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Abstract

Point cloud registration has seen recent success with several learning-based methods that
focus on correspondence matching, and as such, optimize only for this objective. Following
the learning step, they evaluate the estimated rigid transformation with a robust estimator,
which alternates between the hypothesis set proposal and selection based on the sample
consensus. While it is an indispensable component of these methods, it prevents the fully
end-to-end training, leaving the objective to minimize the pose error non-served. I present
a novel solution, Q-REG, which utilizes rich geometric information to estimate the rigid
pose from a single correspondence. Q-REG allows to formalize the robust estimation as an
exhaustive search, hence enabling end-to-end training that optimizes over both objectives of
correspondence matching and final pose. I demonstrate in the experiments that Q-REG is
agnostic to the correspondence matching method and provides consistent improvement both
when used only in inference and in end-to-end training. It sets a new state-of-the-art on both
the real, indoor point cloud datasets 3DMatch and 3DLoMatch, and the synthetic, object-
centric datasets ModelNet and ModelLoNet. It yields an average increase in RR of 2.7% and
7.5% on the 3DMatch and 3DLoMatch benchmarks, respectively.
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1 Introduction

Point cloud registration is the task of estimating the rigid transformation that aligns two par-
tially overlapping point clouds. It is a key task in point cloud processing and has extensive
applications in autonomous driving [1], motion estimation and 3D reconstruction [2], object
detection and pose estimation [3, 4], robotic manipulation [5], simultaneous localization and
mapping (SLAM) [6, 7], panorama stitching [8], virtual and augmented reality [9], and med-
ical imaging [10]. It is commonly solved by establishing a set of tentative correspondences
between the two point clouds, followed by estimating their rigid transformation from the
correspondences. The field has seen substantial progress in recent years with methods that
introduce a learning component to solve the task.
Most learning methods focus on solving the correspondence task [11, 12, 13, 14], where a

feature extractor is trained to extract point correspondences between two input point clouds.
Once the learning step is over, they use the estimated correspondences for computing the rigid
pose. Due to the low inlier ratio in putative correspondences, these methods strongly rely
on hypothesize-and-verify frameworks, e.g. RANSAC [15] to compute the pose in a robust
manner. Recent methods [16, 17] employ advances in the field of transformers to improve the
final estimated set of correspondences and remove the dependency on RANSAC, achieving
close-to-RANSAC performance. However, in these methods too, the objective in the learning
process remains to find the best and cleanest matches, ignoring the objective to estimate
the pose. In addition, they do not achieve end-to-end di↵erentiable training since they still
employ robust estimation (e.g., [14, 16]) combined with the Kabsch-Umeyama algorithm [17].
Other learning-based methods, such as [18, 19, 20], directly solve the registration prob-

lem by incorporating the pose estimation in their training pipeline. Since RANSAC is non-
di↵erentiable due to the random sampling, they choose to estimate the alignment using soft
correspondences that are computed from local feature similarity scores. In contrast to these
methods, I employ the aforementioned works on estimating hard correspondences and develop
a robust solution to replace RANSAC, and allow for end-to-end di↵erentiable training.
In general, RANSAC-like robust estimation is non-di↵erentiable only due to the employed

randomized sampling function. Such a sampler is essential to cope with the combinatorics of
the problem via selecting random subsets of m correspondences (e.g., m = 3 for rigid pose
estimation). This allows to progressively explore the

�n
m

�
possible combinations, where n is the

total number of matches. Actually testing all of them is unbearably expensive in practice,
which is what methods like [16, 17] try to avoid. This computation bottleneck would be
resolved if m = 1. Hence, I design a 1-point solution, Q-REG, that utilizes rich geometric cues
extracted from local surface patches estimated from observed points (Figure 1.1). Specifically,
it utilizes rich geometric information by fitting quadrics (e.g., an ellipsoid) locally to the
neighborhoods of an estimated correspondence. Moreover, such a solution allows quick outlier
rejection by filtering degenerate surfaces and rigid poses inconsistent with motion priors (e.g.,
unrealistically large scaling). Q-REG is designed to be deterministic, di↵erentiable, and it
replaces RANSAC for point cloud registration. It can be used together with any feature-
matching or correspondence-matching method.
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2 Introduction
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Figure 1.1: Q-REG solver. Given (a) two partially overlapping point clouds as input and
(b) the estimated correspondences of a matching method, (c) Q-REG leverages
the rich local geometry to estimate the rigid pose from a single correspondence,
hence enabling end-to-end training of the matcher. (Best viewed on screen.)

Since Q-REG is fully di↵erentiable, it achieves end-to-end training that optimizes both
the correspondence matching and final pose objectives. As such, any learning-based matcher
can be extended to being end-to-end trainable. In Chapter 5, I demonstrate how Q-REG

consistently improves the performance of state-of-the-art matchers on the 3DMatch [21] and
ModelNet [22] datasets. It sets new state-of-the-art results on both benchmarks.



2 Related Work

2.1 Correspondence-based Registration Methods

The field of 3D point cloud registration is well-established and active. Approaches can be
grouped into two main categories: feature-based and end-to-end registration. Feature-based
methods comprise two steps: local feature extraction and pose estimation using robust esti-
mators, like RANSAC [15]. An example pipeline is shown in Figure 2.1. Traditional methods
use hand-crafted features [23, 24, 25, 26, 27] to capture local geometry and, while having good
generalization abilities across scenes, they often lack robustness against occlusions. Learned
local features have taken over in the past few years and, instead of using heuristics, they
rely on deep models and metric learning [28, 29] to extract dataset-specific discriminative
local descriptors. Depending on the input, these learned descriptors can be divided into
patch-based and fully convolutional methods. Patch-based methods [30, 31] treat each point
independently, while fully convolutional methods [13, 12, 14] can extract all local descriptors
for the whole scene in a single forward pass. The following robust estimators they use are
usually non-di↵erentiable due to the employed randomized sampling function. Thus, the cor-
respondence matching network cannot be optimized over the rigid transformation and there
is a large gap between the correspondence matching and rigid pose estimation, which greatly
degrades the final registration performance.
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Figure 2.1: Correspondence-based Registration Methods.

