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A B S T R A C T

Historical maps depict past states of the Earth’s surface and make it possible to trace the natural or
anthropogenic evolution of geographic objects back through time. However, the state of the depicted reality is
not the only source of change: maps of varying age can differ in terms of graphical design, and also in terms
of storage conditions, physical ageing of pigments, and the scanning process for digitization. Consequently, a
computer vision system learned from a specific (source) map series will often not generalize well to older or
newer (target) maps, calling for domain adaptation. In the present paper we examine – to our knowledge for the
first time – domain adaptation for segmenting historical maps. We argue that for geo-spatial data like maps,
which are geo-localized by definition, the spatial co-occurrence of geographical objects provides a supervision
signal for domain adaptation. Since only a subset of all mapped objects co-occur, and even those are not
perfectly aligned due to both real topographic changes and variations in map generalization/production, they
only provide weak supervision — still they can bring a substantial benefit over completely unsupervised domain
adaptation methods. The core of our proposed method is a novel self-supervised co-occurrence network that
detects co-occurring objects across maps (specifically, domains) with a novel loss function that allows for
object changes and spatial misalignment. Experiments show that, for the task of segmenting hydrological
objects such as rivers, lakes and wetlands, our system significantly outperforms two state-of-art baselines,
even with limited supervision (e.g., 5%). The source code is publicly available at https://github.com/sian-
wusidi/spatialcooccurrence.
1. Introduction

Historical maps are the only comprehensive, spatially explicit
source of information about the Earth’s surface before the invention
of modern air- and space-borne Earth observation. They can be used to
study past states of the Earth’s surface (Bromberg and Bertness, 2005;
Levin et al., 2010), and when combined with recent data to analyse
the long-term evolution of geographic features (San-Antonio-Gómez
et al., 2014; Burghardt et al., 2022; Tonolla et al., 2021; Picuno et al.,
2019). Spatially detailed assessments of spatio-temporal developments,
due to both anthropogenic or natural drivers, serve as a basis to for
strategies to manage, preserve or restore the affected landscape (San-
Antonio-Gómez et al., 2014; Walz, 2008; Hoyer and Chang, 2014).
However, information from analog map sheets or raster scans is mostly
retrieved by interactive, manual digitization. This is not only time-
consuming, tedious and costly, but may also limit the geographical
extent and the time window considered in a study. Deep encoder–
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decoder networks have greatly advanced image segmentation (Chen
et al., 2018; Ronneberger et al., 2015), and thus also the automatic
semantic analysis of historical maps (Uhl et al., 2020; Heitzler and
Hurni, 2020; Wu et al., 2022b). However, maps produced at different
times exhibit strong variations with respect to graphical style, scale,
craftsmanship, drawing or printing quality, storage conditions of the
analog sheets, and scanning process used to digitize them. It is therefore
challenging to learn a single, generic segmentation model. Even maps
created, stored and digitized with high standards vary considerably,
especially in terms of the symbols used for foreground objects and the
textures and colours of background elements, see the example in Fig. 1.
A model trained on a specific map series typically does not generalize
all that well to other map series. This is not surprising: it has repeatedly
been pointed out that even subtle shifts between the training and test
distributions of a neural network can swing its predictions and seriously
harm its performance, e.g., Tzeng et al. (2017). Fortunately, despite
differences in appearances, maps of the same type (e.g., topographic
vailable online 14 February 2023
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Fig. 1. Varying map designs in foreground objects (lakes/forests) between (a) and (b), and in background colours and textures between (a), (b) and (c). (a) (b) (c) are from
Siegfried Maps, old Swiss National Maps (KOMB) and old Swiss National Maps (KREL), respectively.
maps) share the same underlying geography, as well as common prin-
ciples of cartography. Intuitively, it appears possible to train a model
on one ‘‘source’’ map series and then deploy it on another ‘‘target’’
series, if, during training, the model is exposed to the cartographic (dis-
)similarities between the two series. Importantly, doing this does not
require labels for the target domain.

Standard Domain Adaptation (DA) addresses shifts between the
training (source) and test (target) domains by aligning them in a statis-
tical sense. Depending on the availability of ground truth in the target
domain, the alignment is carried out in supervised or unsupervised
fashion. Different approaches have been developed that match the
source and target distributions at the level of the input images (Li et al.,
2019; Tasar et al., 2020), some intermediate feature space (Hong et al.,
2018; Hoffman et al., 2016), or the predicted outputs (Tsai et al., 2018;
Vu et al., 2019a). Our work aligns domain shifts in the output space,
where we assume a certain level of consistency in structural properties
like topology and spatial layout of geographical objects. E.g., a stream
is unlikely to be a closed curve, or a lake should not be enclosed by
a river. Rather than the direct prediction (Tsai et al., 2018), enforcing
consistency in the prediction entropy (Vu et al., 2019a) has achieved
state-of-art performance. On the one hand, according to Wu et al.
(2022a), Vu et al. (2019a), entropy maps that capture normal object
boundaries preserve meaningful structural information. On the other
hand, target predictions without direct supervision tend to have higher
entropy, which means lower confidence, than source predictions (Wu
et al., 2022a). In total, aligning distributions of the prediction entropy
can amplify the structural similarity between the source and target
output and simultaneously reduce the entropy of the target output, so
that the domain gap can be bridged. In our work, we apply adversarial
entropy minimization (Vu et al., 2019a,b) for domain adaptation across
different map designs.

Iqbal and Ali (2020) showed that, when segmenting built-up regions
in aerial or satellite images, image-level labels as additional supervision
improve DA. It is an interesting and intuitive finding that even a weak
supervision signal helps to better bridge domain gaps. Yet it requires a
sufficient quantity of image-level labels in the target domain, arguably
a relatively contrived setting in the context of map digitization. On
the contrary, we argue that a different form of weak supervision is
almost always available for geo-spatial data, including not only maps
but also satellite images, GPS trajectories, etc.: they are geo-referenced,
so one can pair data from different domains after transforming them
into the same coordinate reference system. Importantly, in many set-
tings one cannot simply assume that data from two different domains
are aligned perfectly within the required accuracy. If that were the
case one could trivially solve the task by segmenting in the source
domain and transferring the labels. Due to different acquisition tech-
niques/times/conditions as well as different processing, geo-locating
and generalizing systems, there are significant displacements. E.g., the
location of the same road or river in different map sheets may differ
by a lot more than its width, exemplified in Fig. 2, leading to a
situation where it is present in both sheets but the two instances do not
200
overlap in space; making it impossible to transfer labels via their geo-
coordinates. In other words, the common geo-reference does not mean
that objects coincide in different map sheets of the same location. But it
does mean that most objects co-occur at roughly the same locations. As
we will show, that weaker constraint is already helpful for DA. Note
that co-occurrence is a property that applies to any two co-located
maps, independent of ground truth labels. It can be seen as a form of
self-supervision.

