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Abstract 

Global agricultural production contributes around 20% of total anthropogenic greenhouse gas (GHG) 

emissions. At the same time, agriculture has large potential to reduce its emissions and additionally 

sequester carbon. Hence, the agricultural sector has an important role to play in mitigating further 

climate change and achieving international and national climate policy goals. Simultaneously, 

agriculture must provide sufficient food for a growing world population. To tackle this challenge, 

numerous mitigation measures to reduce GHG emissions from livestock and crop production have been 

proposed, including adaptation of farm management and technological innovations. However, 

successful climate change mitigation under current agricultural production levels relies on farmers who 

are willing to change farming practices and adopt respective measures. The goal of this thesis is to 

provide insights into the determinants of mitigation adoption in agriculture with a focus on the role of 

behavioural economic factors such as farmers’ individual characteristics and social interactions. A 

thorough understanding of farmers’ decision-making in this context is key to design effective and 

efficient policies aiming to reduce agricultural GHG emissions. 

To explore the behavioural aspects of farmers’ adoption of climate change mitigation practices and 

assess the effect of respective agricultural policies, the thesis applies different quantitative methods 

including social network analysis, which build on each other and ultimately flow into an agent-based 

model. The analyses are based on a Swiss case study and use a combination of farm census, survey, and 

in-depth social network data, which were specifically collected for this purpose.  

The introductory chapter provides general background information, motivates the goals of the thesis, 

and presents the conceptual framework and research questions. The following chapters represent the 

main body of the thesis and contain the original research articles. More precisely, the second chapter 

uses an OLS regression based on census and survey data of 105 farmers to investigate the role of non-

cognitive skills, namely perceived self-efficacy and internal locus of control on the adoption of on-farm 

climate change mitigation measures. Farmers who are convinced of their capability to effectively reduce 

on-farm GHG emissions and generally believe to be in control over life’s outcomes are more likely to 

adopt climate change mitigation measures on their farms. The underlying mechanism is farmers’ 

innovativeness, which is positively associated with high non-cognitive skills and ultimately leads to 

mitigation adoption.   

The third chapter of the thesis uses social network analysis based on personal interview data of 50 

farmers to explore the features of social networks and their role in agricultural climate change mitigation. 

The regular exchange of relevant knowledge among connected peers positively affects the uptake of 

mitigation measures. In particular, strong social ties to others who are perceived as knowledgeable in 

agricultural climate change mitigation can enhance adoption. Moreover, connections to members of a 

local farmers’ initiative for GHG reduction in agriculture (“AgroCO2ncept Flaachtal”) are found to be 
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associated with mitigation uptake. This indicates that local grassroot initiatives can have spillover effects 

on the wider region.  

The fourth chapter integrates the findings of the previous chapters in an agent-based modelling approach 

and quantifies the effect of farmers’ individual characteristics and social networks in terms of overall 

reduction of GHG emissions and farm-level marginal abatement cost. For the analysis, the data of a 

subsample of 49 dairy and beef cattle farmers is used. Knowledge exchange among socially connected 

farmers can substantially increase overall GHG reduction. Moreover, farmers’ social networks can 

reduce marginal cost of agricultural climate change mitigation.  

The fifth chapter compares two differently designed policy incentives (action- and results-based designs) 

to achieve a certain GHG reduction goal, accounting for heterogeneous cost and benefits of mitigation 

measures as well as farmers’ individual preferences, reluctance to change and social interactions in an 

agent-based modelling approach. Specifically, the role of a so-called win-win measure that reduces 

GHG emissions and at the same time increases farm income is investigated. The analysis uses the same 

model parametrization based on the data of 49 Swiss dairy and beef cattle farmers as presented in the 

fourth chapter. Depending on whether the win-win measure is included in the policy scheme, result- or 

action-based designs are more efficient from a governmental perspective. Independent of that, results-

based designs lead to lower marginal abatement cost on farm level. With both action- and results-based 

policies, behavioural factors and especially farmers’ reluctance to change lead to a substantial decrease 

of overall GHG reduction as compared to a situation where farmers strictly optimize farm income.  

The findings of the thesis reveal some relevant policy implications. When assessing policies for 

agricultural climate change mitigation, decision-makers should account for farmers’ behavioural 

characteristics. Particularly, farmers’ sense of self-efficacy related to successful on-farm GHG reduction 

should be strengthened by providing relevant knowledge and advisory service. Moreover, social 

learning among farmers should be fostered by supporting adequate platforms of knowledge exchange. 

Regarding the choice of policy designs for mitigation adoption, farmers’ individual preferences, social 

interactions as well as cost and benefits of the considered mitigation measures should be equally 

considered.   
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Zusammenfassung 

Die weltweite landwirtschaftliche Produktion ist für rund 20% der gesamten anthropogenen 

Treibhausgasemissionen (THG) verantwortlich. Gleichzeitig hat die Landwirtschaft ein grosses 

Potenzial, ihre Emissionen zu reduzieren und zusätzlich Kohlenstoff zu binden. Der Agrarsektor spielt 

daher eine wichtige Rolle im Kampf gegen den Klimawandel und bei der Erreichung internationaler und 

nationaler klimapolitischer Ziele. Gleichzeitig muss die Ernährung einer wachsenden Weltbevölkerung 

sichergestellt werden. Zur Bewältigung dieser Herausforderungen gibt es zahlreiche Ansätze und 

Massnahmen, um die THG aus Tierhaltung und Pflanzenbau zu verringern. Diese umfassen zum 

Beispiel Anpassungen in der Betriebsführung und beim Herdenmanagement sowie technologische 

Innovationen. Der Erfolg des landwirtschaftlichen Klimaschutzes hängt jedoch zentral von den 

Landwirtinnen und Landwirten ab. Denn sie müssen bereit sein, bisherige landwirtschaftliche Praktiken 

zu ändern und entsprechende Klimaschutzmassnahmen zu ergreifen. Das Ziel dieser Arbeit ist es, die 

Einflussfaktoren von landwirtschaftlichem Klimaschutz besser zu verstehen und Einblicke in die 

Entscheidungsfindung von Landwirtinnen und Landwirten in diesem Zusammenhang zu gewinnen. 

Dabei liegt der Schwerpunkt auf verhaltensökonomischen Faktoren wie individuellen Präferenzen, 

persönlichen Eigenschaften und sozialen Interaktionen. Dieses Verständnis ist Voraussetzung für die 

Gestaltung von effektiven und effizienten Politikinstrumenten zur Reduktion landwirtschaftlicher THG.  

Zur Untersuchung verhaltensökonomischer Aspekte von landwirtschaftlichem Klimaschutz und 

Bewertung entsprechender Politikinstrumente werden in dieser Dissertation verschiedene quantitative 

Methoden einschliesslich sozialer Netzwerkanalyse angewandt. Diese Methoden bauen aufeinander auf 

und münden schliesslich in ein agentenbasiertes Modell. Die Analysen basieren auf einer Schweizer 

Fallstudie und verwenden eine Kombination aus landwirtschaftlichen Strukturdaten, Umfragedaten und 

sozialen Netzwerkdaten, die speziell für diesen Zweck erhoben wurden. 

Das einleitende Kapitel liefert allgemeine Hintergrundinformationen, motiviert die Ziele der Arbeit und 

stellt den konzeptionellen Rahmen sowie die Forschungsfragen vor. Die folgenden Kapitel stellen den 

Hauptteil der Arbeit dar und enthalten die originalen Forschungsartikel.  

Im zweiten Kapitel wird die Bedeutung sogenannter nicht-kognitiver Fähigkeiten, genauer der 

Selbstwirksamkeit und internen Kontrollüberzeugung für die Umsetzung von Klimaschutzmassnahmen 

auf dem landwirtschaftlichen Betrieb untersucht. Dafür wird eine Regressionsanalyse auf Basis von 

Struktur- und Umfragedaten von 105 Landwirtinnen und Landwirten in der Schweizer Region «Zürcher 

Weinland» durchgeführt. Die Ergebnisse der Untersuchung zeigen, dass Landwirtinnen und Landwirte, 

die davon überzeugt sind, dass sie THG auf ihrem Betrieb effektiv reduzieren können (hohe 

Selbstwirksamkeit) und glauben, ihre Lebenssituation allgemein unter Kontrolle zu haben (interne 

Kontrollüberzeugung), mit größerer Wahrscheinlichkeit Klimaschutzmassnahmen umsetzen. Der 

zugrundeliegende Mechanismus dieses Zusammenhangs ist die Innovationskraft der Landwirtinnen und 

Landwirte, welche mit hoher Selbstwirksamkeit und Kontrollüberzeugung korreliert.  



vi 

 

Im dritten Kapitel der Arbeit geht es um die Bedeutung von Wissensaustausch innerhalb sozialer 

Netzwerke für den landwirtschaftlichen Klimaschutz. Dazu wird eine soziale Netzwerkanalyse auf Basis 

detaillierter Interviewdaten von 50 Landwirtinnen und Landwirten durchgeführt. Es zeigt sich, dass 

regelmässiger Austausch von Klimaschutzwissen unter vernetzten Kolleginnen und Kollegen die 

Umsetzung von Massnahmen zur THG-Reduktion auf den Betrieben fördert. Besonders positiv wirkt 

die Verbindung zu Personen, die als sachkundig im landwirtschaftlichen Klimaschutz wahrgenommen 

werden. Darüber hinaus wird festgestellt, dass Verbindungen zu Mitgliedern einer lokalen 

Bauerninitiative für landwirtschaftlichen Klimaschutz („AgroCO2ncept Flaachtal“) positiv mit der 

Umsetzung von THG-Reduktionsmassnahmen assoziiert sind. Dies weist darauf hin, dass lokale 

bottom-up Initiativen positive Überlaufeffekte auf die weitere Region haben können. 

Das vierte Kapitel integriert die Erkenntnisse aus den vorherigen Kapiteln in einem agentenbasierten 

Modell. Dabei wird die Wirkung der individuellen Eigenschaften und sozialer Netzwerke von 

Landwirtinnen und Landwirte in Bezug auf die Gesamtreduktion der THG-Emissionen sowie der 

entstehenden Grenzvermeidungskosten auf Betriebsebene quantifiziert. Für die Analyse werden die 

Daten einer Teilstichprobe von 49 Milchkuh- und Rinderhaltern genutzt.  Die Ergebnisse zeigen, dass 

der Wissensaustausch zwischen sozial vernetzten Landwirtinnen und Landwirten die gesamte THG-

Reduktion innerhalb einer Region erheblich steigern kann. Darüber hinaus können soziale Netzwerke 

die Grenzkosten des landwirtschaftlichen Klimaschutzes reduzieren. 

Im fünften Kapitel werden zwei unterschiedliche Politikinstrumente (massnahmen- und 

ergebnisorientierte Direktzahlungen) verglichen, um ein bestimmtes THG-Reduktionsziel zu erreichen. 

Dabei werden heterogene Kosten und Nutzen von verschiedenen Klimaschutzmassnahmen sowie 

individuelle Präferenzen, Abneigung gegenüber Veränderungen und soziale Interaktionen 

berücksichtigt. Konkret wird die Rolle einer sogenannten Win-Win-Massnahme untersucht, welche 

THG-Emissionen reduziert und gleichzeitig das landwirtschaftliche Einkommen erhöht. Die Analyse 

verwendet dasselbe agentenbasierte Modell und basiert auf den Daten derselben 49 Schweizer 

Milchkuh- und Rinderhaltern wie das vierte Kapitel. Abhängig davon, ob die Win-Win-Massnahme 

berücksichtigt wird oder nicht, sind massnahmen- oder ergebnisorientierte Politikdesigns aus staatlicher 

Sicht effizienter. Unabhängig davon führen ergebnisorientierte Zahlungen zu niedrigeren 

Grenzvermeidungskosten auf Betriebsebene. Sowohl mit massnahmen- als auch ergebnisorientierten 

Politikinstrumenten führen individuelle Präferenzen und insbesondere die ablehnende Haltung der 

Landwirtinnen und Landwirte gegenüber Veränderungen zu einer erheblichen Verringerung der 

gesamten THG-Reduktion im Vergleich zu einer Situation, in der das landwirtschaftliche Einkommen 

auf Basis rein rationaler Entscheidungen optimiert wird. 

Die Ergebnisse der vorliegenden Dissertation sind in mehrerlei Hinsicht relevant für die Agrarpolitik. 

Bei der Bewertung von Strategien zur Förderung des Klimaschutzes in der Landwirtschaft sollten 

politische EntscheidungsträgerInnen individuelle Verhaltensmerkmale von Landwirtinnen und 
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Landwirten berücksichtigen. Insbesondere deren Selbstwirksamkeitsgefühl in Bezug auf eine 

erfolgreiche THG-Reduktion auf dem Betrieb sollte durch entsprechende Information und 

Beratungsdienstleistungen gestärkt werden. Darüber hinaus sollte soziales Lernen unter Landwirtinnen 

und Landwirten gefördert und geeignete Plattformen für den Wissensaustausch unterstützt werden. Bei 

der Wahl konkreter Politikinstrumente für die Einführung von Minderungsmassnahmen sollten die 

individuellen Präferenzen der Landwirtinnen und Landwirte, soziale Interaktionen sowie Kosten und 

Nutzen der in Betracht kommenden Klimaschutzmassnahmen berücksichtigt werden.  
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Chapter 1: Introduction 

Agriculture is a major contributor to global climate change. Farming activities and related land use 

changes make up for around 20% of overall anthropogenic greenhouse gas (GHG) emissions. Regarding 

single emission types, agriculture is in fact the biggest source of total non-CO2 GHG emissions, namely 

methane (CH4) and nitrous oxide (N2O) (FAO, 2021; IPCC, 2019). To achieve the goals of national 

and international climate policies to limit global warming to well below 2°C, preferably to 1.5°C, the 

agricultural sector must therefore inevitably contribute to overall mitigation of GHG emissions (Leahy 

et al., 2020; Lynch et al., 2021). Consequently, most countries have included their agricultural sector in 

Nationally Determined Contributions under the Paris Agreement (Crumpler et al., 2019) and national 

policies have set emission reduction goals for agriculture and related land use. For example, Switzerland 

aims to reduce agricultural emissions by 40% until 2050 in its Long Term Climate Strategy (Swiss 

Federal Council, 2021). Technically, by reducing emissions from crop and livestock production, land 

use changes and increased carbon sequestration, the agricultural sector has the potential to become close 

to carbon neutral until 2030 in the most optimistic scenarios (Smith et al., 2008). However, despite 

ambitious goals and models of reduction pathways (IPCC, 2018), agriculture has so far not been exposed 

to binding carbon prices and emission trading schemes (Leahy et al., 2020). Among the barriers to 

include agriculture in stringent climate policy schemes are uncertainties related to cost and technical 

potential of mitigation measures, high transaction cost, e.g., due to large heterogeneity of actors and 

conditions (Ancev, 2011) as well as concerns about global food security and social equity (Frank et al., 

2017; Fujimori et al., 2022). To ensure a sufficient food supply, GHG reduction in agriculture is 

particularly constrained by maintaining relatively stable production levels.  

Policies that aim to mitigate agricultural GHG emissions thus usually base on the “beneficiary pays 

principle”, i.e., producers are paid for their efforts to reduce emissions. For example, some countries 

have introduced voluntary schemes such as payments (i.e., subsidies) to incentivize the reduction of 

agricultural GHG emissions, compensate farmers for additional cost of mitigation and enhance 

voluntary carbon farming initiatives (OECD, 2019; European Commission, 2021). For these policies to 

be successful, farmers must adapt current farming practices and adopt respective mitigation measures. 

Understanding farmers’ decision-making related to climate change mitigation is therefore crucial for 

effective policy-design. Figure 1.1 depicts the general conceptual framework of this thesis presenting 

an overview of key factors that affect farmers’ decision-making with respect to on-farm climate change 

mitigation: Farmers’ adoption decisions are influenced by farm structures and environmental conditions, 

individual farmer characteristics, the social environment as well as policies and market conditions. 

Farmers’ decisions in turn affect overall GHG reduction as well as farm incomes. Furthermore, potential 

trade-offs and co-benefits of measures to mitigate agricultural GHG emissions can occur. This can for 

example concern positive and negative effects on animal welfare, biodiversity, or other environmental 

pollutants (Bustamante et al., 2014; Cohen et al., 2021). Farmers’ adoption decisions and resulting 
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changes in GHG emissions and farm incomes as well as potential side-effects in turn determine the 

effectiveness and efficiency of policies.   

 

Figure 1.1: Overview conceptual framework: Factors affecting farmers’ decisions to adopt climate change 

mitigation measures.   

The overarching goal of this thesis is to provide further insights into the determinants of agricultural 

climate change mitigation and ultimately inform policies aiming at a reduction of agricultural GHG 

emissions. The focus is on the role of behavioural economic aspects such as farmers’ individual 

preferences, non-cognitive skills, and social networks on adoption of climate change mitigation 

measures, achieved GHG emissions reduction and associated cost. Spanning a bridge between all parts 

of the thesis, the effects of farmers’ individual characteristics and social networks are each investigated 

separately at first, and later integrated in an agent-based modelling framework combining individual, 

social as well as bio-economic factors and policy incentives.  

The thesis is based on a regional case-study around the climate protection initiative “AgroCO2ncept 

Flaachtal” located in northern Switzerland, in which farmers collaborate to reduce agricultural GHG 

emissions across the region. To collect data on farmers’ current mitigation adoption, individual 

characteristics and social networks, an online survey as well as personal interviews were conducted and 

combined with census data on farm structures. 

The thesis is structured as follows: The remainder of Chapter 1 contains background information, 

research questions and the main findings of each of the single research articles. After a summarizing 

conclusion, limitations and recommendations for further research are discussed. Chapter 1 ends with a 

list of abstracts and author contributions of the single articles. Chapters 2-5 present the four research 

articles. Finally, the appendix to this thesis contains two additional data articles presenting the collected 

survey and interview data.    
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1.1 Background  

This section presents background information on the contribution of agriculture to overall GHG 

emissions globally and in Switzerland as well as the technical and economic potential of agricultural 

climate change mitigation. Moreover, it provides an overview of the influence of individual behavioural 

factors as well as social networks on farmers’ decision-making.   

1.1.1 GHG emissions from agricultural production   

Global agricultural production and related land use changes account for 9.3 billion tons (t) of CO2 

equivalents (CO2eq). Crop and livestock production alone make up for around 12% (6.2 billion t) of 

total anthropogenic GHG emissions (IPCC, 2019). The majority of emissions directly associated with 

agricultural production are non-CO2 emissions, namely methane (CH4) from anaerobic decomposition 

of organic matter in ruminants and manure as well as nitrous oxide (N2O) from microbial transformation 

of nitrate in soils and manure (FAO, 2020). Figure 1.2 gives an overview of non-CO2 emission sources 

from global agriculture and respective shares in total agricultural emissions.   

 

Figure 1.2: Contribution of crop and livestock activities to total non-CO2 emissions from agriculture (based on 

FAO, 2021).  

CO2 related to agriculture is mainly emitted by land use changes for agricultural purposes, lime and urea 

fertilizers as well as energy use of agricultural activities (e.g., fuel for machines) (Lynch et al., 2021). 
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In Switzerland, total direct emissions from agricultural production sum up to 5.75 million t of CO2eq, 

which corresponds to around 13% of total GHG emissions. If production of inputs as well as land use 

changes and energy use of farms and machines are included, the share of emissions related to agricultural 

production rises to 18% of total emissions (Federal Office for the Environment FOEN, 2022).  

Figure 1.3 shows the distribution of emission sources in Swiss agriculture (the categorisation of emission 

sources slightly differs from the one based on global data by FAO presented above).  

 

Figure 1.3: Contribution of agricultural activities to total agricultural GHG emissions in Switzerland (based on 

Federal Office for the Environment, 2022)  

1.1.2 The potential of agricultural GHG reduction  

Supply-side strategies of climate change mitigation in agriculture can be divided into three large 

categories: i) Reduction of direct emissions from cropland, grasslands, and livestock, ii) conservation 

and sequestration of organic carbon in soils or vegetation, and iii) provision of biological energy sources 

to substitute fossil fuels (Smith et al., 2014). The overall potential of GHG reduction in agriculture while 

ensuring constant production levels is subject to ongoing research. On a global scale, the biophysical or 

technical GHG reduction potential has been estimated to be around 5.5-6 billion t CO2eq annually, i.e., 

approximately two thirds of agricultural and land use change emissions could technically be mitigated 

(Smith et al., 2008; Smith et al., 2007). Accordingly, studies assessing national agricultural mitigation 

potentials have shown that farms could substantially reduce their GHG emissions by adapting current 

farming practices and adopting respective mitigation measures (Martinsson and Hansson, 2021; McCarl 
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and Schneider, 2000; Roe et al., 2021; Sánchez et al., 2016; Schader et al., 2014; Schils et al., 2005; 

Weiske et al., 2006).     

However, actual agricultural climate change mitigation currently remains well below the technical 

potential. This is due to several barriers to implementation of mitigation strategies in agriculture limiting 

the feasible potential of on-farm GHG reduction (Wreford et al., 2017). The major obstacle discussed 

in the literature is the economic cost of mitigation. Studies assessing the marginal abatement cost (i.e., 

cost per ton of CO2eq abated) of GHG reduction in agriculture have used supply-side micro-economic 

models, partial and general equilibrium models as well as engineering cost approaches (Vermont and 

De Cara, 2010; Mosnier et al., 2019). While marginal abatement cost vary widely across single 

measures, regions, and individual farms, they can be very high as compared to other sectors (MacLeod 

et al., 2015; MacLeod et al., 2010; Moran et al., 2011). At farm-level, some measures involve long-term 

investments and new technologies have potentially very high marginal abatement cost, impeding 

adoption by farmers (Golub et al., 2009; Morgan et al., 2015; Sánchez et al., 2016)1. In addition, 

transaction cost of knowledge acquisition, implementation and monitoring could further act as barriers 

of mitigation (MacLeod et al., 2015; Moran et al., 2013). At a given carbon price of 100 US$/tCO2eq 

(which is often applied as a measure for cost-effectiveness), the overall potential of supply-side 

reduction of agricultural GHG emissions has been estimated to be 5-10% of current agricultural 

emissions (IPCC, 2014). There is however a wide range of estimates depending on the mitigation 

measures considered and methodologies used (OECD, 2019). For example, several studies have shown 

that considerable reductions of GHG emissions could be achieved at a net gain for farmers due to e.g., 

increased productivity or reduction of inputs (Ancev, 2011; Eory et al., 2018; MacLeod et al., 2010; 

Moran et al., 2013; Moran et al., 2011). This raises the question why so-called “no-regret” or win-win 

options are not more widely adopted (McCarl and Schneider, 2000). Part of the explanation could be 

that estimations of cost-effective mitigation potentials and marginal abatement cost estimations 

commonly lack integration of transaction cost, structural changes in the agricultural sector as well as 

demand-side or market feedbacks, which could lead to under- or overestimation of the actual potential 

(Frank et al., 2018). Particularly the reduction of animal-based foods in diets could be an enormous lever 

to reduce emissions from entire food systems as recent research has shown (Poore and Nemecek, 2018; 

Xu et al., 2021).  

Apart from economic constraints, there are political barriers to the implementation of effective GHG 

reduction in agriculture. These are often related to potential trade-offs regarding farm incomes and food 

security which could potentially be negatively affected by the implementation of mitigation measures. 

Recent studies have however shown that well-designed and managed mitigation in agriculture and land 

use can in fact be cost-effective while providing additional benefits to food security and ecosystems 

                                                      
1 Note that in these estimates, production levels are commonly assumed to be constant. However, some mitigation 

options can increase production, which would increase cost-effectiveness (Smith et al., 2014).     
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(Frank et al., 2017; Roe et al., 2021; Roe et al., 2019; Smith et al., 2020). The purposeful use of such 

synergies is also captured by the concept of climate-smart agriculture (CSA), which has gained 

increasing interest among scientists in the past years (Bazzana et al., 2022; Blaser et al., 2020; Gram et 

al., 2020; Lipper et al., 2014). Other political concerns can be related to trade-offs regarding animal 

welfare (Shields and Orme-Evans, 2015) or emission leakages as well as loss of competitive advantage 

(Leahy et al., 2020). Moreover, existing agricultural policies can act as barriers to the adoption of more 

climate-friendly practices (Wreford et al., 2017).  

Another potential barrier of effective on-farm implementation of GHG reduction measures (even despite 

economic benefits) concerns the behavioural component of farmers’ mitigation adoption, which is at the 

core of this thesis. In general, the behavioural economic perspective emphasizes the influence of 

farmers’ individual characteristics, i.e., personal attitudes, values and perceptions, non-cognitive skills 

such as perceived self-efficacy as well as risk preferences and social interactions. Further background 

information on individual behavioural factors as well as social networks affecting farmers’ adoption of 

climate change mitigation practices is separately presented in the following section.  

1.1.3 Individual and social aspects of farmers’ decision-making   

In the past decades, agricultural economists have identified behavioural factors as important 

determinants when explaining farmers’ decision-making processes, extending classical decision 

analysis, e.g., based on expected utility under the umbrella of behavioural economics (e.g., Dessart et 

al., 2019). Behavioural economic research adds subjective (non-)cognitive and psychological 

components to the utility functions of decision-makers, leading to potential deviations from fully rational 

behaviour as assumed in e.g., Expected Utility Theory developed by Von Neumann and Morgenstern 

(1947). For instance, perception of and attitudes towards risk differ between individuals and can even 

vary within a person depending on emotions, moods, experiences, cognitive abilities, and the framing 

of the choice problem. Prospect Theory for example states that people judge and choose relative to a 

reference point rather than to the final wealth (framing effect) and usually prefer the current state to a 

change (status-quo bias). Furthermore, people tend to overvalue objects they already own (endowment 

effect) and are risk averse for losses and risk seeking for gains. Thus, people care more about values of 

potential losses and gains than about final outcomes (Kahneman and Tversky, 1979, 1992). Other 

theoretical frameworks capturing the non-rational components of decision-making are for example 

Theory of Reasoned Action and Theory of Planned Behaviour explaining behavioural intentions and 

actual behaviour with personal attitudes, subjective norms and control beliefs (Ajzen, 1991; Fishbein 

and Ajzen, 1975). This is partly interlinked with Social Cognitive Theory and particularly, the concept 

of perceived self-efficacy and locus of control. These are two non-cognitive skills describing a person’s 

confidence in their own capabilities to be successful in a certain domain and to have control over life’s 

outcome in general (Bandura, 1977b, 1997, 2012; Wuepper and Lybbert, 2017). The development of 

self-efficacy in a person depends on own experiences of mastery or success, vicarious experiences of 
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success provided by others, social persuasion through (verbal) encouragement as well as the emotional 

and psychological well-being of the person (Bandura, 1977b). 

Such individual behavioural economic aspects have been studied in the context of farmers’ participation 

in agri-environmental programs, conversion to organic farming, and adoption of e.g., conservation 

practices or animal welfare measures. For instance, farmers’ perception and awareness of environmental 

problems can be crucial for adoption of sustainable practices (e.g., Burton et al., 1999; Espinosa‐Goded 

et al., 2010; Gould et al., 1989; Karali et al., 2014; Lastra-Bravo et al., 2015; van Dijk et al., 2016; 

Wilson and Hart, 2000). Also, the attitude towards the measures at choice as well as personal values are 

important (Hansson and Lagerkvist, 2014; Hansson and Lagerkvist, 2015; Morris and Potter, 1995). 

Regarding climate change mitigation, knowledge about climate change, vulnerability towards climatic 

changes as well as awareness and experience of risks and respective consequences are among the drivers 

of mitigation uptake (Arbuckle et al., 2013, 2015; Barnes and Toma, 2012; Haden et al., 2012; Karrer, 

2012). Moreover, farmers’ reluctance to change and tendencies to inertia (or status-quo bias) have been 

found to be among the most important barriers of behavioural change and might even lead farmers to 

restrain from adoption of win-win measures (Burton et al., 2008; Hermann et al., 2016). 

Besides individual characteristics, farmers’ social networks, interactions and social norms affect 

adoption decisions. The theoretical framework is rooted in social psychology. For instance, the Theory 

of Social Influence states that social interactions lead to increasingly similar behaviour of the connected 

actors (Friedkin, 2006; Marsden and Friedkin, 1993). The Theory of Social Learning suggests that 

humans learn through observation and imitation of others (Foster and Rosenzweig, 1995; Bandura, 

1977). Social networks in which farmers observe the behaviours of others and exchange knowledge are 

commonly found to enable social learning and thereby influence adoption decisions in various contexts, 

also known as spillover, neighbourhood- or peer-effects (Conley and Udry, 2010; Krishnan and Patnam, 

2014; Läpple and Kelley, 2014; Mathijs, 2003; Matuschke and Qaim, 2009; Vroege et al., 2020). 

