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Thesis Summary

Chapter 1 studies the links between international trade agreements, environmental

regulation, and welfare in the presence of politically influential firms. The motiva-

tion comes from the observation that after decades of gradual trade liberalization,

import tariffs are already low in most sectors, with little room for further cuts. As

a result, modern trade agreements increasingly focus on smoothing out other trade-

restricting regulatory differences across countries. Such deep trade integration is

often highly controversial due to concerns of a regulatory race to the bottom. This

chapter builds a theoretical two-country model to analyze the strategic interactions

between producers, policymakers, and industry lobbies. The results formalize how

private-sector interference can lead to welfare-reducing trade agreements, especially

if the lobby groups in different countries coordinate their efforts. However, poli-

cymakers can use different trade agreement designs to dilute the private sector’s

influence.

Chapter 2 focuses on the international governance of solar geoengineering. If

deployed in a globally coordinated regime, interventions with geoengineering could

reduce adverse climate change impacts. In the absence of such a regime, however,

strategic incentives of individual actors might result in detrimental outcomes. This

chapter investigates different international governance structures using a game of

farsighted coalition formation. In this setting, a country pondering whether to leave

or join a coalition anticipates that its decision could spark another (dis)integration

process among the other players. In contrast to the static models of international

environmental agreements, this dynamic structure enables a more realistic picture

of what coalitions are likely to form and remain stable. The model also provides

a unified framework for comparing different institutional arrangements for geoengi-

neering deployment, such as consensus-based and majority-vote coalitions.
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Chapter 3 develops a modelling framework for estimating the long-run eco-

nomic impacts of tropical cyclones. The framework combines a numerical general

equilibrium model of the economy with a probabilistic disaster modelling platform.

Both components are global in their regional scope, which allows a consistent com-

parison across countries with different disaster risk profiles. The results highlight

how the recovery after a single cyclone shock can take several decades, with the

negative disaster impacts accumulating quickly for the frequently exposed regions.

Assumptions regarding the drivers of economic growth and climate change’s im-

pact on future cyclone damages affect the numerical results. However, they do not

change the overall qualitative conclusions.

Chapter 4 explores the applicability of learning-based model predictive control

for solving stochastic economic decision problems. The high computational cost of

sequential decision-making under uncertainty and the long planning horizons en-

countered in many economic applications severely restrict the usability of conven-

tional dynamic programming techniques in high-dimensional settings. This chapter

demonstrates that learning-based model predictive control provides a promising al-

ternative approach as it can often deliver high-quality approximate solutions with a

significantly smaller computational budget. In addition, stochastic model predictive

control enables an intuitive formulation of cautious behaviours that complement the

conventional risk-averse decision rules. An integrated climate-economy assessment

model provides a challenging environment to evaluate the proposed method.



Zusammenfassung

In Kapitel 1 werden die Zusammenhänge zwischen internationalen Handelsabkom-

men, Umweltvorschriften und Wohlfahrt bei Vorhandensein von politisch einfluss-

reichen Unternehmen untersucht. Die Motivation ergibt sich aus der Beobachtung,

dass nach Jahrzehnten der schrittweisen Handelsliberalisierung die Einfuhrzölle in

den meisten Sektoren bereits niedrig sind und wenig Spielraum für weitere Senkun-

gen besteht. Infolgedessen konzentrieren sich moderne Handelsabkommen zuneh-

mend darauf, andere handelsbeschränkende regulatorische Unterschiede zwischen

den Ländern auszugleichen. Eine solch tiefgreifende Handelsintegration ist oft sehr

umstritten, da ein regulatorischer Wettlauf nach unten befürchtet wird. In diesem

Kapitel wird ein theoretisches Zwei-Länder-Modell entwickelt, um die strategischen

Interaktionen zwischen Herstellern, politischen Entscheidungsträgern und Industrie-

lobbys zu analysieren. Die Ergebnisse verdeutlichen, wie die Einmischung des Pri-

vatsektors zu wohlfahrtsmindernden Handelsabkommen führen kann, insbesondere

wenn die Lobbygruppen in verschiedenen Ländern ihre Bemühungen koordinieren.

Politische Entscheidungsträger können jedoch verschiedene Formen von Handelsab-

kommen nutzen, um den Einfluss des Privatsektors zu schwächen.

Kapitel 2 befasst sich mit der internationalen Koordination des solaren Geoen-

gineerings. Im Rahmen eines global koordinierten Systems könnte Geoengineering

die negativen Auswirkungen des Klimawandels verringern. Ohne diese Art von Ko-

ordination könnten die strategischen Anreize einzelner Akteure jedoch zu nach-

teiligen Ergebnissen führen. In diesem Kapitel werden verschiedene internationale

Governance-Strukturen anhand eines spieltheoretischen Modells mit vorausschauen-

der Koalitionsbildung untersucht. Ein Land, das darüber nachdenkt, eine Koalition

zu verlassen oder ihr beizutreten, antizipiert dabei, dass seine Entscheidung einen

weiteren (Des-)Integrationsprozess bei den anderen Akteuren auslösen könnte. Im
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Gegensatz zu statischen Modellen internationaler Umweltabkommen ermöglicht die-

se dynamische Struktur ein realistischeres Bild davon, welche Koalitionen sich wahr-

scheinlich bilden und stabil bleiben werden. Darüber hinaus bietet das Modell einen

einheitlichen Rahmen für den Vergleich verschiedener institutioneller Rahmenbedin-

gungen für den Einsatz von Geoengineering, wie z.B. konsensbasierte Koalitionen

oder jene die auf Mehrheitsbeschlüssen beruhen.

In Kapitel 3 wird ein Modellierungsrahmen für die Abschätzung der langfris-

tigen wirtschaftlichen Auswirkungen tropischer Wirbelstürme entwickelt. Die Me-

thode kombiniert ein numerisches allgemeines Gleichgewichtsmodell einer Volks-

wirtschaft mit einer probabilistischen Katastrophenmodellierungsplattform. Beide

Komponenten sind in ihrem regionalen Geltungsbereich global, was einen konsis-

tenten Vergleich zwischen Ländern mit unterschiedlichen Katastrophenrisikoprofilen

ermöglicht. Die Ergebnisse zeigen, dass die Erholung nach einem einzigen Wirbel-

sturm mehrere Jahrzehnte dauern kann, wobei sich die negativen Auswirkungen

der Katastrophe in häufiger betroffenen Gebieten schnell akkumulieren. Die An-

nahmen zu den Triebkräften des Wirtschaftswachstums und zu den Auswirkungen

des Klimawandels auf künftige Katastrophen beeinflussen die numerischen Ergeb-

nisse, ändern jedoch nichts an den qualitativen Schlussfolgerungen.

In Kapitel 4 wird die Anwendbarkeit der lern-gestützten prädiktiven Modell-

steuerung zur Lösung stochastischer wirtschaftlicher Entscheidungsprobleme un-

tersucht. Der hohe Rechenaufwand der sequentiellen Entscheidungsfindung unter

Unsicherheit und die langen Planungshorizonte, die in vielen wirtschaftlichen An-

wendungen anzutreffen sind, schränken die Anwendbarkeit konventioneller dynami-

scher Programmierungsverfahren in hochdimensionalen Anwendungen stark ein. In

diesem Kapitel wird gezeigt, dass auf maschinellem Lernen basierende Steuerungs-

techniken einen vielversprechenden alternativen Ansatz darstellen, da sie häufig

qualitativ hochwertige Näherungslösungen mit einem deutlich geringeren Rechen-

aufwand liefern können. Darüber hinaus ermöglicht die stochastische prädiktive

Modellsteuerung eine intuitive Formulierung vorsichtiger Verhaltensweisen, die die

konventionellen Entscheidungsregeln des Risikoverhaltens ergänzen. Ein integriertes

Klima-Wirtschafts-Bewertungsmodell bietet eine anspruchsvolle Umgebung für die

Evaluation der vorgeschlagenen Methode.
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Introduction

Human activity has shaped the atmosphere’s chemical composition since the early

years of 18th-century industrialization. At first unaware of the effects carbon emis-

sions had on the Earth’s temperature, the link has been established in the scientific

literature for more than a century [1–3]. Today, with the mean global surface

temperature already a degree above its preindustrial level, human-induced climate

change is causing adverse effects such as more frequent and intense weather ex-

tremes, ocean acidification, ecosystem deterioration, food and water insecurity, and

a higher incidence of vector-borne diseases [4]. Limiting the temperature increase

to 1.5 ◦C, a target set in the 2015 Paris Agreement, requires rapid reductions in

global emissions, reaching net zero around 2050 [5].

Despite the mounting evidence of climate change’s adverse effects and the un-

equivocal role human activity has in causing it, the global policy response remains

feeble. According to recent estimates, a complete and timely implementation of

the updated Paris Agreement pledges might limit global warming to just below two

degrees Celsius [6]. However, these trajectories contain substantial uncertainties, as

the plausible peak temperature range extends from 1.4 ◦C to 2.8 ◦C. Other studies

note that the remaining carbon budget for meeting the 1.5◦C target will, at current

rates, deplete in less than a decade. Even the unprecedented drop in economic

activity due to the COVID-19 pandemic only brought a temporary reduction in

global annual CO2 emissions of less than 6%, highlighting the insufficiency of the

currently agreed measures [7].

Basic economic theory suggests an elegant solution for regulating negative ex-

ternalities such as carbon emissions: a tax equal to the externality’s marginal social

cost [8]. A carbon tax is desirable for its cost-effectiveness in reducing emissions and

its simplicity when used to replace other overlapping climate policy instruments.
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As with other Pigouvian taxes, pricing carbon would also generate government

revenues for reducing distortionary taxes elsewhere, such as those on labour sup-

ply. Ideally, the carbon price should be uniform across economic sectors and world

regions to minimize the overall cost of climate action.

In reality, however, implementing a global carbon price is notoriously difficult.

First, there is no consensus on the adequate carbon price level. Given the un-

certainties regarding climate system dynamics and climate change’s future impact

on human and ecological systems, finding the societal cost of each emitted CO2

tonne is impossible. For instance, the monetary estimates are sensitive to the func-

tional representation of climate damages in integrated climate-economy models [9].

There are also fundamental ethical considerations that affect the choice of the car-

bon price, such as how to discount the welfare of future generations vis-à-vis the

immediate costs of reducing emissions [10]. As a result, the global climate policy

landscape remains fragmented. There are currently 68 active carbon pricing instru-

ments worldwide, covering approximately a quarter of global CO2 emissions. The

prices range from less than one US dollar up to USD 137 per tonne of CO2 [11].

On top of the uncertainty over future climate impacts comes the difficulty of

policy coordination in a world with power imbalances and conflicting interests.

Designing meaningful climate policies while taking into account the vulnerabili-

ties, capabilities, and responsibilities of sovereign states requires robust governance

structures both on the national and international level [12]. The difficulty of in-

ternational climate governance also implies that the relevant climate policy alter-

natives are usually not the most cost-efficient but those that are good enough and

politically feasible. Unsuccessful governance efforts can lead to undesirable out-

comes, for instance, to individual countries watering down consensus-based climate

agreements [13], or in the future, to countries deploying geoengineering technologies

unilaterally at the detriment of others [14]. The governance of non-state actors is

also important, as private interest groups often exert substantial lobbying pressure

on policymakers to steer environmental regulation [15, 16].

This thesis consists of two distinct thematical sections addressing the above

discussion on climate policy design. The first two chapters focus on international

environmental governance based on game-theoretic analysis. Chapter 1 applies the

methodology to modern trade agreements, whereas Chapter 2 studies the gover-
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nance of solar geoengineering deployment. The remaining two chapters concen-

trate on numerical climate impact assessment under uncertainty. Chapter 3 devel-

ops a framework for estimating long-term natural disaster impacts, and Chapter

4 explores learning-based control techniques for solving computationally intensive

climate-economy integrated assessment models.

Chapter 1 studies the linkage of national environmental regulations and inter-

national trade agreements. 1 The motivation comes from the observation that after

decades of gradual trade liberalization, import tariffs are already low in most sectors,

with little room for further cuts. As a result, modern trade agreements increasingly

focus on deep trade integration, that is, smoothing out other trade-restricting reg-

ulatory differences across countries. Deep trade integration typically covers areas

such as intellectual property rights, environmental standards, and labour market

rules [17]. Among the various regulations that can be subject to international coor-

dination, those related to the environment often cause the most public controversy

due to the concern of a regulatory race to the bottom.

Trade negotiations provide an interesting forum for environmental governance.

First, the countries negotiating the agreement can be highly asymmetric in bar-

gaining power and trade policy objectives, allowing for rich strategic interactions

between the governments. Moreover, large firms often dominate the value of inter-

national trade flows [18], meaning that firms with market power might also respond

strategically to trade policy outcomes. Finally, trade representatives do not nego-

tiate the agreements in isolation but under constant pressure from various special

interest groups [19]. The special interests can be as diverse as producer lobbies, en-

vironmental NGOs, or consumer protection agencies. Efficient governance ensures,

for instance, that the presence of powerful private-sector lobbies does not lead to

excessive environmental deregulation as a part of a new trade agreement.

The first chapter contributes to the growing literature on deep trade integra-

tion [20, 21] by considering a theoretical two-country trade model under imperfect

competition and politically influential producer lobbies. The results provide insight

into how the motives of policymakers and firms interact under various trade agree-

1Chapter 1 is joint work with Jean-Philippe Nicoläı. J.N and J.L contributed equally to
conceptualizing the study. J.N formulated the modelling framework. J.L conducted the theoretical
analysis and implemented the numerical simulations. Both authors contributed equally to writing
and editing the manuscript.
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ment designs. A key determinant of the results is whether lobby groups in different

countries collude and coordinate their efforts in a joint push for weaker regulation.

Chapter 2 focuses on the international governance of solar geoengineering. 2 If

deployed in a globally coordinated regime, interventions with solar geoengineering

could reduce adverse climate change impacts. In the absence of such a regime, how-

ever, strategic incentives of individual actors might result in detrimental outcomes

[14, 22, 23]. Here, governance refers to bridging the gap between potentially harm-

ful and beneficial geoengineering deployment [24]. We model different international

governance structures as a game of farsighted coalition formation [25, 26]. In this

setting, a country pondering whether to leave or join a coalition anticipates that its

decision could spark another (dis)integration process among the other players.

The main contribution of the second chapter is to introduce the coalition for-

mation dynamics into the solar geoengineering context. In contrast to the static

models of international environmental agreements, this dynamic structure enables

a more realistic picture of what coalitions are likely to form and remain stable. The

model also provides a unified framework for comparing different institutional ar-

rangements for geoengineering deployment, such as consensus-based and majority-

vote coalitions. Our results highlight that even small changes in the institutional

setting – interpreted as the outcomes of active international governance efforts –

can lead to a diverse set of equilibrium geoengineering deployment strategies.

Chapters 3 and 4 turn the thesis focus to integrated climate-economy modelling

and numerical climate impact assessment. In particular, the chapters focus on

economic and climate risks. Due to the partial understanding of several climate

system processes and the unpredictable developments in the future world economy,

incorporating uncertainties into the analysis is crucial for producing realistic insights

for climate policymaking.

Chapter 3 studies the long-term economic impacts of natural disasters, focusing

specifically on tropical cyclones. Over the past two decades, natural disasters have

caused more than 50’000 deaths and almost USD 160 billion in economic dam-

ages per average year [27]. In addition to the direct effects through loss of lives

2Chapter 2 is joint work with Daniel Heyen. D.H. conceptualized the research. D.H. and
J.L. contributed equally to the investigation and the formal analysis. J.L. wrote the code and
conducted the computational analysis. D.H. and J.L. contributed equally to writing, reviewing
and editing the work.
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and destruction of economic assets, natural disasters can have far-reaching regional

consequences in the globally interlinked economy [28]. Better understanding the

long-term consequences of tropical cyclones is essential as they cause almost 40%

of the total reported climate-related disaster damages and deaths [29].

The main contribution of the third chapter is to develop a framework that joins

together a numerical general equilibrium model of the economy with a probabilistic

disaster modelling platform. 3 The results provide insight into how disaster strikes

affect the economy directly through damaged capital stocks and how significant are

the indirect effects as the disaster shock makes its way through multiple interlinked

sectors and world regions. We quantify the disaster impacts on consumption and

investment patterns over several decades and show that the adverse effects accumu-

late quickly, especially in the frequently affected areas. The framework also allows

consistently analyzing how climate change might affect future disasters’ frequency,

intensity, and impact.

Finally, Chapter 4 focuses on computational methods and explores the appli-

cability of learning-based model predictive control for solving stochastic climate-

economy integrated assessment models. Sequential decision-making problems under

uncertainty are computationally expensive. As a result, even relatively simple eco-

nomic decision models with adequate uncertainty representation have often required

supercomputer infrastructure [30] or careful pruning of the original problem [31].

This chapter demonstrates that learning-based predictive control [32–34] provides

a promising alternative approach as it can often deliver high-quality approximate

solutions with a significantly smaller computational budget. In addition, stochastic

model predictive control enables an intuitive formulation of cautious behaviours

that complement the previous works on risk-averse climate policy decision rules.

3Chapter 3 is joint work with Clément Renoir. Both authors contributed equally to the chapter.



Chapter 1

Strategic Lobbying Under Deep

Trade Agreements

Abstract

After decades of gradual tariff cuts, few conventional trade barriers re-
main. As a result, the focus of new trade agreements has shifted from
further tariff concessions to harmonizing other trade-affecting regula-
tions between countries. We build a theoretical model to analyze how
such deepening trade integration affects environmental regulation, lob-
bying, and welfare in a strategic two-country setting. We first derive an-
alytical expressions for the optimal regulatory levels under various trade
scenarios. Our results show strong incentives for international regulatory
cooperation, but the effects can be welfare-reducing in the presence of
politically influential firms. Then, we consider a model with endogenous
lobbying efforts. Deep integration tends to increase lobbying relative to
a conventional shallow agreement and can provide incentives for lobbies
in different countries to coordinate, which is always detrimental to wel-
fare. Perfect regulatory harmonization can improve welfare compared
to partial convergence by weakening the influence of lobbies. However,
this is always in conflict with the policymaker’s objective.

This chapter is joint work with Jean-Philippe Nicoläı.

6
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1.1 Introduction

The multilateral trade rules signed under the GATT/WTO framework have been

a significant driver of economic integration during the past decades. A central

outcome of this process has been the continuous decline in global trade-weighted

average tariff rates [35]. As tariffs’ role has gradually diminished, coordinating

other national regulations has become an increasingly important part of the in-

ternational trade agenda. This deepening trade integration is apparent from the

growing complexity of preferential trade agreements. In addition to conventional

trade topics, they can also cover a wide range of other policy areas related to the

”free (or freer) movement of goods, services, capital, people, and ideas” [17, p.8].

The EU has been actively promoting such deep trade agreements (DTAs), recently

signing the Comprehensive Economic and Trade Agreement (CETA) with Canada

and a similar deal with the South-American Mercosur trade bloc.

However, several concerns surround deep trade integration. One worry is that

harmonizing regulations between countries could dilute environmental standards,

consumer rights, and labour codes as governments struggle to keep local firms com-

petitive against foreign rivals. Another fear is that DTAs might increase the in-

fluence of lobbies and other private sector interests. As Ref. [36] points out, the

perception of lobbying is fundamentally different between shallow and deep agree-

ments. Whereas lobbying for lower tariffs can be beneficial as it keeps protectionists

in check, efforts to boost trade via regulatory adjustments might provide the lobby

groups with unwanted clout. Although DTAs can well increase welfare by promot-

ing trade, they are ”as likely to produce welfare-reducing, or purely redistributive

outcomes under the guise of free trade” [36, p.76]. The overall welfare impact of

DTAs, therefore, remains unclear.

We explore the impacts of deep trade integration on environmental regulation,

lobbying, and welfare. Although the regulatory and welfare implications remain

largely ambiguous, our main findings suggest that DTAs tend to increase lobbying

efforts relative to a shallow trade scenario. There are two main factors at play.

First, the lobbying incentives depend on the magnitude of trade, so an increase in

the overall trade volumes directly scales up the lobbying efforts. Second, regulatory

cooperation across markets can incentivize firms in different countries to coordinate
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and commit to high lobbying levels, which is always detrimental to welfare. The net

welfare impact of DTAs then depends on whether the gains from trade expansion

can outweigh the redistribution of surplus to politically powerful firms and the

potential erosion of regulatory standards.

To analyze the role of DTAs, we build a theoretical model of international trade

under imperfect competition and local consumption externalities. Imperfect com-

petition is a central feature of the model for two reasons. First, it gives rise to

intra-industry trade even between two perfectly identical economies, focusing our

analysis on trade policy’s strategic uses. Second, it describes the roles of market

power, between-firm interactions, and positive profits in a simple setting. We con-

sider them essential determinants of the firms’ capability to behave strategically

against policymakers. 1

In our model, two countries trade a single homogeneous good under Cournot

competition. Both countries have access to one policy instrument: a minimum

product standard for all goods consumed within their borders. The home gov-

ernment’s policy then determines minimum requirements for the domestic market

supply of local firms and the export supply of foreign firms. We first solve the

model for a benchmark shallow agreement scenario where both countries set their

local regulations non-cooperatively. We then analyze two versions of a DTA: one

where countries cooperatively choose their own standards and another where they

agree on one perfectly harmonized regulatory level. As the focus here is on optimal

regulation, the first part of our analysis assumes all lobbying to be exogenous.

We show that the DTA’s impacts on regulation and welfare depend on the

integration’s depth and the asymmetries between the two trading partners. In the

special case where firms face no additional costs from supplying two markets with

different varieties of their good, international regulatory cooperation always leads

to more lenient policies in both countries. With positive compliance costs, however,

the result no longer holds, and a high cost of complying with foreign standards can

generate stricter policies to narrow the regulatory gap. A commitment to perfectly

harmonize standards across markets constrains governments as they must choose

over a single shared policy instrument. However, it can still increase aggregate

1For instance, data from the US suggest that relatively few large companies do most of the
lobbying related to trade agreements [19].
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welfare by weakening the influence of lobbies and better aligning the policymaker’s

biased objective with the society’s welfare function.

Finally, we modify our basic setup by endogenizing firms’ lobbying decisions.

Two patterns emerge from our results. First, as discussed above, deep trade in-

tegration consistently increases lobbying efforts compared to a shallow benchmark

agreement. In addition, under all trade scenarios, firms in both countries can either

coordinate their lobbying efforts or set the levels non-cooperatively. If the firms

cannot sustain a cooperative outcome, the total lobbying expenditure remains rela-

tively low. If, on the other hand, coordination persists, it leads to a sharp increase

in lobbying efforts as the firms have shared interests in weakening the regulation in

all destination markets. DTAs can increase the gains from coordinated lobbying,

making trade integration more susceptible to private-sector manipulation.

Our results have a direct connection to the ongoing debate over the costs and

benefits of deep trade integration. For instance, an independent French commission

covering the impacts of CETA on the environment, climate, and health highlights

the potential intervention of private interests as a risk of the trade agreement [37]. In

particular, mechanisms included in the agreement, such as the Regulatory Coopera-

tion Forum (RCF), that promote further voluntary coordination between interested

parties, might work as vehicles for increased political interference. Our results for-

malize this risk by showing that DTAs can boost private-sector influence through

higher lobbying expenditures and by incentivizing firms to coordinate lobbying ef-

forts. The risks are not only limited to CETA, as the EU might use it as a template

for other future trade agreements [38].

Related literature

Our paper builds on three main strands of earlier work. The first considers the

substitutability between trade policies and domestic environmental regulation. The

key idea is that countries with internationally competing firms might distort their

local environmental rules to gain a competitive edge over their foreign trade partners

[39]. This incentive becomes even more evident in the context of trade agreements

where countries jointly commit to lowering their conventional trade barriers but

might then resort to replacing them with other protectionist policies [40].
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A substantial part of this literature focuses on trade liberalization and the impact

of tariff cuts on optimal domestic regulation [41–44]. Our model with bilateral

trade and imperfect competition is similar to this approach. However, with tariffs

already sufficiently low, we depart from this earlier work by assuming that the most

significant trade barriers arise from differences in national regulations. Instead of

trade liberalization, we then focus on trade integration, where trade talks revolve

around smoothing out these regulatory gaps.

An important exception in this literature is Ref. [45], which also considers a

bilateral trade model with minimum product standards as the only available policy

instrument. The authors define protectionist standards as ones that ”exceed[s] what

a planner would impose if all producers were local” (p.395). They show that the

social planner always opts for protectionist minimum standards. Depending on the

setting, firms prefer either completely removing domestic regulations or a regulation

stringent enough to force the foreign rival out of the local market. We diverge

from their approach by allowing firms to compete in both markets simultaneously,

endowing all firms and policymakers with a symmetric action set. Our approach,

therefore, generates different strategic interactions compared to their work.

The second relevant strand of literature focuses on the new generation of trade

agreements and international regulatory harmonization. The closest to our work

is Ref. [20], assessing the welfare impacts of deep integration. The authors con-

sider both product standards and process regulations. They demonstrate that if

producer lobbies are sufficiently powerful, agreements on product standards re-

sult in excessive deregulation and reduced welfare, while agreements on process

standards strengthen regulations and improve welfare. Our imperfectly competi-

tive two-country partial equilibrium model is complementary to their competitive

multi-country and multi-sector setting. However, we only consider the implementa-

tion of a product standard. Both approaches reveal relatively similar findings, such

as the aligned lobbying incentives and overly stringent non-cooperative standards

in the absence of international compliance costs. However, our approach highlights

the additional strategic elements from market power and fixed compliance costs,

producing an alternative rationale for deep integration.

Ref. [46] builds a Ricardian trade model where countries differ in regulatory

preferences. Trade only occurs if the gains compensate for the disparate views over
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optimal regulation. Our approach is similar in that the sole purpose of trade agree-

ments is to coordinate product standards under a local consumption externality.

But whereas their work focuses on how regulatory preferences affect trade flows

and the trade blocs that emerge, we emphasize the strategic interactions, market

imperfections, and political economy forces that drive the stringency of regulation.

Ref. [21] also considers a setting where consumers in different countries have dis-

similar tastes, driving a gap between local regulations. Firms can supply several

markets simultaneously but incur a fixed cost that depends on the width of the

regulatory gap. The new trade agreement’s central goal is to restore the global

efficiency lost in the patchwork of national policies.

Third, our work is closely related to the existing literature on the political

economy of international trade. Ref. [47] sets up a model where industry lobbies

make political campaign contributions to the incumbent government in exchange

for political favours. The policymaker optimizes over total political contributions

and average voter welfare, both affecting the policymaker’s re-election chances. A

reduced-form version of their lobbying game, which we also follow in this paper,

has been used extensively to model the biased objectives of a policymaker subject

to lobbying pressure [48–51].

Earlier work suggests that the broader impacts of political influence depend not

only on the interaction between policymakers and private sector groups but whether

lobbies in other sectors [52] or countries [20] have similar or divergent interests. The

interplay between lobbies is also a central determinant of the results in our model.

To summarize, our main contribution comes from the treatment of lobbying

and political economy forces under different forms of deep trade integration. We

show that the lobbying efforts and welfare impacts depend on design issues such as

whether the trade agreement involves perfect harmonization of standards or only

partial regulatory convergence. Although extensive literature exists on the political

economy of trade agreements, the issue has received relatively little attention in

models featuring deep integration, especially in an imperfectly competitive setting.

The remainder of this paper is structured as follows. Section 2 sets up the

modelling framework for the shallow benchmark agreement and the DTA exten-

sions. Section 3 presents our main findings under exogenous lobbying, and Section

4 presents a model with endogenous lobbying decisions. Section 5 concludes.
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1.2 Theoretical framework

This section describes the bilateral trade model under imperfect competition, con-

sumption externalities, and producer lobbying. The drivers of international trade

come from the cross-hauling motives as in Ref. [53] and Ref. [54].

1.2.1 Main assumptions

Production and international trade. We consider two countries, A and B,

with one firm in each country. Both firms produce a single homogeneous good X

and supply it to both markets simultaneously. Firms compete à la Cournot. We

assume all national policies to be non-prohibitive so that trade flows between the

two countries and all domestic output quantities are strictly positive. X i
j denotes

the output level of the firm in country i destined to market j and Qi the aggregate

supply in market i. That is, QA = XA
A +XB

A and QB = XB
B +XA

B . A linear inverse

demand function characterizes the prices in each market with pi(Qi) = αi − Qi.

Consumer surplus is then CSi = Q2
i /2.

Minimum product standards. Consumption generates local damages. The

maximum per-unit externality in country i is δi > 0. To limit the externality, each

government can impose a product standard µi. Consumers cannot distinguish be-

tween goods produced under different standards, so changes in µi have no effect

on demand. 2 For producers, a stricter standard implies higher production costs.

Therefore, absent the policymaker, firms would have no incentives to produce at

higher standards. To regulate the firms, policymakers in both countries implement a

minimum standard µ̄i that all products within their market area must satisfy. Each

country then controls the products consumed but not those manufactured within

its national borders. We assume the regulation to be non-discriminatory: coun-

tries are free to treat imported goods with any regulation necessary for human or

environmental well-being as long as domestic producers face the same requirements.

2A weaker interpretation of this assumption is that a regulatory standard, for instance, on
vehicle exhaust particle limits, is not an important determinant of the purchase decision for most
consumers.
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Technology and production costs. The unit production costs are constant in

output quantity but increase linearly with the minimum standard. The cost for the

firm in country i of meeting the standards imposed in market j is ci(µj) = ϕiµj,

where ϕi > 0 captures the firm’s technological efficiency. For the two firms to

produce positive amounts, we bound the cost differences to satisfy 2ϕi > ϕj. The

marginal abatement efficiency ωi > 0 is constant, so that the effective per-unit

externality in country i is δi − ωiµi. To keep the effective per-unit externality

positive, we consider µi ∈
[
0, δi

ωi

]
.

Fixed trade costs. In addition to the production costs, we consider a trade

cost that is constant in terms of output quantity but increases in the distance be-

tween domestic and export market regulation. The term broadly captures the costs

incurred by firms from complying with two different standards, whether through

the cost of maintaining separate production lines or from additional red tape at

border crossings. Specifically, we assume that each firm carries a fixed cost of

ψi(µi, µj) = (Fi/2)(µi−µj)2 for some Fi ≥ 0. Lowering these fixed costs is a central

political motivation for deep trade integration.

Damages. The total externality in country i is a function of aggregate consump-

tion and the effective per-unit damages, Di = (δi−ωiµ̄i)Qi. Our implicit assumption

is that externalities such as small particle emissions from vehicles or pesticide traces

in food products are similarly harmful in both regions. However, we might also ex-

tend the interpretation of δi to wider gaps in perceived damages. For instance, the

issue of chlorine-washed chicken, banned in the EU but common practice in the US,

marks a symbolic difference between the US and EU legislations and is an oft-cited

cause for public uproar against DTAs in Europe. We also assume that the unit

externality is sufficiently low relative to the demand function intercept, αi > δi.

This rules out situations where the marginal damage of consumption would exceed

the marginal benefits.

Political influence and welfare. In addition to market power, firms in our

model possess political influence over the regulators. We follow an approach similar

to the Politically Realistic Objective Functions [55], which is commonly used in
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two-country trade models [20, 48–51, 56]. 3 Under this setting, the lobbying game

between private interests and policymakers reduces to placing additional weights

on profits π in the standard government objective function:

Ψi = CSi + γiiπ
i
i + γijπ

i
j −Di. (1.1)

The policymaker’s bias towards firm i’s market j profits in Eq. (1.1) is captured

in the terms γij ≥ 1. Throughout the paper, we make a distinction between the

(biased) objective Ψi and the (real) welfare Wi = CSi + πii + πij − Di. We start

by treating all influence terms γ as exogenous parameters. Section 1.4 extends our

analysis to firm-specific endogenous lobbying activity. In that case, firms can choose

their (costly) lobbying efforts to influence the weights associated with their profits.

