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Selecting advanced analytics in manufacturing: a decision support model

Rafael Lorenza , Mathias Krausa� , Hergen Wolfb, Stefan Feuerriegela�� and Torbjørn H. Netlanda

aSwiss Federal Institute of Technology, Zurich, Switzerland; bTU Dresden, Dresden, Germany

ABSTRACT
Advanced analytics offers new means by which to increase efficiency. However, real-world applications
of advanced analytics in manufacturing are scarce. One reason is that the management task of select-
ing advanced analytics technologies (AATs) for application areas in manufacturing is not well under-
stood. In practice, choosing AATs is difficult because a myriad of potential techniques (e.g. diagnostic,
predictive, and prescriptive) are suitable for different areas in the value chain (e.g. planning, schedul-
ing, or quality assurance). It is thus challenging for managers to identify AATs that yield economic
benefit. We propose a multi-criteria decision model that managers can use to select efficient AATs tail-
ored to company-specific needs. Based on a data envelopment analysis, our model evaluates the effi-
ciency of each AAT with respect to cost drivers and performance across common application areas in
manufacturing. The effectiveness of our decision model is demonstrated by applying it to two manu-
facturing companies. For each company, a customized portfolio of efficient AATs is derived for a sam-
ple of use cases. Thereby, we aid management decision-making concerning the efficient allocation of
corporate resources. Our decision model not only facilitates optimal financial allocation for operations
in the short-term but also guides long-term strategic investments in AATs.
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Introduction

Advanced analytics offers companies new possibilities to gen-
erate knowledge and business value from large datasets
(Chehbi-Gamoura et al. 2019; Choi, Wallace, and Wang 2018;
De-Arteaga, Feuerriegel, and Saar-Tsechansky 2022; Dogan
and Birant 2021; Feuerriegel et al. 2022; Misic and Perakis
2019). It enables evidence-based decisions and actions
informed by data. In this way, advanced analytics can become
a critical differentiator for companies seeking to outcompete
competitors (LaValle et al. 2011; Sivarajah et al. 2017).

There is a large untapped potential for process improve-
ment and innovation using advanced analytics in manufactur-
ing (Feng and Shanthikumar 2018; Kusiak 2017; Lee 2018;
Lorenz et al. 2020; Senoner, Netland, and Feuerriegel 2022;
Sony and Naik 2019; Wolf et al. 2019). Despite the promising
prospects, manufacturers are not exploiting the full potential
of advanced analytics (Stentoft et al. 2021). McKinsey esti-
mated that <30% of the efficiency potential has been tapped
so far (Henke et al. 2016). A core problem is that decision-
makers in manufacturing face the complex task of selecting a
suitable set (i.e. portfolio) of advanced analytics technologies
(AATs). Concrete examples of AATs are reinforcement, semi-
supervised, or deep learning techniques.1 Each AAT requires
different resources during implementation and, furthermore,
AATs vary in performance with respect to different application
areas. Accordingly, decision-makers have to decide which

selection of AATs entails the greatest economic benefit based
on their company-specific needs. However, this choice is non-
trivial for two main reasons. First, decision-makers lack know-
ledge concerning valuable application areas for advanced
analytics (Fleming et al. 2018; LaValle et al. 2011). Second,
they require decision models to aid them in the selection of
suitable AATs from a plethora of different techniques (Wolf
et al. 2019; Zangiacomi et al. 2019).

To aid managers in the manufacturing sector, this paper
proposes a multi-criteria decision model that identifies a set
of efficient AATs across different applications. Based on a
data envelopment analysis (DEA), our decision model evalu-
ates each AAT with respect to multiple cost drivers and
effectiveness across common application areas. The DEA is
particularly well suited for this problem as it can consider
multiple input and output variables of the different applica-
tions. This is essential as the portfolio decision is complex,
requiring to take various options and resources into account.
To the best of our knowledge, this is the first use of a DEA
model to allocate resources (e.g. financial, human) in con-
junction with advanced analytics. This contribution can foster
the further adoption of advanced analytics in manufacturing.

The applicability of our decision model is demonstrated
using examples from two manufacturing companies. For
each, we conducted expert interviews with associated project
managers to identify both company-specific requirements
and cost drivers. We evaluate efficiency across different AATs
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and, based on the results, recommend which advanced ana-
lytics techniques the manufacturing companies should use.
Thereby, we guide resource allocation to AATs.

Our work has several implications for managers. Using our
approach, decision-makers in manufacturing can support
their selection of effective AATs. This is often challenging in
practice since not merely a single AAT but rather a set of
multiple AATs is required to improve efficiency in a manufac-
turing system. Given the recommended set of AATs, manag-
ers can improve human resource allocation, for example by
hiring personnel with particular skills and steering short- and
long-term financial investments in the AATs. Our decision
model is flexible: it can be customized along different dimen-
sions, namely the available AATs, cost drivers, and perform-
ance measures. Hence, our approach has wide applicability
in diverse manufacturing settings.

The remainder of this paper is structured as follows.
Section Related work provides an introduction to DEA and
highlights the existing research gap. Section Model develop-
ment develops our decision model to aid manufacturing
management in selecting a set of efficient AATs. Section
Empirical findings empirically demonstrates the effectiveness
of our decision model in two manufacturing companies.
Section Discussion discusses managerial implications, while
Section Conclusion concludes.

Related work

In the following, we review existing approaches of selecting
a set of efficient AATs for manufacturing. We then continue
to provide a general introduction to DEA as a potential solu-
tion to overcome the limitations of the existing approaches.

Decision support for AAT selection

Research has identified many prominent applications of
advanced analytics in manufacturing (Cheng et al. 2018;
Choudhary, Harding, and Tiwari 2009; K€oksal, Batmaz, and
Testik 2011; Lorenz et al. 2021; Schuh et al. 2019; Sharp, Ak,
and Hedberg 2018; Wang et al. 2018; Wuest et al. 2016).
However, little research has been devoted to decision mod-
els that equip management with tools to select a suitable
set of efficient AATs. Specifically, prior literature has sug-
gested decision models for identifying and configuring single
AATs for problem-specific applications, but not for choosing
among multiple AATs. In this regard, this paper offers a
novel and specific solution to a general problem that has
been insufficiently addressed in the past.

