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“It would be possible to describe everything scientifically, but it would make no sense.

It would be a description without meaning —

as if you described a Beethoven symphony as a variation of wave pressure.”

— Albert Einstein
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Abstract
The main long-term rehabilitation goal of patients with a neurological injury is to achieve the

highest possible functional independence with respect to the level of the patient’s impairments.

On the way to achieve this goal, clinical decision making is often difficult due to the complex

symptoms and the diverse outcome possibilities. This implies that therapy programs must be

tailored for each patient. A comprehensive assessment helps to better understand the status

of the patient, the effect of clinical interventions, and can provide guidelines for individualized

rehabilitation goals. In today’s standard clinical practice, the therapists and clinicians perform

assessments continuously during rehabilitation by choosing standardized tests. Limitation

of these conventional assessments include ceiling or flooring effects, poor sensitivity, and

subjectiveness. Besides other devices, wearable inertial sensors offer a solution to address

these issues. The small and affordable sensors can be attached to the body to provide objective

digital metrics on movements of interest. Hence, inertial measurement units offer the unique

possibility to unobtrusively assess activities of daily living not limited to a standardized setting.

Nevertheless, the widespread adaptation of such setups for technological-aided assessments

in the clinical routine has yet to be realized.

The aim of this thesis is to provide digital health metrics from a sparse inertial sensor setup

to assess daily life-like activities for patients undergoing neurorehabilitation. These metrics

are expected to extend conventional assessments by providing more objective and detailed

measures on the movement profiles. Hence, limitations in performing these activities can be

assessed more precisely than using conventional methods which is highly relevant regarding

the patient’s mobility and independence. Three key activities of daily living, namely walking,

wheeling and grasping, were selected and a suitable inertial sensor setup was chosen for each

activity. Novel algorithms were developed to extract digital metrics related to each activity.

Further, these metrics are used in combination with machine learning methods to characterize

patients and to propose roadmaps to integrate these metrics into clinical routine and decision

making by suggesting therapy goals.

A sensor-based gait analysis has been developed specifically for individuals with an incom-

plete spinal cord injury. These patients often suffer from diverse gait deficits depending on

the location and severeness of the injury but in the current clinical routine walking function is

only assessed by simple timed gait tests. The sensor-based gait analysis would allow a more

comprehensively characterization of walking for a more targeted therapy approach and better
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estimation of walking recovery. The algorithm derives typical spatio-temporal gait metrics

from shank-mounted inertial sensors robustly for various gait profiles walking at slow (0.3m/s)

and preferred (0.76 ± 0.17m/s) walking speeds. The robustness was achieved by automatically

adapting thresholds of the algorithm to the individual gait profiles. This sensor-based gait

analysis was used on a dataset of 66 spinal cord injury patients and 20 healthy controls per-

forming a standardized walking test. Using unsupervised machine learning, distinct clusters

with similar gait profiles were identified. Abnormal gait metrics were derived for each cluster,

their composition was characterized with respect to clinical scores, and recommendations for

a targeted physiotherapy were given. Further, including sensor-derived metrics in a prediction

model, improved the performance of the predictor by 10% on estimating whether a patient

will improve his walking capacity in the future or not.

Overuse injuries and pain in the upper extremities is a common problem in wheelchair users

and can be linked to the wheeling technique. In oder to objectively measure the propulsion

technique, a novel wheeling algorithm was developed to estimate wheeling propulsion pat-

terns from a sparse inertial sensor setup. The algorithm was applied to data of 41 wheelchair-

bound individuals. In line with current research, four dominant wheeling patterns could be

identified, which are associated with different risks of developing upper limb injuries. Further,

more experienced wheelers showed more efficient and less harmful wheeling patterns.

The Action Research Arm test is the most prominent tool to asses grasping function, but is

tedious to perform and requires trained personnel. A methods was presented to instrument

this assessment by estimating the clinical scores from wrist-bound inertial sensor data. A

dataset of 21 individuals with stroke was used to train an ordinal classifier for estimating the

tasks scores, achieving an accuracy of around 80%. The method showed a clear potential to

pave the way towards minimally supervised assessments.

In conclusion, this thesis contributes to establishing technological-aided assessments for

neurorehabilitation by providing clinically meaningful, accurate, and reproducible metrics

derived from an affordable setup. Finally, the proposed system and methodologies offer

the possibility to assess activities of daily living in an unrestricted setting. Previously, this

was only possible in standardized setting and dependent on therapist ratings. In the future,

comprehensive clinical outcome measures of treatments or therapies could be provided either

under minimal supervision or even in their own habitual environment.
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Zusammenfassung
Das wichtigste langfristige Rehabilitationsziel für Patienten mit einer neurologischen Ver-

letzung ist das Erreichen der größtmöglichen Unabhängigkeit unter Berücksichtigung des

Grades der Beeinträchtigung des Patienten. Allerdings ist die klinische Entscheidungsfindung

aufgrund der komplexen Symptome und der unterschiedlichen Ergebnismöglichkeiten oft

schwierig. Dies bedeutet, dass die Therapieprogramme auf jeden einzelnen Patienten zuge-

schnitten sein müssen. Ein umfassendes Assessment hilft, den Zustand des Patienten und

die Wirkung klinischer Maßnahmen besser zu verstehen, und kann Leitlinien für individuelle

Rehabilitationsziele liefern. In der heutigen klinischen Praxis führen Therapeuten und Kliniker

während der Rehabilitation kontinuierlich Assessments mithilfe standardisierter Test durch.

Zu den Einschränkungen dieser konventionellen Tests gehören Ceiling- oder Flooringeffek-

te, geringe Empfindlichkeit und Subjektivität. Inertialsensoren bieten neben anderen Tools

eine Lösung für diese Probleme. Die kleinen und bezahlbaren Sensoren können am Körper

befestigt werden und liefern objektive digitale Metriken über die Bewegungen von Interesse.

Inertiale Sensoren bieten daher die einzigartige Möglichkeit, Aktivitäten des täglichen Lebens

unauffällig und nicht auf ein standardisiertes Umfeld beschränkt zu bewerten. Die breite

Anwendung solcher Geräte für technologiegestützte Assessments in der klinischen Routine

steht jedoch noch aus.

Das Ziel dieser Arbeit ist es, digitale Gesundheitsmetriken aus einem spärlichen Sensor-Setup

bereitzustellen, um alltagsnahe Aktivitäten für Patienten in der Neurorehabilitation zu bewer-

ten. Diese Metriken sollen die herkömmlichen Assessments erweitern, indem sie objektivere

und detailliertere Messungen der Bewegungsprofile liefern. So können die Einschränkungen

bei der Durchführung dieser Aktivitäten genauer als mit herkömmlichen Methoden bewertet

werden, was für die Mobilität und Unabhängigkeit des Patienten von großer Bedeutung ist.

Drei Schlüsselaktivitäten des täglichen Lebens, nämlich Gehen, Rollstuhlfahren und Greifen,

wurden ausgewählt und für jede Aktivität wurde ein geeignetes Sensor-Setup gewählt. Es

wurden neuartige Algorithmen entwickelt, um digitale Metriken für jede Aktivität zu extrahie-

ren. Darüber hinaus wurden diese Metriken in Kombination mit Methoden des maschinellen

Lernens verwendet, um Patienten zu charakterisieren und um Pläne vorzuschlagen, diese

Metriken in die klinische Routine und Entscheidungsfindung zu integrieren.

Eine sensorbasierte Ganganalyse wurde speziell für Personen mit einer inkompletten Rücken-

marksverletzung entwickelt. Diese Patienten leiden je nach Ort und Schwere der Verletzung
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oft unter verschiedenen Gangstörungen. Doch in der derzeitigen klinischen Routine wird die

Gehfunktion nur durch einfache Gehtests beurteilt. Die sensorbasierte Ganganalyse würde

eine umfassendere Charakterisierung des Gehens für einen gezielteren Therapieansatz und

eine bessere Abschätzung der Geherholung ermöglichen. Der Algorithmus leitet typische

Gangmetriken von am Knöchel montierten Inertialsensoren robust für verschiedene Gang-

profile bei langsamen (0,3m/s) und bevorzugten (0,76 ± 0,17m/s) Gehgeschwindigkeiten ab.

Die Robustheit wurde durch automatische Anpassung der Schwellenwerte des Algorithmus

an die einzelnen Gangprofile erreicht. Diese sensorbasierte Ganganalyse wurde auf einen

Datensatz von 66 Patienten mit Rückenmarksverletzungen und 20 gesunden Kontrollpersonen

angewendet, die einen standardisierten Gehtest absolvierten. Mithilfe von unüberwachtem

maschinellem Lernen wurden verschiedene Cluster mit ähnlichen Gangprofilen identifiziert.

Für jedes Cluster wurden abnormale Gangmetriken abgeleitet, ihre Zusammensetzung wurde

im Hinblick auf klinische Scores charakterisiert, und es wurden Empfehlungen für eine geziel-

te Physiotherapie gegeben. Die Einbeziehung der Sensormetriken in ein Vorhersagemodell

verbesserte die Genauigkeit um 10% bei der Einschätzung, ob ein Patient seine Gehfähigkeit

in Zukunft verbessern wird oder nicht.

Überlastungsverletzungen und Schmerzen in den oberen Extremitäten sind ein häufiges Pro-

blem bei Rollstuhlfahrern und konnten mit der Fahrtechnik in Verbindung gebracht werden.

Um die Antriebstechnik objektiv zu messen, wurde ein neuartiger Algorithmus zur Schätzung

der Antriebstechnik von Rollstuhlfahrern anhand eines spärlichen Inertialsensor-Setup ent-

wickelt. Der Algorithmus wurde auf die Daten von 41 Rollstuhlfahrer angewendet. Im Einklang

mit der aktuellen Forschung konnten vier dominante Antriebstechniken identifiziert werden,

die mit unterschiedlichen Risiken für Verletzungen der oberen Gliedmaßen verbunden sind.

Außerdem zeigten erfahrenere Rollstuhlfahrer effizientere und weniger schädliche Fahrmuster.

Der Action-Research-Arm-Test ist das bekannteste Instrument zur Beurteilung der Greiffunk-

tion. Er ist jedoch mühsam in der Durchführung und erfordert geschultes Personal. Es wurde

eine Methode vorgestellt, mit der dieses Assessment durch Schätzung der klinischen Werte

aus Daten von Inertialsensoren, die am Handgelenk befestigt sind, erfolgen kann. Anhand

eines Datensatzes von 21 Personen mit Schlaganfall wurde ein ordinaler Klassifikator für die

Schätzung der klinischen Werte trainiert. Eine Genauigkeit von etwa 80% wurde dabei erreicht.

Die Methode zeigte ein deutliches Potenzial, den Weg zu minimal überwachten Assessments

zu ebnen.

Diese Arbeit trägt dazu bei, technologiegestützte Assessments für die Neurorehabilitation zu

etablieren, indem sie klinisch aussagekräftige, genaue und reproduzierbare Metriken liefert.

Schließlich bieten das Sensorsetup und die Algorithmen die Möglichkeit, Aktivitäten des

täglichen Lebens in einer uneingeschränkten Umgebung zu beurteilen. Bisher war dies nur

in einer standardisierten Umgebung möglich und von den Bewertungen der Therapeuten

abhängig. In Zukunft könnten umfassende klinische Assessments entweder unter minimaler

Aufsicht oder sogar in der gewohnten Umgebung durchgeführt werden.
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1 Introduction

Wearable inertial sensors in the form of activity trackers are a widely accepted and used tool in

the lifestyle and fitness industry. Usually, the physical activity is quantified by simple metrics

such as the number of steps per day. The sensors incorporated in these activity trackers

started to gain interest in the research and medical field for motion analysis of patients with a

movement disorder.

1.1 Sensorimotor deficits due to injuries of the central nervous sys-

tem

Injuries to the central nervous system are amidst the leading causes of acquired adult disability

[Ma et al., 2014, Katan and Luft, 2018, WHO, 2006]. CNS injuries cause heterogenous and

complex symptoms depending on the location and severity. The CNS composes primarily

the brain and the spinal cord, which connects the peripheral nervous system with the brain.

Ascending and descending spinal pathways carry sensory or motor information, respectively.

Mechanical traumas or non-traumatic injuries can cause damage to the spinal cord by in-

terrupting these pathways [Dietz and Fouad, 2014]. This results in symptoms such as loss

of muscle function, sensation and/or autonomic function depending on which spinal tracts

were damaged and at which level of the spinal cord [Tator, 1995]. Injuries to the brain can also

be caused due to a trauma, a so called traumatic brain injury (TBI), or non-traumatic with the

most prominent example of stroke. Similar to a damage of the spinal cord, the symptoms of

these injuries strongly depend on the affected locations of the CNS.

Functional recovery after a neurological injury is a combination of both neuronal recovery

and behavioural compensation [Levin et al., 2009, Ramer et al., 2014]. The acute phase after

the injury is characterized by immediate care, surgical interventions and the avoidance of

secondary complications [Bourguignon et al., 2022]. The following chronic phase consists of

a multidisciplinary treatment including physiotherapy, occupational therapy, psychologists,

and more [Albert and Kesselring, 2012]. The most important goal during the chronic phase is

to achieve the highest possible degree of independence and mobility for that patient in order
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Chapter 1. Introduction

to reintegrate the patient back into society [Nas, 2015, WHO, 2006]. Besides the severity of the

injury, factors such as age, weight, the general health status prior to the injury, motivation

and spasticity influence achieving this goal. Even though an extensive rehabilitation program

enables the patient to regain function, it often leads to lifelong disabilities that need to be

considered when the patients is leaving the hospital [Katan and Luft, 2018, WHO, 2006].

Besides the socioeconomic burden, an injury of the CNS and the resulting disabilities impede

the ability of the patient to perform activities of daily living and thus have a strong impact

on the persons quality of life [Lawrence et al., 2001, Gooch et al., 2017, Ma et al., 2014, WHO,

2006].

1.2 The importance of assessments for neurorehabilitation

The extensive heterogeneity of patients with a CNS injury makes clinical decisions often

difficult due to the complexity of symptoms and the diverse outcome possibilities [Nas, 2015].

Standardized assessments are used to identify the patients deficits [Albert and Kesselring,

2012]. More specifically, deficits are either assessed on the level of loss of body function and

structures, activity limitations, or participation restriction according to the WHO framework

of the International Classification of Functioning, Disability and Health (ICF) [WHO, 2001]. As

an example for an assessment of loss of body function and structures, the impairment scale

of the American Spinal Injury Association (AIS) captures the remaining sensor and motor

function of different body parts by rating of a clinician [Kirshblum et al., 2011]. An example for

an assessment of activity limitations is the Action Research Arm Test (ARAT), which consists of

several reaching and grasping tasks that are rated by a therapist focusing on the task duration,

task completion and observed movement quality [Yozbatiran et al., 2008]. A second example

for an assessment of activity limitation are simple gait tests, such as the six-minute walking

test, where the distance is measured that the patient is able to walk within 6 minutes [Hedel

et al., 2005]. Restrictions in participation are often assessed by self-reported questionnaires,

e.g. with the Stroke Specific Quality of Life Scale (SS-QOL) [Salter et al., 2005].

The heterogeneity of patients with a CNS injury implies that a one-fits-all treatment plan

during rehabilitation is not applicable and therapy programs must be tailored for each patient

[WHO, 2006]. The clinical decision-making process starts with identifying the deficits of the

patients with a selection of suitable assessments [Albert and Kesselring, 2012]. This initial

assessment helps to form a hypothesis on the patient recovery profile and to set realistic

rehabilitation goals [Ryerson, 2009]. During the course of rehabilitation, patients are regularly

re-assessed to revise treatment plans to the specific needs and progress of the patients [Bern-

hardt and Hill, 2005]. In summary, assessments should be ongoing, accurate, consistent and

reproducible in order to be a helpful tool for clinical decision making [WHO, 2001] . In addition,

health insurances include these clinical assessments outcomes into their decision on which

kind of therapies and aids will be covered. And in research, assessments are typically used as

primary outcome measures in clinical studies to evaluate the efficacy of novel intervention

methods or as inclusion criteria [Stieglitz et al., 2021, Iolanda et al., 2018].

2



1.3 Limitations of conventional assessments

1.3 Limitations of conventional assessments

Conventional clinical assessments have several benefits [WHO, 2006, WHO, 2001]. The as-

sessments are developed to be simple and intuitive to administer such that clinicians and

therapists can easily learn and apply them to their patients. Conventional assessments are

often time-based tasks or use an ordinal scale either dependent on a therapist’s rating or by

self-reporting of the patient with a questionnaire [Burridge et al., 2019]. Both, time-based

tasks and ordinal scales, inherently have low inter-rater variability. Further, for most assess-

ments, little or cheap material is needed, making it affordable for the clinics and fast to set

up. In a research setting, conventional assessments are often preferred because normative

data of healthy individuals or specific patient cohorts from other studies exist, which enables

comparisons across cohorts and between interventions [Gladstone et al., 2002].

Conventional assessments have limitations not only in their application within the clinical

routine but also in research settings [Lambercy et al., 2016]. For instance, any assessment takes

time to perform and is thus conflicting with the tight schedule of clinicians and therapists.

Therapists rather spend their time training the patient instead of performing an assessment,

which is usually also in the patient’s interest. Moreover, clinicians preferably rely on their

experience when evaluating the patient’s deficits and estimating the patient’s recovery profile

than on assessment-based outcome measures. Furthermore, while providing only a few or

single outcome measures, most assessments fail to capture a complete view of the complex

deficits of patients with a CNS injury [Burridge et al., 2019]. Consequently, assessments

are only performed selectively and not as often as desired within the clinical routine. In a

research setting, assessments with ordinal rating scales are often insufficient due to ceiling

and/or flooring effects resulting in poor responsiveness for patients with low or high function

[Gladstone et al., 2002]. Further, coarse rating scales result in overall poor sensitivity, making it

difficult to track the subtle changes due to a novel intervention in these heterogeneous patient

cohorts [Pollock et al., 2014]. Also, self-reported questionnaires suffer from recollection bias

[Oung et al., 2015]. Given the limitations of conventional assessments, novel complementary

tools are needed to provide a more comprehensive and accurate description of the patient’s

deficits [Shirota et al., 2019, Kanzler et al., 2020, Schwarz et al., 2019].

1.4 Wearable sensors as an opportunity for technology-aided assess-

ments

Technological devices, such as sensors or other computational tools, could potentially address

the limitations conventional assessments possess [Shirota et al., 2019, Kanzler et al., 2020].

They provide so-called digital health metrics as outcome measures, defined as measures

extracted from a digital tool [Coravos et al., 2019, Goldsack et al., 2020, Vasudevan et al., 2022].

Digital health metrics have the potential to be more objective, rich, and sensitive outcome

measures [Oung et al., 2015, Balasubramanian et al., 2012]. These metrics are typically derived

by computing statistical features of the time series sensor data. Features are usually derived

3
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from the time or frequency spectrum of the data. Given the plethora of feature options,

numerous metrics can be extracted under the assumption to provide a more comprehensive

picture of the patient’s deficits than conventional assessments, which often rely on single

measures. For example, standard clinical assessment could be instrumented with sensors

to complement the assessment outcome [Storm et al., 2020]. Further, these digital metrics

provide measures from a continuous scale, which is an advantage compared to the often used

ordinary scales in conventional assessments. In general, continuous scales are more sensitive

and suffer less from ceiling and flooring effects because they are not bounded. Finally, digital

health metrics are more objective than assessment scores depending on therapist ratings.

Examples of technological devices that can be used to assess movement disorders are robotic

platforms, camera-based or marker-based motion tracking, and wearable sensors [Lambercy

et al., 2016].

The key benefit of using robotic platforms for technological-aided assessments is the quality

of the metrics they provide. Since the assessment itself is independent of a therapist and the

movements are highly standardized or controlled, objective and precise metrics can extracted

[Kanzler et al., 2020]. However, drawbacks of robotic platforms are the related costs and the

complexity of the systems. Further, the platforms are usually restricted to assess only specific

body parts or tasks and thus have a low application flexibility and provide a very narrow

description of the patients deficits.

Motion capture, either maker- or camera based, is paramount for assessing task specific

movement quality. The methods offer a complete kinematic description of the whole body,

including all joint angles of interest. Marker-based motion capture systems are in research

widely accepted as the gold standard for biomechanical analysis [Patrick, 2003]. The accuracy

of camera-based systems improved in the past years significantly and started to gain ground

for the application in movement analysis [Steinert et al., 2020]. Even though both systems

can provide accurate whole body kinematics, the application within the clinical routine is

difficult for different reasons. Marker-based system require long set-up times and expensive

laboratories, which implies that measurements are restricted in space and time. Camera-

based systems are easier to set up, but the measurement is still restricted in space by the field

of view and video recordings within a clinical routine are controversial due to data and privacy

protection guidelines.

Wearable sensors are devices an individual wears to continuously measure physiological pa-

rameters [Jalloul, 2018]. With technological advances in miniaturization, sophistication, and

proliferation in the past decades, the sensors became smaller, more accessible, affordable,

and thus increasingly interesting for healthcare applications [Johansson et al., 2018, Maetzler

et al., 2013, Sasaki et al., 2017, Garofalo, 2012]. The main advantage of wearable sensors is

that they are unobtrusive measurement tools. The sensors are small, light devices that can

be attached to different body parts depending on the application [Rast and Labruyère, 2020].

Further, the devices usually measure for longer time periods, up to several days, and are not

bound to any laboratory setting, which provides the possibility to perform measurements in
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real-world environments. Moreover, wearable sensors can be used to instrument established

conventional assessments unobtrusively with to goal to complement these assessment with

more objective and detailed metrics. Examples of wearable sensors are optical, pressure, chem-

ical, and inertial sensors, whereas the latter are the most dominant for assessing movement

disorders [Jalloul, 2018, Cervantes and Porretta, 2010].

1.5 Motion tracking using inertial measurement units

The gold standard for movement tracking is marker-based motion capture, which requires

expensive equipment and extensive infrastructure. These systems provide accurate and com-

prehensive descriptions of biomechanical kinematics. However, considering the costs of such

systems and the trained personnel needed to operate them, motion capture laboratories are

rare in clinical environments and, thus, not accessible to most patients. Hence, mobile, unob-

trusive measurement systems have a considerable advantage over motion capture laboratories.

Even though a motion analysis based on wearable inertial sensors might lack comprehensive-

ness and accuracy compared to the gold standard, inertial sensors still outperform in terms of

ease of deployment for the clinical setting.

Inertial sensors usually comprise a tri-axial accelerometer and a tri-axial gyroscope, which are

summarized as the inertial measurement unit (IMU). The accelerometer measures the com-

bination of the change in velocity and a gravity-related acceleration, pointing in the vertical

direction. The gyroscope measures angular velocity, which is a change of orientation. Some

inertial measurement units further include a magnetometer, which measures the strength

and direction of the magnetic field. Since magnetic fields are often distorted indoors due to

ferromagnetic materials or electronic devices, magnetometer-free sensor fusion approaches

are preferred for biomechanical applications [Laidig et al., 2019]. In microelectromechanical

systems (MEMS), the sensors are rigidly connected in so-called strapdown systems, and sensor

fusion is needed to derive the orientation and position of the IMU for motion tracking applica-

tions [Madgwick et al., 2011, Seel and Ruppin, 2017, Nilsson et al., 2014]. Processing IMU data

into orientation, displacement, and velocity data has the advantage that more intuitive digital

health metrics can be extracted than from the raw sensor data [Tunca et al., 2017].