Timing. We solve the benchmark model as a two-stage game. In the first stage,

both governments set their minimum standards. In the second stage, firms in both

countries simultaneously choose their profit-maximizing output quantities for all

destination markets.

Segmented market profits. The markets in our partial equilibrium economy

are perfectly segmented, and firms can independently make output decisions for

each destination market. We can then divide each firm’s profits into i) the local

component where the products meet the domestic regulation and ii) the export

component where the products meet the standard imposed by the foreign govern-

ment. One helpful interpretation of this breakdown of profits is that there is one

firm in each country only focusing on domestic operations and another firm focusing

on exports. The profits for firms A and B are, respectively:

3Ref. [47] provides explicit microfoundations for this approach.
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πA(XA
A , X

A
B ) =

[
αA − (XA

A +XB
A )− cA(µA)

]
XA
A

+
[
αB − (XB

B +XA
B )− cA(µB)

]
XA
B − ψA(µA, µB),

πB(XB
B , X

B
A ) =

[
αB − (XB

B +XA
B )− cB(µB)

]
XB
B

+
[
αA − (XA

A +XB
A )− cB(µA)

]
XB
A − ψB(µB, µA).

(1.2)

Equilibrium trade volumes. Each firm maximizes profits by choosing pro-

duction levels for the domestic and export markets. We determine the firms’

best-response functions from the first-order optimality conditions to the system

in Eq. (1.2). 4 The Cournot-Nash equilibrium quantities are: 5

XA
A =

1

3

[
αA − 2cA(µA) + cB(µA)

]
,

XA
B =

1

3

[
αB − 2cA(µB) + cB(µB)

]
,

XB
A =

1

3

[
αA − 2cB(µA) + cA(µA)

]
,

XB
B =

1

3

[
αB − 2cB(µB) + cA(µB)

]
.

(1.3)

A higher destination market demand αi increases the equilibrium output quantities

both for the domestic supplier and the foreign exporter. In each country i, higher

production costs for the foreign exporter, cj, will reduce imports Xj
i and simulta-

neously boost domestic production X i
i . Therefore, the outcome of a foreign cost

increase is the domestic producer controlling a larger share of the local market.

However, the total market supply Qi will remain below the original level, as the

marginal decrease in foreign exports will outweigh the boost to domestic production.

That will also increase the local prices pi.

On the other hand, an increase in the stringency of national minimum standards

µi will cut both domestic production and foreign export supply. When the marginal

costs ϕi are identical between the firms, this reduction will be equivalent in both

4The second derivatives are everywhere constant and strictly negative.
5The uniqueness of the Nash equilibrium follows from the linear demand schedules.
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countries. However, when the foreign marginal costs exceed those of the domestic

producer, the impact will fall disproportionately on the foreign producer, again

securing the local firm a larger share of the domestic market.

Trade policy scenarios. To study the regulatory outcomes of DTAs as well as

their different possible designs, we compare the three following trade scenarios:

1. Business as usual: Each government maximizes its national objective and

sets the minimum standard non-cooperatively. In other words, countries are

open to trade, but there is no coordination over the regulatory levels.

2. DTA with regulatory cooperation: Governments coordinate over their

(separate) regulations by maximizing a joint objective.

3. DTA with full regulatory harmonization: Governments maximize a joint

objective but commit to imposing equally stringent minimum standards.

1.2.2 Business as usual

The first scenario corresponds to an existing shallow trade agreement where coun-

tries trade in the absence of tariff policies but the lack of regulatory cooperation

restricts the total traded quantity. Solving for ∂Ψi

∂µi
= 0 gives for each country i the

following optimal standard:

µ̄BAUi =
ΛBAUj Fiγ

i
j − ΛBAUi ΞBAUj

9
[
ΞBAUi ΞBAUj − FiFjγijγ

j
i

] , (1.4)

where we denote:

ΛBAUi = 3δiΦ− 2αi(Φ− 3ωi + φiγ
i
i) > 0,

ΞBAUi =
1

9

[
Φ(Φ− 6ωi) + 2φ2

i γ
i
i − 9Fiγ

i
j

]
< 0.

The symmetric terms Λi correspond to the country i’s home market considera-

tions and are positive under our parameter assumptions. The term trades off local
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damages δi, local demand αi, and the local firm’s domestic profits through the

influence-weighted cost (dis)advantage φi = (2ϕi − ϕj). The joint production cost

term is Φ = ϕA + ϕB. The term Ξi corresponds to government i’s second-order

optimality condition and is strictly negative by assumption.

A high value for Λi roughly implies stricter domestic regulation either due to

high externalities, low demand, or high demand under relatively efficient abatement

technology ωi. If there are costs for complying with foreign standards, higher foreign

Λj also drags up the market i regulation to narrow the regulatory gap. Intuitively,

the higher the policymaker’s valuation of export profits, as captured in γij, the

stronger the foreign market effect. 6

The reaction functions for both governments are linear in the foreign regula-

tory stringency, with the slopes determined by the fixed compliance costs and the

influence of the domestic export lobby. In the absence of compliance costs, the

connection between µ̄i and µ̄j in the non-cooperative scenario vanishes, and foreign

regulation no longer has an impact on domestic standards.

It is worth emphasizing some particular features of our model economy with

two market failures – consumption externalities and imperfect competition – and

only a single policy variable at the disposal of each government. In such a setting,

the regulatory level might be efficient relative to the incomplete policy toolbox but

remain suboptimal compared to other efficiency benchmarks. When adjusting its

regulation, each government then has to balance between i) increasing standards to

reduce local damages, ii) decreasing standards to boost the (possibly) insufficient

duopoly supply, iii) the strategic use of regulation to shift economic rents from the

foreign producers to the domestic firms, and iv) taking into account the political

clout of all the relevant special interest groups.

We next present some comparative statics of the optimal regulation in Eq. (1.4)

to analyze these different considerations in more detail. First, as expected, the op-

timal domestic standard is always strictly increasing with local per-unit damages,

∂µ̄i/∂δi > 0. 7 On the other hand, higher domestic demand αi can have either a

6The effect is similar to the California effect coined by Ref. [57] for situations where exporters
voluntarily adopt the stricter standards enforced in an important destination market.

7We rule out situations where a government would regulate the domestic market only to ma-
nipulate the compliance cost term in its favour. In other words, the home government will always
impose a strictly positive minimum standard even in the absence of compliance costs and foreign
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positive or negative effect on standards. If the policymaker attaches a high weight

to domestic profits or the home firm has a cost advantage and high abatement ef-

ficiency, the rent-shifting effect dominates, and the government can impose stricter

local standards. Otherwise, higher domestic demand implies that boosting sup-

ply and upholding consumer surplus generates a more significant improvement in

the government objective than cutting consumption externalities, resulting in more

lenient regulation.

The same reasoning applies to the abatement cost terms ϕ and compliance costs

F . If the domestic demand and cost advantages are sufficiently high, an uptick

in foreign costs can make local standards stricter, cutting market access from the

foreign producer.

Finally, consider the marginal impact that lobbying has on optimal regulation.

Even when there are fixed compliance costs, the import-competing sector will always

push for relaxing the domestic regulation as it will always result in strictly lower

production costs. 8 As a result, a firm’s growing political influence always translates

into higher profits and a jump in aggregate supply. However, the marginal returns

from lobbying are diminishing, as lobbying for weaker regulation at home will also

increase the foreign rival’s export supply. The export lobbies’ influence on domestic

policies depends on foreign regulation. A higher weight on export profits motivates

the home government to narrow the international regulatory gap, potentially leading

to stricter home standards.

regulation. In effect, this constrains the allowed distance between the production costs ϕi and the
abatement efficiency ωi.

8Since we assume all trade flows to be positive, the home firm cannot lobby for a regulatory
gap wide enough to push the foreign rival out of the market.
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1.2.3 Deep trade agreements with regulatory cooperation

Consider next international regulatory cooperation under the joint government ob-

jective Ψ = ΨA +ΨB. The timing of this game is as follows:

First stage: Governments set their optimal national standards maximizing

the joint objective.

Second stage: Firms choose their profit-maximizing output quantities for

all markets simultaneously.

We solve the game using backward induction. Since the consumption externality

is purely local, and governments can only regulate the goods consumed within

their borders, one country’s minimum standard will not directly affect the damages

occurring in the other. Therefore, the only change relative to the non-cooperative

benchmark is that policymakers now consider how their domestic rules affect foreign

export profits. Solving for ∂Ψ
∂µi

= 0 yields for each country i:

µ̄DTAi =
ΛDTAj (Fiγ

i
j + Fjγ

j
i )− ΛDTAi ΞDTAj

9
[
ΞDTAi ΞDTAj − (Fiγij + Fjγ

j
i )

2
] , (1.5)

where we again denote:

ΛDTAi = 3δiΦ− 2αi(Φ− 3ωi + φiγ
i
i + φjγ

j
i ),

ΞDTAi =
1

9

[
Φ(Φ− 6ωi) + 2φ2

i γ
i
i − 9Fiγ

i
j − (9Fj − 2φ2

j)γ
j
i

]
.

As expected, Eq. (1.4) and Eq. (1.5) only differ in how the foreign firm’s compli-

ance costs Fj, cost (dis)advantage φj, and export sector influence γji affect optimal

regulation. Trade integration, in effect, removes each government’s incentives to ma-

nipulate standards for rent-shifting purposes and results in a reciprocal exchange

of market access.



20

1.2.4 Deep trade agreements with perfect harmonization

In our final trade policy scenario, governments agree on one perfectly harmonized

regulatory level across markets. 9 We set up a game with the following timing:

First stage: Governments set a minimum standard µ̄PERA = µ̄PERB = µ̄PER

maximizing the joint objective Ψ = ΨA +ΨB.

Second stage: Firms in both countries set their profit-maximizing output

quantities for all markets.

Again, we use backward induction to solve the game. Setting ∂Ψ
∂µ

= 0 gives:

µ̄PER =
ΛDTAi + ΛDTAj

−9ΞPER
, (1.6)

where, using Ω = ωA + ωB for an aggregate abatement efficiency term, we denote:

ΞPER =
2

9

[
Φ(Φ− 3Ω) + φ2

i (γ
i
i + γij) + φ2

j(γ
j
j + γji )

]
.

The denominator in Eq. (1.6) has a very intuitive form where the first term trades

off the aggregate production costs and abatement efficiencies, and the other terms

weigh each firm’s relative production costs φ according to its total political influence.

Under the special case of two perfectly identical economies, Eq. (1.5) and Eq. (1.6)

exactly coincide. Section 1.3 analyzes the regulatory differences and the resulting

welfare impacts in more detail.

1.3 Comparison of trade agreements

This section compares the regulatory, lobbying, and welfare outcomes under the

above trade scenarios. Appendix 1.A contains all proofs.

9The previous scenario with country-specific cooperative standards can also produce a perfect
regulatory convergence across markets. However, as this only happens in special cases, a separate
scenario for perfect harmonization is warranted.



21

1.3.1 Regulation

The regulatory impacts of deep trade integration hinge on the asymmetries between

the trade partners and the depth of their integration. In the special case without

export compliance costs, we find the following ranking of regulatory levels:

Proposition 1 In the absence of export costs, the following rankings always hold:

1. For any individual country k, µ̄DTAk ≤ µ̄BAUk .

2. For any trading partners i and j, µ̄DTAi ≤ µ̄PER ≤ µ̄DTAj .

3. The ranking between µ̄BAUk and µ̄PER is ambiguous.

We can summarize Proposition 1 as follows. The regulation is always more lenient

for both countries under the regulatory cooperation scenario (DTA) than under the

shallow benchmark case (BAU). In addition, the regulation under perfect harmo-

nization (PER) is always a weighted average of the standards imposed under the

DTA scenario with partial convergence. For the movement from BAU to PER, two

outcomes are possible. First, if sufficiently similar, the model produces a regulatory

race to the bottom where both countries loosen their standards. On the other hand,

it is possible for one of the countries first to relax its domestic standards when mov-

ing from BAU to DTA but then tighten the regulation in PER even beyond the

original benchmark level.

Compare first Eq. (1.4) and Eq. (1.5) that give µ̄DTAi ≤ µ̄BAUi for all countries.

As the policymakers under deep integration switch to maximizing a joint objective,

both ignore their original incentive of shifting surplus across markets by manipulat-

ing regulation. 10 Therefore, the outcome is a reciprocal exchange in market access

through a reduction in local standards. The result holds even in the absence of

special interests γ, and the effect becomes even stronger when lobbies are present.

Consider next the two cooperative outcomes in Eq. (1.5) and Eq. (1.6). If the

countries are perfectly identical, the optimal standards under DTA and PER coin-

cide, and µ̄PER = µ̄DTAi for i = A,B. The finding is intuitive: if two cooperating

10The implicit assumption behind a joint government objective is the existence of a perfect
transfer mechanism between countries.
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countries move from distinct policies to harmonizing their regulations, the new pol-

icy will be some weighted average between the pre-existing regulatory levels. Such

averaging will not affect identical economies, and the regulation remains unchanged.

For a concrete example, consider two economies that only differ in their per-unit

damages δi. As noted earlier, higher externalities will, other things equal, always

tighten the optimal standards. Therefore, harmonizing regulations means that the

country with higher externalities will loosen its regulation. More formally, we have

that µDTAi < µPER < µDTAj when δj > δi. The intuition is clear: for the country

with greater damages, harmonizing standards with a less sensitive trade partner

corresponds to a setting where one large economy with lower average damages

determines its regulation alone. Since the optimal policy is monotonically increasing

in damages, the resulting harmonized minimum standard is below the DTA level

for country j. 11

Introducing the fixed compliance costs drastically changes the results in Propo-

sition 1. Especially the strong prediction regarding the regulatory drop between

BAU and DTA no longer holds. Instead, it might well be that one of the countries

has considerable externalities, strict regulation, and high export compliance costs.

In such cases, it can be more profitable for the foreign policymaker to shift its min-

imum standard upward for a mutually beneficial compromise that maximizes the

joint objective.

Proposition 1 also suggests that some lobbying can even be desirable under

the shallow BAU scenario. The non-cooperative governments might set excessively

stringent standards at the expense of the foreign country. The producer lobbies

pushing for weaker regulation can then act as a counterweight to the strategic

government behaviour.

The ambiguity over the regulatory outcomes highlights how the agreement’s

design details and country heterogeneity are crucial determinants of how deep trade

integration affects domestic policies. Asymmetric countries are also more likely to

see asymmetric effects. A new trade agreement might cause significant regulatory

changes for one of the trading partners but only minor adjustments for the other.

11For country i, the tighter regulation also means a cut in total supply Qi. Therefore, if the
ultimate goal of a DTA is to increase trade flows, the perfect harmonization of standards can even
be counter-productive unless there are other cost reductions for firms from the unified regulation.
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1.3.2 Lobbying

The lobbying motives vary across trade scenarios and the import-competing and

exporting sectors. The influence that the import-competing sector has on domestic

regulation is clear:

Proposition 2 Import-competing firms always lobby for weaker local regulation.

That the above proposition always holds is somewhat surprising. One might imagine

a scenario where the local firm with a sufficient cost advantage over its foreign

rival would benefit from stricter domestic regulation to push the competitor out.

However, as we restrict our analysis only to scenarios with strictly positive trade

flows, the local lobby can never achieve a regulatory gap wide enough to dominate

the market entirely. Since this strategic channel is never available, the home firm

is always better off with the cost reduction from weaker regulation.

The situation looks different for the exporting sectors. As the production costs

depend on the foreign standard, the exporters only care about domestic regulation

indirectly through the export compliance costs. Therefore, a higher weight for

export profits in the benchmark scenario always drives convergence in international

standards. With a tightly regulated export market, the firms might even lobby for

stricter domestic regulation. However, the link between export sector influence and

domestic regulation disappears in the absence of export costs.

International regulatory cooperation introduces new incentives for the export

lobbies. As long as any of the firms face strictly positive export compliance costs,

the export sector influence will contribute to the local standards. If only the foreign

firm faces export costs, the marginal impact of greater local export influence on

domestic regulation is negative through the following chain of events. The local

exporter does not mind the regulatory gap, and a higher weight on its profits in

the joint government objective will result in a drop in foreign standards. However,

this might bring additional costs to the foreign firm due to a wider regulatory gap.

To compensate, the home government will make a reciprocal downward adjustment

to local regulation to avoid any changes in foreign costs. If both firms face strictly

positive compliance costs, the marginal impact is unclear and depends on whether

the compliance or production cost terms dominate the effects.
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The perfect harmonization of standards removes all considerations regarding

fixed trade compliance costs. As a result, all firms prefer lower standards in any

market they supply. Therefore, perfect regulatory harmonization effectively turns

the trade area into a single regulated world market. We collect these results to the

following proposition:

Proposition 3 The export sector’s political influence has the following effect on

domestic regulation:

1. In BAU, export lobbies push domestic regulation towards closing the interna-

tional regulatory gap whenever they have positive trade costs. More formally:

sign
(∂µ̄BAUi

∂γij

)
=

sign
(
µ̄BAUj − µ̄BAUi

)
, if Fi > 0

0, otherwise

2. In DTA, the direction of export lobbying depends on the local and foreign firm’s

trade costs:

sign
(∂µ̄DTAi

∂γij

)
=


0, if Fi = Fj = 0

−1, if Fj > Fi = 0

∈ {−1, 0, 1}, otherwise

3. Under perfect harmonization, more powerful export lobbies push for weaker

regulation. That is:

sign
(∂µ̄PERi

∂γij

)
= −1.

Proposition 3 suggests that depending on the trade scenario, firms might have

conflicting preferences regarding the minimum standards, as one firm might prefer

cutting the compliance costs rather than the unit production costs. However, the

firms will always benefit from the two standards moving down in unison, as it does

not affect the compliance costs but strictly reduces the production costs. Therefore,

if the firms are able to coordinate their lobbying efforts across markets, they can

always benefit from weaker regulation.
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1.3.3 Welfare

Some ambiguity remains over the welfare effects of deepening trade integration.

The result is partly due to the limited policy instruments (minimum standards) for

tackling multiple market failures (environmental externalities and imperfect com-

petition). Nevertheless, our results highlight some interesting patterns. The first

one is related to the welfare changes between a non-cooperative shallow benchmark

and a DTA with regulatory cooperation:

Proposition 4 Regulatory cooperation can reduce welfare compared to a shallow

trade agreement if lobbies are sufficiently strong.

In the absence of lobbies, the government’s objective and the society’s welfare func-

tion are equivalent. In this case, cooperating on national regulations is guaranteed

not to decrease aggregate welfare, as the governments can always replicate the non-

cooperative outcome if they so choose. As explained before, non-cooperative gov-

ernments can impose inefficiently strict standards, but the incentive vanishes with

regulatory cooperation. However, if the political influence terms are high such that

the government objective poorly represents societal welfare, the DTA can lead to an

over-representation of private profits. Even if the agreement is welfare-improving,

the existence of lobbies might dilute the gains from cooperation. It is, therefore,

possible for policymakers to strike an agreement that appears profitable given their

biased objective but makes the two economies worse off in aggregate real terms.

From a DTA with regulatory cooperation, a further step to perfect harmoniza-

tion of standards is never an appealing choice in terms of the policymaker’s biased

objective function. After all, since harmonization limits the number of available

policy instruments while nothing else changes in the structure of cooperation, the

value of the planner’s problem can never increase. Interestingly, an increase in joint

welfare is still possible. Since both policymakers are more constrained by the nego-

tiations, their ability to favour politically influential firms diminishes, thus better

aligning the policymaker’s biased objective with the true societal welfare.

Proposition 5 Perfect regulatory harmonization can increase welfare relative to a

partial regulatory convergence if lobbies are sufficiently strong.



26

For instance, perfect harmonization can produce higher welfare than (partial) reg-

ulatory cooperation when lobbies in different markets are highly asymmetric. In-

tuitively, suppose a country with rampant lobbying signs a trade agreement with a

large economy where private interests are absent (or less powerful). In that case,

the bargaining power of the existing lobbies must play a smaller role in determining

the standards than before. Therefore, although the regulatory level might deviate

further from the optimal level in terms of tackling the negative environmental ex-

ternality, perfect harmonization might, in some instances, still be welfare-increasing

for the two economies as a whole.

1.4 Endogenous lobbying efforts

So far, we have treated the political influence terms γ as exogenous parameters to

the policymaker. Next, we propose a model that endogenises the lobbying weights

in the regulator’s objective function. Our goal is to construct an ad-hoc model

for investigating lobbying efforts in a framework that complements the previous

analysis. We assume that each weight γ becomes an increasing function of the firm’s

(costly) lobbying effort and that the marginal efficiency of lobbying is decreasing.

As we consider a simple partial equilibrium model with two countries and only a

single homogenous good, we assume that an equilibrium also exists for this extended

setup. Formally, we analyse the following game:

Stage 0: Governments choose the form of cooperation (BAU, DTA, or PER).

Stage 1: Firms choose their lobbying efforts.

Stage 2: Governments set the product standards.

Stage 3: Firms choose their profit-maximizing output quantities.

Notably, we assume that firms determine their lobbying efforts after the govern-

ments have agreed on the type of the trade agreement. 12 In addition, we focus on

12Clearly, this assumption restricts the types of lobbying dynamics our model can address,
as firms cannot lobby for the type of the agreement. However, we use the EU-Canada CETA
agreement as a guiding example. The trade partners announced their political commitment to
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a special case where firms can only actively lobby to increase the weight of their

domestic market profits, which is sufficient to highlight the main mechanisms at

play. Lobbying foreign standards directly might be too costly or impossible due

to other political constraints. The function that captures the political influence of

firms satisfies the following shape requirements:

γii
′(ei) > 0,

γii
′′(ei) < 0,

γii(0) = 1,

(1.7)

where ei denotes the lobbying effort of firm i to boost its domestic market influ-

ence. Firms have perfect information on how the weights γ affect the implemented

regulations throughout Eq. (1.4) to Eq. (1.6). They can also perfectly observe how

their political influence depends on the lobbying effort. Using this information, firm

i will then maximize its net profits, π̃i, defined as: 13

π̃i = πii + πij − βiei. (1.8)

Above, βi denotes the unit lobbying cost. The firms set their lobbying efforts

according to the following first-order optimality condition:

∂π̃i

∂ei
=−X i

i

[
dcii
dei

+
dXj

i

dei

]
−X i

j

[
dcij
dei

+
dXj

j

dei

]

− Fi(µi − µj)

[
dµi
dei

− dµj
dei

]
− βi = 0.

(1.9)

For brevity, we denote cij ≡ ci(µj) for the firm i’s cost to satisfy market j’s regulatory

requirements. Applying the envelope condition significantly simplifies the above

strengthen bilateral trade ties at the EU-Canada Summit in Prague in 2009 and concluded the
CETA negotiations in 2014. Therefore, it is reasonable to consider these six years as the window
of active lobbying efforts initiated by the announcement of the agreement.

13From Eq. (1.2) and Eq. (1.3), we get πi
j = (Xi

j)
2 (ignoring the export compliance term).
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expression, as firms have already optimized their profits with respect to market-

specific output quantities in earlier stages of the game.

Eq. (1.9) highlights the different considerations each firm has when deciding its

lobbying levels. First, higher lobbying reduces local regulation, thereby cutting pro-

duction costs and boosting output and profits. However, what constrains the total

expenditure is that more lenient standards at home will also benefit the foreign

exporter and increase the competitor’s output. We also see that the firm’s equi-

librium output quantity X always scales the corresponding lobbying expenditure

in a given market. Moreover, the only potential motive for lobbying for stricter

standards comes from the existence of fixed trade costs Fi.
14

Next, we provide a numerical example to illustrate the profit-maximizing lob-

bying efforts under different trade scenarios. We follow the work in Ref. [50] and

assume that the political clout evolves according to the following equation:

γii(ei) = 1 + ρi(ei)
ρi , i = A,B, (1.10)

with a curvature parameter 0 < ρi < 1 to satisfy the shape requirements in Eq. (1.7).

For all experiments we use the IPOPT interior-point optimizer [58] and the JuMP

mathematical optimization language [59] in Julia [60]. Appendix 1.B contains the

default model parameters.

Figure 1.1 illustrates the reaction functions of the two firms under the DTA

scenario. The best responses are increasing and concave, such that the more any

individual firm spends on lobbying, the lower the regulation and the more profits

both firms will make, thus affording even higher levels of lobbying expenditure. Due

to this cycle, the total lobbying efforts are substantially higher when the firms can

credibly commit to levels that maximize their joint net profits.

As a final experiment, we simulate the economy 1, 000 times, drawing parameters

randomly such that they satisfy all parameter assumptions. For each parameter set,

we solve the model under all possible trade scenarios.

The numerical example has two main goals. First, the goal is to verify the

14Eq. (1.9) refers to a case of individual profit maximization. If firms collude and maximize
joint profits, all foreign terms enter the equation symmetrically.
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Figure 1.1: Reaction functions for domestic lobbying efforts under a deep trade
agreement scenario. The circle highlights the Nash equilibrium lobbying levels.
The best responses are increasing, such that more lobbying by one of the firms also
increases the lobbying efforts of the other.

predictions from the first-order conditions in Eq. (1.9) and those in Proposition 1.

Together they suggest that deeper trade integration will likely boost trade flows,

incentivizing firms to spend more on lobbying. Moreover, we anticipate seeing a

difference in lobbying activity under the two deep trade scenarios, as the perfect

harmonization of standards can dilute the power of lobby groups if the countries

are sufficiently asymmetric. Our second goal is to compare the lobbying levels in

all trade scenarios when firms can coordinate their efforts over different markets,

as deriving analytical expressions is infeasible. From the results in Figure 1.1, we

expect the lobbying efforts to be significantly higher when firms can commit to

coordinating, highlighting their aligned motives.

Figure 1.2 illustrates the simulation results. 15 It also verifies many of the mech-

anisms discussed earlier. First, we note that the lobbying levels are generally higher

in the DTA and PER scenarios where governments set regulations cooperatively. In

contrast, the excessively stringent standards in the BAU scenario restrict trade and

suppress lobbying incentives. If the firms can coordinate across markets, the lobby-

15See Appendix 1.C for a summary of the data.
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Figure 1.2: Lobbying statistics under all trade scenarios when firms can either
play non-cooperatively against each other (NASH) or cooperate by maximizing
joint profits (COOP). Cooperating consistently yields higher lobbying levels than
non-cooperative play, highlighting the aligned motives of the firms. The regulation
is generally too strict in the BAU scenario. That implies lower standards, more
trade, higher profits, and higher lobbying in the DTA and PER scenarios where
governments maximize a joint objective.

ing levels are notably higher than under a non-cooperative Nash equilibrium. Even

in scenarios where one of the firms would (in isolation) prefer a more stringent local

standard to narrow the costly regulation gap, colluding firms can always lobby for

a simultaneous downward shift in all standards. That keeps trade compliance costs

unchanged but reduces overall production costs. Finally, we see a slight reduction

in mean lobbying levels when comparing the DTA and PER scenarios.

The numerical values also show that the net profits tend to be highest under

the DTA scenario, making it the favourite option for the firms. However, compared

to the shallow benchmark scenario, any form of deep integration only improves

aggregate welfare when the firms cannot coordinate their lobbying efforts.

1.5 Conclusion

A key feature of modern trade agreements is that countries not only negotiate over

conventional trade policy objectives such as tariff cuts. In addition, they try to

coordinate away any differences in their national regulations that restrict the total

quantity of trade. These deep trade agreements (DTAs) can include various de-
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grees of regulatory cooperation, from the simple alignment of product certification

rules to a perfect harmonization of national standards. Among the various exist-

ing regulations that can be subject to international coordination, those related to

the environment often cause the most public controversy due to the concern of a

regulatory race to the bottom.

This chapter investigates the role of special interest groups in shaping the DTAs.

We focus on the interplay between firms, policymakers, and environmental regula-

tion, assuming that firms possess market power and political influence. We set up a

two-country trade model with imperfect competition, local consumption external-

ities, and producer lobbies. Although the underlying model is relatively simple, it

highlights many complexities surrounding deep trade integration.

DTA’s impacts on environmental regulation, lobbying efforts, and welfare hinge

on the type of the agreement and the heterogeneity between the trading partners.

We first show that in the absence of trade compliance costs, regulatory cooperation

always relaxes environmental regulation in both countries compared to a benchmark

shallow trade scenario. However, if supplying two markets with different standards

is costly for the firms, tightening the local rules can be beneficial for narrowing the

international regulatory gap.

Our results show that deep trade integration directly affects lobbying motives

and that lobbying efforts tend to be higher under a DTA than in a conventional

shallow trade agreement. Firms coordinating their efforts across markets is always

detrimental to welfare as it results in rampant levels of lobbying. Whereas previous

work suggests that foreign lobbies can affect domestic tariff policies [61], our findings

extend the results to DTAs under minimum product standards.

The welfare impacts of DTAs remain ambiguous. Aggregate welfare can in-

crease following an expansion of trade but diminish if the erosion of standards and

the redistribution of surplus to the politically powerful firms dominate the effects.

Perfect regulatory harmonization can reduce welfare as countries commit to fewer

policy instruments. However, in some cases, harmonization can lead to a welfare

gain if it limits the government’s ability to favour politically powerful firms, thus

better aligning the policymaker’s biased objective with the society’s actual welfare

function.

Our results highlight the risk of DTAs strengthening the political influence of
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private interests. For instance, under perfect harmonization of national standards,

the higher incentives for firms to collude and the resulting increase in lobbying

efforts might pose a far greater threat to welfare than the inefficiency from fewer

available regulatory instruments. Moreover, if the firms collude in lobbying efforts,

it is reasonable to assume they can coordinate output decisions as well, implying an

even more significant welfare drop. In the real world, such risks could materialize

through cooperation bodies that promote discussions over voluntary harmonization

across stakeholders [37]. Therefore, limiting private sector influence will be an

essential design issue for any successful deep trade agreement.
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1.A Proofs

Proof to Proposition 1.

We need to establish the following conditions:

1. µ̄DEEPi ≤ µ̄BAUi

2. µ̄DEEPi ≤ µ̄FULL ≤ µ̄DEEPj

3. The ranking between µ̄BAUi and µ̄FULL is ambiguous.

To show the first part, we can write:

µDTAi − µBAUi =
2φjγ

j
i

(
9αiΞ

BAU
i + φjΛ

BAU
i

)
81ΞBAUA ΞDTAA

,

whose sign only depends on the term inside the parenthesis. Under the special case

of FA = FB = 0 we have that µ̄BAUi = −ΛBAUi /
(
9ΞBAUi

)
. Since 1

2
< ϕi

ϕj
< 2 by

assumption, we also know that φj = 2ϕj − ϕi < ϕi. Finally, using the condition of

strictly positive trade flows, we can write:

αi − ci(µ̄
BAU
i ) > 0

αi − φjµ̄
BAU
i > 0

9αiΞ
BAU
i + φjΛ

BAU
i < 0.

33
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That µ̄DEEPi ≤ µ̄BAUi follows directly.

Next, to show that µ̄DTAi ≤ µ̄PER ≤ µ̄DTAj , we can rewrite Eq. (1.5) as µ̄DTAA =

a/b, µ̄DTAB = c/d, and Eq. (1.6) as µ̄PER = (a + c)/(b + d), where a, b, c, d ∈ R>0.

This means that:

a

b
=
c

d
=⇒ a

b
=
a+ c

b+ d
,

that is, µ̄DEEPA = µ̄DEEPB =⇒ µ̄DEEPA = µ̄FULL. We also have that:

a

b
>
c

d
=⇒ c

d
<
a+ c

b+ d
<
a

b
,

that is, µ̄DEEPA > µ̄DEEPB =⇒ µ̄DEEPB < µ̄FULL < µ̄DEEPA , and reversely:

c

d
>
a

b
=⇒ a

b
<
a+ c

b+ d
<
c

d
,

which gives µ̄DEEPB > µ̄DEEPA =⇒ µ̄DEEPA < µ̄FULL < µ̄DEEPB . Therefore, µ̄DEEPi ≤
µ̄FULL ≤ µ̄DEEPj always holds.