Moreover, the wish to belong to a social group, the fear of losing social status and resulting conformism 

are central determinants of behaviour (Bernheim, 1994; Thaler et al., 2008). Consequently, the role of 

social networks, social learning and norms has gained more and more interest in the research on farmers’ 

decision-making.  

1.2 Research Questions  

The overarching goal of this thesis is to provide insights into individual and social determinants of 

farmers’ decision-making regarding the adoption of climate change mitigation measures. Building on 

this, the thesis aims to provide further knowledge about cost and effectiveness of on-farm GHG 

reduction measures as well as related policy instruments. To this end, the main research questions 

guiding the thesis are:  
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(1) What individual characteristics determine farmers’ adoption of climate change mitigation 

measures?  

While most studies that deal with economic aspects of agricultural climate change mitigation have 

focused on cost (Eory et al., 2018; Jones et al., 2015; MacLeod et al., 2010; Moran et al., 2011), policies 

(Bustamante et al., 2014; Cooper et al., 2013; De Cara and Vermont, 2011) and related carbon markets 

(Maraseni, 2009; Pérez Domínguez et al., 2009), little is known about behavioural factors of mitigation 

in agriculture. Understanding the underlying mechanisms of individual farmers’ adoption behaviour can 

contribute to better targeting of policies aiming at a reduction of agricultural GHG emissions.   

(2) How does knowledge exchange in social networks influence farmers’ decisions to adopt climate 

change mitigation measures?  

The impact of social networks on farmers’ decision-making and behavioural change has been studied in 

the context of e.g., innovation, diversification, and agri-environmental schemes (e.g., Bandiera and 

Rasul, 2006; Conley and Udry, 2010; Nyantakyi-Frimpong et al., 2019; Skaalsveen et al., 2020; 

Spielman et al., 2011; Vroege et al., 2020; Wossen et al., 2013). Few studies are available on the role of 

farmers’ social interactions in agricultural climate change mitigation. Investigating how social ties of 

farmers support knowledge exchange and ultimately mitigation adoption contributes to understanding 

regional diffusion dynamics. This can constitute an important policy lever to enhance the spread of 

mitigation practices.  

(3) What is the impact of farmers’ social networks on regional GHG reduction, associated 

abatement cost of farms and policy effectiveness?  

Social networks are regularly found to influence farmers’ adoption of agri-environmental or 

conservation practices (cf. RQ (2) above). However, the impact of farmers’ social interactions has rarely 

been quantified in terms of resulting environmental outcomes and associated cost. Estimating the effect 

of farmers’ knowledge exchange within farmers’ social networks on the overall amount of GHG 

reduction and farm incomes given a fixed carbon price provides important information on the 

effectiveness of policies to incentivize GHG reduction.  
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(4) How cost-efficient are action-and results-based policy designs for agricultural climate change 

mitigation when accounting for farmers’ behavioural characteristics and heterogeneous cost of 

measures?  

Results-based policy schemes paying farmers for an achieved outcome are commonly considered more 

cost-efficient in reaching desired goals and less prone to windfall effects than action-based policies 

where farmers are paid for adopting certain measures (Burton and Schwarz, 2013a; Engel, 2016; 

Sidemo-Holm et al., 2018; Wuepper and Huber, 2021). However, the actual efficiency gain of results-

based schemes might depend on several factors, including the specific policy goal, cost and benefits of 

considered measures as well as individual farmer characteristics. A comparison of both payment 

schemes is so far lacking in the context of agricultural climate change mitigation.  In particular, no study 

has looked at how behavioural factors such as farmers’ reluctance to change, individual preferences and 

social networks influence cost-efficiency of results- and action-based payments.  

1.3 Case study, data collection and methods  

1.3.1 Case study region and AgroCO2ncept Flaachtal  

This thesis is based on a case study in the region of Zürcher Weinland, which belongs to the Canton of 

Zurich in Switzerland and consists of 24 municipalities. The region is particularly interesting for the 

research purposes of this thesis: First, agriculture is an important economic sector in the region and 

diverse farm types typical for Swiss agriculture are represented. Main products are beef, milk, grain, 

potatoes, sugar beets, maize as well as some vegetables and wine (BFS, 2017). Most farmers in the 

analysed sample keep livestock while around a third produces arable crops or specialized crops only. 

The mean farm size is almost 30 hectares (ha), which is larger than the Cantonal (25 ha) and the overall 

Swiss average (21 ha) (BFS, 2019; Canton Zurich, 2018). 

Second, the region is home to the pioneer bottom-up initiative “AgroCO2ncept Flaachtal” (hereafter 

AgroCO2ncept). The project was launched in 2012 by farmers in the region of Flaachtal in the northern 

part of Canton Zurich in Switzerland and aims to collectively reduce at least 20% of GHG emissions on 

the participating farms (AgroCO2ncept, 2016). In Switzerland, it is among the very first projects that 

aim at practical on-farm climate change mitigation. Long term, the project also aims at 20% less cost 

due to higher efficiency as well as 20% higher added value due to climate friendly products and 

improved image of the region. All types of farms are eligible to participation in AgroCO2ncept. 

Participants agree to an up-front analysis of GHG emissions on the farm and receive in-depth advisory 

service on possible mitigation strategies. They can choose from a range of measures and are financially 

compensated for implementing them. Changes in GHG emissions are measured twice more to assess the 

progress made until the end of the official project period. In total, 26 farmers on 24 farms actively 

participate in AgroCO2ncept. Since 2016, AgroCO2ncept gets funding over a six-year period by the 
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Swiss Federal Office for Agriculture as so-called resource project (BLW, 2018). This thesis is part of 

the obligatory scientific research accompanying these projects. 

1.3.2 Data collection 

Data was collected with farmers in the case study region of Zürcher Weinland. The online survey on 

adoption of mitigation measures and individual characteristics was conducted in spring 2019 and sent 

to 389 farmers via email. To assess farmers’ risk preferences, a lottery in form of a multiple price list 

based on Tanaka et al. (2010) was included in the survey. Farmers received 10 Swiss Francs for 

participating in the survey and the lottery was additionally incentivized with real payouts for wins. In 

total, 105 farmers completed the survey, corresponding to a response rate of 27%. The survey data was 

matched with official farm census data provided by the Canton of Zurich. The sample covers typical 

Swiss production types, namely dairy, meat and crop producers as well as vegetable, fruit, and wine 

growers. The mean farm size is 30 ha, which is approximately 5 ha larger than the average in Canton 

Zurich (Canton Zurich, 2018). 24 of the 105 farms are participating in the climate protection initiative 

AgroCO2ncept. A detailed description of the data and methods used can be found in Kreft et al. (2020) 

(see Appendix Chapter 1 to this thesis). For the survey, 13 mitigation measures were chosen according 

to scientific evidence of GHG reduction potential as well as suitability to Swiss farming systems. Seven 

measures relate to livestock (mainly dairy and beef cattle) production, three measures to crop production 

and three measures to energy use on the farm. Table 1.1 lists the mitigation measures included in the 

survey.  
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Table 1.1: Mitigation measures included in the survey and associated GHG reduction mechanism  

Mitigation measure Main GHG reduction mechanism References 

Replacement of (imported) 

concentrate feed with domestic 

legumes (e.g., peas, beans, 

lupines) 

Reduced transport and land-use-changes 

for soy cultivation overseas  

(Hörtenhuber et al., 2011) 

(Baumgartner et al., 2008) 

(Knudsen et al., 2014b) 

Reduction of concentrate content 

to maximum of 10% of feed ration 

Reduced concentrate production (e.g., 

mineral fertilizer, energy use) 

(Schader et al., 2014) 

Increasing the number of 

lactations per dairy cow (min. 5) 

Reduced CH4-emissions per kg milk over 

entire lifespan of cows and reduced 

replacement rate 

(Mellado et al., 2011) 

(Vijayakumar et al., 2017) 

Use of dual-purpose cattle breed 

(e.g., original Swiss brown) 

Reduced number of animals needed for 

meat and milk production (mainly CH4)  

(Schader et al., 2014) 

(Zehetmeier et al., 2012) 

Introduction of feed additives 

(e.g., tannins, lipids etc.) to feed 

ration of cattle  

Reduced enteric fermentation by partly 

inhibiting methanogenesis in rumen 

(reduced CH4-emissions) 

(Jayanegara et al., 2020) 

(Sinz et al., 2019) 

(Wang et al., 2017) 

Coverage of manure storage  Reduced ammonia (NH3-) emissions due 

to anaerobic conditions under coverage  

(Chadwick et al., 2011) 

Composting of manure  Reduced N2O-and CH4-emissions due to 

aerobic decomposition in compost  

(Pattey et al., 2005) 

(Necpalova et al., 2018) 

Manure application with drag 

hoses  

Reduced NH3-emissions (i.e., precursor of 

N2O) from manure and slurry application  

(Weiske et al., 2006) 

(Thomsen et al., 2010) 

(Wulf et al., 2002) 

No-tillage  Reduced N2O-emissions and increased soil 

C sequestration  

(Six et al., 2004) 

(Mangalassery et al., 2014) 

(Alskaf et al., 2021) 

Cover and catch crops in crop 

rotation 

Reduced need for mineral N-fertilizer and 

increased soil C sequestration  

(Alig et al., 2015) 

(Smit et al., 2019)  

Solar panels for energy production Reduced need for fossil fuels (CO2) in 

heating and energy use of the farm  

(Alig et al., 2015) 

Fermentation of manure in biogas-

plant  

Reduced need for fossil fuels in electricity 

generation (CO2) and manure storage 

(CH4, N2O) 

(Meyer-Aurich et al., 

2012) 

(Massé et al., 2011) 

Drive tractors fuel-efficient (eco-

drive mode)  

Reduced fuel consumption of tractor 

driving (CO2) 

(Schader et al., 2014) 

(Stadler and Schiess, 2000) 

 

The face-to-face interviews on farmers’ social networks took place in fall 2019. The newest available 

version of the survey software Network Canvas (Network Canvas, 2016) was used to design and conduct 

the interviews using tablets. A sub-sample of 50 farmers who had previously participated in the online 

survey was interviewed by the author of the thesis and four trained student assistants. Half of the sample 

(25 farms) was participating in the climate protection initiative AgroCO2ncept Flaachtal. The data is 

further described in Kreft et al. (2021) (see Appendix Chapter 2 to this thesis).  

1.3.3 Methods  

To answer the research questions, the thesis uses three complementary methods, which enrich and build 

upon each other (Figure 1.4). First, a linear regression analysis (OLS) is carried out based on the 

collected survey and census data to investigate the influence of farmers’ individual characteristics on 

the adoption of mitigation measures. Second, to explore the role of knowledge exchange in social 

networks on farmers’ mitigation behaviour, a social network analysis is conducted based on the personal 

interview data and using covariates derived from survey and census data. More precisely, a network 
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autocorrelation model (Dittrich et al., 2020) is used to assess social influences within farmers’ networks. 

Third, a bio-economic agent-based modelling approach is applied, bringing together the previous 

findings and data sources to estimate the effectiveness and efficiency of mitigation policies accounting 

for farmers’ social networks as well as individual behavioural and farm structural characteristics. In the 

absence of an observable counterfactual situation without individual behavioural and social influences, 

the modelling approach allows to quantify previously found effects of such influences on resulting GHG 

emissions and associated cost for which empirical farm level data is lacking.  

 

Figure 1.4: Interrelations of methods and data used in the thesis.  

1.4 Structure of the thesis  

The main body of the thesis is represented by Chapters 2-5, which contain the original research articles. 

The red threat of the entire thesis leads from the separate investigation of behavioural aspects, i.e., 

individual farmer characteristics and social networks in the first two chapters to a combined analysis of 

bio-economic and behavioural factors considering different policy instruments in the last two chapters 

(Figure 1.5).  
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Figure 1.5: Conceptual framework of farmers’ decision-making in the context of agricultural climate change 

mitigation and related chapters of the thesis.  

Chapter 2 deals with research question (1) and investigates the influence of certain individual farmer 

characteristics on adoption of climate change mitigation measures. Chapter 3 answers research question 

(2) by investigating the effect of farmers’ social networks on adoption of mitigation measures.  

Chapter 4 focuses on research question (3) and estimates the effect of social networks on actual GHG 

reduction levels and abatement cost at a given carbon price. Chapter 5 answers research question (4) by 

comparing the cost-efficiency of results- and action-based policy designs for agricultural climate change 

mitigation under consideration of individual farmer characteristics and social interactions. The appendix 

provides detailed information on the collected survey and interview data.  

1.5 Summary and discussion of main findings  

In the following sub-sections, the main findings of each of the four research articles are summarized 

separately. Details on the online survey and interviews as well as the resulting data are presented in the 

appendix.  

1.5.1 The role of non-cognitive skills in farmers' adoption of climate change mitigation measures 

Farmers’ (non-) adoption of climate change mitigation measures remains poorly understood, which can 

hinder the implementation of effective policies to reduce agricultural emissions. This chapter provides 

further knowledge on the role of individual farmer characteristics in agricultural climate change 

mitigation based on survey and census data of 105 farmers in a Swiss region (Kreft et al., 2020). More 

precisely, it investigates how farmers’ non-cognitive skills, namely perceived self-efficacy and internal 

locus of control, affect adoption of GHG reduction measures. Results show that both self-efficacy and 

locus of control are positively associated with adoption. Hence, farmers who are convinced that their 

actions can successfully contribute to climate change mitigation and who generally believe to have 
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control over life’s outcomes are more likely to adopt mitigation measures. This is consistent with 

findings from psychology and social science, e.g., suggesting that lack of self-efficacy acts as a barrier 

to behavioural change, particularly in the context of global environmental problems (Frantz and Mayer, 

2009; Mulilis and Duval, 1995). In line with previous literature on the association of non-cognitive skills 

with innovative behaviour (Abay et al., 2017; Wuepper et al., 2019), the underlying mechanism is 

farmers’ innovativeness, i.e., farmers with strong non-cognitive skills are more innovative which in turn 

leads to more adoption of mitigation measures. The results are robust to the inclusion of a broad range 

of co-variates and robustness checks against potential omitted variable bias. Strengthening farmers’ self-

efficacy and control beliefs regarding agricultural climate change mitigation through provision of 

knowledge and advisory services can thus contribute to increase adoption of GHG reduction measures.  

1.5.2 Farmers’ social networks and regional spillover effects in agricultural climate change mitigation 

Social networks facilitate the spread of knowledge within farming communities. These often also called 

peer – or neighbourhood effects have been explored in various contexts (e.g., Skaalsveen et al., 2020; 

Vroege et al., 2020; Wood et al., 2014). The article investigates the role of social learning on farmers’ 

adoption of on-farm mitigation practices applying a network autocorrelation model (Dittrich et al., 

2020). The analysis is based on interview data of 50 farmers containing detailed information on personal 

network contacts combined with survey and farm census data (Kreft et al., 2021c; Kreft et al., 2020). 

While previous literature mainly focused on endogenous network effects (imitation of observed 

behaviour), this study additionally explores how a specific trait of the connected peers, here the 

(perceived) mitigation knowledge, influences behaviour, i.e., exogenous network effects (Manski, 

1993). The results indicate that the presence of mitigation knowledge within farmers’ personal networks 

is positively associated with adoption of mitigation measures while actual mitigation behaviour of peers 

is not. Hence, exchanging knowledge is arguably more important for own mitigation adoption than 

“silent” observation. This finding can be explained by the specific nature of agricultural climate change 

mitigation still being a rather unknown terrain for most farmers and thus making knowledge acquisition 

relatively more important. However, endogenous network effects are present when looking at social ties 

between two sub-groups of the sample, i.e., the behaviour of farmers participating in a climate protection 

initiative is positively associated with mitigation adoption of socially connected non-participants, 

suggesting a local spillover effect of the initiative. Providing access to knowledge about agricultural 

climate change mitigation and supporting social learning within farming communities as well as local 

initiatives can help to increase the adoption of on-farm GHG reduction measures.  

1.5.3 Quantifying the impact of farmers’ social networks on the effectiveness of climate change 

mitigation policies in agriculture 

Assessments of GHG reduction potentials in agriculture, associated abatement cost and respective policy 

schemes currently lack consideration of behavioural factors (Lengers et al., 2014; MacLeod et al., 2010; 

Moran et al., 2011). This article aims to fill this research gap by quantifying the effect of farmers’ social 
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networks in terms of total GHG reduction and policy effectiveness assuming a payment per ton of GHG 

emissions reduced. To this end, the agent-based modelling framework FARMIND (Huber et al., 2021) 

integrating individual preferences and social interactions is used in combination with the bio-economic 

model FarmDyn (Britz et al., 2019), which allows to simulate GHG emission levels and farm incomes. 

Simulations are based on survey and census data of 49 dairy and beef cattle farms (i.e. producing beef 

from suckler cows and bull-fattening) in a region in northern Switzerland (Kreft et al., 2020). While 

GHG reduction potentials and abatement cost are heterogeneous across the analysed measures and farms 

in the sample, the results show that with a payment of 120 Swiss Francs (CHF) per ton of CO2 equivalent 

(t CO2eq) and assuming constant production levels, total GHG reduction is increased by 42% on a 

regional level due to social learning within farmers’ networks. Without this effect, the payment would 

have to be increased by 76% (i.e., 500 CHF in total) to achieve the same level of GHG emissions 

reduction. The effectiveness of policy incentivizes for climate change mitigation in agriculture can thus 

be improved by supporting knowledge exchange in farmers’ social networks, which would help to 

reduce governmental expenditures. However, despite a technical reduction potential of 38% of baseline 

GHG emissions, the actually achieved GHG reduction in our sample is at maximally 8% of baseline 

emissions when accounting for economic constraints as well as individual and social factors. This 

suggests that substantial reduction especially in livestock farming will likely be rather limited at current 

production levels.  

1.5.4 Action- vs. results-based policy designs for agricultural climate change mitigation 

The effectiveness and efficiency of action- and results-based policy designs have been compared, e.g., 

in the context of biodiversity conservation. Based on theoretical considerations (e.g., Engel, 2016), 

paying farmers for an achieved outcome is usually found to be more cost-efficient than compensation 

for adopting specific management measures since it enables flexible and innovative decision-making of 

farmers (Sidemo-Holm et al., 2018; Wuepper and Huber, 2021). However, the actual efficiency gain 

from result-orientation of payments might depend on the specific policy goal (e.g., whether the outcome 

is measurable), cost and benefits of the considered mitigation measures as well as on individual 

characteristics and social networks of decision-makers. So far, the cost-efficiency of action- and results-

based payments has not been compared in the context of agricultural climate change mitigation. 

Moreover, previous studies comparing both policy designs have not included behavioural aspects. This 

article uses an agent-based bio-economic modelling approach to compare the cost-efficiency of action-

and results-based payments for climate change mitigation in terms of total governmental spending and 

farm-level marginal abatement cost under consideration of farmers’ individual behavioural 

characteristics. We find that total governmental expenditures associated with a policy design depend on 

the cost and benefits of the measures considered as well as the behavioural characteristics of farmers. 

When a win-win measure is included that reduces GHG emissions and increases farm profits at the same 

time (here: increasing the number of lactations per dairy cow) and additional incentives for adoption of 

such a measure are needed due to farmers’ reluctance to change, governmental spending can be higher 
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with results-based than with action-based payments. In such a situation, targeting the payment on the 

costs of the specific measure (i.e., an action-based design) can result in lower governmental spending 

than targeting it on cost-efficiency of individual farm-level by paying a uniform amount for reduction 

of GHG emissions (i.e., results-based design). However, without such win-win measures, results-based 

designs are more efficient in terms of public cost than action-based designs. Independent of inclusion of 

the win-win measure, farm-level marginal cost of reducing GHG emissions are lower with results-based 

designs. Moreover, we find that with both policy designs, farmers’ individual preferences and reluctance 

to change substantially lower the adoption of mitigation measures and hence overall GHG reduction 

potential.  

1.5.5 Data articles  

The two data articles in the appendix of this thesis present the types and scopes of data collected as well 

as the methodology of data collection. The first article (Kreft et al., 2020) presents the online survey 

data collected in 2019 with 105 farmers in the Swiss region of Zürcher Weinland. The questionnaire 

sent to farmers as link via email contained questions on perceptions and concerns about climate change, 

non-cognitive skills, current adoption and rating of 13 selected mitigation measures, personal farming 

preferences, and goals as well as income satisfaction and social networks. Moreover, famers’ individual 

risk preferences, loss aversion and probability weighting were elicited with an incentivized multiple 

price list based on Tanaka et al. (2010). The original survey, resulting raw data and a codebook 

describing the variables are available on the ETH research collection: 

http://hdl.handle.net/20.500.11850/383116. The second data article (Kreft et al., 2021c) presents the 

social network data collected in face-to-face interviews with 50 farmers in 2019. Interviews were 

conducted with 25 farmers participating in the regional climate protection initiative AgroCO2ncept as 

well as 25 non-participating farmers. Social contacts of farmers based on regular exchange related to 

agricultural climate change mitigation were assessed with a roster (list of names to choose from) as well 

as a free name generator. Moreover, several name interpreter questions were included to receive 

information on the characteristics of connected peers. The interview questionnaires, datasets, and 

codebooks to describe the variables are also stored on the ETH research collection: 

http://hdl.handle.net/20.500.11850/458053. 

1.6 Conclusion, policy implications and recommendations for future research 

The following key points related to agricultural climate change mitigation can be drawn from the 

findings of this thesis:  

First, farmers’ heterogeneous adoption rates regarding GHG mitigation practices can be explained to 

some extent by differences in individual behavioural characteristics. In particular, high self-efficacy and 

locus of control are strongly associated with farmers’ innovativeness and ultimately adoption of 

mitigation measures. Even though these personality traits are shaped in childhood, they can still be 

http://hdl.handle.net/20.500.11850/383116
http://hdl.handle.net/20.500.11850/458053
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changed to some extent later in life, especially with respect to specific new domains. Policymakers 

should hence account for the importance of farmers’ non-cognitive skills when designing policies that 

aim at a reduction of agricultural GHG emissions. Information campaigns, provision of practical know-

how in farmer trainings as well as specific advisory services on individual farm level are potential 

instruments to strengthen farmers’ sense of self-efficacy related to agricultural climate change 

mitigation. Moreover, agriculture’s critical role as part of the solution to tackle climate change should 

be integrated in official curricula of agricultural colleges.  

Second, farmers’ social networks can facilitate adoption and diffusion of agricultural mitigation 

measures through social learning. Especially, regular exchange of information with peers who are 

perceived to be knowledgeable in agricultural climate change mitigation is associated with adoption of 

GHG mitigation measures. Moreover, local farmer initiatives for climate protection can exert spillover 

effects on other farmers in the region.  

Third, while on-farm mitigation measures could technically achieve considerable reductions of GHG 

emissions, the actual realisation of this potential given current production levels is limited by economic 

and behavioural constraints. However, farmers’ social networks can increase overall reduction of on-

farm GHG emissions across a region and improve the effectiveness and efficiency of respective policy 

payments. Moreover, social networks can lead farmers to take more efficient adoption decisions, hence 

lowering average marginal cost of mitigation. Policies should consequently encourage farmers to share 

information and experiences with climate-friendly farming practices. This can be done by supporting 

the establishment of local farmer networks and bottom-up action groups as well as organizing 

opportunities for farmers to exchange knowledge and expertise within and beyond regions.  

Fourth, to achieve a certain desired reduction level of agricultural GHG emissions, results-based policy 

designs can lead to higher governmental spending as compared to action-based designs when farmers 

are reluctant to change and need additional incentives to adopt so-called win-win measures, which 

reduce GHG emissions while increasing farm profits. However, if such win-win measures are not 

included in the policy scheme, results-based payments are superior regarding cost-efficiency from a 

governmental perspective. Moreover, results-based payment schemes are more efficient on farm-level 

in terms of lower marginal abatement cost. With both policy designs, behavioural characteristics of 

farmers, especially individual preferences for certain farming practices and reluctance to change lower 

overall GHG reduction as compared to a situation where all farmers strictly maximise incomes. This 

indicates that a combined consideration of behavioural characteristics and cost of the considered 

mitigation measures is key to assess the real efficiency gain from differently designed policy incentives 

in agricultural climate change mitigation. 

Based on the results of this thesis, future research investigating the economics of agricultural climate 

change mitigation must more regularly account for behavioural characteristics of farmers and their social 

surroundings. In particular, some of the limitations of this thesis offer potentially interesting starting 
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points for future studies: While the regional focus is appropriate to the case-study based approach of the 

thesis, the small sample size does not allow for broader generalization of results. The investigation of 

behavioural aspects of agricultural climate change mitigation should thus be extended to further case 

studies in other regions and at larger scales. Future studies should also include more and different 

mitigation measures and could explicitly consider the role of carbon sequestration. Along these lines, 

an important yet lacking tool for policymakers in Switzerland would be a comprehensive marginal 

abatement cost curve comparing cost and GHG reduction potentials of the relevant agricultural 

mitigation measures. An ambitious undertaking would be to include behavioural components into such 

a curve and thereby better approximate real potentials. Moreover, extending the findings related to 

farmers’ social networks, the role of collective action and cooperation among farms and resulting 

economic benefits in the context of climate change mitigation constitutes another interesting field for 

further exploration. To account for effects on other policy areas and sectors of the economy, an analysis 

of potential trade-offs and co-benefits of agricultural climate change mitigation should be integrated in 

future research projects. Lastly, while this thesis is solely focused on supply-side mitigation, there is 

need for an integrated approach including also demand-side effects and market feedbacks.  

In conclusion, behavioural factors are key determinants of successful agricultural climate change 

mitigation. Policies aiming at a reduction of on-farm GHG emissions should especially account for 

farmers’ non-cognitive skills and the potential of knowledge exchange between socially connected 

farmers. This can improve both farmers’ acceptance and cost-efficiency of policies. However, the results 

of this thesis also suggest that overall potential of reducing agricultural GHG emissions is limited if 

current production levels are to be held constant, especially in the dairy and beef sector. Moreover, 

climate change mitigation in agriculture is subject to several uncertainties related to GHG reduction of 

measures, associated cost, and benefits as well as potential trade-offs with other policy goals. Future 

studies and extensions, e.g., to other regions and farm types are needed to generalize the findings and 

implications of this thesis. There is furthermore need for research on cohesive climate policies across 

sectors and including market response to efficiently coordinate different policy goals.  
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1.7 Chapter abstracts and author contributions  

CHAPTER 2: The role of non-cognitive skills in farmers’ adoption of climate change mitigation 

measures 

 

Cordelia Krefta, David Wueppera, Robert Hubera, Robert Fingera  

a ETH Zurich, Agricultural Economics and Policy Group, Switzerland  

 

Abstract  

Farmers' adoption of climate change mitigation measures is key to successfully reduce agricultural 

greenhouse gas emissions. This article investigates the role of non-cognitive skills, namely self-efficacy 

and locus of control, in farmers' uptake of mitigation measures. The study is based on a combination of 

survey and census data from 105 farmers in Switzerland. Almost all farmers in our sample already adopt 

some of the considered measures to reduce greenhouse gases on their farm. On average, 37% of the 

mitigation measures available to the specific farm type are adopted. We find that a one standard 

deviation increase in non-cognitive skills is associated with a 20 to 40% higher share of adopted 

mitigation measures. This relationship is robust to the inclusion of a comprehensive vector of controls, 

inspired both from the agricultural economics and the psychology literature. Additionally, we find that 

omitted variable bias would need to be implausibly large to refute our findings. Finally, we explore 

potential mechanisms. The suggested pathway through which non-cognitive skills are associated with 

the adoption of climate change mitigation measures is the innovativeness of the farmers. Fostering 

farmers' non-cognitive skills could be an effective policy lever to accelerate the diffusion of climate 

change mitigation measures. 

Author contributions 

All authors conceptualized the study. CK cleaned and prepared the data, carried out the statistical 

analyses and prepared the figures and tables. CK wrote the original draft of the manuscript. All authors 

reviewed and commented on various versions of the manuscript. All authors read and approved the final 

manuscript.  
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CHAPTER 3: Farmers’ social networks and regional spillover effects in agricultural climate change 

mitigation 

 

Cordelia Krefta, Mario Angst b, Robert Hubera, Robert Fingera  

a ETH Zurich, Agricultural Economics and Policy Group, Switzerland  

b University of Zurich, Digital Society Initiative, Switzerland  

 

Abstract 

Climate change poses a severe threat to global agricultural production and rural livelihoods, and since 

agriculture itself is a significant source of greenhouse gas (GHG) emissions, it can also play an important 

role in climate change mitigation. This article investigates how farmers’ social networks influence the 

adoption of on-farm mitigation strategies. More precisely, we use a network autocorrelation model to 

explore the relationship between a farmer’s own mitigation behavior and the mitigation behavior and 

knowledge of his fellow farmers. The analysis is based on a regional case study in Switzerland and uses 

data obtained from personal network interviews combined with survey and census data of 50 farmers. 

