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A B S T R A C T

Within the performance-based earthquake engineering (PBEE) framework, the fragility model plays a pivotal
role. Such a model represents the probability that the engineering demand parameter (EDP) exceeds a certain
safety threshold given a set of selected intensity measures (IMs) that characterize the earthquake load. The-
state-of-the art methods for fragility computation rely on full non-linear time–history analyses. Within this
perimeter, there are two main approaches: the first relies on the selection and scaling of recorded ground
motions; the second, based on random vibration theory, characterizes the seismic input with a parametric
stochastic ground motion model (SGMM). The latter case has the great advantage that the problem of seismic
risk analysis is framed as a forward uncertainty quantification problem. However, running classical full-scale
Monte Carlo simulations is intractable because of the prohibitive computational cost of typical finite element
models. Therefore, it is of great interest to define fragility models that link an EDP of interest with the SGMM
parameters — which are regarded as IMs in this context. The computation of such fragility models is a challenge
on its own and, despite a few recent studies, there is still an important research gap in this domain. This comes
with no surprise as classical surrogate modeling techniques cannot be applied due to the stochastic nature
of SGMM. This study tackles this computational challenge by using stochastic polynomial chaos expansions to
represent the statistical dependence of EDP on IMs. More precisely, this surrogate model estimates the full
conditional probability distribution of EDP conditioned on IMs. We compare the proposed approach with some
state-of-the-art methods in two case studies. The numerical results show that the new method prevails over
its competitors in estimating both the conditional distribution and the fragility functions.
. Introduction

The PEER1 performance-based earthquake engineering (PBEE)
ramework introduced two decades ago [1] represents the state-of-
he-art approach to seismic risk assessment. The framework builds on
he total probability theorem by convolving the output of probabilistic
eismic hazard analysis (PSHA, [2]) with fragility, damage, and loss
odels. The output of the PSHA analysis is the so-named hazard

urves, which are rates of occurrence of a given intensity measure (IM,
.g., peak ground acceleration, spectral acceleration, etc.) or a vector
f IMs. The damage of a structure is typically characterized by the
ngineering demand parameter (EDP) which represents the structural
esponse (e.g., the maximum interstory drift for a multistory building,
he maximum base shear, etc.).

A critical component of the framework is represented by the sta-
istical relationship between IMs and EDP. This relationship, named
ragility model, is a function of the IMs and computes the EDP exceed-
ng probability (e.g., EDP exceeds a certain threshold) conditioned on
he corresponding value of IMs. As an important part of PBEE, fragility
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E-mail address: zhu@ibk.baug.ethz.ch (X. Zhu).
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models have become a rich field of research with two major lines
of investigation. The first line is based on the selection and scaling
of recorded ground motions and (non-)linear time history analysis.
An incomplete list of studies following this line of research includes
[3–6].

The second line of research builds on stochastic ground motion
models (SGMM) [7,8], and (non-)linear time history analysis. An SGMM
typically combines a set of engineering-meaningful parameters, re-
ferred to as SGMM parameters in the sequel, with a set of hidden
aleatory variables (e.g., white noise) to generate synthetic ground
motions. The available records are considered as realizations of the
SGMM and used to calibrate the SGMM parameters. The latter are
modeled as random variables to account for epistemic uncertainties due
to limited data. In this setting, the SGMM parameters are statistically
related to the earthquake and site characteristics (e.g., magnitude,
faulting mechanism, source-to-site distance, and the site shear-wave
velocity) via predictive equations. In essence, these are classical ground
motion predictive equations (GMPEs, [2]) with the IMs being the
SGMM parameters.
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Following this line, a fragility model becomes the statistical relation-
hip between the SGMM parameters and the EDP. These models, when
eveloped, allow for a rapid seismic risk assessment by computing
irectly or via (inexpensive) simulations of the convolutions of the
EER-PBEE framework. Within this perimeter, therefore, the develop-
ent of efficient algorithms for fragility computation is paramount.
hile several studies use an SGMM for seismic risk assessment (an

ncomplete list includes [9–14]), to the best of our knowledge, fragility
odels as a function of the SGMM parameters have been explicitly

ntroduced only recently [15].
In this context, however, there is a research gap in the development

f efficient algorithms that allow a feasible computation of these special
ragility models. This paper aims to fill this gap by using the stochastic
olynomial chaos expansion (SPCE) [16], which we show to be the
ost computationally efficient option up to date. As such, this paper

ocuses only on the fragility model computation without employing the
ull seismic risk analysis.

A great advantage of the simulation-based approach is that the
roblem of seismic risk analysis can be framed as a forward uncertainty
uantification problem [15]. In fact, by combining the SGMM with
he dynamical analysis of structures, one obtains a simulator that
aps a set of ground motion parameters to the associated EDP. More

pecifically, this is a stochastic simulator [15,17], i.e., several runs with
he same ground motion parameters produce different values of the
DP, due to the aleatory hidden variables in the generation of ground
otions. Therefore, one can run multiple simulations for given values

f IMs without introducing bias. Moreover, this allows for coupling the
eismic hazard model and the fragility function without going through
ntermediate variables.

When working with ground motion parameters, replication-based
ethods have been proposed so far in the literature [10,15]. In this

ramework, one fixes the SGMM parameters, and the hazard model
roduces a set of consistent earthquake loads for dynamical analysis
f the structure. This procedure is called replication, as we evaluate re-

peatedly the simulator for the same values of the input. The associated
EDP values are realizations of the structural response conditioned on
the given SGMM parameters. Therefore, they can be used to estimate
the underlying conditional distribution. This procedure is repeated for
different SGMM parameters, and the fragility function can be estimated
from the conditional distribution. Because many replications (e.g., 100)
re necessary to characterize the conditional distribution, this approach
equires a large number of model runs (as shown in Abbiati et al. [15]).

To alleviate the computational cost, in this paper, we explore
he methods that do not rely on replications [11,18,19]. Since the
GMM parameters are vector-valued IMs, some methods developed
or fragility analysis with a single IM can be extended and applied.
ornell et al. [18] proposed the so-called cloud analysis which is a

inear model in the log-scale with a homoscedastic Gaussian noise. This
arametric model relies on rather restrictive assumptions (log-linearity
nd homoscedasticity).

Alternatively, fragility models can be computed in a classifica-
ion framework [19,20]. This method only works with binary dam-
ge variables (whether the structure fails or not) and does not make
se of the precise value of the EDP, which leads to a certain loss
f information. More recently, nonparametric models, namely kernel
moothing, have been proposed in the literature [11,21]. However,
t is well-known that nonparametric models suffer from the curse of
imensionality [22]: the model accuracy decreases drastically with
ncreasing input dimensionality (in our case, the number of IMs).

