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Semi-decentralized Zeroth-order Algorithms for

Stochastic Generalized Nash Equilibrium Seeking
Suli Zou, Member, IEEE, John Lygeros, Fellow, IEEE

Abstract—In this paper, we address the problem of stochastic
generalized Nash equilibrium (SGNE) seeking, where a group of
noncooperative heterogeneous players aim at minimizing their
expected cost under some unknown stochastic effects. Each
player’s strategy is constrained to a convex and compact set
and should satisfy some global affine constraints. In order to
decouple players’ strategies under the global constraints, an
extra player is introduced aiming at minimizing the violation
of the coupling constraints, which transforms the original SGNE
problems to extended stochastic Nash equilibrium problems. Due
to the unknown stochastic effects in the objective, the gradient
of the objective function is infeasible and only noisy objective
values are observable. Instead of gradient-based methods, a semi-
decentralized zeroth-order method is developed to achieve the
SGNE under a two-point gradient estimation. The convergence
proof is provided for strongly monotone stochastic generalized
games. We demonstrate the proposed algorithm through the
Cournot model for resource allocation problems.

Index Terms—Stochastic generalized Nash equilibrium, un-
known stochastic effects, semi-decentralized zeroth-order algo-
rithm, gradient estimation, convergence.

I. INTRODUCTION

Generalized Nash Equilibrium (GNE) problems have re-

ceived extensive attention due to their applications in en-

gineering fields, for instance, energy management, intelli-

gent transportation, telecommunication, machine learning and

cloud computing, to name a few [1]–[3]. This has motivated

research on Nash equilibrium (NE) seeking algorithms, usually

associated with the solutions of variational inequality (VI)

problems [4]. Several methods to solve GNE problems have

been developed, such as the projection method [1], penalty-

based method [5], augmented Lagrangian [6], ADMM [7] and

other operator-splitting methods [8], [9]. All of these methods

are (sub)gradient-based approaches which are commonly used

in distributed optimization problems.

In many practical scenarios, stochastic effects affect players’

payoffs. As a result, players usually aim at optimizing the pay-

offs in the sense of expectation [10], [11], leading to stochastic

games. However, the form of individual objective functions or

their derivative/gradient may not be known; this is the case, for

example, if the stochastic effects are unknown, or computation

of gradients is computationally demanding. Moreover, when

the stochastic variable changes greatly in practice, there will

be a large deviation between the expected solution and the
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real solution. One strategy players can adopt in such cases

may be to take decisions based on the rough estimation of

the payoff performance at some played strategies [12]. The

chosen alternative is then played, its payoff is observed and

used to update the estimation for that particular strategy. This

procedure is repeated, generating a discrete time stochastic

process which is called the learning process. Although players

observe only their own payoffs, these values are affected by

the choices of other players, revealing information on the

game as a whole. The challenge is to determine when a

learning procedure based on payoff observations can induce

convergence to an equilibrium.

Current works focus on developing learning procedures for

stochastic NE seeking, notably using reinforcement learning

(RL) [13]. Although solving game theory problems by RL

is not a new idea [14], the available results focus mostly on

problems with finite action sets. Some works proposed RL

algorithms to solve problems with continuous action sets [15],

[16] wherein continuous action learning automata (CALA)

presented in [15] could be extended to solve NE problems.

The results, however, rely on stochastic approximation [17],

[18] and require a boundedness assumption on the second

moment of the stochastic gradient. Recent works have studied

zeroth-order (ZO) algorithms [19], closely related to CALA.

An added benefit of ZO algorithms is that they can be directly

applied to non-smooth problems, as they do not require the

computation of gradients; for this reason they are also known

as “gradient-free” methods.

The performance of ZO algorithms for convex problems

have been well studied in the centralized case [19], [20]. The

work in [21] integrated the idea of zeroth-order optimization

with online ADMM and compared the convergence rate with

first-order online algorithms. In [22], [23], the distributed

problems treated are essentially consensus problems, where

the payoff of the players is not directly affected by decisions

of other players. In [24], a ZO algorithm has been adapted

to solve stochastic NE problems and prove convergence for

strongly monotone games and generalized potential games.

The results were subsequently extended to monotone games

in [25], wherein the player’s cost function is constrained not

to grow faster than linear functions.