In our work, we investigate the DA problem in the context of
segmentation in historic maps. Our focus is on hydrological objects.
As explained above, the principle of our method is to use co-occurring
geographical objects in the source domain as context information to
adapt the segmentation engine to the target domain. However, different
maps normally show the Earth’s surface at different times. Due to
natural as well as anthropogenic changes (e.g., rivers changing course,
wetlands being drained, roads and buildings being constructed or torn
down), not every object will have a matching instance in the source
domain. To filter out such cases, we employ a co-occurrence detection
network that discovers co-occurring objects between source and target
data in a self-supervised way. The detection step includes a tolerance on
the spatial location, to account for misalignment due to geo-localization
errors, various distortions, and map generalization. Once co-occurrence
has been established, the label prediction in the source domain, with no
domain shift, can serve as additional evidence for the one in the target
domain. We still follow the line of research on DA at the predicted
output, specifically the output entropy, to give supervision in the
entire output space. To achieve this, we adopt adversarial learning to
minimize the discrepancy between entropy maps from the source and
target domains. We assume this is vital to support regions of significant
changes, where supervision of co-occurrence is unavailable.

Our main contributions can be summarized as follows:

• We propose a novel weakly self-supervised DA pipeline that
uses the co-occurrence of geographic objects as auxiliary su-
pervision signal to adapt segmentation across different image
domains, assisted by entropy-based adversarial learning. While
the framework is general and potentially applicable to a range of
geo-spatial imagery, our application scenario is the segmentation
of historical maps from different series of different ages.

• To avoid erroneous supervision signals due to changes, we de-
velop a dedicated network to detect co-occurrence, or its absence,
between co-registered images in a self-supervised manner.

• For the co-occurrence detector, we introduce a loss function that
allows for spatial misalignment between the source and target
domains, relaxing the assumption of spatial co-incidence to a
weaker notion of spatial co-occurrence.

2. Related work

2.1. Domain adaptation

Carefully supervised image segmentation models often fail to gen-
eralize to test data that follow even a slightly different distribution
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Fig. 2. Displacements of the river Töss between a Siegfried Map sheet at 1882 (a) and an old Swiss National Map sheet at 1956 (b). Both sheets are geo-referenced in the same
coordinate reference system. In (c) we overlay (b) with the ground-truth river from (a), shown in red. The displacement is significant. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
than the training data, a situation termed ‘‘domain shift’’. Consequently,
a dedicated line of research has emerged that investigates how a
model trained on one (source) domain can be adapted to another
(target) domain (Tzeng et al., 2015; Motiian et al., 2017; Zhuang et al.,
2015; Tommasi et al., 2016; Tzeng et al., 2014; Ganin et al., 2016).
The arguably most relevant case is Unsupervised Domain Adaptation
(UDA), where the DA must be accomplished in the absence of labelled
target data — if labelled examples from the target domain are available,
the problem largely reduces to transfer learning which, with the rise
of data-hungry deep networks, has become a standard procedure. A
common practice is to pre-train the model with labelled source data
and fine-tune it with labelled target data (Pires de Lima and Marfurt,
2019; Wang et al., 2018). UDA can be categorized into methods that
bridge the domain gap at the level of input data, at the level of latent
features, or at the output level (Toldo et al., 2020).

For input-level adaptation, generative networks (Goodfellow et al.,
2020) are often used to translate images from the source domain to
the target domain (Hoffman et al., 2018; Li et al., 2019; Tasar et al.,
2020), assuming that a model trained on those translated images will
be applicable to the target domain. The major drawback of these
approaches is that the image-to-image translation is unaware of the
labels, and not guaranteed to produce outputs with coherent and
separable class-conditional distributions. Informally speaking, image-
to-image translation is tuned to generate images that match the target
domain in terms of global visual appearance, not in terms of local
evidence for segmentation.

Feature-level adaptation aligns the distributions of latent activations
within the network, such that they are representative of the target
domain despite having been trained on the source domain. Chen et al.
(2019) proposed the Progressive Feature Alignment Network (PFAN)
that progressively learns to align latent features across domains. Hong
et al. (2018), Hoffman et al. (2016) trained a discriminator (Goodfel-
low et al., 2020) to distinguish intermediate feature representations
between source and target images and boost their similarity through
adversarial training. However, unlike image classification, complex
structures in the high-level feature space for semantic segmentation
make it difficult to stably train the discriminator and may harm DA
performance (Tsai et al., 2018; Yang and Soatto, 2020). To sidestep
the complexity of the latent feature space, a further line of work seeks
to cross the domain gap in the output space. While Tsai et al. (2018),
Biasetton et al. (2019) train an adversarial mapping directly to the
model predictions, Vu et al. (2019a,b) instead align the prediction
entropies between the source and target domains, and achieve state-of-
art performance. The underlying assumption of that approach is that
predictions for the unseen target domain should have lower confidence
and thus higher entropy, than those for the source domain — in earlier
work (Wu et al., 2022a) we found this to indeed be the case for
historical map segmentation. On the other hand, matching entropy
distributions can also enforce structural similarity between source and
target, since high entropy is often found along object edges (Vu et al.,
2019a; Wu et al., 2022a).
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2.2. Weakly supervised learning

Many practical learning tasks are hampered by the lack of huge,
subject-specific training data sets with detailed labels. This has lead
to an interest in methods that can learn from inexact, incomplete, or
inaccurate labels that can be more easily obtained in large quantities.
For instance, fine-grained pixel-level labels are tedious and expensive
to annotate, and one could save effort by substituting them with coarse
annotations, like a single label per image (Ahn et al., 2019; Li et al.,
2018; Wei et al., 2016; Kolesnikov and Lampert, 2016; Wang et al.,
2020; Chen et al., 2020), sparse, point-wise labels (Bearman et al.,
2016; Wang et al., 2020; Yu et al., 2021), scribbles (Lin et al., 2016;
Wu et al., 2018) or bounding boxes (Khoreva et al., 2017; Papandreou
et al., 2015). The hope is that partial annotations can be propagated to
unlabelled pixels that are similar in image or feature space (Lin et al.,
2016; Kolesnikov and Lampert, 2016; Ahn et al., 2019). A complemen-
tary direction is to rely on labels that are available in large volumes,
but noisy, e.g., when obtained by crowd-sourcing (Kaiser et al., 2017;
Uzkent et al., 2019). The prevalent strategies to handle label noise
are data cleansing and filtering (Malossini et al., 2006; Thongkam
et al., 2008; Frenay and Verleysen, 2014), noise-tolerant learning tech-
niques (Mnih and Hinton, 2012; Beigman and Beigman Klebanov, 2009;
Patrini et al., 2017), and explicit modelling of the noise distribution (Lu
et al., 2017; Xiao et al., 2015).