Examples for selecting and configuring a single AAT are
as follows. Villanueva Zacarias, Reimann, and Mitschang
(2018) suggest a framework that automatically recommends
suitable analytics techniques with respect to a domain-
specific problem at hand. Lechevalier et al. (2018) present a
framework for the semi-automatic generation and configur-
ation of neural networks. However, this research stream is
limited to single AATs rather than choosing a strategic selec-
tion of promising AATs. A promising way to overcome these
limitations of the existing methods is offered by the DEA.

Data envelopment analysis

In management science, the evaluation of efficient entities is
usually based on the DEA (Braglia and Petroni 1999; Braglia,
Zanoni, and Zavanella 2003; Emrouznejad and Yang 2018;
Jagoda and Thangarajah 2014; Liu, Lu, and Lu 2016). DEA is
a method to assess the relative efficiency of homogeneous
decision-making units (DMUs) that convert multiple inputs
into multiple outputs (Charnes, Cooper, and Rhodes 1978).
‘Inputs’ are resources used by the DMUs, while ‘outputs’ rep-
resent generated benefits (Golany and Roll 1989). DMUs are
generic entities; they can be organizations, divisions, indus-
tries, projects, or individuals.

The efficiency of each individual DMUj, j¼ 1,… , n, is eval-
uated based on m non-negative inputs xi¼ (x1,j,… , xm,j) and
s non-negative outputs yr¼ (y1,j,… , ys,j). The DEA is based on
a common measure to evaluate the efficiency of each DMUj,
j¼ 1,… , n, i.e. Ps

r¼ 1 yrPm
i¼ 1 xi

: (1)

The strengths of the DEA are as follows. First, it is an empir-
ical (‘data-oriented’) approach (Bogetoft and Otto 2011; Jagoda
and Thangarajah 2014). Second, the DEA is non-parametric and
thus does not require explicit characterizations of relations like
linearity, which are customarily used in statistical regressions
and related approaches (Cooper, Seiford, and Tone 2006).
Third, the DEA can simultaneously handle multiple input and
output variables that would otherwise not be comparable to
one another (Cooper, Seiford, and Zhu 2011). This property of
processing arbitrary factors ensures the DEA’s widespread
applicability as a tool for benchmarking in many domains
(Braglia, Zanoni, and Zavanella 2003; Chen, Cook, and Lim
2019; Liu, Lu, and Lu 2016).

The two basic DEA models are the Charnes, Cooper, and
Rhodes (CCR) model (Charnes, Cooper, and Rhodes 1978)
and the Banker, Charnes, Cooper (BCC) model (Banker,
Charnes, and Cooper 1984). Both the CCR and the BCC draw
upon a technology space T, defined as any possible input-
output combinations, that are limited by the efficiency fron-
tier. The technology space T is subject to two production
economic regularities, namely free disposability and convex-
ity (Cooper, Seiford, and Tone 2006). Free disposability
assumes that one can produce at least the same number of
outputs with more input. Convexity assumes that any
weighted average of feasible input-output combinations is
also a feasible production plan.

Both the CCR and the BCC model draw upon these two
assumptions, yet they differ with respect to how input and
output can be scaled, i.e. the returns-to-scale (RTS) assump-
tion. Changing RTS assumptions affects the shape of the effi-
ciency frontier and thus the technology space T (see
Figure 1). The CCR model builds on the assumption of con-
stant returns-to-scale (CRS) of activities. In other words, one
can assume that we can arbitrarily scale inputs xi and out-
puts yr in a linear fashion (Cooper, Seiford, and Tone 2006).
In combination with free disposability and convexity, the
technology space for possible input-output pairs can thus be
expressed as
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Tcrs ¼ xi, yrð Þ 2 R
m
þ � R

s
þjxi � Xn

j¼1

kjxij , yr �
Xn
j¼1

kjyrj, kj � 0 8 j
( )

,

(2)

where kj, j¼ 1,… , n, are the weights of the efficiency refer-
ence set (ERS), that is, a linear convex combination of effi-
cient DMUs located on the frontier. The BCC model differs
from the CCR model by additionally enforcing the conditionPn

j¼1 kj ¼ 1: This implies a variable returns-to-scale (VRS)
assumption and thus yields

Tvrs ¼ TcrsjXn
j¼1

kj ¼ 1

( )
: (3)

Because of this additional restriction, the technology fron-
tier of the BCC model is less optimistic regarding potential
input-output combinations than the CCR model. As a conse-
quence, a BCC model with VRS always yields a greater or
equal number of efficient DMUs relative to a CCR model
with CRS, as shown in Figure 1. Generally, the choice of the
RTS assumption depends on the particular use case (Doyle
and Green 1993). As we shall see later, our research setting
requires a model that builds upon a VRS assumption.

Previously, the DEA has been widely considered a suitable
decision model for strategic performance evaluation at the
managerial level. For instance, researchers have applied the
DEA in contexts, such as computer printers (Doyle 1991),
robotics manufacturing systems (Cook, Kress, and Seiford
1993), software projects (Mahmood, Pettingell, and

Shaskevich 1996), industrial robots (Baker and Talluri 1997)
and automotive dealerships (Almohri, Chinnam, and
Colosimo 2019).

However, to the best of our knowledge, the DEA has not
yet been considered for selecting a set of efficient AATs in
manufacturing. Since the DEA allows to select an efficient set
consisting of multiple technologies, AATs can easily be
added or removed to represent the latest development of
AATs over time. In this regard, the DEA accounts for dynamic
developments.

Model development

In the following, we first state our problem generally. We
then present our proposed DEA framework. The resulting
decision model requires suitable input and output variables,
which we introduce subsequently. In the end, we formulate
the optimization problem mathematically.