Here, we consider a general class of stochastic generalized

Nash equilibrium (SGNE) problems with unknown stochastic

objectives and affine coupling constraints. We first deal with

the coupling constraints by transforming the SGNE problem

to an extended SNE problem by introducing an extra dual

player whose goal is to minimize the violation of the cou-

pling constraints. We propose a semi-decentralized zeroth-
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order (DZO) algorithm to achieve the SGNE of a class of

strongly monotone games, regarding the dual player as a

coordinator which is similar to the structure in [1]. Unlike the

existing literature, we adopt two-point sampling to estimate the

gradient of the objective function, and introduce an averaging

process to reduce the variance of the stochastic effects. To

ensure the convergence to the neighborhood of SGNE for

strongly monotone stochastic generalized games, we introduce

a regularization term to the dual update based on the idea of

Tikhonov regularization in [26], [27].

In section II, we give a standard formulation of the stochas-

tic generalized game and SGNE, and introduce an extended

game for SGNE for tackling coupling constraints and en-

forcing distributed optimization. Then, a semi-decentralized

zeroth-order algorithm is presented to solve the extended game

in Section III. We give in Section IV application scenarios

of resource allocation to demonstrate our results. Finally,

Section V draws conclusions and future work.

II. FORMULATION OF GAME MODEL

In this paper, we use R
d to represent the space of d dimen-

sional vectors with 〈·, ·〉 : Rd×R
d → R denoting the standard

inner product and ‖·‖ the corresponding norm. We distinguish

vectors by boldface from scalars (d = 1). Rd
≥0 represents the

set of d dimensional vectors with non-negative coordinates.

If N , {1, · · · , N} is a set of indexes, given N vectors

xi ∈ R
d for all i ∈ N , we denote x , [x⊤

1 , · · · ,x⊤
N ]⊤ ∈ R

Nd

and x−i , [x⊤
1 , · · · ,x⊤

i−1,x
⊤
i+1, · · · ,x⊤

N ]⊤ ∈ R
(N−1)d. The

operator ΠX ‖x‖ : R
d → R

d denotes the projection of the

vector x into the closed set X .

A. Stochastic Generalized Game

Consider N players indexed by N . Suppose that the players

choose strategies ui ∈ R
d, i ∈ N to minimize individual costs,

which depend on the strategies of all the players. Denote Ui ⊂
R

d the local constraint set of player i; we require that ui ∈ Ui.
In addition, assume that the strategies of all the players are

constrained by an affine coupling constraint

u ∈ C , {u ∈ R
Nd |Au ≤ b}, (1)

where A ∈ R
m×Nd and b ∈ R

m. Hence, the strategy set of

player i, denoted by Qi, is

Qi(u−i) = {ui ∈ Ui | (ui,u−i) ∈ Q}, (2)

where Q , U ∩ C with U = U1 × · · · × UN .

The individual cost of player i is assumed to be affected by

uncertainty ξi, and is denoted Fi(ui,u−i; ξi). In a determinis-

tic game, ξi is not present and each player aims at minimizing

their real costs. In a stochastic game on the other hand, we

assume that, players try to optimize their expected cost over

the realizations of ξi. Hence, the objective of each player is

to find an optimal strategy to minimize the expected cost with

respect to other players’ strategies,

u∗
i = argmin

ui∈Qi(u−i)

fi(ui,u−i) where fi , Eξi [Fi(ui,u−i; ξi)].

The following assumption is imposed:

Assumption 1. The set C satisfies Slater’s constraint qualifi-

cation. Moreover, for each player i ∈ N ,

• The set Ui is compact and convex, and satisfies Slater’s

constraint qualification.

• The expected cost fi(ui,u−i) is convex w.r.t. ui, for each

u−i, and continuously differentiable in u.

We are interested in characterising the SGNE of the result-

ing stochastic generalized game

G = 〈N , {ui}i∈N , {Qi}i∈N , {fi}i∈N 〉 .
Definition 1 (Stochastic Generalized Nash Equilibrium). A

strategy profile u∗ is called a SGNE of the game G if

fi(u
∗
i ,u

∗
−i) ≤ fi(ui,u

∗
−i), ∀ui ∈ Qi(u

∗
−i), ∀i ∈ N .

We denote the set of SGNEs for game G by SGNE(G).

The solutions of SGNE problems are closely related

to solutions of variational inequality (VI) problems. Un-

der Assumption 1, the VI problem is defined for game

G, denoted by VI(Q,M ), where the operator M(u) =
[M1(u); · · · ;MN (u)] : RNd → R

Nd maps a strategy profile

u to the stacked gradients of the cost functions of each player

with respect to their own strategies,

Mi(ui,u−i) =
∂fi(ui,u−i)

∂ui

. (3)

We impose an assumption on the operator M .

