explained by considering the mid-kink as a quasi-
particle. The motion of the kink is triggered by the quench of the longitudinal field
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hz, which gives a kinetic energy gain of order hz allowing the kink to move within the
potential. However, due to energy conservation, the kink has to bounce back, hence
creating oscillations centered around the central bond connecting L/2 and L/2 + 1.
This leads to a confinement of the central spin pair of opposite signs. The oscillations
can be measured by considering the evolution of the magnetization of the left spin of
the mid-kink’s pair, C

σz
L/2

s . These are illustrated in the upper panel of Fig. 5.13 in the
Laplace domain for a L = 20 chain with J = 1, hx = 0.2, smin = 1/10, and several
confining potentials, whereas the lower panel depicts the logarithmic derivative of the
above signal. The error bars were calculated over 30 independent simulations with
r = 30, wu = 4 · 10−5. The deadweight approximation was enabled at m/r = 6
with udw = 1.6 wu, 1.5 wu, 1.8 wu for hz = 1.2, 0.6, 0.3, respectively. The choice of
specific thresholds udw is due to the optimization procedure. Note that as described

Figure 5.13: Upper panel: Dynamics of the magnetization of the
spin on the left of the central pair C

σz
L/2

s in the Laplace domain for
the L = 20 quantum Ising chain with J = 1, hx = 0.2, and various hz
strengths. Lower panel: Logarithmic derivative of the magnetization
C
σz

L/2
s .

in App. B.2, the oscillations take the form of Lorezian curves in the Laplace domain
and the frequency of the confining oscillations can be extracted as the inflection point
on these curves. The derivatives were calculated using a cubic spline fitting, and the
oscillations frequency is represented by the location of the peak. Additionally, in the
upper figure, we can extract the oscillation amplitudes from the distance between
the values C

σz
L/2

s=0 and C
σz

L/2
s=∞. We observe that these amplitudes and frequencies scale

as ∼ hx/hz and ∼ hz, respectively, which is in agreement with the quasi-particle
interpretation of the kink dynamics and with the findings reported in [122].

We compute these oscillations in the time domain using the Zakian method and
the fitting procedure described in Sec. 5.4. Figure 5.14 displays the time evolution
of the mean magnetization ⟨σzL/2⟩t obtained with the Zakian method and a fit of
order 5 in each case. These results further support the interpretation made in the
Laplace domain, namely that the frequency of the oscillations depends linearly on the
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Figure 5.14: Time evolution of the magnetization ⟨σzL/2⟩t calculated
from an inverse Laplace transform from the data of Fig. 5.13 using the
Zakian method.

longitudinal field hz and the amplitude is inversely proportional to the field amplitude
itself. As illustrated in Fig. 5.12, the oscillations are localized around the central bond.
The instabilities and the damping that are visible around t ∼ 8 are due to the interplay
between the precision of the fit and the inverse numerical methods. Note that the
inverse Laplace transform was used as a confirmation that our interpretation of the
data in the s range was correct but not directly as a tool to extract the dynamical
properties. With this example we want to show that it is possible to use the s domain
to compute the dynamical quantities of interest, emphasizing the non-necessity of the
time signal and the power of the Laplace transform.

Regardless of the dimensionality of the system, the main limitations of our ap-
proach are the size of the Hilbert space and the magnitude of the coupling between
the free and interactive parts. The first limit can be compensated by higher compu-
tational resources, while the second is inherent to the form of the evolution super-
operators and poses a severe restriction on strongly correlated systems. To confirm
the first claim, we briefly show how our method can simulate quantum dynamics
in higher dimensions by studying the magnetization dynamics of a two-dimensional
L× L square Ising model where the Hamiltonian is given by (5.17). To study the
reversible dynamics, we quench the system from the ground state of the Hamiltonian
without transverse field hx = 0 to nonvanishing field values within the same phase.
The initial state reads

ρ0 = | ↑ . . . ↑⟩⟨↑ . . . ↑ |. (5.36)

Because the many-body phase remains unchanged, we expect the quench to create
oscillations of small amplitude that will diffuse in the lattice, leading to damping.
Figure 5.15 illustrates the time evolution of X defined in Eq. (5.18) for a 5 × 5 Ising
model with J = 1 and different field quenches. The data were simulated in the Laplace
domain for s = 1/2, r = 30 and wu = 10−4. For the fields hx = 0.25 and hx = 0.5,
the biases were κ = 0.2, udw = 1.2 wu and κ = 0.5, udw = 1.6 wu, respectively. The
deadweight approximation was activated at m/r = 4. The procedure described in
Sec. 5.4 was applied to transform the signal in the time domain. These results are in
very good agreement with those reported in [116]. The number of triplets was about
2 · 105 while the density matrix has about 1.1 · 1015 elements. This figure shows a two-
dimensional example where the simulations were performed in the Laplace domain
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Figure 5.15: Time evolution of the total transverse magnetization
X for the square Ising model 5 × 5 with J = 1 and various strengths
hx from the state Eq. (5.36).