2.2 Direct Registration Methods

Recently, end-to-end registration methods have appeared that replace RANSAC with a dif-
ferentiable optimization algorithm that targets to incorporate direct supervision from ground
truth poses. The majority of these methods [18, 20, 19] use a weighted Kabsch solver [32]
for final pose estimation. You can find an example pipeline in Figure 2.2. Deep Closest
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4 Related Work

Point (DCP) [18] iteratively computes soft correspondences based on features extracted by
a dynamic graph convolutional neural network [33], which are then used in the Kabsch al-
gorithm to estimate the transformation parameters. To handle partially overlapping point
clouds, methods relax the one-to-one correspondence constraint with keypoint detection [20]
or optimal transport layers [19, 34]. Li et al. [35] use analytical Jacobians to incorporate
information from both the feature and Euclidean space into the pairwise point-matching pro-
cess. Cao et al. [36] identifies reliable correspondences by leveraging both local geometry
and global context through the multiplication of the cross-attention layers. Yuan et al. [37]
follow a probabilistic registration approach and learn to compute point-to-distribution cor-
respondences. Another line of work replaces local with global feature vectors that are used
to regress the pose. PointNetLK [38] registers two point clouds by minimizing the distance
of their feature vectors in the latent space, in an iterative fashion that resembles the Lucas-
Kanade algorithm [39]. In [40], an approach is proposed for rejecting non-overlapping regions
via masking on the global feature vector. However, due to the weak feature extractors, there
is still a large performance gap compared to hard matching methods. These direct registra-
tion methods mostly work on single synthetic shape datasets [22] and often fail in large-scale
scenes [14]. Q-REG uses hard correspondences while still being di↵erentiable, via introducing
an additional loss component that minimizes the relative pose error. In addition, as demon-
strated in Chapter 5, it works for both real-world large-scale scene point clouds [21] and the
synthetic shape datasets [22] and sets a new state-of-the-art.
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Figure 2.2: Direct Registration Methods.

2.3 Learned Robust Estimators

To address the fact that RANSAC is non-di↵erentiable, other methods either modify it [41]
or learn to filter outliers followed by a hypothesize-and-verify framework [42] or a weighted
Kabsch optimization [43, 44, 45]. In the latter case, outliers are filtered by a dedicated net-
work, which infers the correspondence weights to be used in the weighted Kabsch algorithm.
Similarly, I employ the correspondence confidence predicted by a feature extraction network
(e.g, by [14, 16, 17]) as weights in the pose-induced loss. I will summarize the aforementioned
research questions in the next chapter and present our solutions to them in Chapter 4.



3 Research Questions

The aim of this thesis is to develop a deterministic and di↵erentiable method leveraging hard
correspondences to replace traditional robust estimators for point cloud registration. There
are three research questions that need to be answered:

1. How can we design a method estimating the rigid pose from correspondences without
a randomized sampling function but using hard correspondences instead of soft ones?

2. How can we reduce the number of combinations without reducing the quality of each
solution?

3. How can we design a di↵erentiable pose estimator and a robust pose loss to guide the
optimization?
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4 Q-REG: Point Cloud Registration with
Quadrics

In this chapter, I will first describe the definition of point cloud registration problem (see
Figure 4.1). Then, I will introduce ways of extracting local surface patches that can be
exploited for point cloud registration.

(a) (b) (c)

Figure 4.1: Points clouds (a) and (b) and their registration (c).

Suppose that we are given two 3D point clouds P = {pi 2 R3 | i = 1, ..., N} and Q = {qi 2
R3 | i = 1, ...,M}, and a set of 3D-3D point correspondences C = {(p̃i, q̃i) | p̃i 2 P, q̃i 2
Q, i 2 [1,K]} extracted, e.g., by the state-of-the-art matchers [14, 16, 17]. The objective is
to estimate rigid transformation T = {R, t} that aligns two point clouds as follows:

min
R,t

X
(p⇤

x,q
⇤
y)2C⇤

kRp⇤
x + t� q⇤

yk22, (4.1)

whereR 2 SO(3) is a 3D rotation and t 2 R3 is a translation vector, and C⇤ is the set of ground
truth correspondences between P and Q. In practice, we use the putative correspondences
instead of the ground truth correspondences and the set of correspondences often contains a
large number of incorrect matches, i.e., outliers. Therefore, the objective is formulated as

min
R,t

X
(px,qy)2C

⇢(kRpx + t� qyk22), (4.2)

where ⇢ : R ! R is a robust loss, e.g., Huber loss. The problem is solved by a RANSAC-
like [15] hypothesize-and-verify framework combined with the Kabsch-Umeyama algorithm [32].
I will present in the next sections that, when employing higher-order geometric information,
RANSAC can be replaced by exhaustive search, with the improvement of both the perfor-
mance and run-time. Figure 4.2 illustrates the developed approach, called Q-REG.

7



8 Q-REG: Point Cloud Registration with Quadrics
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Figure 4.2: Overview of Q-REG. During inference, given (a) an input pair of partially
overlapping point clouds and (b) the output of a correspondence matcher, I
(c) perform quadric fitting for each estimated correspondence from which (d)
I estimate the rigid pose and (e) compute the inliers given this pose. I iterate
over all estimated correspondences, and choose the estimated pose that yields
the most inliers. I further improve the result with (f) the local optimization and
(g) the refinement step and output the final estimated pose. During training,
I back-propagate the gradients to the correspondence matcher and, in addition
to its standard loss formulation, I minimize the proposed loss (Lpose) based on
the single-correspondence pose estimation. (Best viewed on screen.)

4.1 Local Surface Patches

The main goal in this section is to determine a pair of local coordinate systems (Rp,Rq) for
each correspondence (p,q) 2 C, where Rp, Rq 2 SO(3). These coordinate systems will be
then used to determine rotation R between the point clouds as R = RqRT

p . I will present
the method for calculating Rp. It is the same for Rq. Note that determining translation t is
straightforward as t = q� p.