Assumption 2. The operator M defined by (3) is τ -strongly

monotone and L1-Lipschitz continuous in Q.

If we define the set of solutions to VI(Q,M ) as SOL(Q,M ),

then SOL(Q,M) ⊂ SGNE(G), i.e. a solution to VI(Q,M ) is

also a SGNE of G, under Assumption 1 [4][Theorem 5]. Here,

we are only interested in equilibria in SOL(Q,M ), known as

variational SGNE (VSGNE).

Lemma II.1 (Existence & Uniqueness of VSGNE). Un-

der Assumptions 1 and 2, VI(Q,M ) has a unique solution

[26][Theorem 2.3.3].

B. Equivalent Extended Game

In the literature, an extended game has been proposed to

solve the GNE problems by introducing an extra player to

enforce the coupling constraint. By doing this, the original

GNE problem is transformed to a NE problem and the

resulting NE is equivalent to the original GNE, [24]. Such

a technique can be naturally extended to SGNE problems.

Consider an additional player 0, referred to as the dual

player, with strategy λ, whose objective is related to the

coupling constraint specified in (1)

λ∗ = argmin
λ∈R

m
≥0

f0
0 (λ,u) , −λ⊤(Au − b). (4)

To ensure that the coupling constraint is satisfied, it should be

incorporated into the cost functions of the original N players,

referred to as primal players. That is, for each i ∈ N ,

u∗
i = argmin

ui∈Ui

f0
i (ui,u−i,λ) , fi(ui,u−i)− f0

0 (λ,u).

(5)
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This leads to the extended game

G0 =
〈
N 0, {ui}i∈N ∪ {λ}, {Qi}i∈N ∪ R

m
≥0, {f0

i }i∈N 0

〉
,

where N 0 , N∪{0}. Compared with the game G, each of the

cost functions of the primal players has an additional term that

depends on the strategy of the dual player, which indirectly

encodes the coupling constraints. Note, however, that the only

constraints remaining in G0 are the local constraints of each

player.

In the interest of brevity we use η = (u;λ) ∈ R
Nd+m

to denote the strategy profile of the extended game. Then

define an operator M0(η) = [M0
1 (η); · · · ;M0

N(η);M0
0 (η)] :

R
Nd+m → R

Nd+m, a stacked gradient mapping for the

extended game G0,

M0
i (η) =

∂fi(ui,u−i)

∂ui

+A⊤
i λ, ∀i ∈ N

M0
0 (η) = −(Au− b),

(6)

where Ai ∈ R
m×d is the i-th component block of A. Under

this definition, we derive that for any two strategies of all the

players η1,η2 ∈ R
Nd+m,

〈
M0(η1)−M0(η2),η1 − η2

〉

=
〈
M(u1)−M(u2),u1 − u2

〉
. (7)

Lemma II.2. Under Assumptions 1 and 2, M0(u,λ) defined

in (6) is a monotone operator.

Proof. By the monotonicity of M and (7), we have the

conclusion.

The following lemma gives some results of the extended

game G0 and connect them with the original game G.

Lemma II.3 ( [4]). Under Assumptions 1 and 2 for game G,

we have

• η∗ is a stochastic Nash equilibrium (SNE) of G0 if and

only if η∗ ∈ SOL(U × R
m
≥0,M

0);
• if η∗ is a SNE of G0, then u∗ is a SGNE of G;

Therefore we can achieve the SGNE of game G by com-

puting the SNE of game G0, which could in principle be

determined gradient-based, e.g. [1], [8]. In many practical sit-

uations, however, the forms of the objective functions may be

unknown even to the players themselves, since the probability

distribution of ξi (or, depending on Fi, its moments) is difficult

to be aware of. This motivates a gradient-free algorithm

wherein players make decisions based on observations of

objective values at a given strategy. In the following, we

develop a semi-decentralized zeroth-order algorithm to solve

such problems.

III. SEMI-DECENTRALIZED ZEROTH-ORDER ALGORITHM

A. Background: DZO algorithms

Before giving the proposed algorithm, we provide some

basic knowledge about ZO algorithms applied to the extended

game G0 analyzed above.