For geo-spatial data, a main source of label noise is inaccurate align-
ment, hence weak learning based on (partially) misaligned labels is
related to our notion of co-occurrence. E.g., Kaiser et al. (2017) directly
pair satellite images with public OpenStreetMap (OSM, http://www.
openstreetmap.org/) data to train semantic segmentation models. It is
worth mentioning that spatial occurrence has already been explored in
the context of DA. Sakaridis et al. (2022) associated daytime street-view
images, as the source domain, with night-time images as target domain,
based on GNSS positions. The shared content was used to guide DA to
the less favourable nighttime conditions.

The simple map-based matching does not account for changes in
image content, and it was necessary to carefully separate and handle
even the moderate amount of misalignment induced by moving objects
like humans or vehicles. In our setting, misalignments are a lot more
extreme, to the point where almost none of the pixels of correspond-
ing map objects coincide. In maps, such offsets are frequent due to
surveying or production bias, subjective map generalization, residual
map distortion, or actual changes between different production times.
They concern in particular small objects like houses and different point
signatures, and narrow line objects like rivers, roads or iso-contours.
The present work addresses this issue, by training a network to discover
co-occurring, but not spatially coincident objects, and utilize them to
guide adaptation only with matched/unchanged objects.

http://www.openstreetmap.org/
http://www.openstreetmap.org/
http://www.openstreetmap.org/
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2.3. Historical map segmentation

Historical maps contain useful information about past states of the
Earth’s surface. One can trace the past evolution of natural and man-
made objects in them, furthermore one can also combine them with
modern Earth observation data to identify and understand long-term
geospatial changes (Uhl et al., 2021). Given the large available volume
of scanned historical maps, the past two decades have seen increased
research efforts towards automatic map processing techniques (Bin
and Cheong, 1998; Leyk, 2009; Chiang and Knoblock, 2009). Despite
this interdisciplinary effort at the intersection of cartography, geo-
information science and computer vision, many map digitization tasks
still require human intervention, or custom tuning to every specific map
style and object type (Wu et al., 2022b).

Similar to satellite remote sensing, historical map processing has
embraced the deep learning era, in particular recent advances in com-
puter vision (Chen et al., 2018; Ronneberger et al., 2015; He et al.,
2017; Visin et al., 2016; Chen et al., 2016). Deep neural networks have
been applied to extract buildings (Uhl et al., 2020; Heitzler and Hurni,
2020), roads (Ekim et al., 2021) and water bodies (Wu et al., 2022b)
from maps. However, all those methods are restricted to a specific
map series, without regard to generalization. Considering the diversity
of maps from different epochs and cartographic traditions, it appears
impractical to custom-tailor map processing to every single map series
by annotating an extensive, representative amount of ground truth. To
the best of our knowledge, our work is the first to investigate DA across
different styles of historical maps.

3. Method

This section introduces our proposed domain adaptation pipeline for
map segmentation. We begin with a definition of the problem and an
overview of our proposed system, then we describe its components in
more detail.

3.1. Problem definition and algorithm overview

Our task is an instance of UDA, where images in the source domain
are labelled, whereas all images in the target domain are unlabelled.
For our case we may assume that all map sheets have the same size
(w.l.o.g., as it is common practice to resize or tile images for processing
with neural networks). Instead of Let 𝑥𝑠 denote a source image from
a source set 𝑠 ⊂ R𝐻×𝑊 ×3 with height 𝐻 , width 𝑊 and three RGB
channels, and let 𝑦𝑠 be the corresponding binary label image from
an associated ground-truth set 𝑠 ⊂ R𝐻×𝑊 ×𝐶 , with one channel for
each of the 𝐶 output classes to form the problem of multi-class binary
segmentation. Moreover, we have unlabelled target images 𝑥𝑡 from
a target set 𝑡 ⊂ R𝐻×𝑊 ×3, for which we want to make predictions
𝑦𝑡, with the same dimensions as 𝑦𝑠. The source and target sets have
size 𝑛𝑠 and 𝑛𝑡, respectively. For some of the target images there is a
source image that covers the same region of the Earths surface, forming
𝑚 ≤ 𝑚𝑖𝑛(𝑛𝑠, 𝑛𝑡) co-located pairs. We define 𝖼𝗈𝗈𝖼𝑟 = 𝑚

𝑚𝑖𝑛(𝑛𝑠 ,𝑛𝑡)
as the co-

occurrence rate. These pairs depict many co-occurring objects with the
same labels and approximately, but not exactly, the same coordinates.
The co-located pairs provide weak supervision to the UDA process.

A graphical depiction of the complete architecture is shown in
Fig. 3. A shared encoder 𝐹 and decoder 𝐺 constitute the segmentation
etwork 𝑆 = 𝐹◦𝐺, which operates independently on the source and

target domains. The two domains are linked via a co-occurrence de-
tector 𝑂 and a discriminator 𝐷. Since we aim at making predictions
�̂� = 𝑆(𝑥𝑠) from source images and 𝑦𝑡 = 𝑆(𝑥𝑡) from target images
onsistent with each other, we train the discriminator 𝐷 to distinguish
hether a predicted segmentation map is from the source or target
omain. The adversarial loss, in turn, forces the segmentation network
to generate predictions with similar distributions in the target domain

nd the source domain. Furthermore, for a co-located pair of source
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nd target images, the encoded features 𝑓𝑠 = 𝐹 (𝑥𝑠) and 𝑓𝑡 = 𝐹 (𝑥𝑡)
are concatenated and then passed to the co-occurrence detector 𝑂.

and 𝑂 together form the weak supervision network 𝑈 = 𝐹◦𝑂.
or the segmentation of the source images, where ground truth for
irect supervision is available, we employ the dice loss (Milletari et al.,
016), to account for the sparsity of hydrological objects in historical
aps (Wu et al., 2022b):

seg𝑠 = 1 −
2
∑𝐻×𝑊 ×𝐶

𝑖=1 𝑦𝑠
(𝑖)𝑦(𝑖)𝑠

∑𝐻×𝑊 ×𝐶
𝑖=1 𝑦𝑠

(𝑖) +
∑𝐻×𝑊 ×𝐶

𝑖=1 𝑦(𝑖)𝑠
(1)

where 𝑦𝑠
(𝑖) and 𝑦(𝑖)𝑠 are a class- and pixel-wise prediction score and its

ground truth.

