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a b s t r a c t

Single-objective multi-variable rotor dynamics optimization promotes the design of spindles in sustainable 
production. The goal is efficient partial automation of the design process and the optimization of the spindle 
shaft. The Timoshenko-Ehrenfest beam theory together with the Latin hypercube sampling and direct 
optimization methods are selected principles. The parametric model and frequency analysis, as well as the 
transient analysis, are key resources for rapid system development. Challenges are the computational effort 
to find the steady state of the milling simulation for the optimization problem. In addition, this entire 
process must meet overall performance requirements during the system design phase. The outlined concept 
is based on rotor dynamics optimization and validated for an aerostatic spindle in a milling process. The 
validation measurements are performed according to ISO 230-7 on the aerostatic spindle.
© 2023 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/ 

licenses/by/4.0/).

Introduction

Microsystem technology is one of the largest growing markets in 
the world. This branch of the industry places high demands on the 
production of components and thus also on the development of the 
machine tools used for this purpose. A core piece of such a machine 
tool is the spindle, which houses the spindle rotor shaft. A multi- 
variable optimization of a classical machine tool roller-bearing 
spindle is described by Tong et al. [1]. During the operation of an air- 
bearing spindle, complex dynamic effects occur for this rotor as 
described by Dupont [2], which represents a challenge during the 
planning phase. Multi-variable optimization of grooved gas journal 
bearings itself is investigated by Guenat et al. [3] for robustness in 
manufacturing tolerances. Due to the high complexity, there is a risk 
that aspects of the rotor behavior are only discovered late in the 
development phase. As described by Ehrlenspiel et al. [4], this can 
cause high costs and set back the system design of the machine 
development process. If, on the other hand, everything is taken into 
account right from the start, there is a risk of getting lost in details 
that do not advance the project at this early stage. The integrated 
design and optimization of the whole direct-drive turbomachinery 
with a gas-bearing supported rotor is elaborated by Schiffmann et al. 
[5]. It is important to be able to make estimates of the system be-
havior without much effort, thus giving the development team the 
freedom to concentrate on conceptual tasks before dealing in detail 

with the system in the detailed system design. To support the design 
process, a novel method for partial automation of the simulation of 
the rotor behavior in operation is therefore developed within the 
scope of the present work. Cao et al. [6] introduced a virtual simu-
lation method of milling operations to model the spindle behavior. 
Furthermore, a suggestion for a suitable geometry of the rotor 
should be able to be derived depending on framework conditions 
such as nominal speed, installation space, bearing characteristics, 
etc. This combination of a steady-state milling simulation together 
with a multi-variable rotor optimization is shown for the first time 
in this work.

State of the art

Various approaches exist for the design of rotors. The methods 
considered in this paper deal with the analytical formulation as well 
as the discretized formulation. A rough overview of the analytical 
methods for the analysis of a rotor is given by Genta [7]. The flexible 
behavior of rotors was treated in detail in a publication by Jeffcot [8]. 
Therefore, the simplest mathematical formulation of a rotor is often 
referred to as a Jeffcott rotor. Here, a massless shaft with a point 
mass is studied, which can be considered for different boundary 
conditions. In the simplest case, the rotor is a rigidly mounted rotor. 
However, the bearings can also have a stiffness while the shaft is 
assumed to be rigid, or both approaches can be combined. Since no 
moments of inertia are taken into account in the Jeffcot model, the 
mathematical formulation is comparatively simple. However, it is 
also not possible to carry out any analyses that depend on them, 
which can strongly influence the dynamic behavior of the rotor. To 
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take the moments of inertia into account in the analysis, the Jeffcot 
model is extended for three cases. Either a flexible shaft with a disc 
mass or a rigid shaft with arbitrary axisymmetric geometry is con-
sidered. All these analytical formulations of a rotor only allow an 
approximate description of the effective behavior. Therefore they are 
only conditionally suitable both for analysis and for a design pro-
posal. To be able to describe the rotor realistically, the finite element 
method (FEM) is therefore normally used today. In the best case, 
analytical methods can only be used for a rough estimation.

The volume elements normally used in commercial software, 
such as tetrahedra or cuboids, make it possible to represent the 
material behavior very realistically. According to Steinke [9], the 
basic idea of the FEM is to divide complex geometries into a finite 
number of elements that are easy to calculate and which, when 
considered together, give a very good approximation of the behavior 
of the complex geometry. However, these element types are not well 
suited for the present case of a rotor with a focus on computational 
performance. Therefore, beam elements should be used for the 
discretisation of the rotor.