Suppose that we are given a point p 2 P and its k-nearest-neighbors N ✓ P such that there
exists a correspondence (p,q) 2 C, k 2 N+. In practice, there are two widely used techniques
for estimating local surfaces and determining a local coordinate system. First, one can fit a
general quadratic surface to the given point and the points in N and calculate the normal
curvature via the first and second-order derivatives at point p. Since there are infinitely many
directions that travel through a point on the surface, there are also infinitely many normal
curvatures at a given point p. In di↵erential geometry, the minimum normal curvature c1 and
the maximum curvature c2 at point p are defined as the principal curvatures, where c1  c2,
and the directions of the principal curvatures are the smoothest and steepest directions on
the surface. These principal directions can give us a local coordinate system that is invariant
to the translation and rotation of the local surface. Even though this algorithm is widely used
in practice, it can su↵er from degenerate cases and slow computation time. To address these
limitations, I developed the following approach inspired by [46].

The approach is based on fitting a local quadric, e.g.ellipsoid, to the point p and the points
in N . See Figure 4.3 for some examples. The general constraint that a 3D quadric surface
imposes on a 3D homogeneous point p̂ = (x, y, z, 1) 2 N lying on the quadric surface is

p̂TQp̂ = 0, (4.3)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.3: Examples of quadrics. (a) Ellipsoid; (b) Elliptic paraboloid; (c) Hyperbolic
paraboloid; (d) Hyperbolic hyperboloid; (e) Elliptic hyperboloid; (f) Conical
quadric; (g) Elliptic cylinder; (h) Hyperbolic cylinder; (i) Parabolic cylinder



10 Q-REG: Point Cloud Registration with Quadrics

where Q are the quadric parameters in the matrix form as follows:

Q =

0

BB@

A D E G

D B F H

E F C I

G H I J

1

CCA . (4.4)

We can rewrite constraint (4.3) into the form kTw = d, where

kT = (x2 + y
2 � 2z2, x2 + z

2 � 2y2, 2x2y2,

2x2z2, 2y2z2, 2x2, 2y2, 2z2, 1),

wT = (A0
, B

0
, D,E, F,G,H, I, J),

d = x
2 + y

2 + z
2
,

A
0 =

2A+B

3
,

B
0 =

A�B

3
.

By imposing constraints to all the points, we have

lX

i=1

kiki
Tw =

lX

i=1

kidi. (4.5)

By solving the above linear equation, we can get the coe�cients of the quadric surface Q.
As we are interested in finding Q such that the observed point p is ensured to lie on its

surface, I substitute J with the formula of p by introducing the constraint

pTQp = 0. (4.6)

In order to find a local coordinate system, I introduce the coe�cient matrix

P =
1

J

0

@
A D E

D B F

E F C

1

A . (4.7)

The matrix P can be decomposed into I = V⌃VT, where V = (v1,v2,v3), which projects
the fitted points to the canonical coordinate, and ⌃ = diag(l1, l2, l3), which is the diagonal
matrix with corresponding eigenvalues.
The matrix V contains the three main axes that project the quadric, fitted to point p

and its local neighborhood N , to canonical form. Due to its local nature, it is invariant
to translation and rotation. Thus, it is a repeatable feature under di↵erent rotations and
translations of the underlying 3D point cloud. ⌃ contains the three eigenvalues that are
proportional to the reciprocals of the lengths of three axes squared.

4.2 Rigid Transformation from Surface Matches

Suppose that we are given sets of local coordinate systems VP and VQ associated with points
on the found 3D-3D point correspondences. Given correspondence (p,q) 2 C, we know the
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local coordinates systems VP
p 2 VP and VQ

q 2 VQ at, respectively, points p and q. Due to the
local surfaces being translation and rotation invariant, the coordinate systems must preserve
the rigid transformation applied to the entire point cloud. Thus, R = VQ

q P(VP
p )

T 2 SO(3) is
the rotation between the point clouds, where P is an unknown permutation matrix assigning
the axes in the first coordinate system to the axes in the second one.

There are three cases that have to be taken into account. Examples of ellipsoids are shown
in Figure 4.4 for better illustration. Ideally, the lengths of the three axes La = (la1 , l

a
2 , l

a
3)

T

have a distinct ordering such that l
a
1 > l

a
2 > l

a
3 , a 2 {P,Q}, as shown in Figure 4.4 (a). In

this case, the permutation matrix can be determined such that it assigns the longest axis
in VQ

q to the longest one in VP
p , and so on. This procedure builds on the assumption that

there is no or negligible anisotropic scaling in the point clouds and thus, the relative axes
lengths remain unchanged. Also, having this assignment allows us to do the matching in a
scale-invariant manner while enabling us to calculate a uniform scaling of the point clouds –
or to early reject incorrect matches that imply unrealistic scaling. In this case, the problem
is solved from a single correspondence.

(a) (b) (c)

Figure 4.4: Examples of ellipsoids. (a) Ellipsoid; (b) Ellipsoid with two equal axes; (c)
Sphere

The second case in Figure 4.4 (b) is when two axes have the same lengths, e.g., la1 ⇡ l
a
2 , and

l
a
3 is either shorter or longer than them. In this scenario, only l

a
3 can be matched between the

point clouds. This case is equivalent to having a corresponding oriented point pair. It gives
us an additional constraint for estimating the rotation matrix. However, the rotation around
axis la3 is unknown and has to be estimated from another point correspondence. While this is
a useful solution to reduce the required number of points from three to two, it does not allow
solving from a single correspondence.

In the third case as shown in Figure 4.4 (c), when l
a
1 ⇡ l

a
2 ⇡ l

a
3 , we are given a pair of

corresponding spheres that provide no extra constraints on the unknown rotation.