1.6 Open challenges of using inertial sensors for assessing activities

of daily living

In the past decade, clinicians and researchers shifted their focus from assessing body function

and impairments toward assessments of the level of activity and participation [Lemmens

et al., 2012]. This is a shift towards the level that is of interest to the patient, who is typically

asking questions regarding their potential to walk, eat, or getting dressed again on their own.

Furthermore, it has been shown that assessments on the impairment level do not necessarily

correlate with performance in assessments on the activity level [Arnould et al., 2007, Burridge
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et al., 2009]. Since wearable inertial sensors offer the unique possibility to assess activities

not only in a standardized setting but also in a real-world environment, research activity in

this field has increased in the past years to provide solutions for that matter [Gilmore and Jog,

2017].

The widespread clinical use of wearable inertial sensors for monitoring movement disorders

has yet to be realized [Shirota et al., 2019, Maetzler et al., 2013]. First, sensor setups, including

number and attachment sites, must be established; a trade-off needs to be found between

complex body sensor networks and single sensor setups that differ in their comprehensiveness

and ease of use [Sasaki et al., 2017]. This implies, that attachment sites need to be identi-

fied that are suitable for the specific application [Dobkin, 2013]. Second, signal processing

algorithms must be improved to work robustly across individuals with multiple and diverse

movement disorders and validated for the target population [Rast and Labruyère, 2020]. Third,

the main reason for the difficulty in translating the technology into the clinical routine is that

a plethora of digital metrics can be extracted from the sensors, but their individual clinical

meaningfulness is often still unclear [Johansson et al., 2018, Shirota et al., 2019].

1.7 Objectives and outline of this theses

The overarching goal of this thesis is to provide digital health metrics from a sparse inertial

sensor setup to assess daily life-like activities in the context of neurorehabilitation. These

metrics are expected to extend conventional assessments by providing more objective and

detailed measures on the movement profiles. More specifically, the sensor-derived metrics

would allow to differentiate and track movement patterns of patients during daily life-like

activities, which cannot be achieved through the conventional assessments only.

MOBILITY & INDEPENDENCE

Figure 1.1: Three key activities of daily living relevant for the individual’s mobility and inde-
pendence.

To demonstrate this benefit, walking, wheeling, and grasping were selected as three exem-

plary but key activities of daily living for this thesis and are shown in Figure 1.1. The main
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requirement for the selection was that the activities must be highly relevant for the individual

in terms of mobility and independence. Further, the activities should include functional

movements which involve either the upper or lower limbs, as these body parts typically show

sensorimotor deficits after a CNS injury. Walking is the main form of human locomotion.

Given the complexity of the movement, a comprehensive gait analysis can give insights into

underlying deficits. As a proportion of patients with a CNS injury rely on a wheelchair for

locomotion, wheeling was selected for this cohort as an analogous activity. Further, grasping, a

movement highly relevant for performing many different tasks such as eating, getting dressed,

or cleaning, was selected to include an activity from the domain of independence.

The underlying objectives of this thesis were as follows:

Objective 1: Identify a modular, sparse sensor setup to assess key activities of daily living

Objective 2: Development and validation of novel algorithms to assess these activities

Objective 3: Bring extracted metrics in context with clinical characterization of patients

This thesis attempts to consider these three objectives independently for each of the three

activities. First, a modular but sparse sensor setup was selected with the trade-off of capturing

relevant information about the underlying movement while still being a suitable tool for the

clinical routine. Second, algorithms to extract digital health metrics from the raw sensor

data were developed and validated ideally in the target population. Existing algorithms

found in the literature were modified, extended, and improved for the target population and

application with the intention of developing algorithms that work robustly across a wide range

of movement deficits. Third, the algorithms were applied to data of the target population, and

the extracted metrics were brought into context with the established clinical characterization

of the individuals. Especially the latter extends the work found in literature where usually the

focus lies on developing and validating algorithms to extract sensor-based measures without

interpreting the derived metrics.

This cumulative thesis consists of four chapters, which are based on journal publications that

are either published, under evaluation, or in preparation for submission. I am the (shared-)

first and corresponding author of these publications. The core part of this thesis is followed by

a general discussion.

Chapter 2 presents a sensor-based gait analysis specifically developed and validated for the

population of patients with a SCI. The robustness of the algorithm was tested on patients with

diverse gait deficits and from slow to preferred walking speeds.

Chapter 3 demonstrates the application of this sensor-based gait analysis to an extensive

dataset of patients with a SCI. A data-driven approach is presented to derive non-redundant

and relevant metrics that can characterize and predict walking after a SCI.
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Chapter 4 includes a novel algorithm to extract wheeling propulsion patterns from a sparse

sensor setup. Further, the applicability for wheelchair-bound patients with a SCI is investigated

by identifying the core wheeling propulsion patterns of that cohort.

Chapter 5 presents a method to estimate clinical scores of an assessment for upper limb

function based on a single wrist sensor as a step toward a therapist-independent or minimally

supervised assessment.

Chapter 6 draws an overall conclusion on the work presented with respect to the objectives

and the contributions to the field.
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Chapter 2. Towards a Mobile Gait Analysis for Patients with a Spinal Cord Injury: A Robust
Algorithm Validated for Slow Walking Speeds

2.1 Abstract

Background Spinal cord injury (SCI) patients suffer from diverse gait deficits depending on the severity

of their injury. Gait assessments can objectively track the progress during rehabilitation and support

clinical decision making, but a comprehensive gait analysis requires far more complex setups and

time-consuming protocols that are not feasible in the daily clinical routine. As using inertial sensors for

mobile gait analysis has started to gain ground, this work aimed to develop a sensor-based gait analysis

for the specific population of SCI patients that measures the spatio-temporal parameters of typical gait

laboratories for day-to-day clinical applications.

Methods The proposed algorithm uses shank-mounted inertial sensors and personalized thresholds to

detect steps and gait events according to the individual gait profiles. The method was validated in nine

SCI patients and 17 healthy controls walking on an instrumented treadmill while wearing reflective

markers for motion capture used as a gold standard.

Results The sensor-based algorithm (i) performed similarly well for the two cohorts and (ii) is robust

enough to cover the diverse gait deficits of SCI patients, from slow (0.3 m/s) to preferred walking speeds.

Conclusion The proposed algorithm is a suitable method to unobtrusively monitor walking of patients

with a SCI and is a step towards a more objective measurement of gait deficits. This provides two

potential clinical applications: standardized clinical walking test could be complemented using sensor-

derived measures and walking performance outside of therapy could be assessed towards a next-

generation continuum of care.
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2.2 Introduction

Spinal cord injury (SCI), either caused by a trauma (e.g., accident) or disease (e.g., tumors), leads to

permanent changes in the central nervous system. Depending on the severity and location of the

injury, the symptoms vary widely: the patients might have a partial or complete loss of sensory function

and motor control in the legs, arms, or whole body [WHO, 2013]. In particular, an incomplete SCI

refers to remaining sensorimotor functions below the injury level, which can allow some patients to

regain walking function despite their injury [Krawetz and Nance, 1996]. As independence in mobility is

a crucial factor for performing daily life activities and for participating in society, regaining walking

function is a common goal in most rehabilitation programs for these patients [Nas, 2015].

An accurate gait assessment during rehabilitation can give an insight into the recovery of motor

functions and help with clinical decision making due to impairment specific training [van Middendorp

et al., 2011]. However, in a typical clinical routine, only simple gait tests such as the six-minute walking

test are performed [Hedel et al., 2005]. The outcome of these tests is the distance covered or the time

to perform the test. Therefore, only the average walking speed of the patient is assessed. On the

other hand, in research, a detailed gait analysis is conducted in gait laboratories, which are usually

equipped with complex setups such as force plates and motion capture systems [Patrick, 2003]. Here,

the outcome is a comprehensive analysis of the gait kinematics and joint kinetics. However, these

gait laboratories are costly, postprocessing of the data is time-consuming, and the measurements are

restricted in both space and duration.

Wearable inertial sensors could potentially be a balance between simple but less detailed clinical

assessments and costly but highly informative gait analyses in laboratories. An advantage of the

inertial measurement units compared to gait laboratories is that the sensors are small, affordable,

and can be attached to different body parts according to the use case [Lambercy et al., 2016]. A

potential application of these inertial sensors is to complement the aforementioned clinical gait tests

by providing, in addition to the walking speed, information on the gait pattern and thus gait deficits

of the patient. The benefit of using inertial sensors during the six-minute walking test has already

been demonstrated for neurological diseases including multiple sclerosis [Shema-Shiratzky et al.,

2019, Engelhard et al., 2016, Gong et al., 2016, Brodie et al., 2016], Parkinson’s disease [Atrsaei et al.,

2021] and stroke [Zhang et al., 2018]. Furthermore, wearable sensors carry the promise for long-term

monitoring of gait speed and quality outside of laboratory settings, opening the potential to target

remote interventions for individual patients.

In the past decade, a considerable amount of algorithms arose to investigate gait deficits with inertial

sensors, focusing on the gait of elderly, stroke, multiple sclerosis, or Parkinson’s disease [Dandu et al.,

2018, Trojaniello et al., 2014b, Salarian et al., 2004, Rampp et al., 2015]. The typical approach of such

algorithms is to detect gait events like initial and final foot contact, then estimating the sensor trajectory

for each stride. Based on this, spatio-temporal parameters like step duration, gait phases, and walking

speed can be calculated. Various methods exist to extract these parameters, which differ in terms of

complexity, robustness, and computational effort [Panebianco et al., 2018, Yang and Li, 2012].

To the best of our knowledge, up to now, no validated algorithm exists to reliably extract these spatio-

temporal gait parameters of SCI walking from shank-mounted inertial sensors. Jasiewicz et al. [Jasiewicz

et al., 2006] presented a method to extract only the initial and final foot contact, and Tong et al. [Tong

and Granat, 1999] validated their algorithm solely for one single patient, which is not representative

of the wide variety of gait patterns found in this patient population. A possible reason for the lack

of algorithms for SCI patients could be that the prevalence of SCI is lower compared to, e.g., stroke.
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Furthermore, people with SCI do not have a pathognomonic walking pattern like, for example, patients

with Parkinson’s disease. On the contrary, the gait deficits of SCI patients vary widely depending on the

degree and level of the injury [Barbeau et al., 1999] often inducing compensatory movement patterns.

Thus, algorithms that rely on fixed thresholds are prone to fail for these pathological gait patterns.

Furthermore, algorithms are often validated only for normal walking speeds of around 1 m/s. However,

severely affected patients that are only able to walk indoors under supervision usually have a much

slower average walking speed of ~0.34 m/s [Hedel, 2009]. Therefore, it is necessary to validate such

algorithms for slow walking speeds so that they can be used reliably in a clinical setting for patients

with low functional ambulation.

We here propose a sensor-based gait analysis for SCI that derives typical spatio-temporal gait pa-

rameters from inertial sensors attached to both ankles. Our goal was to focus on a minimal but still

clinically accurate setup that is non-obtrusive for daily life applications, easy to handle, and can have

the potential to be integrated into the daily clinical routine. In contrast to typical sensor-based gait

analysis found in literature, where the detection of steps relies on fixed thresholds, we here propose

a method that adapts these thresholds based on individual gait profiles. We hypothesize, that our

algorithm is more robust against variable gait patterns and variable walking speeds. By validating the

sensor-derived gait parameters with a gold standard, we demonstrate that the proposed algorithm is

robust enough to be applied for the diverse gait deficits of SCI patients, from slow to preferred walking

speeds.

2.3 Methods

2.3.1 Subjects

This study’s participants (>18 years old) were either patients with a chronic SCI or neurologically

unimpaired subjects. The patients were recruited from the patient database of the University Hospital

Balgrist. Patients with all neurological levels of injury were included if they (i) were able to stand without

physical assistance for more than 120 s, and (ii) had preserved segmental and cutaneo-muscular reflexes

in the lower limbs. Patients with current orthopedic problems, psychological disorders, or neurological

impairments other than SCI were excluded from the study. Participants for the control cohort could be

included if they did not have any orthopedic problems affecting gait. In total, ten SCI patients and 17

healthy controls were recruited for this study.

Each participant was informed about the study procedure and risks before they participated in this

study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol was

approved by the ethical committee of the canton Zurich (KEK-ZH No. 2017-01780) and by the Research

ethics committee of ETH Zurich (EK No. 2018-N-80).

2.3.2 Study Protocol and Data Collection

For the SCI subjects, a clinician assessed the American Spinal Injury Association Impairment score (AIS

score) [Maynard et al., 1997]. This AIS score includes assessing motor function in terms of the upper

(UEMS) and lower (LEMS) extremity motor score and sensory function in terms of pin prick and light

touch sensation. A combination of the sensory and motor function determines the neurological level

of injury (NLI). In addition, the Spinal Cord Independence Measure (SCIM) was assessed [Itzkovich
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et al., 2007]. For this study, we focused on the mobility domain of the SCIM, including ‘room and

toilet mobility’ and ‘indoors and outdoors mobility’, resulting in a maximum achievable score of

40. Demographic information like age, height, body mass index (BMI), and sex were collected for

all participants. Furthermore, the walking pattern of the patient was qualitatively described by a

physiotherapist.

Two inertial sensors were attached to the participants’ ankles above the lateral malleolus with flexible

straps as shown in Figure 4.1A. The sensor modules used for the study have been developed as part of

the ZurichMOVE project [Popp et al., 2019]. The main components of the modules (35 × 35 × 12 mm,

18 g) include a tri-axial accelerometer, a tri-axial gyroscope, and a tri-axial magnetometer recording

with a sampling rate of 200 Hz. As the magnetic field is often distorted indoors, the magnetometer data

was omitted from the data analysis. The local coordinate system of the sensor module is depicted in

Figure 4.1B.

x

y
z

A B

Figure 2.1: Subject wearing sensor modules attached laterally above each ankle (A). Schematics
of the sensor module with its coordinate system (B).

The measurements were performed in the Gait Real-time Analysis Interactive Lab (GRAIL, Motekforce

Link, The Netherlands), widely accepted as a gold standard for gait analysis. The GRAIL is a compact

experimental lab for gait analysis with a treadmill, a motion capture system, and three stationary

cameras. The instrumented dual-belt treadmill (V-Gait Dual Belt, Motekforce Link, The Netherlands)

has two integrated force plates, which measure the ground reaction forces in three dimensions with a

sampling frequency of 1000 Hz. One reflective marker was placed on each sensor and was tracked by

ten cameras (Vero, Vicon Motion Systems, United Kingdom) at a sampling frequency of 100 Hz.

Synchronization between the GRAIL and inertial sensors was achieved by placing an additional sensor

module on top of a piezo element, which was connected to the trigger line of the motion capture

system. The trigger induced vibration of the piezoelectric material during the measurements, which

was captured by the additional sensor module. Time synchronization between the three sensor modules

was achieved by a master-slave configuration using Bluetooth Low Energy.

Before the first measurement, each participant became familiar with the test environment and the

procedure by walking on the treadmill for about 5 min as recommended by Meyer et al. [Meyer et al.,

2019]. During this familiarization phase, the speed levels increased starting from 0.3 m/s in steps of 0.1

m/s to determine the preferred walking speed of the patient. The patient had to give feedback as soon
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as the speed level exceeded his preferred walking speed. For SCI patients, the data of three different

speed levels have been collected: preferred walking speed, 0.5 m/s, and 0.3 m/s. The measurement of

each speed level lasted for 180s. These levels cover a broad range of walking speeds, including slow

walking. More specifically, the speed ranges were selected to represent sub-community and community

ambulators, and to ensure that all participants would be able to complete the task. Healthy participants

were only measured at the speed of 0.5 m/s for 180 s to have a comparable condition between the two

cohorts of the study. All participants wore their normal street shoes for the experiment.

2.3.3 Gait Analysis

Definition of Gait Parameters

Walking is typically segmented into individual gait cycles and further described by temporal gait

parameters, which are depicted in Figure 2.2. A gait cycle corresponds to one stride, which starts with

the initial contact (IC) of one foot and ends when the same foot contacts the ground again (following

IC). The stride can be divided into a stance phase, where the foot is in contact with the ground, and

a swing phase, where the foot is not in contact with the ground. The transition from stance to swing

phase is initiated with toe-off. As some patients do not have a typical toe-off, we refer to this gait event

by the final foot contact (FC). The double support phase corresponds to the period when both feet are

on the ground, namely, from the IC of one side to the FC of the other side. The step duration starts with

the IC of one side and ends with the IC of the other side. Other gait events relevant for the analysis

are mid-swing (MSW) and mid-stance (MST), defined as the midpoint of the swing phase and stance

phase, respectively.

Stance Phase Swing Phase

IC MST FC MSW IC

FC MSW IC MST FC

L L
L L

L

R
RR R

R

Stride Duration

Step Duration

Double Support

Figure 2.2: Schematic of the gait events initial contact (IC), final contact (FC), mid-swing
(MSW), and mid-stance (MST) of a complete gait cycle and the corresponding gait phases.

Spatial parameters describe the displacement of the foot during a gait cycle and are depicted in

Figure 2.3. The stride length is defined as the maximum displacement of one foot in the movement

direction within a stride. The stride width and stride height correspond to the lateral and vertical

displacement range during a gait cycle, respectively.
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Figure 2.3: Schematic of the spatial parameter - stride length (A), height (B), and width (C) for
one gait cycle, which is defined from initial contact to initial contact of the same side.

Sensor-Derived Gait Parameters

The following data processing workflow has been developed to extract typical spatio-temporal gait

parameters from the 3D accelerometer and gyroscope data of the shank-mounted inertial sensors.

First, the data are segmented into individual gait cycles. For this purpose, a fast Fourier transform

(FFT) is applied to the angular velocity perpendicular to the sagittal plane (ωz ) to obtain the frequency

spectrum. The first main frequency component ( fmax ) corresponds to the periodicity of the cyclic

movement of walking. Thus, the inverse of fmax corresponds to the average gait cycle duration (Tc ycle ):

Tc ycle =
1

fmax
wi th fmax = max(F F T (ωz )) (2.1)

Individual gait cycles are identified as prominent local peaks ofωz , corresponding to mid-swing (MSW).

Instead of using fixed thresholds for the minimum peak height and the minimum distance between

two consecutive peaks, these thresholds are adapted for each measurement for algorithm robustness

across different walking speeds and cadences. The minimum peak height is defined as 20% of the 99th

percentile of ωz and the minimum peak distance as 50% of Tc ycle .

Accurate identification of initial foot contact (IC) and final foot contact (FC) is paramount for further

calculating gait parameters, as these serve as anchors for the temporal parameter definition. These

gait events are detected by local peaks of the acceleration data in the anterior–posterior direction (ay )

and ωz . Similarly, as before, the window in which to search for these peaks is adapted based on Tc ycle .

Because the IC typically occurs at 20% of the gait cycle after MSW, IC is defined as the local maximum

in ay within 5% to 45% of Tc ycle after MSW. The FC is defined as the midpoint between the minimum

in ωz and the maximum in ay within −35% to −5% of Tc ycle before MSW. Finally, mid-stance (MST) is

identified as the maximum of ωz within the IC and the following FC. The temporal gait parameters are

then computed as defined in Section 2.3.3.

The spatial parameters were computed from the 3D trajectory of the sensor during each stride. To

obtain this trajectory, the orientation of the sensor in space was estimated by the magnetometer-free

orientation estimation algorithm developed by Seel et al. [Seel and Ruppin, 2017]. Using this estimated
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orientation, the acceleration data were transformed from the local coordinate system of the sensor,

which rotates with the movement of the sensor, into a fixed coordinate system. This is necessary

because the acceleration data consists of both movement and gravitational acceleration. In the fixed

coordinate system, the gravitational component could be easily removed from the vertical axis, which

corresponds to the direction of earth’s gravity. After receiving the pure movement acceleration, the

acceleration data is integrated for each stride from MST to MST with a trapezoidal integration. As the

sensor data is contaminated with noise, an integration of this thermo-mechanical noise results in a

first order drift for the velocity and a second order drift for the displacement. Therefore, the following

boundary conditions were introduced to correct for this drift: Instead of the often used zero-velocity

update, the initial and final velocity values of each stride are estimated from the angular velocity at

MST multiplied by the distance between the sensor and the ankle joint as proposed by Li et al. [Li

et al., 2010]. This distance is estimated to be 10 cm. In addition, for abnormally long strides (>2.5 s),

a first-order high-pass Butterworth filter with a cut-off frequency of 0.0002 Hz has been introduced

to reduce the effect of drift. Moreover, without using the magnetometer data, the heading direction

is undetermined and would result in a drift around the vertical axis. Therefore, the heading angle

was chosen to be fixed to the main movement direction, which is estimated for each stride according

to Trojaniello et al. [Trojaniello et al., 2014a, Trojaniello et al., 2014c]. In brief, the main movement

direction was determined by the direction of the velocity during the swing phase within the horizontal

plane. Then, the 3D velocity data for each stride is integrated a second time to obtain the 3D sensor

trajectory for each stride. Finally, the stride length, width, and height are calculated as defined in

Section 2.3.3.

Gait Parameters from Gait Laboratory

The true initial and final foot contact events have been derived from the data measured by the force

plates of the split-belt treadmill. The ground reaction forces of the vertical direction were filtered

with a low-pass fir filter with a cut-off frequency of 30 Hz. Sequences of a vertical ground reaction

force smaller than 30 N and shorter than 0.2 s were equally set to zero. Every sequence with non-zero

values was treated as a stance phase. The beginning and end of each stance phase were identified

as the IC and FC, respectively. For each stride, its duration, the swing phase, the double support

phase, and the step duration have been computed as defined previously. Whenever a participant

stepped in the middle of the dual-belt treadmill, a signal was generated on both the left and right force

plate, leading to an indistinguishable swing phase from the stance phase. As this contaminated the

ground truth measurement, these strides had to be excluded. Trials with fewer than ten valid strides in

total were excluded from the analysis. The spatial gait parameters were derived from the data of the

reflective markers attached to the sensors. The 3D displacement of the markers was segmented into

stride sequences from the ground-truth IC to the following IC of the same side. The stride length was

calculated as the difference between the anterior–posterior positions of the marker in the direction

of the treadmill at the beginning and end of each cycle, plus the distance the treadmill belt moved

during that time span. The stride height was computed as the maximum displacement in the vertical

direction during the swing phase compared to MST. The stride width was defined as the maximum

lateral derivation of the foot from the straight line.
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2.3.4 Statistical Analysis

To characterize the walking pattern of the SCI patients and healthy controls, the means and standard

deviations of the spatio-temporal gait parameters were computed for the different speed conditions.