and inverted with the Zakian method.
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6 Summary and outlook

Dissipative quantum field theory is an alternate description of fundamental particle
physics with great perspectives in both its theoretical formulation with insights into
a more fundamental description of gravity [123, 124] and its numerical applications
[53, 88]. Some of these numerical applications were considered in this work to com-
pute unknown ground states of many-body Hamiltonians, and calculate properties
of multi-dimensional reversible quantum systems on long time scales. We addressed
the major common numerical issues encountered in similar methods and also laid the
algorithmic foundations of future quantum chromodynamics simulations. To facili-
tate discussion of future perspectives, a concise summary of the previous chapters is
presented here. This summary is an effort to condense in a self-consistent way the
material presented in this dissertation by arguing with our fundamental ideas. It is
followed by a discussion on the short- and long-term perspectives of triplet unraveling
with applications to both low- and high-energy physics.

The fundamental particles were described in terms of a Hamiltonian H whose
dynamics is dictated by the linear quantum master equation

d

dt
∆ρt = L∆ρt ≡ −i[H, ∆ρt] +

∑
k∈Kd

γk
(
2ak∆ρta

†
k − {a†

kak, ∆ρt}
)

, (6.1)

describing a ϕ4 theory for ∆ρt = ρt −ρeq, with ρt the density matrix of the system and
γk dissipative coefficients. We expressed the evolution superoperator in the Laplace
domain to avoid convolutions and to improve the efficiency of the method in the weak
coupling regime. Some short mathematical developments led to the fundamental form
of the evolution superoperator in the Laplace domain, the magical formula,

Rs =
∞∑
m=0

rm
[
Rfree
s+r

(
1 + Lint

r

)]m
Rfree
s+r, (6.2)

with r > 0 a rate. The Hamiltonian was separated into a free part correspond-
ing to the kinetic energy and a collision part accounting for the interactions be-
tween fundamental particles. The superoperators were defined as L = Lfree + Lint,
Lintρ = −i[H int, ρ], and Rs = 1

s−L . It was argued that due to the use of the Fock
basis, the free part is exactly solvable and the collision part generates transitions
between Fock states at rate r. We noted that together, they form a natural setting
for piecewise deterministic processes. Stochastic unraveling provided an ideal frame-
work to develop such piecewise deterministic processes and served as an inspiration
for stochastic simulations. However, a major difference with the usual unraveling is
that the dissipation is contained in the free part and is treated exactly whereas the
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interactions are incorporated into the random jumps. We defined the quantities of
interest as the correlation functions of the following type for general operators A, B,

s tr(BRs(Aρeq)) = s tr(Bρeq)tr(Aρeq) + tr(BRs∆ρ̃s), (6.3)

where ∆ρ̃s = s(A− tr(Aρeq))ρeq is the Laplace counterpart of ∆ρt.
The alternate splitting allowed us to develop a triplet unraveling, inspired by the

two-process unraveling in Chap. 3. We based our unraveling on the fundamental idea
to reproduce the application of the magical formula by considering the evolution of
triplets (cm, |Φm⟩, |Ψm⟩), where cm is complex and |Φm⟩, |Ψm⟩ are piecewise deter-
ministic processes. Unlike usual unraveling where the processes evolve in time, here,
the evolution is performed with respect to a formal iteration order m = 0, 1, . . . that
corresponds to the m’th term in the sum of the magical formula. We introduced a
propagator Ts,r = rRfree

s+r

(
1 + Lcoll

r

)
, whose fundamental role is to evolve the triplets

from m to m+ 1. We argued that a given s has to be associated with the truncation
Mtrunc ≥ r/s to approximate the magical formula with

Rs ≈
Mtrunc∑
m=0

[Tr,s]
m Rfree

s+r. (6.4)

From this approximation, we constructed the stochastic processes that eventually led
to an estimation of the density matrix ρ̃s. The evolution of the triplets was defined to
alternate between continuous evolution according to the free contribution rRfree

s and
random jumps associated with (1 + Lcoll/r). We constructed those processes such
that for a very large number of iterations, the application of the magical formula is
reproduced and the density matrix is estimated by

ρ̃s = s
∞∑
m=0

E [cm|Φm⟩⟨Ψm|] . (6.5)

When we considered reversible scenarios, a useful consequence of the alternate split-
ting between the continuous evolution and the random jumps is the generalization to
the study of many-body Hamiltonian with the equivalent notation

H = H free +H int, (6.6)

where the term free no longer refers to the kinetic contribution but to the exactly solv-
able part of the Hamiltonian with eigenbasis {|ei⟩}i. This generalization allowed us
to develop a stochastic unraveling based on a fixed-point iteration scheme associated
to the expression

rRfree
r

(
1 + Lint

r

)
ρm = ρm+1. (6.7)