In the proposed algorithm, I keep only those correspondences from C where the local surface
patches are of the first type – i.e., they lead to enough constraints to estimate the rigid
transformation from a single correspondence. In the next session, I will discuss how this
approach can be used for training 3D-3D correspondence matching algorithms with robust
estimation in an end-to-end manner.
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4.3 End-to-End Training

Benefiting from the rich geometric information extracted via local surfaces (as described in
the previous section), the presented solver is able to estimate the rigid pose from a single 3D
quadric correspondence. This unlocks end-to-end di↵erentiability, where the gradients of the
feature matcher network can be propagated through the robust estimator to a loss directly
measuring the pose error per correspondence. This enables using test-time evaluation metrics
to optimize the end-to-end training.

Loss. In order to calculate a pose-induced loss from each correspondence, I first fit quadrics
to local neighborhoods. This step has to be done only once, prior to the loss calculation,
as the point clouds do not change. Suppose that we are given a set of correspondences
C = {(p,q,VP

p ,V
Q
q ) | p 2 P, q 2 Q, VP

p 2 VP
, VQ

q 2 VQ} equipped with their local

quadrics and a solver � : P ⇥ Q ⇥ VP ⇥ VQ ! SE(3), as described in Section 4.2, we can
estimate the rigid transformation T = (R, t) 2 SE(3) from a single correspondence. Given a
correspondence (p,q,VP

p ,V
Q
q ) and the pose estimated from it Tp,q = �(p,q,VP

p ,V
Q
q ), The

error is formalized as follows:

✏(Tp,q) =

vuut
1

|C|
X

(pi,qi,...)2C

kTp,qpi � qik22, (4.8)

where the RMSE of the pose is calculated by transforming the correspondences. The loss
obtained by iterating through all correspondences is

Lpose =
X

(p,q,VP
p ,VQ

q )2C

✓
1� min(✏(Tp,q), �)

�
� s

◆
, (4.9)

where � 2 R is a threshold and s is the score of the point correspondence predicted by the
matching network. The proposed Lpose can be combined with any of the widely used loss
functions, e.g., registration loss. It bridges the gap between correspondence matching and
registration and unlocks the end-to-end training.

4.4 Inference Time

While the proposed Q-REG is capable of propagating the gradients at training time, during
inference, I equip it with components that ensure high accuracy but are non-di↵erentiable. Q-

REG iterates through the poses calculated from all tentative correspondences, by the proposed
single-correspondence solver, in an exhaustive manner. For each match, the pose quality is
calculated as the cardinality of its support, i.e., the number of inliers. After the best model
is found, I apply local optimization similar to [47], a local re-sampling and re-fitting of inlier
correspondences based on their normals (coming from the fitted quadrics) and positions.
Specifically, I select the correspondence set with the highest confidence based on the best
rigid pose obtained and iterate through all the combinations with the designed two-point
estimator. Theoretically, we need at least one point and two vector pairs to estimate the rigid
transformation. We can achieve it with two points and their corresponding normals (at least
one normal). Given two point correspondences {(p̃i, q̃i) | p̃i 2 P, q̃i 2 Q, i 2 [1, 2]} and their
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normal correspondences {(ñi, m̃i) | ñi 2 N , m̃i 2 M, i 2 [1, 2]}, the objective function can
be written as follows:

min
R,t

2X

i=1

wi(kRp̃i + t� q̃ik22 + ↵
2
i kRñi � m̃i)k22), (4.10)

where wi is the weight for di↵erent correspondences and ↵i is the weight for the normals. We
can rewrite it as follows:

min
R,t

2X

i=1

wi(kRp̃0
i � q̃0

ik22 + ↵
2
i kRñi � m̃ik22 + kRp̄+ t� q̄k22), (4.11)

where p̃0
i = p̃i� p̄, q̃0

i = q̃i� q̄, p̄ = 1
2(p̃1+ p̃2) and q̄ = 1

2(q̃1+ q̃2). Similar to [32], we define

H =
2X

i=1

wi [p̃
0
iq̃

0T
i + (↵iñi)(↵im̃i)

T]. (4.12)

We can decompose H as
H = U⌃VT (4.13)

using SVD decomposition. The estimated R̂j and t̂j can be represented as

R̂ = V

2

4
1 0 0
0 1 0
0 0 det(VUT)

3

5UT
, (4.14)

t̂ = q̄� R̂p̄. (4.15)

The best model is selected according to the pose quality. The pose can be further refined
with the inliers predicted from the previous step.





5 Experiments

I evaluate the Q-REG solver with three state-of-the-art matchers (Predator [14], RegTR [17],
and GeoTr [16]) on the real, indoor point cloud datasets 3DMatch [21] and 3DLoMatch [14]
(Section 5.1). I also evaluate Q-REG with GeoTr and RegTR on the synthetic, object-centric
datasets ModelNet [22] and ModelLoNet [14] (Section 5.2). In all datasets, I evaluate the
use of Q-REG for inference, as well as for end-to-end training. Furthermore, I evaluate the
importance of di↵erent Q-REG components on the best-performing matcher on 3DMatch and
3DLoMatch, as well as run-time during inference (Section 5.3).

5.1 3DMatch & 3DLoMatch

The 3DMatch [21] dataset contains 62 scenes in total, with 46 used for training, 8 for val-
idation, and 8 for testing. I use the training data preprocessed by Huang et al. [14] and
evaluate on both 3DMatch and 3DLoMatch [14] protocols. The point cloud pairs in 3DMatch

have more than 30% overlap, whereas those in 3DLoMatch have a low overlap of 10% - 30%.
Following prior work [16, 17], I evaluate the following metrics: (i) Registration Recall (RR),
which measures the fraction of successfully registered pairs, defined as having a correspon-
dence RMSE below 0.2 m; (ii) Relative Rotation Error (RRE); and (iii) Relative Translation
Error (RTE). Both (ii) and (iii) measure the accuracy of successful registrations. Addition-
ally, I report the mean RRE, RTE, and RMSE. In this setting, I evaluate over all valid pairs1

instead of only those with an RMSE below 0.2 m, and I provide a simple average over all valid
pairs instead of the median value of each scene followed by the average over all scenes. These
metrics will show how consistently well (or not) a method performs in registering scenes.
I report several learned correspondence-based algorithms on the two datasets. For [11, 13,

12], I tabulate the results as reported in their original papers. For [14, 17, 16], I evaluate
them with and without the Q-REG solver on all metrics. I also report methods that do not
employ RANSAC [40, 43, 36] – results are taken from [17].
The results for 3DLoMatch and 3DMatch are tabulated in Tables 5.1 and 5.2 respectively.