The final remaining comparison is that between µ̄BAUi and µ̄PER. We simply

show that there exist parameterizations of our model that satisfy all parameter

restrictions and result in different rankings between the regulatory levels. Consider

first two identical economies with parameter values specified in Table 1.B.1. In

this case, we have that µ̄BAUA = µ̄BAUB > µ̄FULL. Alternatively, consider the default

parameters but let αA = 3, αB = 3, δA = 2.1, δB = 2.71, γAA = 1.1. This gives

µ̄BAUA < µ̄FULL < µ̄BAUB , making the rankings ambiguous.

Proof to Proposition 2.

For the BAU and DTA policies in Eq. (1.4) and Eq. (1.5), we can separate the

optimal standard in each scenario into µ̄i = a/b, we can write:



35

∂µ̄i
∂γii

=
2Ξjφi(bαi − aφi)

b2
.

Similarly for the perfect harmonization in Eq. (1.6):

∂µ̄i
∂γii

= −2φi(bαi − aφi)

b2
.

For all expressions, the sign depends inversely on bαi − aφi = αi − φiµ̄i. Repeat-

ing the steps outlined in Proposition 1, we know the term to be strictly positive.

Therefore, a higher weight γii on domestic profits always results in less stringent

standards.

Proof to Proposition 3.

For the BAU scenario, we notice that:

∂µ̄i
∂γij

=
(µ̄i − µ̄j)FiΞj

ΞiΞj − FiFjγijγ
j
i

.

Under our parameter assumptions, the sign of the above expression only depends

on the difference between the equilibrium standards µ̄. With Fi = 0, the connection

between regulation and export profit influence disappears.

Under a DTA scenario, denoting F̃ =
(
FAγ

A
B + FBγ

B
A

)
, we can write:

∂µ̄i
∂γij

=
Fi
(
Λj + 9Ξjµ̄i

)
+ F̃

[
9Fi(2µ̄i − µ̄j)− 2αjφi + 2µ̄jφ

2
i

]
9
(
ΞiΞj − F̃ 2

) .

When both FA > 0 and FB > 0, the expression can take any sign. When Fj > Fi =

0, the sign of the above expression only depends on −2Fjφi
(
αj − φiµ̄j

)
γji , which,

repeating the analysis in Proposition 1, we know to be always negative. With both

FA = FB = 0, the relationship again vanishes.

Finally, under perfect regulatory harmonization, we have that:

∂µ̄

∂γij
=

2φi
(
αj − φiµ̄

)
9Ξ

,
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which is again always strictly negative under our parameter assumptions.

Proof to proposition 4. To prove the welfare-related propositions, we simply

evaluate our model under different sets of parameters that satisfy all the assump-

tions and constraints. To see that regulatory cooperation can increase welfare when

lobbies are sufficiently weak, use the default parameters in Table 1.B.1 with all in-

fluence terms γ set to the value of 1.1. This yieldsWDTA > WBAU . Next, repeating

the analysis with all values of γ set to 1.3, we get that WDTA < WBAU .

Proof to proposition 5. We prove the proposition numerically as before. To see

that perfect harmonization can increase welfare, simply use the default parameters

in Table 1.B.1 with one import-competing lobby γii endowed with a high value of 1.4.

This yields W PER > WDTA. Next, repeating the analysis with the default parame-

ters and setting αi = 4.2 to introduce an asymmetry between national regulations,

we get W PER < WDTA.

1.B Parameter values

Parameter Description Value

αi Market demand intercept 4.50
βii Unit lobbying cost 1.00
δi Unit externality 3.00
ωi Abatement efficiency 1.00
ϕi Production cost 1.05
ρii Political influence curvature 0.20
Fi Export compliance cost 0.50
γii Political influence 1.00

Table 1.B.1: Default parameters for numerical simulations.
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1.C Numerical results
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Table 1.C.1: Main results for the numerical example.



Chapter 2

Solar Geoengineering Governance:

A Coalition Formation Approach

Abstract

Climate interventions with solar geoengineering could reduce climate
damages if deployed in a globally coordinated regime. In the absence of
such a regime, however, strategic incentives of single actors might result
in detrimental outcomes. Governance structures, i.e. more or less formal
institutional arrangements between countries, could steer the decentral-
ized geoengineering deployment towards the preferable global outcome.
We show that the coalition formation literature can make a valuable con-
tribution to assessing the relative merit of different governance schemes.
A country pondering whether to leave or join a coalition anticipates
that its decision could spark another (dis)integration process among
the other players. This dynamic structure enables a more realistic pic-
ture of what coalitions are likely to form and remain stable. Moreover,
the model provides a unified framework for comparing different institu-
tional settings for geoengineering deployment, such as consensus-based
and majority-vote coalitions.

This chapter is joint work with Daniel Heyen. Reprinted with minor edits from Ref. [62].

38



39

2.1 Introduction

Solar geoengineering (SG) denotes technologies for reflecting solar radiation away

from Earth to counteract climate change [63, 64]. A prominent proposal is the injec-

tion of aerosols into the stratosphere. Such global cooling can significantly reduce

climate damages if appropriately deployed but could severely worsen the situation

if not [64, 65]. The main concerns in this context are unilateral SG deployment and

the lack of international cooperation [14, 22, 23, 66, 67].

Bridging the gap between potentially disadvantageous and beneficial SG de-

ployment can be achieved by governance of SG [24, 68–72]. Assessing the merit

of different governance schemes requires predictions about how they would alter

countries’ incentives to cooperate on SG deployment. Our basic assumption in this

article is that countries rationally deploy SG to further their interests. As the in-

ternational sphere is anarchic in the sense that no supranational body can enforce

a certain use of SG, cooperation among countries is possible but needs to be in the

interest of all cooperating partners [71].

We present a framework of SG coalition formation, drawing on a rich litera-

ture in economics [25, 26, 73]. This framework has two main advantages. The

first advantage is the ability to represent complex dynamics of coalition formation.

Existing papers on SG cooperation [74–76], rooted in a long tradition of analysing

cooperation incentives for greenhouse gas abatement [77–80], model SG coalition

formation as a two-stage game: in the first stage, countries decide whether to enter

a treaty, i.e. commit to deploying SG in cooperation with their fellow treaty mem-

bers; in the second stage, countries decide on SG deployment. According to that

modelling approach, a coalition is stable if it is internally stable (no member wants

to leave) and externally stable (no outsider wants to join). While insightful, this

approach is static and therefore unable to capture – as we will demonstrate – im-

portant dynamics of coalition formation. More realistic contributions, in particular

those with farsighted players anticipating ripple effects from changes to a coalition,

have appeared in the general climate context [81–85]. Except for a two-player re-

peated game in Ref. [86], to our knowledge, the SG literature has yet to adopt that

dynamic approach for analysing cooperation incentives.

The second advantage of the coalition formation framework is its flexibility.
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We interpret the governance of SG deployment as setting the international rules

of who can use SG under what circumstances. For instance, whether treaties are

irreversible or renegotiable and whether coalition membership requires consent by

existing members (exclusive membership game) or not (open membership game) are

easy to capture in our framework. This flexibility of the framework allows modelling

a wide range of formal and informal international arrangements, thus facilitating

the interdisciplinary debate about SG governance.

2.2 Theoretical framework

This section gives a concise description of the SG coalition formation framework.

More technical details are available in Appendix 2.A. The framework rests on the

vast general literature on coalition formation; see Ref. [73] for an overview. There

are n countries and t = 0, 1, . . . periods. Of central importance is the state space

X: state xt ∈ X describes the composition of SG coalitions at time t. Countries

in a coalition cooperatively decide on the level of SG deployment and behave non-

cooperatively towards other countries. 1 We allow countries to differ in terms

of power. In a given coalition, more powerful countries have more say in how

the coalition deploys SG; more powerful countries are also more likely to initiate

changes to the existing state of coalitions (see the ”protocol” below). The period-

payoff function ui : X → R captures the payoffs of country i for all possible

states: payoff ui(xt) fully summarizes the entire impact to country i at time t when

at that time countries are organized into coalitions as described by state xt. The

payoff function clearly rests on several assumptions about the ”global thermostat

game” of SG deployment, such as country-specific climate damages, how SG affects

the climate, the direct and indirect costs associated with SG deployment, and what

level of SG coalitions choose. In Section 2.3, we will develop an example with

specific assumptions.

The rules of coalition formation depend on the specification of a protocol and

approval committees, and the flexibility allows to model very different governance

arrangements on SG deployment. In every period, the protocol randomly selects

1We assume all coalitions to be disjoint, such that any country can only belong to a single
coalition at a time.
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one country to be a proposer (more powerful countries have a higher chance of

being selected) and describes which countries are open to receiving proposals from

the selected country. Reversible agreements are those where the set of potential

partners is always the entire set of countries. Irreversible agreements, in contrast,

can be modelled by allowing to approach only countries as potential partners that

have not formed any previous coalitions during the game so far. Moreover, irre-

versible agreements can be temporary instead of permanently binding. In such a

case, the protocol simply ceases to select any committed countries as new proposers

or potential partners until their going agreements have expired.

The second key building block of the framework, approval committees, spec-

ifies which state transitions require the consent of others. The proposer must send

its preferred state transition to an approval committee. The new state only real-

izes if the committee approves the transition (some transitions might be infeasible

in the first place; in such a case, no approval committee can validate the move).

The framework allows for different approval rules such as unanimity (all members

of the approval committee need to consent) or a majority vote. Other interest-

ing features, such as the renegotiation of treaties and the distinction between open

membership (countries entering existing treaties at will) and exclusive membership

games (existing treaty members having to approve joining countries) [79], can also

be considered. The set of respondents in the approval committee can also be larger

than the set of countries invited to move to a new coalition, reflecting a situation

in which all countries whose treaties are affected by the proposed move need to be

consulted.

For a given protocol and approval committees, what coalitions might form?

Countries formulate strategies, i.e. full plans of the form ”if the state is x, what

new coalition will I propose?” and ”if the state is x and country j proposes moving

to state y, am I going to accept?”. Mixed strategies where countries can propose

and accept transitions with a probability between 0 and 1 are also allowed. The

strategies of all players, together with the initial state x0 and the protocol, imply

a stochastic process P for the evolution of states (xt)t over time. Accordingly, all

countries can calculate the expected value at the initial state as:
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Vi(x0) = EP
∞∑
t=0

δtui(xt). (2.1)

The parameter δ – for simplicity assumed to be the same for all countries – controls

the level of farsightedness. The higher the parameter δ, the more important are

long-term permanent relative to short-term temporary gains. For a value of δ close

to 1, countries might be willing to push their payoffs far into the future or even

endure temporary losses to better position themselves for future negotiations. As

usual in game theory, an equilibrium of a coalition formation game is a strategy

profile such that no country wants to change their strategy given the strategies of

others. An equilibrium may consist of a never-ending coalition formation process,

continuously cycling, or settling on some specific absorbing state. An equilibrium

exists under mild conditions (see Appendix 2.A.4) but is not unique in general.

2.3 Numerical examples

This section presents a simple setting with three countries and stylized assumptions

about climate change, damages, and SG to illustrate the potential of the coalition

formation framework from Section 2.2.

2.3.1 Climate change, damages, and solar geoengineering

Consider three countries with different baseline temperatures: W (warm), T (tem-

perate), and C (cold). At the moment countries decide about SG, climate change

has warmed all of them uniformly by 3◦C. For the clarity of exposition, we assume

SG is costless, has no side effects, and cooling is uniform. We can then consider the

global SG level G as the cooling experienced in every country. For this stylized ex-

ample, we assume that climate damages only stem from (local) temperature levels.

In line with Ref. [87] and as used by Ref. [76], we consider quadratic damages that

are minimal at an ideal temperature, here 13◦C. As Appendix 2.B.1 demonstrates,

we can write country i’s period payoffs as a function of the global SG level G with:

ui(G) = G · (2αi −G). (2.2)
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The payoffs are highest at country i’s ideal SG level αi. The warmer the country,

the higher the ideal SG level; see Table 2.3.1. Eq. (2.2) is normalized such that in

the absence of SG, G = 0, the period payoff is zero for all countries. We can then

interpret a positive period payoff as the country benefitting from SG deployment.

Country

Warm W Temperate T Cold C
Baseline temperature 21.5 14.0 11.5
Temperature with climate change 24.5 17.0 14.5
Ideal local temperature 13.0 13.0 13.0
Ideal SG level αi 11.5 4.0 1.5

Table 2.3.1: A stylized example featuring three countries with different baseline
temperatures, uniform temperature increase under climate change, and uniform
cooling under SG. The assumption of the same ideal local temperature, consistent
with Ref. [87], results in heterogeneous ideal SG levels αi. All numbers in [◦C].

2.3.2 Assumptions on the coalition formation framework

We assume that all countries have the same level of farsightedness, δ = 0.99. We also

assume they have the same power, which has two consequences. First, the protocol

is uniform, i.e. in every period, each country gets to propose with a probability of

1/3. Second, countries in a coalition aim to implement their average ideal SG level.

With only three countries, N = 3, at most one non-singleton coalition can form.

Therefore, we denote the possible states of the coalition formation process as the

absence of SG coalitions ( ), the two-country coalitions (TC), (WC) and (WT), and

the grand coalition (WTC).

In the following, we make two assumptions about the international sphere in

which SG deployment occurs. The first assumption is that every country can uni-

laterally leave any treaty. 2 In the language of our framework, this means that,

for example, country C can suggest the transition from (WTC) to (WT), and no

approval committee needs to consent. If a country leaves, the remaining members

2Many international treaties explicitly allow countries to withdraw. For instance, the U.S. was
able to withdraw from the Paris Agreement.
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are assumed to stay at least temporarily in the treaty. In later periods, however,

those remaining countries can break apart themselves, and the anticipation of the

ensuing process critically shapes the incentives to leave the treaty in the first place.

The second assumption is to rule out side payments (transfers) from one country

to another to lure them into treaties. This implies that Eq. (2.2) fully determines

country i’s period payoff. While side payments play a beneficial role in some inter-

national treaties, the absence of full cooperation suggests that their role is limited

[88]. Therefore, ruling out side payments is a useful starting point for illustrating

the coalition formation framework.

Weak governance

We will now contrast two scenarios of SG governance. In our first scenario, ”weak

governance”, countries are free to deploy SG as they please. Panel A in Figure

2.3.1 summarizes the relevant aspects of the equilibrium strategies in that scenario.

Both T and C would prefer the grand coalition (WTC). However, country W can

always do better by walking out of any existing treaty and unilaterally deploying

its ideal SG level αW = 11.5. Any other option would imply compromising with

countries of lower ideal SG levels and dragging down W’s payoffs. The stochastic

process reflects the same reasoning; see panel A in Figure 2.3.2. With probability

1/3, W is the proposer and will leave any previously agreed coalition.

In contrast, both T and C prefer any coalition with W to ( ) or (TC) and there-

fore do not change the state whenever they are to propose. Eventually, the coalition

formation process converges to the absorbing state ( ).3 Therefore, the prediction

is clear: under weak international SG governance, W will deploy a high SG level,

causing substantial external damage to others. That is a stylized representation of

the free-driver concern [14]. Note that the prediction would be the same also for

the more conventional, static approach: any coalition with W as a member would

violate the condition of internal stability as W always prefers to leave.

3Note that in the weak governance scenario, the state (TC) is equivalent to ( ). Irrespective
of whether T and C form a coalition, W is free to deploy SG, and by even higher cooling, T
and C would harm themselves. Therefore, all payoffs coincide in (TC) and ( ). Accordingly,
the equilibrium strategy in Figure 2.3.1 is not unique. Since all countries are indifferent between
staying in (TC) and moving to ( ), there exist equilibrium strategies under which either ( ) or
(TC) can be an absorbing state.
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State State

W's consent needed, but W rejects
C's consent needed, and C accepts

Value function
(Coalition)

57.44 14.03 -0.44

55.13 14.29 0.68
( )

(TC)

(WC)

(WT)

(WTC)

55.69 14.44 0.69

56.66 14.16 -0.01

56.99 13.93 -0.42

Proposition

Country Country

-36.81

*98.22 *13.22 *-15.11

Period payoff

SG level

Payoff country is not deploying SG

132.25 -40.25 -97.75
( )

132.25 -40.25 -97.75

131.51 -38.78 -95.54

131.84 -39.01

(TC) (TC)

9.75 *-22.75

*118.19

( )

( )

(WC)

(WT)

(WTC)

(WC)

(WT)

(WTC) (WTC) (WC) (WT)

*13.22 *-15.11

*1.94

-95.96

-38.68 -95.32

G=5.67

G=0.00

G=2.75

G=6.50

G=7.75

G=5.67

( )

(TC)

( )

( )

G=11.50

G=11.50

( )

( )

(TC)

*98.22

131.25

(TC)

(WC)

(WT)

(WTC)

A. Weak Governance

G=6.50

G=7.75

*118.19 *1.94 -36.81

W T C W T C

*107.25

B. Power Threshold

(WC) (TC) ( )

(WT) ( ) (TC)

(TC)

*132.25 -40.25 -97.75

*132.25 -40.25 -97.75

*107.25 9.75 *-22.75

0.00 0.00 0.00

55.69 *14.44 *0.69

(TC) (TC)

(WTC)

Legend:

*Payoff country is deploying SG

high period payoff

medium period payoff

low period payoff

Figure 2.3.1: Summary of period payoffs and equilibrium strategy profiles under
weak governance (panel A) and power threshold (panel B). Period-payoffs ui, cf.
Eq. (2.2), and long-term expected values given strategies Vi, cf. Eq. (2.1), are shown
in red (country W), green (country T), and blue (country C) boxes. Dark and light
fills represent more and less attractive constellations, respectively. An asterisk in
front of the payoff indicates that the respective country is deploying SG. Every row
is dedicated to a certain going state. The dark grey box on the left indicates the
coalition structure and the total global SG level in that state. For every state,
the light grey boxes show the proposal of the respective country in equilibrium. If
that proposition needs approval by others, the countries needed for approval are
indicated by small coloured boxes to the right of the proposal: solid filled if the
respective country approves the proposal in equilibrium and filled with a diagonal
line if the respective country rejects the proposal.

Power threshold

In the second governance scenario, we explore the case in which SG deployment

requires the deploying coalition to possess at least half of the global power, a scenario

considered in Ref. [74]. The underlying story could be of strict sanctions by non-

deploying countries. Whether such sanctions are incentive-compatible is not the

question we ask here; see the discussion in Section 2.4. In our three-country setting
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(WC)

(WTC) (WT)

(TC)

( )
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A. Weak Governance

(WC)

(WTC) (WT)

(TC)
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B. Power Threshold
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Figure 2.3.2: State transition probabilities under weak governance (panel A) and
power threshold (panel B). The probabilities directly follow from the uniform pro-
tocol (in every period, each country gets to propose with equal probability) and the
equilibrium strategies in Figure 2.3.1. For weak governance, the states ( ) and (TC)
are equivalent as country W is free to implement its preferred SG level irrespective
of the coalitional configuration of the two other countries. Accordingly, both ( )
and (TC) are potential absorbing states of the equilibrium coalition formation pro-
cess. For the power threshold, the state (TC) is the unique absorbing state, and
the corresponding SG level is low (the midpoint of αT and αC).

with equal powers, the power threshold implies that SG deployment can only occur

in a coalition of two or three countries. Other than the power threshold, the game

remains exactly as above.

The resulting coalition formation game is substantially different from the weak

governance scenario. As panel B in Figure 2.3.1 demonstrates, country W is now

willing to cooperate to access the global thermostat; the best partner is T, the

country with the most similar ideal SG level. On the other hand, T and C prefer

a coalition among themselves. Both benefit from SG, and teaming up is the least

costly compromise; recall that T and C are closer in ideal SG levels than T and W.

The new institutional setting also changes the dynamics of the state transitions;

see panel B in Figure 2.3.2. Due to the power threshold, W tries to maintain any

of the high-deployment states when it is the proposer. However, T and C now have

a more active role to play. Consider first why, given that countries are farsighted,
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the grand coalition (WTC) cannot be an absorbing state, even though none of the

players have profitable single-step deviations available. By moving the game from

(WTC) to (WT), country C suffers high temporary losses by giving up its access to

the global thermostat but knows that it will trigger a further deviation by country

T from (WT) to ( ). This is because from there, the game moves directly to (TC)

with relatively high payoffs for both players T and C and no further incentives to

deviate. 4 Country T has the same motive, with the transition going through (WC)

instead of (WT). This cycle of disintegration and regrouping occurs because W can

block a direct move from the grand coalition to (TC).

Such transitions would be lost under a static approach. In fact, all of the states

(WTC), (WT), and (TC) would be equilibrium predictions if the countries were not

farsighted. In the dynamic framework, instead of the per-period payoffs, countries

rank different states in terms of their expected long-run value. They only accept

transitions to a new state if it yields a higher value and only propose states where the

expected value, given the probability of that state being approved, is maximized.

It is also the reason why country T, if sufficiently farsighted, would in ( ) reject

a proposal from W to implement (WT), although there would be a short-term

improvement for both countries. In our setting, the power threshold governance

effectively moves the deployment power from the free driver to any coalition of

natural partners with a high enough share of world power. Indeed, if the ideal SG

level of T were higher and closer to that of W than C, the absorbing state would

have been (WT) instead of (TC).

That (TC) is an absorbing state when it yields the highest possible payoff for

both T and C is easy to see. However, the equilibrium strategies in Figure 2.3.1 do

not rest on this assumption. In Appendix 2.D, we provide an additional example

where all countries receive their highest period payoffs in different states: W in

(WT), T in (WTC), and C in (TC). The strategies in panel B in Figure 2.3.1 still

constitute a valid equilibrium. Interestingly, country T would still choose to break

out of the grand coalition, only in anticipation of C doing so. The reason is that by

acting first, T can receive a higher cumulative payoff as the game transitions to the

4Note that in equilibrium, the warm country W would also propose a move from ( ) to (TC),
despite not having any influence on the SG deployment. This is because it knows that T and C
would reject any other proposals, only waiting to implement (TC) themselves. Since there is no
SG in ( ), the only way for W to get to a state with positive SG deployment is by proposing (TC).
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absorbing state (TC) via (WC) instead of (WT). The whole reason for the grand

coalition (WTC) not being stable is that C would deviate in anticipation of (TC)

ultimately materializing, and T would deviate in anticipation of C’s strategy.

In a second supplementary example, we consider a case where a majority ap-

proval committee can enforce state transitions instead of a full unanimity require-

ment. Such an institutional setting can support even the grand coalition as an

absorbing state. Consider the above examples where country C wants to deviate

from the grand coalition, anticipating (TC) to emerge as the absorbing state. In

(TC), however, T could invite (and approve) W to join the grand coalition without

consulting C. Since deviating from (WTC) implies heavy temporary losses for C, it

no longer wishes to initiate the disbanding cycle, and the grand coalition emerges

as an absorbing state. Appendix 2.D contains further details on the supplementary

examples.

The examples highlight that small changes in the geoengineering game or institu-

tional setting can result in notably different equilibrium strategies, even for a simple

game with just three countries. This brings to the fore the subtleties of farsighted

behaviour and dynamic strategies that would be lost in a static framework.

2.4 Conclusion

The illustrative example in Section 2.3 is designed to demonstrate the power and

subtleties of the coalition formation framework. Clearly, we have made several

simplifying assumptions. First, the underlying geoengineering deployment game is

deliberately simple. In the example, we only consider three stylized countries, tem-

perature changes both from climate change and SG are uniform, climate damages

are only temperature related, and SG is costless. All those simplifying assumptions

can and should be replaced by more realistic modelling choices [89]. Also, note

that the equilibria of coalition formation are, in general, not unique. This leads to

an important equilibrium selection problem in which players might try to convince

others to play a certain equilibrium instead of a different one.

The second simplification was to study SG deployment in isolation, leaving aside

other climate policy instruments. Accordingly, future research can connect the coali-

tion formation literature to the interplay of SG with mitigation [e.g. 75, 90, 91] and
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counter-geoengineering [76, 86, 92, 93]. Research and development of geoengineer-

ing capabilities has not been the focus here either [94–97], but could be tackled

with the same approach, thus contributing to debates about research governance

[63, Chapter 5]. Transfers between countries could also be easily included in the

dynamic coalition formation game, with interesting impacts on efficiency and tran-

sition dynamics [98].

For our simple example, we have assumed existing governance in the background

(such as weak governance and a power threshold) and looked at coalition forma-

tion within those exogenous governance boundaries. Obviously, countries negotiate

around those governance rules as well. More complex models of coalition forma-

tion can put those negotiations over governance arrangements centre-stage. In the

spirit of the backward induction method, the result from the coalition formation

game on SG deployment under specific governance arrangements, such as the two

in our example in Section 2.3 or more sophisticated versions, will then constitute

the states in the coalition formation game on SG governance. This game will allow

predictions about which governance arrangements are likely to emerge.
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2.A Theoretical framework

This section presents the main elements of a general coalition formation framework,

making extensive use of Ref. [25], Ref. [26], and Ref. [73]. 5 We will illustrate the

components with a simple example.

Consider a set N of countries with cardinality n, an infinite set t = 0, 1, . . . of

periods, and a compact set X of states. A coalition is a non-empty subset of N . A

state captures (at the very least, see extensions below) the coalition structure, i.e.

how countries are arranged into coalitions. Such a coalition structure is described

by a partition π of the set of all countries {1, . . . , n}. We assume all coalitions to

be disjoint, such that any country can only belong to one coalition at a time. 6

For example, in the case of three countries, N = {1, 2, 3}, the following coalition

structures are possible:

x0 = {{1}, {2}, {3}}, x1 = {{23}, {1}},
x2 = {{13}, {2}}, x3 = {{12}, {3}}, xGC = {{123}},

where, for instance, {{12}, {3}}means that country 1 and country 2 form a coalition

and country 3 remains outside as a singleton. 7 State xGC denotes the grand

coalition comprising all countries, and state x0 consists of only singleton coalitions.

5We adopt the non-cooperative bargaining approach instead of cooperative blocking as the
default form of interaction between coalitions. The reason is that we think it fits better with
international negotiations.

6Ref. [84] considers a nested structure of coalitions, and in Ref. [99] the coalitions can overlap.
7By definition, singletons are also considered as coalitions.

50
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Countries differ in their political power γi > 0, as used in Ref. [74] and Ref. [84].

Political power might correspond to (a combination of) economic power (measured

by GDP), military power, or international reputation. We normalize the terms γi

with
∑

i∈N γi = 1, so that each individual term corresponds to the country’s share

of total world power.

Power plays a dual role in our framework. First, we assume that a coalition

determines its level of geoengineering deployment based on its members’ relative

power. A more powerful country thus has more say on how a coalition sets the

global thermostat. Second, we consider a governance scheme with a minimum power

threshold γ required to implement geoengineering. A coalition C can only deploy

geoengineering if its total power exceeds the power threshold,
∑

i∈C γi ≥ γ. This

power threshold is the first (exogenously defined) way to capture geoengineering

governance rules. Ref. [74], for instance, sets γ = 0.5. The threshold only reflects a

necessary lower bound on ”big enough even to start it” or ”big enough to push it

through against others”. For instance, military opposition or economic sanctions to

prevent geoengineering might only work if the coalitions that deploy geoengineering

are sufficiently weak. The power threshold framework is also fairly flexible. It spans

cases as diverse as γ = 1, where only the grand coalition can deploy geoengineering,

and γ = 0, which does not impose any power restrictions at all.

For each country there is a continuous one-period payoff function ui : X → R
and a (common) discount factor δ ∈ (0, 1). The instantaneous payoff for country i,

ui(x), is then fully described by the going state x. This rests on the assumptions on

the equilibrium of the underlying geoengineering deployment game and on whether

and how coalitions can transfer utility among their members. We describe these

assumptions in detail in Appendix 2.B.

2.A.1 Institutional rules

A dynamic coalition formation game requires clear institutional rules to govern

which changes in the coalition structure are possible at a given period. Some changes

might be infeasible due to existing agreements’ irreversibility or if the renegotiation

requires the approval of some minimum share of affected players. On the other

hand, a game where coalitions can invite new members, dissolve, and merge with
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other groups over time can be a better description for some settings. To consider

a general framework that can handle a range of possible institutional settings, we

model the evolution of coalition structures as a sequential game of non-cooperative

bargaining. Under this approach, one country in each period can propose a new

coalition to form, while other countries can either accept or reject the proposition.

We next introduce two complementary concepts that determine the rules of such

a game. A protocol specifies an active proposer, a set of potential partners, and

the order of responders for each period. The proposer sends the proposition to

an approval committee – a collection of countries with the power to validate the

transition.

The protocol determines how reversible the existing agreements are. Each

period t starts with the protocol ρ choosing one country S as the active proposer.

For instance, the protocol can be a random process, selecting countries with uniform

probabilities or weighted according to their share of global political power. The

protocol can also depend on the history of the game in arbitrarily complex ways.

Along with the active (singleton) proposer S, the protocol specifies the collection

of potential partners P ⊆ N to be all countries that can receive proposals at time

t. If the agreements are fully reversible, the set of potential partners is always the

entire set of countries N . However, for irreversible treaties, the set only consists

of countries that have not formed any previous coalitions during the game so far.

Finally, for some subset of all potential partners Q ⊆ P , S proposes a new coalition

R entering into force. 8 Agreements can also be temporary instead of permanently

binding. In such a case, the protocol stops selecting any committed countries as

new proposers or potential partners until their going agreements have expired.

Approval committees specify the rules for renegotiation and how much power

a particular group has over a new state becoming effective. More formally, for any

current state x, let FA(x) ⊆ X be the set of feasible next states that a set of countries

A has the power to approve. Any proposition to move from the current state x to

some new state y needs approval from A such that y ∈ FA(x). Notably, the set of

responders in the approval committee A can potentially be much larger than the

set of countries invited to move to a new coalition. Consider the example coalition

8The proposer can always choose to maintain the status quo. That is, proposing an existing
coalition that contains S is always trivially accepted and requires no approval committee.
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structures above. If the going state is x3 and country 3 is the active proposer, it

might propose moving the system to x1 where it forms a new coalition with country

2. Whether country 1 first needs to free country 2 from any previous obligations

depends on the game at hand through restrictions on the approval committee. A

unanimous acceptance by the approval committee moves the game into the new

state. 9 Any rejections mean that the state remains unchanged, and the game

moves to the next period with a new proposer selected by the protocol. This game

continues indefinitely.

Assumptions on the protocol and approval committees reflect the sphere of in-

ternational agreements that we are interested in and the bargaining tools that coun-

tries have at their disposal in the international arena. First, we place no restrictions

on what transitions a country can propose. Any player might then suggest other

countries to join forces or existing coalitions to disintegrate, even if it is not self a

member of those coalitions. Another form of leverage that we allow the countries

to have is the possibility to walk out of their current treaties unilaterally without

consulting the other members. For more strictly binding agreements, one could

assume, for instance, that a country must be on the approval committee for any

transition that affects the composition of its current coalition [26].

The history of the game, Ht, keeps track of previous coalition structures, propo-

sitions, and responses. It can also be included in the state representation x together

with the coalition structure π. In some instances, the history is merely a bookkeep-

ing item with little impact on the actual bargaining process. However, it also

enables the implementation of very detailed protocol-approval committee combina-

tions. One potential use case is the introduction of rejector power, where the choice

of new proposers depends on the history of recent rejectors [100]. In an extreme

case, the first country to reject a proposition automatically becomes the new pro-

poser, making the rejection of a proposal a much more valuable tool than under a

uniformly random proposer selection.

9Extensions are also possible where some non-unanimous vote is enough to pass a proposed
transition.



54

2.A.2 Partition functions and cross-coalition externalities

Externalities across coalitions play an essential role in our geoengineering game.

For any individual country, the instantaneous payoff depends not only on the com-

position of its own coalition but also on what other coalitions exist simultaneously

within the entire coalition structure. Partition functions enable a flexible represen-

tation of these cross-coalition externalities.