Half of them are members of a local collective action initiative for agricultural climate change mitigation 

while the others do not participate in the initiative. We find that, on average, farmers with a larger 

network adopt more mitigation measures and furthermore mitigation adoption is linked with the level 

of knowledge within farmers’ networks. Indeed, the likelihood that non-members will adopt mitigation 

measures increases if they are closely associated with members of the collective action, suggesting a 

local spillover effect. It follows that strengthening knowledge exchange amongst farmers and supporting 

local farmers’ initiatives can potentially contribute to the diffusion of agricultural climate change 

mitigation practices. 

 

Author contributions 

All authors conceptualized the study. CK cleaned and prepared the data, MA carried out the formal 

analysis and prepared the figures. CK wrote the original draft of the manuscript, MA wrote the chapter 

on methods. All authors reviewed and commented on various versions of the manuscript. All authors 

read and approved the final manuscript.  
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CHAPTER 4: Quantifying the impact of farmers’ social networks on the effectiveness of climate change 

mitigation policies in agriculture  

 

Cordelia Krefta, Robert Hubera, David Schäferb, Robert Fingera  

a ETH Zurich, Agricultural Economics and Policy Group, Switzerland  

b University of Bonn, Economic Modeling of Agricultural Systems, Germany  

 

Abstract  

The mitigation of agricultural greenhouse gas (GHG) emissions is indispensable to achieve the overall 

temperature-goals of global and national climate policies. Farmers’ adoption of measures to reduce on-

farm emissions can be incentivized by respective policies. We investigate how knowledge exchange 

within farmers’ social networks affects the effectiveness of a payment per ton of GHG emissions 

reduced. We base on census, survey and interview data of 49 Swiss dairy and beef cattle farms to 

simulate the effect of social networks on overall GHG reduction and marginal abatement cost using an 

agent-based modelling approach. We find that social networks increase overall reduction of GHG 

emissions by 42% at a given payment of 120 Swiss Francs per ton of GHG emissions. Moreover, 

marginal abatement cost of farms to mitigate emissions are lower due to farmers’ social networks. The 

effectiveness of policy incentives aiming at agricultural climate change mitigation can hence be 

improved by simultaneously supporting knowledge exchange and opportunities of social learning in 

farming communities. 

   

Author contributions  

All authors conceptualized the study. CK cleaned and prepared the data, carried out the simulations with 

FarmDyn and FARMIND and did the statistical analysis. CK prepared all tables and figures. DS adapted 

the FarmDyn model to the Swiss context and integrated data and algorithms related to the simulated 

mitigation measures. RH carried out the parametrization and sensitivity analysis of the FARMIND 

model. CK wrote the original draft of the manuscript, RH wrote the chapter on methods as well the 

attached ODD+D protocol. All authors reviewed and commented on various versions of the manuscript. 

All authors read and approved the final manuscript.  
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CHAPTER 5: Action- vs. results-based policy designs for agricultural climate change mitigation 

 

Cordelia Krefta, Robert Fingera, Robert Hubera  

a ETH Zurich, Agricultural Economics and Policy Group, Switzerland  

 

Abstract  

Reducing agricultural greenhouse gas (GHG) emissions is key to achieve overall climate policy goals. 

Effective and efficient policy instruments are needed to incentivize farmers’ adoption of on-farm climate 

change mitigation practices. We compare action- and results-based policy designs for GHG reduction 

in agriculture and account for farmers’ heterogeneous behavioural characteristics such as individual 

farming preferences, reluctance to change and social interactions. An agent-based bio-economic 

modelling approach is used to simulate total GHG reduction, overall governmental spending and farm-

level marginal abatement cost of Swiss dairy and beef cattle farms under both action- and results-based 

policy designs. We find that total governmental spending associated with the compared policy designs 

depends on the cost and benefits of the considered measures as well as behavioural characteristics of 

farmers. More precisely, if farmers are reluctant to change, additional incentives are needed to increase 

adoption of a win-win measure. In such a case, targeting the payment on the cost of that particular 

measure (action-based design) instead of paying a uniform amount for abated emissions (results-based 

design) can lower governmental spending for agricultural climate change mitigation. Farm-level 

marginal cost of reducing GHG emissions are lower with results-based payments independent of the 

cost of measures. Moreover, we find that farmers’ individual preferences and reluctance to change 

substantially lower the adoption of mitigation measures and hence overall GHG reduction potential of 

farms.   

Author contributions  

All authors conceptualized the study. CK prepared the data, carried out the simulations with FarmDyn 

and FARMIND and did the statistical analysis. CK prepared all tables and figures. RH carried out the 

parametrization and sensitivity analysis of the FARMIND model. CK wrote the original draft of the 

manuscript. All authors reviewed and commented on various versions of the manuscript. All authors 

read and approved the final manuscript.  
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Chapter 2: The role of non-cognitive skills in farmers’ adoption of 

climate change mitigation measures2

 

Cordelia Krefta, David Wueppera, Robert Hubera, Robert Fingera  

a ETH Zurich, Agricultural Economics and Policy Group, Switzerland  

 

Abstract 

Farmers’ adoption of climate change mitigation measures is key to successfully reduce agricultural 

greenhouse gas emissions. This article investigates the role of non-cognitive skills, namely self-efficacy 

and locus of control, in farmers’ uptake of mitigation measures. The study is based on a combination of 

survey and census data from 105 farmers in Switzerland. Almost all farmers in our sample already adopt 

some of the considered measures to reduce greenhouse gases on their farm. On average, 37 % of the 

mitigation measures available to the specific farm type are adopted. We find that a one standard 

deviation increase in non-cognitive skills is associated with a 20 to 40 % higher share of adopted 

mitigation measures. This relationship is robust to the inclusion of a comprehensive vector of controls, 

inspired both from the agricultural economics and the psychology literature. Additionally, we find that 

omitted variable bias would need to be implausibly large to refute our findings. Finally, we explore 

potential mechanisms. The suggested pathway through which non-cognitive skills are associated with 

the adoption of climate change mitigation measures is the innovativeness of the farmers. Fostering 

farmers’ non-cognitive skills could be an effective policy lever to accelerate the diffusion of climate 

change mitigation measures. 
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 2.1 Introduction  

Agricultural production substantially contributes to global anthropogenic greenhouse gas (GHG) 

emissions (IPCC, 2019). Consequently, the agricultural sector has also an important role in mitigating 

GHG emissions (Lipper et al., 2014; Ripple et al., 2013). Main sources of agricultural GHG are methane 

from enteric fermentation of cattle, nitrous oxide from fertilizer use and land use changes as well as 

carbon dioxide from fuel and energy use (IPCC, 2014). The level of these emissions varies widely 

between farms, depending on production type, region and individual management decisions (Henriksson 

et al., 2011; Olesen et al., 2006). Hence, farmers’ individual production decisions are key for effective 

mitigation of agricultural GHG emissions. Understanding the personal characteristics driving farmers’ 

adoption of climate change mitigation is thus of crucial importance for effective climate policy in the 

food and agricultural sector (OECD, 2012; Wreford et al., 2017). Apart from traditionally investigated 

factors such as structural farm and farmer characteristics as well as economic preferences, the role of 

behavioural factors in farmers’ adoption of sustainable practices has gained increasing interest over the 

past decades (Dessart et al., 2019). Among these are so-called non-cognitive skills such as, for example, 

perceived control, which has been linked to actual adoption behaviour of farmers (Defrancesco et al., 

2008; Läpple and Kelley, 2015).  

In this article, we contribute to deepen the understanding of farmers’ decision-making by examining the 

empirical association of non-cognitive skills and farmers’ adoption of climate change mitigation 

measures. Here, non-cognitive skills are defined based on two concepts from Social Cognitive Theory: 

perceived self-efficacy and locus of control. While perceived self-efficacy refers to the confidence in 

one’s own abilities in a given domain (e.g., Bandura, 1977), internal locus of control describes the more 

general belief that one has control over life’s outcomes (e.g., Rotter, 1966). Based on a combination of 

survey and census data from 105 Swiss farmers, we investigate the association between non-cognitive 

skills and climate change mitigation choices. Moreover, we explore the mechanism how non-cognitive 

skills and farmers’ innovativeness relate to these choices.  

Literature shows that there is a broad range of potential on-farm mitigation strategies. Mitigation is 

feasible by increasing productivity and efficiency, introducing specific technology options or adapting 

farm management (Bryngelsson et al., 2016; Lybbert and Sumner, 2012). In this article, mitigation is 

measured by 13 measures suitable in the Swiss context and related to three broad categories, namely 

energy use (e.g., solar panels), crop production (e.g., conservation tillage) as well as livestock and herd 

management (e.g., increased number of lactations per cow).  

Recent economic research on mitigation in agriculture has mostly focused on abatement and transaction 

cost (Ancev, 2011; Höglund-Isaksson et al., 2012; Moran et al., 2011; O’Brien et al., 2014; Van Kooten 

et al., 2002; Vermont and De Cara, 2010), policy design (Cooper et al., 2013; Pérez Domínguez et al., 

2009) as well as related carbon markets (Grosjean et al., 2018; Schneider and McCarl, 2003; Smith et 
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al., 2008). Fewer studies have addressed behavioural aspects such as the influence of farmers’ climate 

change beliefs and perceptions on attitudes towards adaptation and mitigation (Arbuckle et al., 2013, 

2015; Barnes et al., 2013; Barnes and Toma, 2012) as well as on intentions to adapt or mitigate (Haden 

et al., 2012). So far, however, little is known about the role of farmers’ psychological traits on actual 

mitigation behaviour (Niles et al., 2016).  

In the psychology literature and different other research areas, lack of self-efficacy and an external locus 

of control have been found to act as barriers to individual mitigation intentions and actual behaviours 

(Gifford, 2011; Hunter and Röös, 2016; Roser-Renouf and Nisbet, 2008). For example, self-efficacy 

explains actions against climate change of civilians (Broomell et al., 2015; Heath and Gifford, 2006). In 

the agricultural sector, a positive effect of self-efficacy and internal locus of control has been found on 

the adoption of innovations and agri-environmental measures (Abay et al., 2017; Lybbert et al., 2018; 

Malacarne, 2019; Marshall et al., 2016; McNairn and Mitchell, 1992; Taffesse and Tadesse, 2017; 

Wuepper and Lybbert, 2017; Wuepper and Sauer, 2016; Wuepper et al., 2019). With respect to 

agricultural climate change mitigation, Niles et al. (2016) found a positive effect of New Zealand 

farmers’ perceived capacity to change behaviour on intended and actual mitigation behaviour.  

We build on these findings and further investigate the role of non-cognitive skills in the adoption of 

climate change mitigation in agriculture by ruling out potential confounding effects. Moreover, we 

explore the mechanism mediating non-cognitive skills applying the approach of Acharya et al. (2016). 

Drawing from psychology, economics and management literature associating non-cognitive skills with 

entrepreneurship (Chen et al., 1998; Mueller and Thomas, 2001; Newman et al., 2019), we investigate 

innovativeness as a mediator. In this context, farmers’ adoption of climate change mitigation measures 

can be seen as a form of “green” innovation. To the best of our knowledge, this study is the first to 

explore the role of innovativeness as a mechanism through which non-cognitive skills are connected to 

agricultural climate change mitigation.  

Since our empirical analysis is based on non-experimental survey data, the distribution of non-cognitive 

skills in the sample is not random and could be in some way systematic, e.g., some non-observed 

adoption determinants such as marketing structures could potentially also affect farmers’ non-cognitive 

skills, causing omitted variable bias.  We account for this in two ways: First, we control for a broad 

range of various potentially confounding variables. These include farm characteristics such as size and 

production type, demographics such as education and age as well as individual farmer characteristics, 

e.g., risk preferences, loss aversion and probability weighting, social networks, climate change 

perceptions and concerns as well as, importantly, the perceived effectivity of the available mitigation 

measures.  

Second, to test robustness of our findings, particularly against the risk of omitted variable bias, we use 

the approach of Oster (2019). This approach is based on the idea that we can quantify the stability of 

our estimated parameters, which informs us about selection on observables. This in turn can be used to 
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learn about the potential role of omitted variable bias. Specifically, we can estimate the degree of omitted 

variable bias necessary to substantially change our main results as well as how our main results change 

under the assumption of equal selection on observables and non-observables. 

We find that almost all of the farmers in our sample adopt some of the considered mitigation measures. 

On average, farmers adopt 37% of the mitigation measures included in the survey and suitable to their 

farm type. We find a strong, positive and robust association between non-cognitive skills and adoption 

of agricultural mitigation measures. Moreover, we find that innovativeness is the suggested mechanism.  

The remainder of this paper is structured as follows: Section 2 presents our conceptual framework and 

provides some background on the influences of non-cognitive skills, green innovativeness and farm and 

farmer characteristics in the context of climate change mitigation choices. Section 3 introduces the 

econometric analysis for the assessment of the association between non-cognitive skills and mitigation 

behaviour as well as the mediation mechanism between non-cognitive skills and innovativeness. We 

introduce the case study, as well as the survey and the data in section 4. Next, we present the empirical 

results in section 5, followed by a discussion in section 6. We conclude with implications for policy and 

further research in section 7.  

 2.2 Conceptual framework and theoretical background 

To develop our conceptual framework on farmers’ climate change mitigation, we mainly built on 

behavioural theories: the Social Cognitive Theory by Bandura focusing on self-efficacy, locus of 

control, and social influences; the Theory of Planned Behaviour by Ajzen containing attitudes and 

subjective norms as well as Prospect Theory by Kahnemann and Tversky including risk preferences, 

probability weighting and loss aversion. In addition, we draw from the broad range of existing literature 

and empirical findings on economic and behavioural factors influencing farmers’ adoption of sustainable 

practices (Ahnström et al., 2009; Beedell and Rehman, 1996; Beedell and Rehman, 2000; Defrancesco 

et al., 2008; Dessart et al., 2019; Gould et al., 1989; Knowler and Bradshaw, 2007; Lastra-Bravo et al., 

2015; Sattler and Nagel, 2010; Siebert et al., 2006; Vanslembrouck et al., 2002; Willock et al., 1999; 

Wilson, 1996; Wynne-Jones, 2013). 

Against this theoretical and empirical background, we assume that farmers’ decision-making with 

respect to the adoption of climate change mitigation measures, comparable to other agri-environmental 

measures, is determined by farm structural and farmers’ individual characteristics. More specifically, 

we distinguish three main factors (Figure 2.1): (i) characteristics of the farm, (ii) non-cognitive skills, 

and (iii) other individual characteristics such as demographics, attitudes and risk preferences.  
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Figure 2.1: Conceptual framework of farmers’ decision-making with respect to climate change mitigation. Farm 

and individual farmer characteristics serve as control variables, while the focus is on non-cognitive skills. The 

latter are mediated through innovativeness. Potentially confounding effects of farm and individual characteristics 

are indicated with double arrows.  

The focus here is on the role of non-cognitive skills, namely self-efficacy and locus of control, in 

farmers’ decision-making with respect to climate change mitigation and the potential role of green 

innovativeness in the mediation between non-cognitive skills and mitigation behaviour3. We have 

introduced innovativeness in our framework since Social Cognitive Theory predicts it as important 

mediator between non-cognitive skills and actual behaviour (Bandura, 1997). This has also been shown 

empirically, for example in the context of entrepreneurship or contract farming (Newman et al., 2019; 

Wuepper et al., 2019).  

In the following sub-sections, we present the concepts of non-cognitive skills and green innovativeness 

in more detail and introduce the most relevant farm and individual farmer characteristics. 

2.2.1 Non-cognitive skills 

The literature generally refers to non-cognitive skills as the part of human capital that is not captured by 

common IQ and achievement tests (Kautz et al., 2014; Lundberg, 2017) but rather represents “patterns 

of thought, feelings and behaviours” (Borghans et al., 2008). The role of non-cognitive skills in 

individual decision-making processes has recently gained increasing interest among economists (Abay 

et al., 2017; Lybbert et al., 2018; Wuepper and Lybbert, 2017; Wuepper and Sauer, 2016; Wuepper et 

                                                      
3 Regarding adaptation to climate change impacts, Grothmann and Patt (2005) have included perceived self-

efficacy in their Model of Proactive Private Adaptation to Climate Change (MPPACC). There, self-efficacy is part 

of the so-called overall ‘adaptation appraisal’, i.e. the individual’s perception of the ability to avert negative climate 

change impacts (Grothmann and Patt, 2005).   
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al., 2019). They are for example seen as a source of heterogeneity in innovation adoption (Feder et al., 

1985; Stoneman and Ireland, 1986; Sunding and Zilberman, 2001). 

We here focus on farmers’ perceived self-efficacy and locus of control, which are arguably among the 

most important non-cognitive skills for behavioural change and success (Bowles et al., 2001; Chiteji, 

2010; Wuepper and Lybbert, 2017; Wuepper et al., 2019). Self-efficacy and locus of control can be seen 

as part of the broader concept of perceived behavioural control which was introduced by Ajzen in his 

Theory of Planned Behaviour and defined as “the perception of the ease or difficulty of performing the 

behaviour of interest” (Ajzen, 1991, 2002). 

Self-efficacy is defined as a person’s belief in her or his own capability to solve a particular task in a 

certain domain (Bandura, 1977, 1997, 2012). It is the central concept in Social Cognitive Theory 

(Bandura, 1986). It is for example shaped by a persons’ own mastery experiences, e.g., success can 

increase perceived self-efficacy, failure can decrease it. Vicarious experiences such as observing one’s 

peers succeed can increase perceived self-efficacy, while observing them fail can decrease it. Moreover, 

social persuasion impacts self-efficacy - one can be convinced by others to have high or low domain 

specific abilities. Also, the emotional and physiological state plays an important role, i.e., depression or 

tiredness can decrease one’s sense of self-efficacy, being healthy and happy can increase it. Individuals 

with high perceived self-efficacy typically see problems as a challenge they are willing and able to rise 

to. On the contrary, low perceived self-efficacy lets people perceive a problem as insurmountable and 

they are more likely to resign (Eker et al., 2019; Newman et al., 2019; van Valkengoed and Steg, 2019).  

The concept of individuals’ locus of control (Rotter, 1966, 1975; Rotter et al., 1972) captures how much 

people believe that their abilities and efforts matter for outcomes (internal locus of control) and how 

much they belief that outcomes rather depend on forces outside of one’s control (external locus of 

control). This belief, too, has a range of important economic implications (Abay et al., 2017; Almlund 

et al., 2011; Cobb-Clark, 2015; Cobb-Clark et al., 2014; Wuepper, 2019; Wuepper et al., 2019). Locus 

of control is highly complementary to perceived self-efficacy (Bandura, 1997; Lopez and Snyder, 2009; 

Rotter, 1966). To motivate investments (e.g., money or efforts), individuals need to believe that their 

actions are actually important determinants of outcomes (internal locus of control) and that they have 

all the necessary abilities to achieve the required performance for a positive outcome (perceived self-

efficacy). Differences in locus of control and perceived self-efficacy can both explain why otherwise 

similar individuals in the same context behave differently, see Lopez and Snyder (2009) for more 

discussion of the psychological literature, and Carter (2016) as well as Lybbert and Wydick (2018) on 

the integration of positive psychology and economics. A testable prediction of the literature is that 

perceived self-efficacy and internal locus of control increase individual’s propensity to innovate 

(Bandura, 1997; Eker et al., 2019; Newman et al., 2019; Wang et al., 2016; Wuepper and Lybbert, 2017). 
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2.2.2 Green innovativeness  

Green innovations are defined as technologies, managerial as well as organizational changes that “have 

the potential to enhance […] environmental sustainability” of a production activity (Lioutas and 

Charatsari, 2018). In recent years, green innovations have gained importance within the disciplines of 

business administration and innovation management (Schiederig et al., 2012). Unlike in other sectors of 

the economy, green innovations and related green innovativeness have only attracted little attention in 

the agricultural domain and only few research explicitly focuses on the role of farmers’ green 

innovativeness. For example, Lioutas and Charatsari (2018) investigated determinants of farmers’ green 

innovativeness and found that expected economic benefits, convenience of the measures at stake, 

environmental concern and the internal need for change had an influence. Moreover, Mann (2018) found 

that Swiss farmers who adopt innovative conservation measures such as banding technologies and drift-

reducing spreaders for fertilizer application were more dedicated to innovation in general (Mann, 2018). 

We here refer to climate change mitigation measures as a form of green innovation.   

2.2.3 Farm and farmer characteristics  

Among the standard measures in the analysis of technology or innovation adoption are structural farm 

characteristics such as size and type as well as demographic characteristics of the farmer, namely 

education and age (Defrancesco et al., 2008; Knowler and Bradshaw, 2007; Lastra-Bravo et al., 2015; 

Prokopy et al., 2008). However, the literature reveals diverging results – from positive to insignificant 

and negative correlations (Knowler and Bradshaw, 2007; Lastra-Bravo et al., 2015).  

In addition, we control for various individual farmer characteristics, which, according to the relevant 

literature, are among the most important drivers of adoption, i.e., knowledge and beliefs about climate 

change, climate vulnerability, the experience of direct consequences such as decreased rainfall and the 

expected efficacy of the mitigation strategy are likely to affect agricultural mitigation (Arbuckle et al., 

2013; Barnes et al., 2013; Haden et al., 2012). Moreover, social networks have been found to influence 

farmers’ attitudes towards climate change (Barnes et al., 2013; Dang et al., 2014; Tang et al., 2013).  

An important aspect in adoption decisions are farmers’ attitudes and perceptions of risks and potential 

losses (Bocquého et al., 2014; De Pinto et al., 2013; Fischer and Wollni, 2018; Ghadim et al., 2005; 

Kallas et al., 2010; Liu, 2013; Meraner and Finger, 2019). In our analysis we control for risk and loss 

aversion as well as probability weighting based on the theoretical foundation of Cumulative Prospect 

Theory (Kahneman and Tversky, 1992; Tanaka et al., 2010).  

2.3 Econometric analysis  

The first objective of our study is to investigate the association between farmers’ non-cognitive skills 

and adoption of agricultural climate change mitigation measures on the farm. The latter is measured as 

a share [0-100%] of implemented mitigation measures, which are suitable to the specific farm type 

(Mitigationi). We start our analysis by testing for an empirical relationship between non-cognitive skills 
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and adoption of mitigation measures. The baseline OLS regression model is without any control 

variables. We estimate:  

𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑖 =  𝛽0   +  β1𝑛𝑜𝑛𝑐𝑜𝑔 +   𝜀𝑖          (1) 

Similarly, we want to investigate the single effect of innovativeness on mitigation and thus estimate a 

second baseline model:      

𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑖 =  𝛽0   +  β1𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 +   𝜀𝑖          (2) 

Next, we include a vector of control variables (β𝑖𝑋1𝑖) as discussed above, comprising farm structural 

variables (e.g., farm size, farm type) and farmers’ demographics (e.g., age, education) as well as other 

farmer characteristics (e.g., climate change concern, risk and loss aversion, size of social network). See 

Table 2.2 in section 2.4 for a complete overview of control variables.  

𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑖 =  𝛽0   +   β1𝑛𝑜𝑛𝑐𝑜𝑔  + β𝑖𝑋1𝑖  +  𝜀𝑖         (3) 

Note that innovativeness is not included in the vector of control variables as we aim to explore the 

mechanism between non-cognitive skills and innovativeness with a separate approach presented in the 

following step. In general, mechanisms describe a potential pathway through which a certain variable 

of interest affects the outcome via a mediating factor (Imai et al., 2011). We here explore the pathway 

or mechanism through which non-cognitive skills impact mitigation. To avoid omitted variable bias and 

rule out potential other drivers, we use the approach of Acharya et al., 2016 and calculate the direct 

association of non-cognitive skills, i.e., the association net the mediator innovativeness. The latter refers 

to the mechanism or the variable that lies on the pathway between the variable of interest and the 

outcome (Del Prete et al., 2019). The method is also known as sequential g-estimation (Joffe and Greene, 

2009; Vansteelandt, 2009). 

Technically, sequential g-estimation is a two-step procedure: First, the effect of the mediator 

(innovativeness) is removed from the dependent variable by fixing it at a certain level (usually to zero). 

The outcome is transformed in the following way:   

𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛̂
𝑖 = 𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 −   𝛽2𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠         (4) 

Second, we estimate the association of the variable of interest (non-cognitive skills) with the transformed 

outcome:  

𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛̂
𝑖 =   𝛽0  +   𝛽1𝑛𝑜𝑛𝑐𝑜𝑔  +  𝛽𝑖𝑋𝑖 +   𝜀𝑖         (5) 

If in (5) the null hypothesis H0 cannot be rejected (𝛽1̂ = 0), we can show that innovativeness is the only 

pathway through which non-cognitive skills impact mitigation. To get correct standard errors, we use a 

consistent variance estimator developed by Acharya et al., 2016. The results are comparable with 

bootstrapped standard errors (Acharya et al., 2016). Commonly, mechanisms are explored by simply 
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including potential mediator variables in the regression to test whether the coefficient of interest changes 

(Cockx et al., 2018). As elaborated by Acharya et al., 2016, this approach might lead to omitted variable 

bias. For a comparison, we here perform both types of analysis.  

We account for potentially confounding factors in the model by testing several different specifications. 

For example, perceived effectivity of mitigation technologies is likely to be correlated with the belief in 

one’s own abilities to effectively reduce emissions. Moreover, almost 23 percent of the farmers 

participate in a regional climate initiative (“AgroCO2ncept”) with the aim of a collaborative reduction 

of agricultural greenhouse gas emissions (more details are provided in Appendix A2.1). The 

participating farmers may potentially bias results since they might have particularly high scores in non-

cognitive skills and innovativeness. Also, social capital and social networks are often found to play an 

important role in adoption decisions. Finally, organic farmers in our sample on average adopt a slightly 

higher share of mitigation measures (Table 2.1), which might influence the results. Therefore, we test 

sensitivity by excluding i) perceived effectivity of mitigation measures, ii) participation in 

AgroCO2ncept, iii) size of the social network and iv) organic farming. Moreover, we test our model for 

the subsample of livestock farmers only. These build the vast majority in our sample and play a crucial 

role for effective climate change mitigation in agriculture since they have a greater reduction potential 

as well as more opportunities to reduce emissions compared to arable farms. 

As we are working with non-experimental data, we carefully evaluate sensitivity to omitted variables. 

To this end, we use the Oster bound approach (Oster, 2019). The method allows to assess the relative 

degree of an omitted variable bias necessary to fully eradicate the established statistical significance of 

a specific variable. Unlike former approaches, Oster also accounts for different weights of control 

variables in terms of improving the R2. Technically, a specification with only baseline controls is 

compared against a specification with the full vector of controls, resulting in the following ratio:  

                                                              �̂�1,𝐹 /(�̂�1,𝑅 − �̂�1,𝐹)                                                                       

�̂�1,𝐹 is the coefficient of the specification with baseline controls and �̂�1,𝑅 is the coefficient of the 

specification with all controls. This ratio tells us how high the risk of selecting on non-observables is: 

The smaller it gets, the higher the risk of omitted variable bias. On the contrary, the higher the ratio, the 

less likely is selection on non-observables. For example, if the ratio is two, the effect of an unobserved 

variable would have to be twice as large as the originally estimated coefficient (Oster, 2019).  

2.4 Case study and data 

To elicit farmers’ individual characteristics, attitudes and preferences, we conducted an online survey, 

which was sent to the 389 farmers registered in the case study region (more information on the region 

is provided in Appendix A2.1). The survey took place from March until May 2019 and was announced 

via Email together with a supporting letter of the Cantonal Farmers Union. Participation was 
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incentivized by a payment of CHF 10 and the opportunity to win up to 190 CHF in a lottery task to elicit 

risk preferences (see below). The full survey4, the dataset and the codebook describing the variables are 

available in Kreft et al. (2020) as well as freely accessible on the ETH Zürich Research Collection: 

http://hdl.handle.net/20.500.11850/383116. Farmers were reminded twice, leading to 105 complete 

responses5, i.e., a response rate of 27%. Table 1 provides summary statistics of the total sample and 

subsamples.  

Table 2.1: Summary statistics   

Variable  

Total Missing 

Mean non-

cognitive 

skills 

(1: low, 5: 

high) 

SD 

Mean share 

of mitigation 

adoption 

(0-100%) 

SD 

Total number of respondents  105  3.02 0.88 0.37 0.18 

 

Organic farmers  

 

11% 

 

4 

 

3.87 

 

0.57 

 

0.54 

 

0.15 

Farmers participating in AgroCO2ncept 

Flaachtal 
23%  3.74 0.74 0.43 0.19 

Distribution of farm types  3     

      Arable Farming (no livestock) 22.6%  2.95 0.83 0.4 0.22 

      Livestock  59.8%  3.0 0.97 0.38 0.16 

      Specialized crops  8.8%  2.93 0.69 0.23 0.2 

      Others  8.8%  3.33 0.72 0.35 0.16 

Mean farm size (ha)  29.4 3     

 

We carefully designed the questionnaire based on two rounds of pre-tests. First, we tested general 

wording, understanding and user-friendliness with six students of agricultural sciences. In a next step, 

we got more content-related feedback from ten farmers at the farming school of the Canton of Zurich.   