Problem statement

Our goal is to develop a multi-criteria decision model that
identifies a set of efficient AATs in manufacturing. We model
this decision problem via a DEA. The DEA is suitable because
we (i) want to consider multiple input and output variables,
(ii) have to handle incommensurate variables with different
units, and (iii) require a scalar measure that allows for a rank-
ing of examined AATs.

Proposed DEA framework

For our decision model, we propose an input-oriented BCC
model in its envelopment form. Relevant inputs are given by
financial resources that are required to implement an AAT,
namely data preparation, modelling, and estimation costs.
Relevant outputs are given by the generated effectiveness of
an AAT across different application areas. Each output repre-
sents one aggregated effectiveness indicator based on three
common measures, namely prediction performance, inter-
pretability, and online learning ability (described in detail in
the next chapter). Figure 2 shows our DEA framework. Each
AAT is described by three cost drivers and in terms of its
effectiveness in six application areas.

We opt for the input-oriented DEA variant because cost
drivers can be considered flexible while the performance of
each AAT in an application area is predetermined by the
underlying technology. A manager, for instance, can hire

Costs Decision-making unit
Effectiveness in 

application areas

Data preparation

Modelling

Estimation

Advanced 
Analytics 

Technology

Production planning

Production scheduling

Quality inspection

Quality driver identification

Process control

Maintenance planning

Figure 2. Proposed DEA framework in order to assess the efficiency of AATs.

Figure 1. Illustrative efficiency frontier and technology space T under CRS
(solid line) and VRS (dashed line) with s¼ 1 and m¼ 1. DMUs are shown
as points.
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better data scientists to improve modelling or data prepar-
ation (e.g. data collection mechanisms can be optimized to
reduce data pre-processing costs). Estimation costs can be
reduced, for instance, if appropriate computing infrastructure
is acquired. However, the effectiveness of an AAT is exogen-
ously determined by the underlying technology itself.

Furthermore, we opt for the BCC model as it allows for
VRS. In our problem setting, it can be assumed that an
increase in cost drivers will not result in an unlimited propor-
tional change of effectiveness (Hastie, Tibshirani, and
Friedman 2009; Bishop 2006). Another convenient advantage
of the BCC model is that its VRS assumption additionally mit-
igates the shortcoming of AATs that are not fully homoge-
neous. Consequently, our previously mentioned drawback is
alleviated by the fact that our BCC approach better accom-
modates the scale effects between different AATs in the effi-
ciency analysis (Baker and Talluri 1997).

The reasons for solving the model using the envelopment
form are 3-fold. First, the computational effort is considerably
smaller compared to the multiplier model (number of con-
straints mþ s� n). Second, the envelopment form allows us
to find an optimal, i.e. zero-slack, solution. Third, the inter-
pretation of results is more straightforward because the solu-
tions are directly related to inputs and outputs that
correspond to original data compared to virtual multipliers
(Cooper, Seiford, and Tone 2006).

Model parametrisation

In the following, we describe (i) cost drivers, (ii) application
areas, and (iii) effectiveness measures of AATs in the respect-
ive application areas in detail.

Cost drivers
Relevant cost drivers for AATs are (i) data preparation, (ii)
modelling, and (iii) estimation costs (Cheng et al. 2018;
Villanueva Zacarias, Reimann, and Mitschang 2018; Hazen
et al. 2014; Hastie, Tibshirani, and Friedman 2009; Kotsiantis,
Zaharakis, and Pintelas 2007; Wuest et al. 2016). Each cost
driver is detailed in the following.

Data preparation costs quantify the effort needed for pre-
processing. Pre-processing costs for different AATs can vary
substantially with respect to missing values, (ii) outliers, (iii)
feature engineering (including transformation), and (iv) fea-
ture selection. For instance, some AATs, such as deep learn-
ing, learn feature representations implicitly and thus largely
circumvent the need for manual pre-processing (Goodfellow,
Bengio, and Courville 2017; LeCun, Bengio, and Hinton 2015).
The LASSO comes with an implicit capacity for feature selec-
tion and thus automatically encourages parsimonious models
(i.e. models with fewer parameters). In manufacturing, data
pre-processing is usually labour intensive due to known
issues in data quality (Hazen et al. 2014; Wang et al. 2018;
Wuest et al. 2016).

Modelling costs arise from the manual effort that is
needed to develop a model specification. This comprises the
selection of both a model architecture and the best hyper-

parameter configuration. Modelling costs can vary strongly
between different AATs (Hastie, Tibshirani, and Friedman
2009; Kotsiantis, Zaharakis, and Pintelas 2007). Some models
(e.g. regression models) leave only a few degrees of freedom.
Other AATs require extensive manual effort to optimize a
large set of (hyper-) parameters. This particularly applies to
deep learning, where the choice of a suitable architecture is
almost as important as hyper-parameter tuning (Kraus,
Feuerriegel, and Oztekin 2020).

Estimation costs are characterized by computational effi-
ciency. This includes demand for customized hardware (e.g.
graphics processing units), required memory, and run-time.
These costs vary considerably among different AATs: for
instance, some can better handle large-scale data sets or
large numbers of predictors (Kraus, Feuerriegel, and Oztekin
2020). This is especially relevant in manufacturing, since
data-sets are often very large, both in terms of observations
and the number of variables (Cheng et al. 2018; Villanueva
Zacarias, Reimann, and Mitschang 2018; Wuest et al. 2016).

Application areas of advanced analytics in manufacturing
Multiple application scenarios of advanced analytics in manu-
facturing have previously been identified (Cheng et al. 2018;
Choudhary, Harding, and Tiwari 2009; K€oksal, Batmaz, and
Testik 2011; Sharp, Ak, and Hedberg 2018; Wuest et al. 2016;
Wolf et al. 2019). However, a clear classification of application
areas is lacking. We thus conducted a systematic literature
review (see Supplementary Appendix A for details) of ana-
lytics applications in manufacturing and derived the follow-
ing classifications that we utilize throughout this paper: (i)
production planning, (ii) production scheduling, (iii) quality
inspection, (iv) quality driver identification, (v) process con-
trol, and (vi) maintenance planning.