As before, let N be the set of all countries and the coalition structure π a

partition of N . Define M(C, π) to be a mapping that specifies for each coalition

C ∈ π a set of payoff vectors in R|C|. 10 That is, if we assume some transferability

of utility, the elements in this set reflect the possible ways any coalition can divide

its aggregate payoffs between members, given the ambient coalition structure. A

partition function game (N,M) then defines the value of each coalition in every

ambient coalition structure that it can be an element of.

A consequence of coalitional payoffs depending on the entire coalition structure is

that countries’ propositions must depend on what happens elsewhere in the system.

In our context, this might mean that a geoengineering coalition conditions its value-

sharing rule on whether the outside countries form a counter-geoengineering coali-

tion or remain as singletons. Formally, then, any proposition is a tuple (C,u(π))

where the vector u(π) contains a proposed allocation of value across members in a

new coalition C for every conceivable partition π that contains C.

The extent to which utility is transferable across countries is context-specific.

For international environmental agreements, transfers might be technically feasible

but politically challenging to implement. The additional complexity of partition

functions is that any coalition structure π may allow for multiple equilibrium payoff

vectors. To simplify the analysis, it is also possible to impose a fixed sharing rule

within a coalition as in Ref. [101]. In our game, such fixed rules could be, for

instance, proportional to the political power shares, an equal split across members,

or even forbidding any within-coalition utility transfers altogether.

10In a characteristic function game without externalities, the payoffs are independent of the
ambient coalition structure.
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2.A.3 Farsightedness and bargaining friction

The discounting parameter δ serves two roles in our approach. It introduces bargain-

ing frictions if rejected proposals cause delays in payoffs and controls the countries’

level of farsightedness concerning possible future transitions. Countries receive an

infinite stream of real-time payoffs based on the going state and their static payoff

function ui(x). Their goal is to maximize the expected sum of discounted payoffs:

EP
∞∑
t=0

δtui(xt), (2.3)

where P is a stochastic process governing the state transitions (defined in more

detail below). An unsuccessful round of bargaining means that any future gains

from coalition formation will be delayed and discounted. A value of δ close to 1

implies that countries might be willing to push their payoffs far into the future or

even endure temporary losses to better position themselves for future negotiations.

When choosing their propositions and responses, countries consider not just the

one-step consequences of their actions but an entire sequence of new propositions,

responses, and transitions that their current actions might trigger. A high level of δ

implies that countries consider a long chain of possible future events when choosing

their strategies. For simplicity, we assume that all countries share the same level of

farsightedness.

2.A.4 Strategy profiles

A strategy profile defines the country-specific decision rules. We assume all strate-

gies to be stationary and Markovian so that all proposals and responses only depend

on the going state with no dependence on history or time. All countries have com-

plete information regarding the game’s details and other players’ strategies.

Let pi(x, y, A) be the probability that country i proposes moving to state y

to an approval committee A when chosen as the active proposer under a going

state x. Similarly, let ri(x, y, A) be the probability that country i, if a member

of the approval committee, accepts the proposed transition. The strategy profile

is a collection of these proposer and responder distributions across all countries,

σ = {pi, ri}ni=1. We can then condense all stochastic components of the model into
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a single process P σ
ρ that governs the evolution of our geoengineering game. In other

words, the probability of any state transition depends on the protocol picking a

particular country k to choose a proposition from pk and all responding countries

j ∈ A replying according to rj. The value function of any state x for country i

under strategy profiles σ and protocol ρ is then:

Vi(x) = (1− δ)ui(x) + δ
∑
y∈X

P σ
ρ (x, y)Vi(y). (2.4)

An equilibrium strategy profile is a collection of strategies such that no country

wants to change their own strategy given the strategies of others. The existence

of an equilibrium is guaranteed under the conditions of continuous payoff functions

ui(x) and compact state space X [25, 102], but in general the equilibria are not

unique 11. The following two consistency conditions must apply to all players for a

strategy profile to constitute an equilibrium [26].

Condition 1. Proposer consistency.

pi(x, y, A) > 0 only if y ∈ FA(x) and

(y, A) ∈ argmax
(k,Q):k ∈ FQ(x)

{Ψ(x, k,Q)Vi(k) + (1−Ψ(x, k,Q))Vi(x)}

Condition 2. Responder consistency.

ri(x, y, A)


= 1, if Vi(y) > Vi(x)

= 0, if Vi(y) < Vi(x)

∈ [0, 1] otherwise.

Above, Ψ(x, k,Q) denotes the probability that the approval committee Q approves

the proposed transition from state x to k. In words, the first condition states that

for a country to propose a transition, there must be no other possible proposals to

make that would yield a higher expected long-run payoff, given the strategies of

11A stationary Markov equilibrium exists for finite X [26, Supplementary notes].
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others. The second condition requires that countries never accept proposals that

would take them to a state with a lower expected long-term payoff.

2.B Geoengineering deployment equilibria

The equilibrium of the underlying geoengineering deployment game depends on

assumptions regarding the preferences of countries and the global effects and costs

of geoengineering. This section outlines these assumptions.

2.B.1 Period payoffs are avoided temperature damages

Each country has a baseline temperature TBasei . Climate change is assumed to cause

a uniform temperature increase by ∆ > 0,

TCCi = TBasei +∆. (2.5)

Geoengineering reduces global temperatures, and we assume for clarity of the ex-

position that it reduces temperatures uniformly,

Ti = TCCi −G, (2.6)

where we measure the geoengineering level G in terms of the uniform tempera-

ture effect. Following Ref. [87], we assume there is a uniform ideal temperature,

T Ideal, with climate damages increasing quadratically in the deviation from that

ideal temperature,

ui(Ti) = −di(Ti − T Ideal)2 +Ki, (2.7)

where Ki is a constant. We can rewrite Eq. (2.7) as a function of the global geo-

engineering level,

ui(G) = di ·G · (2αi −G), (2.8)

where αi = TBasei +∆−T Ideal is the ideal SG level of country i and Ki = di(T
Base
i +

∆ − T Ideal)2 are country i’s climate damages at the local temperature caused by
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climate change. This choice of Ki ensures we can interpret ui as country i’s benefit

from SG. It is Eq. (2.8) that we use in the main text to calculate period payoffs for

countries. In the main text we set di = 1 and T Ideal = 13◦C. The constant term Ki

could also capture any within-coalition transfer schemes, which we ignore in this

paper.

2.B.2 Global geoengineering deployment

There are n countries in total. Apart from decisions on coalition formation, which

is our main focus, countries choose geoengineering levels gi. We assume that there

are no direct costs of geoengineering. If only solar geoengineering is allowed, then

gi ≥ 0. With counter geoengineering, gi ∈ R. Geoengineering efforts by different

countries simply add up to the total global geoengineering level,

G =
n∑
i=1

gi. (2.9)

2.B.3 Best response functions

Here, we determine the best response function of a coalition. Let C ⊆ N be a

coalition that exceeds the minimal power threshold,
∑

i∈C γi ≥ γ, and let G−C ≥ 0

be the amount of cooling provided by all other countries. If the coalition falls short

of the minimal power threshold, its best response trivially is zero. The coalition’s

choice variable is GC ≥ 0, and the final total geoengineering level will be G =

GC + G−C . The coalition’s objective is to maximize the power-adjusted sum of

utilities of its members,

max
GC≥0

∑
i∈C

γi ·
(
κi − di(GC +G−C − αi)

2
)
. (2.10)

The constant κi is irrelevant for the optimization, so Eq. (2.10) is equivalent to

maximizing:

−
∑
i∈C

ηi(GC +G−C − αi)
2, (2.11)
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where ηi = γidi combines a country’s political power and climatic exposure, mea-

sured in the marginal temperature damage. Eq. (2.11) is strictly concave in GC

with a maximum at

GC(G−C) = max(ᾱC −G−C , 0), (2.12)

where

ᾱC = (
∑
i∈C

ηi)
−1
∑
i∈C

ηiαi (2.13)

is the coalition’s weight-adjusted average ideal level. Note that Eq. (2.13) simplifies

to the arithmetic mean if all ηi are the same; also, a singleton’s weight-adjusted

ideal level is the original ideal level.

2.B.4 Nash equilibrium

Take any coalition structure π = C1 ∪ . . . ∪ CK . Assume the coalitions are or-

dered according to their weight-adjusted ideal level, i.e. ᾱC1 > . . . > ᾱCK
. For

simplicity, we assume that the ᾱCk
are pairwise-different. We can ensure pairwise

different weight-adjusted average ideal levels by very small changes to either powers

γi, marginal damages di and/or ideal deployment levels αi.

We have determined the best response functions in Eq. (2.12). All best response

functions have the same slope. They do not overlap because the ᾱCk
are pairwise

different. Taken together, this shows that the unique Nash equilibrium is:

G∗
C1

= ᾱC1 , G∗
Ck

= 0 for k = 2, . . . , K. (2.14)

The result is in line with the free-driver narrative: the coalition of countries with

the highest ideal geoengineering level, here captured by the weight-adjusted aver-

age ideal level, implements that level and imposes it on everyone else. The total

geoengineering level of coalition structure π can be written as:

G∗(π) = max
k

{ᾱCk
|Ck ∈ π}. (2.15)
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2.C Equilibrium strategy profiles

Tables 2.C.1 and 2.C.2 describe the equilibrium strategy profiles in full detail, corre-

sponding to the two examples in Section 2.3. As noted in the main text, a strategy

implies countries having contingency plans for all possible states where they might

be chosen as the proposer or asked to respond to a proposal as a member of an

approval committee. We construct the strategy profiles manually from an initial

guess according to the pre-specified approval committee structures, and verify their

correctness using Condition 1 and Condition 2 in section 2.A.4.

Proposer W Proposer T Proposer C

( ) (TC) (WC) (WT) (WTC) ( ) (TC) (WC) (WT) (WTC) ( ) (TC) (WC) (WT) (WTC)

( ) prop. 1 1 1

( ) acce. W 1 0 0 0 0 0 0

( ) acce. T 0 1 1 1 1 1 1

( ) acce. C 0 1 1 0 1 1 1

(TC) prop. 1 1 1

(TC) acce. W 1 0 0 0 0 0 0

(TC) acce. T 0 1 1 1 1 1 1 1 1

(TC) acce. C 0 1 1 1 1 1 1 1 1

(WC) prop. 1 1 1

(WC) acce. W 1 1 1 1 1 0 1 1 0

(WC) acce. T 0 0 1 1 0 0 1

(WC) acce. C 0 0 1 0 0 0 1 0 1

(WT) prop. 1 1 1

(WT) acce. W 1 1 1 0 0 1 1 0 0

(WT) acce. T 0 1 1 0 1 0 0 1 1

(WT) acce. C 0 1 1 0 1 1 1

(WTC) prop. 1 1 1

(WTC) acce. W 1 1 1 1 1 1 1 1

(WTC) acce. T 0 0 0 0 1 0 0 0

(WTC) acce. C 0 0 0 0 0 0 0 1

Table 2.C.1: Strategy profile under the weak governance scenario. Light blue rows
denote state transition proposals. Dark orange tiles indicate transitions the proposer
can initiate without consulting others (maintaining the status quo or unilaterally
leaving a coalition). Grey tiles indicate that a country is not a member of the
corresponding approval committee. Light green tiles are transitions for which a
country is in the approval committee and must provide an acceptance probability.
Light orange tiles on the left correspond to the going state of the game. Numerical
values indicate proposal and acceptance probabilities between 0 and 1.
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Proposer W Proposer T Proposer C

( ) (TC) (WC) (WT) (WTC) ( ) (TC) (WC) (WT) (WTC) ( ) (TC) (WC) (WT) (WTC)

( ) prop. 1 1 1

( ) acce. W 1 1 1 1 1 1 1

( ) acce. T 1 0 0 1 1 0 0

( ) acce. C 1 0 0 1 0 0 1

(TC) prop. 1 1 1

(TC) acce. W 1 1 1 1 1 1 1

(TC) acce. T 0 0 0 0 0 1 0 0 0

(TC) acce. C 0 0 0 0 0 0 0 0 1

(WC) prop. 1 1 1

(WC) acce. W 0 1 0 0 1 1 0 1 1

(WC) acce. T 1 0 0 1 1 0 0

(WC) acce. C 1 0 0 1 1 0 0 1 1

(WT) prop. 1 1 1

(WT) acce. W 0 1 0 0 1 0 0 0 1

(WT) acce. T 1 1 1 1 1 1 1 1 1

(WT) acce. C 1 1 0 1 1 0 1

(WTC) prop. 1 1 1

(WTC) acce. W 0 1 0 0 0 0 0 0

(WTC) acce. T 1 1 0 1 1 1 1 1

(WTC) acce. C 1 1 1 1 1 1 1 1

Table 2.C.2: Strategy profile under the power threshold scenario. Light blue rows
denote state transition proposals. Dark orange tiles indicate transitions the proposer
can initiate without consulting others (maintaining the status quo or unilaterally
leaving a coalition). Grey tiles indicate that a country is not a member of the
corresponding approval committee. Light green tiles are transitions for which a
country is in the approval committee and must provide an acceptance probability.
Light orange tiles on the left correspond to the going state of the game. Numerical
values indicate proposal and acceptance probabilities between 0 and 1.

2.D Additional examples

For the clarity of exposition, the examples presented in Section 2.3 assumed that the

countries differ only in terms of their ideal temperature levels. We also contrasted

the weak governance scenario with free-driver behaviour to only one possible gov-

ernance scheme with a minimum power threshold. In this supplementary section,

we provide two additional examples. First, we consider the same minimum power

threshold rule as in the main text but now allow countries to differ in their marginal

damages di. Then, building on the example with differentiated marginal damages,

we consider an alternative set of institutional rules where a unanimous approval
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committee is no longer needed, but a majority approval is enough to verify a state

transition. As we will show, both extensions will directly affect the transition dy-

namics of the model and, in the latter example, also the predictions of the absorbing

state.

Power threshold with country-specific marginal damages

Consider a setting similar to Section 2.3 with a minimum power threshold for SG

deployment. All countries still have the same ideal temperature levels shown in

Table 2.3.1. But whereas all marginal damages di are fixed to unity in the main

text, we now consider dW = 0.75, dT = 1.25, and dC = 1.0. Alternatively, we could

introduce variation in the damage functions by considering additional terms (such

as precipitation effects) or by considering different marginal impacts from excessive

and insufficient levels of geoengineering.

The main consequence of the new marginal damages is that all countries now

receive their highest possible period payoffs in different states: country W in (WT),

T in the grand coalition (WTC), and C in (TC) (see panel A in Figure 2.D.1). The

exact same strategy profile shown in Figure 2.C.2 still constitutes an equilibrium

in this new example. The key thing to note is that country T still wants to break

out of the grand coalition, even though it maximizes the period payoffs for T. This

means that country C has a high degree of veto power on the system dynamics

through being able to break the grand coalition and by T anticipating its strategy.

Consider the game in (WTC). Country T knows that W remains passive, as the

warm country tries to maintain any high-deployment state for as long as possible.

Therefore, the bargaining occurs essentially between the two natural partners, T

and C, who have relatively similar ideal temperature levels and together enough

political clout to deploy SG.

Since the countries are identical in power and the proposer protocol is a uniform

distribution, there is a 1/3 change of C becoming the proposer in (WTC) and

breaking the system into (WT), knowing that from there it is in the interest of T to

further deviate into all singletons ( ), again with probability 1/3. Anticipating these

moves and acting first, country T can first deviate from (WTC) to (WC), forcing C

to perform the additional deviation to ( ). For T, such a sequence of states implies a
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higher sum of cumulative payoffs due to the more favourable transition. Therefore,

country T, anticipating the actions of C, also prefers to break out from the state

where the SG deployment level would bring it closest to its ideal temperature,

simply in anticipation of the strategies of others.

State State

W's consent needed, but W rejects
C's consent needed, and C accepts

A. Power threshold with B. Power threshold without

Legend:

*Payoff country is deploying SG

high period payoff

medium period payoff

low period payoff

unanimity requirement unanimity requirement

0.000 0.000 0.000

43.574 *18.457 *0.321

*74.698 16.014 *-16.117

0.000 0.000 0.000

43.574 *18.457

(WT) (WTC) (TC)

(WT)

*-16.117

*82.708

(TC) (TC)

(WTC)

*0.321

W T C W T C

*74.698

(WTC) (WTC) (TC)

G=5.042

G=0.000

G=2.889

G=5.786

G=6.813

G=5.042

(TC)

(WTC)

(TC)

(TC)

G=0.000

G=2.889

(WC)

(WT)

(WTC)

*67.905

44.538

(TC)

(WC)

(WT)

(WTC)

G=5.786

G=6.813

*82.708

(TC)

(TC)

(TC)

( )

(WC)

( )

(TC)

(WT) (WTC) (WTC) (WTC)

*18.644 *-10.293

*10.112

-0.455

18.127 -0.460

*10.112 -25.973

Proposition

Country Country

-25.973

*67.905 *18.644 *-10.293

Period payoff

SG level

Payoff country is not deploying SG

43.138 18.272 0.318
( )

43.574 18.457 0.321

44.067 18.206 -0.166

44.302 18.032

(WTC)

Value function
(Coalition)

67.905 18.644 -10.293

67.000 18.413 -10.137
( )

(TC)

(WC)

(WT)

(WTC)

67.542 18.641 -10.135

67.853 18.616 -10.299

67.947 18.515 -10.449

(TC)

16.014

Figure 2.D.1: Summary of period payoffs and equilibrium strategy profiles under
differentiated marginal damages with the unanimity requirement (panel A) and
without it (panel B). Period-payoffs ui, cf. Eq. (2.2), and long-term expected values
given strategies Vi, cf. Eq. (2.1), are shown in red (country W), green (country T),
and blue (country C) boxes. Dark and light fills represent more and less attractive
constellations, respectively. An asterisk in front of the payoff indicates that the
respective country is deploying SG. Every row is dedicated to a certain going state.
The dark grey box on the left indicates the coalition structure and the total global
SG level in that state. For every state, the light grey boxes show the proposal of
the respective country in equilibrium. If that proposition needs approval by others,
the countries needed for approval are indicated by small coloured boxes to the
right of the proposal: solid filled if the respective country approves the proposal in
equilibrium, filled with a diagonal line if the respective country rejects the proposal.



64

Power threshold with majority approval committees

Finally, consider the same setting as above with a minimum power threshold and

differentiated marginal damages. However, this time, assume that a majority com-

mittee is enough to validate a state transition. More concretely, for our game, this

implies that all new members must still approve a transition (e.g. W proposing the

move from ( ) to (WTC) needs the consent of both T and C), but only half of the

existing members (for instance, W can propose, and T can approve the transition

from (TC) to (WTC) without consulting C).

Dropping the unanimity requirement can have a significant impact on the tran-

sition dynamics. Consider the strategies in panel B in Figure 2.D.1, under which

the grand coalition (WTC) is an absorbing state. So far, country C always had

an incentive to break the grand coalition, expecting T to eventually play along

and move the system to the absorbing state (TC). However, without the unanimity

requirement, it would be in the interest of T to approve W entering (TC), thus

restoring the grand coalition. Since C needs to endure high transitory losses when

aiming for (TC) to materialize, this strategy is no longer profitable without the

unanimity requirement.

The resulting transition probabilities are presented in Figure 2.D.2, and the

detailed strategy profile in Table 2.D.1. Note that all countries now want to avoid

the singleton structure ( ). That is intuitive: since it is now easier for countries to

trigger state transitions, there is less veto power from dropping out of any treaty.

All countries anticipate that some SG deploying coalition will eventually emerge. It

is, therefore, in their interest to join in and influence the thermostat setting instead

of remaining outside. Note that in this scenario, the geoengineering deployment

levels, and hence the period payoffs, remain unchanged from panel A in Figure

2.D.1 with the unanimity requirement still in place. On the other hand, the value

functions for each state, as described in Eq. (2.4), change, due to the new transition

probabilities.
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(WC)

(WTC) (WT)

(TC)

( )

ൗ2 3

ൗ1 3

ൗ2 3

ൗ1 3

ൗ1 3

B. Power threshold without   

unanimity requirement

1
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ൗ1 3
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A. Power threshold with 

unanimity requirement

Figure 2.D.2: State transition probabilities under power threshold, country-
specific marginal damages, unanimity requirement (panel A), and without unanim-
ity requirement (panel B). The values in panel A correspond to the power threshold
scenario in Section 2.3 and strategy profile in Table 2.C.2, repeated here for conve-
nience. The transition probabilities in panel B follow from the equilibrium strategies
shown in Figure 2.D.1. Without a unanimity requirement, the absorbing state is
(WTC), as country C no longer has the incentive to deviate, knowing that countries
W and T have the power to restore the grand coalition from the state (TC).
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Proposer W Proposer T Proposer C

( ) (TC) (WC) (WT) (WTC) ( ) (TC) (WC) (WT) (WTC) ( ) (TC) (WC) (WT) (WTC)

( ) prop. 1 1 1

( ) acce. W 1 1 1 1 1 1 1

( ) acce. T 1 1 1 1 1 1 1

( ) acce. C 1 0 0 1 0 0 1

(TC) prop. 1 1 1

(TC) acce. W 1 1 1 1 1 1 1

(TC) acce. T 0 0 0 1 0 1 0 0 1

(TC) acce. C 0 0 0 0 0 0 0 0 1

(WC) prop. 1 1 1

(WC) acce. W 0 1 0 0 1 1 0 1 1

(WC) acce. T 1 0 1 1 1 0 1

(WC) acce. C 1 0 1 1 1 0 1 1 1

(WT) prop. 1 1 1

(WT) acce. W 0 1 0 0 0 0 0 0 0

(WT) acce. T 1 1 1 0 1 0 1 1 1

(WT) acce. C 1 1 1 1 1 1 1

(WTC) prop. 1 1 1

(WTC) acce. W 0 1 0 0 1 0 0 0

(WTC) acce. T 0 0 0 0 1 0 0 0

(WTC) acce. C 1 0 0 1 1 0 0 1

Table 2.D.1: Strategy profile without unanimity requirement under a power
threshold and differentiated marginal damages. Light blue rows denote state tran-
sition proposals. Dark orange tiles indicate transitions the proposer can initiate
without consulting others (maintaining the status quo or unilaterally leaving a
coalition). Grey tiles indicate that a country is not a member of the corresponding
approval committee. Light green tiles are transitions for which a country is in the
approval committee and must provide an acceptance probability. Light orange tiles
on the left correspond to the going state of the game. Numerical values indicate
proposal and acceptance probabilities between 0 and 1. For the strategy profile
under unanimity requirement, see Table 2.C.2.



Chapter 3

Natural Disasters and Economic

Dynamics: An Application to

Tropical Cyclones

Abstract

This chapter presents a framework for estimating the long-run economic
impacts of natural disasters. The approach combines a probabilistic
disaster modelling platform with a dynamic general equilibrium model of
the economy. We apply the methodology to study the effects of tropical
cyclones in the United States, the Caribbean islands, Japan, China,
and the Philippines. Our results show that the post-disaster recovery
can take several decades, with notable cumulative adverse effects for
the frequently exposed regions. For instance, cyclone activity reduces
long-run aggregate consumption between 0.3 - 22 %, depending on the
region. To evaluate the robustness of our results, we extend the model
with two additional scenarios. First, we consider endogenous economic
productivity gains from specialization. Second, we add a scenario where
climate change alters the intensity and frequency of future disasters. The
extensions affect the numerical results but do not change the qualitative
conclusions.

This chapter is joint work with Clément Renoir. An earlier overview of the methodology and
results has been published in Ref. [103].
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3.1 Introduction

Tropical cyclones are among the costliest natural catastrophe events, causing ap-

proximately USD 50 billion in damages per average year over the past two decades

[27]. In addition to their direct effects through loss of lives and destruction of eco-

nomic assets, tropical cyclones can permanently shape regional growth dynamics

by causing prolonged reconstruction periods [104], forced relocation [105], or even

changing risk attitudes toward future disasters [106]. Future damages could be

even higher as coastal development increases the value of exposed assets [107] and

as climate change modifies cyclone intensity and frequency [108]. However, esti-

mates regarding cyclones’ long-term impacts on economic dynamics are sometimes

inconclusive due to the complex interplay of direct and indirect effects over time.

We present a new framework for estimating the long-run economic impacts of

tropical cyclones. First, we employ a probabilistic disaster impact model [109]

to quantify the direct annual losses to regional capital stocks using historical and

synthetic cyclone tracks. Then, we feed these estimations of capital destruction

into a dynamic, multi-sectoral general equilibrium model of the economy [110].

With the economic model, we track the evolution of regional capital stocks and

GDP components over time, analysing both the immediate disaster impacts and the

long-run cumulative effects. The combination of models allows us to derive globally

consistent cyclone damage estimates, providing new insights into the magnitude of

tropical cyclones’ role in long-term economic development.

We gather data from different sources. The disaster impact model uses satellite

data from the International Best Track Archive for Climate Stewardship database

[111] for historical cyclone tracks. We also use satellite imagery for estimating the

spatial distribution of exposed assets based on nighttime light intensities [112]. The

global grid resolution of the resulting damage estimates is approximately 10 × 10

km. We calibrate the economic model with the Global Trade Analysis Project

dataset. It provides a sectoral decomposition of economic activities and bilateral

trade flows for 129 world regions. We focus our analysis on the US, the Caribbean

islands, Japan, China, and the Philippines. These regions are frequently hit by

tropical cyclones and show considerable heterogeneity in size, economic structure,

and overall cyclone exposure.
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In our setting, the immediate economic response after a cyclone strike is a jump

in aggregate investments and a consequent drop in consumption to replace the

damaged capital stock. Ref. [113] refers to this tradeoff as ”forced investment”

since the reconstruction efforts can spur economic activity while there is still an

overall reduction in welfare. Although the reconstruction in our model is relatively

quick, it can take several decades to catch up with the benchmark growth path

where no shocks occur. For some economic variables, such as the aggregate output

and consumption levels, the post-disaster trajectory remains below the reference

path for the entire simulation period.

Our results also highlight the dissimilarity between cyclone impacts on GDP

and welfare. Whereas the long-run average drop in consumption ranges from 0.3%

in the US to more than 20% in the Philippines, the respective GDP reductions are

only 0.1% and 6%. Since consumption is our model’s sole determinant of welfare,

the GDP changes alone fail to capture the cyclones’ full welfare effect. GDP, in this

case, masks the opposite impacts cyclones have on individual GDP components,

producing artificially small aggregate changes [114].

A long-run quantification of tropical cyclones’ economic impacts is likely to

be sensitive to assumptions regarding i) the underlying mechanisms of economic

growth and ii) the effects of climate change on future disasters. The general equi-

librium model allows us to consider growth dynamics based on either physical cap-

ital accumulation or knowledge creation with endogenous productivity gains from

specialization. Compared to physical capital accumulation, the knowledge-based

growth engine dampens the negative cyclone impacts due to higher productivity

and additional incentives for investing in new capital varieties. Under this growth

specification, in extreme cases, cyclones’ long-run effect on GDP can even become

positive due to very high investment levels and the within-sector positive spillovers

that follow.

Finally, to study the role of climate change on future cyclone intensity and fre-

quency, we recalibrate the regional cyclone damage distributions under two Repre-

sentative Concentration Pathway (RCP) scenarios. Under the intermediate RCP4.5

scenario, cyclone intensity increases in the North Atlantic basin (the US Atlantic

coast and Caribbean islands) with no changes in event frequency, driving up the

total economic losses. On the other hand, cyclone frequency in the Northwestern
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Pacific basin (Japan, China, and the Philippines) falls with only a slight increase

in intensity, leading to lower mean damages at the end of the century. Under the

high-emissions RCP8.5 scenario, cyclone damages increase in all considered regions.

In the US, for instance, the aggregate capital stock in 2100 under RCP8.5 is approx-

imately 1% lower compared to the same year under constant climate conditions.

Related literature

The empirical work linking natural disasters and economic growth is somewhat

inconclusive. For instance, Ref. [115] finds a positive relationship between climatic

disaster frequency and economic growth. On the other hand, Ref. [104], analyzing

tropical cyclones, finds a systematic and substantial negative long-run impact on

national incomes with no clear evidence of a rebound effect during the two decades

following the catastrophe. Moreover, recurring shocks make it impossible to catch

up with the initial GDP trend. Ref. [116] focuses on the Central American and

Caribbean regions and estimates the average hurricane to reduce the output growth

rate by roughly 0.84%.

Several works attempt to reconcile the diverging empirical evidence. One expla-

nation is the difference between the risk of disasters occurring and the consequences

after experiencing a disaster strike [117, 118]. Whereas disaster strikes can cause

output losses due to capital destruction and business interruptions, disaster risk

might induce higher precautionary savings, thereby inflating the economy’s growth

rate. However, Ref. [119] casts doubt on the possible role of precautionary savings

in explaining the positive relationship between economic growth and disasters. A

positive relationship would require unreasonably high values of intertemporal sub-

stitution elasticity and relative risk aversion when calibrating an endogenous growth

model with data from the US.

Another explanation for the inconclusive empirical findings lies in the relative

damages disasters might cause depending on the capital variety. As cyclones are

particularly destructive to physical capital, frequent disasters might steer invest-

ments towards accumulating human capital instead, thereby enhancing productivity

[115, 117, 120]. Whether natural disasters mainly affect productive capital stocks or

durable consumption goods might also play a role [121]. Losing productive capital
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harms economic performance, whereas only replacing damaged durable goods can

boost output, potentially pushing GDP above the pre-disaster level.

A third possible explanation for positive tropical cyclone impacts is the process

of creative destruction. As Ref. [117, p.90] writes, “By destroying old factories and

roads, disasters allow new and more efficient infrastructure to be built, providing an

opportunity for the economy to transform itself into a more productive one in the

long run.” Older capital vintages might also be more susceptible to disaster dam-

ages than newer variants, amplifying the effect [122]. However, much depends on the

affected region and the economic sector. For instance, Ref. [123] finds that the cre-

ative destruction effect only occurs in sufficiently developed economies. According

to Ref. [124], on the other hand, storms can cause significant damage to agricul-

ture, while capital stock upgrades only boost industrial growth. Other mechanisms

might also dampen the productivity gains from creative destruction. For instance,

small firms might not afford the business interruptions and worker re-training that

are often necessary when replacing lost capital goods with new variants [113, 125].

Several studies also highlight the role of institutions as a determinant of disaster

impacts. Ref. [126], for instance, finds that countries with higher-quality institu-

tions suffer fewer disaster-related deaths. Education, trade openness, and financial

system maturity also matter for disaster resilience [127–129]. The high institutional

quality helps endure the initial catastrophe shock and enables faster deployment of

resources for reconstruction, thus reducing negative disaster spillovers to the broader

economy [130].

Specialized cyclone impact models provide another way to estimate the disas-

ters’ long-run economic consequences [107, 131]. In particular, future losses might

increase as coastal development inflates the value of exposed assets and as climate

change alters the intensity and frequency of disasters. Although rich in spatial

detail, these analyses frequently rely on predefined GDP projections to quantify

long-term effects. However, as disasters become increasingly harmful, they are

more likely to affect consumption, investment patterns, and the underlying growth

trajectories. Models featuring fixed economic growth paths cannot – by design –

capture these feedback mechanisms.

This chapter contributes to the literature by considering the impacts of cyclone

strikes on long-run economic development. Empirical works such as Ref. [104] pro-
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vide insight into the causal effect of cyclone shocks on GDP. However, they have to

deal with several confounding factors and only analyze the effects in partial equi-

librium. On the other hand, disaster impact models such as Ref. [107] represent

cyclone damages in great detail but typically do not capture the economic adjust-

ments over time. Our general equilibrium approach uses the spatial detail of a

full disaster impact framework while capturing the endogenous recovery period dy-

namics. All model components rely on global datasets, allowing us to consistently

evaluate country-level impacts, incorporating direct damages and the secondary

effects through trade linkages. Finally, through changes in a single elasticity pa-

rameter, the economic model can also capture different assumptions regarding the

underlying determinants of growth, from a standard capital accumulation setting

to an endogenous representation where gains from specialization drive growth.