In this paper, to better balance the model flexibility and the limited
umber of simulations, we propose applying the newly developed
tochastic polynomial chaos expansion (SPCE) technique [16]. This model
ntroduces an artificial latent variable and a noise variable to represent
he random nature of the stochastic simulation. More precisely, it
xpresses the EDP as a function of the IMs and the latent variable plus

he additive noise. Therefore, this model can tackle a full representation d

2

of conditional distributions. It follows that natural byproducts of the
analysis are the classical fragility models. In fact, one can naturally
evelop statistical relations between classical IMs and the selected EDP.
n this case, the classical IMs are available as statistics of the synthetic
round motions.2 and the fragility models can be used in the original
EER-PBEE framework directly.

The paper is organized as follows. In Section 2, we outline the
tochastic simulator approach; then, we recap the extension of classical
ethods developed to multiple intensity measures. In Section 3, we

ummarize the main ingredients of the stochastic polynomial chaos
xpansion. In Section 4, we use a synthetic ground motion model
nd two computational examples to illustrate the performance of the
roposed method. Finally, we conclude with the main finding of the
tudy and give an outlook for future research in Section 6.

. Stochastic simulator approach for fragility analysis

.1. The stochastic simulator approach

This paper follows the line of research that uses an SGMM to
haracterize seismic excitation. Using the representation introduced in
bbiati et al. [15], the stochastic ground motion can be expressed as

ollows

(𝑡) = 𝑎(𝑡,𝜩|𝑿), (1)

here 𝑎 represents the synthesis formula of a parametric SGMM,
is a Gaussian vector (with i.i.d. standard normal random variables)

epresenting the aleatory variability of the process, and 𝑿 is a random
ector collecting the parameters of the model and the associated epis-
emic variability. The SGMM parameters are selected to be engineering
eaningful [7,23]; therefore, in this framework, 𝑿 can be regarded as
vector of IMs. In the PEER-PBEE framework, 𝑿 is statistically related

o the earthquake and site characteristics via predictive equations.
owever, this study focuses only on the fragility model computation
nd, therefore, for simplicity, we use a marginal joint probability
istribution of 𝑿 fitted to a specific seismic catalog (see Section 4.1
or further details).

Let 𝑌 denote the EDP (e.g., maximum interstory drift) of a structural
ystem of interest computed as 𝑌 = 𝑑 (𝐴(𝑡)|𝒙𝑑 ), where 𝑑 is an
xpensive-to-evaluate deterministic solver3 with 𝒙𝑑 being a set of de-
erministic parameters (e.g., a finite element model with deterministic
asses, damping, and constitutive models). It follows that 𝑌 can be

xpressed as

= 𝑑 (𝑎(𝑡,𝜩|𝑿)|𝒙𝑑 ) = 𝑠(𝜩|𝑿), (2)

here 𝑠
def
= 𝑑◦𝑎 is a stochastic simulator since for 𝑿 = 𝒙 the

esponse 𝑌 is still stochastic (due to the aleatory variability encoded
n 𝜩). Provided with this framework, the objective of this study is to
se a stochastic surrogate model, namely the SPCE, to develop fragility
odels.

.2. Fragility analysis

In PBEE, seismic loads are typically characterized by a selected set
f IMs. An incomplete list of conventional IMs includes peak ground
cceleration, spectral acceleration, peak ground velocity, and Arias
ntensity [24]. In general, an IM can represent any ‘‘optimal’’ feature of
he seismic load. According to [24], optimal is defined as being prac-
ical, sufficient, effective, and efficient (see [24] for further details).

2 In this case, one has to verify that the rate of exceedance of the classical
Ms emerging from the SGMM is compatible with the ones derived by PSHA
nalysis [8].

3 In Abbiati et al. [15], the solver is also assumed to be stochastic to
ccommodate random fields. In this paper, we choose the more restrictive
eterministic solver as it is the most typical case in earthquake engineering.
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To improve the power of the prediction and reduce the variability
among ground motions, one can combine several IMs for fragility
analysis [25–27].

In the SGMM context, a natural choice for the IMs is the set
of SGMM parameters. This allows applying directly the PBEE-PEER
framework by convolving the predictive equations (which extend the
classical GMPEs) with these fragility models based on the SGMM pa-
rameters [15]. In this study, we pursue this philosophy by proposing
SPCE as a computational method that outperforms the current state of
the art. In particular, this section first introduces the general concept of
fragility models; second, it reviews a series of computational methods
which can be used directly in this context and that we will use to
compare the proposed SPCE approach.

The structural performance is usually defined by the event that
the EDP exceeds a certain threshold 𝛿0, which represents a predefined
damage level. A fragility model expresses the exceeding probability as
a function of IMs, that is,

𝑝𝑓 (𝒙) = P
(

𝑌 > 𝛿0 ∣ 𝑿 = 𝒙
)

= 1 − 𝐹𝑌 ∣𝑿 (𝛿0 ∣ 𝒙). (3)

Using the distribution characterizing the SGMM parameters, we gen-
erate 𝑁 samples grouped into  =

{

𝒙(1),… ,𝒙(𝑁)}. Unlike Gidaris
et al. [10] and Abbiati et al. [15], where (102) replications are used,

e do not consider replications in this paper to drastically reduce the
verall number of simulations. This is feasible because of the features
f the SPCE approach described in Section 3. Therefore, for each set of
he ground motions parameters 𝒙(𝑖), we generate one synthetic ground
otion and then compute the associated EDP 𝑦(𝑖) which is collected in
=
{

𝑦(1),… , 𝑦(𝑁)}.
In the sequel, we introduce a series of classical fragility model

omputation methods, which can be used directly in this context.
oreover, we use these benchmark methods to compare the proposed

PCE approach.
One of the most popular methods for fragility analysis is the linear

odel [18,27] (i.e., the so-called cloud analysis), where the logarithm
f EDP is expressed as a linear function of the logarithm of the IMs with
n independent additive Gaussian noise, i.e.,

og(𝑌 ) =
𝑀
∑

𝑖=1
𝛽0 +

∑

𝑗=1
𝛽𝑗 log(𝑥𝑗 ) + 𝑒, (4)

here 𝑒 ∼  (0, 𝜎2). The model parameters 𝜷 and 𝜎 can be estimated
sing standard ordinary least-squares. Eq. (4) gives directly the condi-
ional probability density function (PDF), and the fragility function is
alculated as

𝑓 (𝒙) = 1 −𝛷

(

𝛿0 − 𝛽0 −
∑𝑀
𝑗=1 𝛽𝑗 ln(𝑥𝑗 )

𝜎

)

, (5)

where 𝛷 is the cumulative distribution function (CDF) of the standard
normal distribution.

Probit regression is another classical method used to estimate di-
rectly fragility functions [19,20]. In this context, fragility models are
interpreted as a soft classifier. In the earthquake engineering com-
munity, the CDF of a lognormal distribution is typically selected as
classifier. Although this method is usually used for a single IM, it can
be extended directly to the case of multiple IMs, that is,

𝑝𝑓 (𝒙) = 𝛷

(

𝛽0 +
∑

𝑗=1
𝛽𝑗 ln(𝑥𝑗 )

)

. (6)

The model parameters 𝜷 are estimated by maximum likelihood estima-
tion. In this classification framework, the threshed 𝛿0 is used to directly
classify the samples of the outcomes (e.g., {not fail} def

= {𝐸𝐷𝑃 < 𝛿0},
{fail} def

= {𝐸𝐷𝑃 ≥ 𝛿0}), and the precise value of the EDP is ignored.
Therefore, 𝛿0 is a property of the classifier; in other words, when the

value of 𝛿0 varies, it is necessary to build a new model.