Beam theory

Beam elements are characterized by their simplicity, wherefore 
they are better suited than volume elements concerning the required 
computing power. Beam elements have only two nodes, one at each 
end of the element. For the mathematical description of the real 
behavior of a beam, simplifying assumptions are normally made. 
Two simplifying theories exist for the description of beams, the 
Euler-Bernoulli beam theory (EBB) and the Timoshenko-Ehrenfest 
beam theory (TEB). The EBB assumes that there are no shear stresses 
and shear deformation in the system. It is therefore a shear-rigid 
formulation of the beam. As shown in Fig. 1, when the beam is bent, 
the free cross-sectional area of the beam remains constant, un-
deformed and perpendicular to the neutral axis. Since a realistic 
consideration of the warping of the free surface involves a 

considerable mathematical effort, a simplifying assumption is made 
for the TEB. A more physically correct description does also include 
the warping of the surface, which is implemented for Timoshenko 
elements, by Poganski et al. [10]. The shear stress xz and shear strain 

xz are assumed to be the average shear stress m and shear strain m
over the beam cross-section. These averaged values are constant 
across the cross-section of the beam and result in an angular change 
and distortion of the free surface but the cross-sectional area is flat 
and not perpendicular to the neutral axis. This is shown in Fig. 1b). 
For the formulation of the TEB, the assumptions of bending without 
considering shearing as in the EBB and that of the averaged shear 
stress m and strain m are now superimposed, which is shown in 
Fig. 1c). The change in shear area compared to the cross-sectional 
area is taken into account in the TEB using the shear correction 
factor . This shear correction factor was implemented according to 
Hutchinson [11].
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Where ro and ri are the outer and inner radius of the annular 
cross-section and Poisson's ratio of the material used. This for-
mulation is only valid for thick-walled cross-sections. It gives more 
accurate results than the widely used formulation according to 
Cowper [12], as shown by Hutchinson [11].

This shows that EBB is a special case of TEB. Comparing EBB and 
TEB, it is easy to see that EBB is a good approximation of the material 
behavior for long, slender beams where the effects of bending play a 
much larger role than those of shear and sliding. In contrast, TEB can 
be used for arbitrary ratios of the length and cross-section of a beam 
and still approximates the beam behavior correctly. For this reason, 
the TEB is more suitable for the formulation of the rotor, which for 
example requires a very short beam element with a large diameter 
for the thrust bearing.

Fig. 1. Illustration of beam models a) Euler-Bernoulli beam theory with bending but without shear. b) A beam without bending with averaged shear stress and shear strain. c) 
Combination of EBB and the assumption of averaged shear results in the Timoshenko-Ehrenfest beam theory illustrated by Spura [13].
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Spindle error model

Rotary axes, such as spindles, can have positioning and motion 
errors. Positioning errors are orientation errors of the axis itself 
concerning the machine coordinate system. According to ISO 230-7, 
there are five errors (A0C, B0C, Y0C, X0C, C0C) if the axis is a purely 
rotary axis, C0C can be ignored. Additionally, there are multiple error 
motions possible during the turning of an axis, which can be seen in 
Fig. 2. These are of special importance, as such movements influence 
the surface quality directly as well as the precision of the workpiece. 
However, unless the rotational position of the spindle is important, 
error movement ECC can be ignored.

Another important distinction is made between synchronous and 
asynchronous error motions, whereby the first correlates with the 
rotation of the spindle, while the latter does not. The asynchronous 
error motion is calculated concerning the rotation center of the 
machine polar chart center (PC), whereas for the synchronous error, 
a circle approximation is needed, and the error is then calculated 
concerning the calculated center point. These are usually calculated 
by using the Gauss approximation least-squares center (LSC). The 
difference between the two can be seen in Fig. 3.

Method

The optimized spindle shaft is achieved through the beam ele-
ment formulation combined with the frequency and transient ana-
lysis input in the multivariable optimization. The following section 
elaborates on these required principles in depth.

Element formulation of the rotor shaft

The shape functions of the element are implemented according 
to Luo [15]. In comparison to the traditional formulation, the one 
described by Neto et al. [16], has the advantage of being free of the 
so-called shear locking effect. The shear locking effect describes an 
artificial, numerical stiffening of the elements, which can lead to 
incorrect solutions. For the derivation of the shape functions, an 
element is considered in the deformed and undeformed state as 
shown in Fig. 4.