To reproduce the ground state of H, we considered the evolution of the triplets
(cm, |Φm⟩, |Ψm⟩), where cm is real and |Φm⟩, |Ψm⟩ are piecewise deterministic pro-
cesses. The density matrix is recovered as the statistical average

ρm = E [cm|Φm⟩⟨Ψm|] , (6.8)

where for m → ∞, the ground state ρ∞ is recovered with ρm = ρm+1 ≈ ρ∞.
The development of this fixed-point unraveling motivated the implementation

of a numerical iterative algorithm to compute the unknown ground state of gen-
eral Hamiltonians in many-body physics. We considered an ensemble of triplets
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{(c(n)m , i(n)m , j(n)m )}n, c(n) ∈ R that would undergo continuous free evolution inter-
spersed with quantum jumps. We used the lighter notation i ≡ |ei⟩ for the vectors of
the Hilbert space with {|ei⟩}i the eigenbasis of the free Hamiltonian. Due to the choice
of the basis, it was discussed that the continuous evolution consists in simple weight
updates mimicking the superoperator rRfree

r and leaving the vectors i, j unchanged.
To have a controlled exploration of the Hilbert space, we proposed the random jumps
associated with the superoperator (1 + Lint/r) to be selected stochastically, where a
single jump between vectors of the eigenbasis is allowed.

With that algorithm, the density matrix at iteration m has been estimated with

ρm ≈
∑
n c

(n)
m |i(n)m ⟩⟨j(n)m |∑
n c

(n)
m δ

i
(n)
m ,j(n)

m

, (6.9)

and ground-state properties via the usual quantum averages,

⟨A⟩ ≈ tr(Aρm∗), (6.10)

for a general operator A, where m∗ is large enough such that the ensemble has reached
the ground state.

This formulation allowed us to use of a powerful and intuitive importance sampling
method by defining two weights associated with a single triplet: the ensemble weight
w and the physical weight c. The ensemble weight reflects the statistical importance
of the triplet for a given observable whereas the physical weights are used to perform
the estimations as Eq. (6.10). The two weights are related by the relation c = bw with
b > 0. To concentrate the quantum jumps in the region that contributes the most
to the averages, we defined the bias between the ensemble weight and the physical
weight as

b = eκn
2
ij , (6.11)

where κ is the analog to a classical spring constant and nij is the dynamic norm,
i.e. the minimal number of transitions allowed by the Hamiltonian to go from i to
j. To further control the number of triplets, we introduced an energy shift that is
constantly updated during simulations. This reduced the growth of the size of the
ensemble and stabilized the number of triplets to the desired level. The equivalent
techniques found in the literature are all bounded by a maximal time step, however
in our case, the freedom in the initial condition allows us to choose lower rates r (cor-
responding to larger time steps) which decreases the computational time required for
a given statistical error. If the initial state is chosen closer to the ground state, the
rate can be decreased, implying a quicker convergence and lower statistical errors.
This feature makes our method very competitive due to its massive use of impor-
tance sampling and the absence of a clear upper bound on the evolution-step 1/r.
Additionally, it provides an efficient method to calculate initial conditions for field
theoretical simulation exposed in Chap. 2.

We then developed an algorithm for reversible dynamics based on the unraveling
presented in Chap. 3. The absence of dissipation allowed us to consider simplified
models that however still reflected the major difficulties that will be encountered in
more realistic and advanced simulations. This algorithm considers an ensemble of
independent trajectories {(w(n)

m , i(n)m , j(n)m )}n, where w(n)
m is the ensemble weight and

i
(n)
m ≡ |i(n)m ⟩ are the eigenstates of the free Hamiltonian. The continuous deterministic

part reproduces the superoperator rRfree
s+r and the random jumps (1 + Lint/r). Both

contributions were implemented the same way as in the fixed-point iteration scheme.
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We applied iteratively the main loop mimicking the application of the propagator on
this ensemble of triplets. At iteration m, it allowed us to estimate the mth summand
in the magical formula with

ρ̃m,s = sE[cm|Φm⟩⟨Ψm|] ≈ s
∑
n

b w(n)
m |i(n)m ⟩⟨j(n)m | (6.12)

and for a large number of iteration Mtrunc, correlation functions in Laplace domain
were obtained as

CABs ≈
Mtrunc∑
m=1

s
∑
n

b w(n)
m (AB)

i
(n)
m j

(n)
m

, (6.13)

with (AB)
i
(n)
m j

(n)
m

= ⟨i(n)m |AB|j(n)m ⟩. In addition to the same importance sampling,
we introduced the deadweight approximation that allowed triplets to produce jumps
only if their weight is above a critical value, the deadweight. To ensure an ergodic
exploration of the Hilbert space through jumps, we proposed the rule that the inactive
triplets however still evolve freely. It has been illustrated that the interplay between
the importance sampling and the deadweight approximation is essential to overcome
the dynamical sign problem. The latter manifests itself as divergences occurring at
t ∼ 1, however, the importance sampling and the deadweight approximations enabled
us to study the long-time behavior of multi-dimensional reversible quantum systems.
We emphasized that these investigations are usually out of reach due to the absence of
an efficient formulation of tensor networks in more than one dimension and due to the
sign problem inherent in almost every other stochastic method. Finally, we developed
a simple procedure to invert the results in the Laplace domain to the time domain,
which allowed us to extract dynamical properties such as frequencies of oscillations
or damping parameters. Furthermore, it was shown that most of these dynamical
properties could be obtained directly from the Laplace domain by educating ourselves
to read a signal directly in the Laplace domain.