In addition, the intra-subject variability was obtained as the average of the within-subject standard

deviations. The differences between the sensor-derived gait parameters and the ground truth values

from the gait laboratory were computed for each gait cycle to investigate the performance of the

algorithm. This difference is referred to as the error in the following. For each participant the average

error over all gait cycles was computed for the left and right side. As some of the patients had an

asymmetric gait pattern, all participants’ left and right sides were treated separately to not average

out the effect of the more affected side. Furthermore, the mean relative error was obtained as the

mean error divided by the corresponding ground truth gait parameter. For the initial and final contact

detection no mean relative error can be computed, because the error was derived as the difference in

timing and not as the difference to an actual gait parameter. In addition, no mean relative error was

reported for the stride width and stride height, because the ground truth values were in comparison to

the errors rather small leading to inflated values when the error was divided by values close to zero.

As summary metrics, mean and standard deviation values were reported for the different speed con-

ditions and cohorts. A Bland–Altman analysis was performed on the trials of all speed conditions

and cohorts to investigate whether the algorithm is affected by any measurement bias [Bland and

Altman, 1999]. For this, the mean error and the 95% limits of agreement between the sensor-derived

gait parameters and the ground-truth values from the gait laboratory were computed. Due to the

non-normality of the data, an unpaired two-sample Wilcoxon test was applied to reveal the differ-

ence between the algorithm’s performance on the two different cohorts of this study. Furthermore, a

Friedman rank-sum test was performed to investigate the effect of speed on the performance of the

algorithm. The Wilcoxon test and the Friedman rank-sum test used the median and the interquartile

ranges of the errors and a significance level of 0.05.

2.4 Results

2.4.1 Subjects

The data of 26 participants of this study (50% female) were included in the analysis. For one patient,

there was no trial with more than ten valid strides. Therefore, this patient was excluded from the further

analysis. For all the remaining nine SCI patients and 17 healthy controls all trials had a sufficient

number of strides and thus were all included. The average age of the control group was younger (27.6 ±
2.9 years) than the age of the patient group (59.6 ± 7.4 years). However, the SCI patients and the healthy

participants had a similar height of 172.8 ± 7.5 cm and 170.6 ± 9.5 cm, respectively, and similar BMI

of 22.7 ± 4.4 kg/m2 and 22.0 ± 2.8 kg/m2, respectively. The lesion completeness on the AIS score was

ranked as D (sensory and motor incomplete) for all SCI patients, with a NLI range of C7 to L3. More

specifically, the patients had an average lower extremity motor score (LEMS) of 47.6 ± 4.9 out of 50,

indicating moderate motor deficits. In terms of sensory deficits, the patients achieved an average pin

prick score of 40.6 ± 14.6 and an average light touch score of 45.4 ± 9.5 out of a maximum score of

56. All patients suffered from sensory or motor deficits of different degrees, except for patient SCI06.

Even though this patient achieved a full score in the LEMS, light touch, and pin prick assessment, he

reported difficulties in postural control and thus balancing during walking. An average score of 37.2 ±
4.2 out of 40 was assessed for the mobility domain of the Spinal Cord Independence Measure (SCIM)
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Table 2.1: Demographics (age, sex, height, and BMI) and clinical scores are listed of the spinal
cord injury (SCI) patients who participated in the study. Within clinical scores, the complete-
ness of injury (AIS), neurological level of injury (NLI), lower extremity motor score (LEMS),
light touch, pin prick, and the mobility sub-score of the spinal cord independence measure
(SCIM) are reported. The preferred walking speed as determined during the measurement is
given for each patient.

ID Age Sex Height BMI AIS NLI LEMS Light Pin SCIM Speed
Touch Prick

(yrs) (m/f) (cm) ( kg
m2 ) L/R L/R L/R mob. (m/s)

SCI01 69 f 167 16.1 D C7 23/23 53/52 53/50 38 0.6
SCI02 48 m 184 24.8 D L5 24/24 40/50 40/50 40 0.9
SCI03 58 f 163 24.5 D T4 25/25 39/39 27/41 29 0.8
SCI04 58 f 170 19 D T7 25/25 42/56 33/56 40 1
SCI05 55 m 169 19.3 D C6 10/25 56/56 30/56 39 0.4
SCI06 70 m 170 23.2 D T4-6 25/25 56/56 56/56 40 0.8
SCI07 66 m 170 25.6 D T3 25/25 38/38 26/38 40 0.8
SCI08 54 m 184 31 D T12 25/25 45/45 45/45 38 0.7
SCI09 58 m 178 20.8 D C1 25/24 28/28 1/28 31 0.8

score. Details of the demographics and clinical scores of the SCI patients are reported in Table 2.1.

2.4.2 Walking Characteristics

The walking pattern of healthy controls and SCI patients was characterized using the ground-truth

spatio-temporal parameters derived from the gait laboratory. In total, 5590 gait cycles of the SCI

patients and 2924 gait cycles of the healthy controls were included in the analysis, and the results are

reported in Table 2.2. Strides had to be excluded when the participants stepped in the middle of the

dual-belt treadmill.
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As the majority of these spatio-temporal parameters are speed-dependent, only the gait parameters

of the 0.5 m/s speed condition were compared between the two cohorts. Both participant groups

walked with a similar stride length, resulting in a similar stride duration driven by the fixed speed of

the treadmill. Similarly, comparable results have been obtained for the remaining gait parameters.

However, the standard deviation of all gait parameters of the SCI patients exceeded the standard

deviation of the control group indicating a higher inter-subject variability. Similarly, a higher intra-

subject variability was obtained for all gait parameters in the SCI cohort compared to healthy controls.

For SCI patients, this intra-subject variability was lower than the inter-subject variability for all gait

parameters, except for the stride width.

The SCI patients had a preferred walking speed of 0.76 ± 0.17 m/s. By comparing the gait parameters of

the 0.5 m/s and 0.3 m/s speed condition to the preferred speed, a longer stride duration, shorter stride

lengths, and decreased stride heights were obtained. In addition, the percentage of the swing phase

decreased with a decreased walking speed, whereas the relative stance phase and thereby the double

support phase increased. Furthermore, the intra-subject variability and the inter-subject variability

were with few exceptions lower or equal in the preferred walking speed condition compared to the 0.3

m/s and 0.5 m/s walking speed for all gait parameters.

The patients showed a range of different walking deficits, which were qualitatively described by a

physiotherapist. Patients SCI01, SCI02, SCI04, and SCI05 were walking with a drop foot on either one

or both sides. An ataxic walking pattern was observed for patients SCI01, SCI03, and SCI09. Patients

SCI01, SCI03, SCI06, and SCI09 suffered from spasticity or an increased muscle tone during walking.

Moreover, patients SCI03 and SCI08 had a decreased stability and balancing issues. Patient SCI05 had

an asymmetric walking pattern due to a left sided tetraparesis. This induced a circumduction of the left

leg and toe walking of the left side as a compensatory strategy. Only patient SCI07 showed a normal

walking pattern with no obvious walking deficits.

2.4.3 Validation of Sensor-Derived Gait Parameters

The error of the typical spatio-temporal parameters was calculated between the GRAIL-estimated

ground truth and the results of the proposed algorithm. Neither missed nor extra gait cycles generated

by the proposed algorithm were observed.

Comparison of Errors Between Cohorts at 0.5 m/s

The algorithm’s performance was analyzed using the same speed condition of 0.5 m/s for both the

SCI patients and healthy controls. The mean error between the gait parameters derived from the

gold standard and the inertial sensors attached to the ankles has been found to be similar for most of

the parameters for the two cohorts, as shown in Figure 2.4. The values of the average and standard

deviation for the different conditions can be found in Tables A.1 and A.2 of the Appendix. A significant

difference in the performance of the algorithm was obtained for the determination of the initial contact

and swing phase. According to the results, the initial contact was detected more accurately for the

SCI patients (5 ± 12 ms) than for the healthy controls (10 ± 9 ms). However, these results should be

treated with caution because they are close to the resolution of the measurement method defined by

the sampling rate of 200Hz. The average and standard deviation of the error of the final foot contact

detection (24 ± 39 ms) for the SCI participants are larger than in healthy controls, which resulted in

larger errors and standard deviations for the estimation of the swing phase (−19 ± 48 ms) and the
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double support phase (17 ± 44 ms). However, only the swing phase was statistically significantly

different between the two cohorts. Some of the SCI patients that participated in this study suffered

from a so-called drop foot and thereby a pathological toe-off, which is typical, for example, for patients

with a weak Tibialis Anterior [Beekman et al., 2000] and explains the larger standard deviation for these

parameters. For all the other gait parameters, no significant difference has been found between the

two cohorts.
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Figure 2.4: Mean error between the ground truth and sensor-derived gait parameters (initial
contact (A), stride duration (B), step duration (C), final contact (D), swing phase (E), double
support phase (F), stride length (G), stride width (H), stride height (I)) for the SCI patients
and healthy controls (HC) walking on a treadmill at 0.5 m/s are shown. Boxes indicate 1st to
3rd quartile and the whiskers extend from the hinges to the largest/smallest value within 1.5
interquartile range. The black bar in the boxes displays the median. Significant differences
between the two cohorts are indicated by * (p < 0.05).
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Comparison of Errors Between Slower and Preferred Walking Speed

Speed had no effect on the algorithm performance in pathological gait for the majority of calculated

parameters. The relative mean errors of the gait parameters are summarized in Figure 2.5 for the

different walking speeds. Mean errors in [mm] are reported for parameters with small values, as

a normalization would result in inflated values. This includes stride width and height. Moreover,

mean errors in [ms] are reported for the initial and final foot contact detection, where normalization

is not feasible. No statistically significant effect of speed was observed, except for the initial foot

contact detection and the estimation of the stride width. Specifically, the initial contact was detected

earlier than the ground truth for slower walking speeds. However, this had no significant effect on

the estimation of any of the other temporal parameters. The stride width was more underestimated

for slower walking speeds than for preferred walking speed. This can be explained by the drift in the

double integration, which is larger for a longer stride duration due to the less frequent velocity updates

and thus drift corrections. The values of the average and standard deviation for the different speed

conditions can be found in Tables A.1 and A.2 of the Appendix.

Overall Performance of the Algorithm

The Bland–Altmann plots of the gait phases and spatial parameters of all speed conditions and cohorts

are shown in Figure 2.6A-G. A maximum measurement bias of 9 ms was observed for the temporal

parameters (stride duration, step duration, swing phase, and double support phase) and of −9.5 mm

for the spatial parameters (stride length, width, and height). Therefore, there was a negligible small

measurement bias for all the parameters. Moreover, there were negligible levels of dependency of the

errors on parameter magnitude.

22



2.4 Results

−20

0

20

40

0.3m/s 0.5m/s preferred
Walking Speed

M
ea

n 
Er

ro
r [

m
s]

Initial Contact A

−6

−3

0

3

0.3m/s 0.5m/s preferred
Walking Speed 

M
ea

n 
R

el
 E

rro
r [

%
]

Stride DurationB

−6

−3

0

3

0.3m/s 0.5m/s preferred
Walking Speed 

M
ea

n 
R

el
 E

rro
r [

%
]

Step DurationC

−50

0

50

100

150

0.3m/s 0.5m/s preferred
Walking Speed 

M
ea

n 
Er

ro
r [

m
s]

Final Contact D

−20

−10

0

10

20

30

0.3m/s 0.5m/s preferred
Walking Speed 

M
ea

n 
R

el
 E

rro
r [

%
]

Swing PhaseE

−20

−10

0

10

20

30

0.3m/s 0.5m/s preferred
Walking Speed 

M
ea

n 
R

el
 E

rro
r [

%
]

Double Support PhaseF

−10

−5

0

5

10

15

0.3m/s 0.5m/s preferred
Walking Speed 

M
ea

n 
R

el
 E

rro
r [

%
]

Stride LengthG

−40

−20

0

20

0.3m/s 0.5m/s preferred
Walking Speed 

M
ea

n 
Er

ro
r [

m
m

]

Stride WidthH

−40

−20

0

20

0.3m/s 0.5m/s preferred
Walking Speed 

M
ea

n 
Er

ro
r [

m
m

]

Stride HeightI

***

*

Figure 2.5: Mean error and mean relative error between ground truth and sensor-derived gait
parameters (initial contact (A), stride duration (B), step duration (C), final contact (D), swing
phase (E), double support phase (F), stride length (G), stride width (H), stride height (I)) for
SCI patients walking on a treadmill at 0.3 m/s, 0.5 m/s, and their preferred speed. Boxes show
1st to 3rd quartile and the whiskers extend from the hinges to the largest/smallest value within
1.5 interquartile range. The black bar in the boxes displays the median. Significant differences
between the different speed levels are indicated by * (p < 0.05) and *** (p < 0.001).
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2.5 Discussion

This study proposes a method to extract spatio-temporal parameters from inertial sensors attached

laterally above each ankle. In contrast to other algorithms, the proposed algorithm automatically uses

personalized thresholds to detect each subject’s gait cycles and gait events.

The sensor-derived spatio-temporal parameters were validated for SCI patients walking at a steady state

on an instrumented treadmill at 0.3 m/s, 0.5 m/s, and their preferred walking speed (0.76 ± 0.17m/s).

The preferred walking speed of patients included in this study is similar to the average walking speed

of 0.88 ± 0.06 m/s found by Barbeau et al. [Barbeau et al., 2007] for chronic SCI patients performing

the six-minute walking test. Therefore, our study population is representative for this cohort. The

algorithm’s performance for SCI patients was compared to that of healthy controls walking at 0.5 m/s

to have an equivalent condition for the two groups. No extra or missing steps, and thus gait events,

were detected in these two groups, which demonstrated the robustness of the proposed algorithm.

Similarly, no missed or extra gait cycles were obtained for the different speed conditions in the SCI

cohort. The results for the SCI patients walking at their preferred walking speed were compared to the

performance of other algorithms from literature using shank-mounted inertial sensors for patients

with a neurological disorder.

With the proposed algorithm, a mean error of −2 ± 9 ms and 20 ± 40 ms for detecting the initial (IC)

and final (FC) foot contact have been obtained, respectively. Comparing these results to Jasiewicz et al.

[Jasiewicz et al., 2006], our algorithm slightly outperforms their algorithm even for their cohort of SCI

patients with regular footfall both for the IC (−15 ± 17 ms) and FC (28 ± 32 ms). However, the accuracy

of the correct timing of the gait event detection is strongly dependent on how accurately the optical

motion capture system and the sensor system are synchronized. Thus, comparing these results to

literature is of less importance.

The mean errors of the stride (2 ± 7 ms) and step (-1 ± 13 ms) duration, which depend on the correct

detection of the initial contact, were found to be similar to the results of Trojaniello et al. [Trojaniello

et al., 2014b]. On average, their proposed algorithm resulted in a mean error of 0 ± 15ms for the stride

duration and 0 ± 18ms for the step duration for the four cohorts investigated: elderly, hemiparetic,

Parkinsonian, and choreic participants walking at different walking speeds. The lowest walking speed

investigated was 0.61 ± 0.24 m/s with hemiparetic patients and the fastest walking speed was 1.49 ± 0.22

m/s with elderly participants. Thus, the range of speeds differs to the walking speeds evaluated in

this study.

The results for the swing phase (−23 ± 44 ms) were slightly less accurate than the results of Salarian et

al. for patients with Parkinson’s disease (5.9 ± 29.6 ms) [Salarian et al., 2004]. This can be explained by

the fact that SCI patients often suffer from abnormal footfalls, making the detection of the final foot

contact difficult [Jasiewicz et al., 2006].

The stride length has been estimated with an error of −6 ± 17 mm, which corresponds to a mean relative

error of −0.6%, vastly outperforming the results of Hundza et al. for Parkinson’s patients (110 ± 76.2

mm) [Hundza et al., 2014]. The high achieved accuracy was surprising, especially considering the slow

walking speeds investigated in this study. Slower walking speeds and the corresponding slower strides

result in larger drifts, and thereby often larger errors. It seems that introducing an additional high-pass

filter for abnormally long steps appropriately addresses this issue and significantly improves estimation

accuracy.
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To the best of our knowledge, the research articles available in the literature investigating the perfor-

mance of sensor-based algorithms for slow walking speeds are very limited. This is especially important

for the rehabilitation of SCI patients who are about to regain their walking function since they typically

start to walk with speeds in the range of 0.34 m/s [Hedel, 2009]. Forrest et al. demonstrated that a

minimum of 0.44 m/s is necessary for limited community ambulation after an incomplete SCI [Forrest

et al., 2014]. Clinical application of sensor-based gait analysis aims to chart the recovery trajectory.

Therefore, it is of paramount importance that algorithm performance is independent of walking speed

and that the algorithm is validated for this range of low speeds. We here demonstrate that our algorithm

meets these criteria for all typical spatio-temporal gait parameters, except initial foot contact detection

and stride width estimation. However, the speed-dependent properties of these parameters did not

carry over to other parameter estimations.

2.5.1 Limitations and Future Work

The limitation of our validation method is that it was performed in a controlled setting, including steady-

state straight walking on a treadmill only. There is an accumulation of evidence in healthy that treadmill

walking can act as a rhythmic generator and reduce the variability of movement patterns [Hollman

et al., 2016]. Nevertheless, the basic kinematics are expected to remain similar [Song and Hidler, 2008].

As our algorithm was designed to perform well with high inter- and intra-subject variability, it seems

plausible that it would function similarly well for steady-state over-ground walking. However, any

application of the algorithm to walking including turns, uneven ground, or overcoming obstacles must

be done with caution. In addition, our algorithm has been validated in nine SCI patients only due to the

limited availability of SCI patients fulfilling the inclusion criteria. Nevertheless, these nine patients had

varied sensory and motor impairments to cover a wide range of walking phenotypes, as demonstrated

in the significant spread of ground-truth-derived gait parameters.

Future work of our group will focus on applying this algorithm to long-term data of SCI patients in

daily life settings. Little is known on how walking during therapy time of SCI patients and the progress

assessed by the clinical walking tests translate to daily life [Hedel et al., 2009]. The benefit of monitoring

daily life walking over clinical gait assessments was demonstrated already for healthy participants of

different age groups [Czech et al., 2020], and patients with Parkinson’s disease [Atrsaei et al., 2021].

Long-term measurements in a non-laboratory setting provide the possibility to assess the walking

performance of SCI patients outside the therapy sessions. Furthermore, the walking performance can

be compared to that during therapy time to objectively measure the progress and effect of therapeutic

interventions on the daily life of the patients. This would be helpful not only as a research tool to

measure the effect of novel therapeutic interventions and medications applied for SCI patients but

could also be integrated into the daily clinical routine to track and motivate patients to translate their

progress in therapy to leisure time. In addition, we believe that this algorithm could be applicable

to other populations with atypical gait patterns. Therefore, we recently established a collaboration

with a children’s hospital to investigate whether this algorithm can be generalized for use in children

with neurological conditions. Similarly to SCI, this patient population suffers from diverse gait deficits

depending on the neurological condition.
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2.6 Conclusion

In this work, a novel algorithm that extracts typical spatio-temporal parameters from shank-mounted

inertial sensors is proposed for the population of SCI patients. The spatio-temporal parameters were

validated with 3D motion capture and force plates, a setup widely accepted as gold standard for gait

analysis. For most of these parameters, the algorithm performed similarly well for both SCI patients and

healthy controls, and the performance of the algorithm has been found to be robust for a wide range of

walking speeds, including slow walking with a speed of 0.3 m/s. The results obtained are similar to those

reported in literature for other patient populations with a neurological disorder. Due to the robustness

over various walking speeds and the accuracy compared to gold standard measurements, we believe

that the proposed algorithm is suitable for monitoring daily clinical routine and assessing the walking

performance of SCI patients. This provides two clinically relevant perspectives: An extension of current

clinical walking assessments to include markers of walking quality, and a high-density measurement of

locomotor activity within and outside of clinical therapy. Both of these are necessary building blocks to

achieve the leap to next-generation precision locomotor therapy.
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3.1 Abstract

Background An incomplete spinal cord injury (SCI) refers to remaining sensorimotor function below

the injury with the possibility for the patient to regain walking abilities. However, these patients often

suffer from diverse gait deficits, which are not objectively assessed in the current clinical routine.

Wearable inertial sensors are a promising tool to capture gait patterns objectively and started to gain

ground for other neurological disorders such as stroke, multiple sclerosis, and Parkinson’s disease. In

this work, we present a data-driven approach to assess walking for SCI patients based on sensor-derived

outcome measures. We aimed to (i) characterize their walking pattern in more depth by identifying

groups with similar walking characteristics and (ii) use sensor-derived gait parameters as predictors for

future walking capacity.

Methods The dataset analyzed consisted of 66 SCI patients and 20 healthy controls performing a

standardized gait test, namely the six-minute walking test (6MWT), while wearing a sparse sensor

setup of one sensor attached to each ankle. A data-driven approach has been followed using statistical

methods and machine learning models to identify relevant and non-redundant gait parameters.

Results Clustering resulted in 4 groups of patients that were compared to each other and to the healthy

controls. The clusters did differ in terms of their average walking speed but also in terms of more

qualitative gait parameters such as variability or parameters indicating compensatory movements.

Further, using longitudinal data from a subset of patients that performed the 6MWT several times

during their rehabilitation, a prediction model has been trained to estimate whether the patient’s

walking speed will improve significantly in the future. Including sensor-derived gait parameters as

inputs for the prediction model resulted in an accuracy of 80%, which is a considerable improvement

of 10% compared to using only the days since injury, the present 6MWT distance, and the days until

the next 6MWT as predictors.

Conclusion In summary, the work presented proves that sensor-derived gait parameters provide addi-

tional information on walking characteristics and thus are beneficial to complement clinical walking

assessments of SCI patients. This work is a step towards a more deficit-oriented therapy and paves the

way for better rehabilitation outcome predictions.
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3.2 Introduction

Depending on the severity and location of the lesion, spinal cord injury (SCI) causes heterogeneous

deficits [Hillen et al., 2013]. The most consistently appearing consequence is a change in the sen-

sorimotor function [Wirz and van Hedel, 2018], leading to impairments in the function of the legs,

arms, or whole body. Due to recent advances in the acute management and prevention of secondary

injuries, an increasing number of SCI present as incomplete [Shin et al., 2013, Wyndaele and Wyndaele,

2006], meaning that there is spared function below the level of injury. This incomplete injury allows

for a significant change in neuroplasticity, with a partial or full locomotor recovery [Barbeau et al.,

1999]. Indeed, approximately 70% of the incomplete SCI patients will regain some ambulatory walking

function [Wirz et al., 2006]. However, most of the patients who regain mobility walk with deficits. An

SCI gait is typically described with a reduced speed, changes in gait phase durations, and impairments

in gait quality and balance [Hillen et al., 2013].