The questionnaire containing 26 questions was structured as follows: (i) climate change perceptions and 

expected consequences, (ii) current implementation and expected efficacy of mitigation measures, (iii) 

perceived self-efficacy and locus of control, (iv) personal values and innovativeness, (v) income and 

satisfaction, (vi) personal social networks and social comparison, (vii) risk preferences. Except for the 

question on social network, where participants had to insert names of persons, all questions were closed 

questions on Likert scales or multiple-choice format. Questions consisting of several items were later 

summarized by means of a factor analysis (see Appendix A2.2 for detailed results of the factor analyses). 

Non-cognitive skills were merged from three questions measuring self-efficacy and two questions 

measuring locus of control. To elicit risk and loss aversion as well as probability weighting, we used an 

incentivized multiple price list following the approach of Tanaka et al. (2010). Farmers could indicate 

to receive the gained money from the lottery and get aggregated information on the whole sample. From 

                                                      
4 Please also find the full survey in the supplementary material to Appendix Chapter 1 of this thesis  
5 Given the strong expected association between non-cognitive skills and entrepreneurial behaviour, a power 

calculation suggests that for a statistical power of 0.9 and a statistical significance level of 0.05, we require at least 

a sample of 42-69 for our empirical analysis, depending on the model specification (Cohen, 2013).  

http://hdl.handle.net/20.500.11850/383116
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the survey data, we derive 13 variables to include in our analysis. Additionally, we use farm census data 

(BLW, 2019), containing amongst others information on farm size, organic farming, production type 

and age of the farmer (Table 2.2).   

The 13 mitigation measures included in the survey were chosen according to mitigation potential as well 

as actual relevance and suitability for Swiss farms (Alig et al., 2015; Schader et al., 2014). We included 

three energy measures (solar panels, biogas plant, eco-drive mode for tractors), three crop management 

measures (emissions reducing fertilizer application, cover or catch crops, conservation tillage) and seven 

livestock related measures (domestic legumes instead of imported concentrates, reduction of 

concentrates to max. 10 % of ration, at least 5 lactations per cow, double-purpose cattle breed, feed 

additives, coverage of manure storage, composting of manure). Depending on the farm type, some 

measures were not relevant, e.g., increasing the number of lactations is only relevant for dairy farms. 

Hence, the total number of relevant mitigation measures varies between farm types. We account for this 

by calculating the share of adopted mitigation measures out of all suitable measures for the respective 

farm type.  
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Table 2.2: Overview of variables included in the regression 

Variable name Variable specification Method 

Dependent variable   

Share of adopted mitigation measures 

suitable to the specific farm type   

Share (0-100%)  

   

Farmer’s behavioural 

characteristics   

  

Non-cognitive skills  5-point Likert scale  

(1=low; 5= high) 

Factor Analysis summarizing 5 

questions (Cronbach alpha : 0.8) 

Innovativeness  

 

5-point (1=low; 5= high) Factor Analysis summarizing 5 

questions (Cronbach alpha: 0.66) 

Climate change perception 3-point Likert scale (1=no 

change, 2= decrease/increase, 

3= strong decrease/increase) 

Factor Analysis summarizing 6 

questions (Cronbach alpha : 

0.63)  

Climate change concerns 5-point (1= very negative; 5= 

very positive) 

Mean of expected consequences 

for own farm and total AG sector 

Perceived effectivity of measures  6-point Likert scale (1=not 

effective at all, 5=very 

effective, 6= don’t know) 

Mean of effectivity expected of 

single measures    

Network size Number of persons listed  

(max. 10) 

 

Social comparison  5-point(1=low; 5= high) Factor Analysis summarizing 5 

questions (comparison, 

superiority, importance of 

others’ opinions) (Cronbach 

alpha : 0.66) 

   

Loss aversion Parameter lambda  Multiple price list following 

Tanaka et al. (2010)  

Risk aversion Parameter sigma  Multiple price list following 

Tanaka et al. (2010) 

Probability weighting Parameter alpha  Multiple price list following 

Tanaka et al. (2010) 

   

Farmer’s demographic 

characteristics  

  

   

AgroCO2ncept  Participation (0,1)  

Education Categorical variable (5 levels: 

Agricultural School, 

Agricultural Mastership, 

Agricultural technician, 

University or University of 

Applied Sciences) 

 

Age Age of farmer in 2019  

Farm characteristics  

 

Farm size   Total agricultural land (in 

hectares) 

 

Farm type Categorical variable (4 types: 

Livestock, Arable, Specialized, 

Others) 

 

Organic farming Organic farming (0,1)  

Share of agricultural income in total 

income 

Categorical variable (4 levels: 

0-25%, 26-50%, 51-75%, 76-

100%) 
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2.5 Results  

Almost all farmers in our sample adopt at least two of the proposed measures. The average farmer adopts 

37% of the mitigation measures included in the survey and suitable to his or her farm type (Table 2.1). 

The share of adopted climate change mitigation measures (‘Mitigation share’) is most strongly 

correlated with farmers’ non-cognitive skills, their self-assessed innovativeness, and their reported 

perceptions of the effectivity of the available mitigation measures (Figure 2.2). In contrast, the standard 

explanations for adoption decisions such as farm size, age, and education are uncorrelated with farmers’ 

share of adopted mitigation measures.  

 

Figure 2.2: Correlation matrix: Blue and red dots signify positive and negative correlations, respectively. Size of 

the dots and intensity of the colour are proportional to the correlation coefficients.  

The graphical overview of correlations is further explored in seven regression model specifications 

(Figure 2.3).  In the first and second specification, we estimate the association of mitigation and non-

cognitive skills without additional covariates (specification 1, Figure 2.3) and the association of 

mitigation and farmers’ innovativeness (specification 2), respectively. In both cases, the relationship is 

positive and statistically highly significant. Adding a large vector of control variables to the association 

of mitigation and non-cognitive skills in a third and fourth specification changes the respective point 
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estimate of non-cognitive skills and innovativeness only slightly and it remains highly significant 

(specifications (3) and (4)). In the fifth specification (5), we estimate the direct association of non-

cognitive skills when controlling for farmers’ innovativeness using the Acharya et al. (2016) approach.  

 

Figure 2.3: Estimated association of non-cognitive skills, innovativeness, and adoption of climate change 

mitigation measures. Points represent estimates, horizontal spikes the 95% confidence interval. Specifications 1, 

2, 3, 4, 6 and 7 are from OLS regression, specification 5 is based on sequential g-estimation. In the baseline 

scenarios (1) and (2), the relationship is positive and significant. This remains the case when introducing various 

control variables in (3) and (4). However, when the Acharya method is applied and innovativeness is removed, 

the direct association between non-cognitive skills and mitigation adoption becomes insignificant (5), suggesting 

innovativeness as main mechanism through which non-cognitive skills are associated with mitigation uptake. 

When not using the Acharya method and simply adding innovativeness as another covariate in the regression (6), 

the association remains significant if only non-cognitive skills are considered but becomes insignificant when 

controlling for all covariates (7). 

The association between mitigation and non-cognitive skills is no longer significant if the pathway of 

farmers’ innovativeness is removed. This suggests that innovativeness is the main, or even sole, 

mechanism why farmers with higher non-cognitive skills adopt a larger share of climate change 

mitigation measures. For comparison, we also show the standard approach of simply including 

innovativeness as another covariate in the regression of mitigation on non-cognitive skills 

(specifications (6) and (7)) (for detailed results of the regression analyses, see Appendix A2.3).  

With regard to other covariates, we see that farmers with a larger social network tend to mitigate more 

than those who only named few persons with whom they exchange knowledge on agricultural practices 

and climate change. Other personal characteristics of farmers such as climate change perceptions or 

concerns as well as risk preferences do not play any significant role in our specifications. The same is 

found for other commonly investigated factors such as farm size, farm type, education and age of the 
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farmer. One exception is the production of specialized crops, for which we find a slightly negative 

association with mitigation (see Appendix A2.3).  

Our results stay robust when perceived effectivity of measures (specification 8, Figure 4), participation 

in AgroCO2ncept (specification 9), size of the social network (specification 10) or organic farming 

(specification 11) are excluded from the regression. The estimate of non-cognitive skills remain 

significant in all specifications. When we look at the subsample of livestock farmers only (specification 

12), the controlled direct association of non-cognitive skills is still insignificant when innovativeness is 

fixed to zero, suggesting that the hypothesized mechanism is still valid when plant producers are 

excluded from the sample. Detailed results of the robustness tests are provided in Appendix A2.4. 

Figure 2.4: Estimated association of non-cognitive skills on adoption of climate change mitigation measures for 

different specifications. Points represent estimates, horizontal spikes the 95% confidence interval. Specifications 

8 – 11 are from OLS regression, specification 12 is based on sequential g-estimation. 

To test sensitivity towards omitted variable bias, we use the Oster bounds approach for non-cognitive 

skills and innovativeness (Table 2.3). We find that potentially omitted variables would need to be three 

times as important as the effect of our currently included covariates (Oster selection) to change our 

interpretation of the role of farmers’ non-cognitive skills and their innovativeness. The existence of such 

a large omitted factor seems unlikely given our set of controls including farm and farmers’ 

characteristics. Moreover, if we assume that selection on non-observables is equal to selection on 

observables (Oster estimate), we still estimate statistical associations that are quite close to our original 

results. In conclusion, we find that our results are highly robust to omitted variable bias, consistent with 

the strength of the raw correlations shown in Figure 2.2 and the coefficient stability indicated in Figure 

2.4.  
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Table 2.3: Oster bounds  

Share of 

mitigation 

measures  

 

Innovativeness Non-cognitive skills 

 
 A B A B 

  Oster estimate  0.52 0 0.42 0  
Oster selection 1 2.82 1 2.98 

  R2 max 0.45 0.45 0.38 0.38 

 

Notes: Oster estimate here refers to the estimate of the variable under the assumption that selection on non-

observables is equal to selection on observables. Oster selection here refers to the maximal omitted variable bias 

while still resulting in the same estimate. It is expressed in relation to selection of observables.  

 

2.6 Discussion  

In this article, we provide a comprehensive empirical analysis to thoroughly test and elaborate the 

suggestion that farmers’ non-cognitive skills affect adoption of agricultural climate change mitigation 

measures. We find that self-efficacy and an internal locus of control are positively associated with 

mitigation adoption. This adds to previous research, which has shown positive effects of non-cognitive 

skills on decision-making of farmers in various contexts (Abay et al., 2017; Lybbert et al., 2018; 

Malacarne, 2019; Marshall et al., 2016; McNairn and Mitchell, 1992; Taffesse and Tadesse, 2017; 

Wuepper and Lybbert, 2017; Wuepper and Sauer, 2016; Wuepper et al., 2019).  

Since non-cognitive skills are difficult to measure, we used several indicator questions and a factor 

analysis to extract the latent construct of non-cognitive skills to counteract measurement errors from 

self-declaration. In addition, we developed a conceptual framework allowing us to control for the most 

important, potentially confounding factors such as attitudes, perceptions, and risk preferences, and 

quantified the likelihood that our findings are driven by omitted variable bias from factors that we did 

not control for (Oster, 2019). We estimate that additional variables would need to be approximately 

three times as important as our included control variables, i.e., farm and farmers’ characteristics. Thus, 

our results imply that the influence of non-cognitive skills remains robust when derived from multiple 

dimensions and controlled by a large set of farm and farmers’ characteristics. 

In a broader context, our research also extends studies on pro-environmental behaviour. One factor often 

investigated is the role of knowledge and environmental awareness (Hines et al., 1987). However, as 

with many environmental challenges, there is a gap between awareness, knowledge and actual behaviour 

(Kollmuss and Agyeman, 2002). Our results confirm the existence of that gap, as we do not find 

significant effects of farmers’ perception of climatic changes and climate change concerns on mitigation 

uptake. The confidence in one’s own abilities in contributing to climate change mitigation and the 

general belief that one has control over one’s life seem to be more important for behavioural choices 

than knowledge and awareness of climate change. 
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Findings from psychology and social science show that lack of self-efficacy and an external locus of 

control are important barriers to behavioural change (Mulilis and Duval, 1995). Particularly in cases of 

global environmental challenges, problems can seem so overwhelmingly large and complex that people 

tend to resign, thinking that their individual contribution is meaningless for the whole outcome. In turn, 

this leads to rejection of personal responsibility and is sometimes also reflected in attitudes towards 

mitigation (Frantz and Mayer, 2009). Against the background of climate change, high self-efficacy and 

strong internal locus of control beliefs are thus of even greater importance for the uptake of mitigation 

measures.  

We also explored how non-cognitive skills are actually associated with mitigation behaviour, using an 

approach that avoids omitted variable bias (Acharya et al., 2016). We find that self-efficacy and locus 

of control are mediated by farmers’ innovativeness, which is consistent with earlier literature showing 

a positive effect of non-cognitive skills on innovation adoption (Abay et al., 2017; Wuepper et al., 2019). 

As innovation here refers to the adoption of climate change mitigation measures, we see our study as a 

contribution to the relatively recent research on green innovativeness (Schiederig et al., 2012), which 

has only scarcely been investigated in the agricultural domain (Lioutas and Charatsari, 2018).  

While the approach of Acharya et al. (2016) avoids omitted variable bias, innovativeness is still based 

on self-assessments. To some extent, self-assessed non-cognitive skills and self-assessed innovativeness 

could potentially be alternative measurements of the same latent construct, instead of being part of a 

mechanism. This clearly constitutes a limitation of our analysis. However, Social Cognitive Theory 

suggests that innovativeness is a mediator for non-cognitive skills and subsequent behavioural change 

(Bandura, 1997) which justifies our interpretation of the regression results. In addition, farmers who 

adopted more mitigation measures may think of themselves as more capable to effectively mitigate after 

their adoption choice. In our context, it is unlikely that a socio-psychological state such as the degree of 

non-cognitive skills is increased merely by the adoption of the mitigation measures examined here. 

Rather, self-efficacy and locus of control are known to be a function of long term influences such as 

family, social relations, culture, education and more general socio-economic context (Bandura, 1997; 

Cobb‐Clark and Schurer, 2013; Elkins et al., 2017; Wuepper and Lybbert, 2017).  

2.7 Conclusion  

In this paper, we analysed survey data of 105 farmers in a region of Switzerland and investigated the 

relationship between non-cognitive skills and climate change mitigation. Our results suggest a strong 

and positive association of self-efficacy and locus of control with farmers’ uptake of mitigation 

measures, possibly explained by differences in their innovativeness. These findings provide evidence 

that non-cognitive skills are important parameters to improve the understanding of farmers’ decision-
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making processes. This is particularly important as the success of policies aiming at a reduction of 

agricultural GHG emissions depends on the acceptance and response of the targeted farmers.  

Based on our findings, policymakers should take into account that the “innovators” among farmers are 

especially characterized by high non-cognitive skills, namely self-efficacy and internal locus of control. 

These are the farmers, who are potentially the most effective disseminators of new information about 

climate change mitigation measures. Moreover, our results show that also the heterogeneity of non-

cognitive skills within the farm population explains heterogeneous climate change mitigation responses 

to policy incentives.  

Particularly in an agricultural setting such as the one in this study, there is an important role for 

(especially young) farmers’ education and the local extension services. Given the strong association 

between farmers’ non-cognitive skills and their decision-making, it should be a primary aim for farming 

schools and extension agents to encourage farmers’ perceived self-efficacy and locus of control 

regarding the reduction of agricultural GHG emissions. Specific consultancy by local extension services 

as well as information campaigns can furthermore serve to increase the perceived effectiveness of 

mitigation measures (Niles et al., 2016; Wuepper and Sauer, 2016). It should be noted, however, that 

the largest lever to increase individuals’ non-cognitive skills is during childhood, and especially in 

schools (Cunha and Heckman, 2007; Cunha and Heckman, 2008). 

The finding that non-cognitive skills are more important for the explanation of farmers’ behaviour than 

generally used factors such as age, education and farm size imply that they should be more regularly 

included in surveys and analyses trying to explain (non-) adoption of sustainable agricultural practices. 

To deepen knowledge of farmers’ adoption decisions, future research could investigate the reasons for 

heterogeneity in farmers’ non-cognitive skills. Moreover, testing the role of innovativeness as mediator 

for non-cognitive skills using panel data or even randomized control trials could add valuable insights 

to the existing literature. A stronger sense of internal locus of control and even self-efficacy is also 

enhanced by communities. Acting together with others to reach a common goal can make people feel 

stronger, more confident and thus less prone to denial of responsibility (Lazarus and Folkman, 1984). 

Even though not in the focus of this paper, we found a positive association between the size of the social 

network and farmers’ uptake of mitigation measures. In light of the literature on the role of community 

and social capital for personal responsibility assumption and behavioural change, investigating the 

influence of social networks on mitigation behaviour of farmers constitutes another interesting topic for 

future research.  
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2.10 Appendix A2 

A2.1: Case study background 

a. Sample and regional characteristics  

Our empirical research is located in a region in the northern part of the Swiss Canton of Zurich (region 

of Zürcher Weinland). Two main reasons make the region particularly interesting for our research 

purposes: First, diverse farm types are represented, covering main agricultural production in 

Switzerland, namely dairy and meat production as well as pure arable farming and specialized crops 

such as viticulture, fruits and vegetables. The majority of farmers in our sample keeps livestock while 

roughly 30 percent produce arable crops or specialized crops only. Around nine percent do not fit into 

these categories and produce other products. 11 percent produce according to the standards of the Swiss 

organic regulation, which is less than the regional (13 percent) and the Swiss average (14 percent) (BFS, 

2019). Mean farm size is 29.4 hectares (ha), which corresponds to the regional average (29.1 ha) but is 

larger than the overall Swiss average (21 ha) (BFS, 2019 ).  

A second reason for the choice of case study region is the fact that the first farmers’ initiative to actively 

mitigate agricultural GHG emissions in Switzerland is located here. Within the state-funded resource 

project “AgroCO2ncept Flaachtal”, farmers collaborate to collectively reduce emissions on farm and 

regional level (AgroCO2ncept, 2016). In our sample, almost 23 percent of farmers participate in the 

climate initiative AgroCO2ncept Flaachtal.  

b. Climate change and agriculture in Switzerland 

In Switzerland, agricultural production is responsible for approximately 10 - 14 % of total GHG 

emissions. Main sources are methane from enteric fermentation of cattle, nitrous oxide from fertilizer, 

land use changes and carbon dioxide from fuel and energy use (BAFU, 2017; IPCC, 2014). Part of the 

Swiss national climate policy, which aims to reduce its net carbon emissions to zero by 2050 (BR, 2019), 

the “Climate Strategy for Agriculture” aims at a reduction of agricultural GHG emissions compared to 

the level of 1990 by at least 30 percent until 2050 (BLW, 2011). Thus, effective mitigation strategies 

are needed for a sustainable agricultural production.  

While only little experience has been gained in practical GHG reduction in Swiss agriculture, farmers 

in Switzerland get direct payments for specific measures to reduce emissions. However, these are often 

only indirectly targeted at climate change mitigation. As an example, payments for emissions reducing 

application techniques were mainly introduced to reduce ammoniac emissions from agriculture (DZV, 

2019). Moreover, farmers can apply for so-called resource projects by which e.g., the reduction of GHG 
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emissions by a group of farmers or in a specific region can get support from the Swiss Federal Office 

for Agriculture (BLW, 2018).   
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A2.2: Factor analyses  

We conducted factor analyses to create variables consisting of several items. Based on a correlation 

matrix, we calculate one factor and use the Bartlett method to estimate factor score coefficients. The 

uniqueness of each item describes its unique variance, which is not shared with the other items. The 

eigenvalue is the amount of variance explained by the factor. Cronbach’s alpha is a measure of reliability 

of the factor. 

Non-cognitive skills  

The factor analysis of non-cognitive skills combines two questions on self-efficacy and three questions 

on locus of control.  

Item Factor score non-

cognitive skills 
Uniqueness 

I can do something against climate change by reducing GHG 

emissions on my farm. 
0.88 0.23 

My behaviour as a farmer influences climate change. 0.67 0.55 

How successful I can reduce GHG emissions on my farm depends 

primarily on my farming skills. 
0.50 0.75 

I am confident that I can reduce GHG emissions and at the same 

time produce successfully. 
0.71 0.50 

Climate change is a problem I cannot do anything about. 0.60 0.65 

Eigenvalue 2.78  

Cronbach’s Alpha 0.80  

 

Innovativeness  

The factor analysis of innovativeness combines five questions on how innovative the farmer sees him- 

or herself.  

Item Factor score 

innovativeness 
Uniqueness 

I consider myself a pioneer in climate protection and adopt mitigation 

measures even under economic risks. 
0.61 0.63 

I am willing to implement mitigation measures earlier than other 

farmers in my region. 
0.88 0.23 

I am open towards climate mitigation but I want to think through all 

aspects before. I draw on the experience of other farmers.   
0.28 0.92 

I will only adopt mitigation measures if they have been tested by other 

farmers before.  
0.29 0.92 

I rely on my well-tried experiences. Implementing mitigation measures 

is economically too risky to me.  
0.66 0.57 

Eigenvalue 2.22  

Cronbach’s Alpha 0.66  
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Social comparison  

The factor analysis of social comparison combines six questions on superiority need of farmers, 

comparison with others and the importance placed on others’ opinions.  

Item Factor score social 

comparison 
Uniqueness 

It is important to me to impress other farmers with my work.  0.73 0.46 

I feel affirmed when my income is higher than that of other farmers.  0.53 0.72 

I want to produce more climate- and ecofriendly than other farmers 

in the region. 
0.22 0.95 

It bothers me if other farmers generate a higher income than I do.     0.26 0.93 

If other farmers adopt mitigation measures, I want to implement 

them, too.  
0.38 0.86 

How important is to you what others think of your professional 

success and your farming skills?  
0.72 0.49 

Eigenvalue 2.32  

Cronbach’s Alpha 0.66  

 

Climate change perception  

 

The factor analysis of climate change perception combines six questions on experiences of different 

weather extremes over the past ten years.  

Item Factor score climate 

change perception 
Uniqueness 

How often have you experienced extreme weather events over the 

past 10 years (hail)?  
0.44 0.81 

How often have you experienced extreme weather events over the 

past 10 years (heat waves)? 
0.75 0.44 

How often have you experienced extreme weather events over the 

past 10 years (heavy rain)? 
0.41 0.83 

How often have you experienced extreme weather events over the 

past 10 years (long rainy periods)? 
0.25 0.94 

How often have you experienced extreme weather events over the 

past 10 years (frost in spring or autumn)? 
0.32 0.90 

How often have you experienced extreme weather events over the 

past 10 years (droughts)? 
0.72 0.49 

Eigenvalue 2.15  

Cronbach’s Alpha 0.63  
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A2.3: Detailed results of regression analysis  

 

All continuous predictors are mean-centered and scaled by 1 standard deviation. Standard errors are heteroskedasticity robust. 

In model (5), standard errors are manually adapted according to variance estimator by Acharya et al., 2016. The number of 

observations (N) changes due to missing data in certain census data.  

*** p < 0.01;  ** p < 0.05; *p < 0.1.  

  

  (1) 

Baseline 

model non-

cognitive 

skills 

(2) 

Baseline 

model 

innovativen

ess 

(3) 

Model with 

all controls 

except 

innovativen

ess 

(4) 

Model 

with all 

controls 

except for 

non-

cognitive 

skills 

(5) 

Direct 

association 

of non-

cognitive 

skills 

 

(6) 

Baseline 

model non-

cognitive 

skills 

controlling 

for 

innovativen

ess 

(7) 

Model with 

all controls 

including 

innovativen

ess 

Non-cognitive skills 0.43 *** 
 

0.42 ***         0.20 0.24 **  0.20 

  (0.09) 
 

(0.16)           (0.31)  (0.10)    (0.17)    

Innovativeness 
 

0.46 ***       0.52 ***       0.32 *** 0.44 *** 

  
 

(0.08)       (0.11)          (0.09) (0.13)    

CC perception    -0.17 -0.14 -0.17  -0.17 

    (0.11)   (0.10)    (0.10)   (0.10)    

CC concerns   0.18 0.26 **   0.25  0.25 **   

    (0.11)   (0.10)    (0.10)   (0.10)    

Perceived effectivity of measures   -0.04 0.00 -0.07  -0.07 

    (0.13)   (0.12)    (0.13)   (0.13)    

Network size   0.23 **  0.22 **   0.21 *  0.21 * 

    (0.11)   (0.11)    (0.11)   (0.11)    

Social comparison   0.11 0.04 0.06  0.06 

    (0.12)   (0.11)    (0.11)   (0.11)    

Loss aversion    0.19 0.11 0.12  0.12 

    (0.12)   (0.13)    (0.13)   (0.12)    

Risk aversion    -0.01 -0.19 * -0.16  -0.16 

    (0.11)   (0.11)    (0.10)   (0.11)    

Probability weighting   0.09 0.17 * 0.16  0.16 

    (0.11)   (0.10)    (0.10)   (0.10)    

Participation AgroCO2ncept   -0.09 -0.23 -0.29  -0.29 

    (0.26)   (0.27)    (0.27)   (0.27)    

Organic farming   0.28 0.04 0.02  0.02 

   (0.41)   (0.42)    (0.43)   (0.43)    

Education    0.02 -0.08 -0.06  -0.06 

    (0.11)   (0.11)    (0.10)   (0.11)    

Age   -0.07 0.00 0.00  0.00 

    (0.09)   (0.09)    (0.09)   (0.10)    

Farm size 
  

-0.08 0.09 0.05  0.05 

  
  

(0.09)   (0.08)    (0.09)   (0.09)    

Type Livestock   -0.17 -0.16 -0.17  -0.17 

     (0.30)   (0.27)    (0.26)   (0.26)    

Type Others    -0.70 -0.90 **   -0.93 **  -0.93 **   

   (0.49)   (0.41)    (0.41)   (0.42)    

Type Specialized Crops   -1.05 *** -1.31 *** -1.28 ***  -1.28 *** 

    (0.36)   (0.38)    (0.34)   (0.36)    

Share agr. income   0.08 0.03 0.04 ***  0.04 

    (0.12)   (0.11)    (0.11)   (0.10)    

N 105 105 82 82 82 105 82 

Adjusted R2 0.18 0.21 0.37 0.45 0.31 0.25 0.46 
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A2.4: Robustness checks for various specifications 

  (8) 

Model without 

effectivity of 

measures 

(9) 

Model without 

participation in 

AgroCO2ncept 

(10) 

Model without 

size of social 

network 

(11) 

Model without 

organic 

farming 

(12) 

Direct 

association of 

non-cognitive 

skills for 

livestock 

subsample 

Non-cognitive skills 0.39 *** 0.40 *** 0.46 *** 0.42 *** -0.11 

  (0.12)   (0.14)   (0.15)   (0.15)   (0.40)  

CC perception  -0.17 -0.17 -0.19 -0.17 -0.09 

  (0.11)   (0.11)   (0.12)   (0.11)   (0.13)  

CC concerns 0.17 0.17 0.14 0.16 0.09 

  (0.11)   (0.11)   (0.12)   (0.11)   (0.14)  

Perceived effectivity of measures         -0.04 0.00 -0.03 0.13 

          (0.13)   (0.14)   (0.13)   (0.18)  

Network size 0.22 **  0.23 **       0.24 **  0.23 

  (0.11)   (0.11)         (0.11)   (0.11)  

Social comparison 0.10 0.11 0.15 0.11 -0.10 

  (0.11)   (0.12)   (0.12)   (0.12)   (0.15)  

Loss aversion  0.19 0.19 0.23 0.17 0.05 

  (0.12)   (0.12)   (0.14)   (0.12)   (0.15)  

Risk aversion  0.00 -0.01 0.06 0.00 -0.08 

  (0.11)   (0.11)   (0.12)   (0.11)   (0.11)  

Probability weighting 0.09 0.10 0.08 0.10 0.24  

  (0.11)   (0.10)   (0.11)   (0.10)   (0.11)  

Participation AgroCO2ncept -0.09        -0.12 -0.09 0.03 

  (0.26)          (0.29)   (0.26)   (0.31)  

Organic farming 0.27 0.28 0.36        0.13 

 (0.40)   (0.41)   (0.42)          (0.35)  

Education  0.01 0.01 0.01 0.00 -0.03 

  (0.11)   (0.11)   (0.13)   (0.11)   (0.12)  

Age -0.07 -0.07 -0.08 -0.08 -0.07 

  (0.09)   (0.09)   (0.09)   (0.09)   (0.09)  

Farm size -0.07 -0.09 -0.09 -0.10 0.04 

  (0.09)   (0.09)   (0.10)   (0.09)   (0.29)  

Type Livestock -0.15 -0.16 -0.07 -0.11       

  (0.29)   (0.30)   (0.31)   (0.29)         

Type Others -0.68 -0.69 -0.61 -0.69       

  (0.48)   (0.48)   (0.46)   (0.49)         

Type Specialized crops -1.04 *** -1.05 *** -1.00 **  -0.90 ***       

  (0.33)   (0.36)   (0.40)   (0.34)         

Share agr. income 0.08 0.08 0.03 0.08 0.18 

  (0.12)   (0.12)   (0.11)   (0.12)   (0.15)  

N 83 101 101  70 

Adjusted R2 0.37 0.36 0.31  0.22 

All continuous predictors are mean-centered and scaled by 1 standard deviation. Standard errors are heteroskedasticity robust.  In 

model (12), standard errors are adapted according to variance estimator by Acharya et al., 2016.  