Given the success of the simulations for multi-dimensional reversible quantum
dynamics, short-term perspectives include a more thorough analysis of the method’s
performances. As already pointed out in [53], the main restrictions are the strength of
the interaction and the size of the Hilbert space. The algorithm is particularly efficient
when |H free| > |H int|, where |H| measure the typical strength of the Hamiltonian
H. Hence, the choice of the free basis allows us to explore various regimes. The
most pressing question concerns the quantum quenches and the crossing of a phase
transition. The idea is to start from the ground state of a free Hamiltonian and quench
it by enabling the interaction. Depending on the strength of the interaction, the new
nonequilibrium steady state might cross a critical point. It is not clear how the
localized excitations of the initial state propagate through the phase transition. On a
numerical side, it would be interesting to test the ability of the importance sampling
to sustain its efficiency through the delocalization of the phase transition. Besides
the interaction strength, a major limitation is the size of the Hilbert space, which
becomes important for multi-dimensional systems. We are however confident that
properties of multi-dimensional systems can be computed on computational clusters
without major difficulties.

For the first application to fundamental particles, we should consider the Schwinger
model [125–127] to test the dissipation mechanism and understand its role in the
simulations. The Schwinger model is a (1 + 1)-dimensional model of quantum elec-
trodynamics (see App. C.3) displaying confinement effects. It could serve as a first
encounter to renormalization [128] via the dissipative mechanism and as a test for
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the efficiency of the method to describe confinement. Renormalization of the mass-
less and massive models is discussed in [129, 130]. It is claimed in [129] that only
the zero-point energy of the model does need to be renormalized, which is further
supported by the perturbative approach of [131]. Therefore, we expect that the only
possible divergent result within our approach is the computation of the ground state.
Since there is an energy gap between the ground state and the first excited state
which is composed of an electron-positron pair, we should be able to compute this
gap and extract the mass of the pseudo-scalar pairs. We propose some concrete steps
that could be followed. (i) Reproduce the ground state from the fixed point iteration
scheme (see [132, 133] for the massless and massive cases). (ii) The energy of the
first excited state can be computed also by using the fixed-point equation and App.
A.3. The mass gap is simply obtained by subtracting the ground state energy. This
approach avoids using the real-time dynamics and allows us to get some first results
to compare to [132–134]. (iii) Alternatively, the chiral condensate ⟨ψ̄ψ⟩ was used as
a benchmark in early lattice computations [134–137].

Long-term perspectives include both studies of QED in lower dimensions and
various effects in quantum chromodynamics. A benefit of the (1 + 1)QED theory is
that electron-positron are confined. In particular, the mechanism of string breaking
in (1 + 1)QED should give insights into the confinements of the quarks. It is usually
referred to as a test concerning beyond-equilibrium results [114]. Independently,
the theoretical foundations of a Hamiltonian approach to nonabelian gauge theories
have recently been proposed in [37]. An application to (2 + 1)QCD could provide
dynamical results for the quark-gluon plasma [41, 138]. Of course, the simulation of
color confinement would be a major breakthrough for the future development of triplet
unraveling for dissipative quantum field theory. We are confident that the issues
addressed in this dissertation provide the necessary basis to perform such simulations
while the structure of the method leaves room for massive algorithmic improvements.
We hope that this document serves as an inspiration for exciting future developments.
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A Generalities

A.1 Sign problem: divergent signal
A divergent signal often refers indirectly to the sign problem and the instabilities it
involves. As an illustrative example, we consider the partition function Z = tr(e−βH)
of a Hamiltonian H at the inverse temperature β = 1/T . This partition function
is almost impossible to calculate exactly for large systems nonetheless, it can be
estimated with the help of a classical Boltzmann weight summation Z =

∑
cwc,

where the sum
∑
c runs over all possible configurations c. However, in quantum Monte

Carlo simulations of fermionic systems, the Boltzmann weights wc are not necessarily
positive due to the inability to reproduce the quantum features. Because negative
Boltzmann weights cannot be treated as probability, we interpret the absolute value
of the weight |wc| as a probability of sampling. The expectation value of an observable
O can be computed as follows

⟨O⟩ ≡ tr(Oe−βH)

tr(e−βH)

=

∑
cwcOc∑
cwc

=

∑
c sign(wc)Oc|wc|/

∑
c |wc|∑

c sign(wc)|wc|/
∑
c |wc|

=
⟨O⟩|w|

⟨sign⟩|w|
, (A.1)

where Oc = ⟨c|O|c⟩. Unfortunately, the contributions from the configurations with
negative and positive signs nearly cancel with each other, such that the denominator
⟨sign⟩|w| is exponentially small with increasing system size. In order to compensate
for the exponential increase in statistical error when evaluating the observable ⟨O⟩,
the required number of independent samples increases exponentially with the size of
the system and the inverse temperature β.