Measurement tools with good clinimetric properties are essential to assess gait deficits comprehensively

and to track the impact of interventions during rehabilitation on locomotion recovery [Hillen et al., 2013,

Deyo et al., 1991]. In the current clinical routine, walking capacity is mainly assessed using standardized

gait tests, such as the six-minute walking test (6MWT), where the distance is measured that the patient

is able to walk within six minutes. And indeed, walking speed has been described as the most responsive

to improvement in walking capacity [Hedel et al., 2006]. However, this quantitative test does not give any

insights into the patient’s underlying impairments [Awai et al., 2016] and compensatory mechanisms

[Levin et al., 2009]. To assess these, gait laboratories using marker-based motion capture are currently

considered as the gold standard. They provide a detailed gait analysis with both spatiotemporal and

kinematic parameters. However, their main drawback is that the assessments are restricted to the

necessary laboratory environment, and the related expenses, time, and expertise required.

Wearable sensors such as inertial measurement units (IMUs) could become a compromise between

clinical walking tests and gait laboratories. With advances in sensor technology and accessibility of

these devices, they are becoming increasingly popular and have the potential to revolutionize clinical

research as well as established clinical assessments [Chen et al., 2016]. The sensor units are affordable,

easy to use, and do not add any burden to the patient [Lambercy et al., 2016]. For SCI patients,

data derived from IMUs could provide additional information during a quantitative walking test by

describing the gait pattern and thus capturing the gait deficits objectively. Given the relatively long

duration of the 6MWT, typical spatiotemporal parameters as well as metrics related to fatiguability and

quality of the gait can be gathered for analysis. To this date, most of the research using wearable inertial

sensors during the 6MWT were pilot, proof-of-concept, validation and feasibility studies in mostly

multiple sclerosis, stroke, Parkinson’s disease, and chronic obstructive pulmonary disease populations

as summarized in the recent review of Storm et al. [Storm et al., 2020].

One of the challenges of using technology-aided assessments is the plethora of generated outcome

measures which often have a high covariance [Kanzler et al., 2022] and are usually difficult to interpret

for clinicians [Shirota et al., 2019]. To avoid redundancy and facilitate interpretation, approaches such

as principal component or factor analysis can be used to identify and group relevant outcome metrics

into domains, e.g. rhythm and symmetry of gait. This approach has been applied to elderly, and

Parkinson’s disease populations, as well as in idiopathic fallers using gait metrics generated from an

electronic walkway [Lord et al., 2013]. Up to this date, no study has identified relevant gait parameters

from IMU data to characterize walking in patients with a SCI.

Current clinical assessments have mainly two purposes: to track the patient’s current status objectively
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but also to serve as a foundation for rehabilitation outcome predictions by clinicians. Technology-

aided assessments could further enhance such rehabilitation outcome estimations. As an example,

Kanzler et al. [Kanzler et al., 2022] have shown that including digital health metrics for the prediction

of upper limb rehabilitation outcomes in multiple sclerosis remarkably increased the accuracy of the

model by 10%. Whether sensor-derived gait parameters could similarly help to predict if a patient will

improve his or her walking capacity has not yet been investigated for SCI patients. Especially in this

heterogenous patient cohort, better prediction models of recovery profiles are needed to manage the

patient’s expectations better and to improve personalized and targeted treatment plans further.

The project aimed to identify sensor-derived gait parameters that complement a standardized walking

test. A dataset of patients with a SCI and healthy controls performing a 6MWT while wearing a sparse

sensor setup of one IMU attached to each ankle has been acquired. Further, demographics and clinical

scores were collected to bring the sensor-derived gait parameters into context with established clinical

characteristics. A subset of the participants with SCI was performing the instrumented 6MWT several

times during their course of rehabilitation. This longitudinal dataset allowed the training of a prediction

model to estimate whether a patient will improve the walking capacity or not. The hypotheses of this

project were that (i) sensor-derived gait parameters can identify gait deficits not captured by the walking

speed, such as compensatory movements, and (ii) including sensor-derived parameters as predictors

will improve the classification accuracy of whether a patient will improve the walking capacity in the

future. A data-driven approach using signal processing and machine learning techniques to extract

and select the relevant sensor parameters was used to address these two research hypothesis.

3.3 Methods

3.3.1 Subjects

The participants of this study were individuals with an incomplete SCI, undergoing either a stationary

or ambulatory rehabilitation program. Patients with all neurological levels of injury were included

if they were older than 18 years and were able to walk for at least 10m without physical assistance.

Participants had to be excluded if comorbidities affecting their gait, such as orthopedic problems, were

present. In addition, data from neurologically unimpaired participants was collected as reference

data of healthy controls. Similarly, these participants had to be older than 18 years and without any

orthopedic problems. The measurements were approved by the ethics committee of the Canton Zurich

(BASEC No. 2022-00730) and merged with a previously recorded dataset, including data from healthy

controls (KEK- ZH No. 2013-0202). All measurements were performed at the University Hospital

Balgrist in accordance with the standards of the Declaration of Helsinki and Good Clinical Practice

guidelines.

3.3.2 Protocol and data collection

Clinical scores were collected (if available) from the electronic medical record system for the par-

ticipants with SCI. From the American Spinal Injury Association impairment scale (AIS), the lower

extremity motor score (LEMS), the neurological level of injury (NLI) and the completeness of the

injury were retrieved. Further, the Spinal Cord Independence Measure (SCIM) [Itzkovich et al., 2007],

the Mobility domain of the SCIM, the Walking Index for Spinal Cord Injury (WISCI) [Morganti et al.,

2005], and the days since injury were compiled. A patient was assumed to be in a chronic stage if the
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injury happened more than 365 days ago. Demographic information has also been gathered for all

participants, such as age, weight, height, and sex.

All participants performed a 6MWT at their self-selected walking speed. The subjects were asked to walk

safely but as quickly as possible along a hallway. Rest was allowed, and patients could also use walking

aids if needed. The type of walking aid used and whether the participant needed an ankle orthosis were

recorded. An experienced physiotherapist administered the test as part of the rehabilitation program.

A subset of the participants with SCI performed the 6MWT several times during their rehabilitation,

leaving at least two weeks between two consecutive assessment sessions to track their improvement.

During the walking test, the participants had one inertial sensor unit (ZurichMOVE, Switzerland)

attached with flexible straps lateral above each ankle. The IMU modules (35x35x12mm, 18g), which

included a tri-axial accelerometer, a tri-axial gyroscope, and a tri-axial magnetometer, recorded at

a sampling frequency of 200Hz. Magnetometer data was not included in the analysis because the

magnetic field is often distorted indoors. The two inertial sensor units were time synchronized via

Bluetooth Low Energy.

3.3.3 Data postprocessing

IMUs require appropriate post-processing to extract metrics of interest from the raw sensor data.

Here, an algorithm was used that was previously developed in our group and validated specifically

for the population of SCI [Werner et al., 2021]. In brief, the algorithm uses adaptive thresholds to

detect individual steps and gait events based on the frequency spectrum of the data, which makes this

algorithm robust across a wide range of walking speeds. The cadence and typical gait phases, such as the

swing, stance, and double support phases can be derived from the gait events, e.g. the initial and final

foot contact. Further, the 3D sensor trajectory for each stride is reconstructed using a typical double

integration approach. The underlying concept is to integrate the acceleration data twice to obtain

displacement trajectories. However, accelerometers measure not only movement acceleration, but

also gravity, which needs to be subtracted prior to integration. In addition, the sensor data suffers from

thermo-mechanical noise, which results in a second-order drift when being integrated twice. Smartly

chosen boundary conditions address this issue, such as the “zero-velocity-update” during mid-stance

modified for the ankle sensor placement. Spatial parameters like the stride length, height (maximum

vertical displacement), and width (maximum sidewards displacement) can then be extracted from the

sensor trajectory. Further, the walking speed is derived from the stride duration and length.

All gait parameters X (stride duration, step duration, swing phase, double support phase, stride

length, stride width, stride height) were extracted for both legs and all strides. Statistical features

were computed for these, such as the mean, coefficient of variation, the asymmetry and difference to

reference. The coefficient of variation (cov) is defined as the standard deviation σ divided by the mean

X of all strides during the 6MWT.

cov = σ

X
∗100% (3.1)

Further, the asymmetry (asym) between both sides was computed with the symmetry index [Blazkiewicz
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et al., 2014]:

as ym = |X l e f t −X r i g ht |
0.5∗ (X le f t +X r i g ht ))

∗100% (3.2)

And the difference to reference (d2r) was computed as the difference to the gait parameter of healthy

controls X r e f interpolated to the same walking speed.

d2r = X −X r e f

X r e f

∗100% (3.3)

In addition to the spatiotemporal gait parameters, ankle cyclograms have been derived from the 3D

sensor trajectory by subtracting the endpoint’s displacement with reference to each stride’s starting

point. This processing step results in 3D enclosed shapes, as shown for one example patient in Figure

3.1. After scaling and centering these top view and side view cyclograms, the shape can be compared

to a physiological reference shape with the sum of squared differences (SSD) as described by Awai

et al. [Awai and Curt, 2014]. The advantage of this method is that it is independent of the stride

length. An SSD of 0 would indicate no difference between the cyclogram of the participant and the

physiological reference. Furthermore, the within-subject cycle-to-cycle consistency of these cyclograms

was quantified by the angular component of coefficient of correspondence (ACC) as described by Field-

Fote et al. [Field-Fote and Tepavac, 2002]. The range of ACC goes from 0% (no consistency) to 100%

(perfect consistency). In addition, the area enclosed in these cycles was derived. The SSD, ACC, and the

area were computed for the side and top view cyclograms.
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Figure 3.1: Side view and top view cyclograms of the ankle endpoint trajectory. Curves are
shown for both the left and right sides of an exemplary SCI patient (with a clear more and less
physiological side), together with the averaged reference data of healthy controls.

The movement smoothness was quantified by the frequency spectrum of the sagittal angular velocity.

More specifically, the modified spectral arc length was calculated according to Balasubramanian et al.

[Balasubramanian et al., 2012], because this method is less prone to differences in the duration of the

movement and can be applied for cyclic movements like gait [Balasubramanian et al., 2015].

Further, the change in speed, stride length, and cadence over the 6 minutes was computed as a measure

of fatigue. The change was defined as the slope of a linear fit of the speed, stride length, and cadence

divided by the intercept of this linear fit. In addition, the speed inconsistency was computed as the

absolute value of the change in speed.
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To reduce redundant information, gait parameters were only used for the analysis from the more

impaired side (if available for both sides), which was defined as the side with the lower LEMS. The right

side was taken for the healthy controls, and if both sides had the same LEMS score. The collection of

the extracted gait parameters can be found in the Appendix in Table A.3.

3.3.4 Statistical analysis

Identifying gait clusters

A cluster analysis was performed on the gait parameters of the first 6MWT of all participants with SCI

to identify patients with similar gait characteristics. First, a principal component analysis was executed

on the scaled and centered gait parameters to reduce the high-dimensional dataset. The number

of principal components (PCs) for the clustering was selected based on the cumulative explained

variance. To identify the optimal number of clusters a hierarchical clustering using Ward’s criterion

was performed. A k-means clustering on the PCs assembled the SCI participants into distinct groups.

A variance analysis of demographic data and clinical scores identified significant differences in the

cluster composition. In particular, a Kruskal-Wallis test was chosen for the continuous variables (e.g.,

SCIM) and a Fisher test for the categorical variables (e.g., percentage of acute patients) due to the

non-normality of the data. Further, the most discriminating gait parameters between the clusters were

identified to characterize the walking pattern of the different clusters. More specifically, the first five

gait parameters that contributed the most to each PC were selected. This set of parameters was further

reduced to a core set of gait metrics, by only keeping parameters that showed a significant difference

between the clusters (Kruskal-Wallis, α = 0.05) and by eliminating parameters that highly correlated

with another parameter (Pearson correlation coefficient > 0.9) to reduce redundant information. A

post-hoc test (Dunn test, α = 0.05) identified significant differences between the clusters in this core set

of gait parameters and allowed the comparison of the clusters to healthy controls.

Prediction of improvement in walking capacity

To predict whether a patient will improve the walking capacity significantly in the future, a machine

learning model has been trained on the data of participants that performed the 6MWT at least twice.

The dependent variable of the model was whether the participant improved in the 6MWT from the

“present” to “future” assessment more than the standard error of measurement (SEM), which was

reported to be 16.5m for SCI [Lam et al., 2008]. Any increase above this SEM was assumed to be an

actual change in walking capacity rather than measurement noise. In other words, a binary random

forest classifier was trained to predict whether a patient will improve above the SEM or not until the

following 6MWT assessment.

Two different feature sets were used to identify whether the sensor-derived gait parameters can improve

this prediction when using them as additional predictors. The first feature set only included the

“present” 6MWT distance, at what time point after injury this “present” 6MWT was performed, and

the number of days until the “future” 6MWT was performed. If the time point of the first 6MWT was

more than 365 days after injury, all trials of this patient were shifted such that the first 6MWT was

set to 365 days, because it is assumed that after this time point, the patient is in a chronic state. The

second feature set additionally included all sensor-derived gait parameters from the “present” 6MWT

as predictors. All features were scaled to have unit variance and centered around their respective mean.

Further, redundant features (Pearson correlation coefficient > 0.9) were removed and only the first 10
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most contributing features were included to avoid overfitting of the model to the training data.

The classifier was trained and evaluated in a leave-one-subject-out cross-validation procedure, which

means that the classifier was trained on all trials except for the trials of one participant, and then tested

on the trials of this excluded participant. This procedure was repeated until the classifier was trained

and tested on all data to evaluate the model’s generalizability to unseen data. Sensitivity, specificity,

and accuracy were chosen as evaluation metrics to compare the predictive power of the two different

feature sets. Difference in features between improvers and non-improvers were analysed with the

Kruskal-Wallis test (α = 0.05).

3.4 Results

3.4.1 Participants

The demographics and clinical characteristics of the 66 participants with SCI and 20 healthy controls

are summarized in Table 3.1. Both cohorts were similar in age, sex distribution, and BMI. However,

the healthy controls achieved overall longer distances in the 6MWT compared to those achieved by

the participants with SCI (644±93m vs. 362±195m). The cohort of participants with SCI was quite

heterogeneous. The first measurement was conducted in the chronic phase (> 365 days after injury)

for around 65% of the SCI participants. Around half of the participants had a traumatic injury. The

majority had an injury that was both sensory and motor incomplete (AIS D score), whereas the NLI

ranged from cervical to sacral. On average, the participants with SCI had a LEMS of 41.9±9.5 out of a

maximum achievable score of 50 and a SCIM of 76.2±21.1 out of 100. Focusing only on the mobility

domain of the SCIM, the participants had a score of 30.2±10.6 out of 40. In terms of walking aids, 47%

used some type of walking aid and 15.2% used an orthosis, which resulted in an overall WISCI score of

13.1±5.4 out of 20.

A subset of 23 out of the 66 participants with SCI performed the 6MWT more than once at different

time points during their rehabilitation: 10 were measured twice, 9 were measured three times, and 4

were measured four times. The days since injury and the 6MWT outcome for this subset of participants

are shown in Figure 3.2. The median time between the two measurements was 35.5 days (Inter-quartile

range: 30 to 79).

3.4.2 Characterization of the gait clusters

To identify groups of patients with similar gait characteristics, the patients were clustered on the PCs

derived from the sensor gait parameters. The first four PCs of the gait parameters explained 69.4%

of the variance in the data and were selected for the clustering. Four distinct clusters were obtained.

Their composition in terms of demographics and clinical scores is presented in Table 3.2. The clusters

neither differed in demographics (age, sex, BMI) nor in the diagnosis (traumatic/non-traumatic) or

the chronicity of the injury. However, the clusters differed significantly in their performance in the

6MWT, which determined the cluster number ordering and is presented in Figure 3.3. It was found that

both the first cluster and the healthy cohort differed significantly from every other. Further, the clusters

varied in the clinical scores, such as the LEMS, SCIM, SCIM Mobility, use of walking aid or orthosis, and

WISCI. With a few exceptions, the motor capacity and independence measures were decreasing, and

the use of walking aids or orthosis was increasing with increasing cluster number.
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Table 3.1: Demographics and clinical characteristics of the participants. Values are presented
as mean ± standard deviation. Abbreviations: BMI: Body Mass Index, AIS: ASIA Impairment
scale, NA: Not Assessed, NLI: Neurological Level of Injury, LEMS: Lower Extremity Motor score,
SCIM: Spinal Cord Independence Measure, WISCI: Walking Index for Spinal Cord Injury

Cohort SCI Healthy

Number 66 20
Age 55.6 ±15.1 years 58.6±11.4 years
Sex 28.8% female 20% female
BMI 24.9±4.9 kg/m2 24.0±3.86 kg/m2

6MWT 362±195m 644±93m
Chronicity 34.8% acute
Diagnosis 48.5% traumatic
AIS B: 3

C: 2
D: 50
NA: 11

NLI Cervical: 25
Thoracic: 22
Lumbar: 12
Sacral: 2
NA: 5

LEMS 41.9±9.5
SCIM 76.2±21.1
SCIM Mobility 30.2±10.6
Walking Aid 47.0% with
Orthosis 15.2% with
WISCI 13.1±5.4

Further, the clusters were compared in terms of the most relevant gait parameters, which were obtained

with a feature selection procedure. More specifically, the five most important features of each PC were

picked and then checked for redundancy. This procedure resulted in eight gait parameters shown

in Figure 3.4, where the results are displayed for each cluster and the healthy controls. Comparing

the clusters to the healthy controls with respect to these eight features, it was found that cluster 1

and healthy controls did only differ in terms of their performance in the 6MWT. Cluster 2 showed a

significantly higher stride width, stride duration, and an abbreviated double support phase (negative

d2r). Cluster 3 had a higher stride duration, a lower top view area, and a higher variability in the double

support phase. Furthermore, the speed was less consistent than in healthy controls. Cluster 4 had a

longer stride duration and higher stride width than healthy controls.

When comparing the individual clusters to each other, it was found that the stride duration of cluster 1

differed significantly from those of the other 3 clusters, but no substantial discrepancy has been found

between these 3 clusters. The stride widths of clusters 2 and 4 were significantly higher compared to

the other two clusters. Further, the top view area of cluster 2 was significantly higher than in the other

three clusters. The stride length was more extended (positive d2r) in cluster 2 than in cluster 1. The

variability (cov) of the double support phase was lower in cluster 1 than in cluster 2 and 3 and the d2r of
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Figure 3.2: 6MWT outcome of the subset of 23 patients with SCI that performed the assess-
ment at least twice during rehabilitation. Data points corresponding to the same patient are
connected and displayed with respect to their time since injury. The dotted line indicates the
beginning of the chronic phase.

Table 3.2: Cluster composition. Demographics and clinical characterization of the clusters
with the corresponding p-values of the Kruskal-Wallis test. Values are presented as mean
± standard deviation. Abbreviations: BMI: Body Mass Index, AIS: ASIA Impairment scale,
NLI: Neurological Level of Injury, LEMS: Lower Extremity Motor Score, SCIM: Spinal Cord
Independence Measure, WISCI: Walking Index for Spinal Cord Injury

Cluster 1 Cluster 2 Cluster 3 Cluster 4 p-value
Number 37 14 8 7
Age 54.8±15.3 60.2±15.4 52.2 ±14.3 55±15.7 0.619
Sex 24.3% female 21.4% female 62.5% female 28.6% female 0.193
BMI 25.3±4.6 kg/m2 24.9±5.1 kg/m2 22.1±8.2 kg/m2 24.1±5.1 kg/m2 0.752
6MWT 489±123m 306±135m 121±64m 80±42m <0.001
Chronicity 29.7% acute 35.7% acute 62.5% acute 57.1% acute 0.232
Diagnosis 48.6% traumatic 42.9% traumatic 37.5% traumatic 71.4% traumatic 0.601
LEMS 45.8±7.6 37.3±9.3 41.1±10.3 34.7±10.1 0.005
SCIM 85.2±18.5 69.0±16.9 60.6±21.6 59.6±17.6 <0.001
SCIM Mob. 36.3±7.0 27.4±9.6 19.8±6.6 15.6±4.9 <0.001
Walking Aid 24.3% with 57.1% with 100% with 85.7% with <0.001
Orthosis 10.8% with 0% with 25.0% with 57.1% with 0.006
WISCI 16.8±4.2 12.6±5.4 11.0±4.0 7.0±1.1 <0.001

the swing phase was different in cluster 2 compared to cluster 3. More specifically, the swing phase of

cluster 2 was found to be prolonged, whereas that of cluster 3 shorter than in healthy controls walking

at the same speed. Accordingly, the d2r of the double support phase differed significantly between

clusters 2 and 3, as well as between clusters 2 and 4. The speed was less consistent in cluster 3 than in

cluster 1.
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Figure 3.3: 6MWT performance of the 4 clusters and healthy controls (HC). Significant differ-
ences are indicated by *(<0.05), ** (<0.01) or ***(<0.001).

1

2

3

4

5

1 2 3 4 HC
Cluster

St
rid

e 
D

ur
at

io
n 
− 

m
ea

n 
[s

]  
   A

2.5

5.0

7.5

1 2 3 4 HC
Cluster

St
rid

e 
W

id
th

 −
 m

ea
n 

[c
m

]  
   

  B

100

200

300

400

1 2 3 4 HC
Cluster

Ar
ea

 T
op

 V
ie

w
 −

 [c
m

^2
]  

   
   

 C

0

50

100

1 2 3 4 HC
Cluster

St
rid

e 
Le

ng
th

 −
 d

2r
 [c

m
]  

   
  D

10

20

30

1 2 3 4 HC
Cluster

D
ou

bl
e 

Su
pp

or
t −

 c
ov

 [%
]  

   
  E

−50

−25

0

25

1 2 3 4 HC
Cluster

Sw
in

g 
Ph

as
e 
− 

d2
r [

%
]  

   
   

  F

0

50

100

1 2 3 4 HC
Cluster

D
ou

bl
e 

Su
pp

or
t −

 d
2r

 [%
]  

   
  G

0

10

20

30

40

1 2 3 4 HC
Cluster

Sp
ee

d 
In

co
ns

is
te

nc
y 

[%
]  

   
 H

*
***

******
*** *** *** **

**
***
* *** ** ***

*** *

*
**

*** * **

**
**

* *** ***

Figure 3.4: Selected gait parameters (A-H) shown for the 4 clusters and healthy controls (HC).
Significant differences are indicated by *(<0.05), ** (<0.01) or ***(<0.001).

3.4.3 Prediction of improvement in walking capacity

A subset (23 patients) was measured either 2, 3, or 4 times during the course of their rehabilitation.

When counting two consecutive 6MWTs as one observation for the prediction model, the dataset

consisted of 40 observations. Twenty-one observations were “improvement” and 19 “no improvement”,
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depending on whether the improvement in the 6MWT distance was greater than the SEM of 16.5m or

not, respectively.