The centralized ZO algorithm is analyzed via the idea of

Gaussian approximation [19], which can be easily general-

ized to the distributed cases by introducing other players’

strategies. Suppose that the index k denotes the iteration of

the ZO algorithm and vectors with subscript k represent the

corresponding values of the vectors at iteration k. Given the

following Gaussian distribution,

xi,k = ui,k + σk · vi,k, with vi,k ∼ N (0, Id), (8)

the Gaussian approximation of f0
i (·) with parameter σk is

defined as

f0
i,σk

(ui,k,u−i,k,λk)

,

∫

Rd

f0
i (xi,k,u−i,k,λk) p(xi,k|ui,k, σ

2
kId)dxi,k, (9)

where p(·) denotes the probability density function of an R
d

valued random variable with mean ui,k and covariance matrix

σ2
kId.

Taking the partial derivative of f0
i,σk

(ui,k,u−i,k,λk) with

respect to ui,k, we derive the stochastic gradient of the

Gaussian approximation of the original objective function,

denoted by M̃0
i (ηk), i.e.,

M̃0
i (ηk) ,

∂f0
i,σk

(ui,k,u−i,k,λk)

∂ui,k

=

∫

Rd

f0
i (xi,k,u−i,k,λk) ·

xi,k − ui,k

σ2
k

p(xi,k|ui,k, σ
2
kId)dxi,k

=

∫

Rd

(

f0
i (xi,k,u−i,k,λk)− f0

i (ui,k,u−i,k,λk)
)

xi,k − ui,k

σ2
k

· p(xi,k|ui,k, σ
2
kId)dxi,k. (10)

The last equality holds since
∫

Rd

xi,k − ui,k

σ2
k

· p(xi,k|ui,k, σ
2
kId)dxi,k = 0, (11)

which is 1/σk of the expectation of vi,k.

Assumption 3. The expected cost function fi(ui,u−i), i ∈ N
grows no faster than a finite-degree polynomial function of ui

as ‖ui‖ → ∞.

Lemma III.1. Under Assumptions 1-3, the following holds

for each i ∈ N

M̃0
i (ηk) =

∫

Rd

M0
i (xi,k,u−i,k,λk)p(xi,k|ui,k, σ

2
kId)dxi,k

(12)

Proof. The proof is provided in Appendix A.

B. Primal updates: Averaging process

Compared to this standard DZO algorithm, our game in-

cludes additional unknown stochastic effects. In this case, we

can only obtain noisy observations of the stochastic cost for

each primal player

F 0
i (ui,u−i,λ; ξi) = Fi(ui,u−i; ξi) + λ⊤(Au− b),

for some realization ξi of the uncertainty.

The algorithm proposed in [24] used the current noisy

observation, as mentioned in [19], as an estimate of the
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gradient; here we develop an alternative approximation based

on averaging. To this end, the following assumption on the

second moment of stochastic effects.

Assumption 4. The second moment of the stochastic effects

on the function value is finite, i.e., there exists a constant D1,

such that

Var[F 0
i (·; ξ)] = Eξ[(F

0
i (·; ξ)− f0

i (·))2] ≤ D1, ∀i ∈ N .
(13)

We compute an approximation g0i of the pseudo-gradient

g0i (ηk,xi,k) =
f̃0
i,k(xi,k,u−i,k,λk)− f̂0

i,k(ui,k,u−i,k,λk)

σk

× vi,k, (14)

where f̃0
i,k(xi,k,u−i,k,λk), f̂

0
i,k(ui,k,u−i,k,λk) are estima-

tions of f0
i,k(xi,k,u−i,k,λk) and f0

i,k(ui,k,u−i,k,λk) respec-

tively, based, respectively, on T1 and T2 noisy observations,

f̃0
i,k(xi,k,u−i,k,λk) =

1

T1

T1∑

t1=1

F 0
i (xi,k,u−i,k,λk; ξi,k,t1 ),

(15)

f̂0
i,k(ui,k,u−i,k,λk) =

1

T2

T2∑

t2=1

F 0
i (ui,k,u−i,k,λk; ξi,k,T1+t2).

(16)

We then update the strategy of the primal players by

ui,k+1 = ΠUi
‖ui,k − hk · g0i (ηk,xi,k)‖, ∀i ∈ N , (17)

where hk is a step-size. (10) can be estimated as

M̃0
i (ηk) ≈

∫

Rd

g0i (ηk,xi,k) · p(xi,k|ui,k, σ
2
kId)dxi,k. (18)

C. Dual updates: Regularizing term

Even though the operator M for the game G is assumed to

be strongly monotone, the operator M0 for the extended game

G0 is merely monotone due to the introduction of the dual

player. A convergent algorithm can nonetheless be developed

by the so-called Tikhonov regularization [26], [27], where a

strongly monotone operator is constructed that tends to the

original monotone one as the iteration goes to infinity. As the

loss of strong monotonicity comes from the dual variable λ,

we only add regularization to the dual update,

λk+1 = ΠRm
≥0
‖λk + hk · (Auk − b− rkλk)‖, (19)

where rk > 0 is the regularizing parameter that diminishes as

the iteration k increases.