3

In recent years, nonparametric methods for fragility model compu-
tations have gained momentum [11,21], given their inherent flexibility.
Recall the definition of the conditional distribution

𝑓𝑌 ∣𝑿 (𝑦 ∣ 𝒙) =
𝑓𝑌 ,𝑿 (𝑦,𝒙)
𝑓𝑿 (𝒙)

. (7)

Without introducing restrictive assumptions, the distributions 𝑓𝑌 ,𝑿
and 𝑓𝑿 can be estimated using nonparametric estimators, namely ker-
nel smoothing, which then provides an estimate of the conditional
distribution. In this approach, the bandwidths are hyper-parameters
to be defined. Noh et al. [21] proposed selecting the bandwidths by
engineering judgments and prior information. Mai and Sudret [11]
applied the method developed in Duong and Hazelton [28] to estimate
separately 𝑓𝑌 ,𝑿 and 𝑓𝑿 . However, this does not yield a valid conditional
distribution (the integral over 𝑦 is unequal to 1). In this paper, we
consider a more advanced nonparametric method developed by Li
et al. [29] that is typically designed for estimating the conditional CDF,
as the latter is directly related to the exceeding probability. Following
Mai and Sudret [11], the kernel estimator is applied to the logarithmic
transform of the data to guarantee the positiveness of the EDP and the
IMs.

3. Stochastic polynomial chaos expansion

The methods reviewed in the previous section have their limitations:
the linear model relies on very restrictive assumptions, the probit model
does not make full use of the information, and the kernel estimator suf-
fers from the curse of dimensionality [22]. To achieve better accuracy
with a limited number of simulations, we propose using the stochastic
polynomial chaos expansion (SPCE) approach recently proposed in Zhu
and Sudret [16] to estimate the probability distribution of the EDP, 𝑌 ,
conditioned on the IMs, 𝑿 = 𝒙. The conditional random variable is
denoted by 𝑌𝒙. In this section, we recap the principle of the standard
polynomial chaos expansion (PCE) and its extension to SPCE.

PCE is a surrogate model that has been widely applied to emulate
deterministic simulators in the context of uncertainty quantification.
Considering the uncertain input variables 𝑿, this surrogate represents
a deterministic model 𝑑 ∶ 𝒙 ↦ 𝑑 (𝒙) by a series of polynomial
expansions, that is,

𝑑 (𝑿) ≈
∑

𝜶∈
𝑐𝜶𝜓𝜶(𝑿), (8)

where 𝜓𝜶 is the basis function defined by the multi-index 𝜶, 𝑐𝜶 is the
associated coefficient, and  is the truncated set of multi-indices that
define the basis functions used in the expansion.

For 𝑿 with independent components, the basis function is given by
a product of univariate polynomials:

𝜓𝜶(𝒙) =
𝑀
∏

𝑗=1
𝜙(𝑗)
𝛼𝑗
(𝑥𝑗 ), (9)

here 𝑀 is the dimension of 𝑿, i.e., the number of input parameters,
𝑗 is the polynomial degree in 𝑥𝑗 , and

{

𝜙(𝑗)
𝑘 ∶ 𝑘 ∈ N

}

is the orthogonal
olynomial basis with respect to the marginal distribution 𝑓𝑋𝑗 , which
atisfies
[

𝜙(𝑗)
𝑘 (𝑋𝑗 )𝜙

(𝑗)
𝑙 (𝑋𝑗 )

]

=

{

1 if 𝑙 = 𝑘
0 otherwise.

(10)

For uniform, normal, gamma, and beta distributions, the associ-
ted univariate orthogonal polynomials are well known as Legendre,
ermite, Laguerre, and Jacobi polynomials [30].

When 𝑿 has dependent components, the tensor product in Eq. (9)
enerally does not produce an orthogonal basis. To circumvent this
roblem, one common way is to transform 𝑿 into an auxiliary vector

=  (𝑿) with independent components (e.g., a standard normal
ector) using the Nataf or Rosenblatt transform [31]. The polynomial
asis is then defined with respect to the auxiliary variables

𝜶(𝒙) =
𝑀
∏

𝜙(𝑗)
𝛼𝑗
(ℎ𝑗 ). (11)
𝑗=1
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where 𝒉 =  (𝒙), and
{

𝜙(𝑗)
𝑘 ∶ 𝑘 ∈ N

}

is defined by the marginal distri-
bution of 𝐻𝑗 .

Let us introduce now the stochastic extension of PCE. Eq. (8) is a de-
terministic function of the input variables 𝒙. To represent the stochastic
behavior in the earthquake simulation, we include an artificial latent
variable 𝑍 in the expansion and an additive noise variable 𝜖 which
results in the SPCE [16]:

log
(

𝑌𝒙
) d
≈ log

(

𝑌𝒙
)

=
∑

𝜶∈
𝑐𝜶𝜓𝜶 (𝒙, 𝑍) + 𝜖, (12)

here the expansion is expressed on the logarithmic transform of 𝑌𝒙
o ensure the EDP is positive (this transform is also applied by Gidaris
t al. [10]). The noise variable 𝜖 is a centered Gaussian random variable
ith standard deviation 𝜎, i.e., 𝜖 ∼  (0, 𝜎2).

Here, we aim at approximating the distribution of the EDP 𝑌𝒙 for
ny 𝒙. As a result, we use the notation

d
≈ to denote approximation

n distribution. The artificial latent variable 𝑍 in Eq. (12) is only
ntroduced to reproduce the stochasticity, and it is not related to the
igh-dimensional hidden random vector 𝜩 in the stochastic ground
otion model of Eq. (2). In this paper, we select a standard Gaussian

atent variable𝑍 ∼  (0, 1). With this choice, if only linear terms are
onsidered in Eq. (12), the SPCE is equivalent to the linear model
n Eq. (4).