A.2 Derivation of the magical formula
We derive in details the evolution superoperator in time Et and in the Laplace domain
Rs. From the formal solution in time Et = eLt, we want to derive the tractable
equations (2.31) and (2.36), respectively. The starting point is inspired from [50] and
considers

Et = E free
t e−rt −

[
Et−t′E free

t′ e−rt′
]t

0
, (A.2)

where we introduced an arbitrary rate r > 0. Using the relation

d

dt
Et = LEt, (A.3)
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and the commutation relation [L, Et] = 0, we can right the above equations an integral
over t′

Et = E free
t e−rt −

∫ t

0
dt′

d

dt′

(
Et−t′E free

t′ e−rt′
)

,

= E free
t e−rt −

∫ t

0
dt′Et−t′

(
−L + Lfree − r

)
E free
t′ e−rt′ ,

= E free
t e−rt +

∫ t

0
dt′Et−t′

(
1 + Lcoll

r

)
E free
t′ re−rt′ , (A.4)

where we distributed the derivative in the first line. The last line reproduces the
expression (2.31). To transform the nested expression as a product of superoperators,
we consider the Laplace transform

Rs =
∫ ∞

0
dte−stEt,

=
1

s− L
. (A.5)

By taking the Laplace transform of Eq. (A.4) and using the appropriate substitution,
we obtain

Rs = Rfree
s+r +

∫ ∞

0
dt′
∫ ∞

0
dte−stEt(r+ Lcoll)E free

t′ e−(s+r)t′ ,

= Rfree
s+r + Rs(r+ Lcoll)Rfree

s+r, (A.6)

We recast this expression as

Rs = Rfree
s+r

[
1 − (r+ Lcoll)Rfree

s+r

]−1
,

= Rfree
s+r

∞∑
m=0

[
(r+ Lcoll)Rfree

s+r

]m
,

=
∞∑
m=0

[
rRfree

s+r(1 +
Lcoll

r
)

]m
Rfree
s+r, (A.7)

where we used the Neumann series for a general operator T

(1 − T )−1 =
∞∑
m=0

Tm. (A.8)

A.3 Computation of excited states

We describe here a simple method to simultaneously extract the excited states |Ei⟩,
i = 1, 2, . . . from a general Hamiltonian H0 for which the ground state |E0⟩ is known.
This method has been used with full configuration quantum Monte Carlo in [139], and
we follow the same procedure. To get the first excited state we propose to compute
the eigenstate of the Hamiltonian H1 = P0(H +E0)P0 with the smallest eigenvalue,
where the projector P0 = 1 − |E0⟩⟨E0| and the ground state |E0⟩ are known prior to
the simulations. The addition of the ground state energy in the definition of H1 is to
ensure that the first excited state has the smallest eigenvalue even if E1 is positive



A.3. Computation of excited states 83

Figure A.1: Energy convergence for the ground state and the first
excited state of a random 6 × 6 Hamiltonian using the fixed-point
iterative scheme developed in Chap. 4. The solid black lines represent
the exact corresponding eigenvalues.

and E0 negative. After simplification the new Hamiltonian H1 reads

H1 = H0 +E0 (1 − 2|E0⟩⟨E0|) . (A.9)

We can apply the projector Pn iteratively to obtain

Hn = Hn−1 +En−1(1 − 2|En−1⟩⟨En−1|), (A.10)

where |En⟩ is the ground state of the Hamiltonian Hn. The fixed-point iterative
method described in Chap. 4 can then be used to compute the excited states. As long
as the ground state of Hn is non-degenerate, it is possible to recover the eigenstates
|En⟩ as it is shown for a random 6 × 6 Hamiltonian in Figure A.1
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B Laplace transform

B.1 The Zakian method
The Zakian method is a numerical method to perform an approximation of the inverse
Laplace transform. This method is fast to implement and does not require heavy
computational resources. The Laplace transform of a function f(t) in the time domain
is defined by

f̃(s) =
∫ ∞

0
e−stf(t)dt. (B.1)

Conversely, the formal inverse Laplace transform reads

f(t) =
1

2πi lim
T→∞

∫ c+iT

c−iT
f̃(s)estds, (B.2)

with Re(s) = c > c0 and where f̃(s) has some singularities on the line Re(s) = c0.
The Zakian method approximates the time domain function with

f(t) =
2
t

n∑
i=1

Re
[
Kif̃

(
αi
t

)]
, (B.3)

where the constants αi, Ki for n = 5 are given on Tab. B.1

Table B.1: Five constants αi and Ki for the Zakian method.