Therefore, instead of solving a VI problem of the monotone

operator M0, at each iteration k we solve a VI problem with

the new mapping M0
reg,k defined as

M0
reg,k(ηk) = M0(ηk) +








0
...

0
rk · λk







, (20)

which is strongly monotone with parameter min{τ, rk}, based

on Assumption 2 and (7). Note that as rk ↓ 0, M0
reg,k

converges to M0(η).
The solution sequence {yk} of the variational inequality

VI(U × R
m
≥0,M

0
reg,k), say yk ∈ SOL(U × R

m
≥0,M

0
reg,k(y)),

is called the Tikhonov sequence.

Lemma III.2 (Theorem 12.2.3 in [26]). Under Assumptions 1

and 2, {yk} exists and is unique for each k. Moreover, for

rk ↓ 0, {yk} is uniformly bounded by a constant My and

converges to the least norm solution to VI(U × R
m
≥0,M

0).

Lemma III.3. Under Assumptions 1 and 2, if the sequence

rk is decreasing then

‖yk − yk−1‖ ≤
|rk−1 − rk|

κrk
My,λ, ∀k ≥ 1. (21)

where My,λ is a norm bound on the dual term in the Tikhonov

sequence and κ = min{ τ
r0
, 1}.

Proof. The proof is similar to the proof of [28][Lemma 3]

based on (7) and Lemma II.2, but somewhat tighter in our

case.

Note that we do not define a Gaussian approximation for

player 0 because the dual player can obtain exact gradient

information and does not need the gradient estimation.

D. ZO Algorithm for Stochastic Game

To summarize our algorithm for the stochastic game G0, the

pseudocode for our algorithm is written as follows.

Algorithm 1 Regularized DZO (RDZO) Algorithm

Require:

Initialize k ← 0, ui,k, ∀i ∈ N and λk;

The number of iterations K;

1: while k < K do

2: ηk = [u1,k; · · · ;uN,k;λk];
3: hk = 1

(k+1)a , σk = 1
(k+1)b

, rk = 1
(k+1)c ;

4: for i ∈ N do

5: Generate

vi,k ∼ N (0, Id), xi,k = ui,k + σk · vi,k

F 0
i (xi,k,u−i,k,λk; ξi,k,t1), ∀t1 ∈ {1, · · · , T1},

F 0
i (ui,k,u−i,k,λk; ξi,k,T1+t2), ∀t2 ∈ {1, · · · , T2}

6: ui,k+1 = ΠXi
‖ui,k − hkg

0
i (ηk,xi,k)‖ with g0i spec-

ified in (14); {Primal update}
7: end for

8: λk+1 = ΠR
m
≥0
‖λk + hk · (Auk − b − rkλk)‖; {Dual

update}
9: k ← k + 1

10: end while

11: return ui,k, ∀i ∈ N and λk

Theorem III.1. Assume that Assumptions 1-4 hold. If set the

step size hk = 1
ka , Gaussian smoothing parameter σk = 1

kb

and relugarized term rk = 1
kc with 0 < a, b, c < 1, such that

∞∑

k=0

hkrk =∞,
∞∑

k=0

h2
k <∞,

∞∑

k=0

hkσk <∞,
∞∑

k=0

h2
k

σ2
k

<∞.
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Then, the decision variable ηk converges to a Nash Equilib-

rium η∗ = [u∗;λ∗] of the extended game G0 and u∗ is the

unique VSGNE of the original game G.

Proof. The proof is given in Appendix B.

For example, the values of a, b, c could be set as a =
0.85, b = 0.3, c = 0.15 respectively, which satisfy the

conditions in Theorem III.1. We also adopt these values in

the simulation.

Corollary III.1. The convergence rate of Algorithm 1 is

related to the magnitude of stochastic effects D1, the bound

D2 of ‖A(uk−y−λ,k)‖, the number of noisy observations T1

and T2, the Lipschitz parameters L1, the strongly monotone

parameter τ and the dimension of the decision variable d.

Proof. The proof is given in Appendix C.