To build such a model, we need to determine the coefficients 𝒄 of
he expansion and the standard deviation 𝜎 of the noise term. For a data
oint (𝒙, 𝑦) the conditional likelihood can be expressed as (see details
n Zhu and Sudret [16])

(𝒄, 𝜎;𝒙, 𝑦)

= 1
𝑦 ∫𝑍

1
√

2𝜋𝜎
exp

(

−

(

log(𝑦) −
∑

𝜶∈ 𝑐𝜶𝜓𝜶(𝒙, 𝑧)
)2

2𝜎2

)

𝑓𝑍 (𝑧)d𝑧. (13)

In practice, we can apply the Gaussian quadrature [32] with respect
to the weight function 𝑓𝑍 to efficiently evaluate the one-dimensional
integral, that is

𝑙(𝒄, 𝜎;𝒙, 𝑦) ≈ 𝑙(𝒄, 𝜎;𝒙, 𝑦)

= 1
𝑦

𝑁𝑄
∑

𝑗=1

1
√

2𝜋𝜎
exp

⎛

⎜

⎜

⎝

−

(

log(𝑦) −
∑

𝜶∈ 𝑐𝜶𝜓𝜶(𝒙, 𝑧𝑗 )
)2

2𝜎2

⎞

⎟

⎟

⎠

𝑤𝑗 ,
(14)

here 𝑁𝑄 is the number of integration points, 𝑧𝑗 is the 𝑗th integration
oint, and 𝑤𝑗 is the associated weight. Based on Eq. (14) and the
vailable data ( , 𝒚), we calibrate the coefficients 𝒄 by maximum
ikelihood estimation (MLE)

̂ = argmax
𝒄

𝑁
∑

𝑖
log

(

𝑙
(

𝒄, 𝜎;𝒙(𝑖), 𝑦(𝑖)
))

. (15)

The standard deviation 𝜎 cannot be fitted jointly with 𝒄 because
he likelihood in Eq. (13) is unbounded for 𝜎 = 0 (see [16] for a
etailed discussion). Therefore, 𝜎 is a hyper-parameter, and we use
ross-validation with the out-of-sample likelihood as the performance
etric to select an optimal value for 𝜎. In addition, the cross-validation

core is also useful for determining an appropriate truncated set .
After constructing the model, one can efficiently generate new

amples of 𝑌𝒙 by fixing the value of 𝒙 and sampling (𝑍, 𝜖) to eval-
ate Eq. (12). Therefore, probabilistic quantities of 𝑌𝒙 (e.g., mean,
ariance, quantiles, and exceeding probabilities Eq. (3)) can be esti-
ated by large-scale Monte Carlo simulations. Similarly, jointly sam-
ling (𝑿, 𝑍, 𝜖) produces samples of 𝑌 which can be used to study the
roperties of the emulated EDP.

. Numerical examples

In this section, we compare SPCE with the methods reviewed in
ection 2.2, namely the linear model (LM) [18], the kernel conditional

istribution estimator (KCDE), and the classical classification-based m

4

ragility model (i.e., the probit model) [19], on two numerical ex-
mples. For the KCDE, we apply the kernel estimator developed for
onditional CDF estimation [29] which is available in the package
p [33] implemented in R. To quantitatively assess the performance,
e report the convergence of the models for the estimation of the

onditional distribution and the fragility function.
When comparing the distribution estimation, we consider only LM,

PCE, and KCDE, as the probit model directly estimates the fragility
unction without providing the conditional distribution. Since LM,
PCE, and KCDE are all applied to the logarithmic transform of the EDP,
e examine the estimation accuracy of the conditional distribution
f the transformed quantity. In this respect, we use the normalized
asserstein distance [16] as the error metric which reads

=
E𝑿

[

𝑑2WS
(

log
(

𝑌𝑿
)

, log
(

𝑌𝑿
))]

Var
[

log(𝑌 )
] , (16)

where 𝑌𝒙 is the EDP obtained from the stochastic simulation, 𝑌𝒙 is that
of the surrogate model, and 𝑑WS is the Wasserstein distance of order
two [34] between two probability measures. For continuous random
variables 𝑌1 and 𝑌2 with quantile functions (i.e., inverse CDF) 𝑄1 and

2, this distance can be computed by

2
WS

(

𝑌1, 𝑌2
)

= ‖

‖

𝑄1 −𝑄2
‖

‖

2
2 = ∫

1

0

(

𝑄1(𝑢) −𝑄2(𝑢)
)2 d𝑢, (17)

For the fragility model in Eq. (3) which is a deterministic function
of 𝒙, we use the relative mean-squared error to assess the global
approximation accuracy

𝜀𝑝
def
=

E
[

(

𝑝𝑓 (𝑿) − �̃�𝑓 (𝑿)
)2
]

Var
[

𝑝𝑓 (𝑿)
] , (18)

where 𝑝𝑓 is the fragility function of the simulator, and �̃�𝑓 denotes that
f the surrogate.

.1. Stochastic ground motion model

This section briefly describes the simplified SGMM model used in
ur analysis. It is out of the scope of the current study to develop
redictive equations that link the SGMM parameters to the earthquake
ite and source characteristics. Specifically, we employ a site-based
GMM defined in the frequency domain [23,35]. The model is the
pectral representation of the original time-domain model implemented
n Rezaeian and Kiureghian [8]. It targets broad-band excitations,
hich are typically associated with far-field ground motions.

In detail, the SGMM is completely characterized by an evolutionary
ower spectral density (EPSD) [36]. Like its original time-domain
ounterpart, this representation allows separating the temporal and
pectral components of the process [23,35]. In this study, without los-
ng generality, we neglect the non-stationary spectral characteristics of
he ground motion. In fact, within a good engineering approximation,
he frequency content and the bandwidth of the strong ground motion
hase can be assumed constant for broad-band excitations. Moreover,
t is assumed that severe structural damage occurs during the strong
otion phase.

Finally, the spectral content of the process is represented by a
ormalized stationary Kanai–Tajimi power spectral density (KT-PSD),
hich is a function of two parameters: the main frequency, 𝜔𝑔 , and

he bandwidth, 𝜁𝑔 . The normalized KT-PSD produces a stationary pro-
ess with unit variance so that the intensity of the ground motion is
ompletely controlled by a time-modulating function. This model is a
ommon choice in earthquake engineering to describe broad-band far-
ield ground motions. We use a gamma modulating function [8,23],
hich is completely defined by the expected Arias intensity 𝐼𝑎, the time
t which 45% of the expected Arias intensity is reached, 𝑡mid, and the
ffective duration of the motion, 𝐷5−95. Finally, the complete SGMM
PSD is given by modulating the normalized KT-PSD with the time-

odulating function. Moreover, to ensure zero residual velocity and
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Table 1
Ground motion parameters, g is the gravitational constant expressed in [m/s2].

Name Distribution

𝐼𝑎 [g2 s] 
(

−4.61, 1.452
)

𝑡mid [s] 
(

2.55, 0.902
)

𝐷5−95 [s] 
(

2.67, 0.532
)

𝜔𝑔 [rad/s] 
(

1.42, 0.592
)

Correlation matrix 𝑅 =

⎛

⎜

⎜

⎜

⎜

⎝

1 0.015 −0.23 −0.13
0.015 1 0.68 −0.36
−0.23 0.68 1 −0.11
−0.13 −0.36 −0.11 1

⎞

⎟

⎟

⎟

⎟

⎠

displacement, we apply a high-pass filter using the evolutionary theory
of Priestley (see [23] for a detailed description). To summarize, the
SGMM model parameters are 𝒙 = [𝐼𝑎, 𝑡mid, 𝐷5−95, 𝜔𝑔 , 𝜁𝑔].