The prediction model of whether a patient will perform better at the next 6MWT with an improvement

more than the SEM was tested on two different feature sets and is presented in Table 3.3. The binary

classification yielded an accuracy of 70% when the model was trained on the "present" 6MWT distance,

the days since injury, and the days until the next 6MWT assessment only. Including sensor-derived gait

parameters (feature set 2) improved the performance of the classifier by 10%. The 10 most important

features selected by the model were (in the order of importance): the days since injury, the change in

cadence, the side view ACC, the days until the next 6MWT, the asymmetry in the double support phase,

the change in stride length, the asymmetry of the swing phase, the stride height, the change in speed,

and the area of the side view. How the features of set 1 and the additional sensor-derived features

differed between the improvers and non-improvers is shown in Figure 3.5 and Figure 3.6, respectively.

Most improvers were in the acute phase. And on average, there were fewer days until the next 6MWT.

Interestingly, the "present" 6MWT distance did not differ significantly between the improvers and

non-improvers.

Table 3.3: Classification performance of the two different feature sets

Feature Set Confusion Matrix Sensitivity Specificity Accuracy
No Yes

1 No 14 5 66.7% 73.7% 70%
Yes 7 14

2 No 14 5 85.7% 73.7% 80%
Yes 3 18
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Figure 3.5: “Feature Set 1”: Days since injury (A), days until next 6MWT (B) and present 6MWT
(C) grouped by whether the patient will improve until the next 6MWT or not. Significant
differences are indicated by *(<0.05), ** (<0.01) or ***(<0.001).

From the sensor-derived features, it was found that improvers tend to have a positive change in speed,

stride length, and cadence. Further, the improvers showed a higher stride height and side view area.

The improvers also showed on average a slightly better cyclogram consistency (ACC side view) and a

slightly lower temporal asymmetry (asymmetry of the double support and swing phase), but these last

findings were not found to be significant.
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Figure 3.6: Gait parameters of “Feature Set 2” grouped by whether the patient will improve
until the next 6MWT or not. Significant differences are indicated by *(<0.05), ** (<0.01) or
***(<0.001).

3.5 Discussion

In this work, we presented a data-driven characterization of the gait properties of patients with a SCI.

The data of 66 participants with SCI and 20 healthy controls performing a 6MWT while wearing IMUs

attached to their ankles was used. A subset of 23 SCI participants performed the 6MWT at least twice,

with a minimum of two weeks between each assessment. Machine learning and statistical methods

were used to select wearable sensor-derived outcome measures relevant (i) to identify and characterize

groups of SCI patients with similar gait characteristics and (ii) to predict whether a patient will improve

their walking capacity significantly in the future.

The patients with SCI included in this study represented this heterogeneous patient cohort. More

specifically, patients with different levels (from cervical to sacral) and completeness (sensory and motor)

of the spinal injury were measured, from both acute and chronic stages. The average performance

in the 6MWT of the participants with SCI included in this study was slightly higher (362±195m) than

values of chronic SCI patients (317±22m) found by Barbeau et al. [Barbeau et al., 2007]. The fact that

around 35% of the participants with SCI in this study were in the acute phase and thus usually having a

lower walking capacity explains the larger standard deviation.

3.5.1 Characterization of the gait clusters

A clustering procedure based on sensor-derived gait parameters separated the patients into four

clusters. The cluster’s composition and gait characteristics were analyzed by identifying the most

relevant and non-redundant gait parameters.
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Cluster 1 was the most prominent cluster, with 37 patients. The mainly chronic SCI patients in this

cluster had a significantly lower performance in the 6MWT than the healthy controls but did not differ

in any of the sensor-derived gait parameters. Hence, participants of this cluster walked slower but with

a physiological walking pattern. Our recommendation for physiotherapy of patients in this cluster

would be to improve their walking capacity by improving their intra- and inter-muscular regulation

with strength training and coordination training. This should improve muscular control and overall

fitness to foster speed improvement.

Participants of cluster 2 walked significantly slower than the participants of cluster 1. The most promi-

nent walking characteristic of this cluster was the increased stride width and increased top view area,

which are both indicators for a lateral circumduction and thus compensatory movements [Scivoletto

et al., 2007]. Further, the double support phase is abbreviated (d2r) in cluster 2 in comparison to refer-

ence data presumably due to the compensatory movements mainly during the swing phase leading

to redistribution in the relative gait phases. This indication is further confirmed when comparing

the cluster composition of cluster 2 and 3: an overall lower LEMS and a higher percentage of chronic

patients was found in cluster 2. Hence, we can assume that patients of cluster 2 learned compensatory

strategies that enable this group to walk faster in comparison to acute patients with better muscle

scores. This is in line with the literature, as several studies show that functional improvement can occur

independently from neurologic recovery by using compensatory mechanisms [Curt et al., 2008, Wirz

et al., 2006]. Our recommendation for patients in this cluster is to improve their movement quality by

innervation training and strength training of the target muscles rather than focusing on improving

speed.

The most prominent characteristic of cluster 3 was found to be the high variability of the double

support phase and the speed inconsistency. This high variability in rhythm has been shown to be a risk

factor for falling [Vienne et al., 2017]. We would recommend focusing on reducing mainly the temporal

variability in these patients, e.g., by using robotic devices, such as the Locomat, or simple treadmill

training. The predefined walking consistency and the many repetitions would foster a regular and

periodic gait pattern towards safer walking.

Similar to cluster 2, an increased stride width was obtained in cluster 4, which again indicates a lateral

circumduction and thus compensatory strategy [Scivoletto et al., 2007]. In addition, cluster 4 was the

smallest cluster with only four patients and showed a high variance, especially in the gait parameters

related to the gait phases. We assume these patients suffer from multiple gait deficits, resulting in a

wide variance in the gait parameters. Especially for the 57% acute SCI patients included in this cluster,

we recommend an individualized assessment of the foundations for walking, such as postural control

and standing stability. Then, deficits with the possibility of improvement should be identified and

addressed in a personalized deficit-oriented training manner.

The main findings of this clustering including a physiotherapy recommendation for each cluster are

summarized in Figure 3.7.

3.5.2 Prediction of improvement in walking capacity

Using the longitudinal data of a subset of patients with SCI that performed the 6MWT at least twice,

predictors of whether a patient will improve in the future more than the SEM were identified. When

the present 6MWT distance, the time since injury, and the days until the next 6MWT were provided as

inputs to the model a prediction accuracy of 70% was achieved. It was found that improvers were mainly
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Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 
composition

37
70.3% chronic
LEMS: 46 ± 8

14
64.3% chronic
LEMS: 37 ± 9

8
62.5% acute
LEMS: 41 ± 10

7
57.1% acute
LEMS: 35 ±10

6MWT 489 ± 123m 306 ± 135m 121 ± 64m 80 ± 42m

Abnormal gait 
parameter

None Increased stride width;  
increased top view area

Increased variability of 
double support; decreased 
speed consistency

General wide variance in 
gait parameter
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Physiological gait pattern; 
only slower than healthy 
controls

Lateral circumduction as a 
compensation strategy

Rhythm deficit Combination of multiple 
gait deficits

Goal Increase walking speed Improve movement 
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Reduce temporal 
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Identify possibilities for 
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Recommendations 
for physiotherapy 

Strength and 
coordination training to 
improve muscular control 
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Innervation and strength 
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and/or walking aid 
adjustment

Treadmill training to 
foster a regular and 
consistent walking 
pattern

Individualized 
assessments of 
foundations for walking; 
deficit-oriented training 

Figure 3.7: Summary of the main findings on the cluster composition, gait characteristics and
recommendations. Abbreviations: LEMS: Lower Extremity Motor Score

acute SCI patients that were measured again after a median of 34 days. Interestingly, the performance

in the 6MWT of the improvers ranged from 45m to 585m and was not statistically different from the

non-improvers, which means that both slow and fast walkers were able to improve their walking speed.

This is in line with the literature where it was previously observed that the recovery of walking speed in

SCI patients did not depend on the initial speed [Wirz et al., 2006]. Wirz et al. demonstrated that in SCI

patients, it rather depended on an inherent capacity of functional improvement irrespective of initial

impairment.

Adding sensor-derived gait parameters as predictors for the binary classification model could improve

the prediction accuracy by 10%, to 80%. The sensor-derived features exhibited that improvers tend to

have a higher change in speed, stride length, and cadence as predictors. Since the majority of improvers

were in the acute phase, we assume that these patients improve their speed, stride length, and cadence

consistency, both due to becoming more familiar with the test and also because they get better in

estimating their abilities over the six minutes. Further, the non-improvers showed a lower stride height

and lower side view area in the present 6MWT, which might indicate weak hip and knee flexors to lift

the foot. Previous studies stated that hip flexors, hip extensors, and hip abductors are determinant

for ambulatory function [Kim et al., 2004, Hussey and Stauffer, 1973]. In addition, improvers tend to

have a lower asymmetry in the gait phases (double support and swing phase) and higher cyclogram

consistency (higher ACC), even though these observations were not significant. In summary, patients

that improved their performance in the 6MWT already had a more physiological walking pattern than

the non-improvers, and thus it can be assumed that the improvers mainly improved their speed and

thus performance in the 6MWT by improving their overall fitness and speed consistency. Accordingly,

the gait deficits of the non-improvers presumably hinder this group from improving their speed

considerably.
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3.5.3 Limitations

The main limitation of this work is that many of the gait parameters correlate with speed, such as

for example the cadence, swing phase, and stride length, which is widely known [Kirtley et al., 1985].

Hence, it is difficult to disentangle walking quality and speed for participants walking at different

speeds. Further, the slow walking patients are often the more severely affected part of the population.

We tried to address this issue by providing parameters that are less related to walking speed, e.g., the

measures related to variability and symmetry. Future work focusing on walking quality should consider

collecting data of patients walking at similar speeds to get rid of this effect.

Since most of the data was collected as part of the clinical routine, the assessments were unequally

spaced in time. 6MWT assessments were performed approximately every four weeks on average, but

especially for chronic patients, the assessments were performed less often and only when the patient

was in ambulatory rehabilitation. This unequal time spacing introduced additional noise in the data

that we tried to address by providing the time until the following assessment as a predictor to the

model.

3.5.4 Clinical implications and future work

The results underline the benefit of using wearable inertial sensors during the 6MWT. Based on the

sensor-derived gait parameters, different groups of patients were identified that differed not only in

terms of walking speed but also in terms of quality-related gait characteristics. Future work of our

group will focus on translating these findings into the clinical routine by providing an easy-to-use tool

for sensor-based gait assessments, including a tablet-based gait report. Part of this report will focus on

the gait parameters identified in this work. Such a technical solution should foster more data collection,

which is required to characterize this heterogeneous cohort even more precisely.

Further, predictors were identified that determine whether a patient will improve significantly in terms

of walking speed. Interestingly, this was independent of current 6MWT performance and more related

to the quality of walking, such as the actual gait pattern and speed consistency, characteristics that

are not directly assessed by the 6MWT itself, but could be via the sensor-based measures. In addition,

non-improvers, might still improve their walking pattern towards a more physiological gait, which

again could be captured using inertial sensors.

3.6 Conclusion

This work presented a method to identify non-redundant and interpretable gait parameters to char-

acterize walking after a SCI. Gait parameters were derived from a sparse inertial sensor setup, which

opens up the possibility of being used within the clinical routine as a technology-aided gait assessment.

The extracted gait metrics complemented the standard clinical assessment by providing information

related to fatigue, compensatory mechanisms, and rhythm issues. Hence, the diverse gait deficits of

this heterogeneous patient cohort could be described more objectively and comprehensively than

in the current clinical practice. Further, sensor-derived gait parameters enhanced the prediction of

whether a patient will improve his or her walking capacity in the future and exhibited predictors related

to improvement in walking capacity. In conclusion, this work is a step towards using sensor-based

gait analysis for rehabilitation assessment of patients with a SCI. Such sensor measures could not only

foster a more deficit-oriented therapy by providing objective measures on gait deficits but also enhance
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more targeted rehabilitation plans under consideration of better recovery profile prediction models

when including sensor-derived parameters.
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Chapter 4. Estimating Wheeling Propulsion Patterns using a Sparse Inertial Sensor Setup

4.1 Abstract

Background The extensive reliance on hand and arm function for daily life activities and mobility by

means of manual wheelchair use constitutes a main risk factor of upper limb pain and injuries in SCI

patients. Hence, kinematic measurement of upper limb movements related to wheelchair propulsions

provides important information associated with overuse injuries. Wearable inertial sensors offer the

possibility to measure wheeling biomechanics in an objective, unobtrusive, and unconstrained way.

However, so far only basic wheeling parameters, such as the number of strokes, distance or speed, are

provided by commercial wearable devices.

Methods The aim of this work was to present a novel algorithm, which extracts actual wheeling propul-

sion patterns and more advanced wheeling metrics from a sparse inertial sensor setup with one sensor

attached to the wrist and one sensor attached to the wheel of the wheelchair. The sensor-based algo-

rithm was validated by comparing the results to an analysis based on data from an instrumented wheel

and marker-based motion capture, widely accepted as a gold standard. After, validation, the algorithm

was applied to an extensive dataset of 41 individuals with a spinal cord injury. Using time-series

clustering, an unsupervised machine learning approach, on the sensor-derived wheeling patterns,

dominating propulsion patterns within this cohort were identified.

Results Excellent results were obtained when comparing the performance of the sensor-based al-

gorithm to the reference system: only 2% of the strokes were not detected by the algorithm. The

average difference between the two measurement systems for detecting the initial and final pushrim

contact was -6.1ms and 11.7ms, respectively, and wheeling propulsion pattern shapes could be reli-

ably reconstructed. After applying the algorithm to a dataset of the target cohort and clustering the

individuals based on their wheeling patterns, four dominant propulsion patterns were obtained. The

wheeling pattern clusters did not only differ in quantitative wheeling metrics, such as speed, stroke

frequency, and distance per stroke, but also in qualitative wheeling markers, such as the push angle,

and propulsion pattern consistency. Further experienced wheelers dominated more efficient and less

harmful wheeling pattern clusters.

Conclusion This work presents a novel method for an objective, unobtrusive and accessible mea-

surement of wheeling metrics and propulsion techniques, which enables further research on the link

between wheeling patterns and upper extremity injuries in a real-world setting and for a broader cohort.

Hence, this work is a step towards providing personalized recommendations to optimize wheeling

performance and thus reducing the risk of upper extremity injury for the individual.
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4.2 Introduction

Wheelchairs enable mobility and thus independence for individuals with impairments in their lower

extremities. For example, spinal cord injury (SCI) patients with a disability in their legs often rely on

a wheelchair [Hosseini et al., 2012]. As wheelchair-bound individuals depend more on their upper

extremities than able-bodied individuals for daily life activities including mobility, they use their

arms more extensively. Pain and injury in the upper extremities occur more often than in the able-

bodied population due to the extensive use [Arnet et al., 2021, Boninger et al., 2001, Boninger et al.,

2003, Bossuyt et al., 2018, Eriks-Hoogland et al., 2012, Eriks-Hoogland et al., 2014, Gironda et al.,

2004, Jahanian et al., 2022, Jensen et al., 2005]. Since wheelchair-dependent individuals are strongly

dependent on the arms these overuse injuries have serious functional consequences. Consequences

include a reduction of independence in daily life activities resulting in a decreased experience of

quality of life and additional medical costs [Requejo et al., 2008, Jensen et al., 2005, Turner et al.,

2001, Eriks-Hoogland et al., 2011, Gutierrez et al., 2007]. Many studies report that repetitive tasks, most

prominently wheelchair propulsion, are associated with the development of upper extremity pain and

injury [Dalyan et al., 1999, Davidoff et al., 1991, Curtis et al., 1999, Boninger et al., 1999]. Boninger et al.

[Boninger et al., 1999] reported that this overuse injuries can, in addition to other factors, such as the

BMI and age, to some extent be associated to the wheeling propulsion technique. As a consequence, a

suboptimal wheeling technique is one significant risk factor for developing upper extremity injuries

and pain.

The wheelchair propulsion patterns differ between manual wheelchair users. Mainly, four different

wheeling patterns were identified in multiple studies [Kwarciak et al., 2012, Boninger et al., 2002]. These

patterns differ in their trajectory during the recovery phase, when the hand is not in contact to the

wheel. In the "arcing" pattern (ARC) the hand just follows the arc of the wheel back during the recovery

phase. The "semicircular" pattern (SC) is an under-rim wheeling pattern, where the arm partially or

fully extends and the hand falls below the push rim. If the hand follows a trajectory above the rim,

it is called "single looping over propulsion" pattern (SLOP). In the "double looping over propulsion"

pattern (DLOP), the hand first goes above the rim and then under the rim, such that the shape of the

wrist trajectory looks similar to an infinity sign. It was found that the under-rim patterns tend to have

a lower risk of developing upper extremity injuries, because it is in general more efficient [Boninger

et al., 2002, Kwarciak et al., 2012]. However, moststudies investigating wheeling propulsion patterns

were conducted in laboratory setting using marker-based motion capture systems and/or treadmills

[Groot et al., 2005, Richter et al., 2007, Groot et al., 2004] often together with instrumented wheels

[Cooper et al., 1997], which measure forces and torques applied to the handrim. These setups provide

a comprehensive kinematic and kinetic description of the upper limb biomechanics during wheeling.

Consequently, these setups are rather cost intensive and bound to the laboratory setting.

Objectively, unobtrusive tools are needed to measure wheeling propulsion techniques not only in a

laboratory setting for research purposes, but also as part of the clinical routine during the rehabilitation

process of patients relying on a wheelchair. With technological improvements in the past decade,

Internet of Things technologies became more and more available. For example, wearable sensors have

the capacity to perform measurements in real life settings for prolonged periods of time (weeks/month)

and are more accessible than biomechanical laboratories due to their costs and ease of use. More specif-

ically, inertial measurement units (IMU), provide the possibility to assess movements in an unobtrusive

way. In a recent review of MacDuff et al. [MacDuff et al., 2022] IMUs or simple accelerometers were iden-

tified as the most prominent devices to measure manual wheelchair propulsion metrics. Nevertheless,

the field is still in its infancies: using wearables the physical activity could been quantified by the overall
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energy expenditure or simple activity counts [Ahmadi et al., 2018, Brogioli et al., 2017, Marco-Ahulló

et al., 2021, Moreno et al., 2020, Nightingale et al., 2015, Popp et al., 2018] and wheeling metrics, e.g.

the stroke count and the speed could be extracted [Kooijmans et al., 2014, Kressler et al., 2018, Lewis

et al., 2018]. To the best of our knowledge, no one has demonstrated so far the possibility of deriving

the actual wheeling propulsion patterns from IMU sensor data. However, given the link between these

patterns and the risk of developing upper limb pain and injuries we see a great interest in assessing

these propulsion techniques objectively and in an uncontrolled setting.

In this study, we present a novel algorithm to extract wheeling propulsion patterns and related wheeling

metrics from a sparse sensor setup: one IMU attached to the wrist and one IMU attached to the wheel

of the wheelchair. The algorithms performance was validated with a setup widely accepted as a gold

standard for biomechanical analysis. Further, the algorithm was applied to data of individuals with

a spinal cord injury performing a wheeling trial. An unsupervised machine learning was applied to

sensor-derived wheeling pattern, to identify the most dominant wheeling propulsion techniques of this

cohort. Further, it was investigated how these clusters of patterns differed in terms of other quantitative

wheeling metrics but also in clinical scores.

4.3 Methods

4.3.1 System Setup and Data Collection

The sensors used in this project were State-Of-The-Art IMUs, which comprise a tri-axial accelerometer,

a tri-axial gyroscope and a tri-axial magnetometer. As the magnetic data is often distorted by electro-

magnetic fields indoors it was excluded from further analysis and a magnetometer-free approach was

chosen [de Vries et al., 2009]. These sensors were attached with a flexible strap lateral above the wrist

similar to a watch and with a custom-made solution parallel to the wheelchair spokes as shown in

Figure 4.1. Data was collected from wheeling activities only.

Figure 4.1: Participant wearing sensor modules attached to the right wrist and the wheelchair
wheel.

Two different datasets were collected. The first dataset was collected for validation purposes. The

participants were wheeling on a treadmill at slow speed (2km/h), fast speed (4km/h) and with a slope

(6% at 2km/h) for around 30s each. Participants were equipped with passive reflective markers attached

to the upper body recorded by eight cameras at 100Hz (Qualisys). The right wheelchair wheel was

replaced by an instrumented wheel (SmartWheel) measuring contact forces of the wheelchair rim at

240Hz. Further, participants had one IMU attached to the wrist and the wheelchair wheel (Shimmer),

which were recording at 100Hz.
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The second dataset was recorded to apply the algorithm to data of the target cohort. Wheelchair-

bound patients were asked to wheel a distance of 160m, which included two 90° and two 180° turns.

The participants were instructed to wheel at a comfortable speed: rapid while still feeling save. The

participants were equipped with IMUs (ZurichMOVE) as described above, which were recording at a

sampling frequency of 50Hz. Participants were measured either once or several times with around 4

weeks in between each session, up to four times.

4.3.2 Participants

For the validation of the algorithm, the data of three able-bodied individuals with no pain in the upper

extremities and wheelchair-experience was recorded. These measurements were approved by the

responsible local ethics committee (EKNZ, Project-ID: 2020-01961).

The participants of the second part of this study were individuals with a SCI, undergoing either an in-

or out-patient rehabilitation program. Patients with all neurological levels of injury were included if

they were older than 18 years and were dependent on using a manual wheelchair. Both experienced

(using the wheelchair for more than two years) and inexperienced wheelers were included. The

measurements were approved by the ethics committee of the Canton Zurich (BASEC No. 2022-00730).

All measurements were performed in accordance with the standards of the Declaration of Helsinki and

Good Clinical Practice guidelines.

The data of 41 patients with SCI was collected. Clinical scores and demographics were retrieved (if

available) from the electronic medical record of the participant. These participants had an average

age of 55.3±17.3 years, were 39% female and had an average BMI of 23.8±3.9 kg/m2. 22% of the

participants were tetraplegic and 58.5% had a traumatic injury. At the time of the first measurement

65% were in the acute stage, having the SCI since less than one year. The upper extremity motor

score (UEMS), a measure of muscle strength, was 46.5±8.4 out of a maximum achievable score of 50.

Further, the participants had on average a score of 55.1±21.1 out of 100 in the spinal cord independence

measurement (SCIM) scale. Focusing only on the mobility subdomain of this scale, the participants

achieved 8.8±5.4 out of 40. Around one third (31.7%) of the participants were considered "experienced"

wheelers, using the wheelchair for more than two years.

4.3.3 Wheeling Pattern Estimation

The sensor data of the IMU attached to the wheel and the wrist is fused to extract wheeling metrics,

such as the distance per stroke or the push phase duration, and the wrist trajectory, which is needed

to reconstruct the wheeling propulsion pattern. The processing steps are explained in the following

and are also displayed as a flowchart in Figure 4.2. First, the wheel IMU data is processed, which gives

robust estimations of the velocity, displacement and path of the wheelchair. Further, individual strokes

are identified by local peaks in the filtered angular velocity of the wheel. Then, a position strapdown

integration approach is followed to get the wrist trajectories, similar to gait analysis algorithms devel-

oped for estimating the stride length from ankle-mounted sensors [Werner et al., 2021]. However, the

uniqueness of this algorithm is that information from the wheelchair sensor is fused in the double

integration procedure to improve the estimations.
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Figure 4.2: Flowchart of the algorithm.