Compared with using a single noisy observation for estima-

tion in [19], [24], two-point estimation, even though the cost

values at two points are affected by different stochastic effects,

would achieve a better performance, i.e. reducing the variance

of the algorithm. This observation can be explained from the

point of view of variance reduction in the stochastic gradient

descent (SGD). Equation (14) can be rewritten as follows,

g0i (ηk,xi,k)

=
f̃0
i,k(xi,k,u−i,k,λk)− f0

i,k(xi,k,u−i,k,λk)

σk

· vi,k (22)

+
f0
i,k(xi,k,u−i,k,λk)− f0

i,k(ui,k,u−i,k,λk)

σk

· vi,k (23)

+
f0
i,k(ui,k,u−i,k,λk)− f̂0

i,k(ui,k,u−i,k,λk)

σk

· vi,k.

(24)

Here, (22), (24) are related to the stochastic effects and

disappear under the expectation Eξi [g
0
i (ηk,xi,k)]. Since (23)

reduces to 0 when the algorithm converges, the variance of

the SGD interpretation (18) relies only on the second moment

of stochastic effects, which can be regulated by the averaging

processes of (15) and (16).

IV. APPLICATION SCENARIOS & SIMULATION RESULTS

To demonstrate the efficacy of the proposed approach, we

consider a resource allocation problem where a set of factories

produce a bundle of goods and compare the simulation results

of the proposed RDZO algorithm with the algorithm developed

in [24], which we refer to as PBZO. Moreover, we consider

a case that the distribution of the stochastic effects is known,

under which the SNE problem turns into a deterministic one

by taking the expectation of player’s cost and the gradient

information could be obtained. The NE of such a game can

be implemented by applying a gradient-based algorithm. We

also compare the value of this case with above two algorithms

and refer to it as “Expectation”.

Consider N factories that manufacture d different products

and let ui ∈ R
d denote the production of the i-th factory. Each

factory has a maximum production capacity Ci ∈ R
d
+, leading

to local constraints of the form ui ∈ [0, Ci]. Moreover, limited

demand induces coupling constraints among the productions

of the form C = {u|Au ≤ b, A ∈ R
d×Nd, b ∈ R

d}, where

A = [Id| · · · |Id] is the concatenation of N identity matrices

and, in the notation of earlier sections, m = d. For the

cost of each factory, we use a quadratic production cost and

linear price function with respect to the production, which are

standard assumptions in Cournot game [24]. Therefore, the

cost function for each player i is expressed by the difference

between the production cost and the price times production

fi(ui,u−i) = u⊤
i ui − 2

(

p0 −
1

N

∑

j∈N

uj

)⊤

︸ ︷︷ ︸

p(u)

ui, (25)

where p(u) is the linear price function related to the produc-

tion of all the factories and p0 ∈ R
d
>0 is the upper bound

price.

Regarding the stochastic effects, the cost of each factory is

affected by some unexpected disturbances, like bad weather or

delivery losses. For the simplicity of simulation, all stochastic

effects are represented by an additive Gaussian noise to the

cost function fi with the distribution N ∼ (ξu, ξs).

A. Numerical results

For the initialization of our simulation, we set N = 8, d =
4, Ci = 10. b is chosen as [50 95 67 110] and each

entry of p0 is chosen as 12. The number of iterations is set

to K = 50000. In the following, we consider 4 cases for

simulation.

Case 1: The distribution of stochastic effects is known.

In this case, assume that the distribution of the stochastic

effects is known and set ξu = 8, ξs = 4. Taking the expectation

of the cost function turns the stochastic optimization into a

deterministic one. Then the approximation g0i is obtained by

using the true expected cost instead of noisy observations in

(15) and (16). At each iteration, as specified in Algorithm 1, it

generates an xi,k randomly for computing g0i . If we implement

the proposed algorithm for multiple times, the iteration process

may be different even though all the settings are the same.

Here we give two implementations in Fig. 1 to show the

evolution of the RDZO and PBZO respectively.

From the Fig. 1(a), both RDZO and PBZO converge to the

neighborhood of the SGNE, while PBZO has drifting issues

that oscillates near the equilibrium. Moreover, comparing

Fig. 1(a) and Fig. 1(b), we find the practical performance of

PBZO varies a lot even under the same game setting, while

RDZO does not have such an issue. In order to explore this

phenomenon, we repeat RDZO and PBZO for 100 times under

the same setting and record the average value at each iteration,

as shown in Fig. 2. For purpose of simplification, the number

of iteration is set to be 5000 in these repetitions.