The derivation according to Luo [15] yields to the homogeneous 
Euler-Lagrange equations which are simplified for symmetric cross- 
sections.
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With the nodal deformation u, according to Fig. 4, E the elastic 
modulus, A the cross-sectional area, G the shear modulus, I the 
moment of inertia. Inserting the boundary conditions at the two 
nodes Ne1 and Ne2 and solving for the six degrees of freedom ulti-
mately yields the field functions of the beam element given by:

= +u x N u N u( )C,x 1 C,x,1 2 C,x,2 (8) 

= + + +u x H u H H u H( )C,y u C,y1 z,1 u C,y2 z,2C,y1 z,1 C,y2 z,2 (9) 

= + + +u x H u H H u H( )C,z u C,z1 y,1 u C,z,2 y,2C,z,1 y,1 C,z,2 y,2 (10) 

= +x N N( )x 1 x,1 2 x,2 (11) 

= + + +x G u G G u G( )y u C,z,1 y,1 u C,z,2 y,2C,z,1 y,1 C,z,2 y,2 (12) 

= + + +x G u G G u G( )z u C,y1 z,1 u C,y2 z,2C,y1 z,1 C,y2 z,2 (13) 

The element shape functions N, H and G are now extracted from 
the field functions and the beam element is fully describable by the 
nodal deformations alone.

Equation of motion

The equation of motion for FEM can be derived in different ways. 
Either via Hamilton's principle, described by Neto et al. [16], or with 
the help of Galerkin's method as shown by Klein [17]. Here, the 
equation of motion is used with the help of the Lagrange equation of 

Fig. 2. Error motion according to ISO 230-7:2015 [14]. 

Fig. 3. Synchronous and asynchronous error motion with a) asynchronous error 
motion value based on PC center, b) synchronous error motion value based on LSC 
center, c) synchronous error motion plot according to ISO 230-7:2015 [14].
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the second-order according to Vollan et al. [18]. Two formulations 
with their respective advantages and disadvantages can be used to 
represent the equation of motion of a rotor. These formulations refer 
either to a reference system that rotates with the rotor or to a sta-
tionary reference system. For which cases the respective descrip-
tions are applicable is described by Kumar [19]. Since the bearing 
properties can be direction-dependent and the rotor is symmetrical, 
the system in this work is formulated in a space-fixed reference 
frame. The equation of motion thus takes the following form, based 
on the general equation (15):

+ + + + + + = + +M q C C G q K K K q f f f
¯̄ ¯

(
¯̄ ¯̄ ¯̄

)
¯

(
¯̄ ¯̄ ¯̄

)
¯ ¯ ¯ ¯

g M g B g g E g B g C g b g s g p g, , , , , , , ,

(14) 

With Mg the global mass matrix of the system, q the degrees of 
freedom of the beam element, CM the material damping matrix, CB

the bearing damping matrix, Gg the gyroscopic matrix, KE the ele-
ment stiffness matrix, KB the bearing stiffness matrix, KC the circu-
latory matrix, fb the body load, fs the surface load and fp the point 
load. Nelson et al. [20] describe the advantage of a rotating frame 
system that is used for isotropic systems with symmetric bearing 
stiffness and damping. The order of the system matrices is smaller 
compared to fixed frame formulation and therefore requires less 
computing effort.

Frequency analysis

The aim of the spindle rotor frequency analysis is to identify the 
critical excitation frequencies of the system. An excitation frequency 
is considered critical if it coincides with the resonance/natural fre-
quency of the system. The natural frequencies of the rotor itself are 
derived from solving the 'free-free problem'. However, the natural 
frequencies calculated there only apply to the rotor without 
boundary conditions. To find the natural frequencies of the system 
under consideration of the bearings, an extended eigenvalue pro-
blem must be formulated for the frequency analysis. For this pur-
pose, the formulation according to Larsonneur [21] is used. The 
equation of motion in its general form is:

+ + =Mq Cq Kq f
¯̄ ¯ ¯̄ ¯ ¯̄ ¯ ¯

(15) 

This is a second order differential equation that cannot be used to 
find the natural frequencies directly. To do so, it must first be 
transformed into the state-space form. According to Shaw et al. [22], 
this ultimately leads to the complex conjugate eigenvector I which 
corresponds to the first order, state-space formulation. This eigen-
vector can then be split in two which allows for the extraction of the 
second order eigenvectors II and II where each has the same 
number of entries as the original second-order system had equa-
tions.