Production planning requires accurate forecasts of demand
(Chui et al. 2018; Esmaeilian, Behdad, and Wang 2016; Tao
et al. 2018). However, this is challenging given that manufac-
turers are located at the upstream end of a long supply chain
with multiple distributors, wholesalers, and retailers between
the customer and themselves. This introduces multiple sources
of variability and thus impedes straightforward forecasts of
demand (Carbonneau, Laframboise, and Vahidov 2008). To aid
better planning, advanced analytics for demand forecasting
can be implemented. This commonly builds upon historical
time series models (Ferreira, Lee, and Simchi-Levi 2016), which
are often expanded by external user data (Boone et al. 2018;
Chong et al. 2017; Cui et al. 2018; Lau, Zhang, and Xu 2018).

Production scheduling assigns incoming orders to
machines based on a predetermined decision objective, e.g.
the earliest due dates or the shortest average completion
time. Job scheduling can be loosely categorized further into
(i) job-shop scheduling and (ii) flow-shop scheduling. In the
former, job-shop scheduling, n independent jobs have to be
processed by a particular pre-determined subset of m
machines, but without explicit orders (Zhang, Song, and Wu
2013). In contrast, flow-shop scheduling is characterized by n
jobs that have to be processed on the same number of m
machines in a sequence (Noroozi, Mokhtari, and
Kamal 2013).
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Quality inspection uses sensor data to analyze the condi-
tion of a product, e.g. scrap or good parts (Weimer, Scholz-
Reiter, and Shpitalni 2016). Quality inspection has become a
prevalent automation tool to reduce labour force and
increase yield rates in manufacturing (K€oksal, Batmaz, and
Testik 2011; Wu and Zhang 2010). For instance, quality
inspection based on visual sensing has the great advantage
of contactless inspection and is, therefore, not influenced by
the type, condition, electromagnetic field, or temperature of
the target (Park et al. 2016). The inferred quality level is then
used to determine whether and in which market a product is
sold (Li, Xia, and Yue 2019).

Quality driver identification determines root causes that
affect the quality (Chen, Tseng, and Wang 2005). Examples of
such factors are the quality of materials or environmental
conditions (e.g. temperature). These factors interact with
each other and consequently make it difficult to systematic-
ally infer which factor is responsible for poor quality output
(Hsu and Chien 2007; Kraus and Feuerriegel 2019; Tao et al.
2018). Once quality drivers have been inferred, actions can
afterward be implemented with the objective of process
improvement (Zantek, Wright, and Plante 2002).

Process control dynamically determines machine parame-
ters so that a target measure is achieved, such as, for
instance, maintaining a certain output quality or optimizing
energy efficiency (Cheng et al. 2018; Elwany, Gebraeel, and
Maillart 2011). Process control based on manual decision-
making is often inefficient due to the abundant number of
free parameters in modern manufacturing equipment. In
contrast, advanced analytics promises the prospect of choos-
ing parameters that result in improved productivity and
product quality, as well as reduced costs (Tao et al. 2018).2

Maintenance planning introduces condition-based services,
so that maintenance events are scheduled proactively or
when a breakdown is identified to reduce the downtime of
manufacturing machinery and tool equipment (Olde Keizer
et al. 2018; Sharp, Ak, and Hedberg 2018). Maintenance plan-
ning can be further subdivided depending on whether
actions are triggered reactively or proactively. Reactive main-
tenance infers the (latent) condition of a system in real-time
from observable sensor data. Based on this, it triggers main-
tenance when the condition deteriorates below a certain
safety threshold, such as the growth of a fault frequency. A
major drawback of reactive maintenance is that it cannot
anticipate a breakdown ahead of time. In contrast, proactive
maintenance (often termed ‘predictive maintenance’) fore-
casts the remaining useful life of a system and, on this basis,
triggers maintenance events in advance (Mazhar, Kara, and
Kaebernick 2007; Sharp, Ak, and Hedberg 2018). To this end,
it looks at the current and past states of the system, as well
as its expected future operational load. This has multiple
benefits in practice: it prevents breakdowns, prolongs the
lifespan, and ensures the availability of spare parts in due
course (Tobon-Mejia et al. 2012).

Effectiveness measures of AATs in application areas
The AATs considered are as follows. We evaluate 31 AATs for
our analysis. These AATs were selected based on an

extensive review of the existing literature on advanced ana-
lytics (see Supplementary Appendix A for details). We subdiv-
ide all AATs into three main categories: (i) diagnostic, (ii)
predictive, and (iii) prescriptive techniques.

Relevant effectiveness measures for AATs are (i) prediction
performance, (ii) interpretability, and (iii) online learning (i.e.
the ability of an AAT to be regularly updated with new data).
The dimensions of prediction performance and interpretabil-
ity are commonly used to gauge the suitability of a model.
However, these measures are negatively correlated with each
other and thus entail a trade-off that must be made for each
use case (Hastie, Tibshirani, and Friedman 2009). Models with
higher prediction performance are often black-box models
and thus lack interpretability. Online learning is regarded as
a crucial ability in manufacturing (Bang et al. 2019; Cheng
et al. 2018; Sharp, Ak, and Hedberg 2018; Wuest et al. 2016).
For a detailed overview of the evaluation, we refer to
Supplementary Appendix B.

We use a ten-point scale to assess each AAT with respect
to costs and effectiveness. That is, we followed Hastie,
Tibshirani, and Friedman (2009) and Kotsiantis, Zaharakis,
and Pintelas (2007) as they provide comprehensive rankings
of AATs with respect to data preparation, modelling, and
estimation costs, as well as prediction performance, interpret-
ability, and online learning ability. To include domain-specific
expertise, we additionally took findings from Wolf et al.
(2019) into account. Scoring each AAT according to input
and output variables is a crucial task within the presented
approach as this includes qualitative and subjective judge-
ment. Therefore, we see this data set as a starting point that
can be deliberately adjusted.