*** p < 0.01;  ** p < 0.05; *p < 0.1 
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Chapter 3: Farmers’ social networks and regional spillover effects 

in agricultural climate change mitigation6  
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Abstract 

Climate change poses a severe threat to global agricultural production and rural livelihoods, and since 

agriculture itself is a significant source of greenhouse gas (GHG) emissions, it can also play an important 

role in climate change mitigation. This article investigates how farmers’ social networks influence the 

adoption of on-farm mitigation strategies. More precisely, we use a network autocorrelation model to 

explore the relationship between a farmer’s own mitigation behavior and the mitigation behavior and 

knowledge of his fellow farmers. The analysis is based on a regional case study in Switzerland and uses 

data obtained from personal network interviews combined with survey and census data of 50 farmers. 

Half of them are members of a local collective action initiative for agricultural climate change mitigation 

while the others do not participate in the initiative. We find that, on average, farmers with a larger 

network adopt more mitigation measures and furthermore mitigation adoption is linked with the level 

of knowledge within farmers’ networks. Indeed, the likelihood that non-members will adopt mitigation 

measures increases if they are closely associated with members of the collective action, suggesting a 

local spillover effect. It follows that strengthening knowledge exchange amongst farmers and supporting 

local farmers’ initiatives can potentially contribute to the diffusion of agricultural climate change 

mitigation practices.  

Keywords  

Climate change, mitigation, agriculture, social networks, knowledge exchange, network autocorrelation 

models   

 

  

                                                      
6This chapter corresponds to the following article: Kreft, C., Angst, M., Huber, R., and Finger, R. (2021a). 

Farmers’ social networks and regional spillover effects in agricultural climate change mitigation. Climatic Change 

176, 8 (2023) 
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3.1 Introduction  

Global agricultural production is a major source of anthropogenic greenhouse gas (GHG) emissions 

(IPCC 2019). Consequently, since successful climate change mitigation depends primarily on the 

reduction of these emissions, it has become a major concern for policymakers and scientists (OECD 

2013). Many countries have introduced emission reduction targets for their agricultural sector under the 

UN Framework Convention on Climate Change (Fellmann et al. 2018; Richards et al. 2016). However, 

successful GHG mitigation means that farmers must actively change and adapt their practices, for 

example, by adopting climate friendly practices in the on-farm management of livestock, crops, or 

energy utilization (Smith et al. 2008). Thus, a broad-based understanding of farmers’ decision-making 

processes is crucial for effective mitigation and appropriate policy design. 

In this article, we seek to enhance this understanding by focusing on the impact of social networks on 

farmers’ decision-making regarding the adoption of on-farm mitigation practices. More precisely, we 

use a Swiss case study to investigate the link between the mitigation behavior and knowledge of socially 

well-connected farmers and the individuals’ adoption of respective practices. 

Previous research has shown that social networks influence farmers’ decisions in various fields. The key 

assumption is that new technologies or practices spread through social learning, i.e., knowledge based 

on observation and interaction with peers and neighbors (e.g., Šūmane et al. 2018), also referred to as 

spillover or neighborhood effect (e.g., Vroege et al. 2020). For example, social relations influence the 

occurrence of farmers’ entrepreneurship (Fitz-Koch et al. 2018) and affect decisions relating to multiple 

land use, innovation, and technology (e.g., Bandiera and Rasul 2006; Krishnan and Patnam 2014; 

Matuschke and Qaim 2009;). Several scholars found that social networks impact the adoption of agri-

environmental measures (e.g., Riley et al. 2018; Skaalsveen et al. 2020; van Dijk et al. 2015, 2016) and 

conversion to organic agriculture (e.g., Läpple and Kelley 2015; Wollni and Andersson 2014). The 

existing literature has focused mainly on so-called endogenous network effects (Bandiera and Rasul 

2006; Manski 2000), i.e., how farmers learn from observing the experiences of others and base their 

decisions on the behavior of their peers. Since data is limited, very few studies have investigated 

exogenous network effects, namely the impact of certain peer attributes, e.g., age, education, etc., on 

farmers’ behavior (Keil et al. 2017; Matuschke and Qaim 2009; Murendo et al. 2018). 

Recently, evidence has been found indicating positive peer influence on farmers’ uptake of climate 

change adaptation measures (Di Falco et al. 2020). However, the role of farmers’ social networks in the 

adoption of climate change mitigation remains largely unexplored. In particular, no study has yet 

investigated exogenous network effects in the context of mitigation. This constitutes an important 

research gap since GHG reduction practices are still relatively new to most farmers, thus making 

knowledge sharing and social learning particularly important, also from a policy angle. Furthermore, 

social networks are of great relevance for agricultural mitigation practices as they can help to promote 
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cooperation between farmers (IPCC 2014; OECD 2012). This is essential since collaboration between 

farmers can reduce marginal costs of mitigation, which are usually high in the agricultural sector. For 

instance, economies of scale facilitate investment decisions (Bouamra-Mechemache and Zago 2015; 

Hodge and McNally 2000), and social learning can reduce the costs of knowledge acquisition. The 

coordination of land use and field operations potentially leads to efficient mechanisms for mitigation. 

In fact, farmers’ collective action and “grassroots” innovationsFootnote1 can serve as an example to 

others and spread to a wider region. Up until now, the spillover effects of collective action for sustainable 

development have been viewed from a rather general viewpoint or in different contexts, such as local 

low-impact housing, renewable energy production, or car-sharing (e.g., Ornetzeder and Rohracher 2013; 

Smith and Seyfang 2013), and research on the spillover effects of collective action in agriculture is very 

limited (Vaiknoras et al. 2020). 

Our research contributes to this literature by exploring the characteristics of farmers’ personal networks 

with regard to exchange of knowledge related to agricultural climate change mitigation and their 

association with the actual uptake of mitigation measures. Our research aims to assess the role of 

farmers’ cooperation and collective action in the context of agricultural climate change mitigation, 

which constitutes a key challenge facing the agricultural sector. We apply a network autocorrelation 

model to study potential network influence processes and local spillover effects of a farmers’ climate 

protection initiative. We thereby account for the strength and type of relationships, as well as specific, 

relevant characteristics of network members. More specifically, we use a Bayesian approach which 

allows us to model multiple influence processes and compare them simultaneously (Dittrich et al. 2020). 

Control variables such as age, education, farm type, or perceived self-efficacy are used at the individual 

farmer level to account for possible correlated effects which do not reflect social interactions (Kreft et 

al. 2021a, 2021b; Wuepper et al. 2019). Our analysis is based on a combination of census, survey, and 

detailed network data. The latter was obtained through tablet-based face-to-face interviews with 50 

farmers in a Swiss region. 

Our main contributions are threefold: Firstly, we investigate how social learning among connected 

farmers influences the adoption of on-farm climate change mitigation measures. Secondly, we assess 

how the presence of climate change mitigation knowledge within farmers’ personal social networks 

affects their adoption decisions. Thirdly, we explore how the spillover of a local farmers’ collective 

climate protection action group influences the adoption of mitigation measures in the wider region. Our 

results help to deepen the understanding of farmers’ adoption decisions in the context of agricultural 

climate change mitigation and highlight the role of social networks. This can help to inform 

policymakers when deciding upon effective and efficient policy instruments to incentivize climate 

friendly agriculture. 

The remainder of this article is as follows: Section 2 provides the theoretical background on farmers’ 

social networks and adoption of agricultural climate change mitigation as well as the hypotheses tested 
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in this article. Section 3 introduces the autocorrelation model used for assessing the associations between 

certain network characteristics and mitigation adoption. Section 4 describes the case study followed by 

Section 5, which presents data and data collection. Section 6 contains descriptive and estimation results 

and is followed by a discussion in Section 7 and conclusions in Section 8. 

3.2 Theoretical background and conceptual framework  

Our conceptual framework is based on the social network theory (Borgatti and Ofem 2010) and the 

concept of social learning (Foster and Rosenzweig 1995) whereby it is assumed that individual behavior 

is influenced by interaction with peers, also referred to as herd behavior, spillover, neighborhood, or 

peer effect (e.g., Granovetter 1978). Three possible network effects can be identified: endogenous 

effects (impact of network members’ behavior), exogenous effects (impact of network members’ 

characteristics), and correlated effects (resemblance between individual’s behavior and that of their 

network due to similar environment, e.g., access to the same extension service) (Keil et al. 2017; Manski 

2000). The first two effects can, to some extent, be explained by social learning, essentially defined as 

learning by observing others and interacting with them.  

3.2.1 The role of social networks in farmers’ adoption behavior  

The analysis of farmers’ social networks and social learning has emerged as a key tool for understanding 

adoption decisions. In general, close ties to other farmers facilitate knowledge spillovers and information 

flow related to new agricultural technologies, such as improved seeds and varieties (e.g., Conley and 

Udry, 2010; Krishnan and Patnam, 2014) or knowledge intensive practices such as no-tillage farming 

(e.g., Ingram, 2010; Skaalsveen et al., 2020).  

However, whether and how social learning actually occurs, depends on many factors such as the 

complexity of the technology (Wuepper et al., 2017), heterogeneity of farming conditions (Munshi, 

2004), number of adopters (Bandiera and Rasul, 2006), or structure of the network. For example, 

centralized networks and links to key actors are found to facilitate the rapid diffusion of information 

(Peres, 2014). Since most farmers prefer to seek advice from key network members rather than from 

less connected colleagues, core-periphery network structures are often observed, i.e., farmers who are 

less connected most frequently approach a small group of socially well-connected key farmers  when 

seeking advice (Isaac et al., 2007). Generally, a dense, widely connected network promotes successful 

collaboration (Bodin and Crona, 2009). At the same time, relations to disparate groups might provide 

novel information and thus encourage innovation (Levy and Lubell, 2017). 

To date, there are few studies which focus on both endogenous network effects and the potential 

exogenous effects of farmers’ social networks (Matuschke and Qaim, 2009; Murendo et al., 2018). Only 

one study found evidence that network members’ characteristics (namely education level) influence 

individual farming behavior (adoption of no-till practices) (Keil et al., 2017). However, the influence of 

exogenous effects on adoption decisions might depend on the specific situation and technologies.  
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3.2.2 Agricultural climate change mitigation and farmers’ collective action  

Farmers’ collective action is increasingly recognized as an important approach to the management of 

agri-environmental problems (Bamière et al., 2013; Dupraz et al., 2009; Mills et al., 2011; Prager, 2012; 

2015; Vanni, 2013). Similarly, it could also enhance effective strategies for agricultural climate change 

mitigation. Firstly, a single farmer’s efforts are simply not enough to reduce GHG emissions to any 

significant extent (OECD, 2012, 2013). Secondly, GHG reduction is assessed as a classic collective 

action problem including challenges, such as freeriding, which can be overcome by farmers’ 

collaboration (Agarwal and Dorin, 2017; Ostrom, 1990; Stallman, 2011). Given that climate change 

mitigation often involves new and unfamiliar measures, the role of knowledge exchange within farmers’ 

networks is particularly important and can potentially shape perceptions on costs, risks and benefits of 

mitigation. Moreover, this learning and knowledge sharing can spread beyond the scope of the collective 

action scheme through ties between members and non-members (Bernard and Spielman, 2009; 

Ornetzeder, 2001).  

3.2.3 Hypotheses: Network effect, knowledge diffusion and collective action spillover 

Based on the theory outlined above and findings from previous empirical research, we derive three 

hypotheses (Appendix A3.1): 

1. Endogenous network effect hypothesis (H1): Farmers’ adoption of mitigation strategies is 

positively associated with strong social ties to other farmers who have adopted mitigation 

practices.  

2. Knowledge diffusion hypothesis – exogenous effect (H2): Farmers’ adoption of mitigation 

strategies is positively associated with strong social ties to farmers they deem to be 

knowledgeable about agricultural climate change mitigation. 

3. Collective action spillover hypothesis (H3): Farmers’ adoption of mitigation strategies is 

positively associated with ties to farmers participating in a collective action scheme to reduce 

agricultural GHG emissions. 

3.3 Methods  

All of our hypotheses describe social influence processes linking network structure (exchange relations 

of farmers) with individual level traits (adoption of mitigation strategies). An inherent feature of 

analyzing social influence processes in networks is that it cannot be assumed that the traits of interest 

(the dependent variable, here farmers’ adoption of mitigation strategies) are independent from each 

other. In fact, we explicitly want to study how the expression of a dependent variable 𝑦𝑖 of an actor 𝑖 is 

associated with its expressions 𝑦𝑗, 𝑦𝑘 in an actor’s network contacts 𝑗 and 𝑘. Therefore, we test our 

hypotheses using a network autocorrelation model (Dittrich et al., 2020).  
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Network autocorrelation models are an extension of normal regression models, which integrate one or 

more network autocorrelation parameter capturing the processes through which we assume network 

influence to occur. The network autocorrelation is estimated by specifying one or multiple weight 

matrices W to capture our theoretical models of influence relations. These weight matrices are used to 

add a weighted sum of attributes for an actor’s network neighbors to the linear predictor of the regression 

model for each actor. For a single influence process acting through W, with g actors in a network, the 

model can be written as: 

𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝜖, 𝜖 ∼ 𝑁(0𝑔, 𝜎2𝐼𝑔)        (1) 

where ρ is the network autocorrelation parameter capturing the strength of the network influence 

process. X is a covariate matrix as in a standard linear regression (capturing other, actor-level covariates 

that the model adjusts for) with associated regression coefficients in the β vector. The error terms are 

assumed to be independent and identically distributed7.  

We use a recently proposed, new Bayesian implementation of the network autocorrelation framework 

(Dittrich et al., 2020) that allows us to test our hypotheses by simultaneously estimating parameters 

relating to the strength of different autocorrelation processes occurring within four sub-networks of the 

overall network. Testing our hypotheses within this framework implies the use of four different model 

specifications. 

The first model, corresponding to equation (1) (simple network influence), is a first-order network 

autocorrelation model containing a single network weight matrix to estimate network autocorrelation 

understood as a single process acting uniformly throughout the whole network. If we choose a weight 

matrix 𝑊 to measure relations among farmers and the strength of these relations, an initial test of H1 

can be carried out based on the resulting posterior distribution of 𝜌.  

The second model, corresponding to equation (2), adds the coefficient 𝛽𝑛𝑒𝑡_𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 estimating the 

association between the aggregated knowledge of network contacts about climate change mitigation and 

farmers’ mitigation behavior. The model still uses the form described in (1) and the coefficient is 

estimated based on a variable in the covariate matrix 𝑋. The posterior distribution of 

𝛽𝑛𝑒𝑡_𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 allows for a test of H2.  

𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝑥𝛽𝑛𝑒𝑡𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒
∗ 𝛽𝑛𝑒𝑡𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒

+ 𝜖, 𝜖 ∼ 𝑁(0𝑔, 𝜎2𝐼𝑔)         (2) 

The third model is a fourth-order network autocorrelation model (3), which assumes different strengths 

of network autocorrelation within and between collective action participants and non-participants. To 

this end, the adjacency matrix 𝑊 is rearranged into four weight matrices 𝑊𝑎𝑎, 𝑊𝑎𝑏, 𝑊𝑏𝑏, 𝑊𝑏𝑎, which 

only contain entries on their respective process of interest and are separately row-standardized (Dittrich 

                                                      
7 Note that there is an alternative variant of the model in which autocorrelation is modelled by specifying 

autocorrelation in the error terms and which has a slightly different interpretation (see e.g., Leenders (2002)). 
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et al., 2020). 𝑊𝑎𝑎  denotes the sub-network of relations among participants, 𝑊𝑏𝑏 among non-participants, 

𝑊𝑎𝑏 and  𝑊𝑏𝑎 indicate an exchange between groups. 

With the collective action participants as a network subgroup a and non-participants as subgroup b, the 

model takes the form: 

𝑦 =  [
𝑦𝑎

𝑦𝑏
] =  [

𝜌𝑎𝑎𝑊𝑎𝑎     𝜌𝑎𝑏𝑊𝑎𝑏 

𝜌𝑏𝑎𝑊𝑏𝑎   𝜌𝑏𝑏𝑊𝑏𝑏 
] [

𝑦𝑎

𝑦𝑏
] + 𝑋𝛽 +  𝜀 

= (𝜌𝑎𝑎  [𝑊𝑎𝑎  0 
0       0

] + 𝜌𝑏𝑏  [0
0

  0 
   𝑊𝑏𝑏

]  +  𝜌𝑎𝑏 [  0  𝑊𝑎𝑏 
0       0

] + 𝜌𝑏𝑎  [0         0 
𝑊𝑏𝑎   0

] ) [𝑦𝑎
𝑦𝑏

] + 𝑋𝛽 +  𝜀 ,   (3) 

where 𝑦𝑎  and 𝑦𝑏 contain values of the dependent variable (adoption of mitigation practices) for 

participants and non-participants, respectively. The associated network autocorrelation 𝜌𝑎𝑎 , 𝜌𝑏𝑏, 𝜌𝑎𝑏, 

𝜌𝑏𝑎 are measures for the strength of autocorrelation within and between these sub-networks. When 

combined,  they constitute a more differentiated test of H1, relaxing the assumption of a homogeneous 

network influence process. Further, 𝜌𝑏𝑎 is a measure for the strength of autocorrelation acting on values 

𝑦𝑏 of non-participants based on their relations to collective action participants. The posterior distribution 

of 𝜌𝑏𝑎thus tests for H3, the collective action spillover hypothesis.  

The fourth model includes 𝛽𝑛𝑒𝑡_𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 to assess the extent to which the collective spillover effect 

might be due to unevenly distributed knowledge throughout the sub-networks and vice versa. This can 

be tentatively assessed in the change in 𝜌𝑏𝑎 after adjusting for  𝛽𝑛𝑒𝑡_𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒. The adjusted model takes 

the following form: 

𝑦 =  [
𝑦𝑎

𝑦𝑏
] =  [

𝜌𝑎𝑎𝑊𝑎𝑎     𝜌𝑎𝑏𝑊𝑎𝑏 

𝜌𝑏𝑎𝑊𝑏𝑎   𝜌𝑏𝑏𝑊𝑏𝑏 
] [

𝑦𝑎

𝑦𝑏
] + 𝑋𝛽 + 𝑥𝛽𝑛𝑒𝑡𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒

∗ 𝛽𝑛𝑒𝑡𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒
+  𝜀 

     = (𝜌𝑎𝑎  [𝑊𝑎𝑎  0 
0       0

] +  𝜌𝑏𝑏  [0
0

  0 
   𝑊𝑏𝑏

]  +  𝜌𝑎𝑏 [  0  𝑊𝑎𝑏 
0       0

] + 𝜌𝑏𝑎  [0         0 
𝑊𝑏𝑎   0

] ) [𝑦𝑎
𝑦𝑏

] + 𝑋𝛽 +

             𝑥𝛽𝑛𝑒𝑡𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒
∗ 𝛽𝑛𝑒𝑡𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒

+  𝜀        (4) 

All models were fit using the code provided in Dittrich (2020), which implements a Metropolis-Hastings 

algorithm to obtain the posterior distribution of model parameters in the statistical programing 

environment R (R Core Team, 2021). We used a recommended (multivariate) normal prior distribution 

with a mean of 0.1 and standard deviation of 1 for the network autocorrelation parameters and 

uninformative priors for all other parameters. We evaluated the model based on 5000 draws from the 

posterior (with a burn-in of 100 for the Metropolis-Hastings algorithm). All code and anonymized data 

needed to replicate the analysis, as well as additional sensitivity checks, can be accessed in a public, 

open repository under https://doi.org/10.5281/zenodo.7401318. 

 

https://doi.org/10.5281/zenodo.7401318
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3.4 Case study  

Our case study is located in the northern part of Canton Zurich in Switzerland. Agricultural production 

is quite diverse and ranges from dairy and meat production to arable crops, viticulture, fruit, and 

vegetables (Kreft et al. 2021a). The region is home to the farmers’ initiative AgroCO2ncept Flaachtal, 

which aims to collectively reduce agricultural GHG emissions.Footnote3 It is currently one of very few 

examples of collective climate change mitigation in agriculture. The project was founded in 2011 in a 

bottom-up process on the initiative of a single farmer, who was able to convince some colleagues to 

collaboratively reduce agricultural GHG emissions. Strategies for on-farm climate change mitigation 

were elaborated with the help of agricultural experts and extension services. In spring 2012, the project 

was opened for the participation of more farms. Since 2016, the Swiss Federal Office for Agriculture 

supports AgroCO2ncept, guaranteeing financial support during 6 years for a maximum of 30 

participating farms (BLW 2018). Participation is independent of farm type, farming system, or current 

emission level. At present, 25 farmers on 23 farms (two farms have multiple owners/managers) 

participate actively in AgroCO2ncept.Footnote4 The declared goal of AgroCO2ncept is to achieve a 

20% reduction in the aggregated overall GHG emissions from participating farms by 2022 as compared 

to 2016. This refers to an amount of 4500 t of CO2-equivalents mitigated by the end of the 6-year project 

period. The project comprises a focus on 39 measures in different fields, i.e., crop production (14 

measures), livestock farming (12), and energy use (13) (Kreft et al. 2020). When a farm joins the project, 

its current emission levels are assessed (status-quo assessment), and the farmer then receives extensive 

advisory service to choose the mitigation measures best suited to the farm’s specific structures and 

needs. The farmer receives a compensatory payment for each mitigation measure implemented. This 

procedure is designed to ensure mitigation efficiency tailored to the individual farm as no measures are 

stipulated and farmers can choose those most appropriate for their farm. 

AgroCO2ncept aims to prove that practical on-farm climate change mitigation has large potential for an 

effective reduction of GHG emissions in the agricultural sector. The initiative seeks to set an example 

for other farmers in the region and beyond. The central idea is that mitigation in agriculture cannot be 

achieved by single measures implemented by individual farmers but demands collective action and 

aggregated reduction targets beyond the single farm level. At the same time, mitigation should not result 

in productivity or income losses (AgroCO2ncept 2016). AgroCO2ncept embodies the characteristics of 

a local collective action scheme based on social ties among farmers and is perfectly suited as a case 

study for the hypotheses we want to test in this article. 
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3.5 Data collection and variables  

3.5.1 Data collection  

We interviewed 50 farmers, 25 of whom participate in the AgroCO2ncept initiative and 25 non-

participants located in the same region. The 25 non-participating farmers were chosen based on their 

proximity to the region of Flaachtal, where most of the AgroCO2nept farmers are located8.     

Interviews were structured and conducted based on a questionnaire. The interviews took place in 

November and December 2019. They lasted between 20 and 40 minutes and were carried out on site by 

four trained interviewers. The questions were asked and simultaneously shown to the respondents on a 

tablet. Answers were directly entered via touch screen by the respondent or the interviewer. 

We created the interview protocol using the newly developed digital network survey tool Network 

Canvas (https://networkcanvas.com). It is a free and open-source software designed to collect network 

data in a partly participatory way through intuitive and appealing visualizations and touch screen 

applications (Complex Data Collective 2016). This can help to make interviews less tedious and also 

reduces respondent burden (e.g., Eddens et al. 2017). Moreover, as the interviewees could enter certain 

answers themselves, particularly those related to potentially sensitive network information, it was 

possible to reduce the effects of social desirability and satisficing, which can lead to data inaccuracy 

(Perry et al. 2018). Structure, user-friendliness, and understanding of the interview questionnaire were 

pre-tested with three social network experts and six students of agricultural sciences. 

The questionnaire contained 29 questions for AgroCO2ncept participants and 25 questions for non-

participants and included the following sections: (i) personal characteristics of the respondent, (ii) 

agricultural climate change mitigation on the respondent’s farm, (iii) rosterFootnote6 and name 

generator questions to identify other farmers (alters) with whom the respondent communicates on 

agricultural climate change mitigation, including frequency of these exchanges, (iv) attributes of named 

alters (name interpreter), (v) relations among the named alters (alter-alter relations), and (vi) influential 

alters, based on the respondent’s perception. An additional roster containing the names of all 

AgroCO2ncept members was presented to non-participants to assess the contact between non-

participants and participants. 

The complete questionnaires, all resulting data sets plus the codebooks explaining the variables, are 

available in Kreft et al. (2021b) and freely accessible on the ETH Research Collection: 

https://www.research-collection.ethz.ch/handle/20.500.11850/458053. 

We supplemented the tablet-based interview data by incorporating data from previous work. We were 

able to match the data of 46 of the 50 interviewees with existing data from a larger survey on farmers’ 

adoption of climate change mitigation measures and behavioral characteristics such as climate change 

                                                      
8   Appendix A3.2 shows a map with the spatial location of the interviewed farms. 
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concerns and non-cognitive skills, as well as census data on farm structures and demographics (Kreft et 

al. 2020). 

3.5.2 Variables  

Table 3.1 gives an overview of the variables used in our analysis as well as their summary statistics 

within our sample. More precisely, it shows the dependent variable of mitigation adoption, the relevant 

network variables as well as all additional covariates, i.e., farmers’ behavioural characteristics, 

demographics and farm structural characteristics. Details relating to the covariates included are 

presented in Appendix A3.4.  
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Table 3.1: Overview and summary statistics of variables included in the model  

Variable Variable specification 
Total 

sample 

Farmers participating 

in AgroCO2ncept 

Farmers not 

participating in 

AgroCO2ncept 

Number respondents (n)  50 25 25 

Dependent variable      

Mitigation adoption  Share (0-100%) of mitigation 

measures adopted from all potential 

measures suitable for the specific 

farm type (mean and (SD)) 

0.41 

(0.19) 

 

0.43 (0.19) 
0.39 (0.19) 

 

Network variables      

Frequency of contact  

(realised)  

Ordinal variable: 1= once per year; 

5= every day 

1.71 

(1.23) 
2.32 (0.92) 1.31 (1.24) 

Network knowledge  

Climate change mitigation 

knowledge of network contacts  

Ordinal variable: 1= knows 

nothing; 5= knows a lot 

3.98 

(0.72) 
3.97 (0.70) 4 (0.77) 

Farmers’ behavioural 

characteristics  

 
   

Non-cognitive skills   

(self-efficacy and locus of 

control beliefs)  

Ordinal variable: 1= very low; 5= 

very high (mean and (SD)) 

(for modelling, a factor variable is 

created)   

3.35 

(0.88) 
3.74 (0.73) 2.96 (0.85) 

Climate change concerns; 

Swiss agriculture 

Assessment of climate change 

consequences for future of Swiss 

agriculture as a whole 

 

Ordinal variable: 1= very negative; 

5= very positive (mean and (SD))  

4.06 

(0.77) 
4.2 (0.65) 3.92 (0.86) 

Climate change concerns: 

farm 

Assessment of climate change 

consequences for future of own 

farm  

 

Ordinal variable: 1= very negative; 

5= very positive (mean and (SD)) 

3.6 (0.83) 3.68 (0.75) 3.52 (0.92) 

Farmers’ demographic 

characteristics 

 
   

Age   Age of the farmer in 2019 (mean 

and (SD)) 
52 (6.33) 48 (7.39) 55 (6.6) 

Education levels  

     Ag. apprenticeship 

     Ag. master certificate 

     Agri-technician         

     Technical college,     

      university 

     Missing           

Categorical variable  
 

24 

14 

3 

5 

4 

 

9 

10 

2 

3 

1 

 

15 

4 

1 

2 

3 

Farm structural 

characteristics  

 
   

AgroCO2ncept  Participation (0,1) 25 25 0 

Farm type  

Categorical variable  

(in model: Arable Farming and 

Livestock, all others as baseline) 

   

    Arable Farming  9 5 4 

    Livestock  29 16 14 

    Special crops  4 3 1 

    Others  4 1 3 

   Missing  4  3 

 

Farm size   

 

Total agricultural land in ha  

(mean and (SD)) 

(for modeling, the log is used)  

34.70 

(27.37) 
44.26 (33.92) 24.73 (13.86) 
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The dependent variable of interest is defined as the share of mitigation measures adopted out of all those 

measures which are suitable for the farm type. In a previous survey, 13 mitigation measures were chosen 

based on GHG reduction potential, relevance and suitability for Swiss agriculture (Kreft et al., 2020).9 

We use the frequency of exchanges regarding agricultural climate change mitigation as the basis for 

testing the Endogenous Network Effect Hypothesis (H1) which implies an association between strong 

social ties and the adoption of mitigation strategies. Frequency of exchange is assessed by an ordinal 

variable with five levels10. We conceptualize exchange as an inherently reciprocal concept and thus 

calculate the presence and strength of an undirected dyadic exchange relation 𝐸𝑢𝑖𝑗
 between any two 

survey respondents 𝑖  and 𝑗, as the mean of their respective answers regarding the strength of their 

exchange 𝐸𝑑, thus 𝐸𝑢𝑖𝑗
= 𝐸𝑢𝑗𝑖

=
𝐸𝑑𝑗𝑖

+𝐸𝑑𝑖𝑗 

2
. A value of 0 indicates the absence of exchange. We row-

standardized the undirected, weighted network adjacency matrix capturing the network of exchange 

relations among farmers (Leenders, 2002) to construct the 50×50 (given that n=50) weight matrix 𝑊. 