3.2. Co-occurrence detection

Given the feature maps 𝑓𝑠 and 𝑓𝑡 of the source and target images,
the co-occurrence detector 𝑂 outputs an attention map 𝛼𝑠𝑡 = 𝑂(𝑓𝑠, 𝑓𝑡)
that has the same dimensions 𝐻 ×𝑊 ×𝐶 as the segmentation outputs.
That map indicates unchanged regions between 𝑥𝑡 and 𝑥𝑠 where the
prediction 𝑦𝑡 = 𝐺(𝑓𝑡) should locally match 𝑦𝑠 = 𝐺(𝑓𝑠) and 𝑦𝑠. The
co-occurrence detection is learned in self-supervised fashion, by max-
imizing the similarity between the target prediction 𝑦𝑡 ⊙ 𝛼𝑠𝑡 and the
source label 𝑦𝑠 ⊙ 𝛼𝑠𝑡 masked by the attention map. In this way, the
target labels will be pushed towards the source labels in regions where
the map content is similar; whereas regions where the map content has
actually changed will be assigned a low co-occurrence score, so as to
avoid the associated penalty.

However, as explained above, we can only expect co-occurrence,
not exact coincidence. Even for objects that have not changed in the
world, the corresponding map elements in 𝑥𝑠 and 𝑥𝑡 will not exactly
match, due to localization errors, distortions, and map generalization.
To nevertheless detect the co-occurrence of such objects, we propose
to include a distance tolerance in the loss function, to obtain a Buffered
Dice Coefficient (BDC):

𝐵𝐷𝐶(�̂�, 𝑦) =
2 |
|

�̂� ∩ 𝑏𝑠(𝑦)|| |𝑦|

|𝑦|2 + |�̂�|2
=

2
∑

𝑖 �̂�
(𝑖)𝑏𝑠

(

𝑦(𝑖)
)
∑

𝑖 𝑦
(𝑖)

(
∑

𝑖 𝑦(𝑖)
)2 +

(
∑

𝑖 �̂�(𝑖)
)2

(2)

The BDC accounts for misalignment between �̂� and the corresponding
ground truth 𝑦 simply by looking at a fixed-width buffer 𝑏𝑠 around the
ground truth object, a standard operation in GIS analysis (Bhatia et al.,
2013). An efficient way to compute the buffer zone is to downsample
the ground truth by a factor 𝑠 with max pooling, and then upsample
it back to the original resolution. See Fig. 4. This formulation can be
differentiated and has the maximum value when �̂� = 𝑦 in the buffer 𝑏(𝑦).
When 𝑠 = 1, BDC functions as normal dice loss, as shown in Eq. (1).

We can use the masked BDC to weakly supervise the target images:

seg𝑡 = 1 − 𝐵𝐷𝐶
(

𝑦𝑡 ⊙ 𝛼𝑠𝑡, 𝑦𝑠 ⊙ 𝛼𝑠𝑡
)

(3)

To prevent the co-occurrence detector from always predicting low
value, we add a regularization term:

reg = 1 − 1
𝐻 ×𝑊

𝐻×𝑊
∑

𝑗=1

𝐶
∑

𝑐=1
𝛽𝑐𝛼

(𝑗,𝑐)
𝑠𝑡 (4)

where the 𝛽𝑐 are class-specific weights.

3.3. Entropy-based adversarial learning

Through the co-occurrence detector, unchanged objects in the target
image receive supervision from the source label. As additional supervi-
sion for all elements, including the changed ones, we adopt adversarial
learning which is widely used for UDA. Following Vu et al. (2019a,b),
we do not apply the discriminator 𝐷 directly to the predicted class
probabilities, but rather to their entropy:

(ℎ,𝑤,𝑐) (ℎ,𝑤,𝑐) ( (ℎ,𝑤,𝑐))
𝐸 = −�̂� ⋅ log �̂� (5)
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Fig. 3. Overview of our proposed algorithm. Features extracted by an encoder 𝐹 from either source or target images are passed to the same decoder 𝐺 for multi-class binary
segmentation. Features from co-located source and target images are concatenated and passed to the co-occurrence detector 𝑂 to generate co-occurrence masks. The source labels
serve as weak supervision for the co-occurring/unchanged objects in the target images. An adversarial loss (discriminator) 𝐷 on entropy maps of the two segmentations enforces
consistency of the predictions.
Fig. 4. Co-occurrence detection with BDC. To account for misalignment of map elements, a buffer is placed around the source element to find a potentially matching target
element.
𝐸(ℎ,𝑤,𝑐) is the class- and pixel-wise entropy. The discriminator is a
binary classifier that tries to distinguish entropy maps of source and
target predictions, 𝐸𝑠 and 𝐸𝑡; thereby encouraging the segmentation
network for the target domain to predict class distributions that are
similar to those in the source domain. Accordingly, its loss function is:

𝐷𝑠
= ‖

‖

‖

𝐷
(

𝐸𝑠
)

− 𝑦𝑠𝑜𝑢𝑟𝑐𝑒
‖

‖

‖

2

𝐷𝑡
= ‖

‖

‖

𝐷
(

𝐸𝑡
)

− 𝑦𝑡𝑎𝑟𝑔𝑒𝑡
‖

‖

‖

2 (6)

where 𝑦𝑠𝑜𝑢𝑟𝑐𝑒 = 1 and 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 = 0. Training the discriminator is alternated
with training the segmentation network to fool the discriminator, via
the loss term

adv = ‖

‖

‖

𝐷
(

𝐸𝑡
)

− 𝑦𝑠𝑜𝑢𝑟𝑐𝑒
‖

‖

‖

2
(7)