3.2 Methodology

This section describes the disaster impact framework, the general equilibrium model

of the economy, and the integration of the two systems. We focus our study on

five regions: the US, the Caribbean islands, Japan, China, and the Philippines.

These regions are frequently exposed to tropical cyclones and vary drastically in

the structure and size of their economies. All model components rely on globally

consistent datasets, which makes extending the regional coverage of the analysis

straightforward.

3.2.1 Disaster impact model

Quantifying the direct disaster impacts requires data describing the exposures (the

spatial distribution of vulnerable physical assets) and the hazards (tracks and wind

speeds of historical cyclones). We access both datasets and conduct the analysis

using the open-source CLIMADA (CLIMate ADAptation) platform [109, 132].

Exposure

To estimate the annual disaster impacts, we first need to construct the spatial

distribution of physical assets in all regions of our study. We use the LitPop model
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[133], which combines nighttime light satellite imagery with gridded population

accounts to obtain a globally consistent estimate of the asset distribution.

Satellite imagery is convenient for its public availability, global spatial coverage,

and frequent update schedule. Our nighttime light intensity data come from NASA’s

Black Marble suite [112], and we use 2016 as the base year. However, some known

caveats exist in using light intensities as a proxy for economic activity. These

include, among others, high measurement errors in luminosity data, saturating pixel

values, and bright pixels leaking light into their adjacent pixels, thus inflating their

value [133, 134].

To overcome some of the above issues, the LitPop model supplements the night-

time light data with global population estimates from the Gridded Population of

the World database [135]. The database provides globally disaggregated population

counts with a resolution of up to 1×1 km. We give equal weight to the light inten-

sity (Lit) and population data (Pop) and compute the share of the physical assets

(Ai) in each pixel i out of N total pixels for a given country as:

Ai =
Litni Pop

m
i

ΣN
i (Lit

n
i Pop

m
i )
,

where m = 1 and n = 1 are tuneable share parameters. Since we model cyclone

damages as destroyed capital stock, we use the value of the produced capital stock

from the World Bank wealth accounts as the region-specific indicator for aggregate

physical asset value [136]. Hence, the value of physical capital per land area is

the product of the country’s total capital stock value and the pixel-specific capital

share. Figure 3.2.1 illustrates the resulting distribution of exposed capital stocks

for the US state of Florida.

Hazard

Next, we estimate the cyclone damages based on historical cyclone tracks. We

obtain the path and the maximum sustained wind speed of each recorded cyclone

from 1950 to 2019 from the International Best Track Archive for Climate Stew-

ardship (IBTrACS) database [111]. The dataset contains 6’907 tropical cyclone

tracks, illustrated in Figure 3.2.2. Among them, 1’079 happened in the North At-

lantic basin (containing the Caribbean islands and the US Atlantic coast), and
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Figure 3.2.1: Estimated distribution of capital stocks in the US state of Florida.
Each pixel is weighted according to its nighttime light intensity and population
density. For each region in our sample, we distribute the aggregate produced capital
stock value according to the pixel-specific shares.

2’040 in the Northwestern Pacific Ocean basin (containing Japan, China, and the

Philippines). For each historical cyclone in the IBTrACS database, we construct

50 synthetic tracks as perturbed random walks under parameters controlling their

distance from the original observations. The synthetic tracks inherit several fea-

tures from their historical counterparts, such as changes in wind speeds on landfall,

which are relevant for damage computation. These additional synthetic data im-

prove the probabilistic description of the annual cyclone activity compared to using

only historical storm tracks. The augmented dataset contains 55’029 and 104’040

tropical cyclone events for the North Atlantic and the Northwestern Pacific basins,

respectively.

We use maximum wind speed to measure storm intensity, a common choice in

the literature [137–140]. The storm intensity allows us to construct a proxy for

capital destruction caused by each cyclone. We use the cubic damage function from

Ref. [141] to translate cyclone wind speeds into capital destruction. The fraction of

capital damaged by storm j at location i, and time t, δi,j,t, varies with wind speeds

V exceeding a threshold value:
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δi,j,t =
v3i,j,t

1 + v3i,j,t
, (3.1)

with a normalized wind speed:

vi,j,t ≡
max{Vi,j,t − Vthresh, 0}

Vhalf − Vthresh
. (3.2)

Similar to Ref. [141], we set the wind speed below which there are no damages

at Vthresh = 25.7m/s. The parameter Vhalf = 74.7m/s determines the wind speed

that destroys 50% of the capital stock [142]. We aggregate the damages δi,j,t by

year to compute statistics such as the mean and the standard deviation of damages

for all regions.

Figure 3.2.2: Global tropical cyclone activity for 1950-2019 based on the IBTrACS
database [111]. The intensity levels from lower to higher wind speeds are tropical
depression (TD), tropical storm (TS), and hurricanes of category 1 to 5 (Cat. 1-5)
on the Saffir-Simpson scale.

Ultimately, we want to represent cyclone damages as annual economic shocks.

Although the synthetic cyclone tracks extend our pool of disaster events, our dataset

still contains estimates for only seventy years of cyclone activity (from 1950 to

2019). The small sample size may prohibit us from constructing a realistic damage

distribution. To overcome this limitation, we enlarge our sample of annual damage

estimates by creating a set of synthetic years. More specifically, we create 5’000

additional synthetic years of cyclone activity by assuming the disaster frequency
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to follow a Poisson distribution [118, 143] and resampling a corresponding number

of random events from the collection of synthetic and historical cyclone tracks.

Appendix 3.C describes the resulting distributions in more detail.

Table 3.2.1 summarizes the damage estimates for the historical sample and the

augmented sample containing synthetic tracks and all 5’070 synthetic years for

each region of our study. We detect no systematic bias between the historical and

augmented samples. The three statistics we use to compare the two samples are

roughly similar, although the augmented sample has a much broader set of annual

damages. Table 3.2.1 also highlights the considerable regional variation in relative

cyclone-induced capital losses, ranging from an additional depreciation rate of 0.15%

in the US to 2.67% in the Philippines.

USA CAR JPN CHN PHL

Historical sample
% of events causing damage 29.84 13.07 19.41 33.28 22.21
Mean damage, δ̄TC (%) 0.15 0.59 1.10 0.40 2.67
Std. of damages, σTC 0.21 1.51 1.82 0.51 6.43

Augmented sample
% of events causing damage 26.82 13.50 18.68 28.74 21.64
Mean damage, δ̄TC (%) 0.09 0.65 0.84 0.40 2.73
Std. of damages, σTC 0.14 1.67 1.51 0.50 5.67

Table 3.2.1: Yearly cyclone damage statistics by region. The historical sample
only contains the cyclone observations between 1950-2019. The augmented sample
corresponds to the 5’070 synthetic years that we simulate from the historical ob-
servations and the perturbed synthetic tracks.

3.2.2 Economic model

This section describes the main features of the model economy, as well as the

datasets used for calibration.
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Numerical framework

We employ a dynamic, multi-regional and multi-sectoral numerical general equilib-

rium model based on Ref. [144] and Ref. [110]. The production structure of the

economy consists of i) final good producers, ii) producers of intermediate goods,

and iii) producers of intermediate composites. The separation between interme-

diate goods and intermediate composites is one of the framework’s key features.

It enables switching on endogenous productivity gains from specialization with a

simple change of model parameters. The time horizon of the theoretical model for-

mulation is infinite with discrete increments but approximated using a finite number

of periods in the numerical implementation. A detailed technical description of the

model is available in Appendix 3.A.

Each regional economy consists of a forward-looking representative household,

maximizing the discounted sum of utility from consumption over time. Households

also own all firms and factors of production. Labour and capital are mobile across

sectors (but not regions), and all countries are open to trade. We model interna-

tional trade using the Armington assumption [145], which treats goods produced

in different regions as imperfect substitutes. As opposed to a model with small

open economies, our trade specification allows changes in regional production and

demand patterns to affect world prices. Consequently, disaster impacts in one coun-

try can spill over to other regions via global supply chain links. The model consists

of nested constant elasticity of substitution (CES) blocks that combine domestic and

imported goods from various sectors into consumption aggregates and production

input bundles.

Economic accounts and model calibration

We calibrate the economic model using the Global Trade Analysis Project (GTAP)

database [146]. GTAP provides unified base-year economic accounts for 129 regions,

57 commodities, and five primary production factors. The dataset describes the

flow of goods across sectors and regions and how the regional agents allocate them

between final demand, intermediate production inputs, or trade. We use the GTAP

data as a static snapshot of the economy and extrapolate —using a set of exogenous

parameter assumptions— an initial balanced growth path on which all sectors grow
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at the same rate. The dataset also includes sectoral greenhouse gas emissions, which

allows constructing additional climate policy scenarios. Appendix 3.A.6 contains

details on the sectoral and regional aggregation of the raw GTAP data.

In addition to the dollar-valued economic accounts from GTAP, the general

equilibrium model requires various sector- and region-specific elasticity parameters.

These include the elasticity estimates for consumer demand and the substitution

elasticities between different production inputs. We use estimates mainly from

the MIT Economic Projection & Policy Analysis model [147] and Ref. [146]. The

numerical values are available in Appendix 3.A.3.

3.2.3 Model integration

In summary, we can describe our modelling framework as follows. We generate

data on cyclone activity in all five regions of our study based on historical and

synthetic cyclone tracks. By combining the cyclone tracks data with a wind-based

damage function and the spatial distribution of economic assets, we compute the

capital destruction caused by each cyclone in the sample. We aggregate this capi-

tal destruction estimate by year and obtain a distribution over the annual capital

depreciation due to cyclone exposure for each economy. Finally, we construct a

pool of synthetic cyclone activity years from which we draw the cyclone shocks. We

consider the region-specific shocks as an unexpected annual increase in the natural

depreciation level of capital. We first calibrate our economic growth model to a

balanced growth path without cyclones. Finally, introducing the shocks, we can

run counterfactual simulations and compare how the economic trajectories differ

between the reference growth path and the one affected by cyclones.

Numerical general equilibrium models provide a flexible instrument for analysing

the multi-sectoral adjustment of prices after an economic shock. Their determinis-

tic structure, however, imposes some limitations on modelling the impacts of rare

natural disasters such as tropical cyclones. Introducing disaster impacts in an ar-

bitrary time step t, without further adjustments, would imply that for the periods

preceding t, all agents in the model have perfect information over the timing and

magnitude of the upcoming event. Agents would then react to disasters with opti-

mal precautionary savings, producing an overly optimistic description of disasters’
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consequences.

We choose a modified solution algorithm that maintains the forward-looking

nature over the model’s economic variables but treats the disaster realisations as

unanticipated shocks. To model an unanticipated disaster occurring at time τ , we

first solve for a reference equilibrium path without shocks from the initial period t0

to the terminal time T , such that t0 < τ < T . We then fix all the variables from

the reference equilibrium until τ and re-run the model with the shock. In other

words, we only allow the agents to adjust their behaviour in the periods t ≥ τ . In

the newly constructed sub-model, from τ to T , the shock occurs in the first period

of the simulation, such that the agents have no chance of anticipating the shock.

We combine the solution from the reference equilibrium and the one from the sub-

model by using the reference equilibrium values for t < τ and the sub-model values

for t ≥ τ . In the absence of shocks, this algorithm produces the same numerical

results as only simulating the reference equilibrium path.

3.3 Results

We analyze the simulation results in four parts. First, we study the impulse response

of the economy after a single year of cyclone activity. It illustrates the primary eco-

nomic mechanisms and provides intuition for the recovery period dynamics under

a single fixed-magnitude shock. Second, for the paper’s main results, we run the

model with recurring random shocks to study the cumulative long-run disaster ef-

fects. We then provide two sensitivity scenarios to scrutinize the central long-run

modelling assumptions: the underlying drivers of economic growth and the role of

climate change. We first recalibrate the general equilibrium model to introduce en-

dogenous productivity gains from specialized capital varieties. Finally, we alter the

regional cyclone damage distributions to consider how climate change might affect

the intensity and frequency of future disasters. We present all numerical results as

counterfactual simulations to the corresponding no-shock baseline economy.
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3.3.1 Impulse response to a single cyclone shock

Consider first the effect of an individual cyclone shock. Figure 3.3.1 decomposes the

general equilibrium response into expenditure-side GDP contributions. We simulate

a shock at time t = 5 that increases capital depreciation compared to a year without

disaster events. The magnitude of the shock for all countries is one standard devi-

ation above the regional mean, as described in Table 3.2.1. 1 The overall picture

is relatively similar for all regions. GDP falls on impact, followed by a catch-up

period of faster growth and reinvestment. The higher depreciation increases the

marginal productivity of capital, bringing greater returns on investment. Conse-

quently, savings increase as a response to the reconstruction efforts. However, the

increase in savings comes at the expense of lower consumption, reducing welfare.

The magnitude of the investment jump ranges from 0.06% in the US to more than

4% in the Philippines.

International trade linkages are another determinant of the recovery period’s

shape and duration. Following the disaster, the trade balance deteriorates in all re-

gions. Countries use more imports to facilitate reconstruction efforts, while exports

suffer from the lost local production capacity and increased domestic investment

demand. Thus, the trade channel highlights the additional flexibility that interna-

tional openness can provide in the disaster aftermath. For most regions, the trade

volumes converge relatively quickly to their original levels, closing the gap between

the benchmark trajectory within a few years of the shock.

For the post-disaster periods, capital depreciation returns to its natural level,

and the regional economies gradually return to their original steady-state path. Re-

construction is often relatively fast. For instance, reaching the pre-disaster capital

stock level takes three years in the Philippines, whereas the US reinvests the lost

capital amount already in the first post-disaster period. However, compared to the

benchmark economic trajectory that evolves without interruptions, the catch-up

recovery period can take up to several decades. Although the aggregate capital

stock eventually reaches the reference trajectory, households spread the required

additional investments over multiple years to avoid a drastic drop in consumption.

As a result, the consumption (and GDP) levels remain permanently below the ref-

1The shock distributions have a strong positive skew, producing relatively low mean damages.
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Figure 3.3.1: Impulse response to a single cyclone shock. The magnitude of the
shock in all regions is one standard deviation above the regional mean, as described
in Table 3.2.1. The change in GDP is the sum of changes in aggregate consumption,
investments, government expenditure, and net trade. All values are relative to a
benchmark economy that grows on a steady-state path without shocks.

erence path in all regions. The long-run gap is 0.01% in the US, but up to 1.6% in

the Philippines.

That the recovery back to the pre-disaster growth path can take decades might

sound surprisingly slow. In reality, however, several factors can contribute to long

recovery times. The first is the limited reconstruction capacity. With insufficient

financial resources, a rapid reconstruction can only come with a sudden drop in

consumption. Therefore, households’ tendency to smooth consumption patterns

over time directly leads to allocating the reinvestments over longer periods. Tech-

nical limitations, such as the lack of a sufficient reconstruction workforce, are also

possible. Moreover, business cycles can further amplify the effects, particularly if a

disaster strikes during a high cycle where available resources are already scarce [113].

There can also be significant production factor rigidity, especially between-sector
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capital immobility, that complicates reconstruction efforts. The long recovery times

are a common finding both in empirical works [104] and studies based on numerical

general equilibrium simulations [148].

Governments usually assume an active role in the disaster aftermath. Yet

changes in public demand are absent from the results shown in Figure 3.3.1. Since

the cyclone impacts in our framework occur solely through losses in capital stock, the

primary recovery mechanism is reinvesting. However, our numerical model makes

no distinction between the private sector and government investments. Therefore,

the numerical results we present on post-disaster aggregate investment levels include

the increased public investment demand. Although our framework is flexible enough

to consider additional transfer schemes from the government to households [148], we

ignore them since the shock process does not automatically trigger any. Introducing

these measures would require ad-hoc assumptions on government payouts and their

effects. In reality, however, transfers such as medical payments and unemployment

support can significantly increase in response to disaster events [149].

Finally, disasters’ consequences unquestionably go beyond their impacts on

physical assets and direct loss of lives. In addition, disasters cause traumatic in-

juries, stress, and diseases that can have long-lasting effects on welfare and pro-

ductivity [150, 151]. However, these effects are likely to vary depending on the

local institutions and the type of disaster. As this paper focuses on constructing a

globally consistent modelling framework, we omit these effects from the numerical

model but acknowledge that their unmeasured cost can be substantial.

3.3.2 Cumulative effect of recurring cyclone shocks

Whereas the previous section illustrated the model dynamics, we now turn to the

paper’s main results quantifying the long-run cumulative cyclone impacts. We

randomly draw annual capital depreciation shocks from the augmented disaster

event pool constructed in Section 3.2.1. We run 500 Monte Carlo simulations of the

economic model for each region and provide aggregate results over a 30-year period.

When cyclone shocks are frequent and random, the economy is constantly adjust-

ing to new conditions. Capital depreciation is, therefore, always above its natural

level, hampering growth. Figure 3.3.2 shows the cumulative impact on aggregate
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Figure 3.3.2: Change in aggregate consumption by region with recurring cyclone
shocks. The solid lines represent the means of 500 Monte Carlo runs. The shaded
areas denote the 5th to 95th percentile ranges. All values are relative to benchmark
economies that grow on a steady-state path without shocks.

consumption. In the US, where direct cyclone damages typically only occur in spe-

cific regions, the cyclone-induced consumption drop is approximately 0.3% after 30

years of simulation. However, the reduction can be significantly greater for regions

where a larger share of the capital stock is exposed. For instance, consumption in

the Caribbean islands is more than 3% below the baseline level, whereas, in the

Philippines, the long-run reduction exceeds 20%.

Compared to prior works, the magnitude of the results appears reasonable. For

instance, Ref. [152] finds that typhoon exposure in the Philippines leads to an

approximately 7% drop in the next year’s household expenditure. On the other

hand, the US Congressional Budget Office estimates the country’s annual hurricane

damages at 0.16% of GDP [153].

Appendix 3.B illustrates the results for additional economic variables. Invest-

ment levels are consistently above the no-disaster baseline trajectory for all regions,

reflecting the dynamics explained in the stylized single-shock scenarios above. Sim-
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ilarly, industry output and capital intensity remain consistently below the reference

values for the entire simulation horizon.

Notably, compared to the changes in aggregate consumption and investments,

the impacts on GDP appear relatively small. For instance, the long-run GDP in the

US is only 0.1% below the reference growth trajectory, compared to a drop of 0.3%

in consumption. The difference highlights that the long-term welfare implications

of tropical cyclones are likely to be higher than what the GDP impacts alone might

suggest. Ref. [114] also finds similar results, where collapsing the cyclone effects to

a single GDP value masks the heterogeneous impacts cyclones have on macroeco-

nomic activity through consumption, investment, and trade patterns. Nevertheless,

the unambiguous finding here is that cyclone activity negatively affects GDP, con-

sumption, and welfare in all regions. In terms of equivalent variation, cyclones

reduce welfare by 0.35% in the US, 4.25% in the Caribbean islands, 6.2% in Japan,

3.4% in China, and 30.3% in the Philippines.

3.3.3 Extensions

Productivity gains from specialization

Our regional sample consists of heterogeneous countries in terms of size and eco-

nomic structure. It is, therefore, important to consider alternative assumptions

regarding the underlying drivers of growth as an explanation for varying disaster

effects. Different mechanisms might allow, for instance, some countries to exhibit

a post-disaster growth spurt due to ”build back better” dynamics. In contrast,

others may never recover to their original growth trend. 2 The capital structure is

also likely to play a role. Whether the exposed regions and sectors rely primarily

on physical, natural, or human capital can significantly affect the overall cyclone

impacts and recovery dynamics.

We model the endogenous productivity gains with a simple model reparameteri-

zation. Instead of considering capital only as the physical stock, we make a broader

interpretation of a capital composite that includes both the physical stock and the

immaterial knowledge capital. Intermediate firms can invest in new sector-specific

2See Ref. [104] for a thorough discussion on different post-disaster recovery hypotheses.
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capital varieties. The varieties are imperfectly substitutable, such that the inter-

mediate firms make positive profits due to a monopoly markup. Similarly to the

growth dynamics in Ref. [154], firms investing in new varieties receive a perpetual

blueprint for their product. Compared to the previous section, where growth is

solely due to physical capital accumulation, there is now an additional incentive for

conducting R&D investments. The positive spillovers from specialization, on the

other hand, enhance the overall economic growth rate.

We simulate the economies with the same shock realizations as in the previous

section but now turn on the endogenous gains from specialization. We again use

500 Monte Carlo runs and report the results after 30 years of simulation. The re-

sulting growth trajectories vary significantly compared to the previous section, as

summarized in Table 3.3.1. Overall, the endogenous growth engine substantially

dampens the negative impacts of repetitive cyclone events. Under gains from spe-

cialization, post-disaster investments increase more than under the standard case.

As a result, the capital stock, although damaged by the same amount, gets rebuilt

faster, leading to lower capital losses in the long run. The existing capital stock is

also more productive, affording a faster reconstruction and attenuating the overall

drop in consumption and welfare.

For most regions, the GDP reduction after 30 years of cyclone activity is more

than 50% smaller than under the standard scenario. The consumption losses are

between 17% to 26% smaller than before, depending on the region. For extreme

shock realizations, GDP impacts under endogenous productivity gains can even

become temporarily positive for the most affected regions, driven by the higher in-

vestment levels and increasing capital returns. However, even under these extreme

realizations, the overall consumption impact remains negative. GDP only appears

higher as the destroyed capital stocks are not measured in GDP, whereas the re-

construction efforts are. Even with gains from specialization, the long-run average

GDP impacts remain negative for all regions.

The above results suggest that the substitutability between physical and knowl-

edge capital can be an important determinant of long-run cyclone impacts, as dis-

cussed in prior studies [115, 120]. However, despite the considerable reduction in

negative impacts, the effect does not appear strong enough to turn the cyclone im-

pacts positive. Therefore, the overall qualitative findings from the previous section
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USA CAR JPN CHN PHL

Consumption -23.18 -24.50 -26.30 -22.30 -17.21
Investments 0.60 7.72 24.60 14.80 51.73
Cap. intensity -7.25 -4.22 -6.55 -5.73 -12.96
Capital Stock -15.45 -24.88 -25.20 -24.67 -44.90
Industry output -45.54 -66.04 -63.01 -59.73 -84.22
GDP -45.03 -57.16 -56.73 -59.24 -87.95
Welfare -16.28 -20.40 -20.45 -17.87 -14.77

Table 3.3.1: Change in mean cyclone impacts after 30 years under endoge-
nous gains from specialization compared to a model without productivity
gains. All values denote a percentage change difference relative to the
cyclone impacts in Section 3.3.2. For instance, compared to the scenario
without productivity gains, the aggregate long-term consumption drop in
the US is 23.18% smaller, the reduction in capital stock 15.45% smaller,
and the increase in investments is 0.60% larger. Welfare impacts are mea-
sured in terms of Hicksian equivalent variation.

remain unchanged even under the alternative growth engine.

Climate change impacts

Climate change can make weather-related extreme events more frequent and intense

[4]. At the same time, economic growth and coastal development can increase

future cyclone damages as there are more assets in harm’s way [107]. For instance,

the US Congressional Budget Office estimates the country’s hurricane damages to

rise from the current levels of USD 28 billion per year to USD 39 billion by 2075,

attributing half of the increase to climate change and another half to further coastal

development [153]. Therefore, in the final scenario, we study how our framework’s

main long-run economic variables react to the assumptions regarding future climate

conditions.

In the following, we extend our model horizon from 30 to 80 years for the

climate change impacts to take effect. We run the model in ten-year increments

to compensate for the resulting increase in computational cost. We consider two

possible greenhouse gas concentration pathways: the RCP4.5 with intermediate
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emissions and the high-emission RCP8.5 scenario. We calibrate a new decadal

damage distribution for each concentration scenario by tuning the cyclone intensity

and frequency values based on Ref. [155]. Appendix 3.D documents the steps in

more detail.

In the RCP4.5 scenario, we assume the cyclone intensity in the North Atlantic

basin to increase by 4.5% by the late twenty-first century. In contrast, over the

same period, there is no significant change in cyclone frequency [155]. As a result,

in our framework, the mean cyclone damage δTC gradually increases, leading to a

30% higher value for the US and 24% higher for the Caribbean islands by 2100

compared to constant climate conditions. For the Northwestern Pacific basin, on

the other hand, the cyclone frequency falls by 34.5%, but the intensity increases

by 5.5%. The result is a slight increase in mean cyclone damages for the first

decades, while in the longer run, the frequency effect dominates, decreasing the

mean damages. The end-of-century reduction in mean damages varies from 9.7% in

Japan to 13.5% in the Philippines. For the RCP8.5 scenario, the cyclone intensity

and frequency increase for both basins, leading to a substantial increase in modelled

damages.

We conduct 1000 Monte Carlo sample trajectories for each RCP scenario, ran-

domly drawing shocks in each period as in the previous section. We run the analysis

only for the US and Caribbean islands, focusing only on the North Atlantic cyclone

basin regions.

RCP4.5 RCP8.5
USA CAR USA CAR

Mean damage, δ̄TC 30.16 24.03 112.92 87.95
Std. of damages, σTC 25.94 18.72 93.11 66.39
Consumption -0.10 -0.57 -0.25 -1.19
Capital stock -0.41 -2.22 -1.09 -5.18
GDP -0.05 -0.20 -0.12 -0.39

Table 3.3.2: Percentage change in tropical cyclone impacts in 2100
under different climate scenarios compared to estimates in the same year
under constant climate conditions.

Table 3.3.2 reports the main simulated variables at 2100. The increasing cyclone
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intensity directly leads to stronger capital deprecation shocks for both countries in

both RCP scenarios. For instance, under RCP4.5, the average aggregate consump-

tion levels are 0.1% (USA) and 0.69% (CAR) lower than at the same time under

constant climate conditions. The impacts are even more pronounced in the RCP8.5

scenario. The mean cyclone damage more than doubles for the US and increases

by almost 90% for the Caribbean islands. As a result, the end-of-century capital

stocks are almost 1% and 5% smaller for the two regions, respectively, compared to

an average simulation without climate impacts.

3.4 Discussion

We have constructed a modelling framework to represent probabilistic, region-

specific cyclone damage functions in a dynamic economic growth model. That

enables us to isolate how tropical cyclone strikes affect economic variables over time

in general equilibrium. The chapter’s main goal was to set up a globally consistent

modelling framework. However, several possible extensions remain for studying ad-

ditional cyclone impact channels and the role of public policies in disaster impact

management.

First, we have excluded the role of adaptation. In our model, local adaptation

measures could affect either the cyclone impact function (for instance, the con-

struction of sea walls, mangrove restoration, or the implementation of new building

codes) or the distribution of exposed assets (such as spatial planning in high-risk

areas), and therefore have interesting broader economic effects. The optimal allo-

cation of investments between productive capital stocks and unproductive adaptive

capital can also produce interesting results for the long-term dynamics [156].

In our coupled system, tropical cyclones only enter the economy through dam-

ages to capital stock. In reality, cyclone impacts are much more complex. Disaster

strikes might reduce the economy’s total factor productivity, for instance, through

electricity blackouts [118] or business interruptions [148]. Moreover, without ad-

ditional assumptions, the general equilibrium response leaves out many secondary

impacts. For instance, a drop in post-disaster quality of public services might make

attracting workers more difficult, directly affecting the recovery period [157].

Throughout, we have considered countries as the smallest units of regional aggre-
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gation. With appropriate economic accounts, it is possible to achieve even greater

regional detail. For instance, Ref. [158] uses a sub-national model to study flood

impacts in Italy, and Ref. [148] builds a numerical general equilibrium model cali-

brated to a single city. Greater regional detail might allow studying relevant local

questions such as labour reallocations or comparing specific adaptation alterna-

tives. We also assume that the cyclone shocks are uniform over all sectors of the

economy. Combining the damage estimates with additional land use data enables

deriving sector-specific shocks to represent, for instance, the increased vulnerability

of agricultural sectors to natural disasters [124].

Finally, we acknowledge some caveats. First, by design, our model economy is

always in equilibrium. That might be unrealistic, especially in the periods directly

after a disaster where bottlenecks and resource misallocations are likely to happen in

all markets. Immediately reaching an equilibrium might make the early stages of the

recovery path overly optimistic, ignoring some real-world rigidities. We also assume

that the regional distribution of exposed assets remains constant throughout the

simulation. In reality, there might be considerable shifts if people and firms leave

the most exposed areas or if urban expansion gradually covers new regions. We

have also explicitly focused on tropical cyclone impacts based on wind intensity

estimates. However, incorporating the simultaneous effects from cyclones, storm

surges, and in the long term, even sea level rise, might give a more complete picture

of the disaster impacts. The impact function parameterization in Eq. (3.2) also

relies on data solely from the US and might not be directly applicable to other

regions.

3.5 Conclusion

We develop a framework for quantifying the long-run economic impacts of tropical

cyclones. Our approach combines a dynamic general equilibrium model of the

economy with damage estimates from a probabilistic disaster impact platform. The

coupled system allows us to consider region-specific damage functions and post-

disaster recovery profiles, assuming that cyclone strikes enter the economy through

unexpected capital depreciation shocks.

We apply our framework to five regions: the US, the Caribbean islands, Japan,
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China, and the Philippines. The general findings are similar for all regions. By

destroying capital stocks, cyclones lead to increased reconstruction investments,

thus reducing consumption levels, GDP, and welfare. After 30 years of recurring

cyclone shocks, the aggregate capital stock in the US is approximately 0.5% smaller

compared to a no-shock baseline path. In the Philippines, which is the most af-

fected region in our sample, the difference is almost 13%. Our results also highlight

the need for disentangling the GDP and welfare effects. Changes in post-disaster

GDP appear artificially small since GDP aggregates cyclones’ broad macroeconomic

impacts with opposite signs into a single value, masking the full welfare effect.

Assumptions regarding the economic growth engine and the role of future cli-

mate change affect the numerical results but do not change the overall qualitative

findings. When endogenous productivity gains from specialization drive growth,

mean cyclone impacts are smaller but still unambiguously negative. Under the

RCP4.5 climate scenario, cyclone damages increase in the North Atlantic Ocean

basin (the US and the Caribbean islands). However, they fall slightly in the North-

western Pacific basin (China, Japan, and the Philippines) by the end of the century.

Under a high-emission climate scenario (RCP8.5), cyclone damages increase in all

regions compared to the current climate conditions.



Appendix

3.A General equilibrium model

We employ a dynamic, multi-regional, and multi-sectoral numerical general equi-

librium model following Ref. [144] and Ref. [110].

3.A.1 Production

In each region, we model the economy’s production structure as the interaction

between three agents: i) final good producers, ii) producers of intermediate goods,

and iii) producers of intermediate composites. The markets for the final goods and

intermediate composites are perfectly competitive, whereas the market for inter-

mediate goods can also be monopolistic. Figure 3.A.1 provides an overview of the

nested production structure.

Final good production

The final good producers in sector i, region r, and time t produce output Yi,r,t

according to the following constant elasticity of substitution (CES) function:

Yi,r,t =

[
αi,rQ

σi,r−1

σi,r

i,r,t + (1− αi,r)B

σi,r−1

σi,r

i,r,t

] σi,r
σi,r−1

. (3.3)

Above, Qi,r,t is the sector-specific composite intermediate good. Bi,r,t denotes the

composite final good from all other sectors needed for producing in sector i, cap-

turing how different sectors (and regions) interact through a complex network of

91
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Final Good, Y
σi,r

Composite output from
other sectors, B

0

Sector n· · ·Sector 1

Intermediate
composite, Q

Intermediates, xj
vi,r

Energy, E
εi,r

Variety k· · ·Variety 1

Labor, L

Capital, J
∞

Non-physical
investments

Physical
investments

Figure 3.A.1: Production structure of the economy. Each production nest assumes
a constant elasticity of substitution structure. The elasticity value within a sub-nest
is highlighted in red.

value chains. Outputs from different sectors are assembled to Bi,r,t according to

a Leontief-type production function, that is, in fixed proportions. Parameters αi,r

determine the constant value shares between Qi,r,t and Bi,r,t in the production func-

tion. The elasticity of substitution between the two types of inputs is σi,r. All

elasticity and share parameters are sector- and region-specific.