i αi Ki

1 12.837677 + i1.666063 −36902.08 + i196990.1
2 12.226132 + i5.012719 +61277.03 − i95408.63
3 10.934303 + i8.409673 −28916.56 + i18169.19
4 8.7764347 + i11.92185 +4655.361 − i1.901529
5 5.2254533 + i15.72953 −118.7414 − i141.3037

B.2 Dynamical properties in the Laplace domain
Generally, the motivation to introduce the Laplace transform stems from its ability
to access large times properties by mitigating the small-to-medium-time effects. Nat-
urally, the limit s → 0 provides knowledge about the equilibrium properties of the
system, which is extremely useful in open quantum systems driven towards such an
equilibrium state. A signal in the Laplace domain over a certain range of s value can
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however still provide estimations of dynamical properties before equilibrium. We want
to show that it is not absolutely necessary to perform an inverse Laplace transform
to obtain dynamical properties, such as frequencies or damping coefficients.

We consider a simplified version of typical signals encountered in realistic systems.
These systems usually provide the following idealized signals in time

f1(t) = a+ b cos(ω1t), (B.4)
f2(t) = a+ b cos(ω1t) cos(ω2t), (B.5)
f3(t) = a+ b cos(ω1t)e

−t/τ , (B.6)

where a, b are real constants, ω1, ω2 are frequencies, and 1/τ is a damping parame-
ter. The associated signals in the Laplace domain are multiplied by s to match the
definition of the density matrix (2.38). Hence, we obtain the following signal in the
Laplace domain plotted in the upper panel of Fig. B.1

sf̃1(s) =
s2(a+ b) + aω2

1
s2 + ω2

1
, (B.7)

sf̃2(s) =
s4(a+ b) + s2(2a+ b)(ω2

1 + ω2
2) + a(ω2

1 − ω2
2)

2

s4 + s22(ω2
1 + ω2

2) + (ω2
1 − ω2

2)
2 , (B.8)

sf̃3(s) =
s2τ2(a+ b) + sτ (2a+ b) + a(1 + τ2ω2

1)

s2τ2 + 2sτ + 1 + τ2ω2
1

. (B.9)

The limits s → 0 provide the averaged equilibrium value

lim
s→0

sf̃i(s) = a, (B.10)

i = 1, 2, 3 and the initial state is given by the case s → ∞,

lim
s→∞

sf̃i(s) = a+ b. (B.11)

Because it is difficult to differentiate between the curves in the Laplace domain, we
have to consider the derivatives of the above quantities. The limits s → 0 and s → ∞
are particularly interesting. They scale as follows

d

ds

(
sf̃1(s)

)
=


2b
ω2

1
s (s ≪ 1),

2bω2
1

s3 (s ≫ 1),
(B.12)

d

ds

(
sf̃2(s)

)
=


2b(ω2

1+ω
2
2)

(ω1−ω2)2(ω1+ω2)2 s (s ≪ 1),
2b(ω2

1+ω
2
2)

s3 (s ≫ 1),
(B.13)

d

ds

(
sf̃3(s)

)
=

{
bτ

1+τ2ω2
1

(s ≪ 1),
b
τs2 (s ≫ 1),

(B.14)

with a remarkable maximum of the derivative for the first function at

s∗
1 =

ω1√
3

. (B.15)

Because each independent frequency contributes to an independent Lorenzian curve,
the number of peaks in the derivatives in the Laplace domain counts the number of
independent frequencies. This feature is illustrated in the lower panel of Fig. B.1.
The s → 0 limit of the derivative gives information about the damping since the latter
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derivative converges to a constant for exponentially damped oscillations. In the same
spirit, the s dependence in the limit s → ∞ indicate if a damping occurs (∝ s−2)
or if the dynamics if purely reversible (∝ s−3). The derivatives are hence sufficient
to recover the dynamical parameters ω1, ω2, and τ and to differentiate between the
various behaviors. Of course, it is an idealization of some more realistic signals, but
these examples give a general idea of how to interpret a signal in the Laplace domain,
and how it provides dynamical insights. It serves as proof that no information is lost
in Laplace transform but rather displayed in another form.

Figure B.1: Evolution in the Laplace domain of the functions sf̃1(s),
sf̃2(s), sf̃3(s) and their respective first derivatives for the parameters
a = 0.8, b = 0.2, ω1 = 4, ω2 = 4.5, and τ = 10.
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C Dissipative quantum field
theory

C.1 Quartic interaction theory

A quartic interaction theory, or ϕ4 theory, is a quantum field theory for self-interacting
scalar fields with coupling constant λ commonly used as a toy model [18]. This
archetype of fundamental particle theory is described in a Hamiltonian framework in
d spatial dimensions with