This pushes the target predictions to have similar entropy distribu-
tions as the source predictions. As pointed out by Vu et al. (2019a),
entropy-based adversarial learning favours easy classes and tends to
over-fit to them. To alleviate that problem we follow the strategy
recommended by Vu et al. (2019a) and guide the training with a class
frequency prior 𝑃 . We calculate the area (the number of pixels) per
object class in the source images and normalize it over all the classes.
Deviations of the predicted probabilities from that prior are penalized.
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To account for the variability of the frequency distribution between
different batches, as well as frequency changes due to changed map
elements, we relax the prior constraint with a factor 𝜇 ∈ [0, 1]:

pri =
𝐶
∑

𝑐=1
max

(

0, 𝜇 ⋅
𝑦𝑡

(𝑐)

∑

𝑐 𝑦𝑡
(𝑐)

− 𝑃 (𝑐)
)

(8)

3.4. Optimization

Combining Eqs. (1), (3), (4), (7), (8) we derive the optimization
problem for the segmentation network 𝑆, consisting of encoder 𝐹 and
the decoder 𝐺:

min
𝐹 ,𝐺

1
𝑛𝑠

∑

(𝑠 ,𝑠)
seg𝑠 +

𝜆adv
𝑛𝑡

∑

𝑡

adv + 1
𝑛𝑡

∑

𝑡

pri

min
𝐹

1
𝑚

∑

(𝑠 ,𝑠),𝑡

seg𝑡 +
1
𝑚

∑

𝑠 ,𝑡

reg

(9)

with the weight 𝜆adv for the adversarial loss. The parameters of the
co-occurrence detector 𝑂 are optimized by the combination of Eqs. (3)
and (4):

min
𝑂

1
𝑚

∑

seg𝑡 +
1
𝑚

∑

reg (10)

(𝑠 ,𝑠),𝑡 𝑠 ,𝑡
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Fig. 5. Siegfried maps (labelled, source) and KOMB/KREL maps (unlabelled, target) used in our experiments. They are geo-referenced in the same coordinate reference system
(CH1903).
Table 1
Our training dataset. We conduct experiments with the combinations Siegfried-KOMB
and Siegfried-KREL.

Map Scale Time of
production

Training
samples

source, labelled Siegfried 1:25 k ≈1880 10 560
target, unlabelled KOMB 1:25 k ≈1950 10 560
target, unlabelled KREL 1:25 k ≈1950 10 560

The discriminator 𝐷 is trained by minimizing the corresponding losses
for both the source and the target domain:

min
𝐷

1
𝑛𝑠

∑

𝑠

𝐷𝑠
+ 1

𝑛𝑡

∑

𝑡

𝐷𝑡
(11)

The optimization alternates between minimizing (9) and (10) together,
and minimizing (11).

4. Experiments

4.1. Datasets

Our labelled dataset is a portion of the Siegfried Maps from around
1880, a Swiss national map series published between 1870 and 1949.
Each map sheet we use is 7000 pixels wide and 4800 pixels high,
at the scale of 1:25 k, with a spatial resolution of 1.25 m/pixel. We
semi-automatically vectorize four types of hydrological objects: streams
(lines), wetlands (polygons), rivers (polygons), and lakes (polygons).
The vector objects of each class are separately rasterized into a binary
map, and the four maps are stacked into four-channel raster images that
form our ground-truth annotations for multi-class binary segmentation.
Starting from the 1950ies, the Swiss National Maps superseded previous
map series and became the official topographic base map of Switzer-
land. We make use of old Swiss National Maps, which were in production
until 2008. At both scales of 1:25 k and 1:50 k, two types of maps
were produced — normal topographic maps (KOMB) and topographic
maps with relief shading (KREL), illustrated in Fig. 5. Early editions of
both KOMB and KREL, from the 1950ies, at scale 1:25 k are used as
unlabelled target datasets. Each map sheet of KOMB is 14000 pixels
wide and 9600 pixels high, with a spatial resolution of 1.25 m/pixel,
while each map sheet of KREL is 7000 pixels wide and 4800 pixels
high with a resolution of 2.5 m/pixel. To sidestep differences in spatial
resolution, we upsample KREL to 1.25 m/pixel. Maps from Siegfried,
KOMB and KREL are geo-referenced in the same coordinate reference
system — the local Swiss reference frame CH1903. For our experiments,
we randomly sample tiles of 256 × 256 pixels from the map sheets.
In total, we use 10560 labelled training tiles from 95 Siegfried map
sheets and 10 560 unlabelled training tiles from 30 KOMB/KREL map
sheets. An overview of the training dataset is shown in Table 1. 20 full
sheets of KOMB and 20 full sheets of KREL serve as test data. The ratio
between the number of positive samples (containing objects of interest)
and negative samples (not containing objects of interest) is empirically
fixed as 3:1.
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4.2. Detailed network architectures

For the segmentation network 𝑆 = 𝐹◦𝐺, we use a U-Net with an
ASPP block to incorporate multi-scale contexts (Wu et al., 2022b). The
encoder 𝐹 is comprised of five encoding blocks and an ASPP block. The
decoder 𝐺 has five decoding blocks and a sigmoid layer for classifica-
tion. Each encoding/decoding block consists of two consecutive rounds
of convolution, batch normalization, and ELU activation, with a drop-
out layer between the two rounds. Max pooling is used to down-sample
activation maps at the end of each encoding block while transposed
convolution is used to up-sample feature maps at the beginning of
each decoding block. Features extracted from each encoding block are
passed to the corresponding decoding block via skip connections.

For the weak supervision network 𝑈 , we concatenate the bottleneck
features of both source and target images, extracted with the same
encoder 𝐹 . The concatenated features are fed into the co-occurrence
detector 𝑂, a decoder of the same structure as 𝐺, with a sigmoid layer
at the end. Low-level features of source and target images encoded by
𝐹 are also concatenated and fed into the corresponding decoder stage
of 𝑂 via skip connections.

The architecture of the discriminator is illustrated in Fig. 6. It has
five encoding blocks. Blocks 2 to 5 are each comprised of a convolu-
tional layer with stride 2, a batch normalization layer, a leaky-RELU
layer, and a drop-out layer. In the first block, the convolutional stride
is 1 to ensure all input pixels are accounted for, instead a max-pooling
layer with stride 4 is added at the end to down-sample the activation
map. The activations after the fifth encoding block are passed to a fully-
connected classification layer. We empirically found that going deeper
than five blocks tends to lose thin linear structures. We also noticed that
a drop-out layer in every block stabilizes the discriminator training.