Note that, unless di↵erently stated, hereafter the best values per group are in bold and the
absolute best is underlined. Also, Q-REG means that the solver is used only in inference
and Q-REG* means it is used in both end-to-end training and inference. In the latter case,
I train from scratch the correspondence matching network with the addition of the pose-
induced loss. 1K or 50K refers to RANSAC iterations. Last, if nothing is added next to the
method, the standard formulation is used.

1
According to [21], a valid pair is a pair of non-consecutive frames.

15
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Model
RR RRE RTE Mean
(%)" (

�
)# (cm)# RRE # RTE # RMSE (cm)#

3DSN [11] 33.0 3.53 10.3 - - -

FCGF [13] 40.1 3.15 10.0 - - -

D3Feat [12] 37.2 3.36 10.3 - - -

OMNet [40] 8.4 7.30 15.1 - - -

DGR [43] 48.7 3.95 11.3 - - -

PCAM [36] 54.9 3.53 9.9 - - -

Predator [14] + 1k 49.7 3.66 10.7 37.57 95.3 90.0

Predator [14] + 50k 60.4 3.21 9.5 30.07 76.2 72.8

Predator [14] + Q-REG 66.6 2.70 8.1 28.44 71.9 68.8

RegTR [17] 64.8 2.83 8.0 23.05 64.4 55.8

RegTR [17] + 1K 64.4 2.89 8.6 22.38 63.1 55.1

RegTR [17] + 50K 64.3 2.92 8.5 21.90 62.5 54.5

RegTR [17] + Q-REG 65.3 2.81 7.8 21.43 60.9 53.3

GeoTr [16] 74.1 2.59 7.3 23.15 58.3 57.8

GeoTr [16] + 1K 73.6 2.81 8.3 24.04 60.4 60.2

GeoTr [16] + 50K 75.0 2.54 7.7 22.69 57.8 57.3

GeoTr [16] + Q-REG 77.1 2.44 7.7 16.70 46.0 44.6

GeoTr [16] + Q-REG* 78.3 2.38 7.2 15.65 46.3 42.5

Table 5.1: Correspondence matching algorithms on the 3DLoMatch [14] dataset. The
three state-of-the-art matchers show improved performance on most metrics when
combined with the Q-REG solver. The best values are bold in each group. The
absolute best are underlined.
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Model
RR RRE RTE Mean
(%)" (

�
)# (cm)# RRE # RTE # RMSE (cm)#

3DSN [11] 78.4 2.20 7.1 - - -

FCGF [13] 85.1 1.95 6.6 - - -

D3Feat [12] 81.6 2.16 6.7 - - -

OMNet [40] 35.9 4.17 10.5 - - -

DGR [43] 85.3 2.10 6.7 - - -

PCAM [36] 85.5 1.81 5.9 - - -

Predator [14] + 1k 86.7 2.11 6.6 9.97 30.3 24.8

Predator [14] + 50k 89.3 1.98 6.5 6.80 20.2 18.3

Predator [14] + Q-REG 90.6 1.74 5.7 6.78 20.0 18.1

RegTR [17] 92.0 1.57 4.9 5.31 17.0 13.8

RegTR [17] + 1K 91.4 1.76 5.7 5.21 17.1 14.5

RegTR [17] + 50K 91.3 1.72 5.9 5.26 17.5 14.7

RegTR [17] + Q-REG 92.2 1.57 4.9 5.13 16.5 13.6

GeoTr [16] 92.5 1.54 5.1 7.04 19.4 17.6

GeoTr [16] + 1K 91.9 1.73 5.6 6.75 18.4 17.0

GeoTr [16] + 50K 92.2 1.66 5.6 6.85 18.7 17.1

GeoTr [16] + Q-REG 93.8 1.57 5.3 4.74 15.0 12.8

GeoTr [16] + Q-REG* 95.2 1.53 5.3 3.70 12.5 10.7

Table 5.2: Correspondence matching algorithms on the 3DMatch [21] dataset. Even on this
saturated dataset, state-of-the-art matchers show improved performance when
combined with the Q-REG solver. The best values are bold in each group. The
absolute best are underlined.
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In all three matchers, incorporating Q-REG in inference time yields an increase in RR
that ranges from 1.0 to 16.9% in 3DLoMatch and from 0.9 to 3.9% in 3DMatch. The range
di↵erence between the two datasets is expected, since 3DMatch is more saturated and the gap
for improvement is small. Using Q-REG for inference achieves the second-best results overall
(GeoTr + Q-REG). Even in the case of RegTR, where applying RANSAC ends in decreasing
performance [17], Q-REG can still provide a boost in all metrics. When training end-to-end
the best-performing matcher, GeoTr, I gain further boost and achieve the best results overall
in both datasets, setting a new benchmark (GeoTr + Q-REG* ). This behavior can be
observed not only on the standard metrics (RR, RRE, RTE), but also at the Mean RRE,
RTE, and RMSE. As expected, Q-REG results in smaller errors regardless of the matcher.