In each sector, the final good producer maximizes profits in a perfectly compet-

itive market by solving:

max
Qi,r,t,Bi,r,t

pYi,r,tYi,r,t − pQi,r,tQi,r,t − pBi,r,tBi,r,t, w.r.t 3.3, (3.4)

where pYi,r,t, p
Q
i,r,t and pBi,r,t denote the prices of final goods, intermediate compos-

ite, and other inputs, respectively. Solving Eq. (3.4) and combining the resulting
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demand functions for Qi,r,t and Bi,r,t yields the following condition for the optimal

input use:

Qi,r,t

Bi,r,t

=

(
αi,r

1− αi,r

)σi,r (pBi,r,t
pQi,r,t

)σi,r

. (3.5)

According to Eq. (3.5), an increase in the price of one input type will increase the

share of the other input in the optimal bundle. Generally, we assume imperfect

substitutability between different input types.

Intermediate composite production

In the second step of the production nest, producers of a sector-specific intermediate

composite assemble their output Qi,r,t by combining different varieties of individual

intermediate goods according to a standard Dixit-Stiglitz production function:

Qi,r,t =

[∫ Ji,r,t

j=0

xκj,i,r,tdj

] 1
κ

, (3.6)

where xj,i,r,t denotes the jth type of intermediate good variety that is available

in sector i. Ji,r,t denotes the sector-specific capital stock. We treat new innova-

tions (that is, new varieties of xj,i,r,t) as new varieties of capital, so new types of

xj,i,r,t also imply an expansion in the capital stock. This specification gives us two

channels through which the intermediate sector can induce growth in the overall

economy. One is to produce a larger amount of any single variety xj,i,r,t by em-

ploying more labour and energy. The other is to expand the number of available

varieties through investments in the sector-specific capital stock. The parameter κ

measures the substitutability between different varieties, or equivalently, the gains

from specialization. Setting 0 < κ < 1 allows the increasing number of varieties to

enhance final sector productivity in an endogenous manner [154], whereas κ = 1

switches off these productivity gains.

The producer of the intermediate good composite Qi,r,t maximizes profits on a

competitive market, taking all prices as given, and solving:
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max
xj,i,r,t

pQi,r,tQi,r,t −
∫ Ji,r,t

j=0

pxj,i,r,t xj,i,r,t dj, w.r.t 3.6, (3.7)

where pxj,i,r,t is the price of intermediate varieties. Solving the optimization problem

in Eq. (3.7) determines the optimal demand for xj,i,r,t as:

xj,i,r,t =

(
pQi,r,t
pxj,i,r,t

) 1
1−κ

Qi,r,t. (3.8)

From here onwards, we assume that all varieties of the sector-specific intermediate

good are perfectly symmetrical, i.e. xj,i,r,t = xi,r,t.

Intermediate good production

As described in Eq. (3.6), the amount, variety, and substitutability between different

intermediate goods determine the expansion of each production sector i. We assume

that a new firm first invents an intermediate variety xi,r,t, and then produces it under

a perpetual patent from the moment of invention. Therefore, the growth rate of

the overall economy depends on the decisions of profit-seeking intermediate firms.

To describe these intermediate firms in full, we need to describe both their optimal

output decision for the already invented varieties, as well as their incentives to

innovate new varieties.

i) Optimal output of existing varieties

To produce one unit of output, the intermediate good producer combines two types

of inputs, labour Li,r,t and energy Ei,r,t, according to the following CES technology:

xi,r,t = Ji,r,t

[
λi,rL

vi,r−1

vi,r

i,r,t + (1− λi,r)E

vi,r−1

vi,r

i,r,t

] vi,r
vi,r−1

, (3.9)

where parameters λi,r denote the value shares and vi,r the substitution elasticities.

From Eq. (3.9), there are within-sector spillover effects from the expanding capital
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stock Ji,r,t. We assume the supply of labour to be inelastic throughout the modelling

horizon, mobile between sectors within a country, but immobile between countries.

The energy aggregate Ei,r,t, on the other hand, is a combination of K available

energy varieties:

Ei,r,t =

[∑
k∈K

ϕk,i,r(Zk,i,r,t)
ϵi,r−1

ϵi,r

] ϵi,r
ϵi,r−1

. (3.10)

We denote the amount of every energy input k ∈ K by Zk,i,r,t, and the respective

price by pZk,r,t. The output decision of the intermediate monopoly can be derived

from two parts. First, it chooses an optimal bundle of labour and energy inputs

under competitive profit-maximizing conditions:

max
Li,r,t,Zk,i,r,t

ψxi,r,txi,r,t − wr,tLi,r,t −
∑
k

pZk,r,tZk,i,r,t, (3.11)

where ψxi,r,t is the price that would prevail under a perfectly competitive market.

The firm, however, exploits its monopoly power in the output market and sets the

optimal output price solving:

max
pxi,r,t

pxi,r,txi,r,t − ψxi,r,txi,r,t, (3.12)

taking the demand for xi,r,t in Eq. (3.8) as given. Thus, it sets prices according to:

pxi,r,t =
1

κ
ψxi,r,t, (3.13)

making profits of:

πi,r,t = (1− κ)pxi,r,txi,r,t. (3.14)
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This brings us to an alternative definition of the substitutability term κ. As the

individual intermediate goods xi,r,t are imperfect substitutes, and the intermediate

good producers compete in a monopolistic market with an output price pxi,r,t and

markup 1
κ
, we can consider (1 − κ) as the profit fraction of revenues from the

intermediate composite sector going to the households that own the firms.

ii) Investments to new varieties

The capital stock consists of physical and non-physical capital, which together make

up the sector-specific capital composite Ji,r,t. Firms conduct innovation by investing

an amount Ii,r,t to this composite capital good. Access to the investment market

is unrestricted. New innovations then occur until the marginal cost of investments

to the composite capital equals the firm’s value so that no real profits remain. As

in Ref. [154], we assume the knowledge capital from the innovation process to be

non-rival but partially excludable with the use of patents. The equation of motion

of the capital stock is:

Ji,r,t+1 = Ii,r,t + (1− δi,r,t)Ji,r,t, (3.15)

with δi,r,t denoting the capital depreciation rate. The depreciation parameter has a

particular role in our work as it ultimately depends both on the baseline depreciation

rate and the exposure to cyclones that varies by year and region.

Finally, the capital accumulation process requires introducing a no-arbitrage

condition. New firms (capital varieties) emerge as a result of household investment.

In equilibrium, households must be indifferent between investing in a new firm and

a riskless loan with a return ri,r,t. As in standard endogenous growth models based

on expanding input varieties, the value of the monopolist firm, that is, the value of

owning a technology blueprint, is equal to the discounted value of all future profits.

In our setting, this is equal to the cost of investing in a new firm. We can write the

relationship between the new firm value Vi,r,t, instantaneous profits πi,r,t, and the

interest rate as ri,r,t with the following asset value equation: 3

3For details on deriving the relationship, see e.g. Ref. [159, Ch. 13]
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πi,r,t +∆Vi,r,t = ri,r,tVi,r,t, (3.16)

where ∆Vi,r,t denotes the change in firm value. We can then extend Eq. (3.16) by

writing:

πi,r,t︸︷︷︸
Direct return

+
pJi,r,t+1

1 + ri,r,t
− pJi,r,t︸ ︷︷ ︸

Time t present value
of the capital gain

− δi,r,tp
J
i,r,t︸ ︷︷ ︸

Value lost to
depreciation

= ri,r,t︸︷︷︸
Interest rate of
a riskless loan

× Vi,r,t︸︷︷︸
Firm value =
investment cost

, (3.17)

where pJt is the price of capital. The intermediate good producer borrows from

households to pay the innovation activities in advance. We can also re-write the

sectoral profits from Eq. (3.14) as:

πi,r,t = (1− κ)︸ ︷︷ ︸
Monopoly
profit share

pQi,r,tQi,r,t︸ ︷︷ ︸
Sectoral
revenue

/ Ji,r,t︸︷︷︸
Number of
varieties

. (3.18)

Inserting Eq. (3.18) into Eq. (3.17) then yields the expression for equilibrium interest

rates and thus completes the no-arbitrage condition.

3.A.2 International trade

Our baseline dataset contains economic accounts of 129 regions, covering most of the

global economy. Representing how different countries interact through international

trade is, therefore, a central feature of our underlying general equilibrium model

and an important determinant of how countries can adapt to economic shocks.

All final sectors of the economy are open to international trade. That is, all

producers can employ both domestically produced and imported inputs, and con-

sumers can purchase both domestic and imported consumption goods. To give more

structure to the representation of international trade, we follow the Armington ap-

proach [145], which is a standard assumption in the numerical general equilibrium

literature. With this approach, the suppliers of the final good use both domestically

produced and imported goods as inputs in creating an Armington aggregate, which

is the final good demanded in the economy. The domestic and imported inputs
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are treated as imperfect substitutes. Intuitively, this means that consumers in any

country can prefer domestically produced goods over imported varieties. More im-

portantly, this allows for a realistic description of international trade, where any

production sector in any region can simultaneously be an exporter and an importer

of the same good, which is what we also observe in real economies.

More formally, denoting domestic sectoral production in region r by Di,r,t and

imports from region s to r by Mi,s,r,t, the Armington aggregate is given by:

Ai,r,t =

ζi,rD
ηi,r−1

ηi,r

i,r,t + (1− ζi,r)

[∑
s ̸=r

mi,s,rM

ϕi,r−1

ϕi,r

i,s,r,t

] ϕi,r
ϕi,r−1


ηi,r−1

ηi,r


ηi,r

ηi,r−1

, (3.19)

where we denote by ζi,r the share of domestic goods, and by mi,s,r the share pa-

rameters of different regions in the basket of imports. Parameters ηi,r and ϕi,r are

the respective substitution elasticities. With pAi,r,t being the price of the Armington

composite, and pYi,r,t the price of the domestic output, the profit maximization the

final suppliers face is then:

max
Di,r,t,Mi,s,r,t

pAi,r,tAi,r,t − pYi,r,tDi,r,t −
∑
s ̸=r

pAi,s,tMi,s,r,t. (3.20)

We allow countries to run either trade surpluses or deficits, as also observed in the

baseline dataset.

3.A.3 Preferences

For each region, we assume an infinitely-lived, forward-looking representative house-

hold. The household derives utility from consumption according to a standard

constant intertemporal elasticity of substitution function:

U =
∞∑
t=0

[
1

1 + ρ

]t C1−θ
r,t − 1

1− θ
, (3.21)

where ρ denotes the time discounting parameter and θ the inverse of the intertem-
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poral elasticity of substitution. As the economy consists of multiple production

sectors, Cr,t is a CES aggregate of the sector-specific consumption goods. Figure

3.A.2 illustrates the nested consumption structure.

Aggregate consumption
ξaggi,r

TransportationOther consumption
ξothi,r

Non-energy goods
ξnoni,r

· · ·

Energy goods
ξenei,r

· · ·

Figure 3.A.2: Nested consumption structure. The substitution elasticity value
within a sub-nest is highlighted in red.

The household also owns all firms in the economy, so its budget reads:

pCr,tCr,t = wr,tLr,t − Tr,t −
∑
i

pJi,r,t+1Ji,r,t+1 +
∑
i

(1 + ri,r,t)p
J
i,r,tJi,r,t, (3.22)

where wr,t denotes the wage rate, Tr,t a lump-sum tax which ensures the public

budget to remain balanced, and pCr,t is the price for the consumption aggregate.

3.A.4 Calibration details

Our model calibration follows the steps outlined in Ref. [160] and Ref. [161]. The

key goal of the calibration process is to use the GTAP dataset as a static snapshot of

the economy and extrapolate —using a set of exogenous parameter assumptions—

a balanced growth path on which all sectors, and therefore all regional economies,

grow at the same rate.

The household’s problem involves maximizing the stream of utility over time
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in Eq. (3.21). The optimization is subject to the economy’s production function

F (Kt, Lt), a resource constraint F (Kt, Lt) = It + Ct dividing the output between

consumption and investment, and the capital stock law of motion from Eq. (3.15).

Assuming constant returns to scale and perfectly competitive markets, we can derive

the following price relationships from the first-order optimality conditions [161]:

pt =
[ 1

1 + ρ

]t∂U(Ct)
∂Ct

, (3.23)

pKt = pt
∂F (Kt, Lt)

∂Kt

+ (1− δ)pKt+1, (3.24)

pt = pKt+1. (3.25)

We can interpret these values as pt being the price of output, pt
∂F (Kt,Lt)

∂Kt
=: Rt the

rental rate of capital, that is, the value of the marginal product, and pKt the price of

buying one new unit of capital. This distinction between capital stocks and capital

services is central to the modelling approach: households own the stock, invest by

buying new units of capital, and rent the capital to firms at the rate Rt.

Assuming a baseline interest rate r̄, the calibration makes use of a declining

reference price trajectory preft = (1/(1 + r̄))t. Then, for all prices at any arbitrary

time instance τ , we have that:

pτ+1 =
pτ

1 + r̄
. (3.26)

We can use the reference price path to further highlight the distinction between the

capital rental and purchase prices. Combining Eq. (3.26) and Eq. (3.24) gives:

Rt = pKt

(
1− 1− δ

1 + r̄

)
, (3.27)

which states that the capital rental price Rt is equal to the price of buying a new

capital unit, subtracting the discounted value of the depreciated stock in the sub-

sequent time period. Further normalizing p0 = 1 allows us to write the first-period

rental rate as R0 = δ + r̄.

The benchmark GTAP data does not provide the capital stock values directly

but only the base year capital earnings, denoted with V K
0 . Using V K

t := RtKt



101

and the base year rental rate from above, we can derive the initial capital stock

as K0 = V K
0 /(δ + r̄). The next task is to calibrate the initial investments on a

balanced growth path. Assuming a constant capital stock growth rate γK , we can

write the next period capital stock either as in Eq. (3.15) or withKt+1 = (1+γK)Kt.

Combining the two equations gives It = (γK + δ)Kt, such that on a balanced

growth path, the annual investment level must cover both the capital growth rate

and depreciation. Plugging in the definition of K0 from before gives an initial

investment level of:

I0 = (γK + δ)K0. (3.28)

The calibration process so far follows the standard conventions of numerical gen-

eral equilibrium modelling. In our setting, however, the possibility of considering

productivity gains from specialization requires some additional steps. When the

gains from specialization are active, we assume that the size of the capital stock

directly corresponds to the number of capital varieties. Moreover, the different vari-

eties are imperfect substitutes, determined by the substitution elasticity parameter

κ. The imperfect substitutability then creates monopoly rents and additional in-

centives for investing. The growth rate of output γY , therefore, depends on two

factors: an exogenously specified capital growth rate γK and an endogenous growth

part determined by κ. The relationship between these parameters satisfies:

1 + γY = (1 + γK)
1
κ . (3.29)

Whenever 0 < κ < 1, the output growth rate γY exceeds the capital growth rate

γK . To make this difference in growth rates compatible with the balanced growth

path and to avoid situations where investments grow faster than the actual stock of

capital, we also make the base depreciation rate time-dependent. This assumption

is necessary for the balanced growth path to exist, but there is also an appealing

intuition behind the adjustment. Namely, as the economies develop further, their

capital stock grows more specialized and more susceptible to depreciation. The base

depreciation rate is:
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δr,t =

(
1 + γY
1 + γK

)t
δr,0 + γK

((
1 + γY
1 + γK

)t
− 1

)
, (3.30)

which collapses to a constant value when κ = 1 and the gains from specialization

are switched off.

Finally, to obtain the baseline consumption growth rate gr = Cr,t+1

Cr,t
on the

balanced growth path calibration, we can maximize Eq. (3.21) with respect to

Eq. (3.22) to obtain the standard Keynes-Ramsey rule:

gr ≡
[
1 + r̄

1 + ρ

] 1
θ

. (3.31)

According to Eq. (3.31), a higher interest rate r̄ boosts growth by inducing more

saving, whereas a higher discount rate ρ incentivizes present consumption, therefore

reducing the rate of growth. A higher intertemporal substitution elasticity 1/θ also

increases growth rates as the households become more willing to tolerate consump-

tion variability in response to interest rate changes. In our setting, Eq. (3.31) also

implicitly pins down the temporal discount rate ρ.

3.A.5 Numerical implementation

We follow Ref. [162] and formulate the general equilibrium economy as a mixed

complementary problem (MCP). The formulation includes three types of inequality

constraints: market-clearing conditions, zero-profit conditions, and income balance

conditions. Each equilibrium condition f has a complementary variable z, such that

the following conditions always hold: f(z) ≥ 0, z ≥ 0, zTf(z) = 0. For instance, we

can write the market-clearing condition as f(p) = S(p) − D(p), where we use the

price level p as the complementary variable, and supply and demand functions S

and D, respectively. When the market clears, f(p) = 0, the equilibrium prices are

positive. However, if supply exceeds demand, the complementary variable (prices)

becomes zero. Similarly, for the zero-profit conditions, the complementary variable

is the output level. As long as sectoral profits are non-negative, the output level
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is positive. With negative profits, however, firms exit the market and the output

becomes zero.

Although the theoretical model considers an infinite time horizon, the numerical

implementation requires using a finite approximation. This introduces the risk of

horizon effects affecting the equilibrium outcome as we approach the terminal pe-

riod. To remedy the risk around the terminal period, we employ the method from

Ref. [160]. This technique imposes an additional constraint on capital accumulation

at the terminal period T to approximate the infinite horizon equilibrium. We intro-

duce the post-terminal capital stock as an additional variable and require that the

growth rate of investments in the terminal period mirror the output growth rate:

IT
IT−1

=
YT
YT−1

. (3.32)

That is, we only fix the growth rate of investments, and do not have to fix the

actual growth rate, nor the terminal level, of capital stock. To further reduce

terminal effects, we always discard a set of years from the end of the simulation

results.

We use the programming language GAMS (General Algebraic Modeling System)

as well as the MPSGE (Mathematical Programming System for General Equilib-

rium, [163]) sub-system to implement the economic model. To solve the model, use

the PATH numerical solver [164].
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3.A.6 Regional aggregation

Aggregate region GTAP region

USA United States of America

Japan Japan

Philippines Philippines

Caribbean Rest of Caribbean 1

China China, Hong Kong

Rest of the World Australia, New Zealand, Rest of Oceania, Republic of Korea, Mongolia, Taiwan,

Rest of East Asia, Cambodia, Indonesia, Lao PDR, Malaysia, Singapore, Thai-

land, Viet Nam, Rest of Southeast Asia, Bangladesh, India, Nepal, Pakistan, Sri

Lanka, Rest of South Asia, Canada, Mexico, Rest of North America, Argentina, Bo-

livia, Brazil, Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay, Venezuela, Rest of

South America, Costa Rica, Guatemala, Honduras, Nicaragua, Panama, El Salvador,

Rest of Central America, Austria, Belgium, Cyprus, Czech Republic, Denmark, Es-

tonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania,

Luxembourg, Malta, Netherlands, Poland, Portugal, Slovakia, Slovenia, Spain, Swe-

den, United Kingdom, Switzerland, Norway, Rest of European Free Trade Associ-

ation, Albania, Bulgaria, Belarus, Croatia, Romania, Russian Federation, Ukraine,

Rest of Eastern Europe, Rest of Europe, Kazakhstan, Kyrgyzstan, Rest of Former

Soviet Union, Armenia, Azerbaijan, Georgia, Bahrain, Iran, Israel, Kuwait, Oman,

Qatar, Saudi Arabia, Turkey, United Arab Emirates, Rest of Western Asia, Egypt,

Morocco, Tunisia, Rest of North Africa, Cameroon, Côte d’Ivoire, Ghana, Nige-

ria, Senegal, Rest of Western Africa, Rest of Central Africa, South Central Africa,

Ethiopia, Kenya, Madagascar, Malawi, Mauritius, Mozambique, Tanzania, Uganda,

Zambia, Zimbabwe, Rest of Eastern Africa, Botswana, Namibia, South Africa, Rest

of South African Customs Union, Rest of the World

1 Includes: Anguilla, Antigua and Barbuda, Aruba, Bahamas, Barbados, British Virgin Islands, Cayman Islands,

Cuba, Dominica, Dominican Republic, Grenada, Haiti, Jamaica, Montserrat, Netherlands Antilles, Puerto Rico,

Saint Kitts and Nevis, Saint Lucia, Saint Vincent and Grenadines, Trinidad and Tobago, Turks and Caicos Islands,

Virgin Islands.

Table 3.A.1: Aggregation of countries and regions.
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3.A.7 Sectoral and production factor aggregation

Aggregate variable GTAP variable

Goods and sectors

Manufacturing Textiles, Wearing apparel, Leather products, Wood products, Motor vehicles, Other

transport equipment, Water, Construction, Paper products, publishing, Chemical,

rubber, plastic products, Minerals, Ferrous metals, Other metals, Metal products,

Electronic equipment, Other machinery and equipment, Other manufactures

Services Trade, Communication, Financial services, Insurance, Business services, Recreation,

Dwellings, Public Administration, Defense, Education, Health

Transport Water transport, Air transport, Other transport

Agriculture Paddy rice, Wheat, Cereal grains, Vegetables, fruits, nuts, Oil seeds, Sugar cane,

sugar beet, Plant-based fibers, Other crops, Bovine cattle, Other animal products,

Raw milk, Wool, Forestry, Fishing, Bovine meat products, Other meat products,

Vegetable oils and fats, Dairy products, Processed rice, Sugar, Other food products,

Beverages and tobacco

Electricity Electricity

Coal Coal

Natural gas Gas, Gas manufacture, distribution

Crude oil Oil

Refined oil Petroleum, coal products

Factors of production

Resources Land, Natural resources

Labour Skilled labour, Unskilled labour

Capital Capital

Table 3.A.2: Aggregation of sectors and production factors.
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3.A.8 Main parameter values

Parameter Description Value

Elasticities of substitution for production activities

σi,r Intermediate composite Q and inputs B from other sectors 0.5

vi,r Labour L and energy E in intermediate good production 1.0

ϵi,r Energy type Z in the energy aggregate 0.5

ηi,r Imports and domestic goods ∈ [1.9, 6.0]

ϕi,r Import regions ∈ [3.8, 12]

κ Intermediate varietes ∈ {1.0, 0.86}

Elasticities of substitution for private consumption

ξaggi,r Transportation and other consumption goods 1.0

ξothi,r Energy and non-energy consumption goods 0.25

ξene
i,r Energy varieties 0.4

ξnon
i,r Non-energy consumption goods 0.25

Other parameters

1/θ Intertemporal elasticity of substitution 0.5

δi,r,t Baseline capital depreciation 0.07

r̄ Baseline nominal interest rate 0.05

γK Capital growth rate 0.02

Table 3.A.3: Default parameter values used in numerical simulations. Based on
Refs. [110, 146, 147, 165].
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3.B Additional results
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Figure 3.B.1: Aggregate investment with recurring shocks. Solid lines represent
the means of 500 Monte Carlo simulations relative to a no-shock steady-state econ-
omy. The shaded areas denote the 5th to 95th percentile ranges.
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Figure 3.B.2: GDP levels with recurring shocks. Solid lines represent the means
of 500 Monte Carlo simulations relative to a no-shock steady-state economy. The
shaded areas denote the 5th to 95th percentile ranges.
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Figure 3.B.3: Aggregate industry output with recurring shocks. Solid lines repre-
sent the means of 500 Monte Carlo simulations relative to a no-shock steady-state
economy. The shaded areas denote the 5th to 95th percentile ranges.
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Figure 3.B.4: Capital intensity with recurring shocks. Solid lines represent the
means of 500 Monte Carlo simulations relative to a no-shock steady-state economy.
The shaded areas denote the 5th to 95th percentile ranges.
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Figure 3.B.5: Aggregate capital stock with recurring shocks. Solid lines repre-
sent the means of 500 Monte Carlo simulations relative to a no-shock steady-state
economy. The shaded areas denote the 5th to 95th percentile ranges.
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3.C Disaster impact distributions

Figure 3.C.1: Empirical cumulative distribution functions of tropical cyclone dam-
ages from the historical sample (blue) versus the synthetic years (red) under con-
stant climate conditions.

3.D Cyclone damages under climate change

The cyclone damage estimation with climate change follows similar steps as outlined

in Section 3.2.1 for constant climate conditions. The difference is that under climate

change, the cyclone damage distribution changes in ten-year intervals as climate

change progresses under different assumed exogenous scenarios. More precisely,

climate change affects the occurrence rate of cyclones (frequency) and the damage

that each cyclone may cause (intensity).

We again start from the historical tracks and extend our sample with synthetic

years. We use 2020 as a reference year. We generate a new pool of 5’000 synthetic

years of damages for every decadal step from 2025 to 2095. At each step, we use the

CLIMADA framework to calculate the cyclone intensity change. CLIMADA relies
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on Ref. [155] as a reference for its climate change scenarios. It uses a dynamical

downscaling of models from the Coupled Model Intercomparison Project Phase 5

(CMIP5) under the RCP4.5 emissions concentration scenario to project tropical

cyclone activity for the end-of-century years 2081–2100. However, Ref. [155] only

presents results for the RCP4.5 scenario. On top, CLIMADA interpolates other

RCP scenarios from the RCP4.5 values according to the relative radiative forcing

of each scenario.

RCP4.5

Ref. [155] considers the change in tropical cyclone activity under the RCP4.5 sce-

nario. The authors find no significant change in tropical cyclones’ frequency in the

North Atlantic basin for late twenty-first century projections. However, they find a

statistically significant decrease in tropical cyclone frequency in the Northwestern

Pacific basin of 34.5%. We, therefore, keep the average yearly number of cyclones

in the Caribbean islands and the US unchanged but specify a 34.5% drop in end-

of-century cyclone frequency for Japan, China, and the Philippines. We interpolate

the occurrence rate linearly at each decadal step from 2025 to 2095. The cyclone

intensity in the North Atlantic basin increases by 4.5% in 2100 compared to the

present day’s climate and by 5-7% in the Northwestern Pacific basin [155].

Figure 3.D.1 shows the cumulative distribution of damages from the synthetic

years without climate change, with 2020 as the reference climate, versus the syn-

thetic yearly damages in 2100 under an RCP4.5 scenario. Overall, climate change

gradually increases cyclone damage for the US and Caribbean islands. For the

Northwestern Pacific regions in our study, cyclone damage slightly increases for the

first decades with the higher intensity. However, damages fall over time below the

2020 reference year as the frequency effect dominates.
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Figure 3.D.1: Empirical cumulative distribution functions of (synthetic) cyclone
damages in 2020 (blue) versus their potential damages in 2100 under the RCP4.5
climate scenario (red).

RCP8.5

As Ref. [155] only considers the RCP4.5 scenario, we also use the results in Ref. [143]

for constructing the high-emission RCP8.5 damages. The authors again downscale

models from the CMIP5 ensemble to project end-of-century changes in tropical

cyclone activity but also include global effects under the RCP8.5 scenario. The

results suggest a frequency increase of 10 − 40% depending on the CMIP5 model.

The changes are largest in the Northwestern Pacific basin but also present in the

North Atlantic. We take a conservative calibration of a 5% and 10% increase in

cyclone frequency for the North Atlantic and Northwestern Pacific basins, respec-

tively. For the cyclone intensity values, we again use the linear interpolation based

on Ref. [155] with radiative forcings as scaling terms.

Figure 3.D.2 shows the cumulative distribution of damages from the synthetic

years without climate change, with 2020 as the reference climate, versus the syn-

thetic damages in 2100 under the RCP8.5 scenario. The mean damages and stan-
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dard deviations now increase for all regions, resulting in significantly higher pro-

jected damages in the economic model.

Figure 3.D.2: Empirical cumulative distribution functions of (synthetic) cyclone
damages in 2020 (blue) versus their potential damages in 2100 under the RCP8.5
climate scenario (red).

Table 3.D.1 shows the corresponding changes in regional impact statistics.

Statistic (% change) USA CAR JPN CHN PHL

RCP4.5

Mean damage, δ̄TC 30.16 24.03 -9.73 -12.66 -13.47

Std. of damages, σTC 25.94 18.72 5.86 -1.22 -2.18

RCP8.5

Mean damage, δ̄TC 112.92 87.95 166.83 151.50 126.55

Std. of damages, σTC 93.11 66.39 115.51 103.22 81.92

Table 3.D.1: Percentage change in tropical cyclone impacts in 2100 under dif-
ferent climate scenarios compared to estimates under constant climate conditions.



Chapter 4

Learning-based model predictive

control for climate policy analysis

Abstract

This chapter explores the applicability of learning-based model predic-
tive control for solving stochastic economic decision problems. The
high computational cost of sequential decision-making under uncertainty
and the long planning horizons encountered in many economic applica-
tions severely restrict the usability of conventional dynamic program-
ming techniques in high-dimensional settings. Learning-based control
techniques provide a promising alternative approach as they can often
deliver high-quality approximate solutions with a significantly smaller
computational budget. In addition, stochastic model predictive control
enables an intuitive formulation of cautious behaviours that comple-
ment the conventional risk-averse decision rules. An integrated climate-
economy model provides a challenging environment to evaluate the pro-
posed method.

This chapter is part of a project that has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No
870245.

114



115

4.1 Introduction

The climate-economy interaction is one of the most challenging dynamical systems

to consider. Integrated assessment models (IAMs) that couple economic dynamics

with a stylized Earth system model can approximate this relationship and provide

valuable insight into climate policy design. However, despite pervasive uncertainties

in both human and climate systems, most IAM implementations are entirely deter-

ministic due to the high computational cost of stochastic optimization. Meanwhile,

recent advances in learning-based control have introduced powerful approximate

solution techniques for complex tasks from autonomous racing [32, 33, 166, 167]

and robotic locomotion [168] to games [169–171].

This chapter sets up a general framework for solving stochastic economic deci-

sion problems using learning-based model predictive control (MPC). Learning-based

control allows inferring unknown system properties from a self-generated database

of interactions with the system. The learned components can enhance controller

quality, for instance, in safety-critical applications [172]. On the other hand, MPC

approximates infinite-horizon optimal policies by repeatedly solving a surrogate

problem over a finite planning window, executing only the first action in the ob-

tained control sequence, and replanning forward into a receding horizon after each

step. Although more common in industrial applications, MPC also lends itself to

dynamical decision problems in economics [173] and finance [174] and provides a

natural way to deal with stochastic systems. Climate-economy IAMs provide an-

other challenging environment for evaluating the proposed technique.

The MPC approach has several advantages. First, the computational cost is

moderate compared to dynamic programming (DP) algorithms. DP requires iterat-

ing on an optimization problem at every point in a gridded state space, causing the

numerical effort to grow exponentially fast with the state dimension. 1 MPC avoids

the gridding procedure by truncating the problem in time and only approximating

(or sometimes neglecting) the future periods beyond the planning horizon.

A model predictive controller can handle uncertain systems directly as the con-

stant re-optimization enables reacting to model errors in a closed loop. Moreover,

1Adaptive sparse grids [175] can attenuate the increase in computational complexity.



116

it is possible to encode uncertainty explicitly into the planning algorithm in tasks

requiring cautious control. We model risk awareness via chance-constrained pro-

gramming, reformulating the original system constraints in terms of an admissi-

ble constraint violation probability. Chance constraints provide an intuitive risk-

performance tradeoff in many economic decision problems. For instance, in the

climate context, they allow specifying a maximum probability for breaching a given

temperature target. Compared to deterministic IAMs, this uncertainty treatment

leads to significantly more aggressive emission cuts, as the planner must leave a

sufficiently wide safety margin not to violate the temperature constraint.

The main MPC drawback is that the policies are necessarily myopic due to the

truncated optimization horizon. That is in stark contrast to DP, where referencing

an optimal value function allows characterizing exact solutions based on the princi-

ple of optimality [176]. Myopia is particularly problematic when applying MPC to

IAMs. Climate dynamics and emission abatement costs can be strongly nonlinear,

and greenhouse gases might linger in the atmosphere for centuries. Therefore, ig-

noring the full consequences of today’s (in)actions can lead to costly future readjust-

ments. A longer prediction horizon reduces shortsightedness but at a computational

cost. As a remedy, we consider learning an approximate terminal value function to

provide intermediate targets for the controller. The value function propagates long-

term information into the shortsighted algorithm, allowing MPC to approximate

optimal decisions even in multi-century economic planning problems.