H = H free +
λ

24

∫
V
φ4

xd
dx︸ ︷︷ ︸

Hcoll

, (C.1)

where H free is the kinetic term and V is the volume of a d-dimensional hypercube
that is eventually taken to V → ∞. Using the momentum representation defined
in (2.19) and the relativistic energy-momentum relation for a particle with mass m
ωk =

√
m2 + k2, we can write the fields in the spatial domain as

φx =
1√
V

∑
k∈Kd

1√
2ωk

(
a†

k + a−k

)
e−ik·x, (C.2)

where the unusual 1√
2ωk

factor is crucial for Lorentz invariance. With this represen-
tation of the field φx, we can rewrite the collision Hamiltonian as

Hcoll =
λ

96
1
V

∑
k1,k2,k3,k4∈Kd

δk1+k2+k3+k4,0√
ωk1ωk2ωk3ωk4(

a−k1a−k2a−k3a−k4 + 4a†
k1
a−k2a−k3a−k4 + 6a†

k1
a†

k2
a−k3a−k4

+4a†
k1
a†

k2
a†

k3
a−k4 + a†

k1
a†

k2
a†

k3
a†

k4

)
+
λ′

4
∑

k∈Kd

1
ωk

(
aka−k + 2a†

kak + a†
ka

†
−k

)
+ λ′′V , (C.3)

where we have used normal ordering. The quantities λ′ and λ′′ have been redefined
and we treat them as additional free interaction parameters to avoid divergences.
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C.2 Continuous treatment of the free dissipation
We show an example of how to treat the free dissipation continuously in the case of
a ϕ4 theory. In general, we consider the evolution of Fock states having the form,

|nk1 , . . . ,nkm⟩⟨nk′
1
, . . . ,nk′

m′
|

= (a†
k1
)nk1 . . . (a†

km
)nkm |0⟩⟨0|(ak′

1
)
nk′

1 · · · (ak′
m′
)
nk′

m′ . (C.4)

Hence, our goal is to find a closed form for the quantity

Rfree
s+r|nk1 , . . . ,nkm⟩⟨nk′

1
, . . . ,nk′

m′
|. (C.5)

Taking a closer look at (2.28), we notice that the first dissipative terms produce
a jump on both sides of the dyadic. To avoid superposition of states, we want to
construct an expansion in γk which is justified by the limit of vanishing dissipation,
and we neglect the terms linear in γk. With the formal solution

Rfree
s =

1
s− Lfree

0 − Lfree
−

, (C.6)

where we used the notation

Lfree
0 |ϕ⟩⟨ψ| = −i[H free, |ϕ⟩⟨ψ|] −

∑
k∈Kd

γk{a†
kak, |ϕ⟩⟨ψ|},

Lfree
− |ϕ⟩⟨ψ| =

∑
k∈Kd

2γkak|ϕ⟩⟨ψ|a†
k, (C.7)

we can write the following useful expansion

Rfree
s =

1
s− Lfree

0
+

1
s− Lfree

0
Lfree

−
1

s− Lfree
0

+ . . . , (C.8)

where the dots denote the terms with a higher power of Lfree
− . The latter notation

stands for the fact that the Fock states will lose a particle on each side at every
application of the superoperator, hence the − sign. This splitting is motivated by
the fact that we want to find a closed form for the application of the free evolution
operator and to avoid unnecessary exploration of the Hilbert space. Because the
operator Lfree

− produces jumps along the diagonal, it creates a potentially dangerous
additional exploration mechanism that should be avoided. Concerning the expansion
(C.8), we expect the contributions from orders one and higher to be negligible since
they are proportional to the friction parameter γk. Therefore, we can write the
solution of (C.5) as

Rfree
s+r|nk1 , . . . ,nkm⟩⟨nk′

1
, . . . ,nk′

m′
|

= (s− Lfree
0 )−1|nk1 , . . . ,nkm⟩⟨nk′

1
, . . . ,nk′

m′
| + O(γk),

=
|nk1 , . . . ,nkm⟩⟨nk′

1
, . . . ,nk′

m′
|

s+ r+ i(ω̃k1 + · · · + ω̃km − ω̃∗
k′

1
− · · · − ω̃∗

k′
m′
)
, (C.9)

with ω̃k = ωk − iγk. This continuous treatment allows us to construct an unraveling
for the linear quantum master equation (2.25). The unraveling aims at reproducing
the solution of this equation by evolving an ensemble of coupled Fock states of the
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form of (C.4), where the free evolution is solved according to the above procedure
and the collisions correspond to transitions between Fock states. For instance, if the
collision on the ket side removes two particles akl

and akl′

|nk1 , . . .,nkl
, . . . ,nkl′ , . . . ,nkm⟩⟨nk′

1
, . . . ,nk′

m′
|

7→ c|nk1 , . . . ,nkl
− 1, . . . ,nkl′ − 1, . . . ,nkm⟩⟨nk′

1
, . . . ,nk′

m′
|, (C.10)

with c ∈ C.