Sensor to Wheel Alignment and Path Mapping

First, the data of the wheel sensor is transformed into a coordinate system that has one axis aligned

with the wheeling axis. This is necessary because the sensor attached to the wheel is mounted to the

spokes, which are usually not perpendicular to the wheel axis. Hence, any rotation of the wheel does

not only induce an angular velocity around one but two axes. Here, this offset inclination angle is

simply estimated by the average proportion of the gyroscope signal around these two axes.

After transforming the wheel sensor data into a coordinate system that is aligned with the wheel axis,

the angular velocity around this wheel axis (ωz ) is multiplied by the known wheelchair radius to obtain

the wheeling velocity. Further, this velocity is integrated to acquire the distanced travelled. The yaw

angle is derived using the orientation estimation algorithm developed by Seel et al. [Seel and Ruppin,

2017], which fuses the gyroscope and accelerometer data using an analytical solution. Combining this

yaw angle and the distance travelled, the path of the wheelchair can be mapped. Note that this yaw

angle suffers with the magnetometer-free orientation estimation from drift, which is tolerable for short

measurements (few minutes), but should be considered for longer measurements.
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Figure 4.3: Example of the sensor-derived and ground truth initial (IC) and final (FC) contact
events and the corresponding sensor data. Acceleration phase is highlighted in grey.

Detection of Stroke and Wheel Contact Events

Individual strokes are identified using the angular velocity data of the axis parallel to the wheel axis be-

cause each push induces an increase in this angular velocity. This angular velocity was bandpass filtered

(Cut-off frequencies: 0.15-2Hz, 5thorder) to only include the increasing and decreasing trends, which

correspond to the push and recovery phases, respectively. Hence, individual strokes corresponded to

local peaks in this data. To robustify the local peak detection, a frequency analysis revealed the main

frequency components of this signal. The most prominent frequency within 0.5 to 2Hz, which equals a

normal wheeling cadence range, was chosen as an estimate for the peak distance. More specifically,

the peaks needed to have a minimum of half this average stroke duration in between each other to be

considered a stroke and a minimum peak prominence of 10°/s. The initial contact (IC) of the pushrim

was then identified as the local minimum before each accelerating phase. The end of the acceleration

phase was marked by the following local maximum. The final contact (FC) was identified by a local

peak in the angular velocity of the wrist sensor in between this acceleration phase. The sensor data

including the ground truth and sensor derived initial and final contact events are displayed in Figure

4.3.

Stroke Trajectory Estimation

The wrist trajectories have been derived using a common double integration approach with the unique-

ness of including information of the wheelchair sensor for drift correction. First, the accelerometer

data needed to be transformed into a fixed coordinate system to remove the gravity component of the

signal. This is necessary, because the accelerometer does not only measure movement acceleration,

but also earths gravity. With the quaternion derived from the orientation estimated by the wrist sensor

data [Seel and Ruppin, 2017], the acceleration could be transformed in a fixed coordinate system and

gravity could be subtracted from the vertical axis. Then this acceleration data has been segmented into

individual strokes using the time stamps of the initial contacts derived previously from the wheelchair

sensor data. The acceleration data was integrated once to obtain the wrist velocity. As any noise, e.g.

thermo-mechanical noise, of the sensor data results in a first order drift when being integrated, this
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drift has been corrected using a zero-velocity update and the information of the velocity in the driving

direction obtained from the wheelchair sensor data. Further, as the wrist sensor was most often not

aligned with the main movement direction, this main movement direction was determined using a

principal component analysis by an eigendecomposition of the covariance matrix of the estimated

wrist velocity in the horizontal plane. Then this wrist velocity was rotated around the vertical direction,

such that the forward direction was aligned with the main movement direction, which corresponds

to the direction of the eigenvector with the largest eigenvalue. Subsequently, the wrist velocity was

integrated to derive the wrist trajectory. Again, the drift resulting from also integrating sensor noise,

was removed. It was assumed that the displacement along the forward direction corresponds to the

distance travelled within that time span by the wheelchair. Further, as we were less interested in the

actual sensor trajectory, but more in the wheeling pattern cyclograms the endpoint displacement was

subtracted from this trajectory such that enclosed shapes with a start and endpoint at the origin have

been obtained. Further, the trajectories have been interpolated to 100 datapoints and averaged over all

strokes to obtain the mean wheeling pattern of this participant.

Extraction of Wheeling Metrics

Wheeling metrics could be extracted using the output of the algorithm. Temporal parameters, such

as the stride duration could be computed as the time between two consecutive initial contacts. The

push phase duration was derived as the time between the initial and following final contact. This push

phase was normalized to the stride duration to obtain the relative push phase in relation to the recovery

phase, when the hand is not in contact with the wheelchair rim. Further, spatial parameters such as the

distance per stroke or the velocity per stroke (as the distance or velocity travelled during the duration of

this stroke) could be derived. In addition, the push angle was computed by knowing that the distance

travelled during the push phase corresponds to the arc length. The turning rate was obtained from

the derivative of the wheelchair yaw angle. Further, the change in speed was quantified as the slope of

the linear fit on the wheeling velocity over the whole trial, normalized by the intercept. The wheeling

pattern consistency was determined by the angular component of coefficient of correspondence (ACC)

as described by Field-Fote el al. [Field-Fote and Tepavac, 2002], which ranges from 0% to 100% and

corresponds to no and perfect consistency, respectively. Further, the area enclosed in the wheeling

pattern shapes was derived.

4.3.4 Postprocessing of the Validation Data

The tri-axial force data recorded by the smartwheel was processed to obtain the ground truth IC and FC

time stamps for each stroke. The euclidian norm of the tri-axial force vector was computed, low-pass

filtered (cut-off frequency: 20Hz, 5th order) and downsampled to 100Hz. Values below 10N were set to

zero and determined the non-contact phase. The first resp. last value of such a non-contact phases

corresponded to the final and initial contact, respectively. Unreasonably short non-contact or contact

phases were removed, if they were less than 10% of the median stride duration long. The time difference

between the ground truth events and the sensor-derived events were computed. The ground truth wrist

trajectory was derived from the marker-based motion capture system. Here, the Processus Styloideus

Radialis, a bony landmark at the wrist, was extracted. This 3D wrist trajectory was computed with

reference to the wheelchair axis and segmented into individual strokes using the time stamps of the ICs

obtained from the instrumented wheel as described above. To obtain the wheeling patterns, the data of

each cycle was interpolated to 100 datapoints, the startpoint was set to the origin and enclosed shapes
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were obtained by subtracting the endpoint displacement in correspondence to the processing of the

sensor data. Further, the trajectories of all strokes of one participant were averaged to derive the mean

wheeling pattern.

4.3.5 Clustering of Wheeling Patterns

An unsupervised machine learning approach was chosen to identify groups within the SCI patients

with a similar wheeling pattern. The mean side view patterns of all measurements of all patients were

included. First, this 2D time series data was centered to have 0 mean and scaled to have unit variance.

This scaling prevented that the groups were not just grouped by the size of the shapes. Further, outlier

shapes were identified and removed before clustering as they tend to distort the clusters. Outliers

were detected by computing the distance matrix, which contains the pairwise distances between all

observations. Soft dynamic time warping (dtw) was chosen as a measure for the distance between two

time series [Cuturi and Blondel, 2017]. In comparison to the standard dtw this method is not invariant

to time shifts as it provides a weighted average similarity score across all alignment paths instead of

choosing just the single best path as done in a standard dtw. An observation was marked as an outlier,

when the mean distance to all other observation was higher than 1.5 times the standard deviation of

the mean distance of each shape to all other shapes. Then a k-means clustering was performed on the

remaining observations choosing the best out of 15 initializations. The k-means method partitioned

the observations into the cluster with the nearest distance to the cluster mean, using soft-dtw as a

distance measure. The number of clusters was varied from 3 to 10 and the best cluster number was

identified by the silhouette score, which ranges from -1 to 1 and describes how similar objects are to

their own cluster compared to the other clusters. A value close to 1 means that clusters are well apart

from each other and clearly distinguished. Further, typical wheeling metrics were compared between

the different clusters and the cluster composition in terms of demographics and clinical scores was

analyzed.

4.4 Results

4.4.1 Validation of IMU-derived Kinematics

The main parts of the presented algorithm were validated using force measurements and motions

capture data, which is widely accepted as the gold standard for a biomechanical analysis. More specifi-

cally, the detection of individual stroke and contact events were validated using force measurements

from an instrumented wheel. Force sensors precisely measure contact to the wheelchair rim, from

which the actual time stamps of the IC and FC could be derived. Further, marker-based motion capture

functioned as a reference for the validation of the wrist trajectories.

The algorithms performance to detect the individual strokes and wheel contact events was analyzed

for three participants wheeling under three different conditions. The difference between the strokes

and events derived from the sensors and from the gold standard is presented in Table 4.1. For the

three participants 9,1, and 0 strokes out of 154, 140, and 75 were not identified by the algorithm. This

corresponds to around 2% of missing strokes. The error for the sensor-based IC detection was -6.1ms,

when averaged over the complete session of all three participants. The IC error of the slope condition

was higher than for the slow and fast speed condition for all three participants. An average error of

11.7ms was obtained for the FC detection for the complete session, when being averaged over all three
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participants. Similar to the IC detection, the error was highest for the slope condition.

Table 4.1: The mean error ± standard deviation of the sensor-derived initial (IC) and final (FC)
contact to the wheel with respect to the events derived from an instrumented wheel. The
values are reported for three participants wheeling at slow speed (2km/h), fast speed (4km/h),
and with a slope (6% at 2km/h).

Condition complete session slow fast slope

IC [ms]

Participant 1 -18.5 ± 23.1 -9.0 ±22.9 -10.1 ±16.0 -37.5±19.1
Participant 2 4.4±13.3 13.5±7.9 10.1±6.5 -9.6±9.8
Participant 3 -4.3±14.5 7.2±16.6 0.4±12.8 -11.3±11.7
Mean -6.1 3.9 0.1 -19.5

FC [ms]

Participant 1 8.3±19.3 -5.7±9.9 -2.7±5.7 32.9±7.4
Participant 2 21.3±13.8 18.2±11.2 8.6±5.6 33.7±6.8
Participant 3 5.5±18.3 -6.1±18.1 -6.2±7.6 23.0±12.0
Mean 11.7 2.1 -0.1 29.9

Further, the wheeling patterns derived from the IMUs was compared to the motion capture ground

truth data and are displayed in Figure 4.4. Three participants with different wheeling patterns were

selected to test the ability of the algorithm to capture these different shapes. For both, the side view

and top view, similar shapes were found when comparing the two different systems.
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4.4.2 Application to Clinical Data

An unsupervised time series clustering of the wheeling patterns was performed on the dataset of all

trials of the 41 participants with SCI. In total, this dataset included 73 observations as a subset of

the participants was measured more than once. The time series clustering resulted in four distinct

groups as shown in Figure 4.5. The number of clusters was chosen, because 4 clusters had the second

best silhouette score of 0.36. 7 clusters gave a slightly better silhouette score of 0.37. Since for the 7

clusters we observed similar shapes that were just partitioned into subgroups and the silhouette score

was only marginally better, we decided to choose 4 as the best cluster number. The complete list of

silhouette scores for the corresponding number of clusters can be found in the Appendix in Table A.4.

13 observations were grouped to cluster 1 showing an overall over-rim wheeling pattern similar to a

SLOP pattern. Cluster 2, showing an ARC wheeling pattern, was the largest cluster with 32 observations.

Cluster 3 included 9 observations, which had a SC wheeling pattern and cluster 4 had 11 observations,

showing a DLOP pattern. 8 observations were identified as outliers and their shapes are displayed in

Figure A.1 in the Appendix. For the following analysis they were grouped together as cluster 0.

The cluster numbers (1 to 4) were selected based on the average wheeling speed of the cluster, which

is displayed together with other wheeling parameters in Figure 4.6. It was found that there was a

difference in average wheeling speed between the clusters ranging from around 1m/s for cluster 1

to around 1.7m/s for cluster 4. Interestingly, this difference in speed was less due to a difference in

stroke duration (determines the cadence) but originated more from the difference in stroke distance.

Further, for the ARC pattern (cluster 2) a wider range of wheeling velocity was found than in cluster 1,

3, and 4. The velocity range of the outlier cluster (cluster 0) was even larger and included the slowest

and fastest wheelers. The push ration was around 35% for all clusters, only the SC pattern (cluster 3)

showed a lower push ratio of around 30%. Cluster 1 to 4 showed a positive change of speed over the

whole wheeling trial. Only a few observations in cluster 0 showed a negative change in speed. The ARC

pattern (cluster 2) had the highest cyclogram consistency and together with the SLOP pattern (cluster

1) the lowest cyclogram area. The participants with the DLOP pattern (cluster 4) wheeled with a wide

range in cyclogram consistency, but had together with the participants with a SC wheeling pattern

the highest cyclogram area. The push angle varied between the different wheeling patterns the SLOP

pattern and the ARC pattern had overall lower push angles of below 90° than the outliers and the other

two patterns. The maximum turning rate was similar to the distribution of the velocity over the clusters.

A subset of 24 participants were measured more than once (19 two times, 3 three times, 2 four times). 17

out of the 24 participants (71%) were clustered always to the same group. Considering only the first trial

of each participants the cluster composition is summarized in table 4.2. The percentage of tetraplegic

participants was rather evenly distributed over the clusters. The cluster with the SC pattern (cluster 3)

and the DLOP-like pattern (cluster 4) included both more than 80% of patients with a traumatic injury.

The percentage of traumatic injuries in the clusters with the ARC pattern (cluster 1) and the SLOP-like

pattern (cluster 1) was around 40%. Cluster 1 (SLOP) had the highest and cluster 4 (DLOP) the lowest

percentage of acute patients. The UEMS was fairly similar between the 4 clusters, but the SCIM and

the SCIM Mobility differed: the cluster with the DLOP-like pattern (cluster 4) had overall higher scores

than the other clusters. This cluster also had together with the outlier cluster (cluster 0) the highest

percentage of experienced wheelers of above 60%. Cluster 1 (SLOP) and 2 (ARC) only had around 15%

of experienced wheelers.
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Figure 4.5: Side view wheeling patterns of the four clusters (A-D). Wheeling patterns of all
participants belonging to that cluster and the cluster centroids (with highlighted push phase)
are displayed.

4.5 Discussion

In this work, we presented an algorithm that is able to extract wheeling propulsion patterns besides

other wheeling metrics from a sparse wearable inertial sensor setup. The performance of the algorithm

was validated using an instrumented wheel and a marker-based motion capture system, which is

widely accepted in the field as the gold standard for biomechanical analysis. Further, the algorithm was

applied to data of the target population. More specifically, unsupervised machine learning was applied

to the data of wheelchair-bound participants with a spinal cord injury, wheeling a distance of 160m

at a comfortable speed. The clustering procedure resulted in 4 distinct wheeling patterns. How these

wheeling pattern groups differ in other sensor-derived wheeling metrics was investigated and their

composition in terms of clinical scores was studied.

The validation of the algorithm with a gold standard demonstrated overall good performance. Regarding
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Figure 4.6: Boxplots of sensor-derived wheeling metrics (A-I) for the four clusters and the
outlier cluster (cluster 0).

the validation of the IC and FC detection, a time difference of -6.1ms and 11.7ms, respectively, was

found between the sensor derived events and the ground truth events derived from the instrumented

wheel. Since this dataset was recorded at 100Hz, this means that the detection of the events was on

average only 1 sample (10ms) apart. Lewis et al. [Lewis et al., 2018] obtained a mean absolute error

of 13ms for estimating the stroke duration (from IC to IC) for their algorithm, which is comparable to

the results presented in this study. However, with their IMU setup, one sensor attached to each wheel,

and for their cohort of wheelchair athletes, they were unable to robustly capture the final contact. The

presented algorithm detected 98% of all strokes. Comparing this to consumer-level activity monitors,

Kressler et al. [Kressler et al., 2018] found on average a relative error 3-6% for counting strokes at

higher wheeling frequencies, which were comparable to the dominating cadences in our dataset. The

reconstructed wheeling propulsion patterns were of very similar shape to the pattern derived from

motion capture data, even though the three participants had different wheeling propulsion techniques.

Applying the algorithm to an extensive dataset of wheelchair bound individuals with a SCI, four

dominating wheeling propulsion patterns were identified when using unsupervised machine learning.

These patterns are similar to what has been found previously in literature [Boninger et al., 2002,

Kwarciak et al., 2012, Kwarciak et al., 2009]: the ARC, SC, SLOP, and DLOP patterns. The ARC pattern

was the most dominant wheeling pattern in this dataset. The propulsion pattern clusters differed not

only in the wheeling pattern, but also in other wheeling metrics, e.g. speed, cyclogram area, push
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Table 4.2: Composition of the clusters considering only the first trial of each participant.
Abbreviations: tetra.: tetraplegic; traum.: traumatic; UEMS: Upper Extremity Motor Score;
SCIM: Spinal Cord Independence Measure; exp.: experienced

Cluster n tetra. traum. acute UEMS SCIM SCIM exp.
[%] [%] [%] Mobility [%]

0 3 33.3 66.7 66.7 42 ± 13.9 47.3 ± 14.5 6.3 ± 2.3 66.7
1 7 14.3 42.9 85.7 46.7 ± 7.8 48.9 ± 22.5 8.7 ± 7.7 14.3
2 18 22.2 44.4 77.8 46.9 ± 7.8 53.8 ± 21.4 7.7 ± 4 16.7
3 5 20 80 60 43.6 ± 14.3 52.5 ± 24.3 6.2 ± 1.8 40
4 8 25 87.5 25 48.8 ± 2.4 74.4 ± 14.8 13.9 ± 5.8 62.5

angle, or stroke duration. Since a lower cadence [Lenton et al., 2008] and and a higher push ratio [Groot

et al., 2002] were found to be more efficient, this study further confirms that the propulsion technique

is linked to wheeling efficiency. The highest percentage of experienced wheelers was found in the

DLOP pattern cluster. Kwarciak et al. [Kwarciak et al., 2009] recommend the SC and DLOP pattern

due to lower initial contact braking moments and power loss. Hence, the experienced wheelers in

this study did chose a more efficient and less harmful wheeling pattern or were more trained to do

so. The "weakest" wheelers showed the SLOP-like pattern. Moreover, 71% of the participants that

were measured more than once were always clustered to the same cluster. This demonstrates that

participants stick in general to their specific wheeling pattern over time.

The main limitation of this study is that the algorithm was only validated for a small sample size of three

participants and not in the target population but in able-bodied individuals. However, the selection of

participants showed three different wheeling patterns and the participants were wheeling with different

speeds to test the algorithm for multiple conditions and different patterns. Hence, we believe that the

results would be similar for the target cohort.

4.6 Conclusion

With the presented algorithm, extracting wheeling propulsion patterns and wheeling metrics from

a sparse sensor setup becomes feasible with comparably reliable results to complex motion capture

systems. The application of this algorithm to an extensive dataset of wheelchair-bound individuals

exhibited distinct wheeling propulsion patterns and highlighted their differences in other wheeling

metrics. In general, more experienced wheelers chose a more efficient wheeling pattern. The method

enables future research on how wheelchair biomechanics is related to overuse injuries where the

proposed setup could be used not only for short measurements, but also to analyze wheeling in

real-world environments by providing insights into the actual wheeling behavior. Furthermore, this

setup can be applied in a clinical setting to provide objective feedback on the wheeling performance.

Therapists and clinicians could train more efficient wheeling propulsion techniques, test different

wheeling positions or wheelchair products and assess the effect on the wheeling propulsion technique

objectively. Hence, this study provides an objective, unobtrusive and cost-effective solution, which

makes a wheeling biomechanical analysis broadly accessible and possible in various environments

with the overall goal to improve wheeling efficiency and reduce overuse injuries for the individual.
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5.1 Abstract

Background Neurorehabilitation is progressively shifting from purely in-clinic treatment to therapy

that is provided in both clinical and home-based settings. This transition generates a pressing need

for assessments that can be performed across the entire continuum of care, a need that might be

accommodated by application of wearable sensors. A first step toward ubiquitous assessments is to

augment validated and well-understood standard clinical tests. This route has been pursued for the

assessment of motor functioning, which in clinical research and practice is observation-based and

requires specially trained personnel.

Methods In our study, 21 patients performed movement tasks of the Action Research Arm Test (ARAT),

one of the most widely used clinical tests of upper limb motor functioning, while trained evaluators

scored each task on pre-defined criteria. We collected data with just two wrist-worn inertial sensors to

guarantee applicability across the continuum of care and used machine learning algorithms to estimate

the ARAT task scores from sensor-derived features.

Results Tasks scores were classified with approximately 80% accuracy. Linear regression between

summed clinical task scores (across all tasks per patient) and estimates of sum task scores yielded

a good fit (R2 = 0.93; range reported in previous studies: 0.61 to 0.97). Estimates of the sum scores

showed a mean absolute error of 2.9 points, 5.1% of the total score, which is smaller than the minimally

detectable change and minimally clinically important difference of the ARAT when rated by a trained

evaluator.

Conclusion We conclude that it is feasible to obtain accurate estimates of ARAT scores with just two

wrist worn sensors. The approach enables administration of the ARAT in an objective, minimally

supervised or remote fashion and provides the basis for a widespread use of wearable sensors in

neurorehabilitation.
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5.2 Introduction

Neurological health conditions, such as stroke [Lindsay et al., 2019], traumatic brain injury [Dewan

et al., 2019], multiple sclerosis, spinal cord injury, and Parkinson’s disease [Feigin et al., 2017] are major

causes of disability, often leading to limitations in motor functioning of the upper limbs [Hendricks

et al., 2002, Katz et al., 1998, Kister et al., 2013, Broeks et al., 1999, Kwakkel et al., 2003]. In accordance

with the International Classification of Functioning, Disability, and Health (ICF), motor functioning

is typically analyzed at different levels of granularity, at the level of body joints and segments (ICF

function level) and at the level of the execution of movement tasks (ICF activity level) [WHO, 2001].

The ICF further distinguishes motor functioning observed in controlled settings and in the person’s

natural/home environment (ICF capacity and performance). The measurement of motor functioning is

a vital part of both research and practice in neurorehabilitation as it provides the basis for the evaluation

of new rehabilitation programs [Brunner et al., 2017], new medications [Samuel et al., 2017], prediction

of recovery [Wolf et al., 2021] as well as the design of patient-specific interventions.

The current gold standards for the measurement of motor functioning are mainly based on stan-

dardized clinical tests [Pohl et al., 2020, Prange-Lasonder et al., 2021, Kwakkel et al., 2017], in which

patients perform a series of pre-defined movements in standardized conditions and experts score

each movement on pre-defined criteria, such as task completion, task duration and kinematic and

kinetic characteristics [Demers and Levin, 2017]. The tests must satisfy specific requirements in terms

of both psychometric properties (validity, reliability, responsiveness) [Murphy et al., 2015] and clinical

applicability (time and ease of training, administration, scoring, interpretation, cost) [Prange-Lasonder

et al., 2021].