= = =
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Furthermore, it is seen from this that the first half of the eigen-
vector corresponds to the displacements of the respective degrees of 
freedom, while the second half corresponds to the velocities. If one 
now considers the complex conjugate eigenvectors of the displace-
ments II , the direction of the orbital motion is determined ac-
cording to Pedersen [23]. The absolute deformation of the rotor axis 
is first calculated with:

=u Nq (17) 

Where u is the complex deformation along the neutral axis, N is the 
matrix of shape functions and q is the complex eigenvector of nodal 
displacements II . Then the cross product of the imaginary part of u 
with the real part of u is formed.

= ×w u u
¯

Im(
¯

) Re(
¯
) (18) 

The direction of w indicates the direction of the orbital motion of 
the shaft. If w points in a positive direction along the rotation speed 
vector, it is called a forward whirl, in the case that w points in the 
opposite direction, it is called a backward whirl.

Transient analysis

Various methods have been developed for the transient analysis 
of mechanical systems. For the transient analysis, the Generalized-

-Method (CH- ) has been used according to Chung et al. [24]. It is 
relatively simple in its implementation and offers the advantage that 
it can map various precursor methods like Newmark- through 

Fig. 4. Beam element in the deformed and undeformed state with the chosen coordinate system. 
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suitable parameter selection. To describe the CH- method, the 
modified equation of motion is considered:

+ + =+ + + +Ma Cv Kd f t
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( )n n n n1 1 1 1m f f f (19) 

With the two algorithmic parameters:

=
+

=
+

2 1
1

,
1m f
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Where describes the degree of numerical dissipation at high 
frequencies.

Rotor optimization

The optimization, or rather the generation of a design proposal, 
builds on what was discussed before and brings together the com-
ponents that have been worked out so far. In this section, the 
boundary conditions for the optimization problem are first defined 
and a brief overview of the procedure is given. Afterwards in the 
implementation, the individual steps that finally lead to the design 
proposal are discussed in detail.

A large number of different optimization algorithms exist, each 
better or worse suited for a particular problem. It is therefore ne-
cessary to select a suitable procedure for optimizing the rotor. 
According to Stryk et al. [25], optimization procedures can be di-
vided into two main groups:

Direct: These procedures require a mathematical description of 
the problem, the so-called objective function. Based on this, an op-
timum is then found using, for example, gradient-based methods. 
Starting from a fixed starting point, a direct method will always find 
the same optimum. Whether this optimum is global or local depends 
on the objective function and the starting position.

Indirect: These methods can also be used with a large number of 
measurements. The problem can therefore be both mathematically 
defined as an objective function or a large number of measurements. 
Indirect methods are not based on mathematical approaches like 
direct methods but find their way to an optimum through clever trial 
and error. This requires a large number of evaluations of the pro-
blem. In contrast to the direct methods, indirect methods cannot 
guarantee finding the same optimum, although, the starting posi-
tions are fixed.

The displacement at the end node of the tool is selected here as 
the so-called target variable. This should be kept as small as possible 
during operation. This displacement is the result of the geometry- 
dependent, transient analysis of the system. For the calculation of 
the cutting forces, the model according to Altintas et al. [26] was 
implemented. The underlying idea is that the cutting edge does not 
leave a smooth surface in the workpiece. However, to perform the 
optimization, a fixed value for the tooltip displacement is needed, 
which will never be possible with Altintas' model. Therefore, the 
model is only used to find an average value of the steady-state. With 
this average value, the response surface fitting can be carried out. It 
is therefore not a mathematical description of the objective function. 
This, therefore, rules out the application of direct optimization 
methods. Indirect methods could theoretically be applied. However, 
due to the large number of evaluations required for the problem 
under consideration, indirect methods are also not applicable, as 
they simply require too much computing power and time. A possible 
solution to carry out a time-efficient optimization is to formulate a 
mathematical objective function that describes the system behavior 
approximatively. The optimization variables chosen for the problem 
are shown in Fig. 5.

For the optimization variables shown in Fig. 5, ranges of per-
missible values are defined as the lower and upper limits. The limits 
chosen for the rotor shaft under consideration are listed in Table 1.

The values have to be between these limits. The simplest way to 
do this is to select the values randomly. However, this involves the 
risk of unwanted correlations between the optimization variables, 
which can falsify the result. A better choice for sampling is the Latin 
Hypercube Sampling (LHS) method. Here, quasi-random values are 
defined for each optimization variable within its bounds. To select 
these points, it is first necessary to determine how many values are 
to be generated. In contrast to random selection, the LHS, as de-
scribed by Zio [27], requires a smaller number of values to make 
statistical estimates. Furthermore, the LHS method can minimize the 
correlations between the values. A disadvantage of the LHS method 
is, that the list of generated values cannot be extended, as is the case 
with randomly generated values.