Figure 3 shows the resulting parametrization of each AAT.
For instance, image-based models usually have high estima-
tion and modelling costs due to a high number of input vari-
ables (pixel features) and sophisticated model structures (e.g.
a deep convolutional neural network). These AATs often per-
form best on visual quality inspection tasks, but also for
maintenance planning where they can identify potentially
deteriorating parts.

Mathematical formulation
When applying DEA to a group of decision-making units, an
optimization problem must be solved for each DMU. In its
basic form, a DEA model is a quotient programming prob-
lem. This is because the efficiency value of a decision unit is
a quotient with the sum of the weighted outputs in the
numerator and the sum of the weighted inputs in the
denominator.

Let AATj, j¼ 1,… , n, refer to the DMUs to be evaluated.
Furthermore, each AATj is associated with m non-negative
inputs xi¼ (x1,j,… , xm,j) and s non-negative outputs yr¼ (y1,j,
… , ys,j). These are weighted using virtual multipliers vi� 0
for inputs and ur� 0 for outputs (Cooper, Seiford, and Tone
2006). Given the input and output data, we measure the
relative efficiency h of each AATj once and hence need n
optimizations. Let the AATj to be evaluated on any trail be
designated as AATo, o¼ 1,… , n. For a given AATo, the object-
ive function is thus given by
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max
ur , vi

h ¼
Ps

r¼1 uryroPm
i¼1 vixio

, (4)

s: t:

Ps
r¼1 uryrjPm
i¼1 vixij

� 1, j ¼ 1, . . . , n, (5)

ur , vi � 0 8 r, i: (6)

Put simply, the DEA tries to adapt the individual weights
vi and ur to maximize the relative efficiency scalar h for the
AATo under study. Equation (5) ensures that the efficiency
scalar is equal to or below 1 for all AATj, j¼ 1, … , n. AATs
with an efficiency rating of 1 creates the so-called effi-
ciency frontier.

The solution to a quotient programming problem is not
easy because the objective function is not linear. Therefore,
the problem is transformed into a linear programming prob-
lem using the so-called Charnes-Cooper transformation
(Cooper, Seiford, and Tone 2006).

max
ur, vi

h ¼
Xs

r¼1

uryro, (7)

s: t:
Xm
i¼1

vixio ¼ 1, (8)

Xs

r¼1

uryrj �
Xm
i¼1

vixij � 0, j ¼ 1, . . . , n, (9)

ur , vi � 0 8 r, j: (10)

For each AAT, we compute confidence intervals for the
bias-corrected efficiencies using a bootstrapping approach
(Simar and Wilson 1998). The confidence intervals estimate
the range within which a true efficiency occurs. This allows
us to answer the question of AATs from the same group dif-
fer significantly in their efficiency. We provide further math-
ematical details in Supplementary Appendix C.

Figure 3. Costs and effectiveness intensities across different AATs.
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Empirical findings

In the following, we apply the proposed framework in two
specific industrial settings.

Setting

The decision model supports manufacturing companies to
decide in which AATs to invest. This question is especially
relevant for larger companies that are undergoing a digital
transformation. To demonstrate our decision model, we
cooperate with two manufacturing companies, namely
Geberit Produktions AG and ABB Turbo Systems AG. Geberit
Produktions AG manufactures sanitary products for the
end-consumer market. ABB Turbo Systems AG constructs tur-
bochargers for vehicles and power facilities. During two sep-
arate expert interviews with associated project managers, we
identify (i) which application areas are of relevance due to
different business needs and (ii) which cost drivers are critical
factors with regard to the decision-making process. We use
semi-structured interviews (Yin 2011) to evaluate the two
most important cost drivers and the two most important
application areas for each company (see Figure 4). In the first
part of the interview, the interviewee described the environ-
ment of the company. In the second part, the interviewee
reveals the current challenges and objectives of their manu-
facturing division. The third part of the interview asks to
rank the different cost and application areas of the model by
importance for the setting of the company. These qualitative
results from these expert interviews were used to tailor our
decision model to the different needs of both firms. The pre-
sented cases shall therefore reveal the applicability and illus-
trate the use of the model.

Empirical application 1: Geberit Produktions AG

Description
Geberit Produktions AG specializes in manufacturing and
supplying sanitary parts and related systems. Geberit is head-
quartered in Switzerland, it is a leader in the European mar-
ket and has a global presence through its subsidiaries.

Prospectively, the most relevant application areas for
Geberit Produktions AG are production planning, quality
driver identification, and process control. Production plan-
ning is a key enabler to reduce high inventory levels. Geberit
Produktions AG requires production planning to allow for
short delivery times to its customers. Quality driver

identification is another promising application area for
advanced analytics and can help maintain high productivity
within production processes. Process control is important
since Geberit Produktions AG uses expensive, automated
equipment. According to our informants, data preparation
and modelling are especially relevant cost drivers. Data prep-
aration costs are critical because Geberit Produktions AG
uses decentralized databases for each production plant,
which hampers data fusion (Fink, Netland, and Feuerriegel
2022). Modelling costs are relevant because of limited
expertise in the field of advanced analytics. Estimation costs
are regarded as negligible because of existing hard-
ware capacities.

Based on our findings from the expert interview, our
model only includes data preparation and modelling costs,
as well as the effectiveness of AATs in production planning,
quality driver identification, and process control.