An emerging requirement regarding clinical applicability is that the tests should be suitable for the

entire rehabilitation process from in-clinic to ambulant and home settings (further referred to as

continuum of care). This is desirable since neurorehabilitation is expected to shift to patients’ homes

due to capacity limitations in healthcare and advances in home-based rehabilitation technologies

[Lambercy et al., 2021]. However, the need for a trained evaluator to conduct a clinical test conflicts

with the goal of ubiquitous measurement protocols.

Another requirement is that assessments should take into account movement quality [Kwakkel et al.,

2017]. Movement quality refers to the degree to which patients’ motor execution of a task resembles

that of normal individuals [Kwakkel et al., 2019]. High movement quality is associated to the restitution

of pre-morbid movement execution patterns, whereas low movement quality is linked to alternative

(compensatory) movement patterns [Demers and Levin, 2017, Jones, 2017]. Specifically, task execution

of patients with neurological disorders is typically characterized by slow and jerky movements of

the arm end point, abnormal grasping, reduced elbow extension, and increased shoulder abduction

compared to age-matched healthy individuals [Saes et al., 2022].

Ideally, movement quality should be quantified with kinematic measures [Saes et al., 2022]. However,

the identification of kinematic measures of arm movement quality is challenging because many

kinematic parameters exist [Schwarz et al., 2019], their relevance depends on the specific movement

task [Schwarz et al., 2019], selected kinematic measures require extensive psychometric validation

[Murphy et al., 2011, Murphy et al., 2012, Thrane et al., 2020, Frykberg et al., 2021], and the measurement

systems are usually stationary, expensive, and require expert users [Murphy et al., 2018].

Due to the difficulties with establishing kinematic measures of movement quality studies started to

explore an intermediate goal. Supervised machine learning algorithms and low-cost sensor data were
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used to estimate clinical test scores (for reviews see [Simbaña et al., 2019, Kim et al., 2021, Boukhennoufa

et al., 2022]). This approach has the advantages that the clinical tests have established psychometric

properties [Kim et al., 2021], that clinical scores are easy to interpret [Kim et al., 2021] and that

wearable movement sensors can be used which are low cost and enable data collection across the

entire continuum of care [Simbaña et al., 2019, Kim et al., 2021, Boukhennoufa et al., 2022]. Tests of

ICF activity capacity assess limitations in the accomplishment of tasks that are relevant for activities of

daily living [Prange-Lasonder et al., 2021]. Importantly, clinical scores of ICF activity capacity often

contain information about movement quality since evaluators visually examine movement quality to

determine the test scores [Sapienza et al., 2017, Adans-Dester et al., 2020, Yozbatiran et al., 2008].

One of the most prominent clinical test of upper-limb ICF activity capacity is the ARAT [Lyle, 1981,

Yozbatiran et al., 2008], which provides a combined score comprising the aspects of movement speed,

successful task completion, and hand and arm movement quality [Yozbatiran et al., 2008]. In the

ARAT, a patient performs several tasks that require combined reaching and grasping. Performance

in each task is rated on an ordinal scale depending on task duration and observed movement quality

characteristics (e.g., smoothness of the arm endpoint, abnormal grasp, compensatory movements)

[Lyle, 1981, Yozbatiran et al., 2008]. Individual task scores are then summed up to a total score [Lyle, 1981,

Yozbatiran et al., 2008]. The ARAT is the most frequently used assessment of upper-limb functioning in

clinical studies [Murphy et al., 2015], as it is used in a broad range of neurological health conditions

such as stroke, traumatic brain injury, multiple sclerosis [Prange-Lasonder et al., 2021] and Parkinson’s

Disease [Song, 2012], has excellent psychometric properties [Pike et al., 2018], is widely accepted and

recommended by experts [Pohl et al., 2020, Prange-Lasonder et al., 2021, Kwakkel et al., 2017], and is

a significant predictor of motor recovery in stroke [Wolf et al., 2021]. Despite the importance of the

ARAT, however, wearable sensor data were never utilized to estimate the test outcome, to the best of

our knowledge [Simbaña et al., 2019, Kim et al., 2021, Boukhennoufa et al., 2022].

In the current study, we collected data of stroke patients performing the ARAT while two inertial sensors

were attached to their wrist. ARAT task and total scores were estimated using supervised machine

learning. We hypothesize that with this approach it is feasible to estimate ARAT scores with an error

that is similar or smaller than clinically relevant changes, namely, the minimally detectable change

[Simpson and Eng, 2013] and the minimal clinically important difference of the ARAT task and total

scores [Lee et al., 2001]. Such sensor-based estimates of clinical scores may pave the way for automated,

expert-independent administration. In addition, the simple setup of using just two wearable sensors

enables location independent measurements with the potential to be used across the whole continuum

of care.

5.3 Methods

The current study was a secondary analysis of data collected under a randomized-controlled trial [[Steitz

et al., 2022]; Kantonale Ethikkommission Zentralschweiz, approval number: BASEC:2017-00199] and

during an evaluation of sensor types in clinical routine (Kantonale Ethikkommsion Zentralschweiz,

request number: Req-2020-00995). Both studies adhered to the Declaration of Helsinki. Participants

were recruited at the University Hospital Zurich and the Center for Neurology and Rehabilitation

cereneo, and gave informed consent prior to both studies.
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5.3.1 Participants

Participants were included if they were (i) 18 years of age or older, (ii) in a sub-acute stage of stroke

(3-90 days after symptom onset) with lateral ischemia (or hemorrhage) as confirmed by brain imaging

and (iii) showed subsequent impairment of arm function with a Fugl-Meyer Assessment for the Upper

Extremities (FMA-UE) score between 15 to 59 points. Participants were excluded in case of (i) other

neurological disorders that might result in dementia, cognitive dysfunction or central motor symptoms,

(ii) severe sensory aphasia, (iii) preexisting arm paresis, (iv) intake of sedatives or neuroleptics, or (v)

relevant hearing.

Data of 21 participants who satisfied these criteria were acquired. The age of the participants was 68 +/-

10 years (mean +/- standard deviation), out of which 5 were female and 20 right-handed. All patients

were in a subacute stroke stage at the time of the first assessment, with symptom onset 38 +/- 17 days

before the assessment. All patients had lateralized ischemia or hemorrhage as confirmed by brain

imaging, and suffered subsequent impairment of the arm function, i.e., the FMA-UE score was 33 +/-

15 points. The median of the total clinical ARAT score of the 21 patients was 35.5 (interquartile-range:

19.5-47.3) and 57 (interquartile-range: 45-57) for the more and less affected sides, respectively. The

study population thus covered a broad range of patients with different upper extremity motor function.

5.3.2 Apparatus, Instruments, and Procedures

The ARAT was administered twice per participant, at baseline and 1-4 weeks later. The ARAT comprises

of 19 movement tasks that are grouped into 4 domains (grasp, grip, pinch and gross movements). Each

task is performed with the less impaired arm first and the more impaired arm second, and assigned an

ordinal rating with a range from 0 to 3. The ARAT was conducted with standardized materials (Figure

5.1A) and procedure [Yozbatiran et al., 2008], with one exception: In the standard procedure, subjects

make an attempt on the first, most difficult task in each domain, and, in case of normal functioning,

skip the remaining, easier tasks of the domain. In this study, however, all task were administered to

maximize the data obtained from each participant. The performance of each movement of each patient

has been assessed by one of two experienced evaluators, resulting in a maximum achievable total score

of 57 per arm and per test. Since the ARAT is highly standardized and has high inter-rater and test-retest

reliabilities (ICC < 0.98)[Lee et al., 2001], we believe that the selection of the evaluators does not affect

the rating results.

During the assessment, wearable inertial sensors (ZurichMOVE, Switzerland) were tightly attached to

each wrist with custom-made flexible straps as shown in Figure 5.1B. The main components of the

sensor modules are a tri-axis accelerometer, gyroscope and magnetometer, measuring at a sampling

frequency of 50Hz, which is sufficient given that there was no aim to reconstruct the actual movement

trajectories. The magnetometer data was excluded from the analysis, because magnetic fields are often

distorted indoors, and thus the magnetometer data is considered to be unreliable. Furthermore, the

timestamp of the beginning and end of each task was recorded.

5.3.3 Data Preprocessing and Analysis

Since accelerometers measure both the movement acceleration and gravity, the gravitational compo-

nent has to be subtracted from the acceleration signal. For this, the orientation of the sensors in space

was obtained by using the sensor fusion algorithm developed by Seel et al. [Seel and Ruppin, 2017].
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A B

Figure 5.1: (A) A participant performing ARAT task 1, which is part of the grasp domain. The
task is to grasp a wooden block (10 cm in size) at the start position (blue patch on the table)
and to put it on the shelf in front of the subject. (B) Close-up of the inertial sensor attached to
the wrist.

This algorithm is based on an analytical solution to remove the drift in the inclination angle with the

information of the direction of gravity from the accelerometer. Based on the sensor orientation the

acceleration data could be transformed from the moving coordinate system into a coordinate system

fixed in space. In this fixed coordinate system, the gravitational component is pointing in the vertical

direction and can thus be easily removed by subtracting g from this axis. This procedure resulted in the

pure movement acceleration data.

The tri-axial acceleration and angular velocity data was then segmented according to the recorded start

and stop times of each task. This resulted in 6D time series sequences of different lengths, depending

on how long the patient needed to perform the given task. Short sequences lasted around 1-2s, while

the maximum sequence length was limited to 60s (as per ARAT definition if the patient was unable to

complete the task within this time). In rare cases (<6.7%), data were missing due to technical problems

or because the patient did not attempt to perform the task. In such cases, the patient received a score

of 0 for this task, and a sequence of non-moving data of 10s from this patient was used in order to have

complete data sets.

5.3.4 Feature Extraction and Classification

The machine learning approach used in this study required features for the classification. Hence,

descriptive features were extracted from each time series sequence. The selection of features was based

on the recommendations of Suto et al. [Suto et al., 2017] for human activity recognition. In order to

characterize the sequences of each task in the time domain, the following features were computed

for each axis of the acceleration and angular velocity time series data: mean, standard deviation,

minimum (defined as the 5th percentile), maximum (95th percentile), range (minimum to maximum),

mean absolute deviation, interquartile range (25th to 75th percentile), upper quartile (75th percentile),

zero-crossing rate, and kurtosis. To characterize the frequency spectrum of the data, a fast Fourier

transform was applied to the vector-wise norm of acceleration and angular velocity time series data of
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each task. The following features were extracted: maximum frequency component, spectral energy of

different frequency ranges (0 to 5Hz, 5 to 10Hz, 10 to 15Hz, 15 to 20 Hz, and 20 to 25Hz), and spectral

centroid. This resulted in altogether 74 features for each task: 60 features characterizing the movement

in the time domain and 14 features characterizing the movement in the frequency domain.

The model received these sensor-derived features as an input to estimate the 4-point scale ARAT task

scores. All features were standardized by centering them around the mean and scaling them to have

unit variance in order to provide features of similar magnitude to the classifier. An ordinal classifier as

described by Frank et al. [Frank and Hall, 2001] was chosen as a model to consider the ordinal ranking

of the 4 ARAT task scores. A logistic regression was then selected as classifier, and regularization was

used to prevent overfitting on the training data. This ordinal logistic regression classifier was trained

individually for each of the 4 ARAT domains, because the movements within these domains differed

significantly. The grasp and pinch domains consist of pick-and-place tasks that differ in terms of

grasping type. Tasks of the grip domain on the other hand resembles daily life activities, e.g. pouring

water from a bottle to a glass, while the gross domain includes shoulder and arm movements across a

wide workspace. The separation into the four domains fostered each classifier to differentiate between

different executions of the same movement task as opposed to training a single classifier on all tasks,

which would have needed to handle the high variability introduced by the different nature of the

movement tasks.

The less affected arm achieved the maximal score in many of the subtasks , which resulted in a highly

unbalanced data set. To counteract this, the training data set has been balanced by upsampling the

number of rare observations using the synthetic minority over-sampling technique (SMOTE) [Chawla

et al., 2002]. Due to the small sample size leave-one-subject-out cross-validation procedure was used

to test the classifiers on unknown data. More specifically, the upsampled data of all subjects and all

sessions except for the data of one subject and both sessions (if available) was used to train the model,

which was then tested on the original (non upsampled) data of the remaining subject. This process was

repeated until the model was tested on the data of all subjects. A flowchart of the data processing and

classification workflow is displayed in Figure 5.2.

Figure 5.2: Flow chart of the framework to estimate task-wise ARAT scores from inertial sensors
attached to the wrist.

5.3.5 Evaluation of the Model

The performance of the classifiers for each domain has been estimated based on accuracy, precision,

and recall computed from the clinically assessed (further referred to as clinical) ARAT task scores and
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the estimated ARAT task scores. These metrics were weighted by the distribution of the samples within

the classes to account for class imbalances. For each arm, the estimated task-level ARAT scores were

summed up to yield an estimate of the total ARAT score. Linear regression was used to study the

relationship between the clinical and the estimated total ARAT scores. Furthermore, the mean error

and the root mean squared error (RMSE) were computed as the average and the root mean squared of

the differences between the estimated and the clinical ARAT scores, respectively.

5.4 Results

5.4.1 Estimation of the ARAT task scores

The measurement of the 21 patients resulted in 1366 observations altogether (2 observations had to be

exuded) that were divided into the 4 domains to train the ordinal classifiers. No patient received a score

0 in any of the tasks of the gross domain. Hence, the gross classifier was only trained on 3 classes. For

all domains, the classifiers identified the task scores of 3 well. However, the classifiers had difficulties

discriminating score 1 from 0 and 2, which were also the cases with fewer number of observations in

comparison to the other cases. The normalized confusion metrics and number of observations per

class are shown in Figure 5.3.
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Figure 5.3: Normalized confusion matrices and number of observations per class (support) for
the four domains: grasp (A), grip (B), pinch (C), and gross (D).
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The 4 ordinal classifiers estimated the ARAT task scores from the sensor-based features with a weighted

accuracy ranging from 76% (grasp) to 81% (pinch) as evaluated by the leave-one-subject-out cross-

validation and summarized in Table 5.1. For the pinch and gross domains, weighted accuracy, precision,

and recall values of above 0.8 were obtained. The classifiers performed slightly worse for the grasp and

grip domains, where values below 0.8 were obtained for accuracy, precision, and recall. Note that the

unbalanced nature of the data affects the weighted accuracies. More specifically, score 3, which was

classified with high accuracy, has a strong influence on the overall accuracy as it was the most frequent

observation, while the other, more infrequent scores, which were classified with low accuracy, have less

impact.

Table 5.1: Overview of performance of the model predicting the ARAT task scores in the four
domains: weighted accuracy, precision, and recall

Domain Accuracy Precision Recall

Grasp 0.75 0.76 0.75
Grip 0.76 0.79 0.76
Pinch 0.81 0.82 0.81
Gross 0.80 0.81 0.80

5.4.2 Estimation of the total ARAT score

The total ARAT score, obtained by a summation of the estimated ARAT tasks scores, showed a mean

error of 0.5, a mean absolute error of 2.9 points with a maximal error of 12 points. A RMSE of 4.7 was

obtained. Relative to the maximum achievable total score of 57, this is a relative error of 8.2%. Higher

estimation errors were obtained for the more affected side in comparison to the less affected side

as depicted in Figure 5.4A. A linear regression between the clinical and estimated total ARAT scores

resulted in a good fit (R2 = 0.93) as plotted in Figure 5.4B, close to the ideal curve (y=x).

5.5 Discussion

The objective of this work was to determine whether a simple and fast setup of wearable sensors is

sufficient to estimate clinical ARAT scores given by a trained evaluator. Successful estimation of ARAT

is a first step toward evaluator-free measurement of ICF activity capacity and upper limb movement

quality. For this purpose, data of 21 patients performing the standardized ARAT assessment while

wearing two wrist-worn inertial sensors was recorded. By applying machine learning techniques to

the time series sensor data, ARAT scores could be estimated at the task level. More specifically, ordinal

classifiers were trained on the balanced observations of each domain, and the performance of the

classifiers was evaluated by cross-validation using typical machine learning metrics. In addition, the

estimated total score, which was obtained by the summation of all the task scores, was compared to

the clinical total score.

Overall, the weighted averages of the classification accuracies of the task scores were around 80% for

all ARAT domains, ranging from 32 to 91% for the individual classes within a domain. Differences in

performance of the classifiers might have several reasons. First, the domains differ in the homogeneity
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Figure 5.4: (A) Box plots showing the estimation error of the total ARAT scores for the more
and less affected sides. (B) Linear regression (blue line) between the clinical and estimated
total ARAT scores. The dashed line depicts the ideal case of y=x.

of the movements within the respective sets of tasks. In particular, the tasks in the grip domain require

relatively dissimilar movements and, hence, the classifier had more difficulties to distinguish between

different movement qualities. For example, one task is to pour water from one glass to another, whereas

another task is to grasp a washer, to transfer it forward and to put it over a bolt. In contrast, the

tasks in the pinch domain afford relatively similar movements, as all tasks consist of pick-and-place

actions, where the main difference only lies in the tested fingers. Consequently, better classification

performance was observed for the pinch domain. Second, the distributions of observations across the

classes (i.e., the test scores) showed different degrees of imbalance between the domains. For example,

the distribution of observations in the pinch domain was relatively well balanced and, accordingly,

relatively high classification performance was observed. Conversely, in the remaining domains the

distribution of observations was skewed even more toward higher test scores. This issue was addressed

with the SMOTE oversampling technique. But certainly synthetically generated observations cannot

substitute actual observations and, consequently, we observed lower classification performance in

these domains. Third, in the gross movement domain we did not obtain any observation of score 0.

Hence, for this domain the classifier only needed to be trained on 3 classes, which explains the rather

good performance of this classifier compared to the classifiers of the other domains. Furthermore,

classification accuracies differed between the task score levels. Specifically, for the grasp, grip, and

pinch domain, the classifiers had difficulties to discriminate failure to complete the task even partially

(score 0) from a partial completion (score 1), and a partial completion (score 1) from a completion of

the task with great difficulty (score 2). An explanation might be that the extracted features captured this

information only partially. The results suggest that the differences in wrist movements for these scores

are minimal, and additional sensors, e.g. attached to the hand, could be beneficial to better identify the

completeness of the task. In addition, high inter-subject variability in execution of the tasks (probably

due to the different sensorimotor impairments of this patient population) and few observations of

score 1 might have prevented more accurate identification of this score.

Estimates of the total ARAT score showed a mean absolute error of 2.9 points of the estimated total

ARAT score as compared to the clinical total score. This error is below the minimally detectable change
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(MDC: 3.5 points; [Simpson and Eng, 2013]) achieved by trained observers and our maximal error of 12

points is also below the minimal clinically important difference of ARAT found in the literature (MCID:

12-17 points; [Lee et al., 2001]). The good fit of the linear regression between the estimated and clinical

ARAT total scores (R2 = 0.93) suggests that our approach is suitable to generate accurate estimates of

the ARAT total scores. Consequently, our method has an accuracy of clinical relevance and is precise

enough to detect clinically important changes in the ARAT. These good results at the sum score level

suggest that errors on the tasks level might have averaged out.

Using only wrist worn sensors, one might expect inferior results, as wrist worn sensors neither directly

measure movements of the elbow joint or trunk which are highly correlated with the ARAT scores

[Murphy et al., 2012], nor do they capture finger and hand movements which are visually examined by

experts when rating the ARAT performance. However, wrist worn sensors directly capture wrist motion

which is linked to movement quality aspects such as the speed and smoothness of arm movements

[Kwakkel et al., 2019]. These kinematic variables are known to be correlated with the ARAT scores

[Carpinella et al., 2014, Repnik et al., 2018], which explains the fact that we nevertheless achieved good

classification results. Additionally, it is possible that wrist-worn sensors indirectly capture motion of

other joints and segments as well and that this information is represented in the selected features we

used to estimate the ARAT scores. However, this statement remains speculative and further research

would be required to systematically investigate how the number and placement of the sensor units, as

well as the direct and indirect measurement of movements, contribute to the accuracy of clinical scores

estimations. This question has never been addressed so far, neither in studies that estimated different

clinical scores with larger numbers of sensors [Adans-Dester et al., 2020, Patel et al., 2010], nor in reviews

of clinical assessments with wearable sensors [Simbaña et al., 2019, Kim et al., 2021, Boukhennoufa

et al., 2022].

Since no previous study estimated ARAT scores from wearable sensors we compare our results to

studies that either used different motion sensing techniques to estimate ARAT scores, or studies that

used wearable sensors and estimated scores of different clinical tests of ICF activity capacity. For these

studies, we inspected coefficients of determination for the relationship between clinical and estimated

total scores and (when reported) the estimation error for the difference between clinical and estimated

total scores. The results of our study fall in the range of previously achieved results. Alt Murphy et al.

[Murphy et al., 2012] predicted total ARAT scores using kinematic data from marker-based motion

capture and observed moderately strong association between clinical and estimated total scores (R2 =

0.67). Patients performed a single 3D reaching task and a pre-selected set of movement features were

calculated. Kinematic features included: smoothness of the arm endpoint, total movement time, trunk

displacement and peak angular velocity of the elbow. The ARAT scores of the patients were obtained in

a separate session, then a regression model predicted the total ARAT scores from the kinematic metrics.

Olesh et al. [Olesh et al., 2014] estimated scores of the FMA-UE using kinematic data from a low-cost

depth sensing camera. Clinical and estimated total FMA-UE scores showed strong association and

small estimation errors (R2 = 0.86, RMSE = 7.7%). The FMA-UE is a clinical test of ICF function capacity

and is intended to assesses more fine-grained movements than the ARAT, but the scale was applied to a

subset of movement tasks of the FMA-UE and the ARAT gross movement domain, which makes these

results comparable to ours.

Other studies used wearable sensors but estimated different clinical test scales at the ICF activity

capacity level. Previous studies estimated the Functional Ability Scale (FAS, which is a subscale of the

Wolf Motor Function Test) based on data collected during the execution of a subset of the FAS tasks

[Patel et al., 2010, Sapienza et al., 2017, Adans-Dester et al., 2020], using two (on wrist and sternum)
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or six sensors (distributed over fingers, forearm, upper arm and sternum). R2 ranged from 0.79 to

0.97 and RMSE from 2.9% to 7.6%. Other studies estimated the Chedoke Arm and Hand Activity

Inventory (CAHAI) based on data collected in free-living settings with two wrist worn sensors [Chen

et al., 2020, Tang et al., 2020], with R2 ranging from 0.61 to 0.92, and RMSE from 3.1% to 12.0%.

Compared to these results, our approach falls in the same range with the advantage of using just two

wrist worn sensors.