Case 2: Unknown stochastic effects without averaging

process.

We generate the unknown stochastic effects by adding some

random noise to the expected cost. In this case, we only

observe the noisy cost once, i.e. T1 = T2 = 1. If the added

random noise level is relatively small, RDZO still works better

than PBZO, as shown in Fig. 3. When the noise level is
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(b) Another implementation of RDZO and PBZO under the same setting

Fig. 1. Known stochastic effect.
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Fig. 2. Average performance under the same game setting.

increased, RDZO also suffers from the drifting issue and may

be worse than PBZO as shown in Fig. 4 that gives the results

when the noise value is comparable with the value of the

optimal cost.

Case 3: Unknown stochastic effects with averaging process

(20 times).

If we add averaging process to the RDZO algorithm, e.g.

T1 = T2 = 20, the drifting issue is alleviated dramatically, by

comparing the red curves in Fig. 4 and Fig. 5.

Figure 5, on the other hand, shows that the drifting issue

of PBZO is not alleviated even when the averaging process is

applied. This is consistent to the theoretical analysis that the

variance of the gradient estimation in PBZO depends also on

the magnitude of player’s cost.

Case 4: Scalability.

We increase the number of the players to N = 30 and

keep the other game settings the same. From Fig. 6, RDZO
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Fig. 3. Low noise level, no averaging.
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Fig. 4. High noise level, no averaging.

converges to SGNE after thousands of iterations while PBZO

seems not to converge. In fact, PBZO would also converge but

it needs millions of iterations.

V. CONCLUSIONS AND FUTURE WORK

We studied the Nash equilibrium seeking for stochastic

generalized games wherein the objective functions of players

are affected by some unknown uncertainties. This results in

unknown form and gradients of the objectives, which makes

the existed gradient-based method inapplicable. Hence, a semi-

decentralized zeroth-order algorithm is presented with the idea

of estimating the gradient by observing noisy cost values. Dif-

ferent from the methods in the literature, the proposed method

applies a two-point estimation and reduces the stochasticity

by introducing the averaging process. Moreover, we add a

regularized term to the dual update to ensure the convergence

to the unique VSGNE of the strongly monotone game. Future

work will focus on finding a better way to regularize stochastic

effects, potentially testing some common methods for SGD,

like SGD with momentum.
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APPENDIX

A. Proof of Lemma III.1

For each i ∈ N , j ∈ {1, · · · , d}, we have

M̃0
i,j(η) = −

∫

Rd−1

p(xi,−j |ui,−j , σ
2
Id−1)

1√
2πσ

d(xi,−j)

×
(

f0
i (xi,u−i,λ)e

−
(xi,j−ui,j)

2

2σ2

) ∣
∣
∣

+∞(xi,j)

−∞(xi,j)

+

∫

Rd

∂f0
i (xi,u−i,λ)

∂xi,j

p(xi|ui, σ
2
Id)dxi

=

∫

Rd

M0
i,j(xi,u−i,λ)p(xi|ui, σ

2
Id)dxi (26)

The second last equality holds under Assumption 3,

lim
xi,j→∞(−∞)

f0
i (xi,u−i,λ)e

−
(xi,j−ui,j)

2

2σ2 = 0 (27)
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Also, the same result holds for M̃i,j(u):

M̃i,j(u) =

∫

Rd

Mi,j(xi,u−i)p(xi|ui, σ
2
Id)dxi (28)

B. Proof of Theorem III.1

Under Assumption 2, X 0 , X ×R
m
≥0 is closed and convex.

The idea is to prove the expectation of ‖ηk+1−yk‖ converges

almost surely to 0 and subsequently obtain the expectation of

‖ηk+1 − η∗‖ converges to 0 given limk→∞ yk = η∗.

By yk ∈ SOL(Q,M0
reg,k), we have

yi,k = ΠQi
‖yi,k − hkM

0
reg,k,i(yi,k)‖, ∀i ∈ [N + 1]. (29)

For any i ∈ [N ], the following is derived based on the

contractive property of the projection and M0
reg,k,i = M0

i :

‖ηi,k+1 − yi,k‖2

≤ ‖ηi,k − yi,k‖2 + h2
k

∥
∥g0i (ηk,xi,k)−M0

i (yk)
∥
∥
2

− 2hk

〈
ηi,k − yi,k, g

0
i (ηk,xi,k)−M0

i (ηk)
〉

− 2hk

〈
ηi,k − yi,k,M

0
i (ηk)−M0

i (yk)
〉

(30)