Implementation and setup

The implementation describes the calculation process from the 
modeling of the rotor shaft and sensitivity analysis to the final op-
timization. Furthermore, the actual measurement setup to validate 
the simulation and optimization results are also discussed and de-
scribed.

Sensitivity analysis

After the geometries of the r shaft have been generated using the 
LHS method as described in the previous section, a transient analysis 
is performed for each of these geometries. The steady-state dis-
placements di end, at the end node of the tool together with the re-
spective geometry information are stored. For the calculation of the 
cutting forces, the model according to Altintas [28] was im-
plemented:

= +F K bh K b( ) ( )a ac ae (21) 

= +K bhF ( ) ( ) K br rc re (22) 

= +F K bh K b( ) ( )t tc te (23) 

With Kac , Krc and Ktc the coefficients of internal forces, Kae, Kre and 
Kte the coefficients of frictional forces, depth of cut b and the dy-
namic chip thickness h( ). This model takes into account the re-
generative effect (chatter) during the end milling process. The 
underlying principle is that the cutting edge does not leave a smooth 
surface in the workpiece. For the application and tool considered 
here, however, only a speed of 10'000 rpm is relevant. Therefore, the 
spindle is evaluated and optimized for a tool with 3 cutting edges 
and a diameter of 8 mm. Of course, this can also be extended to the 
analysis for different speeds, but this would then result in a sig-
nificantly larger parameter space. The corresponding model para-
meters are listed in Table 2:

Fig. 5. Optimization variables for the calculation of a geometry proposal of the rotor 
shaft. The thrust and journal air bearings are illustrated in blue boxes and the shaft 
geometry is in purple.
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The representation of the end milling process at selected points 
in time during the simulation is shown in Fig. 6. The simulation 
starts at t = 0. The material to be machined (thick black line) is di-
rectly in front of the tool. For t = 1.4 ms to t = 8.6 ms it can be seen 
how the tool penetrates further into the material. From t = 10.1 ms 
onwards the tool is in full engagement. The process forces, both 
radial and tangential, as well as the forces along the main are shown 
as arrows.

From these results, correlations between the optimization vari-
ables and the resulting displacements are found. The Pearson cor-
relation coefficient is used for this. The correlations between all 
variables are determined and as the result, a correlation matrix P is 
found. The values contained in P lie in the range p1 1ij . Such a 
correlation matrix is shown in Fig. 7. The components on the matrix 
diagonal always have the value 1, since the correlation of a variable 
with itself always corresponds to 1.

The matrix is also symmetrical meaning either the last row or 
column represents the correlations between the optimization vari-
ables and the target variable. The various aspects of the sensitivity 
analysis can be read very quickly. The correlations within the opti-
mization variables should be as small as possible, which is indicated 
by small dots in Fig. 7. If these correlations are too large, the cor-
relations to the target variable may be distorted. In the last column 
or row, the large dots indicate a strong correlation between the re-
spective optimization variable and the target variable. The correla-
tions found are dependent on the number of geometries generated. 
The correlations among the optimization variables become smaller 
as the number of samples increases. The relevant correlations of the 
target variable with the optimization variables become clearer as the 
number of samples increases. The number of samples for this ana-
lysis is set to 50. This number was experimentally evaluated for the 
range between 10 and 200 and the best tradeoff between con-
vergence and computational efficiency was found in 50 samples.

Modeling of the rotor shaft and optimization

The first design proposal is generated based on the sensitivity 
analysis. As illustrated in Fig. 8, the beam element representation is 
simplified compared to the detailed rotor geometry. The im-
plemented test mandrel with a length of 121 mm and an average 

diameter of 16 mm and tool holder with a length of 63 mm and an 
average diameter of 28 mm represents the largest permitted tool, 
which therefore brings the greatest dynamics to the shaft. The 
manufacturing tolerances and the connection points of different 
elements and materials are assumed as ideal. Furthermore, the 
whole geometry is made mainly out of steel. The few little other 
materials like magnets for the rotor are neglected.

The bearing positions are illustrated in Fig. 8 with red marks. The 
stiffness and damping characteristics of the bearings are derived as 
described in Stoop [29]. These values are mainly dependent on the 
speed and eccentricity during operation. However, these operating 
conditions are derived from the use case and assumed to be static for 
this analysis of the rotor dynamics over the excitation range. Fur-
thermore, the stiffness and damping of air bearings are also de-
pendent on the diameter of the bearing. However, this dependency 
can be considered in the design of the air bearings for the corre-
sponding diameters and the bearings can thus also be designed for 
different diameters with the same stiffness and damping. Further-
more, the two radial bearings are symmetrically designed and thus 
have the same characteristics. The appropriate values for the main 
speed of 10′000 rpm are given in Table 3.