Next, we fit the SGMM model to a catalog of recorded far-field
round motions from the PEER NGA-West2 database (the same used in
roccardo and Dabaghi [37]). The catalog includes 71 ground motions
ecorded at a range of distances (10–90 km) and site conditions from
everse earthquakes with a magnitude between 6 and 7.6. The two
orizontal components of each record are rotated into the major and
ntermediate principal directions [8]. In this study, we used only the
ajor component (i.e., we used 71 time series). The fitting procedure

or the frequency content of the ground motion is described in detail in
roccardo and Dabaghi [23]. However, in Broccardo and Dabaghi [23],
𝑔 and 𝜁𝑔 are a time-varying function, while in this study 𝜔𝑔 corre-
ponds to the main frequency of the ground motions at 𝑡mid (which
s considered the strong phase of the ground motion). Moreover, we
ix 𝜁𝑔 to a constant value of 0.9, which was a good approximation for
he selected broad-band excitations.4 The approach to estimates the
arameters 𝐼𝑎, 𝑡mid, 𝐷5−95 follows [8]. In this respect, the free SGMM
arameters are random variables (i.e., 𝒙 becomes a random vector, 𝑿)
o account for the epistemic uncertainty related to the chosen data set.

Provided with the 71 estimates of the free parameters, we fit a joint-
robability model based on log-normal marginal distributions and a
aussian copula (i.e., a joint log-normal distribution). Consequently,

he models also account for the dependence structure among the param-
ters. The joint-probability model parameters are reported in Table 1.
inally, the simulation of the synthetic time series follows a two-step
imulation (which is typical in a stochastic simulator setting). First, the
GMM parameters are sampled from the joint log-normal distribution.
econd, using the synthesis formula of the frequency domain represen-
ation of a stochastic process [38], the time series are generated by
iltering white noise Gaussian vectors with the EPSD and the high-pass
ilter. Therefore, for a given set of model parameters 𝑿 = 𝒙, multiple
ime series can be generated. Consequently, the EDP of interest is a
andom variable even when 𝑿 = 𝒙.

.2. Toy example

In this example, we introduce the properties of a three-story shear
rame idealized as a three-degree of freedom system. We are interested
n the dynamic response of the system subjected to the ground motions
enerated according to Section 4.1. The interstory behavior is inelastic,
ith a force–interstory-drift relationship based on a Bouc–Wen hys-

eretic model [39]. Specifically, the 𝑖th interstory restoring force is
ritten as

𝑖(𝑣𝑖(𝑡), �̇�𝑖(𝑡)) = 𝑘𝑖
[

𝛼𝑣𝑖(𝑡) + (1 − 𝛼)𝑧(𝑡)
]

, (19)

here 𝑣𝑖(𝑡) denotes the interstory drift, 𝛼 is a parameter that controls
he degree of inelasticity (i.e., 𝛼 = 1 corresponds to the linear case), 𝑘𝑖 is

4 We found that the EDP response was not sensitive to large values of
𝑔 . Therefore, we used a point approximation and reduced the parameter
pace. Note that this approximation does not limit the generality of the SPCE
pproach for fragility model computation.
5

the initial elastic interstory stiffness, and 𝑧(𝑡) is the hysteretic response
governed by the following law

̇ (𝑡) = −𝛾 |�̇�(𝑡)| |𝑧(𝑡)|𝑛−1 − 𝜂 |𝑧(𝑡)|𝑛 �̇�𝑖(𝑡) + 𝐴�̇�(𝑡), (20)

here 𝛾, 𝑛, 𝐴 and 𝜂 are the model parameters. The values of structural
roperties, including the local masses 𝑚𝑖 and damping 𝑐𝑖, and model
arameters are reported in Table 2. The story yield displacement, 𝛿𝑦,
s set to 0.01 m and the post-hardening stiffness is set at 10% of the
lastic stiffness 𝑘𝑖 for all the three stories. The EDP of interest is the
aximum interstory drift, i.e.,

= max
[

max
𝑡
[𝑣1(𝑡)],max

𝑡
[𝑣2(𝑡)],max

𝑡
[𝑣3(𝑡)]

]

. (21)

Fig. 1 illustrates the conditional PDF of the maximum interstory
rift for four different values of the ground motion variables. The
odels are constructed based on a total number of 1000 simulations.
he reference histograms are obtained by replicating the simulation
50 times for each set of ground motion parameters, i.e., we generated
50 ground motions for each 𝒙 and computed the associated structural
esponses. The distributions are plotted on the logarithmic transform of
𝒙, which allows for verifying the assumptions of the linear model.

As shown in Fig. 1, the linear model can represent the overall
ocation and shape of the conditional distribution: the prediction of
he mean values are close to the reference histograms that demonstrate
ormal-like shapes. Nevertheless, the linear model loses some details
f the mean estimation in Figs. 1(a) and 1(c) and cannot capture the
eteroskedastic effect (varying variance). The PDF predictions of KCDE
re quite poor, as it yields spurious oscillations in Figs. 1(a), 1(c)
nd 1(d). This is because the bandwidth selection procedure [33] is
esigned for estimating the conditional CDF. Moreover, the conditional
istribution estimation requires estimating the joint distribution of
𝑿, 𝑌 ) in Eq. (7) which is of dimension 5. This is rather high for
onparametric estimators and leads to the observed poor predictions.
n contrast, SPCE can accurately emulate the PDFs in terms of not
nly the location and the heteroskedastic effect but also the shape
f the distributions: Fig. 1(d) is slightly right-skewed which is well
epresented by SPCE.

To study the convergence of the various methods, we generated a
ig data pool of size 105 (following the distribution of 𝑿 described
n Table 1). We randomly subsampled it to have samples of desired
izes 𝑁 ∈ {250; 500; 1000; 2000; 4000} to train the models. Note that
his mimics the procedure of random design of experiment. To account
or the uncertainties in the estimation, we repeated the procedure 20
imes for each sample size (i.e., we obtain 20 models constructed on
ndependent subsamples for each 𝑁). To evaluate the error metrics
efined in Eqs. (16) and (18), we generated a validation set of size 400.
or each validation point, we used 250 replications to have a reference
istribution (meaning a total number of 400 × 250 simulations for the
alidation set). The error estimates for each sample size are represented
y box plots constructed from the 20 repetitions of the full analysis.

Fig. 2 shows the results of the models for estimating the conditional
istribution. For relatively small sample sizes 𝑁 ≤ 500, the linear
odel gives the best results. This is because the linear model is very

imple, and its assumptions are relatively ‘‘suitable’’ for this example.
ore precisely, the error of a statistical model can be decomposed

nto bias and variance [40]. In Fig. 1, we observe that the conditional
istribution is close to Gaussian, the mean function does not exhibit a
trong nonlinearity, and the heteroskedastic effect is relatively weak.
herefore, the bias of the linear model is rather small. Because of its
implicity, the linear model has a small variance. As a result, when only
few data points are available, the linear model gives the best results.
owever, with increasing sample size, the errors of the linear model

un into a plateau. This is due to the irreducible bias (caused by the
odel misspecification). On the contrary, SPCE and KCDE are more

lexible models that have smaller biases but bigger variances. Hence,
oth models exhibit a clear decay of the error. Due to its nonparametric
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Fig. 1. Example 1 — comparison of emulated PDFs of log
(

𝑌𝒙
)

for four different values of 𝒙; the models are built on 𝑁 = 1000 simulations.
Fig. 2. Example 1 — comparison of the convergence among the models in terms of the normalized Wasserstein distance. The lines correspond to the average values over 20
repetitions of the full analysis, whereas the box plot summarizes the 20 results.
Table 2
Structural properties and Bouc–Wen parameters (𝛿𝑦 = 0.01 m).