We rely on the aggregate assessment of a farmer’s mitigation knowledge, as rated by others, to test the 

Knowledge Diffusion Hypothesis (H2) which suggests an association between the mitigation knowledge 

of network contacts and adoption of mitigation strategies. Respondents were asked to evaluate their 

exchange partners’ knowledge about agricultural climate change mitigation on a five-point ordinal 

variable (from knows nothing to very knowledgeable). Since each farmer was rated on the basis of the 

mean score assigned to them by their various exchange partners, the score is a crowd-sourced assessment 

of farmers’ knowledge, as evaluated by their peers. Finally, we calculated the sum of the knowledge 

scores of all peers to assess the combined knowledge of a farmer’s network contacts, the main point of 

interest for H2. This approach helps to corroborate farmers’ individual assessment of their peers’ 

knowledge and to obtain a more realistic estimate. 

A binary variable was created for each farmer indicating participation (1) and non-participation (0) in 

the collective action scheme AgroCO2ncept to test the Collective Action Spillover Hypothesis (H3) 

relating to its potential impact on adoption of mitigation strategies over the wider network. Based on the 

network of exchange relations among farmers, this allows us to effectively divide the network into four 

components. One component describes the network of exchange relations among participants, a second 

component relates to networking among non-participants and a third and fourth component cover  

networks (and hypothesized influence pathways) from participants to non-participants and vice versa. 

Accordingly, the adjacency matrix 𝑊 is rearranged into four weight matrices, which are separately row-

standardized (Dittrich et al., 2020, p. 175).  

 

  

                                                      
9 For further information on mitigation measures please refer to the Appendix A3 (table A 3.1).  
10 1 = Once per year; 2= Every few months; 3 = Once per month; 4 = Once per week; 5= Every day 
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3.6 Results  

3.6.1 Descriptive network statistics  

Table 3.2 summarizes the descriptive statistics of the total network as well as the two sub-networks of 

AgroCO2ncept participants and non-participants.  

Table 3.2: Statistics of farmers’ networks  

 

Total network 

Network of 

AgroCO2ncept 

participants 

Network of non-

participants 

Number of nodes 50 25 25 

Number of edges 133 74 6 

Mean tie-strength 1.3 1.6 1.3 

 

Each sub-network comprises 25 nodes (farmers). There are 133 edges (based on exchanges about 

climate change mitigation) between all farmers in the whole network, whereby the network of 

AgroCO2ncept participants is much denser (74 ties) than that of non-participants (6 ties). This is partly 

due to the different approaches of data collection for the two groups of participants (roster vs. free name-

generator). There are 53 ties between the two sub-networks. The majority of ties are workmates, club 

colleagues and friends, while some of these also overlap (see Appendix A3.5 for more information on 

tie distribution and overlap). On average, ties are slightly stronger in the AgroCO2ncept network (1.6), 

i.e., exchanges are more frequent than in the overall network (1.3).  

The degree of centrality (between 0 and 1) depicts just how centralized a network is. A maximally 

centralized network is star-shaped with only one central actor connected to everyone else (Freeman, 

1979). The AgroCO2ncept network is much more centralized (0.7) than the total network (0.4). This is 

mainly due to the fact that the initiative was originally set up and formed by one to three central actors 

(see Appendix A3.4 for additional information on the distribution of degree centrality).  

Figure 3.1 gives a visual impression of the networks. Black dots represent AgroCO2ncept participants, 

grey dots refer to non-participants. The ties connecting the farmers capture regular exchange about 

climate change mitigation and are weighted by frequency of contact. Larger nodes depict higher shares 

of adopted mitigation measures. As mentioned before, some ties exist between the two sub-groups, 

indicating a strong integration of AgroCO2ncept members within the region. 
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Figure 3.1: Total network ties regarding regular exchange on agricultural climate change mitigation. Black dots 

represent AgroCO2ncept participants, grey dots represent non-participants. The size of the nodes represents the 

share of adopted mitigation measures. The strength of the connecting lines represents the frequency of exchange.   

.   

Figure 3.2 shows four scatterplots capturing important features of farmers’ individual networks in 

relation to their mitigation adoption. The size of the network (number of ties) increases along the 

mitigation gradient, i.e., farmers who adopt more mitigation measures have larger exchange networks. 

The mean strength of all ties in a farmers’ network is relatively independent of mitigation adoption with 

most farmers exchanging on mitigation with their peers once or a few times per year. Betweenness 

centrality measures the number of shortest paths that go through a node, in other words the extent to 

which the actor controls the flow of information within the network (Freeman, 1979). In our sample, 

betweenness centrality of farmers increases with mitigation adoption, i.e., farmers adopting more 

mitigation measures have more shortest paths going through them.   

Moreover, the mean mitigation share of contacts correlates with farmers’ own mitigation: the contacts 

of high adopters have a higher share of adopted mitigation measures than the contacts of low adopters.  
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Figure 3.2: Farmers’ individual mitigation adoption against different network traits. Black dots represent 

AgroCO2ncept participants and grey dots represent non-participants. The y-axis shows the share of adopted 

mitigation measures compared to the possibly relevant number of measures for the respective farm type. The x-

axis represents four different characteristics of farmers’ personal networks: 1) Undirected degree centrality 

(number of ties), 2) Undirected betweenness centrality (number of shortest paths going through the node), 3) Share 

of adopted mitigation measures of contacts and 4 )Share of adopted  mitigation measures of contacts. 

3.6.2 Network autocorrelation estimation results  

Figure 3.3 shows the results of the four network autocorrelation models in the form of a coefficient plot. 

Our report covers the network variables of greatest interest. A coefficient plot with all covariates and a 

detailed table showing the coefficient magnitude and confidence interval of all variables can be found 

in Appendix A3.7 and A3.8.  

Our results indicate that there is uncertainty regarding both the sign and magnitude of the endogenous 

network association effect (H1) specified as a homogenous process across the whole network (averaged 

network influence). The averaged mean of the network influence is around zero in both the simple 

influence model and also after adjusting for knowledge diffusion ((1) and (2), Figure 3.3)). It is just as 

likely to be positive as it is to be negative and the 88% credible interval is evenly distributed around 

zero, containing both small and larger estimates.  

We find a reliably positive effect for the association of aggregated knowledge about climate change 

mitigation in a farmer’s network contacts (H2) throughout both models containing the parameter 

(knowledge diffusion model and fourth-order model plus knowledge diffusion  ((2) and (4), Figure 3.3)). 

The probability of a positive association is high. In terms of magnitude, the posterior mean indicates a 

relatively significant effect (the effect should be interpreted as the ceteris paribus change given a one 

standard deviation increase and considering that values of 𝑦𝑖  can range between 0 and 1). However, the 

credible interval also contains relatively small parameters.  
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Figure 3.3: Estimated posterior distribution of network-related parameters for the four models tested. Network influence parameters each capture the impact of the adoption of 

climate change mitigation measures in a farmer’s contact network on the farmer’s own adoption of measures, either on average across the whole network (averaged network 

influence) or within and between sub-networks. The parameter for knowledge of network contacts can be interpreted as the marginal effect of a one unit increase in knowledge 

about mitigation measures among a farmer’s network contacts on the share of adoption of climate change mitigation measures predicted for a farmer. Points represent median 

parameter estimates, horizontal spikes the 88% credible interval. Curves represent the distribution, with light grey areas for negative parameter values and dark grey areas for 

positive values. The posterior distribution for each parameter captures the uncertainty the model assigns to the parameter’s influence. For example, a relatively wide distribution 

centered around zero indicates that the model fit neither supports a strong belief in the parameter having a certain sign (positive or negative), nor in the magnitude of its effect. In 

contrast, for example, if the posterior distribution covers a smaller range of large values and contains only few negative values, the model fit supports a stronger belief in the effect 

being both large and positive.. 



78 

 

Moreover, we find evidence for the collective action hypothesis (H3) in both fourth-order models ((3) 

and (4), Figure 3.3)). It is almost certain that the relevant parameter 𝜌𝑎𝑏 (influence of AgroCO2ncept 

on non-participants network, Figure 3) is positive, given the proportion of its posterior distribution which 

is positive. Again, the magnitude of the effect is slightly uncertain, given our sample size. Nevertheless, 

our models justify the assumption of some, potentially influential, collective action spillover. 

Interestingly, the model results are much more inconclusive for all other network autocorrelation 

parameters in the fourth-order model. This would suggest that there is little endogenous network 

influence beyond the collective action spillover effect. This finding justifies the application of a network 

autocorrelation model that can differentiate various influence processes and does not assume a uniform 

process acting throughout the network.  

3.7 Discussion  

Based on a regional case study, this article investigates the suggestion that farmers’ decisions on the 

adoption of climate change mitigation measures are influenced by the behavior and characteristics of 

their social network. We used a comprehensive data set comprising survey, census and interview data. 

This means that the sample was rather small given the task of face-to-face interviews. However, it 

suffices for the purpose of this study, which aims to explore a specific regional famers’ network and 

local influence of the collective action initiative AgroCO2ncept. In our model, we account for this using 

a Bayesian approach, which is ideal for small networks as it does not rely on asymptotic approximations 

for standard errors (Dittrich et al., 2020). However, larger studies would be needed to provide more 

conclusive evidence and reduce any remaining doubts about the magnitude of estimated effects resulting 

from the smallness of our sample. The descriptive analysis of the entire network shows that 

AgroCO2ncept participants maintain closer connections with each other than non-participants. 

However, the comparison between the two groups must be treated with caution given the different 

approach applied for the network data collection: AgroCO2ncept members were provided with a full 

roster containing the names of all other participants from which they could select the exchange contacts 

they considered relevant. In addition, they could name any other persons they thought appropriate. Since 

there was no pre-defined network boundary for non-participants, they were asked to name, off-the-cuff, 

persons with whom they had regular exchanges on the topic. As it is far easier to identify names from a 

roster than to remember people spontaneously, this method can lead to potential recall bias (Brewer, 

2000). During the interviews, this effect was counteracted by prompting respondents and repeating the 

question several times (Adams et al., 2021). 

The descriptive analysis of farmers’ individual networks revealed that, on average, farmers with a larger 

exchange network adopt more mitigation measures. This is in line with previous literature showing a 

positive influence of social networks on e.g., adoption of agri-environmental measures (e.g., Mathijs, 

2003; Moschitz et al., 2015; Riley et al., 2018; Schneider et al., 2009; van Dijk et al., 2015, 2016).  
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In addition, our detailed data set enabled us not only to explore potential endogenous network effects, 

i.e., the influence of the mitigation behavior of peers, but also to investigate exogenous network effects, 

i.e., the influence of certain characteristics of farmers’ contacts. This differentiation is quite important 

since we find no evidence for a uniform association between the mitigation adoption of peers and 

farmers’ own adoption across the whole network. However, we do find a positive association between 

adoption and strong ties to farmers who are knowledgeable about agricultural climate change mitigation.  

In contrast to previous studies (Matuschke and Qaim, 2009; Murendo et al., 2018), our findings indicate 

that adoption depends more strongly on mitigation knowledge existing within farmers’ personal 

networks than on the actual mitigation behavior of peers. However, the type of technology or practice 

may determine the extent to which the characteristics of peers influence adoption (Murendo et al., 2018; 

Wuepper et al., 2017). We identify two main reasons which can possibly explain this phenomenon in 

the specific context of agricultural climate change mitigation. Firstly, the topic is still quite a relatively 

new, unexplored option for many farmers in Switzerland, and misconceptions regarding mitigation 

measures (e.g., their efficacy) represent one of the major barriers to adoption (Karrer, 2012; Peter et al., 

2009). Consequently, information and social learning through knowledge exchange are crucial for 

mitigation adoption. Secondly, many agricultural mitigation practices are not specifically tailored to the 

reduction of GHG emissions but primarily target other agri-environmental objectives, e.g., no-tillage to 

increase soil fertility (Smith et al., 2007). This makes it difficult for farmers to recognize and imitate 

mitigation behavior of their peers and neighbors since it may not be easy to identify the implemented 

measures as such. Again, in this situation, an active exchange of knowledge could play a vital role in 

the adoption decision.  

However, knowledge of peers is based on farmers’ statements and can thus be prone to measurement 

error since farmers might not be able to accurately assess their contacts’ mitigation knowledge. We try 

to counteract this potential inaccuracy by taking the mean of the knowledge ascribed to a person by all 

connected farmers in the network. Moreover, we argue that farmers’ perception of their peers’ 

knowledge is the relevant parameter for behavioral change (Matuschke and Qaim, 2009).    

We also explored how the climate protection initiative AgroCO2ncept influenced mitigation behavior 

of non-participating farmers in the region. Our findings indicate that mitigation by farmers who belong 

to AgroCO2ncept has a positive impact on mitigation adoption of connected farmers who are not part 

of the initiative. Hence, in addition to our first results, we find evidence for an endogenous network 

effect in part of the network (i.e., only from AgroCO2ncept members to non-members). This is possibly 

explained by the fact that farming practices adopted by AgroCO2ncept farmers are more clearly related 

to climate change mitigation since the project and its climate protection objectives are well known in 

the region. Thus, identification of mitigation measures, observation and finally imitation of measures 

implemented by AgroCO2ncept members is easier than the observation of (potentially less obvious) 

mitigation behavior of peers who are not part of the initiative. Hence, our result suggests a local spillover 
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effect of the collective action initiative. Therefore, we also see our study as a contribution to the literature 

on the spread of collective grassroots innovations, which is still relatively limited in the agricultural 

context (Ornetzeder and Rohracher, 2013; Seyfang and Smith, 2007; Vaiknoras et al., 2020).  

Finally, social networks can help to overcome economic barriers of mitigation adoption through 

collaborative action (Bouamra-Mechemache and Zago, 2015). This is particularly relevant where 

potentially high investments, as well as transaction costs might prevent the adoption of climate change 

mitigation measures (Wreford et al., 2017). 

3.8 Conclusions 

In this article, we analysed social network data of 50 farmers in a region of Switzerland and explored 

the relationship between social relations regarding knowledge exchange and the uptake of on-farm 

climate change mitigation. In general, we find that farmers with larger networks adopt more climate 

change mitigation measures. Our results indicate that the level of mitigation knowledge present within 

a farmer’s network is crucial for mitigation adoption. However, it seems that farmers attach less 

importance to the actual mitigation behaviour of peers when deciding on their own adoption of 

mitigation measures. We also find that strong ties to members of the regional farmers’ initiative 

AgroCO2ncept Flaachtal are positively associated with mitigation uptake, suggesting a local spillover 

effect. In contrast to our findings regarding the whole network, the actual mitigation behaviour of 

AgroCO2ncept members is relevant for the mitigation adoption of connected non-members. 

Our findings have policy implications. We show that social network integration, and especially 

knowledge diffusion within such networks, can contribute to a better understanding of farmers’ decision-

making with regard to climate change mitigation. This is particularly important for effective policy 

designs aiming at a reduction of GHG emissions in agriculture. More specifically, policymakers should 

be aware of the relevance of social learning and informal knowledge exchange in farmers’ mitigation 

adoption. In a relatively new field of practice, such as on-farm climate change mitigation, accumulation 

and exchange of knowledge with well-informed peers and neighbours can contribute to behavioural 

change. Therefore, the creation of (regional) networks and platforms for farmers focusing on, and 

encouraging an active exchange about, the reduction of agricultural GHG emissions, is an essential step 

towards achieving the ambitious goals that have been set.  Basically, while it is not possible to oblige 

people to learn from others, it is important to create the right environment for social learning to take 

place (Rist et al., 2007). Farmers’ overall mitigation knowledge could be improved if agricultural 

schools were to include climate change mitigation as a part of their general curriculum and extension 

agents included the topic regularly in their services.  

Moreover, our findings suggest that promotion and support of regional (bottom-up) farmers’ initiatives 

can be a useful tool for policymakers as it can generate behavioural change beyond the scope of the 

project itself. To this end, the goals and measures of these schemes should be communicated more 
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widely so that others can learn by observing members’ practices. In addition to the benefits relating to  

social learning promotion and potential spillover effects, collective action is particularly promising as 

an effective and efficient path towards agricultural climate change mitigation since it also has 

considerable cost and risk reduction potential (Bouamra-Mechemache and Zago, 2015; Hodge and 

McNally, 2000).  

Our study also has implications for future research. Findings show that social networks, and especially 

contact to well-informed peers, play an important role in farmers’ behavioral change. This implies that 

relational data of this kind should be collected more regularly and included in future research also 

beyond climate change mitigation, e.g., to explain farmers’ adoption of agri-environmental measures. 

Particularly, more studies on the influence of relevant characteristics of network connections (instead of 

their mere existence) can contribute to deeper understanding of farmers’ decision making in response to 

their social environment. Additional data, e.g., on type of relationships or other sources of information, 

could also aid interpretation of results and help to explain network structures more thoroughly. 

Moreover, future research on the economic and ecological potential of farmers’ collective action 

schemes is of particular relevance in the context of agricultural climate change mitigation. 
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3.11 Appendix A3 

A3.1: Hypotheses  

Figure A3.1 illustrates the three hypotheses about the effect of social networks on adoption of climate 

change mitigation measures.  

 

Figure A3.1: The hypothesized network effects on individual farmers’ mitigation 
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A3.2: Location of farms  

Figure A3.2 shows the approximate location of the farms reviewed, with red dots representing 

AgroCO2ncept participants and blue dots representing non-participants.   

 

 

Figure A3.2: Approximate locations of the farms reviewed.  
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A3.3: Mitigation measures  

Table A3.1 gives an overview on the mitigation measures included in the original survey. Seven 

measures related to livestock and manure management, three to crop production and three to energy 

production and use. The measures were chosen based on GHG reduction potential, relevance and 

suitability for Swiss agricultural systems.  

 Mitigation measure 
Main GHG reduction 

mechanism 
References 

Livestock 

and manure 

management 

Replacement of (imported) 

concentrate feed with 

domestic legumes (e.g., 

peas, beans, lupines) 

Reduced transport and land-

use-changes for soy 

cultivation overseas 

(Baumgartner et al., 2008; 

Hörtenhuber et al., 2011; 

Knudsen et al., 2014) 

Reduction of concentrate 

content to max. 10% of feed 

ration 

Reduced concentrate 

production (e.g., mineral 

fertilizer, energy use) 

(Schader et al., 2014) 

Increasing the number of 

lactations per dairy cow 

(min. 5) 

Reduced CH4-emissions per 

kg milk over entire lifespan 

of cows and reduced 

replacement rate 

(Mellado et al., 2011; 

Vijayakumar et al., 2017) 

Use of dual-purpose cattle 

breed (e.g., original Swiss 

brown) 

Reduced number of animals 

needed for meat and milk 

production (mainly CH4) 

(Schader et al., 2014; 

Zehetmeier et al., 2012) 

Introduction of feed 

additives (e.g., tannins, 

lipids etc.) to feed ration of 

cattle 

Reduced enteric 

fermentation by partly 

inhibiting methanogenesis in 

rumen (reduced CH4-

emissions) 

(Jayanegara et al., 2020; 

Sinz et al., 2019; Wang et 

al., 2017) 

Coverage of manure storage Reduced ammonia (NH3-) 

emissions due to anaerobic 

conditions under coverage 

(Chadwick et al., 2011) 

Composting of manure Reduced N2O-and CH4-

emissions due to aerobic 

decomposition in compost 

(Necpalova et al., 2018; 

Pattey et al., 2005) 

Crop 

production 

Manure application with 

drag hoses 

Reduced NH3-emissions 

(i.e., N2O) from manure and 

slurry application 

(Thomsen et al., 2010; 

Weiske et al., 2006; Wulf et 

al., 2002) 

Cover and catch crops in 

rotation 

Carbon sequestration in soils  (Poeplau and Don, 2015) 

Min- or no-tillage Reduced N2O emissions and 

increased soil carbon 

sequestration 

(Alskaf et al., 2021; 

Mangalassery et al., 2014; 

Six et al., 2004) 

Energy 

production 

and use 

Solar panels for energy 

production 

Reduced need for fossil fuels 

in heating and energy use of 

the farm 

(Alig et al., 2015) 

Fermentation of manure in 

biogas-plant 

Reduced need for fossil fuels 

and manure storage 

(Massé et al., 2011; Meyer-

Aurich et al., 2012) 

Drive tractors fuel-efficient 

(eco-drive mode) 

Reduced fuel consumption 

of tractor driving 

(Schader et al., 2014; Stadler 

and Schiess, 2000) 
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A3.4: Covariates  

We use additional covariates derived from the previous survey (Kreft et al., 2020) and included in matrix 

𝑋 to adjust for potential associations between farmers’ individual characteristics, their farm structures 

and their mitigation behavior.  

We include a factor variable consisting of 5 items (questions) to measure farmers’ non-cognitive skills, 

namely self-efficacy and locus of control, which have been shown to affect farmers’ mitigation decisions 

(Kreft et al., 2021a). We also include a covariate measuring concerns about climate change and its 

consequences for agricultural production in Switzerland as well as for the future of the farmer’s own 

farm. Climate change concerns are an arguably important factor for willingness to adopt mitigation 

practices (Haden et al., 2012). In addition, we adjust for farmers’ age, level of education as well as farm 

size (log-transformed) and farm type (arable farming, livestock and other). These variables are among 

the standard variables investigated in research on farmers’ adoption of sustainable practices 

(Defrancesco et al., 2008; Knowler and Bradshaw, 2007; Lastra-Bravo et al., 2015).  

Most farmers in both subgroups (AgroCO2ncept participants and non-participants) focus on livestock 

production, mainly dairy or meat production. The second most common main activity is arable farming 

followed by special crops (e.g., viticulture) and others. The mean farm size of the whole sample is 34.7 

hectares, whereby AgroCO2ncept farms are considerably larger (44.3 hectares) than non-

AgroCO2ncept farms (24.7 hectares). However, the variation among farm sizes is quite large. On 

average, AgroCO2ncept participants are younger and their education level is slightly higher (most of 

them hold the agricultural master certificate) than that of non-participants (mostly agricultural 

apprenticeship). On average, farmers in our sample adopt 41 percent of the surveyed mitigation 

measures suitable for their farm type. In contrast to our initial hypothesis, the share of mitigation 

measures adopted by AgroCO2ncept participants (43%) is not much higher than that of non-participants 

(39%)11.   

Mean non-cognitive skills, namely self-efficacy and locus of control with regard to successful climate 

change mitigation, are higher in AgroCO2ncept farmers (3.74) than in non-participants (2.96)12. 

Concerns about the consequences of climate change for Swiss agriculture and the own farm do not differ 

much between the two groups. All covariates in matrix X were standardized by centering and dividing 

by two standard deviations (Gelman, 2008). 

 

 

                                                      
11 To some extent, this could be because AgroCO2ncept members adopt additional measures (e.g., input of vegetable coal), 

which were not included in the survey. Also, we do not know the counterfactual scenario, i.e., how many mitigation measures 

farmers would adopt if they were not participating in AgroCO2ncept. 
12 For more details on the influence of non-cognitive skills on mitigation adoption, see also Kreft et al., 2021. 
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A3.5: Friends and work relations across entire network  

 

    Figure A3.3: Adjacency matrix of friend relations (left) and work relations (right) in AgroCO2ncept participants and non-participants.  
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A3.6: Distribution of centrality measures  

 

Figure A3.4: Distribution of undirected degree centrality (i.e., number of undirected ties) and undirected betweenness centrality (i.e., number of shortest paths going through a 

node). Black bars depict AgroCO2ncept participants, grey bars represent non-participants.  
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A3.7: Plot of posterior distribution of parameters 

 

Figure A3.5: Estimated posterior distribution of parameters and all covariates for the four models tested. Points represent parameter estimates, horizontal spikes the 88% credible 

interval. Curves represent the distribution, with light grey areas for negative parameter values and dark grey areas for positive values. 
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A3.8: Detailed results: Posterior distribution of network autocorrelation model coefficients  

Estimates / Models 

(1) 

 

Simple influence 

(H1) 

 

(2) 

 

Simple influence 

plus knowledge 

diffusion (H2) 

(3) 

 

Fourth-order 

(H3) 

(4) 

 

Fourth-order 

plus knowledge 

diffusion 

(H1 +H3) 

Parameters associated with 

hypotheses 
    

ρ (average network autocorrelation) 
-0.02 (0.44) 

[-0.26, 0.22] 

0.04 (0.60) 

[-0.19,0.27] 
  

aggregated knowledge of network 

contacts 
 

0.19 (0.99) 

[ 0.06,0.31] 
 

0.17 (0.96) 

[ 0.03, 0.31] 

𝜌𝑎𝑏 (agroconcept to non-participant 

network autocorrelation) 
  

0.31 (0.89) 

[-0.08, 0.69] 

0.18 (0.78) 

[-0.19, 0.57] 

Other covariates     

𝜌𝑎𝑎 (within agroconcept 

network autocorrelation) 
  

-0.10 (0.36) 

[-0.56, 0.34] 

0.09 (0.64) 

[-0.36, 0.54] 

𝜌𝑏𝑏 (within non-agroconcept 

network autocorrelation) 
  

0.08 (0.68) 

[-0.20, 0.37] 

0.09 (0.69) 

[-0.19, 0.37] 

𝜌𝑏𝑎  (non-participant to 

agroconcept) 
  

-0.02 (0.47) 

[-0.34, 0.29] 

0.02 (0.54) 

[-0.28, 0.31] 

Intercept 
0.42 (1.00) 

[ 0.31, 0.53] 

0.39 (1.00) 

[ 0.29,0.50] 

0.38 (1.00) 

[ 0.22, 0.54] 

0.34 (1.00) 

[ 0.19, 0.50] 

Age 
-0.04 (0.28) 

[-0.14, 0.07] 

-0.04 (0.28) 

[-0.14,0.06] 

-0.06 (0.20) 

[-0.17, 0.05] 

-0.04 (0.25) 

[-0.15, 0.06] 

Participation in AgroCO2ncept 
-0.06 (0.25) 

[-0.18, 0.07] 

-0.15 (0.05) 

[-0.30, -0.01] 

-0.09 (0.33) 

[-0.44, 0.27] 

-0.23 (0.15) 

[-0.58, 0.13] 

Farm type: arable farming 
-0.01 (0.44) 

[-0.14, 0.11] 

-0.04 (0.31) 

[-0.16,0.08] 

-0.02 (0.41) 

[-0.15, 0.11] 

-0.03 (0.35) 

[-0.16, 0.09] 

Farm type: livestock 
-0.05 (0.29) 

[-0.18, 0.09] 

-0.01 (0.46) 

[-0.14,0.13] 

-0.04 (0.33) 

[-0.19, 0.11] 

0.01 (0.55) 

[-0.14, 0.16] 

Concern about climate change 

impact on farm 

0.05 (0.75) 

[-0.07, 0.17] 

0.04 (0.69) 

[-0.08,0.15] 

0.02 (0.60) 

[-0.11, 0.15] 

0.02 (0.60) 

[-0.10, 0.14] 

Concern about climate change 

impact on Swiss agriculture 

-0.07 (0.21) 

[-0.20, 0.06] 

0.00 (0.51) 

[-0.13,0.13] 

-0.04 (0.34) 

[-0.18, 0.10] 

0.02 (0.60) 

[-0.12, 0.16] 

Education level 
0.07 (0.82) 

[-0.05, 0.17] 

0.03 (0.69) 

[-0.07,0.14] 

0.03 (0.67) 

[-0.09, 0.15] 

0.02 (0.59) 

[-0.10, 0.13] 

Non-cognitive skills 
0.08 (0.87) 

[-0.03, 0.20] 

0.04 (0.69) 

[-0.08,0.15] 

0.07 (0.81) 

[-0.05, 0.19] 

0.03 (0.64) 

[-0.09, 0.14] 

Log of total farm area (ha) 
0.12 (0.94) 

[ 0.00, 0.23] 

0.10 (0.92) 

[-0.01,0.21] 

0.11 (0.94) 

[ 0.00, 0.23] 

0.10 (0.91) 

[-0.02, 0.21] 
Posterior distribution for the model parameters. We report the posterior mean, the probability of the coefficient being positive 

(as the percentage of positive values) and the 88% percent credible interval. Coefficient reporting format: Posterior Mean (Pr 

(>0)) [88% percent credible interval].  