The mathematical model, meta-model, which is used for opti-
mization, is created with the help of linear regression. In doing so, an 
attempt is made to match a polynomial of degree g with m in-
dependent variables, a so-called response surface approximation 
(RSA), as closely as possible to the point cloud of results di end, found 
through the transient analysis. The determination of the RSA is done 
according to the procedure described by Arora [30]. The quality of 
the RSA found compared to the determined data points of the 
system response is quantified with the help of the coefficient of 
determination R2. The closer R2 is to 1, the better the RSA represents 
the system behavior. If R2 = 0, the RSA only represents the mean 
value of the data points.

Spindle measurement setup

The spindle error analyzer (SEA) by Lion Precision uses a precise 
double master ball target with a roundness error of less than 50 nm 
as a reference and five capacitive sensors to capture the movements 
of the target mounted to the spindle. Four of the capacitive sensors 
point in the radial direction (P1, P4, P2, P5) and one additional along 
the spindle axis (P3). The sensors are placed as shown in Fig. 9, in 
line with the corresponding X, Y and Z axis of a rectangular system. 
Therefore, component errors such as tilt movements around the X 
and Y axis are measured (i.e. EAC, EBC), as well as deviations in X, Y 
and Z directions (EXC, EYC, EZC). However, location errors (A0C, B0C) 
cannot be detected. Additionally, the SEA distinguishes between 
synchronous and asynchronous errors. Moreover, simultaneous 
temperature measurement of a maximum of 7 different sensors is 
possible and synchronized with the displacement measurements.

Accordingly, the following tests are possible to be performed 
according to ISO 230-7 standards: radial rotating sensitive direction, 
radial fixed sensitive direction, tilt fixed sensitive direction, axial 
error motion, thermal stability and temperature variation error. 

Table 1 
Lower and upper limits of the selected optimization variables for the rotor shaft. 

Optimization variable Lower limit Upper limit Unit Description

x1 3 10 mm Inner diameter rotor shaft
x2 20 40 mm Outer diameter rotor shaft
x3 200 300 mm Length of rotor shaft
x4 50 70 mm Outside diameter of thrust bearing
x5 4 8 mm Thickness of thrust bearing
x6 0.05 0.2 - Position of the axial bearing
x7 0.2 0.4 - Position of the front radial bearing
x8 0.5 0.8 - Position of the rear radial bearing

Table 2 
Transient cutting force model parameter. 

Spindle speed 10′000 rpm
Number of cutting edges 3
Cutting edge angle 45°
Feed velocity 25′000 mm/min
Tool diameter 8 mm
Axial depth of cut 0.5 mm
Kac -100 MPa
Kae 10 N/mm
Krc 236 MPa
Kre 20 N/mm
Ktc 800 MPa
Kte 19 N/mm
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Axial error motions are categorized into fundamental, residual 
synchronous, and asynchronous motions. Fundamental error mo-
tions occur at the rotational frequency of the spindle, whereas re-
sidual motions occur every integer multiple of a rotation. 
Asynchronous axial error motions on the other hand do not repeat 
regularly with the rotation of the spindle. Fixed sensitive direction 
measurements set the sensitive direction when the workpiece is 
rotated and the point of measurement is not rotating. Such a mea-
surement represents best the situation in a turning process. All 
variation in this direction results in 1:1 errors on the workpiece, 
whereas motions in tangential direction only reflect on the work-
piece as deviations of second-order magnitude.

Contrary thereto, rotating sensitive direction measurements are 
of importance for drilling or milling operations. Therefore, move-
ments in both directions must be considered when calculating de-
viation. The radius at any given angle is calculated as mentioned in 
ISO 230-7 [14]:

= + +r r X Y( ) ( )cos( ) ( )sin( )0 (24) 

With being the angle of rotation, X ( ) the output of the dis-
placement sensor in the x-direction, Y ( ) the output of the dis-
placement sensor in the y-direction and r0 the value to scale the plot.

Results

The results of the geometry optimization are shown in Fig. 10. In 
this paper, the RSA is performed using two of the eight independent 
variables as can be seen in Fig. 10. However, any number and com-
bination of independent variables can be used, shifting the problem 
into higher dimensions. The two variable cases shown here have 
been chosen for illustrative purposes. These are the outer diameter 
of the rotor shaft and the outer diameter of the thrust bearing disc. 
These two values together form the main description of the rotor 
outer diameter geometry. The target parameter in the form of the 
tooltip displacement is also shown in the figure. Here, 100 geome-
tries have been calculated for the problem. The RSA of order 12 
found has a coefficient of determination R2 of 0.97, which is a good 
approximation of the behavior.