𝑚𝑖 106 [kg] 𝑐𝑖 106 [N s/m] 𝑘𝑖 108 [N/m] 𝛼 𝑛 𝛾 [1/m𝑛] 𝜂 [1/m𝑛] 𝐴

Story 1 1 1.73 3.0 0.1 5 1∕(2𝛿𝑦)𝑛 1∕(2𝛿𝑦)𝑛 1
Story 2 1 1.73 2.4 0.1 5 1∕(2𝛿𝑦)𝑛 1∕(2𝛿𝑦)𝑛 1
Story 3 1 1.73 1.5 0.1 5 1∕(2𝛿𝑦)𝑛 1∕(2𝛿𝑦)𝑛 1
feature, KCDE is merely comparable to the linear model for 𝑁 = 4000.
When enough samples are available, i.e., 𝑁 ≥ 1000, SPCE is the best
model. Furthermore, the average error of SPCE is three times smaller
than those of the linear model and kernel estimator for 𝑁 = 4000.
6

When considering fragility functions, we select two thresholds 𝛿0 =
0.02 m and 𝛿0 = 0.07 m. The relative mean-squared errors for estimating
the associated fragility functions are reported in Fig. 3. In general, SPCE
produces the best overall approximation of the fragility functions for all
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f

Fig. 3. Example 1 — comparison of the convergence among the models in terms of the fragility functions. The lines correspond to the average values over 20 repetitions of the
ull analysis, whereas the box plot summarizes the 20 results.
Fig. 4. Example 2 — three-story steel frame.
sample sizes. Similar to what we observed in Fig. 2, the performance of
the linear model barely improves with increasing 𝑁 . For 𝛿0 = 0.07 m,
SPCE outperforms the linear model in the case of a few samples 𝑁 ≤
500. This indicates that SPCE better approximates the tails. The probit
model yields relatively large errors for training sets of sizes 𝑁 ≤ 1000
in the estimation of the fragility function associated with 𝛿0 = 0.07 m.
This is because this model ignores the precise values of EDP and only
works with the binary variable. For 𝛿0 = 0.07 m, only a small fraction
of samples (about 1.3%) exceed the threshold. Consequently, the probit
model only produces reliable estimates for large 𝑁 . Finally, KCDE
performs quite poorly even though the associated bandwidth selection
procedure is designed for CDF estimation.

4.3. Three-story frame

As a second example, we apply the methods to study the three-story
steel frame modeled with the software OpenSees [41]. The geometry
of the structure is shown in Fig. 4(a), and the story height and floor
span are 𝐻 = 3 m and 𝐿 = 5 m, respectively. We choose the standard
European IPE A 330 for the beams and HE 200 AA for the columns.

The mechanical property of the steel follows the uniaxial Giuffre–
Menegotto–Pinto model with isotropic strain hardening (material of
type ‘‘Steel02’’ in OpenSees). More precisely, we set the Young’s mod-
ulus to 𝐸 = 205,000 MPa, the yield stress to 𝑓𝑦 = 235 MPa, and the
strain hardening ratio to 𝑏 = 0.01 (the other parameters controlling the
7

elastic–plastic transition are given by 𝑅0 = 18, 𝐶𝑅1 = 0.925, and 𝐶𝑅2 =
0.15). The load applied to the structure consists of dead load (weight
of frame elements and supported floors) and live load, which results in
a total distributed load on the beams equal to 𝑞 = 20 kN/m [11].

The structural components (beams and columns) are modeled by
nonlinear beam elements based on the iterative force-based formula-
tion. The element cross-sections are defined by a set of fiber sections,
which allows modeling the plasticity over the cross-section. Fig. 4(b)
illustrates the stress–strain relation of the bottom left column for the
frame under an example ground motion. The first two fundamental
periods of the structure are 0.950 s and 0.317 s (from modal analysis),
respectively. In this study, we are interested in the dynamic response
of the system subjected to the ground motions generated according to
Section 4.1. The EDP of interest is the maximum interstory drift ratio.

Fig. 5 shows the prediction of the conditional PDFs for four different
values of 𝒙. The reference histogram of each 𝒙 is calculated by per-
forming 250 replications, and the surrogate models are built on 1000
simulations. Similar to the first example Fig. 1, we observe that the
conditional distributions have bell shapes that are close to Gaussian
distributions. The linear model can well approximate the location of the
distributions, so the (log-)mean function does not demonstrate a strong
non-linearity. The variance of the conditional distribution does not vary
too much. The linear model shows a good overall approximation, but
it fails to characterize the precise variation of the distribution. On the
contrary, the kernel method is too flexible and completely mispredicts
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Fig. 5. Example 2 — comparison of emulated PDFs of log
(

𝑌𝒙
)

for four different values of 𝒙; the models are built on 𝑁 = 1000 simulations.
Fig. 6. Example 2 — comparison of the convergence among the models in terms of the normalized Wasserstein distance. The lines correspond to the average values over 20
repetitions of the full analysis, whereas the box plot summarizes the 20 results.
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the shape of the distribution. In contrast, SPCE turns out to accurately
represent not only the location and shape of the distribution but also
the heteroskedastic effect.

For the convergence study, we followed the same procedure as
Section 4.2. In this example, we generated a data pool of size 50,000.

e randomly subsampled this data set to have the experimental design
f sizes 𝑁 {250; 500; 1000; 2000; 4000} to build the surrogate models. We
epeated the analysis 20 times for each value of 𝑁 to account for the
ncertainties (due to the random ground motion parameters and the
ntrinsic stochasticity of the ground motion model). To evaluate the
rror defined in Eqs. (16) and (18), we created a validation set of size
 t

8

00, and we performed 250 replications for each validation point to
ave a reference conditional distribution.