Results
Table 1 shows the results from our DEA. Eight out of 31
AATs show an efficiency rating of h*¼ 1. However, there are
only seven BCC-efficient AATs that satisfy both h*¼ 1 and
(s�� ¼ 0, sþ� ¼ 0), namely (2.) visual, (4.) fully-supervised, (7.)
supervised deep learning, (16.) time-series models, (21.)
mathematical optimization, (23.) Markov decision process
and (24.) hidden Markov models. Consequently, these AATs
also represent the ERS for the remaining 24 inefficient AATs
(kj-weights can be found in Supplementary Appendix D).
Even though the AAT (17.) unsupervised learning reaches
h*¼ 1, it cannot be considered BCC-efficient because it still
shows output shortfalls (5 units for production planning, 9.4
units for quality driver identification, and 0.5 units for pro-
cess control). All remaining AATs must radially reduce all
inputs by their h*-value while additionally decreasing present
input excesses and increasing present output shortfalls.3

There are multiple interpretations of our findings. In line
with our expectations, the DEA evaluates mathematical opti-
mization as efficient because these techniques are suitable
for process control tasks, for instance, the identification of
ideal process parameters. Hidden Markov models are best
suited to quality driver identification. These techniques can
be used to monitor quality in sequential settings where indi-
vidual process stages are unobservable. For time-series data,
time-series models and Markov decision processes are
needed to forecast expected demand from historical produc-
tion volumes and then schedule the machine processes

Costs Decision-making unit
Effectiveness in 

application areas

Data preparation

Modelling

Estimation

Advanced 
Analytics 

Technology

Production planning

Production scheduling

Quality inspection

Quality driver identification

Process control

Maintenance planning

Figure 4. Exemplary selection of chosen cost drivers and application areas.
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accordingly. Visual is evaluated to be efficient because these
techniques entail relatively low modelling costs and allow for
the easy communication of results to the management.
Finally, fully-supervised and supervised deep learning are
required in all of the above tasks and are therefore evaluated
as BCC-efficient.

Empirical application 2: ABB Turbo Systems AG

In the following, we first provide background information on
ABB Turbo Systems AG and report on our findings from the
expert interview. Then we present the numerical results from
our DEA.

Description
ABB Turbo Systems AG is part of ABB AG, a Swiss-Swedish
multinational corporation operating mainly in the areas of
robotics, power, heavy electrical equipment, and automation
technology. ABB Turbo Systems AG produces turbochargers
for vessels, diesel trains, power plant facilities, and large con-
struction vehicles.

The most relevant application areas for the manufacturing
branch of ABB Turbo Systems AG are quality inspection and
maintenance planning. Quality inspection is especially

important to identify potential fine fissures after the friction
welding process. Maintenance planning is crucial to reduce
production downtime because redundant assembly capaci-
ties do not exist. According to our interviews, data prepar-
ation and modelling are relevant cost drivers of analytics
projects. Data preparation costs are critical because of mul-
tiple proprietary interfaces. Modelling costs are relevant
because of limited expertise in the field of advanced ana-
lytics. Estimation costs are regarded as fairly negligible
because of existing hardware capacities.

Based on our findings from the expert interview, our
model only includes data preparation and modelling costs,
as well as the effectiveness of AATs in quality inspection and
maintenance planning.

Results
Table 2 shows the results from our DEA. In this case, six out
of 31 AATs show an efficiency rating h*¼ 1. However, there
are only five BCC-efficient AATs that satisfy both h*¼ 1 and
(s�� ¼ 0, sþ� ¼ 0), namely (2.) visual, (7.) supervised deep
learning, (14.) image-based models, (16.) time-series models,
and (23.) Markov decision process (kj-weights can be found
in Supplementary Appendix E). Compared to the case of
Geberit Produktions AG, the DEA yields a different selection

Table 1. DEA results for Geberit.

AAT Efficiency
Confidence
interval� Selection

Input slacks Output slacks

DPC MC PP QDI PC

Diagnostic
1. Descriptive 0.909 [0.825 0.908] 1.749 0 0 2.604 0.004
2. Visual 1 [0.880 0.998] X 0 0 0 0 0
3. Clustering 0.919 [0.855 0.917] 0 0 1.534 1.418 0.153

Predictive
4. Fully-supervised 1 [0.877 0.999] X 0 0 0 0 0
5. Weakly-supervised 0.898 [0.833 0.896] 0 0.097 0 2.628 0.544
6. Semi-supervised 0.888 [0.827 0.887] 0 0 0.401 2.141 0.450
7. Supervised deep learning 1 [0.876 0.998] X 0 0 0 0 0
8. Inexact-supervised 0.963 [0.879 0.959] 0 0 0 1.472 0.783
9. Distant-supervised 0.867 [0.818 0.866] 0 0 2.976 1.469 0.328
10. Generative 0.908 [0.851 0.906] 0 1.088 0.500 3.100 0.500
11. Instance-based 0.868 [0.809 0.866] 0.434 0 0 0.472 0.072
12. Rule-based 0.950 [0.883 0.949] 0.041 0 0 0.616 0.066
13. Knowledge-based 0.953 [0.892 0.953] 0 0 0 0.700 0
14. Image-based models 0.894 [0.859 0.893] 0 1.056 5 8.900 0.500
15. Audio-based models 0.922 [0.886 0.922] 0 1.397 5 9.600 0.500
16. Time-series models 1 [0.870 0.999] X 0 0 0 0 0
17. Unsupervised 1 [0.957 0.999] 0 0 5 9.400 0.500

Prescriptive
18. Reinforcement learning 0.988 [0.926 0.987] 0 0 0.508 1.140 0
19. Inverse reinforcement learning 0.975 [0.896 0.973] 0 0.304 0.400 2.189 0
20. Apprenticeship learning 0.990 [0.910 0.989] 0 0.351 0.400 2.289 0
21. Mathematical optimisation 1 [0.877 0.997] X 0 0 0 0 0
22. Evolutionary 0.945 [0.849 0.942] 0 0 0.182 0.757 0
23. Markov decision process 1 [0.875 0.999] X 0 0 0 0 0
24. Hidden Markov models 1 [0.876 0.998] X 0 0 0 0 0
25. Open loop simulation 0.931 [0.856 0.930] 0 0 0 4.038 0
26. Closed loop simulation 0.900 [0.870 0.899] 0 0 2.161 5.292 0
27. Dynamic programming 0.997 [0.944 0.994] 0.883 0 0 1.324 0
28. Inductive logic programming 0.925 [0.879 0.922] 0 0 0.653 7.107 0
29. Fuzzy modelling 0.873 [0.815 0.872] 0 0 0.433 0 0
30. Stochastic processes 0.935 [0.865 0.932] 0 0.471 0 0.288 0
31. Queuing models 0.862 [0.809 0.861] 0 0 1.046 5.271 0.105

AATs with an x are efficient and part of the selection.
DPC: data preparation costs; MC: modelling costs; PP: production planning; QDI: quality driver identification; PC: process control.�The confidence intervals are for the bias corrected efficiencies at the 95% level.
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of efficient AATs, which is tailored to the application require-
ments of ABB Turbo Systems AG.