4.3. Implementation details

We implement our proposed approach using Keras (Chollet et al.,
2015) with Tensorflow backend (Abadi et al., 2015), and run it on a
single NVIDIA 2070Ti GPU with 11 GB memory. We use the Adam
Optimizer (Kingma and Ba, 2015) with initial learning rate 0.0004
for the segmentation 𝑆 and weak supervision 𝑈 networks, and 0.0001
for the discriminator 𝐷 and the adversarial training of the segmen-
tation. The momentum of Adam is set to 0.9 and 0.99, respectively,
and the weight decay is set to 1e−4. The hyperparameter 𝜆adv for
adversarial learning is set to 0.01 and 0.001 for KOMB and KREL,
respectively, when the co-occurrence rate cooc𝑟 is fixed as 20%. We no-
tice that when the co-occurrence rate increases/decreases, 𝜆adv should
be increased/decreased accordingly to enhance/attenuate adversarial
learning with more/less confidence. The class weights 𝛽𝑗 in Eq. (4)
are set as 0.2, 0.2, 0.4, 0.2, for streams, wetlands, rivers and lakes,
respectively. The prior 𝑃 is 0.02, 0.5, 0.08, 0.4 for the classes men-
tioned above, and 𝜇𝑎 ranges from 0 to 0.4 in our experiment for
different classes under different configurations. To ensure the classifier
training is not destabilized in its early stages, we only start adversarial
learning after both the classifier and the discriminator achieve plausible
accuracies ≥ 0.6.
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Fig. 6. The discriminator architecture.
Fig. 7. Effect of the buffer distance for BDC on accuracy metrics. We fix the
co-occurrence rate as 20% for this analysis.

5. Results

5.1. Impacts of the buffer distance

In the proposed loss function using BDC (2), the buffer distance
plays an important role. We test the sensitivity of this parameter by
varying the scaling factor 𝑠 from 1 to 64 and observe the change of
accuracy metrics. It equals to varying the buffer distance between 0
and 80 m, given that the spatial resolution of both our source and target
data is 1.25 m/pixel. We only regard objects within up to 80 meters’
spatial shifts as valid co-occurring pairs when the source and target
data are carefully geo-referenced in the same coordinate reference
system. When the buffer distance is set as 0, it is equal to using a
normal dice loss function (Milletari et al., 2016). As we can see from
Fig. 7, the overall accuracy increases when the buffer distance increases
from 0 to 20 m, but decreases when the buffer distance gets larger.
While precision is generally improved (fewer false positives) with a
larger buffer distance, recall declines sharply (greater number of false
negatives) when the buffer distance exceeds a certain limit, i.e., 40 m.

5.2. Ablation studies

We test the effectiveness of the discriminator D and the co-
occurrence detector O. Without O, target images will receive all labels
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from their spatially-linked source images without considering regions
of change. The quantitative and qualitative results are illustrated in
Table 2 and Fig. 8, respectively. In Table 2 we see that O helps to
improve the model performance significantly, especially for streams
and wetlands, see also Fig. 8(a). It might be explained by large
variations due to different generalization, delineation and painting
processes, as well as actual changes like stream channelization and
wetland destruction under a large temporal shift between source and
target maps. The resulting large discrepancy between source labels and
target images can harm the model performance if not being addressed.
For completeness, we also test a version where the discriminator is
applied to the latent feature representation rather than to the output.
Table 2 shows that the feature space adaptation barely improves the
performance. D in the output space boosts the segmentation of non-
linear objects,i.e., wetlands, rivers and lakes, but has relatively limited
improvement for linear objects, i.e., streams. In the qualitative results
presented in Fig. 8 we see that adversarial learning corrects implausible
patterns like wetland symbols misclassified as short streams in (c), and
lake boundaries misclassified as rivers in (b).

5.3. Performance analysis

We compare the performances between our model and other state-
of-art domain adaptation models. As the spatial co-occurrence rate
𝖼𝗈𝗈𝖼𝑟 is crucial to our proposed method, we vary it and test its in-
fluence on the model accuracy. Two pairs of datasets are used in our
experiment: Siegfried (source) – KOMB (target) and Siegfried (source) –
KREL (target). As our proposed method is indifferent to specific neural
network architectures, we retrain the state-of-art models (Tsai et al.,
2018; Vu et al., 2019a) with the same architecture as ours, i.e., UNet-
integrated ASPP (Wu et al., 2022b), instead of Deeplab-V2 (Chen et al.,
2017) with ResNet-101 (He et al., 2016) or VGG-16 (Simonyan and
Zisserman, 2015) to fairly compare the general concepts and work-
flows. We regard the vanilla segmentation model trained only on source
images without any adaptation as our baseline. In Table 3 we see
that the baseline model trained only on Siegfried maps yields poor
results on both KOMB and KREL without adaptation. AdaptSeg (Tsai
et al., 2018) and AdvEnt (Vu et al., 2019a) do not lead to a notable
improvement — they generally reduce false negatives and improve
the dice coefficient and the recall score, but increase false positives
and worsen the precision. By comparison, our model, even with a
small 𝖼𝗈𝗈𝖼𝑟 (i.e., 5%), improves the accuracy significantly, especially
for KREL. Interestingly, a larger 𝖼𝗈𝗈𝖼𝑟 does not always enable better
predictions. The accuracy starts declining when 𝖼𝗈𝗈𝖼𝑟 increases from
20% and 10% onward for KOMB and KREL, respectively.

Qualitative comparisons are illustrated in Fig. 9 tested on KOMB
(a–c) and KREL (d–f). Compared with the baseline model, AdvEnt and
AdaptSeg mitigate the false positive segmentation of rivers misled by
lakes and shaded relief from new designs in (b, d, e) and occasionally
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Table 2
Ablation studies. We test the model performance without a discriminator D/co-occurrence detector O. Without O, target images will receive all
labels from their spatially-linked source images without considering the regions of change. The co-occurence ratio 𝖼𝗈𝗈𝖼𝑟 is fixed at 20%. As an
additional ablation, we also apply the discriminator in the feature space rather than to the output.
Method Average Stream Wetland River Lake

Dice F1 Dice F1 Dice F1 Dice F1 Dice F1
Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

w/o D, O 0.424 0.488 0.362 0.374 0.201 0.327 0.473 0.497 0.662 0.699
0.466 0.512 0.314 0.461 0.311 0.346 0.407 0.641 0.833 0.602

w/o O 0.450 0.524 0.364 0.374 0.199 0.269 0.521 0.538 0.717 0.766
0.503 0.547 0.280 0.564 0.422 0.197 0.417 0.757 0.894 0.670

w/o D 0.631 0.701 0.762 0.774 0.432 0.497 0.611 0.651 0.718 0.768
0.672 0.733 0.701 0.865 0.707 0.383 0.501 0.927 0.778 0.759

Proposed 0.629 0.679 0.738 0.757 0.394 0.493 0.685 0.711 0.698 0.743
(feature) 0.607 0.771 0.670 0.872 0.399 0.643 0.645 0.793 0.713 0.776

Proposed 0.713 0.762 0.772 0.781 0.582 0.631 0.680 0.711 0.816 0.843
(output) 0.745 0.780 0.702 0.880 0.828 0.510 0.583 0.912 0.867 0.821
Table 3
Quantitative comparison for different methods with different levels of co-occurrence ratios 𝖼𝗈𝗈𝖼𝑟.