C.3 The Schwinger model

The Schwinger model is a (1 + 1)-dimensional model of quantum electrodynamics.
In its original version [126] the fermions are massless. This simplification renders
the model exactly solvable and the photons acquire a mass mγ = e0/

√
π to preserve

gauge invariance. The main consequence is that the spectrum of the Hamiltonian is
composed of only free pseudo-scalar mesons of mass mγ . The interpretation is that
these mesons are composed of electron-positron pairs that are bound together via a
confinement mechanism. Classically, it can be explained by the Coulomb potential
between charged particles. In d spatial dimension it scales as r2−d. Thus, in the
Schwinger model, the force between the fermions is constant no matter how far they
are separated. A natural generalization is to add a mass to the fermions, however, it
renders the model no longer exactly solvable. The confinement mechanism survives
and the mass of the electron-positron pairs changes (see [131] for a perturbation
approach).

In one spatial dimension, fermions do not possess spin and photons have only two
possible polarizations α, longitudinal or transversal. We introduce the creation and
annihilation operators for photons aαq , aαq †, the electrons bp, b†

p and the positrons dp,
d†
p together with the (anti-) commutation rules

[aαq , aα′
q′

†
] = δq,q′δαα

′ , {bp, b†
p′} = δp,p′ , {dp, d†

p′} = δp,p′ . (C.11)

The general Hamiltonian for (1 + 1) QED is given by

H =He/p +
∑
q∈K1

×

|q|aαq
†aαq

︸ ︷︷ ︸
HEM

+
∑
q

(
B†
qBq +D†

qDq

)
︸ ︷︷ ︸

Hghost

+
∑
q∈K1

×

:
[
J0
qA

0
−q − J1

qA
1
−q

]
: +e′′V

︸ ︷︷ ︸
Hcoll

, (C.12)

where He/p is the Hamiltonian of the free fermions whose exact form depends on the
mass of the fermions and HEM is the free contribution of the electromagnetic field.
The ghost term ensures a BRST invariance of the Hamiltonian [140]. The particles
associated with the operators Bq and Dq do not interact with the fermions and the
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bosons, hence the name ghost. The charged currents are given by

J0
q = − e0√

L

∑
p,p′∈K1

×

Θpp′

[
δp−p′,q

(
b†
pbp′ − d†

−p′d−p
)

+ sgn(p)δp+p′,q
(
b†
pd

†
p′ − d−pb−p′

)]
, (C.13)

J1
q = − e0√

L

∑
p,p′∈K1

×

Θpp′

[
sgn(p)δp−p′,q

(
b†
pbp′ + d†

−p′d−p
)

+ δp+p′,q
(
b†
pd

†
p′ + d−pb−p′

)]
, (C.14)

with L = 2π/∆k, where ∆k is the lattice spacing in momentum space. The continuum
limit is retrieved for ∆k → 0. The function Θk is the discretized Heaviside function,
it vanishes if k < 0 and is equal to 1 if k > 0. The photonic gauge fields can be
written in components as

Aq0 = −A0
q =

1√
2|q|

(a0
q

† − a0
−q), Aq1 = A1

q =
sgn(q)√

2|q|
(a1
q

† − a1
−q). (C.15)

In the massless model, the full Hamiltonian is given by

H =
∑
p∈K1

×

|p|
(
b†
pbp + d†

pdp
)

︸ ︷︷ ︸
He/p

+
1
2
∑
q∈K1

×

m2
γA

1
qA

1
−q

+HEM +HBRST +H int, (C.16)

where mγ = e0/
√
π is added in order to ensure a BRST invariant theory. Conversely,

in the massive case, the generalized Hamiltonian reads

H =
∑
p∈K1

Ep
(
b†
pbp + d†

pdp
)

︸ ︷︷ ︸
H

e/p
m

+HEM +HBRST +H int, (C.17)

where Ep =
√
p2 +m2

f , with mf the mass of the fermion. With this small change,
the model is no longer exactly solvable. Independently of the photon mass, we split
the Hamiltonian according to the following free and collision terms

H free =He/p +HEM +
1
2m

2
γ

∑
q∈K1

×

1
|q|
a1
q

†
a1
q , (C.18)

H int = − e0√
L

∑
q,p,p′∈K1

×

Θpp′√
2|q|

(δp−p′,q
(
b†
pbp′ − d†

−p′d−p
)

−sgn(p)δp+p′,q
(
b†
pd

†
p′ − d−pb−p′

)) (
a0
q − a0

−q
†)

+ sgn(q)
(
sgn(p)δp−p′,q

(
b†
pbp′ + d†

−p′d−p
)

+δp+p′,q
(
b†
pd

†
p′ + d−pb−p′

)) (
a1
q − a1

−q
†)

− 1
4m

2
γ

∑
q∈K1

1
|q|

(
a1
q

†
a1

−q
†
+ a1

qa
1
−q

)
, (C.19)
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where the last line corresponds to the pure massive photon sector. Note that we
dropped the BRST ghosts because, in practice, they do not participate in the inter-
actions.
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