The selection can be interpreted as follows. Our decision
model evaluates supervised deep learning and image-based
models as efficient because these techniques are best suited
to visual quality inspection tasks. Supervised deep learning
techniques can automatically learn features from high-
dimensional data and hence are especially suited to learning
patterns from unstructured image or audio data (Wang et al.
2018; Wuest et al. 2016). Time-series models and Markov
decision processes are suitable solutions for predictive main-
tenance. Finally, visual AATs are also evaluated to be efficient
because these techniques allow one to easily communicate
results to the management of a traditional manufactur-
ing company.

Summary of findings

The numerical results of Geberit Produktions AG and ABB
Turbo Systems AG demonstrate the ability of our decision
model to provide customized recommendations regarding
the set of efficient AATs to which resources should be allo-
cated. Each DEA evaluates a selection of fairly different AATs.
Both selections include visual, supervised deep learning,
times-series models, and a Markov decision process.
However, for Geberit Produktions AG, our decision model

additionally incorporates fully-supervised, mathematical opti-
mization and hidden Markov models into the selection of
efficient AATs. This is due to their need for process control
and quality driver identification in multi-stage process lines.
For ABB Turbo Systems AG, image-based models are further
determined to be efficient due to the firm’s requirement for
inspection services.

Discussion

Contributions to research

For the production management literature, the DEA repre-
sents a powerful tool for multi-criteria decision-making. In
the past, the DEA has been widely applied for (i) intra-organ-
izational comparisons (e. g. projects, different sub-units), (ii)
inter-organizational comparisons (e.g. companies operating
in the same domain), and (iii) longitudinal, panel, or dynamic
comparisons of a single unit (Liu, Lu, and Lu 2016). Our study
contributes to category (i) by evaluating the relative effi-
ciency of different AATs within a manufacturing company.

Our research extends the literature in at least two direc-
tions. First, we study common application areas in manufac-
turing where advanced analytics can add value. Second, we
propose relevant cost drivers and effectiveness measures
that can be used to assess the efficiency of different AATs.

Table 2. DEA results for ABB.

AAT Efficiency
Confidence
interval� Selection

Input slacks Output slacks

DPC MC QI MP

Diagnostic
1. Descriptive 0.900 [0.794 0.899] 1.700 0 3.400 1.200
2. Visual 1 [0.856 0.998] X 0 0 0 0
3. Clustering 0.919 [0.862 0.916] 0 0 1.496 3.077

Predictive
4. Fully-supervised 0.881 [0.813 0.880] 0 1.906 1.100 4.400
5. Weakly-supervised 0.894 [0.823 0.894] 0 0.073 4.700 2
6. Semi-supervised 0.888 [0.819 0.886] 0 0 5.611 1.661
7. Supervised deep learning 1 [0.835 0.999] X 0 0 0 0
8. Inexact-supervised 0.985 [0.869 0.980] 0 0 0 2.896
9. Distant-supervised 0.993 [0.906 0.988] 0 0 0 2.800
10. Generative 0.908 [0.836 0.907] 0 1.088 2 2.400
11. Instance-based 0.935 [0.845 0.929] 0.727 0 0 1.696
12. Rule-based 0.908 [0.807 0.904] 0 0 0 0.055
13. Knowledge-based 0.862 [0.796 0.859] 0 0 0.712 3.056
14. Image-based models 1 [0.819 0.994] X 0 0 0 0
15. Audio-based models 0.922 [0.850 0.921] 0 1.397 5.400 1.400
16. Time-series models 1 [0.815 0.995] X 0 0 0 0
17. Unsupervised 1 [0.951 0.999] 0 0 7.400 10

Prescriptive
18. Reinforcement learning 0.853 [0.809 0.851] 0 0 3.258 7.833
19. Inverse reinforcement learning 0.945 [0.854 0.942] 0 1.224 0 4.300
20. Apprenticeship learning 0.959 [0.868 0.957] 0 1.269 0 4.200
21. Mathematical optimisation 0.812 [0.775 0.810] 0 0 5.291 5.457
22. Evolutionary 0.770 [0.740 0.769] 0 0 5.952 6.880
23. Markov decision process 1 [0.856 0.997] X 0 0 0 0
24. Hidden Markov models 0.920 [0.827 0.918] 0 0 1.960 0
25. Open loop simulation 0.919 [0.830 0.916] 0 0 2.454 0.178
26. Closed loop simulation 0.880 [0.846 0.878] 0 0 4.655 5.403
27. Dynamic programming 0.815 [0.739 0.812] 0 0 2.664 1.585
28. Inductive logic programming 0.925 [0.871 0.923] 0 0 1.506 6.368
29. Fuzzy modelling 0.790 [0.718 0.788] 0 0 0.349 1.475
30. Stochastic processes 0.881 [0.786 0.880] 0 0.497 5.400 0.500
31. Queuing models 0.862 [0.808 0.860] 0 0 4.316 3.357

AATs with an x are efficient and part of the selection.
DPC: data preparation costs; MC: modelling costs; QI: quality inspection; MP: maintenance planning.�The confidence intervals are for the bias corrected efficiencies at the 95% level.
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Ultimately, we address an important management decision
problem: in which selection of AATs should a manufacturing
company invest? To the best of our knowledge, we are the
first to use a DEA model for this purpose.