Method Siegfried ←→ KOMB Siegfried ←→ KREL

𝖼𝗈𝗈𝖼𝑟 Dice F1 Precision Recall 𝖼𝗈𝗈𝖼𝑟 Dice F1 Precision Recall

Baseline – 0.395 0.527 0.540 0.514 – 0.186 0.347 0.299 0.412

Proposed

5% 0.533 0.606 0.595 0.617 5% 0.523 0.569 0.534 0.609
10% 0.663 0.722 0.714 0.730 10% 0.589 0.652 0.657 0.648
20% 0.720 0.767 0.741 0.796 20% 0.557 0.609 0.595 0.625
50% 0.706 0.758 0.752 0.763 50% 0.565 0.623 0.608 0.639
100% 0.697 0.743 0.696 0.796 100% 0.545 0.621 0.596 0.649

AdvEnta (Vu et al., 2019a) – 0.433 0.502 0.474 0.533 – 0.255 0.295 0.227 0.422
AdaptSega (Tsai et al., 2018) – 0.406 0.494 0.457 0.538 – 0.230 0.290 0.259 0.331
Self-Traininga (Xie et al., 2020) – 0.458 0.578 0.572 0.585 – 0.178 0.369 0.352 0.387

aDenotes our retrained model. Since our algorithm is not tied to a specific network architecture, we reran (Tsai et al., 2018; Vu et al., 2019a;
Xie et al., 2020) with the same architecture (ASPP-integrated UNet (Wu et al., 2022b)), for a meaningful comparison.
Fig. 8. Qualitative segmentation results with or without discriminator D (in the output space) and co-occurrence detector O. Streams, wetlands, rivers and lakes are represented
in red, green, blue and pink, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
repair implausible topology in (a) for rivers represented as double lines
that are wrongly classified as parallel streams. It also enhances the true
positive segmentation of wetlands (b, c, d, e). However, on the other
hand, they bring false positive predictions at arbitrary locations like
wetlands and lakes in (a, b, d, e). This might be the bottleneck of these
two methods to provide a unique solution that is exactly the expected
output distribution without extra supervision, considering that multiple
solutions can be learned from the diverse and complex output space.
In addition, they inherit the limitation from the base segmentation
model of false detection at out-of-distribution samples, i.e., when the
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map design changes completely, e.g., for lakes (b, f). By comparison,
supervised by only 5% co-occurrence, the segmentation model can
already generalize to the new map designs. Again, a higher 𝖼𝗈𝗈𝖼𝑟 does
not always lead to a better segmentation result.

We also compare our approach with self-training (Xie et al., 2020),
where target predictions generated from the vanilla source segmenta-
tion model are used as pseudo-labels to retrain the target segmentation.
Table 3 shows its limitation for DA and indicates again the importance
of spatial co-occurrence.
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Fig. 9. Qualitative comparisons of segmentation adapted from Siegfried to KOMB (a–c) and KREL (d–f), respectively. We compare our model of different co-occurrence rates with
baseline (vanilla source segmentation without adaptation), AdvEnt (Vu et al., 2019a) and AdaptSeg (Tsai et al., 2018).
6. Discussion

6.1. Co-occurrence detection

In this section, we evaluate our co-occurrence detection model
and discuss its impact on DA. Specifically, we compare the predicted
changes (the reverse of the predicted co-occurrence mask) with the
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corresponding ground truth. Table 4 illustrates the co-occurrence de-
tection results under different configurations, (i.e., with different buffer
distances, 𝖼𝗈𝗈𝖼𝑟, and with or without adversarial training). B00–B80
are experiments with a varying buffer distance from 0 to 80 m without
adversarial learning for KOMB. KB-5%–KB-100% and KL-5%–KL-100%
are experiments with a varying 𝖼𝗈𝗈𝖼𝑟 from 5% to 100% and a fixed
buffer distance of 20 m with adversarial learning for KOMB and KREL,
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Table 4
Co-occurrence detection results. We compare the predicted changes (1 - co-occurrence) under different configurations with the corresponding ground truth. B00–B80 are experiments
(without D) with different buffer distances and a fixed 𝖼𝗈𝗈𝖼𝑟 of 20% for KOMB. KB- and KL- are experiments (with D) with different 𝖼𝗈𝗈𝖼𝑟 and a fixed buffer distance of 20 for
KOMB and KREL, respectively.

B00 B20 B40 B80 KB-
5%

KB-
10%

KB-
20%

KB-
50%

KB-
100%

KL-
5%

KL-
10%

KL-
20%

KL-
50%

KL-
100%

Dice 0.311 0.397 0.363 0.192 0.281 0.405 0.453 0.440 0.363 0.286 0.321 0.258 0.304 0.336
F1 0.353 0.468 0.443 0.282 0.311 0.437 0.486 0.478 0.394 0.311 0.350 0.287 0.343 0.373
Precision 0.244 0.336 0.314 0.249 0.211 0.323 0.345 0.337 0.289 0.215 0.243 0.198 0.226 0.267
Recall 0.642 0.769 0.753 0.326 0.596 0.676 0.822 0.820 0.620 0.562 0.624 0.524 0.708 0.617
respectively. From B00–B80 we see that when the buffer size increases,
the accuracy of co-occurrence detection increases first but then drops
sharply, which is also illustrated in Fig. 10 (a–d), especially for streams.
Comparing B20 with KB-20%, we find that adding adversarial learning
has enhanced the detection, improving the recall score particularly.
Our model generally performs better on KOMB than KREL for co-
occurrence detection. This is reasonable to us since KREL has a larger
difference from Siegfried than KOMB regarding designs of both fore-
ground objects and background textures. We notice that our model
has significantly higher recall than precision despite the experiment
configuration, indicating that it tends to overestimate changes, or in
other words, underestimate co-occurrence. One possible explanation
is that our model is prone to false guidance and thus tends to un-
derestimate the co-occurrence rather than receive more, but possibly
inaccurate supervision. Adding more co-occurrence examples (higher
𝖼𝗈𝗈𝖼𝑟) does not improve the detection necessarily. Nevertheless, in
Fig. 10 we see that the false positive predictions of wetland changes (e–
f) do not impact the target segmentation as much as the false negative
predictions of changes in (a, d, e).