In summary, this chapter works towards bridging the literatures on dynamic

economic decision problems, risk-aware MPC [33], and data-driven value function

approximation [34, 177]. The resulting framework enables using local search meth-

ods like MPC over arbitrarily long planning horizons in repetitive environments

with nonlinear dynamics. In addition, the chance-constrained formulation allows

an intuitive treatment of risk when the system dynamics are uncertain. Although

widely used in control engineering, to our knowledge, we are the first to apply the

learning-based MPC approach in a climate-economy context.

The structure of this chapter is as follows. After a brief review of previous

work, Section 2 introduces the necessary concepts in learning-based model predictive

control. Section 3 presents the integrated climate-economy model, and Section 4

the numerical experiments. Section 5 concludes.
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Related work

Integrated assessment models (IAMs) provide a tool for analyzing the costs and

benefits of climate policy alternatives by coupling stylized Earth system dynamics

to a simple representation of the global economy. One of the earliest and most influ-

ential IAMs is the Dynamic Integrated model of Climate and the Economy (DICE)

[178–180]. A global decision-maker sets consumption levels and greenhouse gas mit-

igation rates in each period. More current consumption yields a higher immediate

utility, but the resulting cut in savings suppresses future consumption possibilities.

Similarly, mitigating emissions today is costly but reduces future climate impacts.

Decision making under uncertainty has long posed a computational challenge for

solving IAMs. Ref. [181] uses a DICE-like model with a binomial tree structure to

represent unknown future climate damages. Another approach is to carefully reduce

the dimensionality of the original state space to afford a DP solution [31, 182–185].

Ref. [186] develops an approximate rolling-horizon DP algorithm under parametric

uncertainty. Ref. [187] and Ref. [30] break the curse of dimensionality of DP with

a supercomputer.

Model predictive control (MPC) is a well-established control technique for

dynamical systems subject to input and state constraints. Traditionally, MPC con-

siders stabilizing linear systems to some predetermined reference equilibrium, which

yields a convex optimization problem with an efficient numerical implementation

using standard gradient-based solvers [188]. Recently, with the increase in com-

putational power, economic model predictive control (EMPC) has received grow-

ing interest for problems with general nonlinear objectives and dynamics [189].

Sampling-based optimization techniques extend the use of MPC to non-smooth

problems [32]. Notably, gradient-free sampling techniques enable easy use of deep

neural networks as function approximators in data-driven control.

Inferring unknown system properties from data can enhance control performance

in repetitive tasks and safety-critical systems. In this regard, learning-based MPC

shares close synergies with reinforcement learning (RL). Ref. [166] combines cau-

tious MPC with Gaussian process regression to improve the prediction model in

an autonomous racing application where the true system dynamics are unknown.

Ref. [190] employs MPC as a safety filter on top of an RL algorithm, and Ref. [191]
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uses deep quantile regression to learn uncertainty tubes around MPC trajecto-

ries. Ref. [34] and Ref. [192] integrate RL-style value function approximation to

sampling-based MPC.

Several authors have applied MPC to sequential decision-making problems in

economics. Ref. [173] provides a convergence analysis and implementation details

for many standard classes of optimal growth problems. Ref. [193] applies MPC to

green investment risks and Ref. [194] to emissions trading. Prior works on climate-

economy IAMs include Refs. [195–199]. However, only a few of these studies include

uncertainty, and none of them considers learning-based extensions.

Finally, chance-constrained MPC strikes a balance between performance and

safety requirements and provides an appealing risk-aware formulation for many

practical applications. Common examples are portfolio optimization [200–202],

power system management [203], and inventory problems [204]. Still, MPC is just

one among many techniques for approaching complex sequential decision problems.

For instance, several authors have recently considered deep learning methods as

an alternative to conventional dynamic programming [205–207]. However, it is the

natural extensions to uncertainty quantification and probabilistic constraint satis-

faction, in particular, that make MPC a valuable addition to the economic modelling

toolbox.

4.2 Preliminaries

4.2.1 Notation

We denote time t variables in the true system with parenthesis, x(t), and the ith-

step variables along the MPC prediction horizon with subscripts, xi|t, conditioned

on the starting time instance. The Gaussian distribution with mean vector µ and

covariance matrix Σ is N (µ,Σ). The Jacobian matrix of a vector-valued function

f evaluated at location x is ∇f(x). The Pontryagin set difference is A⊖ B = {a |
a + b ∈ A ∀b ∈ B}. The ith element in a vector x is [x]i. For a matrix M , the ith

row is [M ]i and the element (i, j) is [M ]i,j. A diagonal matrix with main diagonal

entries x is diag(x).
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4.2.2 Model predictive control

This section describes the use of MPC to approximate a general discrete-time

infinite-horizon stochastic optimal control problem commonly encountered in eco-

nomics. The focus here is on MPC variants based on deterministic optimal control,

leaving out, for instance, scenario optimization [208] and tree-based methods [209].

The state of the system evolves according to a nonlinear, continuous dynamics

model x(t + 1) = f
(
x(t),u(t),w(t)

)
, where x(t) ∈ X ⊂ Rnx is the state vector,

u(t) ∈ U ⊂ Rnu the control input, and X and U the respective constraint sets.

The system is subject to a sequence of additive stochastic disturbances w(t) ∈
Rnw , which we assume to be independent and identically distributed (i.i.d.). The

control objective is to maximize the expected sum over a real-valued reward function

r(x,u), discounted with β ∈ (0, 1]. Ideally, for a given initial state x0 and a noise

distribution Qw, we would like to solve the following problem:

max
π

Ew

(
∞∑
t=0

βtr
(
x(t),u(t)

))
s.t. x(t+ 1) = f

(
x(t),u(t),w(t)

)
u(t) = π

(
x(t)

)
x(0) = x0

w(t) ∼ Qw

x(t) ∈ X ,u(t) ∈ U ∀t.

(4.1)

The search space in Eq. (4.1) is over general policy rules π : Rnx → Rnu , map-

pings from any going state to the optimal control action. As such, the problem is

intractable and requires approximation with an easier surrogate problem.

The main idea behind MPC is simple. Instead of tackling the entire infinite

horizon at once, the controller repeatedly solves the problem for a finite N ∈ N
steps into the future. It takes the first element in the obtained control sequence as

an immediate control input, implements it in the system, and observes the resulting

next state. Finally, it updates the initial conditions and re-optimizes for another

forecast window of N steps forward in time. Starting at any time instance k, the
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reduced search space is therefore over control trajectories ūk = [u0|k, ...,uN−1|k] and

the corresponding states x̄k = [x0|k, ...,xN |k]. For an optimal control sequence ū∗
k,

the MPC policy rule then becomes u(k) = π̄(x(k)) = [ū∗
k]0. The full ūk and x̄k

are referred to as time-k open-loop predictions, and the sequences constructed by

following the MPC policy π̄ as closed-loop trajectories.

Truncating the optimization horizon, however, leads to approximation errors.

MPC often considers a terminal value function V (xN |k) or a terminal constraint

set xN |k ∈ XN |k at the end of the prediction window as an intermediate target

to account for the missing tail of steps. These terminal ingredients guide decision

making towards long-term optimal actions, although their design can be challenging

for general nonlinear systems.

The second MPC approximation step is to replace the original state-space model

with a deterministic prediction function xi+1|k = f̄(xi|k,ui|k). For instance, f̄ can

be an approximation of the underlying system based on first principles. Decision

problems in economics typically assume access to a perfect simulator, in which case

the prediction function corresponds to the nominal noise-free transition dynamics.

A fundamental design choice in model predictive control is how to deal with

uncertainty. There are three main paradigms. Nominal MPC ignores all uncertain-

ties during planning, but repeatedly re-solving the problem still enables reacting to

disturbances in a feedback loop. On the other hand, robust MPC assumes that all

uncertainty realizations come from a known bounded set and only deploys control

inputs that guarantee constraint satisfaction under any possible outcome. Although

the robust approach can deliver strong theoretical properties, it can lead to conserva-

tive behaviour by always preparing for the worst-case realization and not exploiting

the distributional information of the random events. Finally, stochastic MPC speci-

fies a noise distribution, treating the (possibly unbounded) sequence {w(t)}∞t=0 as a

stochastic process with independent and identically distributed terms. The system

constraints only need to hold in probability, which reduces conservatism.

We can define chance constraints for the state and control trajectories as:
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Pr(x̄k ∈ X ) ≥ px

Pr(ūk ∈ U) ≥ pu,

where p = 1 corresponds to the robust approach with hard constraints and 0 < p < 1

to the stochastic setting. However, solving the MPC problem using standard numer-

ical optimizers still requires converting the chance constraints into a deterministic

format. That involves two steps. First, uncertainty propagation models the accu-

mulation of uncertainty over time and yields a distribution of possible states along

every step of the prediction horizon. Then, using these uncertainty estimates, con-

straint tightening defines new constraint sets X̄ ⊆ X and Ū ⊆ U . Keeping the

nominal open-loop trajectories within the tightened bounds corresponds to satisfy-

ing the original system constraints with the desired probability. For more details

on implementing the chance constraints, see Section 4.4.2.

The final simplifying step concerns the expectation operator. In general, there

is no reason to assume that MPC will maximize the expected sum in Eq. (4.1). For

many types of functional forms, quadratic in particular, it is possible to decompose

and evaluate the expectation analytically based on mean and variance information.

However, for the general case considered here, we simply ignore the expectation and

convert the original objective into a sequence of deterministic finite-horizon prob-

lems, invoking an approximate form of certainty equivalence [173, 210]. First, the

noise process in many economic applications is simple, typically assuming additive

zero-mean i.i.d. Gaussian disturbances with relatively small magnitudes. There-

fore, locally, dropping the expectation yields a reasonable surrogate objective while

maintaining the useful MPC properties. Second, a well-tuned value function, ap-

proximated from a sufficient amount of prior experience, can guide the open-loop

MPC trajectories towards terminal states with high expected reward-to-go, resem-

bling the standard Bellman equation [176] in a stochastic setting.

At every time instance k, we can then approximate the original problem in

Eq. (4.1) by considering the following surrogate system:
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max
ūk

βNV (xN |k)+
N−1∑
i=0

βir(xi|k,ui|k)

s.t xi+1 = f̄(xi|k,ui|k)

x0|k = x(k)

ūk = [u0|k, ...,uN−1|k]

x̄k = [x0|k, ...,xN |k]

xN |k ∈ X̄N , x̄k ∈ X̄ , ūk ∈ Ū .

(4.2)

Repeatedly solving Eq. (4.2) generates a sequence of control inputs, emulating an

infinite horizon by shifting the prediction window forward after each iteration, al-

ways maintaining a distance of N steps to the termination. Under certain condi-

tions in a deterministic setting, a formal convergence analysis between the original

infinite-horizon solution and the MPC approximation is also possible [173].

4.2.3 Sampling-based trajectory optimization

Gradient-based numerical solvers are appealing for MPC due to their accuracy

and stability. However, their use can be restrictive in some data-driven applica-

tions. Gradient-based methods require the optimization landscape to be sufficiently

smooth, which can be difficult to guarantee under high-dimensional function approx-

imators like deep neural networks. On the other hand, methods such as linear basis

function regression and Gaussian processes can deliver smooth function approxima-

tions but have limited expressive power in higher dimensions and high computa-

tional costs, respectively. Sampling-based optimization can provide more flexibility,

placing no shape requirements on the system dynamics or objective functions.

Given the prediction model xt+1 = f̄(xt,ut) and an instantaneous reward func-

tion r(xt,ut), the simplest approach to sampling-based trajectory optimization is to

generate Z possible control trajectories over a prediction horizon of N steps purely

at random and pick the sample with highest cumulative reward as an approximate

solution. Although sufficient for some applications [211], such random shooting

rarely generates meaningful enough patterns for high-precision control.
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To add more structure to the algorithm, we follow the model predictive path

integral method (MPPI) for sampling-based MPC [32, 212]. The approach brings

two improvements compared to simple random shooting. First, instead of choosing

a single best trajectory as an approximate solution, the method takes a weighted av-

erage over all generated samples according to their relative cumulative performance.

Second, instead of sampling action candidates as unstructured noise, an additional

filtering step is applied to produce smooth action trajectories for more guided search

directions. Figure 4.2.1 illustrates the process in a simple one-dimensional economic

growth model.
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Figure 4.2.1: Illustration of sampling-based trajectory optimization in a one-
dimensional economic growth model. The task is to find an optimal output con-
sumption share over a period of fifty steps. We initialize the algorithm with a
constant nominal trajectory, denoted with the black dashed line. Blue lines denote
1000 randomly generated smooth perturbations. The solid black line marks the
obtained approximate solution, a weighted average over all samples. The optimal
open-loop sequence ends with the consumption share reaching 100% as the agent
wants to leave no capital behind at the end of the optimization period.

In practical terms, we initialize the algorithm with a nominal control sequence

u = {u0,u1, ...,uN−1} for a time horizon of N steps. Then, we sample Z zero-mean

Gaussian perturbations εz = {ϵz0, ϵz1, ..., ϵzN−1} ∀ z ∈ {0, ..., Z − 1}, and apply the
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noisy control sequences u + εz by recursively using the prediction model f̄ from

a known initial state. Denoting the resulting cumulative rewards of all sample

trajectories with R = {R0, R1, ..., RZ−1}, we use the following weights to average

over the Z candidates:

wz =
exp
{
λ(Rz −max[R])

}∑Z−1
j=0 exp

{
λ(Rj −max[R])

} . (4.3)

The term λ is a tunable temperature parameter. Setting λ = 0 gives equal weight

to all trajectories. With λ > 0, the best sample gets the highest weight, while the

weights for the remaining samples decay faster with worse relative performance.

Finally, following the usual MPC formulation, we choose the first element of the

weighted control sequence as the next immediate control input and update the old

nominal sequence u based on the remainder of the newly weighted sample. The

process of generating and evaluating individual trajectories is easily parallelizable,

which allows using a large sample size to approximate the optimal solution.

More formally, under the information-theoretic MPC approach outlined above,

the original trajectory optimization problem becomes one of probability matching

[32, 213]. The idea is first to derive a performance upper bound based on the con-

cept of free energy. The second step is to establish the equivalence between finding

an optimal control sequence by maximizing the original objective and reaching the

upper performance bound by sampling controls from an abstract optimal control

distribution Q∗. However, we cannot sample from the abstract optimal distribu-

tion directly. Instead, we can minimize the Kullback–Leibler divergence between

Q∗ and an open-loop control distribution Q by using the analytic expressions for

their density functions, pushing the proposal distribution Q as close as possible

to the optimal, Q∗. Still, this only expresses the optimal controls in terms of an

expectation over Q∗, resulting in an intractable integral. However, we can use im-

portance sampling with weights wz from Eq. (4.3) to approximate the expectation

with respect to Q∗ using Monte Carlo draws from the proposal distribution Q.

The resulting control law allows selecting actions based on a weighted average of

sampled paths and is applicable to systems with arbitrary objective functions and

nonlinear dynamics. However, there are some caveats. First, being a local search

method, the algorithm relies on a suitable proposal distribution for the importance
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sampling and a good initial guess to warm-start the iteration. Moreover, matching

the expectations between the optimal and proposal distributions suffices for finding

the optimal controls only under control-affine system dynamics. For more general

systems, the optimal control distribution might, for instance, be multi-modal and

difficult to describe using mean information alone. However, empirical experiments

suggest that the method also works well in more general settings [32]. We validate

the performance of the sampling-based algorithm against a standard gradient-based

controller in Appendix 4.A. Additional practical improvements for sampling-based

MPC algorithms include, among others, smoothing the obtained control sequence

[213], adaptive importance sampling [214], and gradient descent steps to refine the

sampled rollouts [215].

4.2.4 Uncertainty-aware neural network ensembles

Data-driven controllers can gradually improve performance by collecting more ex-

perience through interactions with the system. Often it is also helpful to quantify

the uncertainty in the learned components. For instance, uncertainty can guide the

agent to explore unknown regions for maximal information gain or enforce cautious

behaviour by avoiding the uncertain areas altogether. The standard taxonomy clas-

sifies uncertainty as either epistemic for the lack of data or aleatoric for the inherent,

irreducible system noise.

Neural networks are powerful and scalable nonlinear function approximators.

However, traditional feed-forward neural networks do not have a natural represen-

tation of predictive uncertainty. Common techniques for considering uncertainty

include Bayesian networks [216] and training an ensemble of multiple networks in

parallel [217]. Bayesian networks learn a distribution over the model parameters

instead of only point estimates, whereas using an ensemble model allows exploiting

the distribution over individual network outputs to quantify uncertainty. We use

the ensembling approach due to its simple implementation and easy integration into

sequential decision-making problems.

Ensembling multiple neural networks into a single model is common across dif-

ferent fields of machine learning [34, 218, 219]. The idea is to inject variability into

the networks by either randomly initializing the model parameters, bootstrapping



126

the training data, or a combination thereof. After training, the ensemble mem-

bers should agree in regions with enough training examples, but their disagreement

elsewhere can be used to proxy predictive (epistemic) uncertainty. Figure 4.2.2 il-

lustrates the process for a one-dimensional toy regression task. The value of ensem-

bling also goes beyond uncertainty quantification, as averaging over the ensemble

members can sometimes provide more accurate predictions compared to individual

model outputs [218].
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Figure 4.2.2: Predictions of a neural network ensemble in a toy regression prob-
lem. The ensemble consists of ten randomly initialized networks. Solid blue lines
denote the predictions for individual models. After training, the models agree near
the training points but scatter quickly in regions with no available data. The dis-
agreement within the ensemble, measured, for instance, as the empirical variance
across all predictions, provides a convenient estimate for epistemic uncertainty.

4.2.5 Value function approximation

The dynamical system considered in this chapter conforms with the standard for-

malism of an infinite-horizon discounted Markov Decision Processes [220]. In this

setting, given a decision rule π, the corresponding value function for any going state
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x is the expected sum of discounted future rewards, V π(x) = E
[∑∞

t=0 β
tr(xt, π(xt)) |

x0 = x, π
]
. The expectation is over state transitions and decision rules, both of

which might contain randomness. Denoting the next state from x with x′, we can

define the usual Bellman optimality operator as:

T V (x) = max
u

E
[
r(x,u) + βV (x′)

]
. (4.4)

The optimal value function V ∗ is the fixed point of this operator, which implies

T V ∗(x) = V ∗(x). To learn a parameterized approximate value function V̂θ, we can

generate target values T V̂θi(x) and iteratively update the parameters θ using:

θi+1 = argmin
θ

Ex∼Qx

[(
V̂θ(x)− T V̂θi(x)

)2]
. (4.5)

While training the weights, we sample possible states from a distribution Qx. For

more details on generating the regression targets in the context of learning-based

MPC, see Section 4.4.1.

4.3 Environment

This section describes the dynamical system used in our experiments. A simple

growth module specifies the drivers of long-run economic development and the links

between economic activity and greenhouse gas emissions. In addition, two climate

modules form a stylized, globally averaged Earth system model. First, a carbon

cycle module determines how new emissions add up to atmospheric CO2 concentra-

tions and how these concentrations evolve with natural sinks slowly absorbing the

excess carbon. Second, a temperature response module translates carbon concentra-

tions into radiative forcings and temperature anomalies relative to a preindustrial

baseline. Full details on calibrating the system are available in Appendix 4.B.

4.3.1 Model economy

The economic dynamics follow the stochastic general equilibrium model of Ref. [30].

The model differs from the standard DICE implementation of Ref. [221] mainly by

splitting the time horizon into annual steps instead of five-year increments and by
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including a two-dimensional stochastic process for persistent business cycle fluctu-

ations. The time horizon for our implementation is 500 years. 2

The primary economic state variable is the capital stock K, measured in mon-

etary units. World population L and the base economic productivity A grow ac-

cording to deterministic trends. The gross economic output before climate change

impacts is a combination of technology, capital, and labour:

Γ(ζ, A,K, L) = exp(ζ)AKαL1−α, (4.6)

where the constant 0 < α < 1 determines the factor shares between labour and

capital, and ζ is the stochastic productivity component. A random variable χ

models the persistence of the productivity shocks. The random technology terms

evolve as: [
ζ(t+ 1)

χ(t+ 1)

]
=

[
1 1

0 ρ

][
ζ(t)

χ(t)

]
+ ν(t). (4.7)

The constant 0 < ρ < 1 determines the shock persistence and ν(t) ∼ N (0,Σν) with

a diagonal covariance matrix Σν the fluctuation magnitude. The global average

atmospheric temperature anomaly TAT relative to a preindustrial equilibrium affects

economic output through the following damage function:

Ψ(TAT ) = 1 +

(
TAT
ψ1

)ψ2

+

(
TAT
ψ3

)ψ4

. (4.8)

The annual output is then Y (t) = Γ
(
ζ(t), A(t), K(t), L(t)

)
/Ψ
(
TAT (t)

)
for non-

negative ψi.
3 Total annual CO2 emissions E(t) are the sum of exogenous land

emissions Eland(t) and industrial process emissions. The industrial emissions are

proportional to the gross output, Eind(t) = σ(t)
(
1 − µ(t)

)
Γ
(
ζ(t), A(t), K(t), L(t)

)
.

The carbon intensity term σ(t) > 0 falls exogenously over time reflecting im-

provements in energy efficiency, and the planner sets an emissions mitigation rate

0 ≤ µ(t) ≤ µmax in each period. The emissions abatement cost is:

2We do not consider climate tipping points or recursive Epstein-Zin preferences, which have a
central role in Ref. [30].

3This damage formulation accommodates both the quadratic damage function from Ref. [179],
the calibration from Ref. [222] with higher additional damages from a catastrophic temperature
increase, as well as the more recent meta-analysis on damage estimates in Ref. [223].
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Ω(t) = ω1(t)µ(t)
ω2Y (t), (4.9)

for an exogenously decreasing ω1(t) > 0 and a constant cost term ω2 > 1. The

aggregate resource constraint of the economy is:

Y (t) = C(t) + Ω(t) + I(t), (4.10)

where C(t) and I(t) denote consumption and investment levels, respectively. Given

a constant depreciation rate 0 < δ < 1, the capital stock law of motion is:

K(t+ 1) = (1− δ)K(t) + I(t). (4.11)

The agent’s instantaneous utility u depends on per-capita consumption with:

u(C,L) =
(C/L)1−1/ξ

1− 1/ξ
L. (4.12)

The constant ξ determines the intertemporal elasticity of substitution, which, with

the model horizon spanning multiple centuries, captures tendencies for intergenera-

tional consumption smoothing. The agent’s goal is to maximize societal welfare W ,

defined as the expected sum of utility over time. The expectation is with respect to

all economic and climate uncertainties. With a discounting term β close to 1, the

welfare expression becomes:

W = E

[
∞∑
t=0

βtu(C(t), L(t))

]
. (4.13)

An essential IAM output quantity is the social cost of carbon (SCC), describing

the marginal societal impact of an additional ton of carbon released into the atmo-

sphere. A standard definition that gives the SCC in suitable monetary units is as

a ratio between the marginal welfare loss from an additional unit of emissions and

the marginal welfare gain of an additional unit of consumption [221]:

SCCt = − ∂W

∂E(t)

/
∂W

∂C(t)
. (4.14)

A quantity closely related to the SCC is the carbon tax τE. Since emissions are the
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only market distortion in our simplified world economy, the externality of environ-

mental damages can be fully internalized with a Pigouvian carbon tax. Notably,

whenever the input constraint µ(t) ≤ µmax is not binding, an optimal carbon tax

per one tonne of carbon exactly equals the SCC with:

τE(t) =
ω1(t)ω2µ(t)

ω2−1

0.001σ(t)
. (4.15)

When the abatement constraint is binding, the SCC can far exceed the optimal

carbon tax level [30]. 4

4.3.2 Carbon cycle

The carbon cycle dynamics follow the Finite Amplitude Impulse Response (FAIR)

model [224–227]. FAIR provides a transparent and lightweight emulator of the emis-

sions response in full-scale Earth system models. Still, the model is detailed enough

to capture the nonlinearities from climate feedback loops. The model considers all

variables as global averages, which makes it an excellent submodule for integrated

assessment [228–231]. 5

The carbon state variable consists of four reservoirs, Gi, with different rates of

carbon uptake and time decay. The reservoirs approximately correspond to the

concentration anomalies in the geological, deep ocean, biospheric, and ocean mixed

layer processes [225]. The carbon content in each of the pools evolves according to:

Gi(t+ 1) = aiτiγ(t)E(t)
(
1− exp

[ −1

τiγ(t)

])
+ exp

[ −1

τiγ(t)

]
Gi(t), (4.16)

which is a discretized representation of the original FAIR dynamics. All reservoirs

are empty at the preindustrial equilibrium. The parameter ai, with
∑4

i=1 ai = 1,

4We can derive the carbon tax level τE(t) as follows. Optimally behaving producers will curb
emissions up to the point where marginal abatement cost reaches the carbon price, which in
the Pigouvian setting should be exacly equal to the social cost of emissions. From Eq. (4.9),
the marginal abatement cost per one unit of output is ω1ω2µ

ω2−1
t . The corresponding output

quantity that produces exactly one unit of emissions is Ỹ = 1
σ , which directly gives the tax level

in Eq. (4.15).
5We only consider carbon dioxide emissions. However, the FAIR model can capture the impact

of a range of greenhouse gases with a unified functional representation [227].
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captures the share of annual aggregate emissions E(t) entering each of the reservoirs,

and τi determines the corresponding lifetimes in the cycle. The carbon dynamics

are nonlinear, capturing the effect of weakening carbon sinks (positive climate feed-

backs) with higher cumulative emissions and temperature. The nonlinearity term

γ(t) models these effects and acts as a scaler on the time decay rates, with a higher

value leading to a larger share of new emissions remaining in the atmosphere. The

total carbon concentration at time t is M(t) =M0 +
∑4

i=1Gi(t), with M0 denoting

the preindustrial concentration. Writing Mu(t) as all historical emissions already

removed from the carbon cycle and TAT(t) for the current mean temperature, we

can calibrate the nonlinearity with the following system of equations:

Mu(t) =
t∑

s=t0

E(s)−
∑
i

Gi(t) (4.17)

γ(t) = g0 exp

(
r0 + rMMu(t) + rTTAT(t)

g1

)
(4.18)

g1 =
4∑
i=1

aiτi [1− (1 + 100/τi)exp(−100/τi)] (4.19)

g0 = exp

(
−
∑4

i=1 aiτi [1− exp(−100/τi)]

g1

)
(4.20)

The exponentiated numerator in Eq. (4.18) describes variations in the 100-year

integrated impulse response function (iIRF), a measure for the average fraction of a

carbon pulse remaining in the atmosphere over the given period [226]. Parameters

r0, rM , rT denote the preindustrial iIRF, and the increase in iIRF with cumulative

carbon uptake and warming, respectively.

4.3.3 Temperature dynamics

The temperature dynamics follow the two-layer energy balance model in Ref. [232].

Higher carbon concentration M(t) feeds into a higher level of radiative forcing with

a logarithmic relationship:
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F(t) =
F2XCO2

ln(2)
ln

(
M(t)

M0

)
+ FEX(t), (4.21)

where F2XCO2 is the forcing corresponding to the doubling of CO2 and FEX stands for

exogenous forcings from non-CO2 sources. The temperature anomaly vector T(t) =

[TAT (t), TOC(t)] for the mean surface air and deep ocean temperatures evolves as a

linear function in terms of radiative forcing:

T(t+ 1) =

[
1− Ξ−1(η + Λ) Ξ−1η

ηΞ−1
0 1− ηΞ−1

0

]
T(t) + [ΞF(t), 0]⊤ + υ(t). (4.22)

The parameters Ξ and Ξ0 are per-area heat capacity coefficients for upper and

deep oceans, respectively, and η is the between-layer heat exchange term. The

parameter Λ controls the CO2 perturbation feedback. In addition to the calibration

in Ref. [232], we add a noise term υ(t) ∼ N (0,Συ) to the atmospheric temperature

process to model the variability in historical temperature observations [198, 233].

In total, the state variable x = [K; ζ;χ;G;T;Ecum]
⊤ has ten dimensions: capi-

tal stock, two stochastic productivity states, a four-dimensional carbon cycle, two-

dimensional temperature system, and cumulative emissions for easily keeping track

of Eq. (4.17). For the numerical implementation, we also append time to the state

vector as it provides valuable information for inferring the terminal value function

(see details below). The control vector u = [c;µ]⊤ consists of the output consump-

tion share c(t) ∈ (0, 1] and the emissions control rate µ(t) ∈ [0, µmax]. Defining the

admissible controls as state-independent variables substantially simplifies the imple-

mentation. For instance, the optimal consumption levels can vary within the model

horizon by several orders of magnitude due to centuries of exponential growth. The

implicit assumption when limiting the consumption share to unity is that all in-

vestments are irreversible, as the consumption level can never exceed the current

output.

The cost-benefit IAM described above has many desirable properties. First,

with several interacting subsystems, maintaining a modular structure enables eas-

ily changing individual model components. When solving the model using MPC,

the underlying climate system can even be a black-box simulator with the mis-
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match between the prediction model and true dynamics learned from experience.

The benchmark model used here also has room for new components without the

computational burden becoming restrictively high. For instance, additional state

and control variables might capture path dependencies in the energy system or the

potential role of geoengineering technologies in the climate policy mix. Finally, the

current setup is highly transparent. The model builds on a stylized dynamic gen-

eral equilibrium representation of the economy and a lightweight climate subsystem,

making it easy to analyze and extend to further applications.

4.4 Experiments

This section presents numerical experiments to evaluate the proposed solution tech-

nique in the climate-economy setting. The analysis comes in two parts. First, we

address the issue of MPC myopia by learning an approximate terminal value func-

tion from simulated data to guide the shortsighted nominal controller. We run the

controller in a deterministic benchmark environment where a long-term optimal

reference path is easy to compute. The goal is to verify that the learning-based

MPC method can approximate this benchmark policy and is thus comparable with

other existing IAM solution approaches.

In the second experiment, we document the uncertainty quantification and con-

straint tightening steps that enable constructing risk-aware climate policy paths.

We simulate the stochastic IAM under a climate policy target of limiting the global

mean atmospheric temperature increase to two degrees Celcius and interpret risk

as the probability of exceeding this temperature threshold. We then show how the

optimal carbon price trajectories evolve under different risk appetite levels. Im-

portantly, the second experiment does not consider value function learning. This

ensures that the resulting carbon price paths for this illustrative example only vary

because of the differences in risk treatment and not due to differences in learn-

ing performance. We can then analyze the relative carbon prices under different

risk levels, assuming that value learning would similarly affect all results. However,

switching on the learning-based components is straightforward also in the stochastic

setting.
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4.4.1 Value function learning

Addressing shortsightedness. Without terminal value information, MPC ap-

proximations of the long-term optimal trajectories can deteriorate rapidly if the

prediction horizon is not sufficiently long for the task at hand. The application to

climate-economy models provides a clear example. Figure 4.4.1 plots the relative

errors of the MPC solution under different prediction horizon lengths in a deter-

ministic setting where an optimal benchmark trajectory is easy to compute. The

consumption shares are reasonably accurate for as short prediction horizons as 25

steps, which corresponds to only 5% of the entire model horizon of 500 years. In

contrast, for the emissions control rate, bringing the relative error down to less than

one percent requires an MPC prediction window of approximately 350 steps. This

can be problematic as the computational time increases rapidly with a longer MPC

horizon. 6

0 100 200 300 400 500
0.00

0.25

0.50

0.75

M
ax

.
er

ro
r

(%
)

Consumption

0 100 200 300 400 500
0

25

50

75

M
ax

.
er

ro
r

(%
)

Mitigation

0 100 200 300 400 500
0

10

20
D

u
ra

ti
on

(m
in

.)