Taking the telescopic sum of (30) over N players and then

the expectation over Ξk = {vi,k, ξi,k,1, · · · , ξi,k,T1+T2}, the

following is derived

EΞk

N∑

i=1

‖ηi,k+1 − yi,k‖2

≤
N∑

i=1

‖ηi,k − yi,k‖2 + 2hk〈λk − yλ,k,−A(uk − y−λ,k)〉

− 2hkτ‖uk − y−λ,k‖2 + 2hkσkL1N
1
2 d

1
2 ‖uk − y−λ,k‖

+ 5
h2
k

σ2
k

N∑

i=1

(
D1

T1
+

D1

T2

)

d+ 10h2
kL

2
1‖uk − y−λ,k‖2

+ 5h2
k

N∑

i=1

[

2L2
0(d+ 4)2 +

σ2
k

4
L2
1(d+ 3)3 + ‖λk − yλ,k‖2

× 2‖Ai‖2 + 4‖Ai‖2(d+ 4)2
(
‖λk − yλ,k‖2 + ‖yλ,k‖2

)
]

,

where ‖A(uk − y−λ,k)‖ ≤ D2 since both uk and y−λ,k are

bounded. Discussing the update for the dual player gives,

‖λk+1 − yλ,k‖2

≤− 2hk〈λk − yλ,k,−A(uk − y−λ,k)〉+ h2
krk‖λk − yλ,k‖2

+ ‖(1− hkrk)(λk − yλ,k)‖2 + (h2
krk + h2

k)D
2
2

Hence, we can derive that

EΞk
‖ηk+1 − yk‖2

≤(1− 2hktk + h2
kr

2
k + h2

krk + c1h
2
k)‖ηk − yk‖2

+ (h2
krk + h2

k)D
2
2 + 2hkσkL1N

1
2 d

1
2 ‖uk − y−λ,k‖

+ 5
h2
k

σ2
k

N∑

i=1

(
D1

T1
+

D1

T2

)

d+ c2h
2
k (31)

where tk = min{τ, rk}, ∀k ≥ 0 and c1, c2 are the coefficients

of h2
k‖ηk − yk‖2 and h2

k respectively.

By discussing the term ‖ηk − yk‖2, it gives

EΞk
‖ηk+1 − yk‖2

≤
[
1− hktk − h2

kr
2
k + h3

kr
3
k + h2

k(r
2
k − t2k + rk + c1)

(1 + hkrk)
]
‖ηk − yk−1‖2

+
(
(1− hktk)

2 + 4h2
krk + c1h

2
k

)
(

1 +
1

hkrk

)

( |rk−1 − rk|
κrk

My,λ

)2

+ (h2
krk + h2

k)D
2
2 + 2hkσkL1N

1
2 d

1
2 ‖uk − y−λ,k‖

+ 5
h2
k

σ2
k

N∑

i=1

(
D1

T1
+

D1

T2

)

d+ c2h
2
k (32)

Suppose hk = 1
ka , σk = 1

kb , rk = 1
kc where 0 < a, b, c < 1,

we have the following inequalities:

|rk−1 − rk|
rk

= (1 +
1

k − 1
)c − 1 ≤ c

k − 1
(33)

hktk = hk min{τ, rk} = hkrk min{ τ
rk

, 1} ≥ κhkrk (34)

If
∑∞

k=0 hkrk = ∞,
∑∞

k=0 h
2
k < ∞,

∑∞
k=0 hkσk < ∞,

∑∞
k=0

h2
k

σ2
k

< ∞, it is easy to verify that ‖ηk − yk−1‖2
converges almost surely to 0, by [28][Lemma 1]. Also, by

the uniqueness of the solution, we know lim
k→∞

yk = η∗ ∈
SOL(X × R

m
≥0,M

0), which is the solution for the extended

game. Therefore, we obtain that ηk converges to η∗ almost

surely, which finishes the proof. A valid selection of parame-

ters are hk = 1
k0.85 , σk = 1

k0.3 , rk = 0.4
k0.15 .

C. Proof of Corollary III.1

We could analyze the convergence rate of Algorithm 1 by

finding out those parameters relating to the convergence of

‖ηk+1 − yk‖. Rewrite (32),

EΞk
‖ηk+1 − yk‖2 ≤ (1− αk)‖ηk − yk−1‖2 + βk (35)

Hence, the convergence rate of the expectation of ‖ηk+1−yk‖
is affected by the values of αk and βk, which is Corollary III.1.
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