Fig. 6 shows the error metric defined in Eq. (16). Similar to Fig. 2,
he linear model is superior to SPCE and KCDE when only 𝑁 = 250 data
oints are used. With increasing 𝑁 , its errors exhibit narrower spreads,
ut the average values do not decrease due to the bias resulting from
he model simplicity. The kernel estimator exhibits a better conver-
ence rate but performs poorly overall. SPCE has a similar performance
o the linear model at 𝑁 = 500 and surpasses the latter for 𝑁 ≥ 1000.
n addition, SPCE has a clear decay of the errors with a similar rate
o KCDE. For 𝑁 = 4000, the average error of SPCE is less than half of

hose of the linear model and KCDE.
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Fig. 7. Example 2 — comparison of the convergence among the models in terms of the fragility function. The lines correspond to the average values over 20 repetitions of the
full analysis, whereas the box plot summarizes the 20 results.
Fig. 8. Example 2 — Fragility function in the 𝐼𝑎 −𝜔𝑔 plan of a SPCE built on 1000 samples. The diamond points correspond to the reference value computed from 250 replications.
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For fragility function, we select two thresholds 𝛿0 = 0.7% and
0 = 2.5% which are typically used to characterize light and moderate
amages for steel frames [42]. The relative mean-squared errors for
stimating the associated two fragility functions are reported in Fig. 7.
or the small threshold of 𝛿0 = 0.7%, the results are similar to the
istribution estimation in Fig. 6. Specifically: first, the linear model
ields the best estimates of the fragility function when small data sets
f 𝑁 = 250 are considered, but the errors get stagnant with more data;
econd, KCDE is too flexible to estimate robustly the fragility function
ue to its nonparametric feature; third, SPCE performs similarly to the
inear model for 𝑁 = 500 but outperforms all the other models for
≥ 1000. Unlike the first example (Fig. 3(a)), the errors of the probit

odel are not comparable to these of SPCE but between the linear
odel and KCDE. For the high threshold of 𝛿0 = 2.5%, SPCE is the best
odel for all values of 𝑁 . The simplicity of the linear model leads to
significant irreducible bias. In contrast, SPCE, KCDE, and the probit
odel all demonstrate a clear decay of the errors. The kernel estimator
as a large spread of errors but a slow convergence of the average
alue. The probit model performs poorly for𝑁 ≤ 500 because the model
gnores the precise values of the EDP and only a few data points exceed
he threshold (ca. 1.8% in the data set). In summary, SPCE generally
rovides more accurate estimates of the fragility functions than the
ther models.

In this example, we plot the two fragility functions in the 𝐼𝑎 − 𝜔𝑔
plan of an SPCE built upon 1000 model evaluations in Fig. 8. The
plotted fragility models are obtained by averaging out the functions
9

with respect to 𝑡mid and 𝐷5−95. Specifically, we obtain the ‘‘cross-
section’’ fragility model conditional to each {𝑡mid, 𝐷5−95} sample, and
then, we compute the average fragility model.

We choose 𝐼𝑎 −𝜔𝑔 which are the most important parameters of the
fragility functions according to a sensitivity analysis. This outcome is in
line with the results reported in Abbiati et al. [15]. As a comparison,
we run the simulator for a validation set of nine points obtained by
the Cartesian product of 𝐼𝑎 ∈ {0.02, 0.06, 0.1} and 𝜔𝑔 ∈ {2, 6, 10}. The
eference failure probability associated with each validation point is
omputed by 250 replications (i.e., a total number of 2250 simulations
or validation). As seen in Fig. 8, the diamonds representing the ref-
rence points lie fairly well on the estimated fragility surface. More
recisely, the average absolute error of SPCE (averaged over the 9
alidation points) is 2.7% for 𝛿0 = 0.7% and 0.7% for 𝛿0 = 2.5%. In this
ase, we observe that the dominant variable is the Arias intensity 𝐼𝑎
also confirmed by the sensitivity analysis). This was expected, given
he broad-band nature of the excitation, which ‘‘spread’’ the energy
ontent among the full range of frequencies.

.4. Discussion

The models considered in this paper were constructed on data with-
ut replications. For replication-based approaches [10,15], a typical
umber of (102) replications are used. Following such a strategy,
he amount of points exploring the input space would significantly
educe to only (10) (as the total number of simulations varies in
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Fig. 9. Comparisons of the CCDF estimation (the models are built on 𝑁 = 1000).
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{250; 500; 1000; 2000; 4000}). This does not allow for good coverage of
the input space, especially when the failure occurs with a higher prob-
ability at the tail of the input distribution. Moreover, using replications
in the estimation of conditional distributions of a parametric model is
also not optimal, as shown in Zhu and Sudret [43].

Our numerical results demonstrate that SPCE is accurate for esti-
mating both the conditional distribution and the fragility functions for
different thresholds. Therefore, SPCE provides a good balance between
the model flexibility and limited data. The linear model performs
usually well for small values of 𝑁 but cannot correctly approximate
fragility functions with large thresholds. Due to its restrictive assump-
tions, the linear model cannot be further improved by using more data.
Surprisingly, the kernel estimator is almost always the worst model
despite that the bandwidth selection procedure is designed for CDF
estimation. The probit model directly estimates the fragility function
and has a rather low accuracy compared to the other models.

5. Additional post-processing

5.1. CCDF of the EDP

As the conditional distribution is available from SPCE, one can
aggregate the uncertainties in 𝑿 and evaluate the overall risks by uncer-
ainty propagation. As an example, we can compute the complementary
umulative distribution function (CCDF) defined by P(𝑌 ≥ 𝛿) of the

EDP by resampling 𝑌 from SPCE. This represents the unconditioned
exceeding probability of the EDP as a function of 𝛿.

In Fig. 9, we plot the CCDFs of the two examples estimated by
LM, SPCE, and KCDE, as the probit model does not allow resampling
the EDP. The reference curves are the empirical CCDFs using all the
available samples (105 for the first example and 50,000 for the second
example). The surrogate models are built on 1000 simulations.

We observe that the linear model exhibits a systematic gap at the
tail: it overestimates the exceeding probabilities for relatively large
values of 𝛿, which cannot be reduced by increasing 𝑁 . The CCDFs
obtained from the kernel estimator are generally more accurate than
the linear model but are unstable for big values of 𝛿 in Fig. 9(a). SPCE
achieves a high accuracy in Fig. 9(a) but has a slight discrepancy at the
tail in Fig. 9(b) which, according to the numerical investigation, can be
efficiently reduced by using more data.

5.2. Classical fragility curves

With the data generated for estimating the distribution of EDP
conditioned on the ground motion parameters, we can also compute the
fragility curves with respect to a classical IM, such as peak ground ac-

celeration (PGA) or spectral acceleration at the fundamental frequency 0
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(SA). More precisely, we first extract the values of the selected IM
from the synthetic seismograms and then apply the proposed method
to estimate conditional distributions which, by post-processing, gives
the fragility curves. As an illustration, we choose a data set of size 1000
to estimate the fragility curves for each of the examples in Sections 4.2
and 4.3.

For the first example (the 3-DOF system), we select the spectral
acceleration (SA) as IM. More specifically, SA corresponds to the spec-
tral acceleration for a single-degree-of-freedom system with a period
equal to the fundamental period of the structural and viscous damping
ratio equal to 2%. Fig. 10(a) shows the scatter plot of the 1000 data
points. We observe that the data have a strong heteroskedasticity (in
the log–log scale) reflecting a typical nonlinear structural behavior.