Generalisability and extensibility

The proposed method builds upon different literature
streams on advanced analytics in manufacturing and deci-
sion support systems. Hence, we see no theoretical reason,
why the proposed model should not be generalizable
beyond the cases presented in this paper. The application of
the method in the two industrial cases illustrated that the
method could be applied and yield concrete insights. Both
cases showed how applying the model to the specific envi-
ronments can support the decision-making on investments
in AATs. Following the different modes of generalization as
described by Lee and Baskerville (2003), the goal of this
study is to test and validate the utility of the presented
approach in an actual business setting. Hence, even though
the method was tested in only two cases, we posit that the
approach is transferable to further use cases not only in
manufacturing: Its flexible design can help to solve similar
allocation problems for use cases outside of manufacturing
management and thus ensures widespread applicability.

The generalisability is shown based on two existing
cases. The industrial cases were chosen from the manufac-
turing sector; specifically from companies implementing
digital technologies (i.e. first experience with it). For other
companies in this setting, the method will demonstrate
similar usability and applicability as in the pre-
sented cases.

Further, our approach has similar limitations to previous
DEA applications (cf. Dyson et al. 2001). One key assumption
for applying the DEA is that the DMUs under evaluation are
homogeneous, meaning that they (i) undertake the same
activity with similar objectives, (ii) have similar ranges of
resources, and (iii) operate in similar environments (Cooper,
Seiford, and Tone 2006). However, in our research, AATs are
not expected to be fully homogeneous since they are based
on different underlying technologies. As a remedy, Cook
et al. (2012) and Cook et al. (2013) proposed to break the set
of AATs into different groups with those that show the same
outputs being in the same group. Within these different
groups, separate DEA can be computed. However, the
greater the number of required splits, the more difficult it is
to estimate meaningful efficiency (Cook et al. 2012).
Additionally, in many situations, inputs and outputs are vola-
tile and complex so that they are difficult to measure in an
accurate way. One way to include this volatility into the com-
putation of the technology frontier is through stochastic
frontier analysis (SFA) (Aigner, Lovell, and Schmidt 1977). SFA
assumes stochastic relationships between the inputs used
and the outputs produced. Specifically, it allows to assume
that deviations from the frontier may reflect not only ineffi-
ciencies but also noise in the data. Although this approach
seems intriguing, it comes with the drawback of making
strong a priori assumptions about the function translating

inputs to outputs and about the data generation process.
These assumptions are specifically critical in cases with few
DMUs, such as ours. It is expected that, with further advan-
ces in artificial intelligence, the range of suitable areas is
likely to grow. Hence, users should carefully consider adapta-
tions to their company-specific needs. We recommend leav-
ing this task to domain experts (e.g., process engineers) with
a background in analytics. They possess the relevant know-
ledge to assess the suitability of AATs for domain-spe-
cific problems.

The strength of our proposed decision model lies in its
extensibility. We successfully demonstrate its flexibility by
applying it to two manufacturing companies with different
requirements. The capacity of our model to be customized
according to companies’ needs is a key advantage. This
allows management to include different application areas or
cost drivers that better represent the decision-making pro-
cess. Accordingly, the use of our decision model is not only
limited to manufacturing management but could be
extended to other business units in a straightfor-
ward manner.

Managerial implications

This work addresses an important management decision
problem: in which advanced analytics techniques should a
manufacturing company invest? By selecting a set of efficient
AATs, our research addresses the complex task of allocating
resources (e.g. financial and human resources) in the domain
of advanced analytics.

Our research proposes an approach that can lead to valu-
able managerial guidance and actions for managers in manu-
facturing. The recommended selection of AATs can be used
along various dimensions. First, managers can improve
human resource allocation by hiring data scientists with the
necessary qualifications (i.e. those that are part of the selec-
tion). Second, decision-makers can steer short-term financial
investments into efficient AATs that solve present problems
with respect to relevant application areas. Third, managers
can later start to invest in AATs that were not found to be
BCC-efficient but still show high-efficiency scores (e.g.
>0.95). Accordingly, our approach not only benefits financial
allocation in the short-term but also provides guidance for
long-term strategic development to harness the full potential
of advanced analytics in manufacturing.

In practice, choosing the right set of AATs in manufactur-
ing is a complex task. We agree that it requires multiple
approaches to do a final selection of AATs (e.g. Villanueva
Zacarias, Reimann, and Mitschang 2018; Lechevalier et al.
2018). The proposed DEA model marks a starting point to
support the decision process by suggesting efficient solu-
tions. This is an important step as it reduces the complexity
of the decision under uncertainty by suggesting a pre-selec-
tion out of the long list of existing AATs. However, as it
remains as a decision support model, it cannot provide a
final solution. Hence, from the pre-selected list of efficient
AATs, practitioners need to further investigate with which
they want to continue. We further recommend to embed
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this process in the cross-industry standard process for data
mining, a well-established open standard process model for
data mining in the industry.

Conclusion

Advanced analytics offers new ways to improve and innovate
manufacturing processes. However, the practical implementa-
tion of advanced analytics is still in its early stages. Hence,
decision-makers are left with the complex task of allocating
resources (e.g. financial and human) to a set of efficient AATs
that entails the highest company-specific economic benefit.

This paper proposes a multi-criteria decision model to
identify a set of efficient AATs to address relevant, company-
specific needs. Our research is a pivotal, yet heretofore
missing, element to foster the use of advanced analytics in
manufacturing. The effectiveness of our decision model was
demonstrated in two manufacturing companies, Geberit
Produktions AG and ABB Turbo Systems AG. Our numerical
results identify a tailored set of efficient AATs for each com-
pany. Thereby, we offer a decision support tool that can
effectively facilitate resource allocation in the domain of
advanced analytics.

Notes

1. In this paper, AATs subsume all algorithms from the wider realm of
artificial intelligence and machine learning that aid data-driven
decision-making.

2. In theory, process control represents a natural application for (safe)
reinforcement learning techniques (Sutton and Barto 2018); however,
research in this field is still in its infancy and, instead, problem-specific
algorithms are usually developed.

3. For instance, in order to be considered BCC-efficient, the AAT (18.)
reinforcement learning must decrease its inputs radially by 0.988 and
additionally increase its output for production planning by 0.508 units
and for quality driver identification by 1.14 units.
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