For a detailed comparison, I plot the cumulative distribution functions (CDF) of the follow-
ing registration metrics: Relative Rotation Error (RRE) (Figure 5.1), Relative Translation
Error (RTE) (Figure 5.2), and Root Mean Square Error (RMSE) (Figure 5.3), for the 3DLo-

Match [14] and 3DMatch [21] datasets (Figure 5.4, 5.5 and 5.6). Being close to the top-left
corner is interpreted as being accurate. As expected, when using Q-REG, state-of-the-art cor-
respondence matching algorithms have improved performance with respect to their standard
formulation. What can also be observed, is that when training the matcher in an end-to-end
fashion with Q-REG* , I achieve new state-of-the-art results. The above stand for both
3DLoMatch and 3DMatch datasets.
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Figure 5.1: Cumulative distribution functions of RRE for the 3DLoMatch [14]
dataset. When using Q-REG the performance of state-of-the-art matchers
is increased, with the best results achieved when Q-REG is used for end-to-
end training. GeoTr [16] refers to the standard formulation, GeoTr+Q-REG to
using the method during inference, and GeoTr+Q-REG* to using the method
for end-to-end training. Similar for RegTr [17] and RegTr+Q-REG. Being close
to the top-left corner is interpreted as being accurate.
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Figure 5.2: Cumulative distribution functions of RTE for the 3DLoMatch [14]
dataset.
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Figure 5.3: Cumulative distribution functions of RMSE for the 3DLoMatch [14]
dataset.
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Figure 5.4: Cumulative distribution functions of RRE for the 3DMatch [21]
dataset. When using Q-REG the performance of state-of-the-art matchers
is increased, with the best results achieved when Q-REG is used for end-to-end
training. GeoTr [16] refers to the standard formulation, GeoTr+Q-REG to us-
ing the method during inference, and GeoTr+Q-REG* to using the method
for end-to-end training. Similar for RegTr [17] and RegTr+Q-REG. Being close
to the top-left corner is interpreted as being accurate.
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Figure 5.5: Cumulative distribution functions of RTE for the 3DMatch [21]
dataset.
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Figure 5.6: Cumulative distribution functions of RMSE for the 3DMatch [21]
dataset.

Qualitative results are illustrated in Figure 5.7. In the first row, GeoTr+Q-REG* achieves
a good alignment of the point clouds when all other methods fail, which highlights the impor-
tance of end-to-end training. The shown examples in the second row demonstrate that it is
hard for Q-REG to recover a good pose when the standard formulation of RegTR fails in the
first place. This means that the estimated correspondences are not good, to the point that
a robust estimator cannot identify a good subset. Similar to the above, end-to-end training
could address this since the correspondences would be learned jointly with the pose mini-
mization objective. When RegTR finds a correct pose, Q-REG can further optimize it, as
shown in the fourth row. In the same example, although GeoTr fails to infer a good pose,
both Q-REG and Q-REG* are able to recover it.

(a) Source PC (b) Target PC (e) GT
(i) Standard

(c) RegTR
(ii) + Q-REG

(d) GeoTr

(iii) + Q-REG*(ii) + Q-REG (i) Standard

Figure 5.7: Qualitative Results. I showcase registration examples of RegTR [17] and
GeoTr [16] with and without Q-REG for the 3DLoMatch (first two rows) and
3DMatch (last two rows) datasets. (Best viewed on screen.)
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In Figures 5.8 and 5.9, I showcase additional qualitative registration results for the 3DLo-

Match and 3DMatch datasets, respectively. I evaluate the state-of-the-art matchers GeoTr [16]
and RegTr [17]. Please note that GeoTr Standard (d-i) refers to the standard formulation,
GeoTr+Q-REG (d-ii) to using the presented method during inference, and GeoTr+Q-REG*
(d-iii) to using the presented method for end-to-end training. Similar for RegTr Standard
(c-i) and RegTr+Q-REG (c-ii).

In Figure 5.8, I illustrate qualitative examples of point cloud registration for the 3DLoMatch

dataset. Specifically, per row:

Row (1): In the case of GeoTr, the standard formulation (d-i) already produces well-aligned
point clouds, and the addition of Q-REG (d-ii and d-iii) slightly refines this output. However,
in the case of RegTr, we can see the most improvement. The standard formulation (c-i) fails
to achieve a good alignment and Q-REG (c-ii) is able to recover a good pose. This means
that Q-REG is able to identify robust correspondences and remove spurious ones.

Row (2): In this example the opposite behavior is observed, where Reg-Tr+Q-REG (c-ii)
further refines the good results achieved by RegTr standard (c-i). GeoTr standard (d-i) fails
to achieve a good registration, but the use of Q-REG (d-ii and d-iii) can recover the pose.

Row (3): Here, both RegTr standard (c-i) and GeoTr standard (d-i) fail to align the point
clouds correctly. Despite this failure, in both matchers, the use of Q-REG (c-ii, d-ii, and d-iii)
allows to recover the final pose.

Rows (4), (5), and (6): In these examples, the only method that allows to recover the final
pose is GeoTr+Q-REG* (d-iii). This means that using Q-REG in end-to-end training can
provide additional improvements in performance by learning how to better match correspon-
dences together with the objective of rigid pose estimation, and not in isolation as it happens
in all other cases (c-i, c-ii, d-i, and d-ii).

Row (7): In this final example, all methods perform reasonably well. However, in the case of
GeoTr+Q-REG (d-ii) and GeoTr+Q-REG* (d-iii), the RMSE can be reduced from 16 cm in
the standard formulation (d-i) to 5 cm, which is a substantial improvement in the estimated
pose. It demonstrates the superiority of Q-REG in easy cases.

In Figure 5.9, I illustrate qualitative examples of point cloud registration for the 3DMatch

dataset. Specifically, per row:

Rows (1) and (2): In these examples, the addition of Q-REG (c-ii) to the standard RegTr
formulation (c-i) is able to greatly correct the estimated pose, although it does not achieve
perfect results. In the case of GeoTr+Q-REG (d-ii), it cannot correct the error of GeoTr
standard (c-i), however, GeoTr+Q-REG* (d-iii) recovers the final pose. This points out, as
mentioned beforehand, to the power of learning to choose (hard) correspondences with the
inclusion of the pose error minimization objective.
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Rows (3), (4), (5), and (6): Here, although there is no big improvement between RegTr
standard (c-i) and RegTr+Q-REG (c-ii), this changes in the case of GeoTr. The standard
formulation (d-i) fails to estimate a good alignment, but the use of Q-REG (d-ii) and Q-
REG* (d-iii) provide a close-to-GT pose estimation, with Q-REG* being better.