Fig. 10(b) summarizes the fragility curves estimated by the different
models (constructed on the data illustrated in Fig. 10(a)) for 𝛿0 = 0.02 m
and 𝛿0 = 0.07 m. The reference fragility curves are computed by
applying the kernel estimator to all the available data (i.e., 105). Due
o the heteroskedastic effect and the possibly non-Gaussian shape of
he conditional distribution, the linear model has a significant gap to
he reference, in particular for 𝛿0 = 0.07. KCDE produces an irregular

fragility curve for 𝛿0 = 0.07. The reason is that most of the data are
in the region where the intrinsic variability is not significant, which
leads to a small value of the selected bandwidth. This results in a large
variance of the estimation in the region where the data are sparse,
as KCDE is a local estimator. The probit model is quite accurate for
𝛿0 = 0.02, but it yields an unstable estimate of the fragility curve for
𝛿0 = 0.07. This is because only a few points (9 out of 1000) lead to
xceedance. Finally, SPCE built on the data in Fig. 10(b) approximates
he fragility curves with high accuracy.

For the second example (OpenSees model), we use the PGA as
ntensity measure. Fig. 11(a) shows the scatter plot of a data set of
ize 𝑁 = 1000. We observe that the PGA is a less relevant IM than

the SA as the relationship PGA-EDP shows a much larger variability.
Therefore, the derived fragility curves are less informative than the
previous ones. The PGA-EDP relationship is close to linear with a
homoscedastic noise (in the log–log scale). Therefore, the linear model
is able to approximate well the fragility curves with relatively small bi-
ases. Unlike Fig. 10(b), the kernel estimator yields smooth predictions,
but the fragility curve shows a non-increasing behavior for 𝛿0 = 2.5%.
The probit model and SPCE provide the most accurate estimate for the
fragility curve of 𝛿0 = 0.7%. However, in this case, SPCE underestimates
the exceeding probabilities associated with the threshold of 𝛿0 = 2.5%
for very large values of PGA. This is because most of the data are in
the region where PGA is small and the structure does not fail with
very high probabilities: the 95% and 99% quantiles of PGA are 0.351

and 0.605 g, and the associated reference exceeding probabilities are

.079 and 0.4427, respectively. The SPCE is a flexible model developed
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Fig. 10. Example 1 — fragility curves using spectral acceleration as IM.
Fig. 11. Example 2 — fragility curves using peak ground acceleration as IM.
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to estimate the overall conditional distribution (with respect to the
probability distribution of the IM), but not designed to fit directly the
tail of the distribution. As a consequence, in specific cases, it may suffer
of over-fitting and lack of robust extrapolation behavior for extreme
quantiles. In this case, the problem is exacerbated by the relatively
large variability between PGA and EDP, which makes difficult the
estimation of the tail of the distribution.

The lack of failure data for large damage thresholds is a well-
known problem in fragility analysis. In the classical framework for
fragility computation based on real ground motions, this problem is
overcome by scaling the ground motions and fitting procedures based
on censored data [20]. In the context of stochastic simulation, scaling is
not recommended [44]. A promising future research line is to develop
an importance sampling scheme to simulate extreme events from the
SGMM model and fill adaptively the EDP intervals of interest. Observe
that the presented SPCE approach is orthogonal to this research line
and can be easily adapted and applied once the adaptive importance
density scheme is developed.

6. Conclusions

In this paper, we propose methods to efficiently perform fragility
analysis based on artificial ground motions, following the recent de-
velopment in Abbiati et al. [15]. We characterize the ground motion
model by a few engineering-meaningful parameters that are calibrated
from seismic records and modeled by random variables. Combining this

model with the dynamical analysis of structures, we obtain a stochastic

11
simulator: for a given set of ground motion parameters, the engineering
demand parameter that characterizes the structural damage is random.
Because of this non-deterministic relation, classical surrogate models
cannot be used to represent the simulator.

Some methods that have been developed for estimating classical
fragility curves can be extended and applied by regarding the ground
motion parameters as multiple intensity measures. To have a reliable
model without introducing restrictive assumptions, we propose using
the recently developed stochastic surrogate model called stochastic
polynomial chaos expansion to emulate the conditional distribution. This
model introduced an artificial latent variable and a noise variable to
reproduce the stochastic behavior of the earthquake simulation.

The performance of the proposed method is illustrated by two
numerical examples: a three-degree-of-freedom system and a 3-story
steel frame (modeled in OpenSees). For the conditional distribution
estimation, SPCE is compared with the linear model and a state-of-
the-art kernel conditional distribution estimator. Using an appropriate
error measure defined in Eq. (16) to assess the accuracy, we observe
that the linear model reaches its performance limit for only 𝑁 = 250
imulations because of its simplicity. The kernel estimator is too flexible
o have a stable estimate as a consequence of its nonparametric feature.
n contrast, SPCE demonstrates a steep decay of the errors and yields
he best approximation for 𝑁 ≥ 1000.

For the fragility function, we include the probit model in the com-
arison. The results show that SPCE prevails over the other models,
specially for higher thresholds. In addition, SPCE can be used to prop-
gate the uncertainties in the ground motion parameters to evaluate the
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overall risks. By resampling the model, SPCE can accurately estimate
the complementary cumulative distribution function with limited data
even at the tail. Furthermore, one can also apply the method to esti-
mate the fragility curves with respect to classical intensity measures,
i.e., PGA and SA.

In this paper, we used a simplified ground motion model based on
the Kanai–Tajimi power spectral density, which is a common choice in
earthquake engineering to model broad-band far-field ground motions.
The associated numerical examples are coherent with this choice, and
they are used to illustrate the performance of the novel surrogate model
for fragility analysis. Nonetheless, the applicability of the novel surro-
gate model is not bounded to such a specific ground motion model.
For more sophisticated models, one can always follow the proposed
framework to build the surrogate model, and the application of the
surrogate model to more complex case studies is ongoing. In addition,
when many uncertain input parameters are involved, a large amount of
data may be necessary to achieve an accurate estimate. To this end, we
are exploring new methods to build sparse stochastic polynomial chaos
expansions. Alternatively, one can follow Abbiati et al. [15] to select
and keep only the most influential input parameters by performing a
global sensitivity analysis. In this case, sparse quantile regressions with
polynomial chaos expansions remain to be investigated to cope with
the framework without replications.

SPCE can generally produce accurate estimates of the fragility
curves. However, the data are mostly in the safe region for a high
threshold because of the sampling procedure. Thus, extrapolating SPCE
for extreme quantiles of the intensity measure with limited data is not
reliable. To cope with small exceeding probabilities, adaptive design
strategies remain to be explored. The simulation scheme will not simply
sample the distribution of the ground motion parameters but adaptively
select the samples in the region where the structure is prone to fail to
improve the predictive quality of the surrogate model [45,46]. This will
also benefit the estimation of fragility curves with classical IM.

We underline that the proposed method can be extended by consid-
ering uncertain parameters in the structural properties to tackle a larger
set of problems. It can also be applied to model other probabilistic
components in PBEE such as relating decision variables (e.g., monetary
loss) to structural damage and the damage state to EDP. With these
models representing the conditional distributions, one can evaluate the
exceeding probability function of the decision variables by resampling
(similar to the calculation of the CCDF in Fig. 9). Studies in this
direction are currently under investigation.
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