 

A3.9: Appendix References 

Alig, M., Prechsl, U., Schwitter, K., Waldvogel, T., Wolff, V., Wunderlich, A., Zorn, A., and Gaillard, 

G. (2015). Ökologische und ökonomische Bewertung von Klimaschutzmassnahmen zur Umsetzung auf 

landwirtschaftlichen Betrieben in der Schweiz. Agroscope Science 29, 160. 

Alskaf, K., Mooney, S., Sparkes, D., Wilson, P., and Sjögersten, S. (2021). Short-term impacts of 

different tillage practices and plant residue retention on soil physical properties and greenhouse gas 

emissions. Soil and Tillage Research 206, 104803. 



96 

 

Baumgartner, D., de Baan, L., Nemecek, T., Pressenda, F., and Crépon, K. (2008). Life cycle assessment 

of feeding livestock with European grain legumes. Life Cycle Assessment in the Agri-Food Sector. 

Chadwick, D., Sommer, S., Thorman, R., Fangueiro, D., Cardenas, L., Amon, B., and Misselbrook, T. 

(2011). Manure management: Implications for greenhouse gas emissions. Animal Feed Science and 

Technology 166-167, 514-531. 

Hörtenhuber, S. J., Lindenthal, T., and Zollitsch, W. (2011). Reduction of greenhouse gas emissions 

from feed supply chains by utilizing regionally produced protein sources: the case of Austrian dairy 

production. Journal of the Science of Food and Agriculture 91, 1118-1127. 

Jayanegara, A., Yogianto, Y., Wina, E., Sudarman, A., Kondo, M., Obitsu, T., and Kreuzer, M. (2020). 

Combination effects of plant extracts rich in tannins and saponins as feed additives for mitigating in 

vitro ruminal methane and ammonia formation. Animals 10, 1531. 

Knudsen, M. T., Hermansen, J. E., Olesen, J. E., Topp, C. F., Schelde, K., Angelopoulos, N., and 

Reckling, M. (2014). Climate impact of producing more grain legumes in Europe. In "Proc 9th Int Conf 

Life Cycle Assess Agri-Food Sect (LCA Food 2014), San Fr California, USA", pp. 8-10. 

Mangalassery, S., Sjögersten, S., Sparkes, D. L., Sturrock, C. J., Craigon, J., and Mooney, S. J. (2014). 

To what extent can zero tillage lead to a reduction in greenhouse gas emissions from temperate soils? 

Scientific reports 4, 1-8. 

Massé, D. I., Talbot, G., and Gilbert, Y. (2011). On farm biogas production: A method to reduce GHG 

emissions and develop more sustainable livestock operations. Animal feed science and technology 166, 

436-445. 

Mellado, M., Antonio-Chirino, E., Meza-Herrera, C., Veliz, F., Arevalo, J., Mellado, J., and De 

Santiago, A. (2011). Effect of lactation number, year, and season of initiation of lactation on milk yield 

of cows hormonally induced into lactation and treated with recombinant bovine somatotropin. Journal 

of dairy science 94, 4524-4530. 

Meyer-Aurich, A., Schattauer, A., Hellebrand, H. J., Klauss, H., Plöchl, M., and Berg, W. (2012). Impact 

of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources. 

Renewable Energy 37, 277-284. 

Necpalova, M., Lee, J., Skinner, C., Büchi, L., Wittwer, R., Gattinger, A., van der Heijden, M., Mäder, 

P., Charles, R., and Berner, A. (2018). Potentials to mitigate greenhouse gas emissions from Swiss 

agriculture. Agriculture, ecosystems & environment 265, 84-102. 

Pattey, E., Trzcinski, M., and Desjardins, R. (2005). Quantifying the reduction of greenhouse gas 

emissions as a resultof composting dairy and beef cattle manure. Nutrient cycling in Agroecosystems 

72, 173-187. 

Poeplau, C., and Don, A. (2015). Carbon sequestration in agricultural soils via cultivation of cover 

crops–A meta-analysis. Agriculture, Ecosystems & Environment 200, 33-41. 

Schader, C., Jud, K., Meier, M. S., Kuhn, T., Oehen, B., and Gattinger, A. (2014). Quantification of the 

effectiveness of greenhouse gas mitigation measures in Swiss organic milk production using a life cycle 

assessment approach. Journal of Cleaner Production 73, 227-235. 

Sinz, S., Marquardt, S., Soliva, C. R., Braun, U., Liesegang, A., and Kreuzer, M. (2019). Phenolic plant 

extracts are additive in their effects against in vitro ruminal methane and ammonia formation. Asian-

Australasian journal of animal sciences 32, 966. 

Six, J., Ogle, S. M., Jay Breidt, F., Conant, R. T., Mosier, A. R., and Paustian, K. (2004). The potential 

to mitigate global warming with no‐tillage management is only realized when practised in the long term. 

Global change biology 10, 155-160. 

Stadler, E., and Schiess, I. (2000). "Geprufte Traktoren, Zweiachsmaher und Transporter." Agroscope 

Tänikon  



97 

 

Thomsen, I. K., Pedersen, A. R., Nyord, T., and Petersen, S. O. (2010). Effects of slurry pre-treatment 

and application technique on short-term N2O emissions as determined by a new non-linear approach. 

Agriculture, Ecosystems & Environment 136, 227-235. 

Vijayakumar, M., Park, J. H., Ki, K. S., Lim, D. H., Kim, S. B., Park, S. M., Jeong, H. Y., Park, B. Y., 

and Kim, T. I. (2017). The effect of lactation number, stage, length, and milking frequency on milk yield 

in Korean Holstein dairy cows using automatic milking system. Asian-Australasian journal of animal 

sciences 30, 1093. 

Wang, S., Kreuzer, M., Braun, U., and Schwarm, A. (2017). Effect of unconventional oilseeds 

(safflower, poppy, hemp, camelina) on in vitro ruminal methane production and fermentation. Journal 

of the Science of Food and Agriculture 97, 3864-3870. 

Weiske, A., Vabitsch, A., Olesen, J., Schelde, K., Michel, J., Friedrich, R., and Kaltschmitt, M. (2006). 

Mitigation of greenhouse gas emissions in European conventional and organic dairy farming. 

Agriculture, ecosystems & environment 112, 221-232. 

Wulf, S., Maeting, M., and Clemens, J. (2002). Application technique and slurry co‐fermentation effects 

on ammonia, nitrous oxide, and methane emissions after spreading: II. Greenhouse gas emissions. 

Journal of environmental quality 31, 1795-1801. 

Zehetmeier, M., Baudracco, J., Hoffmann, H., and Heißenhuber, A. (2012). Does increasing milk yield 

per cow reduce greenhouse gas emissions? A system approach. Animal 6, 154-166. 

 



98 

 

Chapter 4: Quantifying the impact of farmers’ social networks on 

the effectiveness of climate change mitigation policies in 

agriculture13

Cordelia Krefta, Robert Hubera, David Schäferb, Robert Fingera  

a ETH Zurich, Agricultural Economics and Policy Group, Switzerland  

b University of Bonn, Economic Modeling of Agricultural Systems, Germany  

 

Abstract  

To effectively reduce agricultural greenhouse gas (GHG) emissions, farmers need to change current 

farming practices. Farmers' decision-making with respect to climate change mitigation and particularly 

the role of social and individual characteristics remain however poorly understood. We investigate how 

knowledge exchange within farmers’ social networks affects the adoption of mitigation measures and 

the effectiveness of a payment per ton of GHG emissions abated using an agent-based modelling 

approach. Our simulations are based on census, survey and interview data of 49 Swiss dairy and cattle 

farms to simulate the effect of social networks on overall GHG reduction and marginal abatement costs 

using an agent-based modelling approach. We find that social networks increase overall reduction of 

GHG emissions by 42% at a given payment of 120 Swiss Francs per ton of reduced GHG emissions. 

The per ton payment would have to increase by 380 CHF (i.e. 500 CHF/t CO2eq) to reach the same 

overall GHG reduction level if no social networks are present. Moreover, marginal abatement costs of 

farms to mitigate emissions are lower when farmers exchange relevant knowledge in social networks. 

The effectiveness of policy incentives aiming at agricultural climate change mitigation can hence be 

improved by simultaneously supporting knowledge exchange and opportunities of social learning in 

farming communities.   

 

Keywords 

Agricultural policy, climate change mitigation, social networks, agent-based modeling, reduction of 

agricultural greenhouse gas emissions, Switzerland  

  

                                                      
13 This chapter corresponds to the following article: Kreft, C., Huber, R., Schäfer, D., and Finger, R. (2022). 

Quantifying the impact of farmers' social networks on the effectiveness of climate change mitigation policies in 

agriculture. Submitted. 
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4.1 Introduction 

Agriculture is threatened by the impacts of climate change, but at the same time is a considerable source 

of global greenhouse gas (GHG) emissions and thus has a key role in climate change mitigation through 

the implementation of various on-farm measures (Smith et al., 2008). Consequently, reducing 

agricultural GHG emissions has become a central policy goal in many countries. This is also reflected 

in national action plans under the Paris Agreement where 95% of the parties include the agricultural 

sector (Horowitz, 2016). At the same time, agricultural production must ensure a secure and healthy 

food supply for a growing world population.  

To achieve GHG reduction goals while maintaining production levels, farmers must adapt current 

practices and implement effective and efficient mitigation measures. Policy incentives paying farmers 

for a reduction of GHG emissions can support the adoption of such measures. Understanding farmers’ 

decision-making with respect to climate change mitigation is crucial for design and implementation of 

such policy incentives. However, the role of behavioural factors in general and social learning in 

particular remains poorly understood in the context of farmers’ mitigation adoption (Kreft et al., 2021a; 

Niles et al., 2016). While bio-economic modeling approaches are key tools used for the (ex-ante) 

assessment of agricultural policies and their impact on actual GHG reduction potentials as well as 

production and farm incomes (Britz et al., 2021; De Cara et al., 2005; Lengers et al., 2014), they usually 

lack integration of individual behavioural factors and, in particular, social interactions. To account for 

such factors in the simulation of farmers’ decision-making, agent-based models have been combined 

with social network analysis (Will et al., 2020).  

In this article, we quantify the economic and policy relevance of social networks for efficient GHG 

emission reduction in agriculture. We integrate behavioural and social aspects of farmers’ mitigation 

adoption based on a unique combination of census, survey and social network data with economic 

decision-making in a bio-economic agent-based modeling approach, using a Swiss case study. More 

precisely, we quantify the impact of farmers’ social networks on the effectiveness of a results-based 

payment scheme for mitigation in terms of overall GHG emissions reduced and income changes, 

accounting for farmers’ individual preferences and farm level costs of mitigation measures.  

Previous literature has increasingly investigated the role of behavioural factors, namely cognitive, non-

cognitive, social and dispositional aspects for farmers’ adoption of sustainable practices (Dessart et al., 

2019). In this context, social networks have been identified as an important factor to explain adoption 

and diffusion of agricultural innovations or participation in agri-environmental schemes (Bandiera and 

Rasul, 2006; Conley and Udry, 2001; Conley and Udry, 2010; Morgan and Daigneault, 2015; Šūmane 

et al., 2018; Wood et al., 2014). With regard to climate change adaptation and mitigation in agriculture, 

however, only few studies have specifically accounted for social interactions of farmers (Berger and 

Troost, 2014; Perosa et al., 2021; Zheng et al., 2022). Thus, the economic importance of knowledge 
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exchange within farmers’ social networks and its impact on decision-making regarding on-farm climate 

change mitigation remains unknown. Particularly, to the best of our knowledge, the effect of social 

networks on effectiveness and efficiency of policies aiming at a reduction of agricultural GHG emissions 

has not been quantified in terms of GHG emissions reduced and emerging marginal abatement costs. 

To fill this research gap, we quantify and compare the influence of social and individual components 

affecting farmers’ decision-making in the context of a results-based payment for GHG emissions 

reduction. To this end, we apply the agent-based modelling framework FARMIND (FARM Interaction 

and Decision-making) (Huber et al., 2021). In this framework, the adoption of climate change mitigation 

measures is simulated as a two-tiered decision-making mechanism that not only considers costs and 

benefits of individual measures but also behavioural factors such as risk attitudes, farming preferences 

and socially oriented behaviour in social networks. In our modelling framework, this means that farmers 

interact by imitating the mitigation measures adopted by their peers. We use FARMIND in combination 

with the bio-economic farm optimization model FarmDyn (Britz et al., 2014; Britz et al., 2019) allowing 

us to calculate marginal abatement costs and GHG emissions associated with adoption of mitigation 

measures under the constraint that farms maintain their current production level. FARMIND and 

FarmDyn are parametrized based on farm census, detailed survey and empirical network data of 49 

dairy, suckler and bull-fattening farms located in a Swiss region (Kreft et al., 2021b; Kreft et al., 2020).  

To assess the effect of social networks on the effectiveness of a payment for reducing GHG emissions, 

we simulate farmers’ adoption decisions in four different scenarios and two modelling steps. We 

simulate the amount of GHG emissions and income changes based on personal knowledge exchange 

between socially connected farmers (here, we only refer to personal relations between farmers and do 

not consider broader types of networks such as social media platforms etc.). We compare this scenario 

to three counterfactuals i.e., i) GHG mitigation in the absence of a social network, ii) with ties between 

only few farmers (random network) and iii) with ties between all farms (complete network). We run the 

simulation with a subsidy per ton of GHG emissions reduced corresponding to the current carbon price 

in Switzerland and quantify the amount of reduced GHG emissions in each scenario. We then stepwise 

increase/decrease the payment to achieve the same reduction level across scenarios. This allows for 

quantifying the extent to which social networks can enhance the diffusion of mitigation practices and 

hence increase the effectiveness and efficiency of a payment to incentivize reduction of GHG emissions 

in agriculture. In addition, the simulation results quantify the income changes and marginal costs 

associated with the farm individual reduction in GHG emissions and thus indicate the economic value 

of information flow within farmers’ social networks. 

Our analysis contributes to better understand the impact of social networks on famers’ decision-making 

based on empirical data and to assess the impact of behavioural factors on the effectiveness of payments 

in the context of agricultural climate change mitigation. This allows to quantify the potential economic 

value of policies supporting social networks e.g., platforms for knowledge exchange in farming 
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communities as well as information campaigns or farmers’ trainings aiming at a reduction of agricultural 

GHG emissions. 

The remainder of this article is as follows: Section 2 provides some background on agricultural climate 

change mitigation and introduces the conceptual framework of our simulation study. Section 3 describes 

the applied agent-based modelling framework FARMIND and its application in this study. Section 4 

presents the results of our simulation, followed by a discussion and conclusions in sections 5 and 6, 

respectively. 

4.2 Background and conceptual framework  

4.2.1 Agricultural climate change mitigation  

Agriculture is a major source of GHG emissions, mainly methane (CH4) and nitrous oxide (N2O) 

(IPCC, 2019). Livestock supply chains alone are responsible for 14.5% of anthropogenic GHG 

emissions (Gerber et al., 2013) and more than half of emissions attributed to the entire global food 

system (Xu et al., 2021). Beef and milk production account for 41 and 20% of the entire livestock sectors 

emissions, respectively (Gerber et al., 2013). Hence, agriculture and especially the livestock sector can 

play a key role in the reduction of GHG emissions. A broad range of possible mitigation measures has 

been proposed for global agriculture or specific regions (IPCC, 2014; MacLeod et al., 2015). Examples 

of measures in livestock production are improved herd management, manure handling or manipulation 

of feeding practices (Gerber et al., 2013).  

Adopting mitigation measures is often associated with certain trade-offs for the farmer such as shifts or 

reduction of production and income losses due to (opportunity) costs of the measure (Eory et al., 2018). 

Marginal abatement cost curves that have been developed for agricultural GHG reduction in many 

countries and regions show that per unit costs of mitigation measures are quite heterogeneous (Beach et 

al., 2008; Jones et al., 2015; MacLeod et al., 2010; Moran et al., 2011; O’Brien et al., 2014; Pellerin et 

al., 2017). Most of these studies indicate that substantial GHG reduction (up to 25%) could be achieved 

at low costs or even at a net gain for the famer (Ancev, 2011; Eory et al., 2018). This raises the question 

why so-called “no-regret” options are not readily adopted. Besides transaction costs, farmers’ individual 

characteristics such as risk attitudes and climate change perceptions or lack of certain skills might 

prevent farmers from adopting despite low costs (McCarl and Schneider, 2000). On the other side, strong 

self-efficacy (believing in one’s own capabilities to successfully fulfil a given task) and a sense of 

innovativeness have been found to positively affect farmers’ adoption of on-farm measures to reduce 

GHG emissions (Kreft et al., 2021a; Niles et al., 2016). Moreover, social learning through knowledge 

exchange within farmers’ social networks and in particular frequent contact to knowledgeable peers can 

increase mitigation adoption (Kreft et al., 2023; Moran et al., 2013).  

To enhance adoption of farmers and achieve a reduction of GHG emissions from agricultural production, 

different forms of policy instruments have been proposed by the literature. Among them are financial 
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incentives such as subsidies, taxes and tradable permits, binding standards and regulations as well as 

information campaigns, trainings and advisory services (Eory et al., 2018; Gerber et al., 2013). While 

agriculture has so far mostly been excluded from emissions trading schemes, several countries pay 

farmers (indirect) subsidies for the adoption of mitigation practices (OECD, 2019). In contrast to the 

“polluter pays” principle implemented e.g., via a tax, we here apply the “beneficiary pays” principle and 

focus on a results-based subsidy (payment) that farmers receive per ton of CO2eq reduced. Paying 

farmers for reducing emissions, as a results-based payment scheme, is often better accepted by farmers 

and policy makers since it emphasizes property rights of farmers who are compensated for profit 

reductions caused by the provision of positive externalities (Pretty and Ward, 2001).   

4.2.2 Conceptual framework  

The conceptual background of our study is that farmers’ individual decision on the uptake of GHG 

mitigation measures is influenced by four different components (Figure 4.1). First, the uptake depends 

on heterogeneous cognitive, social, and dispositional factors. Farmers might perceive the 

implementation of these measures as risky or they are simply resistant to change (Dessart et al., 2019). 

Second, the uptake decision is influenced by the farmers’ social network and the adoption patterns of 

his/her peers. Third, whether a farmer will implement certain measures on the farm also depends on the 

underlying farm structures and processes i.e., farm size and type that result in farm individual abatement 

costs. Finally, the adoption decision is also influenced by the policy measures, i.e. the level of payment 

and how it changes the relation of costs and profits. 
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Figure 4.1: Conceptual framework. Farmers are influenced by their social networks, individual behavioural 

factors, cost and profits (i.e., income plus subsidy) of climate change mitigation as well as policies (direct 

payment). These factors affect the farmer’s decision to adopt mitigation measures. The decision ultimately 

determines the reduction of GHG emissions and associated income changes.     

While bio-economic modelling approaches can well represent farm specific abatement costs and the 

impact of a policy on the uptake of mitigation measures, the added value of our modelling framework 

is to combine the strength of farm-level modelling with behavioural factors and social network effects 

(see next Section). 

The key assumption of our conceptual framework is that farmers’ decisions on adopting GHG mitigation 

measures are also influenced by their social networks through the occurrence of social learning, i.e., 

learning from observation and interaction with others (Morgan, 2011; Munshi, 2004; Skaalsveen et al., 

2020; Wood et al., 2014). Hence, social learning is a key driver of technology and innovation diffusion 

processes in agriculture (Rogers, 2010; Shang et al., 2021; Xiong et al., 2016; Zhang et al., 2019). Here, 

we expect farmers to learn from exchanging on climate change mitigation and observing mitigation 

behaviour of the farmers in their social network. The assumed underlying mechanism of the social 

network effect is farmers’ (and most people’s) wish to conform to social norms to a certain extent: If a 

farmer substantially differs from their peers in terms of mitigation adoption,  they become uncertain and 

seeks to imitate the behaviour observed in the social network (Jager and Janssen, 2012). This initiates 

social learning processes and is also supported by rural sociology studies describing the phenomenon of 

“roadside farming”, where farmers observe their neighbours’ practices “over the hedge” (Beedell and 

Rehman, 2000; Burton, 2004; Le Coent et al., 2021). In fact, striving for conformity and a feeling of 

belonging was even found to sometimes have stronger implications for behavioural change than 
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financial incentives (Kuhfuss et al., 2013). Moreover, farmers in the here considered case study region 

were found to particularly learn from and imitate (perceived) knowledgeable peers (Kreft et al., 2023) 

and trust relationships can help to lower the perceived risks of adoption (Sligo and Massey, 2007).   

We assume that farmers choose a decision strategy based on individual risk attitudes and a preference 

for GHG mitigation measures that confines their choice options. The strategies to choose from are 

repetition, optimization, imitation, and non-adoption (see Section 4.3.2 for details). If a farmer chooses 

to imitate, they observe the mitigation measures adopted by their peers and will adopt the most cost-

efficient mitigation measures given a certain payment level for GHG emission reduction. Whether 

imitation and social learning take place in our simulations, depends on how susceptible the farmer is to 

tolerate dissimilarity between themselves and others as well as on the number of ties to others (density 

of the network). Based on the decision strategy and these social and individual factors, the farmer 

decides whether to adopt one or several mitigation measures. The adoption decision finally determines 

changes in farm income through profits and costs as well as the associated amount of GHG emissions 

reduced.  

To assess the impact of social networks on the effectiveness of the payments, we simulate a network of 

farmers based on real network data. Certain structural characteristics of networks such as density and 

centralization have been shown to impact information flow, learning and ultimately behavioural 

outcomes (Bandiera and Rasul, 2006; Bodin and Crona, 2009; Bourne et al., 2017; Levy and Lubell, 

2017). To account for different network structures, we compare the effect of the empirically observed 

network to three hypothetical scenarios with different network structure: i) No social ties, ii) random 

ties between few farmers and iii) ties between all farmers. Choosing an extreme counterfactual scenario 

without any (context specific) knowledge exchange between farmers allows to quantify the impact of 

the observed social network (i.e., the empirical knowledge exchange) on the effectiveness of a payment 

for GHG reduction and ultimately agricultural climate change mitigation1.  

4.2.3 Case study and mitigation measures 

We analyze the effect of four distinct on-farm mitigation measures to reduce GHG emissions from 49 

Swiss dairy, suckler and bull-fattening farms who took part in a previous online survey2 (Kreft et al, 

2020). The farms of our sample are situated in the region of “Zürcher Weinland” in the Northern part of 

Canton Zurich. Ten farms are mainly producing beef from fattening bulls, 15 farms are suckler farms 

and 24 farms are dairy farms. The average farm size is 35 hectares (mean farm size in Canton Zurich is 

25 hectares (Canton Zurich, 2018)) and 38 cattle livestock units (30 cattle livestock units per farm in 

Canton Zurich (Canton Zurich, 2018)).  

                                                      
1 Stylized visualizations of the compared network scenarios can be found in the ODD+D protocol in Appendix 

A5.   
2 The full survey, the dataset and the codebook describing the variables are available in Kreft et al. (2020) as well 

as freely accessible on the ETH Zürich Research Collection: http://hdl.handle.net/20.500.11850/383116. 
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The simulated mitigation measures were selected based on the previous online survey and according to 

their relevance in Swiss agricultural systems (Kreft et al., 2020) (see Table 4.1). Costs and benefits 

(GHG emissions reduction) for each measure separately and for all possible combinations thereof are 

derived from simulations with the bio-economic farm level model FarmDyn (Britz et al. 2019). Detailed 

information on the sub-model FarmDyn can be found in the ODD+D protocol in Appendix A5 (section 

“Sub-model”).  

As important boundary condition of our analysis, we assume constant production levels of beef and 

milk. This assumption is in line with current policy goals in Switzerland to keep a high level of national 

self-sufficiency in milk and meat (BLW, 2022). Hence, the optimization of farm incomes with one or 

several adopted mitigation measures excludes options of non-agricultural income generation as well as 

switching to different production types. Thus, certain shifts in production can take place on farm-level 

(e.g., in- or decreasing specific crop area, reducing the number of heifers bought) but are limited to the 

main type and level of production. The technical GHG reduction potential of each measure was derived 

from the literature (Table 4.1) and validated in expert interviews. The simulated maximum technical 

mitigation potential (i.e., all farms adopt all suitable measures) amounts to a reduction of 13.8 percent 

compared to baseline GHG emissions.  

Table 4.1 shows the four mitigation measures included in the model, the associated mechanism of GHG 

emissions reduction as well as main scientific references.  
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Table 4.1: Climate change mitigation measures included in the model and associated mechanisms of GHG 

emissions reduction. GHG reduction potentials and marginal abatement cost are based on simulations with the 

bio-economic farm level model FarmDyn (see section 4.3).  

Measure description 
Mechanism of GHG 

emissions reduction 

Mean on-farm 

GHG reduction 

potential  

(t CO2eq) 

Mean marginal 

abatement cost 

(CHF/tCO2eq) 

References 

a) Replacement of 

(imported) concentrate 

feed with legumes  

Replacing concentrate feed 

such as soybean with on-

farm produced legumes (e.g., 

peas or horse bean) mitigates 

up-stream CO2-emissions 

due to reduced transport and 

land-use changes  

4 1467 

(Baumgartner et 

al., 2008; 

Hörtenhuber et al., 

2010; Knudsen et 

al., 2014) 

b) Increase of lactation 

number per dairy cow 

Increasing the number of 

lactations per dairy cow 

reduces CH4-emissions of a 

herd due to a reduced 

replacement rate, i.e., less 

upraising of calves and 

heifers 

30 - 92 

(Alig et al., 2015; 

Grandl et al., 2019; 

Schader et al., 

2014) 

c) Use of emissions 

reducing manure 

application technique 

A close-to-ground 

application with drag hoses 

(or a similar technique) 

reduces N2O-emissions of 

manure brought to the field 

and indirect N2O emissions 

from other nitrogen 

compounds  

3 116 

(Thomsen et al., 

2010; Weiske et 

al., 2006; Wulf et 

al., 2002) 

d) Introduction of feed 

additives 

Introducing feed additives 

such as linseed reduces the 

CH4-emissions from enteric 

fermentation by inhibiting 

methanogenesis in 

ruminants2 

18 339 

(Engelke et al., 

2019; Hristov et 

al., 2013; 

Jayanegara et al., 

2020) 

 

We assume a results-based payment for GHG reduction based on the current CO2 price in Switzerland 

of 120 CHF/tCO2eq (Swiss Federal Council, 2022). To be able to compare the efficiency of the payment 

at the same overall GHG reduction level, we estimated the payment level at which the farms emit the 

same level of GHG emissions with and without social networks. To do so, we increased the payment in 

the counterfactual situation without social networks until GHG emissions reached the level observed in 

the simulation with social networks at 120 CHF/tCO2eq. This is the case at a payment of 500 CHF/t 

CO2eq, which also corresponds to the average marginal abatement costs if all farms were to adopt all 

measures. In our simulations, farmers thus receive a payment of a) 120 CHF and b) 500 CHF per ton of 

CO2eq reduced due to adoption of one or several mitigation measures.  

4.3 Methods: Agent-based modelling framework FARMIND  

The purpose of our modelling framework is to simulate the adoption of climate change mitigation 

measures on cattle farms (dairy, suckler and bull-fattening) in a Swiss case study region. More 

specifically, the model simulates the effect of a social network on the adoption decision considering 
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heterogeneous cognitive, social, and dispositional factors across individual farmers given a results-based 

payment for GHG emission reduction. Higher payments increase farmers’ adoption of climate change 

mitigation measures but farm structural factors, and farmers’ individual characteristics will constrain 

the uptake in our modelling framework. 

We apply the agent-based modelling framework FARMIND that integrates aspects of social network 

theory and cumulative prospect theory (Kahneman and Tversky, 1992) to link farmers’ heterogeneous 

cognitive, social, and dispositional factors to costs and benefits of climate change mitigation measures. 

FARMIND simulates decision-making of farmers as a two-step procedure: The farm individual 

decision-making includes first the choice of a strategy (i.e., repeating, optimizing, or imitating 

behaviour) and a subsequent (non-) adoption of the income maximizing mitigation measure. This type 

of model is suited to address our research questions since it combines standard bio-economic modelling 

based on farm optimization with farmers’ social interactions while accounting for individual behavioural 

characteristics (Huber et al., 2018). 

The key emerging phenomena of FARMIND in our analysis are the total amount of GHG emissions 

reduced by the adoption of farm individual mitigation measures and the change in income for the 

individual farm but also the whole farm community. To quantify the economic and environmental effect 

of social networks in the context of climate change mitigation efforts in agriculture, we compare the 

effect of empirical and hypothetical social networks in different scenarios. In the following, we describe 

our methodological approach in three steps i) agent characteristics, ii) agents’ decision-making and iii) 

set up of simulation and scenarios (full details of the model as well as uncertainty and sensitivity analyses 

are provided in the ODD+D protocol in Appendix A5). 