Row (7): In this final example, all methods perform reasonably well. However, in the case of
GeoTr+Q-REG (d-ii) and GeoTr+Q-REG* (d-iii) the presented method reduces the RMSE
from 13 cm in the standard formulation (d-i) to 4 cm and 2 cm respectively.

(a) Source PC (b) Target PC (e) GT
(i) Standard

(c) RegTR
(ii) + Q-REG

(d) GeoTr
(iii) + Q-REG*(ii) + Q-REG (i) Standard

No.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

3D Lo

Figure 5.8: Qualitative Results for the 3DLoMatch [14] dataset. See Section 5.1 for
an explanation of the results.
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(a) Source PC (b) Target PC (e) GT
(i) Standard

(c) RegTR
(ii) + Q-REG

(d) GeoTr
(iii) + Q-REG*(ii) + Q-REG (i) Standard

No.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Figure 5.9: Qualitative Results for the 3DMatch [21] dataset. See Section 5.1 for an
explanation of the results.

5.2 ModelNet & ModelLoNet

The ModelNet [22] dataset contains in total of 12,311 CAD models of man-made objects from
40 categories, with 5,112 used for training, 1,202 for validation, and 1,266 for testing. I use
the partial scans created by Yew et al. [19] for evaluating on ModelNet and those created by
Huang et al. [14] for evaluating onModelLoNet. The point cloud pairs inModelNet have 73.5%
overlap on average, whereas those in ModelLoNet have 53.6%. Following prior work [14, 17],
I evaluate the following metrics: (i) Chamfer Distance (CD) between registered point clouds;
(ii) Relative Rotation Error (RRE); and (iii) Relative Translation Error (RTE). I report
several recent algorithms on the two datasets. For [38, 14], I tabulate the results as reported
in their original papers. For [18, 19, 40], results are taken from [17]. For [17, 16], I evaluate
them with and without Q-REG, similarly to the Section 5.1.

The results for ModelNet [22] and ModelLoNet [14] are tabulated in Tables 5.3 and 5.4,
respectively. Here a similar trend can be observed in the results, with Q-REG boosting the
performance of all matchers. RegTR with Q-REG achieves the best results overall on both
datasets (RegTR + Q-REG). In addition, both when Q-REG is used for inference and end-to-
end training, the results of GeoTr are also improved with respect to its standard formulation.
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Method
ModelNet [22]

CD # RRE (
�
)# RTE (cm)#

PointNetLK [38] 0.02350 29.73 29.7

OMNet [40] 0.00150 2.95 3.2

DCP-v2 [18] 0.01170 11.98 17.1

RPM-Net [19] 0.00085 1.71 1.8
Predator [14] 0.00089 1.74 1.9

RegTR [17] 0.00078 1.47 1.4

RegTR [17] + 1K 0.00088 1.80 1.7

RegTR [17] + 50K 0.00091 1.82 1.8

RegTR [17] + Q-REG 0.00074 1.35 1.3

GeoTr [16] 0.00083 2.16 2.0

GeoTr [16] + 1K 0.00106 2.76 2.6

GeoTr [16] + 50K 0.00095 2.40 2.2

GeoTr [16] + Q-REG 0.00078 1.84 1.7

GeoTr [16] + Q-REG* 0.00076 1.73 1.5

Table 5.3: Evaluation of state-of-the-art matchers on the ModelNet [22] dataset. The best
values are bold in each group. The absolute best are underlined.

Method
ModelLoNet [14]

CD # RRE (
�
)# RTE (cm)#

PointNetLK [38] 0.0367 48.57 50.7

OMNet [40] 0.0074 6.52 12.9

DCP-v2 [18] 0.0268 6.50 30.0

RPM-Net [19] 0.0050 7.34 12.4
Predator [14] 0.0083 5.24 13.2

RegTR [17] 0.0037 3.93 8.7

RegTR [17] + 1K 0.0039 4.20 9.1

RegTR [17] + 50K 0.0039 4.23 9.2

RegTR [17] + Q-REG 0.0034 3.65 8.1

GeoTr [16] 0.0050 4.49 7.6

GeoTr [16] + 1K 0.0051 4.99 8.4

GeoTr [16] + 50K 0.0050 4.27 8.0

GeoTr [16] + Q-REG 0.0044 3.87 7.0

GeoTr [16] + Q-REG* 0.0040 3.73 6.5

Table 5.4: Evaluation of state-of-the-art matchers on the ModelLoNet [14] dataset. The
best values are bold in each group. The absolute best are underlined.
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Qin et al. [16] do not provide any ModelNet dataset evaluation in their paper, however,
they o↵er an evaluation on their GitHub page [48]. I follow their proposed protocol and
dataset split for the standard setting. In a nutshell, (i) they use a portion of the ModelNet

dataset that excludes the axis-symmetrical object categories and (ii) they train and test on
all categories, instead of keeping certain ones unseen for testing. I trained GeoTr [16] from
scratch on this setting and report the results on the same metrics in Table 5.5 (best results
marked in bold). It can be seen that the Q-REG, in both an only-testing setting and an
end-to-end-training one, performs the best, and minimizes all three metrics with respect to
the best-performing GeoTr without Q-REG.

Method CD # RRE (
�
)# RTE (cm)#

GeoTr [16] 0.00093 1.61 1.9

GeoTr [16] + 1K 0.00124 2.31 2.7

GeoTr [16] + 50K 0.00112 1.94 2.3

GeoTr [16] + Q-REG 0.00088 1.43 1.7

GeoTr [16] + Q-REG* 0.00085 1.26 1.5

Table 5.5: Evaluation of GeoTr [16] on a di↵erent ModelNet setting: (i) using a portion of
it that excludes axis-symmetrical categories and (ii) using all categories in both
training and testing.