Fig. 6. Transient material penetration of the end milling process. 
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The blue circle in Fig. 10 shows the optimum of the two design 
parameters. The final parameter selection is shown in Table 4. 
However, these are only the parameters of the spindle shaft itself. 
The description of the tool and tool holder is implemented for the 
largest permitted tool and holder.

Frequency and transient analysis

For the geometry found through the optimization process, a 
frequency analysis is now performed. The resonance frequencies 
found are typically shown in the so-called Campbell diagram as in 
Fig. 11. The influence of the rotational speed is seen in the bending 
modes. For isotropic radial bearings, for example with identical 
properties in both coordinate directions of the bearing cross-section, 
the resonance frequencies coincide at = 0. These bearing proper-
ties can be assumed for a standing spindle rotor where gravity acts 

in the axial direction of the rotor. For increasing speeds > 0, the 
frequency splits into two lines drifting apart. The lower resonance 
frequency corresponds to a backward whirl, and the higher one to a 
forward whirl. If the excitation frequencies coincide with the re-
sonance frequencies, marked in green, the associated speed corre-
sponds to the critical speed.

The stability of the system is seen from the sign of the damping 
coefficient , which is the real part of the eigenvalue. Further typical 
diagrams for the analysis of a damped rotor are the root locus 

Fig. 7. Sensitivity matrix on the main design parameters and the total displacement. 

Fig. 8. The rotor geometry with all details is at the top and the nodal beam element representation is shown below. The beam elements of 3 mm length are shown in black and the 
additional bearing conditions are in red.

Table 3 
Gas bearing properties at 10′000 rpm. 

Stiffness Damping

xx-direction 18.4 N/µm 1025 Ns/m
yy-direction 18.3 N/µm 611 Ns/m
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diagram as shown in Fig. 12 and the simulated radial rotating sen-
sitive synchronous error in Fig. 13 out of the transient analysis. In 
Fig. 12, it is seen at a glance whether the system becomes unstable at 
any time. The vertical axis describes the imaginary part of the ei-
genvalues which are also known as the damped frequency. In the 
diagrams shown here, this is never the case over the entire speed 
range. This can be seen from the fact that the green circles, namely 
the torsional modes, come very close to the value zero and are 
therefore considered borderline stable. The eigenvalues move with 
increasing speed towards the positive direction of the decay rate this 
behavior can be explained by the gyroscopic effect on the rotor. Since 
the bearing stiffness is described as constant, it is estimated that the 
natural frequency is only affected by the shaft rotor dynamics. The 

Fig. 9. ISO fixture according to Böhl [31]. 

Fig. 10. Response-Surface Approximation of the target and two design parameters. 
The red dots represent the calculated values and the blue circle is the corresponding 
optimum.

Table 4 
The resulting design parameters. 

Parameter Result Unit Description

x1 5 mm Inner diameter rotor shaft
x2 38 mm Outer diameter rotor shaft
x3 250 mm Length of rotor shaft
x4 63 mm Outside diameter of thrust bearing
x5 6 mm Thickness of thrust bearing
x6 0.08 - Position of the axial bearing
x7 0.24 - Position of the front radial bearing
x8 0.64 - Position of the rear radial bearing

Fig. 11. Campbell diagram for the important natural frequencies with the corre-
sponding rotational speed.
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fact that primarily the torsional modes are almost borderline stable 
is explained by the fact that this represents the only degree of 
freedom of the system, that is not supported by the bearings.

The simulated radial rotating sensitive synchronous error in 
Fig. 13 is calculated with the implemented rotor dynamic model and 
the residual mean unbalance excitation of 4.5 gmm for the whole 
rotor. This excitation and the eigenmodes then represent the illu-
strated errors.

Frequency response function

For the first verification of the developed model, the Frequency 
Response Function (FRF) of the rotor is measured. This measurement 
is elaborated according to the method using the sound emission 
spectrum analysis presented by Akbari et al. [32]. This allows quick 
and comparatively simple measurement of the natural frequencies. 
In the present case, of course, the measurement is carried out with 
the test mandrel, tool holder and spindle shaft in the assembled 
state. The frequencies can then be compared according to the 
Campbell diagram in Fig. 11. The results of this impact test are shown 
in Fig. 14. No statement can be made about the power, as only the 
sound emission is recorded. The test is again carried out several 
times to minimize the noise of the individual recordings. The results 
up to a frequency of 1 kHz show an agreement of the natural fre-
quencies in the range of approx. 200 Hz and approx. 600–700 Hz 

with the calculated Campbell diagram. Furthermore, a natural fre-
quency at approx. 50 Hz can be seen in Fig. 14, which is probably due 
to an unsuppressed rigid-body movement during the measurement.