To further investigate the impacts of co-occurrence detection on the
DA performance, we plot the correlation maps between the accuracy
of target segmentation and that of co-occurrence detection under all
experiment configurations, as illustrated in Fig. 11. The Pearson corre-
lation coefficient r is calculated for each class and the overall accuracy.
The more the absolute value approaches 1, the higher the correlation
is. We can find that the overall accuracy of target segmentation highly
correlates with the accuracy of co-occurrence detection. However, this
high correlation is not always true for individual object class: while a
similar correlation can be observed for polygon objects like wetlands
and lakes, this is not obvious for linear objects like streams and
rivers. This is probably because the design of linear objects varies less
between the source and target images than that of polygon objects,
e.g., stroke and density of wetland symbols, or colour and texture of
lakes. Therefore, more co-occurrence supervision can bring a more
significant benefit to the latter.

6.2. Limitations of DA in Output Space

As demonstrated from previous results, simply enforcing the cross-
domain structural similarity through adversarial learning in the output
space can only correct the topology/geometry of the prediction to
a fairly limited degree without extra supervision. This might be ex-
plained by the complexity of geospatial patterns when compared with
street-view images (Vu et al., 2019a; Tsai et al., 2018) and satellite
images of settlements (Iqbal and Ali, 2020; Peng et al., 2021), where
purely output space adaptation can already achieve remarkable results.
Adding supervision from co-occurring labels improves the segmentation
significantly. Nevertheless, the co-occurrence supervision per se can
bring false positive segmentation when the model tends to overestimate
the changes at (1) wetland symbols as streams (2) power lines (3)
text labels, as presented in Fig. 12 (a, c). While adversarial learning
helps to reduce false positive segmentation for (1), as depicted in (a),
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it occasionally cuts off true intersections of streams and wetlands. In (b)
we see that it also increases false positive segmentation of streams at
lake boundaries, possibly overfitting the topology where streams flow
in/out of lakes. More topology constraints can be explored in the future
to enhance the awareness of the discriminator regarding topology-
correctness. (c) shows another limitation of our DA method to reduce
false segmentation of power lines and blue labels. One possible cause is
the small proportion of the objects occupying the whole map sheet and
the resulting scarcity of training samples. Schemes like active learning
can be potentially applied to increment samples of these objects.

7. Conclusion

Our work has investigated the DA problem in the context of seg-
menting hydrological features from historical maps. We have followed
a standard DA approach using adversarial training at the prediction
output, specifically the output entropy, to enforce the structural con-
sistency between the source and target output. However, a unique
solution that matches the exact output distribution cannot be found
merely through adversarial learning without extra supervision, consid-
ering diverse and complex geographical patterns when compared with
street-view images in other applications. To overcome this bottleneck,
we have made use of geographical objects that co-occur in the source
and target domains. Even if they do no perfectly co-incide, such objects
provide weak supervision to better bridge the domain gap. Specifically,
we have proposed a novel co-occurrence detection network to detect
unchanged objects between co-registered images in a self-supervised
way with a novel loss function that gives a distance tolerance to relax
exact spatial co-incidence to a weaker notion of spatial co-occurrence,
borrowing the concept of a ‘‘buffer’’ from GIS. Empirically, the new
loss function improves model performance within a certain distance
tolerance. Obviously, the proposed approach is tailored to the spe-
cific setting where co-registered instances from the source and target
domains exist and a significant amount of co-occurring objects are
included. If that assumption is met, as in many geo-spatial analysis
tasks, co-occurrence provides a strong cue for DA. In our experiments,
we found that it supersedes generic DA methods even with quite lim-
ited co-occurrence supervision. Expectedly, the overall segmentation
accuracy is strongly correlated with the performance of co-occurrence
detection. However, a higher rate of co-occurring examples does not
necessarily lead to better co-occurrence detection and better DA for
target segmentation. In fact, our detector tends to underestimate the
co-occurrence. On the one hand, it tries to avoid guiding target seg-
mentation with false co-occurrence. On the other hand, the limited
supervision resulted from underestimated co-occurrence also bounds
the accuracy of target segmentation. While co-occurrence supervision
already improves the performance of DA significantly, the topology
and geometry of predicted outputs can be further corrected through
adversarial learning. Nevertheless, we find that the discriminator can
only gain limited knowledge in topology-correctness, which might be
improved in the future through explicit constraints. In addition, active
learning can be potentially leveraged to handle the scarcity of training



ISPRS Journal of Photogrammetry and Remote Sensing 197 (2023) 199–211S. Wu et al.
Fig. 10. Co-occurrence detection. Given the same input pair, (a–d) are the detection results with buffer distances of 0, 20, 40, 80 m and a fixed co-occurrence rate of 20%; (e–g)
are the detection results with varying co-occurrence rates at 5%, 20%, 100% and a fixed buffer distance of 20 m. We revert the co-occurrence mask to highlight changes.
Fig. 11. Correlation between co-occurrence detection and DA. We present F1 and Dice of both co-occurrence detection (𝑥-axis) and target segmentation (𝑦-axis) under all different
configurations. The Pearson correlation coefficient r is calculated for each class and the average accuracy. The more the absolute value approaches 1, the higher the correlation is.
samples for labels and power lines and thus to provide the adversarial
learning with sufficient examples of these implausible patterns. Despite
the fact that our application is the segmentation of historical maps,
the proposed framework is general enough to be applied to other
geo-spatial data (e.g., satellite imagery) and potentially extended to
other relevant tasks like unsupervised change detection. Our described
scheme can potentially serve as a tool to detect and track changes in
various geo-spatial contexts, where domain gaps occur across time or
between different sensors and mapping methods, but can be bridged
with the help of spatial co-occurrence.
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