5.3 Ablation Studies

I perform ablation studies to evaluate the contribution of each component in theQ-REG solver
to the best-performing matcher on the 3DMatch and 3DLoMatch datasets, the state-of-the-
art GeoTr [16]. I evaluate the following self-baselines (i and ii are inference only): (i) GeoTr
+ Q: My quadric-fitting 1-point solver. (ii) GeoTr + QL: I extend the quadric fitting with
local optimization as discussed in Section 4.3. (iii) GeoTr + QT: The quadric-fitting solver
is used in end-to-end training – during inference I do not employ local optimization; and
(iv) GeoTr + QTL (Q-REG* ): The quadric-fitting 1-point solver is used in end-to-end
training followed by inference using the local optimization.
The results for 3DLoMatch and 3DMatch are tabulated in Tables 5.6 and 5.7 respectively

(best results in bold, second best are underlined). In both datasets, Q-REG* performs the
best in the majority of the metrics. Specifically, in 3DLoMatch, there is a substantial increase
in RR by 4.2%. Even in the saturated 3DMatch, an increase of 2.7% is obtained. When
the solver is used only during inference, a 3.0% and 1.3% increase can still be seen in RR
per dataset. As expected, GeoTr + QT performs very closely to Q-REG* , since the main
di↵erence is the absence of the local optimization that refines the estimated pose. When
considering the mean RRE, RTE, and RMSE, the self-baselines provide consistently more
robust results over all valid pairs.
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Model
RR RRE RTE Mean
(%)" (

�
)# (cm)# RRE # RTE # RMSE #

GeoTr + LGR 74.1 2.59 7.3 23.15 58.3 57.8

GeoTr + 1K 73.6 2.81 8.3 24.04 60.4 60.2

GeoTr + 50K 75.0 2.54 7.7 22.69 57.8 57.3

i) GeoTr + Q 75.5 2.47 7.6 22.38 57.6 57.3

ii) GeoTr + QL (Q-REG) 77.1 2.44 7.7 16.70 46.0 44.6

iii) GeoTr + QT 77.2 2.37 7.5 17.32 50.3 47.4

iv) GeoTr + QTL (Q-REG* ) 78.3 2.38 7.2 15.65 46.3 42.5

Table 5.6: Ablation results on the 3DLoMatch [14] dataset of GeoTr [16] with di↵erent
aspects of the Q-REG solver. The best values are bold and the 2nd best are
underlined.

Model
RR RRE RTE Mean
(%)" (

�
)# (cm)# RRE # RTE # RMSE #

GeoTr + LGR 92.5 1.54 5.1 7.04 19.4 17.6

GeoTr + 1K 91.1 1.73 5.6 6.75 18.4 17.0

GeoTr + 50K 92.2 1.66 5.6 6.85 18.7 17.1

i) GeoTr + Q 92.6 1.55 5.3 6.26 17.4 15.8

ii) GeoTr + QL (Q-REG) 93.8 1.57 5.3 4.74 15.0 12.8

iii) GeoTr + QT 94.3 1.51 5.2 3.78 12.8 10.9

iv) GeoTr + QTL (Q-REG* ) 95.2 1.53 5.3 3.70 12.5 10.7

Table 5.7: Ablation results on the 3DMatch [21] dataset of GeoTr [16] with di↵erent aspects
of the Q-REG solver. The best values are bold and the 2nd best are underlined.

Run-time. I compute the average run-time in seconds for each component in Table 5.8
(evaluated with GeoTr on the 3DLoMatch dataset). With respect to RANSAC 50K, which
yields at least 2% lower RR, QREG provides better results while being an order of magnitude
faster. All run-time experiments were run on 8 Intel Xeon Gold 6150 CPUs and an NVIDIA
GeForce RTX 3090 GPU.

LGR +1K +50K +Q +QL (Q-REG)

0.016 0.053 1.809 0.085 0.166

Table 5.8: Run-time evaluation in seconds during inference using GeoTr [16] on the 3DLo-
Match dataset. Times shown for LGR, RANSAC running 1K and 50K iterations,
Quadric solvers (Sec. 4.2), and with the entire Q-REG algorithm.





6 Discussion

I develop Q-REG, a robust solution for point cloud registration, estimating the pose from a
single correspondence via leveraging local surface patches. It is agnostic to the correspon-
dence matching method. Q-REG allows for quick outlier rejection by filtering degenerate
solutions and assumption inconsistent motions (e.g., related to scale). I extend the above
formulation of Q-REG to a di↵erentiable setting that allows for end-to-end training of corre-
spondence matching methods with this presented solver. Thus, it optimize not only over the
correspondence matching but also over the final pose.
The main bottleneck of the current solution is the criteria to select the best rigid pose,

i.e., the number of inliers. In most cases, it is a good measure of the pose quality. However,
it fails to find a close-to-best solution especially when there are many ambiguous feature
matchings or most of the putative correspondences are wrong. One possible solution is to
design a network to learn the criteria, considering both the cardinality of its support and global
spatial information. Another potential extension would be to extend Q-REG to estimate not
only the rotation and translation but also the isotropic scale parameter.

29





7 Conclusion

I present a novel solution for point cloud registration, Q-REG, that utilizes rich geometric
information to estimate the rigid pose from a single correspondence. With Q-REG, the
number of possible combinations reduces from cubic to linear with respect to the number
of correspondences. It allows us to formalize the robust estimation as an exhaustive search
and enable us to iterate through all the combinations and select the best rigid pose among
them. Q-REG utilizes rich geometric cues extracted from local surface patches estimated from
observed points, which ensures the robustness of each estimated pose. It is di↵erentiable by
design, hence, together with the pose loss, enabling end-to-end training that optimizes over
both objectives of correspondence matching and final pose. It performs quick outlier rejection
by filtering degenerate solutions and assumption inconsistent motions (e.g., related to scale).
Q-REG is agnostic to matching methods and is consistently improving their performance on
all reported datasets, setting new state-of-the-art on these benchmarks.
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