Error movement measurement

The optimized rotor geometry is analyzed according to the de-
scribed test setup. The corresponding errors, in terms of synchro-
nous and asynchronous errors to the ideal behavior, are shown in 
Fig. 15. The amplitude of the deflection and the corresponding phase 
is shown. The position angle of the ellipse changes depending on the 
speed. Furthermore, the greater semi-axis of the orbits is also partly 
dependent on the speed. The measured radial error at 15′000 rpm 
shows two harmonics. Whereby the superimposed harmonic is af-
fected by the 3rd harmonic of the rotation as seen in the Campbell 
diagram. The main stimulus of this effect may also come from a 
superimposed imbalance of the rotor.

In addition, the rotating sensitive synchronous error amplitudes 
are shown in Fig. 16. Here, the natural frequency is known from the 
frequency analysis in form of bending at approx. 9′000 rpm is visible 
in the form of an amplitude increase in this range. The further in-
crease in amplitude towards 15'000 rpm comes from the increasing 
influence of the unbalance and a first eigenmode over 20′000 rpm. 
This residual static and dynamic unbalance due to manufacturing 
tolerances are included in the rotor dynamics model. The unbalance 
is included using a first and second-order excitation of the 

Fig. 12. Root locus diagram of the real part and imaginary part of the eigenvalues. 

Fig. 13. Simulated radial rotating sensitive synchronous error. 

Fig. 14. Measured mean tooltip frequency response function at 0 rpm. 

Fig. 15. Measured radial rotating sensitive polar plots. 
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eccentricity in the mass of the rotor. It is neither the part tolerance 
nor the assembly errors directly but the resulting eccentricity of the 
center of mass in the rotational direction. Further, the asymmetry of 
the bearing itself and the bearing position can influence this ex-
citation. Furthermore, the measured results in Fig. 16 match the si-
mulated values from Fig. 13 well. The remaining root-mean-square 
error (RMSE) is 0.28 µm between the simulation and the measure-
ment. Whereas the Euler-Lagrange equations from (2) to (7) and the 
corresponding shear correction factor from Eq. (1).

This proposed spindle shaft thus shows a well-describable be-
havior in terms of minimum displacement at the tool center point. 
Furthermore, the described frequency and transient analysis take 
only a few seconds per speed level and design point. In addition, the 
dynamic behavior is already in good agreement with the experi-
mental results and therefore provides valuable insights without a 
physical experiment.

Conclusion and outlook

The basic procedure for an initial design proposal of an aerostatic 
spindle using FEM and optimization is shown. The dynamic char-
acteristics are formulated and implemented using beam theory and 
afterwards used together with the frequency and time transient 
cutting force analysis.

Numerous extensions to the current implementation are pos-
sible. If it is assumed, that the bearings will always have isotropic 
properties, meaning the system is not subjected to non-uniform 
volume forces related to the axes of the radial bearings, then the 
system can be formulated in body-fixed coordinates. A good deri-
vation of such a formulation is described by Kirchgässner [33]. This 
formulation will open up the possibility of representing a rotor with 
non-symmetrical cross-sections if cooling fluid is to be conducted 
through the rotor. In this case, of course, the shape functions of the 
Timoshenko elements would have to be recalculated with the 
complete system of Euler-Lagrange equations.

For the present analysis, manufacturing tolerances were also 
neglected. If, for example, the center of mass deviates from the 
theoretical neutral axis, centripetal forces arise, which can nega-
tively influence the behavior of the rotor. For the formulation of the 
Timoshenko elements, it was assumed that the cross-sectional can 
distort relative to the neutral axis, but it is always assumed to be flat. 
A more physically correct description would also include the 
warping of the surface.

The combination of the presented steady-state milling simula-
tion together with the multi-variable rotor optimization is elabo-
rated in this paper. Furthermore, extensions are easily possible based 
on the described model due to the computational efficiency of the 
whole procedure. This means that the adoption of completely dif-
ferent applications is possible, such as the design of turbo com-
pressors, high-speed rotor systems or other applications that 
combine precision and speed.
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