One strength of this study is the minimalistic sensor setup, which minimizes costs, setup time and

device obtrusion, all of which are barriers to the wide spread use of kinematic assessments of motor

functioning [Saes et al., 2022]. The hardware costs of commercially available inertial sensors, approxi-

mately $50 per sensor unit, are relatively low as compared to those of optoelectrical camera systems,

approximately $10’000 per system, which are the current gold-standard for clinical motion analysis.

Additionally, the same set up is frequently used to measure other aspects of motor functioning [Sim-

baña et al., 2019, Kim et al., 2021, Boukhennoufa et al., 2022]. For example, many studies collected data

during activities of daily living or free-living settings and aimed to develop new measures of ICF activity

performance, such as quantifications of impaired arm use (e.g., [Lee et al., 2019, Bailey et al., 2015]).

Hence, this setup and our analysis have great potential to be applied across the entire continuum of

care. It is also worth pointing out that we only used statistical features of acceleration and angular

velocity data, in time and frequency domain. These features are easy to obtain from most wearable

inertial movement sensors. Hence, the approach is easier to apply and is less biased than solutions that

require pre-selection and computation of kinematic features, such as the smoothness of arm endpoint

movements or specific joint angles (e.g., [Kim et al., 2016, Olesh et al., 2014]).

The current study has several limitations. A first limitation is the small sample size. A larger and more

diverse sample might increase the prediction accuracy and robustness of the model. In addition, we

only included persons with stroke, and it could be interesting to include patients with other neurological

disorders as well to further explore the applicability of the sensor-based ARAT estimations. Second,

since only one evaluator per participant conducted the ratings we can only assume that the variability

between evaluators had only a minor effect on the rating results. Third, other drawbacks are inherent

to the use of clinical scores as reference information for training a machine learning model, and the

fact that such a model only reproduces the information represented in the clinical scores. Hence,

the information contained in the estimated scores depends on that contained in the clinical scores.

We assume that the ARAT contains information about movement quality, similar to clinical studies

about the ARAT [Yozbatiran et al., 2008], and similar to previous studies which used the FAS to capture

information about movement quality [Sapienza et al., 2017, Adans-Dester et al., 2020]. These scales,

however, assign a task score based on a combination of criteria, some of which might be associated

with movement quality only indirectly [Demers and Levin, 2017].

Finally, even though estimated ARAT scores provide an objective and easily interpretable quantification

of movement quality, they share the same discrete scale as the underlying, subjective clinical score.

Clinical scores are embedded in the field so much that every new method that can estimate previously

established clinical scores starts with a clear advantage. Still, scientific research should not stop here.

It is worth to reiterate that the estimation of clinical scores is just one way to quantify movement

quality using wearable sensors, and that this effort should be complemented with kinematic measures,

since these provide quantification of movement quality on a continuous scale (e.g., [Formstone et al.,

2021, Schwarz et al., 2019]). However, while wearable inertial sensor data were already used to explore

kinematic measures of movement quality [Repnik et al., 2018], the selection and clinical validation of

useful measures is still outstanding.
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5.6 Conclusion

The present study demonstrates that it is possible to estimate ARAT task and sum scores with sufficient

accuracy for clinical applications using wearable inertial sensors. More specifically, estimation errors

smaller than the detectable and important changes of the observation-based ARAT were obtained. The

proposed method uses a minimal sensor setup of only one sensor per evaluated arm, which offers a

simple, objective, fast and inexpensive way to assess the quality of upper extremity motor functioning

across clinical and remote settings. Hence, the current study is opening the doors to more objective

and potentially unsupervised assessments of arm and hand motor functioning, in particular at the ICF

activity capacity level.
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6 General Discussion

The main goal of this thesis was to provide inertial sensor-based solutions to assess activities of daily

living for patients with neurological disorders. The complete workflow, from identifying a sparse sensor

setup for assessing three key activities of daily living to developing and validating algorithms to extract

digital metrics, and the clinical understanding of such metrics, was investigated.

Chapter 2 presents a robust algorithm for a sensor-based gait analysis. Using shank-mounted inertial

sensors, spatio-temporal gait parameters were robustly derived for patients with a SCI walking at

slow and preferred walking speeds. In chapter 3, this algorithm was applied to an extensive dataset

of SCI patients and healthy controls performing a 6MWT while wearing sensors. Using a data-driven

approach, non-redundant and relevant sensor-derived gait metrics could be identified to characterize

the clusters with similar gait phenotypes. Further, including sensor-derived metrics improved the

prediction model, estimating whether a patient will increase his or her walking capacity. Chapter 4

presents a novel algorithm to extract wheeling propulsion patterns from inertial sensor data. Groups of

individuals who use wheelchairs with similar wheeling patterns were identified and compared in terms

of clinical characteristics and other sensor-derived wheeling metrics. Chapter 5 presents a method

to replace therapist ratings by estimating the clinical scores from sensor-derived features. A widely

used assessment of reaching and grasping function was chosen to demonstrate the feasibility of using

inertial sensors for a minimally-supervised assessment.

In the following, the findings presented in the previous chapters will be discussed with respect to the

objectives of this thesis, their contribution to the field and their clinical impact will be highlighted, and

recommendations for future research possibilities will be given.

6.1 Synthesis of results with respect to objectives

On the quest to promote technology-aided assessments using wearable inertial sensors, the importance

to consider the whole scheme from a selection of a suitable sensor setup, to the algorithm development

and the evaluation of sensor-derived metrics for the target cohort has been identified and set the

objectives of this thesis. Given this approach, this thesis extends most work in the field which is

usually only focusing on proposing algorithms to derive metrics from the raw sensor data. However,

these metrics are rarely validated in the target population and thus their clinical meaningfulness often

remains unclear.
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Objective 1: Identify a modular, sparse sensor setup to assess key activities of daily living

Three key activities of daily living were identified, and a modular but sparse sensor setup was selected

suitable for each application. The most important requirement for selecting the activities was the

activity’s relevance for the individual in terms of mobility and independence. This implies that func-

tional movements were chosen that frequently occur during daily life. The frequent nature of these

movements further ensured that enough data would be available to characterize those movements

comprehensively. In addition, activities involving either the upper or lower limbs were selected. Based

on these requirements, walking, wheeling, and grasping movements were selected as three key activities

of daily living. Walking and wheeling were chosen from the mobility domain of physical activities, and

grasping was selected as a movement relevant for many daily life activities, such as getting dressed,

eating, and many more.

A suitable sensor setup was selected to assess each activity. A trade-off was made between capturing

full-body kinematics with an extensive body sensor network and reduced information from fewer

sensors attached to specific body positions. The number of sensors and body attachment sites was

chosen to potentially allow long-term measurements of several days in a real-world setting in the

future with the same setup. Since this is the key benefit of using wearable sensors in contrast to both

motion capture systems and conventional assessments related to activity limitation [Jalloul, 2018].

The main requirements for the sensor positions were that the attachments had to be comfortable and

unobtrusive for the patient while still being located close to the main moving body parts.

Similar to the favored attachment location of commercial devices, the wrist was identified as a com-

fortable and suitable position for the assessment of grasping movements. On the one hand, sensors

attached to the wrist are watch-like and thus familiar to the individual; on the other hand, as being at-

tached distally, the sensors carry favored information of combined shoulder and elbow movements. An

additional sensor attached to the wheel was chosen to assess wheeling. This improved the algorithm’s

performance while not adding more sensors to the person itself. One sensor was attached to each ankle

to assess walking. Ankles were preferred over foot-mounted sensors because ankle-mounted sensors

can simply be attached with flexible straps like the sensors attached to the wrist, while the attachment

of foot-mounted sensors depends on whether and what kind of shoes are worn. Furthermore, the supe-

riority of shank-mounted sensors compared to trunk- or wrist-mounted sensors in terms of accuracy

of the derived metrics has been widely shown [Mansour et al., 2015, Yang and Li, 2012].

Objective 2: Development and validation of novel algorithms to assess these activities

Algorithms to extract digital health metrics from the raw inertial sensor data are necessary to quantify

and qualify the activities. As altered movement patterns of individuals with a CNS can be challenging

for data processing, algorithms should be validated in the target cohort [Rast and Labruyère, 2020].

The sensor-based gait analysis, presented in chapter 2, was based on existing algorithms found in the

literature [Yang and Li, 2012]. The gait event detection procedure identifies peaks similar to algorithms

presented previously [Trojaniello et al., 2014a, Sabatini et al., 2005]. Moreover, spatial parameters were

derived using a double integration approach, including a zero-velocity update of the acceleration data,

a method that is also widely used for sensor-based gait analysis [Li et al., 2010, Wahlstrom and Skog,

2021]. The main contribution of the proposed algorithm is the automatic adaptation of thresholds

necessary to identify individual strides and gait events to the walking sequence of each patient. These
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adaptive thresholds make this algorithm more robust across different gait profiles and speeds than

algorithms dependent on fixed thresholds, e.g., the algorithm presented by Trojaniello et al. [Trojaniello

et al., 2014a]. This robustness was confirmed by comparing the algorithm’s performance to ground

truth data of healthy controls and individuals with a SCI. Furthermore, besides typical spatio-temporal

parameters, a method was presented in chapter 3 on deriving ankle endpoint trajectory cyclograms.

The benefit of such cyclograms is that metrics such as the cycle-to-cycle consistency and the difference

to a reference shape with the ACC and SSD can be derived, respectively. Both metrics are independent

of the stride length or walking speed and related to the walking quality. To the best of our knowledge

knowledge, this is the first work deriving and analyzing these ankle cyclograms from shank-mounted

inertial sensors.

A novel algorithm for estimating wheeling propulsion patterns was presented in chapter 4. Since

wheeling shares the periodicity of the movement as a key characteristic with walking, core parts of the

gait algorithm could be adapted to the wheeling movement. By fusing data from a sensor attached

to the wheel and the wrist, wheeling propulsion patterns and other wheeling-related metrics were

derived. The presented method showed promising results compared to the propulsion patterns and

push events obtained from a gold standard. This algorithm largely extends the work presented in the

literature, where mainly algorithms were developed to identify individual strokes or to estimate the

energy expenditure during wheeling [MacDuff et al., 2022].

A machine-learning-based methodology to estimate clinical scores for reaching and grasping tasks

from sensor data was presented in chapter 5. In contrast to the algorithms developed to assess wheeling

and walking movements, this method uses metrics derived directly from the raw sensor data as inputs

for a classifier. Compared to the minimal detectable change of the assessment adequate results were

obtained for both estimating the task scores and the total score of the assessment.

Comparing the developed algorithms to extract metrics related to the three activities with each other,

differences in their reliability and sophistication should be mentioned. Since walking is a well-defined

and thoroughly investigated movement, the work presented in this thesis could build up on previously

developed algorithms for sensor-based gait analysis and knowledge of gait metrics from biomechanical

laboratories relevant to patients with neurological disorders. Wheeling motions are more diverse

as different wheeling propulsion patterns exist, which makes the development of algorithms more

challenging and might be the main reason very little work on sensor-based wheeling analysis exists.

Nevertheless, using knowledge and experience from the gait projects, a novel algorithm could be

developed benchmarking sensor-based wheeling analysis. Contrary to walking and wheeling, grasping

is a non-cyclic movement, which makes it more challenging to estimate motion trajectories from sensor

data and to extract metrics accurately with fewer movements available. Hence, a trade-off between the

reliability of the sensor-derived metrics and their richness had to be made.

Objective 3: Bring extracted metrics in context with clinical characterization of patients

The wheeling and the walking algorithm were developed to derive interpretable metrics related to

both activities. These interpretable metrics are easier to comprehend for clinicians than statistical

features derived directly from the raw sensor data. Hence, interpretable metrics are generally more

clinically meaningful and thus directly address the issue reported by Shirota et al. [Shirota et al., 2019],

which identified the poor understanding and lack of interpretability as one of the main reasons why

technology-aided assessments are rarely implemented in the clinical routine.
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We performed clustering, an unsupervised machine learning method, purely on sensor-derived metrics

for both the wheeling and walking project to identify groups of SCI patients with similar wheeling or

walking characteristics, as presented in chapters 3 and 4. In both cases, sensor-derived metrics were

identified that differed between the groups and that highlighted certain aspects of their wheeling or

walking patterns. Further, the main differences between the clusters regarding their clinical charac-

teristics were emphasized. Even though the clusters differed in specific clinical characteristics, such

as the SCIM or motor scores, the added value of using sensor-derived measures to objectively assess

wheeling and walking activities became apparent: complementary information was provided by the

sensor-derived metrics.

Nevertheless, approaches based on metrics derived directly from the raw sensor data have the benefit

that they can be easily implemented even by users unfamiliar with IMU-processing methods. Hence, we

chose these simple metrics for training an ordinal classifier to estimate clinical scores of an established

assessment of upper limb function, as presented in chapter 5. Since a promising accuracy of the

classifier was obtained, the feasibility of estimating clinical scores with easily implementable methods

could be demonstrated.

6.2 Contributions to the field, outlook, and clinical impact

Overall, this thesis contributes toward establishing technology-aided assessments using simple and

affordable measurement tools. We developed novel algorithms with the focus on extracting clinically

meaningful metrics related to key activities of daily living. The overarching goal was to provide more

sensitive and comprehensive measures than conventional clinical assessments.

The generalizability of the sensor-based gait analysis, which we primarily developed and validated in

patients with SCI, has been explored for another patient cohort in a side project [Rast et al., 2022]. In

collaboration with Fabian Rast from the Children’s Hospital in Zurich, the algorithm was tested for

children with a neurological disorder, suffering from diverse gait deficits similarly to individuals with

a SCI. We compared the sensor-derived walking speed in both a standardized and in a daily life-like

condition to the walking speed derived from reference systems. Only minor differences of 0.01±0.07m/s

and 0.05±0.06m/s were obtained between the measurement systems for the two conditions, respectively.

This project confirmed that the algorithm could also be applied to data of other cohorts with diverse

gait deficits. Further, the algorithm’s validity in a less controlled setting was demonstrated, which

opens up opportunities for the usage of this algorithm for long-term measurements in real-world

environments. Moreover, this study showed that most children did not use the same speed in the

standardized and the daily life-like condition, which raised the interest of assessing activities also in a

real-world environment.

Future work should focus on applying the developed algorithms, especially the wheeling and walk-

ing algorithms, to daily life recordings by combining the proposed methods with a human activity

recognition algorithm. The sparse sensor setup selected for this project would be applicable for such

measurements. Further, the robustness of both algorithm across different speeds and wheeling or

walking patterns should allow accurate measurements even under more unconstrained conditions.

However, these presumptions need to be further validated. Since the wearable sensors’ key advantage

are long-term measurements in real-world settings, analyzing the activities in the patient’s habitual

environment instead of in a standardized setting would provide many new insights [Rast and Labruyère,

2020]. Such measurements would provide objective metrics on the impact of novel therapies or treat-
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ment methods on the daily life of the patient in terms of activity limitation and participation restriction.

Furthermore, the knowledge gap between capacity (what a patient can do) and performance (what the

patient does) could be closed.

In addition, a clinical application of the wheeling and walking algorithms was found. Reports sum-

marizing wheeling and walking characteristics were developed together with clinicians and therapists

in an iterative process. Two exemplary reports of patients are attached in the appendix. The key

concept of these reports is that the sensor-derived metrics were selected and displayed in a clinically

meaningful way such that both therapists and patients themself obtain an objective description of

their wheeling and walking, similar to summaries provided by commercial activity trackers. In future

projects, the usability of the sensor software, including generating the reports fully automatically,

should be improved to realize a widespread use.

Further, technology-induced compensation strategies during grasping movements were investigated

in another side project [Meyer et al., 2022]. More specifically, the effect of a wrist-constrained robotic

hand orthosis on the grasping kinematic was assessed. Similar to the setup presented in chapter

5, the data of an inertial sensor attached to the wrist while performing a subset of the ARAT tasks

with and without a robotic hand orthosis was analyzed. Schneider et al. [Schneider et al., 2019]

derived a simple feature, the central range of the pitch angle, and showed that this metric is a marker

for compensatory movements during grasping tasks. Indeed, using a robotic hand orthosis led to

a higher central range indicating compensatory movements compared to not using the orthosis in

non-disabled individuals. This demonstrated the issue of usability-related design trade-offs between

compact and lightweight solutions, and more complex multi-degree of freedom devices. In the context

of this thesis, this contribution confirmed that sensor-derived measures could complement a standard

clinical assessment by providing measures, here compensation, otherwise not directly captured by

the assessment. This implies that these measures can help to evaluate rehabilitation robotics more

sensitive and comprehensive using simple and cost-effective solutions.

6.3 Overall conclusion

On the quest for establishing technological-aided assessments for patients with a neurological dis-

order, this doctoral thesis provides sensor-based methodologies to assess activities of daily living.

These methodologies contribute toward implementing more sensitive and comprehensive assessment

methodologies using unobtrusive and affordable measurement devices. Since thorough assessments

are the foundation for clinical decision-making, this thesis is a step towards patient-specific treatment

plans and precise evaluation of novel therapeutic interventions. The unique feature of portability that

wearable inertial sensors possess enables remote and long-term monitoring. Therefore, the contri-

butions in this thesis pave the way of translating assessments to the patient’s habitual environment,

endorsing an optimal continuum of care.
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A Appendix

A.1 Supplementary Material

A.1.1 Supplementary Material to "Towards a Mobile Gait Analysis for Patients with
a Spinal Cord Injury: A Robust Algorithm Validated for Slow Walking Speeds"

83



Appendix A. Appendix

Table A.1: Mean error (me), its standard deviation (std) and the mean relative error (mre)
between the temporal gait parameters derived from the GRAIL and the inertial sensors. The
values are reported for SCI patients and healthy controls (HC) and the speed levels of 0.3m/s,
0.5m/s and preferred (pref) walking speed.

Gait Parameter Group Speed me [ms] std [ms] mre [%]

Initial Contact SCI 0.3 12 12 0 6

0.5 5 12

pref -2 9

HC 0.5 10 9

Final Contact SCI 0.3 24 45

0.5 24 39

pref 20 40

HC 0.5 4 17

Stride Duration SCI 0.3 2 8 0.1

0.5 0 6 -0.1

pref 2 7 0.1

HC 0.5 1 5 0

Step Duration SCI 0.3 -4 15 -0.8

0.5 -2 13 -0.4

pref -1 13 -0.3

HC 0.5 -2 8 -0.4

Swing Phase SCI 0.3 -14 47 -3.8

0.5 -19 48 -4.3

pref -23 44 -4.7

HC 0.5 6 17 0.8

Double Support Phase SCI 0.3 12 50 2.7

0.5 17 44 5.8

pref 22 41 7.5

HC 0.5 -8 17 -3.5
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Table A.2: Mean error (me), its standard deviation (std) and the mean relative error (mre)
between the spatial gait parameters derived from the GRAIL and the inertial sensors. The
values are reported for SCI patients and healthy controls (HC) and the speed levels of 0.3m/s,
0.5m/s and preferred (pref) walking speed.

Gait Parameter Group Speed me [mm] std [mm] mre [%]

Stride Length SCI 0.3 6 43 0.4

0.5 -6 39 -0.7

pref -6 17 -0.6

HC 0.5 -11 28 -1.5

Stride Height SCI 0.3 -5 13

0.5 -10 14

pref -4 24

HC 0.5 -10 8

Stride Width SCI 0.3 -12 9

0.5 -8 10

pref -5 9

HC 0.5 -11 9
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A.1.2 Supplementary Material to "Data-Driven Characterization of Walking after
a Spinal Cord Injury using Inertial Sensors"

Table A.3: Description of gait parameters

Gait Parameter (Statistical Features) Description

Stride duration (mean, cov, asym, d2r) Time between two consecutive heel strikes of the same

side

Step duration (mean, cov, asym, d2r) Time between the heel strike of one side until the follow-

ing heel strike of the opposite side

Swing phase (mean, cov, asym, d2r) Relative time of the time between toe off and heel strike

of the same side w.r.t. the stride duration

Double support phase (mean, cov, asym, d2r) Relative time of the time when both feet are on the

ground w.r.t. the stride duration

Stride length (mean, cov, d2r) Distance in-between two heel strikes of the same side

Stride width (mean, cov, asym, d2r) Maximum lateral displacement during a stride

Stride height (mean, cov, asym, d2r) Maximum vertical displacement during a stride

Cyclogram top view (ACC, SSD, area) Top view of the ankle endpoint trajectory

Cyclogram side view (ACC, SSD, area) Side view of the ankle endpoint trajectory

Smoothness Modified spectral arc length of the angular velocity of the

sagittal plane

Change in speed, stride length, cadence Slope divided by the intercept of the linear fit of the pa-

rameters over the 6 minutes

Speed inconsistency Absolute value of the change in speed
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A.1.3 Supplementary Material to "Estimating Wheeling Propulsion Patterns using
a Sparse Inertial Sensor Setup"

Table A.4: Silhouette scores of the corresponding number of clusters.

Number of Clusters 3 4 5 6 7 8 9 10

Silhouette Score 0.32 0.36 0.35 0.28 0.37 0.22 0.19 0.17
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Figure A.1: Side view of the scaled wheeling patterns of the eight outliers combined to cluster
0.
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A.2 Walking Report
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Gait Quality Report - patient 001
OVERVIEW

Start: 2021/07/02 11:18:07

Duration: 6m 4s

Distance: 290m

Steps: 468

WALKING SPEED

Speed:
mean: 0.85 m/s
min: 0.77 m/s
max: 0.94 m/s

Cadence:
mean: 84.53 steps/min
min: 78.83 steps/min
max: 91.76 steps/min

TEMPORAL PARAMETERS

Stride Duration:
1.41s (L) / 1.41s (R)

Step Duration:
0.59s (L) / 0.82s (R)

Swing Phase:
47.26% (L) / 30.48% (R)

Spinal Cord Injury Center | BalgristMarch 1, 2021 2

SPATIAL PARAMETERS

Stride Length:
125cm (L) / 115cm (R)

Stride Height:
10.2cm (L) / 6.7cm (R)

Stride Width:
8.2cm (L) / 3.7cm (R)

Spinal Cord Injury Center | BalgristMarch 1, 2021 1
1
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VARIABILITY, SYMMETRY, DIFFERENCE TO REFERENCE

CYCLOGRAMS

2
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A.3 Wheeling Report

A.3 Wheeling Report
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Wheeling Report

Wheeling 001

OVERVIEW

jumpID 2298

Start 2021/03/11 13:14:46

Duration 2m 52s

Distance 141.4 m

Strokes 97

Diameter 24

WHEELING SPEED

Mean velocity: 0.8 m/s
Max.: 1.2 m/s

STROKE FREQUENCY

Mean freq.: 41.4 strokes/min
Min.: 18.5 strokes/min
Max.: 60.8 strokes/min

DISTANCE PER STROKE

Mean distance/stroke: 1.5 m
Min.: 0.7 m
Max.: 2.7 m

1
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PROPULSION SHARE

Mean stroke duration: 1.65 s
Mean propulsion: 0.47 s (28.7 %)
Mean recovery: 1.18 s (71.3 %)

TURNING RATE AND PUSH ANGLE

Push Angle:

WHEELING PROPULSION PATTERN

2
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