Solution time

Prediction horizon

Figure 4.4.1: Relative errors and solution times for MPC under various prediction
horizon lengths compared to a non-myopic deterministic benchmark. The shortest
considered horizon is 25 steps, and the longest one covers the full episode of 500
steps. Left: Errors in the consumption share are small already for short prediction
horizons, never exceeding one percent. Middle: Errors for the emissions control
rate are substantial, starting from up to 75% relative to the benchmark. As a result,
the MPC solution consistently lags behind the long-run optimal mitigation policy.
Right: Solution times grow rapidly with the prediction horizon.

6For these error illustrations, we use an MPC implementation on a gradient-based numerical
solver instead of a sampling-based technique. It makes the analysis more robust against hyperpa-
rameter selection and removes all randomness from the comparison. Solution times on a ThinkPad
X1 Carbon Gen 6 16GB laptop using the open source IPOPT optimizer [58].
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Myopia in terms of emissions mitigation is intuitive. Due to the nonlinearity in

carbon dynamics, mitigation costs, and climate damages, the controller does not

see the total cost of excessive carbon emissions beyond the planning horizon. As a

result, the emission cuts under MPC consistently lag behind the long-run optimal

level.

The gap between the infinite-horizon optimal policy and the myopic MPC solu-

tion has an appealing economic interpretation of decision making under information

constraints or rational inattention [173, 234]. The interpretation is especially fitting

in the climate context, describing the mismatch between the observed global climate

action and the level of ambition needed to avoid catastrophic levels of warming [7].

Still, being able to replicate the optimal long-term outcomes is crucial for compar-

ing the MPC performance with other existing solution methods. To improve the

accuracy of our approach while maintaining a reasonably short prediction horizon,

we construct an approximate terminal value function for replacing V in Eq. (4.2).

Adding a terminal value function or a terminal constraint set is a standard

procedure in the MPC toolkit to account for the remaining time steps beyond the

prediction horizon [188]. However, designing these terminal components can be

difficult for general nonlinear systems. For iterative tasks, a common approach is

to learn an approximate terminal value function offline by evaluating the discounted

reward-to-go empirically from a given state. The approximate value function then

guides the open-loop MPC trajectories online to intermediate goals with a high

expected reward [177, 210].

More specifically, we follow the approximation scheme outlined in Ref. [34]. The

authors use an ensemble of M neural networks to learn a parameterized value func-

tion V̂θ. The ensemble consists of parameter sets θ1, ..., θM . After each interaction

with the environment, we store the observed (state, action, next state, reward) tu-

ple into a replay buffer D, overriding old entries after reaching the maximum buffer

capacity. Every Z steps, we update the value ensemble by randomly querying the

buffer for starting states x and constructing regression targets by evaluating the

N -step return:

y(x) = βN V̂θ(xN) +
N−1∑
t=0

βtr(xt,ut), x0 = x. (4.23)
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Ensuring sufficient exploration is crucial in the training phase to avoid bad local

optima in the non-convex loss minimization landscape. We evaluate the neural

network ensemble optimistically using a softmax function:

V̂θ(x) = φ−1log

(
M∑
i=1

exp
{
φV̂θi(x)− log(M)

})
. (4.24)

Above, φ > 0 is a hyperparameter controlling the level of optimism. A low value

yields a prediction close to the ensemble mean, whereas a high value pushes the

prediction towards the ensemble maximum [235]. Whenever there is disagreement

within the ensemble, the controller, therefore, overweights the optimistic ensemble

members. Such optimism results in exploratory behaviour in uncertain regions.

Figure 4.4.2 illustrates the impacts of value function learning on the MPC per-

formance. Without the terminal value function, the MPC emissions mitigation

trajectory under a 30-year prediction horizon lags far behind the long-term opti-

mal benchmark solution with maximum relative errors exceeding 65%. However,

after learning the approximate value function, the controller can closely replicate

the long-run optimal mitigation trajectory, with relative errors capped to less than

4%. Without the approximate terminal value function, a similar level of accuracy

would require a prediction horizon of approximately 200 steps.

The result complements the dynamic stochastic general equilibrium example

in Ref. [173]. The authors show that imposing the steady-state capital level as a

terminal condition can guide the MPC algorithm to the optimal closed-loop be-

haviour in situations where the controller would otherwise fail. The learning-based

approximation is particularly valuable for models where the analytical steady-state

expression cannot be easily derived.

In simulated environments such as IAMs, the MPC sampling rates are less of an

issue than in real-time industrial processes. Therefore, for individual IAM experi-

ments, increasing the prediction horizon and ignoring the terminal value approxi-

mation might yield approximate solutions faster. However, when running multiple

experiments, pretraining a baseline model once and fine-tuning it to specific use

cases becomes more attractive, especially if the experiment involves Monte Carlo

simulations over thousands of model runs. For instance, in the deterministic setting

above, value learning can significantly improve MPC performance even after a few
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Figure 4.4.2: Emissions control rates before and after terminal value learning.
Without learning, the mitigation rate in blue lags below the long-run optimal val-
ues, leading to excessive greenhouse gas emissions and temperature increase. With
the approximate value function in place, the MPC trajectory closely replicates the
optimal mitigation path. Each error bar in grey shows the maximum relative er-
ror within a ten-step interval between the benchmark in black and the smoothed
learning-based MPC policy in orange.

dozen training episodes. Stochastic system dynamics typically require more data

— and training time — to generalize well.

Finally, determining a sufficient level of accuracy can be difficult. As such, IAMs

provide a highly inaccurate description of the coupled human-climate system. Ab-

sent any political dynamics, for instance, deriving an exactly optimal carbon tax

level from any IAM has little informative value for practical policy work. However,

optimization-based IAMs can still provide valuable insight into what reasonable

policy alternatives could look like, especially regarding the interplay between differ-

ent policy variables over time. Therefore, we consider MPC solutions that largely

eliminate myopia as sufficiently accurate for climate policy analysis.
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4.4.2 Uncertainty propagation and constraint tightening

Risk-aware planning. A nominal MPC scheme that ignores uncertainties during

planning is easy to implement and can provide reasonable approximate solutions in

many applications. However, it can also lead to undesirable constraint violations.

Consider an example of limiting the mean atmospheric temperature anomaly to

2◦C, a binding constraint in most IAMs. In addition, assume that the transition

dynamics are now stochastic, as described in Section 4.3. A deterministic prediction

model without any notion of risk would drive temperatures to meet the constraint

exactly, but while at the boundary, any economic or climate shock might throw

the system unexpectedly over the temperature threshold. Figure 4.4.3 illustrates

the example by running a nominal model predictive controller in a stochastic IAM

for 1000 simulations under a maximum temperature increase constraint. While the

temperature constraint holds on average, the violations are frequent, with some-

times substantial temperature overshoot.

This section introduces risk awareness to the agent via chance constraints. Since

the system dynamics are uncertain, the state trajectories also become random vari-

ables. Assuming that the state constraints determine a safe operating region in

our system, such as a temperature threshold for catastrophic climate impacts, we

can define risk in terms of constraint violation probabilities. Our goal is then to

modify the controller such that it can systematically avoid the constraint-breaching

behaviour in Figure 4.4.3 by determining how close to the threshold it can safely

operate. Risk-seeking behaviour implies tolerating a higher probability of failure

and, thus, a narrower safety margin.

We proceed in two parts. The first task in cautious control is uncertainty quan-

tification. More precisely, given an initial state, noisy transition dynamics, and a

nominal input trajectory, we want to propagate the uncertainty forward in time and

estimate a distribution of possible states at each step of the prediction horizon. The

second task is constraint tightening. That is, based on the uncertain state trajecto-

ries, we want to find a deterministic equivalent expression for the chance constraints

Pr(x̄k ∈ X ) ≥ px. The main difficulties are propagating probability distributions

over arbitrary nonlinear system dynamics and evaluating the joint constraint satis-

faction probabilities, two operations that generally have no closed-form expression.
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Figure 4.4.3: MPC constraint violations in an integrated assessment model. The
solid black line denotes the historical temperature anomaly observations from the
1900 level [236]. In solid blue, the mean temperature anomaly over 1000 model
runs with climate and economic shocks. The dashed line indicates the temperature
constraint. The constraint holds on average, but the stochastic disturbances lead to
frequent constraint violations with substantial temperature overshoot. The shaded
area corresponds to the two standard deviation bounds from the mean.

Instead, we use approximation schemes that exploit the properties of the Gaussian

noise process and the geometry of the polytopic system constraints [33, 237, 238].

Uncertainty propagation

An affine transformation of a normal distribution yields another normal distribution.

Nonlinear dynamics, however, render the distribution non-Gaussian after the first

step. In our setting, the simplest way to approximate the state distributions along

the prediction horizon is, therefore, to assume all uncertainty to be Gaussian and

linearize the system as in an extended Kalman filter [239]. We exploit the iterative

MPC structure and linearize the dynamics at each step around the optimal nominal

open-loop plan at the previous sampling instance. We can write the mean and

covariance dynamics for the uncertain state trajectory in closed form as [238]:
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µx(t+ 1) = f̄(µx(t),u(t))

Σx(t+ 1) = J(t)Σx(t)J⊤(t) + Σw(t).
(4.25)

Above, f̄ is the nominal nonlinear transition model, µx the mean vector and Σx the

covariance matrix of the system states, and J(t) = ∇f̄(µx(t),u(t)) the Jacobian of

the dynamics. Σw is the known covariance of the additive zero-mean noise vector

w(t) that includes both the business cycle fluctuations and the temperature shocks.

The linearization strategy naturally produces some approximation errors. How-

ever, in our integrated climate-economy model, the nonlinearities mainly materialize

over long periods. Therefore, the linearized dynamics provide a relatively accurate

system approximation over the short MPC prediction horizon.

Constraint tightening

Once we have quantified the state uncertainty over the prediction horizon, we

can perform the constraint modification. We follow the methodology detailed in

Ref. [237] and Ref. [166], summarized below. The key idea is to represent the state

variable at the kth prediction step as xk = zk + ek, consisting of a deterministic

nominal system state zk and an error term ek. After defining the time-k error sets,

we can construct a safety margin around the nominal prediction and tighten the

original constraints accordingly. Higher system uncertainty or a lower tolerance

for constraint violation results in wider safety margins, inducing more cautious ac-

tions when operating close to the system boundaries. Figure 4.4.4 illustrates the

procedure for a one-dimensional example.

We define the errors in terms of a k-step probabilistic reachable set Rk [240],

which satisfies:

e0 = 0 =⇒ Pr(ek ∈ Rk) ≥ p,

that is, conditioned on the starting value, Rk contains the k-step error term with

at least the predefined probability level p. Once we obtain an estimate for Rk, we

can define the tightened state constraint set Z for the nominal system as:
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Figure 4.4.4: Illustration of the constraint tightening procedure. The system is at
time k, with a planned trajectory for 30 steps forward. The original state constraint
is denoted with the black dashed line. The nominal state trajectory is in solid blue,
with the shaded area derived during the uncertainty propagation step. The tight-
ened constraint in orange depends on the specified constrain violation probability
px together with the uncertainty estimate. Keeping the nominal (mean) trajectory
deterministically within the tightened constraint corresponds to meeting the orig-
inal system bounds with the desired probability, as the uncertainty accumulates
over the prediction horizon.

zk ∈ Z = X ⊖Rk,

where X denotes the original system bounds and ⊖ is the Pontryagin set difference.

If the nominal prediction zk stays within the tightened set, the uncertain trajectory

satisfies the original system constraints with the desired probability [166]:

zk ∈ Z =⇒ Pr(xk = zk + ek ∈ X ) ≥ Pr(ek ∈ Rk) ≥ px.

Further, assuming a Gaussian distribution on the state evolution, Rk only depends

on the state covariance matrix Σx
k.
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We focus on polytopic state constraints consisting of nc individual half-spaces:

X = {x | Hx ≤ b}, H ∈ Rnc×nx , b ∈ Rnc .

The assumption is not restrictive for most economic applications that typically

require simple constraint sets such as constant state upper and lower bounds and

rate-of-change limits. However, evaluating the joint constraints Pr(Hx ≤ b) can

still be prohibitively costly for online planning algorithms. A closed-form expression

does not generally exist even when only working with Gaussian random variables.

A typical approximation scheme is to rewrite the joint chance constraints in terms

of individual half-spaces using Boole’s inequality [237, 241–244]. Boole’s inequality

upper bounds the probability of a union of m events Ai by the sum of individual

event probabilities:

Pr

(
m⋃
i=1

Ai

)
≤

m∑
i=1

Pr(Ai). (4.26)

Considering the satisfaction of each constraint as an individual event and the orig-

inal joint chance constraint as an intersection of these events, we can write the

complementary outcome of constraint violation as Pr(Hx > b) ≤ 1 − px. Using

Boole’s union bound as a conservative approximation, we get that:

Pr(Hx > b) =
nc∑
i=1

Pr
(
[H]⊤i x > bi

)
. (4.27)

Then, we can evaluate each individual half-space constraint Pr
(
[H]⊤i x > bi

)
effi-

ciently by using the Gaussian cumulative distribution function.

Finally, to ensure the satisfaction of all individual chance constraints with the

predefined probability px, we need to distribute the tolerated failure probability

across all constraints. We distribute the failure probability uniformly, such that each

constraint must hold with p̄ = 1 − (1 − px)n
−1
c . More sophisticated optimization-

based risk allocation schemes also exist [245]. Using ϕ−1 to denote the standard

Gaussian quantile function, the k-step probabilistic reachable set becomes [166]:
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Rk = {e | [H]⊤i e ≤ ϕ−1(p̄)
√
[H]⊤i Σ

x
k[H]i ∀i = 1, ..., nc},

as we marginalize the error distribution according to each half-space. The resulting

tightened constraint set is Z = {z | [H]⊤i z ≤ b̃i ∀i = 1, ..., nc } where b̃i = bi −
ϕ−1(p̄)

√
[H]⊤i Σ

x
i [H]i. We only apply the tightenings to state constraints and leave

the input constraints untouched.

Simulation results

This section describes the climate policy outcomes generated under the cautious

model predictive controller. The fixed constraint considered through all simulations

is to limit the temperature increase to two degrees Celsius relative to a preindus-

trial benchmark. Figure 4.4.5 illustrates how modifying the permitted constraint

violation probability affects optimal carbon price paths over the first 100 years of

simulation. Intuitively, lower tolerance for risk, defined here as a lower tolerance

for constraint violation, leads to more aggressive emissions mitigation policies and,

thus, higher carbon taxes. For reference, the figure also shows scenarios without

constraint tightening and temperature constraints.

The constraint tightening adds notable variation to the carbon price paths. 7

Without the temperature constraint, climate policy only depends on the relatively

weak climate damages, leading to low tax levels. Similarly, with the two-degree

policy in place without constraint tightening, carbon emissions are still relatively

cheap, leading to frequent constraint violations. In contrast, with the temperature

target and constraint tightenings in place, the relatively strong temperature distur-

bances lead to substantial emissions cuts early on to maintain an adequate safety

margin to the temperature limit. The carbon tax slowly declines due to exogenous

technological improvements as time progresses.

We can interpret the results as how much additional confidence a higher carbon

price brings in meeting a specific climate policy goal. For instance, over the first

60 years of simulation, gaining a 95% probability of staying below two degrees of

warming translates to an average carbon tax increase of a few hundred dollars per

tonne compared to the non-tightened case.

7The conversion factor between tC and tCO2 is 3.666.
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Figure 4.4.5: The evolution of carbon taxes when limiting the mean temperature
anomaly to two degrees Celsius under different constraint satisfaction probabilities.
The solid lines denote the mean tax levels after 1000 simulations for each scenario.
The shaded region shows the likely range, defined as the 17th to 83rd percentile
region. In green is a scenario without constraint tightening. The red line is a
reference scenario without a temperature constraint. Lower tolerance for constraint
violation leads to more aggressive emissions cuts and, therefore, higher carbon taxes.

The carbon prices presented here are comparable to previous results both under

the same temperature constraint but deterministic dynamics [230, 246] and to those

with substantial uncertainties but no explicit temperature constraint [30, 31, 247].

However, studies combining stochastic system dynamics with a specific temperature

target are less common. The MPC-based approach, therefore, provides a way for

modelling risk-aware decision rules for climate policy and complements the prior

works that commonly describe risk aversion using recursive Epstein-Zin preferences

[30, 31, 181].

Figure 4.4.6 illustrates the evolution of the four carbon boxes under the prob-

abilistic two-degree policy. Without the constraint, the atmospheric temperature

increases by more than four degrees. Policies that meet the target with at least
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70% probability remove most emissions over the 60 first years of simulation. As a

result, the accumulation in the slowest carbon boxes (top row) gradually peters out

and starts declining for the fastest-evolving reservoirs (bottom row).
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Figure 4.4.6: Carbon concentrations when limiting the mean temperature
anomaly to two degrees Celsius under different constraint satisfaction probabili-
ties. Each subplot corresponds to one of the four carbon reservoirs with different
time decay rates. The solid lines denote the mean concentration levels after 1000
simulations for each scenario. The shaded region shows the likely range, defined
as the 17th to 83rd percentile region. In green is a scenario without constraint
tightening. The red line is a reference scenario without a temperature constraint.

The purpose of these results is to illustrate the additional insights that the MPC

approach can bring to the standard IAM framework. However, while analyzing these

results, it is crucial to stress the limitations of the cost-benefit IAM approach itself.
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Using the above risk-aware formulation, we might argue, for instance, how much an

increase in carbon price improves our chances of meeting some pre-specified temper-

ature target. It also allows us to estimate how adjusting the risk tolerance affects

the optimal carbon price relative to other temperature targets and risk tolerance

levels. The overarching assumption is that we can operate under marginal adjust-

ments, such that a somewhat looser climate policy leads to slightly higher climate

damages and vice versa. However, the simplicity of the model hides away the deep

structural uncertainties surrounding catastrophic climate outcomes and potentially

fat-tailed damage distributions [248]. Alas, the cost-benefit comparisons based on

IAM damage functions alone might be arbitrarily inaccurate [249].

4.5 Conclusion

This chapter works towards bridging the literatures on dynamic economic decision

problems, risk-aware model predictive control (MPC), and data-driven value func-

tion approximation. Learning a value function from prior experience enables using

local search methods like MPC over arbitrarily long planning horizons in repetitive

tasks. The approximate value function works as a terminal reward for the control

algorithm, reducing myopia. Whereas several techniques exist for solving sequential

decision problems under uncertainty, the MPC approach is especially appealing for

the intuitive treatment of risk via probabilistic constraint satisfaction. We con-

sider a climate-economy integrated assessment model (IAM) as a running example.

IAMs require optimizing climate policy pathways over multiple centuries with non-

linear system dynamics, often coupled with considerable uncertainty, making them

a challenging environment to test the proposed method.

Several avenues remain to extend the proposed framework. Throughout the

chapter, we have assumed that all uncertainty stems from additive disturbances in

the system dynamics. Another interesting approach is to consider parametric uncer-

tainty and build a chance-constrained MPC algorithm based on efficient polynomial

sampling techniques [250–252]. There is also further room for increasing the model

size without the curse of dimensionality becoming an issue. For instance, in the

climate context, this might include additional state variables for modelling geoengi-

neering with the injection of aerosols into the stratosphere [63], climate adaptation
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policies with adaptive capital stocks [156], or other forms of contingency plans for

catastrophic climate change outcomes. In addition to the climate-economy set-

ting, the proposed framework can be applied to any long-term resource allocation

problems where we can represent risks in terms of constraint violation probabilities.



Appendix

4.A Sampling-based MPC validation

Whether the sampling-based MPC algorithm performs well in general non-control-

affine systems remains a task for empirical validation. Especially under stochas-

tic disturbances, it is unclear whether the sampling distribution can recover to a

reasonable trajectory after a shock. We also separately evaluate the algorithm’s

performance in the case of binding constraints and constraint tightening. This is

because the tightening procedure relies on linearizing the system dynamics around

the solution at the previous sampling instance to approximate the uncertainty prop-

agation over time. The goal is to verify that the linearization remains reasonably

accurate and that penalizing the constraint-violating sample trajectories works as

intended.

To perform this validation, we run the sampling-based MPC algorithm in par-

allel with a standard gradient-based method, fixing the random seed so that both

algorithms receive the same shock realizations. We can then verify that the resulting

solution paths are approximately similar. Fig. 4.A.1 shows the results for the emis-

sions mitigation rates and Fig. 4.A.2 for the consumption rates. The sampling-based

method can replicate the gradient-based outcomes well for both control variables.

The mean trajectories produced by the different methods are almost indistinguish-

able.

148
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Figure 4.A.1: A comparison between gradient-based and sampling-based model-
predictive control algorithms under deterministic and stochastic system dynamics.
The random seed is fixed to ensure identical disturbances for all scenarios and algo-
rithms. All data correspond to emissions mitigation rates under a 30-year prediction
horizon. The black lines denote the mean trajectories of 100 sample paths, the solid
line for the gradient-based method and the dashed line for the sampling-based al-
ternative. The coloured lines indicate the first 20 samples for both methods, blue
for the gradient-based and orange for the sampling-based method. The considered
constraint is to limit the temperature increase to 3 ◦C, and the tightening procedure
considers a 90% probability of satisfying this constraint. The stochastic environ-
ment involves disturbances in economic productivity and the temperature system.
The mean trajectories produced by the two algorithms are almost indistinguishable.
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Figure 4.A.2: A comparison between gradient-based and sampling-based model-
predictive control algorithms under deterministic and stochastic system dynamics.
The random seed is fixed to ensure identical disturbances for all scenarios and al-
gorithms. All data correspond to consumption shares under a 30-year prediction
horizon. The black lines denote the mean trajectories of 100 sample paths, the
solid line for the gradient-based method and the dashed line for the sampling-based
alternative. The coloured lines indicate the first 20 samples for both methods, blue
for the gradient-based and orange for the sampling-based method. The considered
constraint is to limit the temperature increase to 3 ◦C, and the tightening procedure
considers a 90% probability of satisfying this constraint. The stochastic environ-
ment involves disturbances in economic productivity and the temperature system.
The mean trajectories produced by the two algorithms are almost indistinguishable.
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4.B Environment calibration

Economic module

The calibration of the economic module follows the model implementations in

Ref. [30] and Ref. [179]. The deterministic technology productivity trend evolves

according to:

A(t) = A0 exp
(α1(1− exp(−α2t))

α2

)
. (4.28)

The carbon intensity of unit economic output is:

σ(t) = σ0 exp
(σ1(1− exp(−σ2t))

σ2

)
. (4.29)

The world population grows as:

L(t) = L0 exp(−∆Lt) + Lmax(1− exp(−∆Lt)). (4.30)

Land emissions from biological processes are:

Eland(t) = E0 exp(−∆Et). (4.31)

The equation capturing the exogenous non-CO2 radiative forcings is:

FEX(t) =

F0 +∆F t if t ≤ 100

Fmax otherwise.
(4.32)

The backstop technology cost path evolves according to:

ω1(t) =
p0σ(t)(1 + exp(−∆pt))

ω2

p̃− 1

p̃
. (4.33)
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Parameter Description Value
α Production factor shares 0.30
A0 Initial total factor productivity 0.02722
α1 Initial productivity growth rate 0.0092
α2 Productivity growth rate decay 0.001
σ0 Initial carbon intensity 0.13418
σ1 Carbon intensity change rate -0.00730
σ2 Carbon intensity change rate 0.003
L0 Initial population 6514 (M.)
Lmax Asymptotic population 8600 (M.)
∆L Population growth rate 0.035
E0 Initial land emissions 1.1 (GtC)
∆E Land emissions change rate 0.01
ρ Technology shock persistence 0.775
ω2 Mitigation cost exponent 2.8
p0 Backstop cost 1.17 (kUSD / tC)
∆p Backstop cost change rate 0.005
p̃ Initial to final backstop cost ratio 2
δ Capital depreciation rate 0.1
ξ Intertemporal substitution elasticity 1.5
β Discount factor 0.985
Σν Technology shock covariance diag(0.0352, 0.0082)
ψ1 Damage function coefficient 20.46
ψ2 Damage function coefficient 2.0
ψ3 Damage function coefficient 6.081
ψ4 Damage function coefficient 6.754
F0 Initial non-CO2 forcings -0.06
∆F Change in non-CO2 forcings 0.0036
Fmax Maximum non-CO2 forcings 0.30

Table 4.B.1: Main parameters for the model economy.
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Carbon cycle module

Parameter Description Value
a1 Carbon reservoir fraction 0.2173
a2 Carbon reservoir fraction 0.2240
a3 Carbon reservoir fraction 0.2824
a4 Carbon reservoir fraction 0.2763
τ1 Carbon reservoir time decay 106

τ2 Carbon reservoir time decay 394.9
τ3 Carbon reservoir time decay 36.54
τ4 Carbon reservoir time decay 4.304
r0 Preindustrial iIRF term 35.00
rM Carbon impact on iIRF 0.019
rT Temperature impact in iIRF 4.165
M0 Preindustrial carbon concentration 596.4

Table 4.B.2: Main parameters for the carbon cycle module.

Temperature response module

Parameter Description Value
F2XCO2 Radiative forcing parameter 3.6813

Ξ Upper ocean heat capacity 7.3
Ξ0 Deep ocean heat capacity 106.0
η Heat exchange parameter 0.73
Λ CO2 perturbation feedback 1.13
Συ Temperature shock covariance diag(0.01284, 0)

Table 4.B.3: Main parameters for the temperature response dynamics.
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4.C Implementation details

Neural network ensemble
Network layers [64, 64]
Activation tanh
Num. models 6
Weight decay 0.0005
Polyak target update rate 0.005
Batch size 256
Buffer capacity 1e6
Update frequency 1 (ep.)
Gradient steps 500
Temperature (φ) 10

MPPI controller
Prediction horizon 30
Num. samples 1024
Temperature (λ) 25

Table 4.C.1: Controller parameter values.
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4.D Soft constraints

A stochastic disturbance leading to a constraint violation renders the entire solution

infeasible. To ensure numerical stability for the chance-constrained simulations, we

soften the original constraints to allow for temporary violations, although with a

cost. That is, instead of considering a general optimization problem:

min
z
h(z)

s.t.g(z) ≤ 0,

we add an additional decision variable ϵ and a constraint violation penalty function

q, and instead solve for:

min
z, ϵ

h(z) + q(ϵ)

s.t.g(z) ≤ ϵ

ϵ ≥ 0.

An important property of the penalty function is that if a feasible solution to the

original problem exists, the softened problem will produce the same outcome with

the slack variable ϵ = 0. We set a quadratic constraint violation penalty q(ϵ) to

keep the slack variables as small as possible. The softening procedure only applies

to state variables. The input constraints often correspond to physical rules, e.g.

nonnegative consumption levels, whereas the state constraints determine the desired

system properties where occasional violations can be permitted.
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S. Tytéca. Transient climate response in a two-layer energy-balance model.
Part I: Analytical solution and parameter calibration using CMIP5 AOGCM
experiments. Journal of Climate, 26(6):1841 – 1857, 2013.

[233] Angelo Carlino, Matteo Giuliani, Massimo Tavoni, and Andrea Castelletti.
Multi-objective optimal control of a simple stochastic climate-economy model.
IFAC-PapersOnLine, 53(2):16593–16598, 2020. 21st IFAC World Congress.

[234] Christopher A. Sims. Rational inattention: Beyond the linear-quadratic case.
American Economic Review, 96(2):158–163, 2006.

[235] Kevin Lu, Igor Mordatch, and Pieter Abbeel. Adaptive online planning for
continual lifelong learning, 2019.

[236] Colin P. Morice, John J. Kennedy, Nick A. Rayner, and Phil D. Jones. Quanti-
fying uncertainties in global and regional temperature change using an ensem-
ble of observational estimates: The hadcrut4 data set. Journal of Geophysical
Research: Atmospheres, 117(D8), 2012.

[237] Michael P. Vitus. Stochastic control via chance constrained optimization and
its application to unmanned aerial vehicles. PhD thesis, Stanford University,
2012.

[238] Ashkan Jasour, Allen Wang, and Brian C. Williams. Moment-based exact
uncertainty propagation through nonlinear stochastic autonomous systems,
2021.

[239] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics.
MIT Press, Cambridge, Massachusetts, 2005.

[240] Lukas Hewing and Melanie N. Zeilinger. Stochastic model predictive control
for linear systems using probabilistic reachable sets. 2018 IEEE Conference
on Decision and Control (CDC), 2018.

[241] Lars Blackmore and Masahiro Ono. Convex chance constrained predictive
control without sampling. AIAA Guidance, Navigation, and Control Confer-
ence, 2009.

[242] Lars Blackmore, Masahiro Ono, and Brian C. Williams. Chance-constrained
optimal path planning with obstacles. IEEE Transactions on Robotics,
27(6):1080–1094, 2011.

[243] J.M. Grosso, C. Ocampo-Mart́ınez, V. Puig, and B. Joseph. Chance-
constrained model predictive control for drinking water networks. Journal
of Process Control, 24(5):504–516, 2014.



175

[244] Kyri Baker and Bridget Toomey. Efficient relaxations for joint chance con-
strained AC optimal power flow. Electric Power Systems Research, 148:230–
236, 2017.

[245] Masahiro Ono and Brian C. Williams. Iterative risk allocation: A new ap-
proach to robust model predictive control with a joint chance constraint. In
2008 47th IEEE Conference on Decision and Control, pages 3427–3432, 2008.

[246] Simon Dietz and Frank Venmans. Cumulative carbon emissions and economic
policy: In search of general principles. Journal of Environmental Economics
and Management, 96:108–129, 2019.

[247] Yongyang Cai and Kenneth Judd. A simple but powerful simulated certainty
equivalent approximation method for dynamic stochastic problems. Working
Paper 28502, National Bureau of Economic Research, 2021.

[248] Martin L. Weitzman. Fat-tailed uncertainty in the economics of catastrophic
climate change. Review of Environmental Economics and Policy, 5(2):275–
292, 2011.

[249] Martin L Weitzman. On modeling and interpreting the economics of catas-
trophic climate change. The Review of Economics and Statistics, 91(1):1–19,
2009.

[250] Ali Mesbah, Stefan Streif, Rolf Findeisen, and Richard D. Braatz. Stochastic
nonlinear model predictive control with probabilistic constraints. In 2014
American Control Conference, pages 2413–2419, 2014.

[251] Robin Nydestedt. Application of polynomial chaos expansion for climate
economy assessment, 2018.

[252] Alena Miftakhova. Global sensitivity analysis for optimal climate policies:
Finding what truly matters. Economic Modelling, 105:105653, 2021.



Curriculum Vitae

Born on July 20, 1990 in Helsinki, Finland.

2018 – 2022 D.Sc. in Economics, ETH Zurich

2015 – 2017 M.Sc. in Environmental Economics, University of Helsinki

2011 – 2015 B.Sc. in Environmental Economics, University of Helsinki


	Thesis Summary
	Zusammenfassung
	Introduction
	Strategic Lobbying Under Deep Trade Agreements
	Introduction
	Theoretical framework
	Comparison of trade agreements
	Endogenous lobbying efforts
	Conclusion

	Appendices
	Proofs
	Parameter values
	Numerical results

	Geoengineering Governance: A Coalition Formation Approach
	Introduction
	Theoretical framework
	Numerical examples
	Conclusion

	Appendices
	Theoretical framework
	Geoengineering deployment equilibria
	Equilibrium strategy profiles
	Additional examples

	Natural Disasters and Economic Dynamics
	Introduction
	Methodology
	Results
	Discussion
	Conclusion

	Appendices
	General equilibrium model
	Additional results
	Disaster impact distributions
	Cyclone damages under climate change

	Learning-based Control for Climate Policy Analysis
	Introduction
	Preliminaries
	Environment
	Experiments
	Conclusion

	Appendices
	Sampling-based MPC validation
	Environment calibration
	Implementation details
	Soft constraints

	References
	Curriculum Vitae