4.3.1 Agent characteristics  

In FARMIND, each agent is characterized by three sets of state variables (cf. ODD+D protocol): (1) 

Farm specific costs and GHG emissions reduction potentials of four on-farm climate change mitigation 

measures. Those are exogenous parameters calculated with the bio-economic farm level model 

FarmDyn, i.e., a farm optimization model parametrized with farm-specific census data (Britz et al., 

2019). Based on the calculated GHG emissions reduction, mitigation costs are partly compensated by a 

payment of per ton of CO2eq reduced. (2) Each agent has personal characteristics including cognitive 

factors (i.e., loss aversion, valuation of gains and losses and probability weighting), social factors (i.e., 

tolerance for being dissimilar to other farmers), a reference income that determines whether they are 

satisfied with the current income situation, and dispositional factors (i.e., preferences for specific 

mitigation measures). These are exogenous parameters based on a farm survey (Kreft et al., 2020)3. (3) 

A social network between farmers representing personal exchange of knowledge on climate change 

                                                      
3 The full survey, the dataset and the codebook describing the variables are available in Kreft et al. (2020) as well 

as freely accessible on the ETH Zürich Research Collection: http://hdl.handle.net/20.500.11850/383116. 
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mitigation derived from a social network analysis based on face-to-face interviews (Kreft et al., 2021b)4. 

Most individual and social factors could be taken into account without further transformation. 

Parameters based on survey questions with a Likert-scale (threshold levels) were transformed such that 

the relative proportion between agents was maintained (for details, see sections on input data, calibration 

and sensitivity analysis in the ODD+D protocol).  

The simulated overall baseline GHG emissions (without adoption of mitigation measures) in our sample 

amount to 14 240 tons of CO2eq, with a mean of 290 tons CO2eq per farm. On average, farms emit 7.6 

tons of CO2eq per ha of agricultural land and 10.6 tons of CO2eq per cattle livestock unit (see Appendix 

A4.1). However, total and per-unit emissions vary widely between farms. While the average simulated 

income of farms without adoption of mitigation measures (baseline income) is at 142 000 CHF per year, 

there is large heterogeneity of incomes across the whole sample. Mean farm income per ha of 

agricultural land is 3374 CHF and 6378 CHF per cattle livestock unit (see Appendix A4.1). Marginal 

abatement costs of adopting measures (without payments) are lowest for increasing number of lactations, 

in fact, several farms even save net costs by introducing this measure. Second most cost-effective is the 

use of drag hoses for manure application, followed by feed additives. Replacing concentrate feed by on-

farm produced legumes is by far the most expensive measure overall and at the same time shows the 

highest dispersion of marginal costs (Figure 4.2).  

                                                      
4 The questionnaires, the dataset and codebook describing the variables are available in Kreft al. (2021b) as well 

as through the ETH Zürich Research Collection: http://hdl.handle.net/20.500.11850/458053. 



109 

 

          

      

 

Figure 4.2: Distribution of baseline on-farm GHG emissions and farm income without adoption of mitigation 

measures as well as marginal abatement cost of single mitigation measures without any payments. Lower and 

upper boundaries of the grey box represent the 25th and 75th percentiles, respectively. Lower and upper error lines 

represent the 10th and 90th percentiles. The horizontal line inside the box depicts the median.   

The highest total reduction of GHG emissions is achieved in our sample with increasing the number of 

lactations per dairy cow, followed by the introduction of feed additives, drag hoses and replacement of 

concentrate feed with legumes. However, the dispersion across farms in our sample is largest for the 

first two measures as well, while there is less heterogeneity for the measures with less GHG reduction 

potential. The highest mitigation is achieved if all farms adopt all four mitigation measures (i.e., all 

measures suitable to the farm type). Costs in terms of farm income losses are highest for feed additives 

and replacement of concentrate feed with legumes, followed by drag hoses. Increasing the number of 

lactations per dairy cow often results in net savings for the farmer. The measures with higher costs also 

have larger dispersion compared to the low-cost options in our sample (see Appendix A4.3).  

4.3.2 Agents’ decision-making and interactions  

The described farm and farmer characteristics are used in FARMIND to simulate a two-tiered decision-

making mechanism for managing farm resources (Huber et al., 2022). In a first step, agents choose a 

decision strategy i.e., repetition, optimization, imitation, and non-adoption. The choice of this strategy 

depends on the combination of two model endogenous variables: i) the agents’ income satisfaction and 

ii) whether a farmer is inclined to engage in social processing with her/his peers or not. Since these 

parameters can vary depending on the price level and resulting income as well as the adoption dynamics 

within the social network of the farmer, the strategic choice can change endogenously with each model 

run.  
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In a second step, farm agents choose their actual production decision i.e., the adoption of a GHG 

mitigation measure based on the options provided in the corresponding strategy. This two-tiered 

decision-making is implemented in three coding steps (for a conceptual representation of the decision-

making, refer to the ODD+D protocol).  

In the first step, FARMIND calculates the agent’s satisfaction based on the prospect value of the agent’s 

income considering empirically observed risk preferences i.e., loss aversion, valuation of gains and 

losses and probability weighting (Kreft et al., 2020). The prospect value 𝑉𝑖is defined by the incomes 𝑥 

in year t and all previous years within the agents’ memory length (here 5 years). Incomes above (below) 

the agents’ individual reference income 𝑉𝑖
𝑟𝑒𝑓

 are considered as gains (losses). The prospect value is 

calculated based on empirically measured individual value and probability weighting functions using a 

lottery (Tanaka et al. 2010) and an individual reference income. If the prospect value is positive 

(negative), an agent is considered as satisfied (unsatisfied). Formally, assuming that a set of past incomes 

of farm 𝑖 in year t are {𝑥1, ⋯ , 𝑥𝑚}, and value function and decision weight are 𝑣(𝑥𝑡) and Φ(𝑥𝑡), 

respectively, the prospect value for each farm is defined by 

𝑉𝑖 = ∑ 𝑣(𝑥𝑡)𝛷(𝑥𝑡)𝑚
𝑡=1           Equation 1 

The value functions in the gain (+) and loss (-) domain, respectively, are: 

𝑣+(𝑥) = 𝑥𝑡
𝛼+

 for gains and   𝑣−(𝑥) = 𝜆 𝑥𝑡
𝛼−

 for losses,       Equations 2a/ 2b 

where λ is a measure of the agent’s individual loss aversion.  

The calculation of decision weight Φ(𝑥𝑡) is based on the distribution of incomes from past income 

values. Assuming that historical incomes follow normal distribution over a given memory length m, we 

can identify the cumulative distribution function of income 𝑥𝑡, denoted by 𝐹(𝑥𝑡). We then calculate the 

decision weight of each income: 

𝛷𝑥𝑡

+/−
= 𝑤+/−[1 − 𝐹(𝑥𝑡)] − 𝑤+/−[1 − 𝐹(𝑥𝑡 + ∆)],     Equation 3 

where 𝑤+/− is the probability weight function in the gain and loss domain respectively, and ∆ is the 

difference between an income value and its adjacent value, e.g., 1 unit in the currency in which the 

income is expressed (here Swiss Francs CHF). The probability weight functions 𝑤+ and 𝑤− are defined 

as  

𝑤+/−(𝑝) =
𝑝𝜑+/−

(𝑝𝜑+/−
+(1−𝑝)𝜑+/−

)
1 𝜑+/−⁄

  .     Equation 4 

The interaction between agents in FARMIND is based on learning from observation and interaction with 

peers. To calculate whether a farmer will engage in such social processing or not, our model calculates 

the agent’s dissimilarity to their peers i.e., whether the other agents also adopted climate change 
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mitigation measures. To do so, we count the average number of mitigation measures in the agent network 

over the memory length. We then divide the average number for each measure that is adopted by the 

agent and the network by all mitigation measures performed in the corresponding network. The higher 

the value, the more similar an agent is to their peers i.e., the same GHG mitigation measures have been 

adopted.  

Formally, assuming that 𝑎 activities are performed by all the peers in the social network, agent 𝑖’s 

activity dissimilarity is  

𝑑𝑖 =
1

𝑎
∑

# 𝑜𝑓 𝑝𝑒𝑒𝑟𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝐴𝑗

𝑛
(1 − 𝑃(𝐴𝑗

𝑖))𝑎
𝑗=1  ,    Equation 5 

where 𝑃(𝐴𝑗
𝑖) is agent 𝑖’s performance status for activity 𝑗; 𝑃(𝐴𝑗

𝑖) = 1 if 𝐴𝑖 is performed and otherwise 

𝑃(𝐴𝑗
𝑖) = 0 while 𝑛 is the number of peers to whom an agent is linked. The higher the value of 𝑑𝑖, the 

greater the similarity between an agent and their peers (measured on a relative scale with 1 implying all 

farms engage in the same activity). Please note that the agents’ dissimilarity also depends on the size of 

the network 𝑛 and the number of activities 𝑎 in the network. The larger the network and the smaller the 

number of activities within the network, the more likely it is that an agent will be dissimilar to their 

peers. The connection between the different agents in FARMIND is thereby based on an empirically 

informed social network (Kreft et al., 2021b). 

The dissimilarity index is then compared to a tolerance level, representing the individual aptitude to 

consider deviating behaviour of other farmers. A low dissimilarity tolerance level 𝑑𝑖
𝑡𝑜𝑙 implies that a 

farmer is more likely to comply with social norms, i.e., not being different from others. This value is 

derived from the survey using questions on how farmers assess the importance of peers in their decision-

making on a Likert scale (Kreft et al. 2020). 

Given the values for satisfaction and dissimilarity, four heuristic strategies are derived based on the 

theoretical framework CONSUMAT (see Jager and Jansen 2012 for details): If a farmer is satisfied and 

not socially oriented, they will abide by a production decision (Repetition). A satisfied but socially 

oriented farmer will search for additional information and start considering the behaviour they observe 

in their social network (Imitation). Those who focus on individual behaviour but are dissatisfied will 

strive to optimize their situation (Optimization). Finally, the combination of dissatisfaction and socially 

oriented behaviour leads to an examination of the behaviour adopted by other agents outside the direct 

social network (inquiring) (an overview of all possible cases can be found in section on “Scenarios” in 

the ODD+D protocol). In contrast to an uncertain but satisfied agent who will imitate the behaviour 

observed in the strongly connected social network to increase their “social well-being”, the 

dissatisfaction leads agents to more extensive scrutinizing for other solutions, which will expectedly 

increase satisfaction. 
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Here, the choice of the agents’ decision strategy results in a set of potential GHG mitigation measures 

that is transferred to the second simulation step. A repeating agent considers only those measures that 

had been applied in the last simulation run. An optimizing agent considers all available mitigation 

options. An imitating agent considers those mitigation measures that had been applied by agents in the 

social network. Finally, an agent that is socially oriented and at the same time unsatisfied will choose 

none of the mitigation measures. Since the adoption of the four mitigation measures represents only a 

small part of farmers’ overall decision-making, the inquiring behaviour is implemented as “non-

adoption”. We assume that farmers will for example consider different mitigation measures or even 

other production options observed in the wider social environment. While such options are outside the 

scope of our study, the scenario “complete network” can be interpreted as a broader environment from where 

agents receive new information.    

In the second step, the mitigation measures that are transferred from the strategic heuristic are weighted 

according to the personal preferences of the farmer (Kreft et al., 2020). Based on their stated intention 

to implement different mitigation measures, we apply the fuzzy out-ranking method to narrow down the 

options available to those preferred by the farmer. The higher the preference, the more likely the 

corresponding activity appears on the top of the fuzzy ranking and thus in the agents’ choice set in the 

second tier of decision-making. This method allows to account for individual preferences for specific 

mitigation measures and further reduces the choice set of each agent transferred to the second stage of 

the decision-making process in FARMIND5. 

In the third step, based on the transferred choice sets and the ranking of the mitigation measures 

according to the farmers’ individual preferences, FARMIND chooses those mitigation activities that 

maximize farm income. This represents the second tier of the farmers’ individual decision-making. The 

results from the adoption decision (income and GHG mitigation measures) are then again transferred to 

the FARMIND strategic decision to update measures and income distribution of the agents. The cost 

and benefits (e.g., changes in GHG emissions) for each agent are based on the calculation of the bio-

economic farm level model FarmDyn (Britz et al., 2019). This sub-model provides a matrix with all 

costs and potential GHG emissions reduction for all mitigation measures and their interactions for each 

agent.  

4.3.3 Simulation set up and scenarios  

We test and compare the effect of empirical and hypothetical social networks in four different scenarios. 

The scenarios reflect the different types of social networks i.e., from agents without ties to the agents 

with ties that were empirically measured to a network in which all agents are connected and a network 

with few random ties. This set up allows to compare the “observed network” to counterfactual situations 

without social ties, with few ties and with a complete social network. The difference in total GHG 

                                                      
5 For more details on the fuzzy out-ranking method, please refer to section 2 (Individual decision-making) of the 

ODD+D protocol.  
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emissions reduction between the counterfactual “No social network” and the “Observe network” is then 

used to quantify and discuss the contribution of the network to overall GHG reduction. In addition, the 

comparison with the full network and the loose random network shows the potential of such a behaviour 

when only very few are connected and if social ties were scaled to all the farms, respectively. Thus, the 

comparison of simulation results gives quantitative insights into the relevance of social networks in 

climate change mitigation in agriculture. 

For the initialization of the model, we allow optimizing agents in all scenarios to adopt initial mitigation 

measures (measures that would have been adopted by these agents also in the absence of social 

networks).  We simulate farmers’ adoption decisions over several runs, each representing one year. In 

this period, agents endogenously choose a strategy and eventually adopt mitigation measures. We repeat 

the simulation over twelve runs (years) until FARMIND reaches a saturation state at which the number 

of mitigation measures does not change anymore (even though strategies might still vary). In each run, 

the income information is updated (according to different milk and beef price levels) and flows into the 

calculation of the prospect value, which ultimately defines the satisfaction of farmers when compared 

to the individual reference income.  

We repeat this scenario over different payment levels for GHG emission reduction. With a payment of 

0 CHF per ton of CO2 equivalent, only those measures that have negative abatement costs (e.g., 

increasing the number of lactations per dairy cow) can enter the solution. With increasing payment 

levels, agents’ profits change depending on their GHG reduction potential and the farm individual 

opportunity costs.  

A key methodological challenge in FARMIND is its parameterization given different potential pathways 

that result in the same level of adoption i.e., model equifinality (Williams et al., 2020). This implies that 

multiple structures and/or parameterizations in FARMIND exist that generate outputs consistent with 

the observed adoption pattern in our case study region. To address this challenge, we calibrated the 

behavioural parameters in FARMIND based on indicators of model performance with respect to how 

well the simulations allow to replicate the observed occurrence of adopted mitigation measures in our 

case study region, i.e. the observed number of mitigation measures currently adopted by farmers. In 

addition, we also performed an extensive output sensitivity analysis (i.e., with respect to the amount of 

GHG mitigation). The analyses showed that we can calibrate FARMIND to observed uptake of climate 

change mitigation measures in our case study region and that our simulation outcomes remain robust 

with respect to a meaningful variation in behavioural parameters (for details, see ODD+D protocol). 

4.4 Results 

We find that with a given payment for emission reduction, farmers’ social networks substantially 

increase the reduction of overall on-farm GHG emissions compared to a situation where farmers do not 

have social ties but are still influenced by individual preferences. At a payment of 120 CHF/tCO2eq, 
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overall aggregated GHG reduction is almost doubled from 262tCO2eq to 511tCO2eq due to the observed 

and the complete social network, and increased by 68% (to 440tCO2eq) in case of the small random 

network (figure 3).6 To be able to compare the effect of the social network to the same level of emission 

reduction in the scenario without social ties, we increased the payment in the counterfactual scenario 

until the reduction levels were comparable. The simulations show that a payment of 500 CHF/tCO2eq 

would be necessary to reach the same reduction level without social networks as achieved at 120 

CHF/tCO2eq with social networks. This means that a similar amount of GHG emissions can be reduced 

with 380 CHF less (- 76%) due to knowledge exchange within farmers’ social networks. When the 

payment is set to 500 CHF/tCO2eq, overall GHG reduction increases by 118% (to 1123t CO2eq) when 

farmers are connected in the observed social network compared to the scenario without social ties. At 

this payment level, a fully integrated social network reaches an additional 18% reduction of GHG 

emissions (to 1323 tCO2eq) compared to the observed network while with a small random network, 13% 

less GHG reduction (982 tCO2eq) is achieved. These findings can be explained by the two-tier decision-

making process in our model. When social networks are present and the farmer chooses to imitate 

(choice of strategy), adoption is increased by providing information on mitigation measures through 

knowledge exchange. This is expressed by a larger choice set. At the second stage of the decision-

making (income maximization), mitigation adoption can be increased due to a higher payment per ton 

of CO2eq, which will increase farmers’ income.  

Comparing overall GHG emissions reduction of both payment levels (120 vs. 500 CHF/tCO2eq), the 

increase due to the higher payment is larger when social networks exist as compared to a situation 

without networks. More precisely, an additional payment of 380 CHF/tCO2eq (500 CHF instead of 120 

CHF) increases GHG emissions reduction by 97% in the scenario without social networks and by 120% 

in the observed network scenario (respectively, 159% in the complete network scenario).  

                                                      
6 A detailed overview of simulation results can be found in appendix 8.4. Boxplots showing the distribution of 

GHG reduction and income changes across farms are shown in appendix 8.5.  
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Figure 4.3: Total GHG reduction at two payment levels across all network scenarios. Grey bars correspond to GHG reduction 

at a payment of 120 CHF/t CO2eq reduced. Black bars correspond to GHG reduction at 500 CHF/t CO2eq reduced.  

This is also reflected by marginal abatement costs of on-farm mitigation in our sample. Mean marginal 

abatement costs to achieve a similar amount of aggregated GHG reduction (approximately 500 tCO2eq) 

are 190 CHF/tCO2eq lower when farmers are socially interconnected in the observed network scenario. 

Without social network ties, mean marginal abatement costs are 325 CHF/tCO2eq on average. In the 

observed and complete network scenario, marginal abatement costs amount to 135 CHF/tCO2eq, and 

192CHF/tCO2eq in a situation with few random social ties (Figure 4.4).   
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Figure 4.4: Distribution of marginal abatement costs of farms across the four network scenarios. To compare costs at a similar 

overall GHG reduction level (approximately 500 t CO2eq), marginal abatement costs in the no network scenario are simulated 

based on a payment of 500 CHF/t CO2eq, and on a payment of 120 CHF/t CO2eq in the other scenarios where social ties are 

present.  

With regards to the adoption of mitigation measures, we find that farmers adopt more mitigation 

measures when they have social ties to others compared to a scenario without any social networks. At a 

payment level of 120 CHF/tCO2eq, increasing the number of lactations per dairy cow is the most widely 

adopted measure. Drag hoses are the second most adopted measure in the scenario without social 

networks and in the random network with few ties. In the observed and complete network scenario, feed 

additives to reduce enteric fermentation are more often adopted than drag hoses. This can be explained 

by the fact that the use of drag hose is less costly than introducing feed additives. It is thus more often 

adopted than feed additives when no social network or only few ties exist. However, when feed additives 

are adopted by peers in the social network, the measure gets into (imitating) farmers’ choice set more 

often and is hence more often adopted.  In all scenarios, replacing concentrate feed with locally grown 

legumes is the least adopted mitigation measure. At a payment of 500 CHF/t CO2eq, overall mitigation 

adoption is substantially increased across all network scenarios. The higher payment mainly affects the 

adoption of drag hoses and feed additives which are now the most adopted measures (figure 5). In the 

three scenarios with social ties, the number of farms which replace concentrate feeds by legumes is 

increased as well while the number of farms introducing more lactations per dairy cow remains stable.  
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Figure 4.5: Adoption of mitigation measures in four network scenarios across the sample of 49 farms with 

payments of 120 CHF/tCO2eq abated (upper graph) and 500 CHF/tCO2eq (lower graph).    

The overall technical GHG reduction potential in our sample, based on the considered GHG mitigation 

measures, is simulated to be at 13.8 % compared to baseline emissions, i.e., a reduction of 1967 t CO2eq 

could be achieved if all farms were to reduce the maximum amount of GHG emissions possible 

independent from economic, individual behavioural and social constraints. However, when farmers 

strictly maximize incomes without behavioural constraints, the simulated reduction potential shrinks to 
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6.2% of baseline emissions at a payment of 120 CHF/t CO2eq and 12.2% at 500 CHF/t CO2eq. 

Accounting for individual behavioural characteristics (risk attitudes and farming preferences) further 

decreases the reduction potential in our model to 2.6 and 3.3%, respectively. Including social network 

ties increases overall reduction potential again to 3.8 and 8% of baseline emissions, respectively (Figure 

4.6).   

 

Figure 4.6: Comparison of GHG reduction potentials considering technical, economic, social and behavioural 

constraints. The technical potential is based on the here considered mitigation measures (cf. Table 4.1) without 

consideration of economic or behavioural constraints and with constant production levels.   

 

4.5 Discussion  

Our results show that social networks within which farmers exchange knowledge on climate change 

mitigation practices have a positive effect on farmers’ adoption of such practices and hence increase the 

effectiveness of results-based payments for GHG reduction. This is in line with the literature 

investigating the effect of social networks and social learning on farmers’ adoption of e.g., innovations 

or agri-environmental practices (Bandiera and Rasul, 2006; Conley and Udry, 2001; Conley and Udry, 

2010). We add to the existing literature by simulating social network effects regarding the reduction of 

agricultural GHG emissions. Moreover, we quantify the effect of farmers’ social relations in terms of 

outcomes, i.e., overall GHG emissions reduction and associated costs. Quantifying social network 

effects is particularly valuable to assess the potential effectiveness of policies aiming at a reduction of 

agricultural GHG emissions.  
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Social networks of farmers can act as facilitators of agricultural climate change mitigation by spreading 

knowledge and influencing farmers’ preferences under given economic boundaries. We find that the 

empirically observed social networks of farmers almost double total mitigation in our sample at a given 

payment of 120 CHF/tCO2eq reduced and by 118% at a payment of 500 CHF/tCO2eq. The increase due 

to the higher payment is mainly explained by more farmers adopting drag hoses and feed additives, 

while the comparably low-cost measure ‘increase of lactations’ is already adopted by most (dairy) farms 

at 120 CHF/tCO2eq. Our results furthermore show that the effectiveness of a payment per ton of CO2eq 

reduced can be substantially increased due to knowledge exchange and social learning within farmers’ 

social networks. The social network effect is higher at a payment of 500 CHF/tCO2eq (+ 118% GHG 

reduction) compared to 120 CHF/tCO2eq (+ 95% GHG reduction). This is explained by a model-

intrinsic mechanism: A higher payment per ton of reduced CO2eq implies that at the same “amount” of 

information flow due to the social network, more mitigation measures become profitable for the farmer.  

Moreover, we find that social networks improve the cost-effectiveness of payments based on achieved 

GHG mitigation, i.e., paid per ton of CO2eq reduced. In our model, a comparable level of mitigation is 

achieved with 380 CHF/tCO2eq less (-76%) and average marginal abatement costs are 190 CHF/tCO2eq 

lower (-58%) due to the observed network. Given our modelling framework, this can be explained by 

the fact that due to knowledge exchange between connected peers, socially oriented farmers have more 

choice options when deciding whether to adopt mitigation measures. Consequently, overall mitigation 

becomes more efficient due to the information flow within the social network. In previous literature, 

social networks have rather been shown to lower transaction costs of e.g. knowledge acquisition (Levy 

and Lubell, 2017) and enable cost-effective collaboration of farmers (Prager, 2015). While our model 

does not account for such types of transaction costs, they would increase the effect of the social network. 

Thus, our simulation results should rather be seen as a lower bound for the effect of social networks on 

policy effectiveness. 

Using the agent-based modelling approach FARMIND has several advantages for addressing our 

research question: Beyond income optimization simulated with standard bio-economic modelling, it 

enables to additionally account for heterogeneous farmers’ characteristics. Over the past decades, 

evidence is increasing that considering different behavioural traits is crucial when trying to explain 

farmers’ decision-making in various contexts (Brown et al., 2017; Dessart et al., 2019). In particular, 

agricultural climate change mitigation is still an “unknown terrain” for most farmers and related costs 

and benefits are often rather uncertain. Therefore, individual risk attitudes, personal preferences, climate 

change perceptions and concerns as well as social relations can arguably play an even more decisive 

role (Haden et al., 2012; Kreft et al., 2021a; Niles et al., 2016). Linking FARMIND to the bio-economic 

farm model FarmDyn (Britz et al., 2019) furthermore allows to consider the emerging changes in GHG 

emissions and farm incomes.  
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While there is a considerable technical reduction potential of the four mitigation measures (13.8% of 

baseline emissions), farmers actually adopt much less due to economic constraints as well as individual 

risk attitudes and preferences for single mitigation measures (around 3%). The latter can for example 

lead to reluctance to change and even prevent farmers from adopting cost-saving mitigation measures 

(e.g., increasing the number of lactations per dairy cow). However, when considering social relations, 

individual behavioural barriers of adoption can be overcome to some degree due to the information flow 

within farmers’ social networks. This helps to increase the total reduction potential (in our sample, up 

to 8%). This five percent point increase when considering social networks should be seen as an important 

leverage for increasing the effectiveness of payments for GHG emission reduction.  

A challenge of ABM including farmers’ behavioural characteristics and social interactions is the need 

for a data intensive and usually costly parametrization (Huber et al., 2022). For our analysis, we can 

draw from an extensive data basis. Additional to farm census data, we use empirical survey data 

including risk preferences derived from an incentive-based lottery as well as interview-based social 

network data, which were collected with the newest available version of the survey software Network 

Canvas (Kreft et al., 2023; Kreft et al., 2021b; Network Canvas, 2022). However, despite the empirical 

data we rely on, our analysis faces some important uncertainties. First, the use of thresholds for 

determining the decision strategies in FARMIND implies that the calibration of these parameters has an 

important effect on simulation outcomes (see also Huber et al. 2021). While the survey could identify 

relative differences between agents, the absolute level of these model parameters had to be determined 

by the income levels simulated in FarmDyn. We performed an extensive sensitivity analysis to assess 

the effect of farmers’ reference income and their tolerance for being dissimilar on model outcomes (see 

ODD+D protocol). However, different approaches of sensitivity analysis, e.g., maintaining a set of 

parameter combinations for calibration (cf. Berger and Trost, 2014) could help to further assess the 

robustness of our results. Based on our subsequent model selection, FARMIND can reproduce the 

observed adoption of climate change mitigation measures in our case study region. Thus, we are 

convinced that using FARMIND is a valid approach to assess the effect of social networks in our case 

study region. Moreover, we believe that our model is transferable to other regions as it builds on a solid 

theoretical and conceptual foundation that can help to understand farmers’ adoption decisions in the 

context of agricultural climate change mitigation. To make results more generalizable, however, 

increasing the scale and the consideration of other regions would be indispensable.  

Second, there is large heterogeneity of simulated GHG emissions reduction and associated income 

changes across measures as well as between individual farms in our sample, which corresponds to 

findings of other studies (Jones et al., 2015; MacLeod et al., 2010; Moran et al., 2011; O’Brien et al., 

2014; Vermont and De Cara, 2010) (cf. Appendix A4.5). Mean marginal abatement costs of the farms 

in our sample amount to almost 550 CHF/tCO2eq (if all farms adopt all suitable measures). Particularly 

the measure of replacing concentrate feed with locally grown legumes is extremely costly for single 
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farms. On the other side, increasing the number of lactations per dairy cow enables net savings for 

several farms in our sample. However, this assumption might not hold for all the farms since we assume 

a constant milk yield of longer lactating cows and do not account for potential fertility or health issues 

and resulting veterinary costs (Grandl et al., 2019; Mellado et al., 2011). Furthermore, increasing the 

number of lactations and consequently a lower replacement rate on one farm does not necessarily reduce 

overall GHG emissions of the entire sector. For instance, if newborn calves are sold for replacement or 

fattening on other farms, GHG emissions just occur elsewhere. Third, there is uncertainty in the 

scientific literature on the technical reduction potential of single measures (Eory et al., 2018). For 

example, injection and close-to-ground application of manure, e.g., with trail hoses has been found to 

reduce N2O emissions compared to broadcasting (Weiske et al., 2006) but also to increase them due to 

denitrification processes in the soil (Wulf et al., 2002). Other studies did not find any effect of the 

application technique on N2O emissions (Clemens et al., 1997; Velthof et al., 1996). However, it is 

undisputed that manure application with drag hoses reduces NH3 (ammonia) volatilization, which is an 

indirect source of N2O emissions (Wu et al., 2021). Despite the scientific uncertainty about the 

mitigation potential, we included this measure since it is very relevant and widely adopted on Swiss 

farms (for the primary goal of reducing NH3 emissions). Regarding the introduction of feed additives, 

particularly those with high content of unsaturated fatty acids, there is good evidence of a reducing effect 

on methane emissions from enteric fermentation in cattle. Nevertheless, many different supplements 

have been investigated resulting in different reduction potentials (Hristov et al., 2013; Jayanegara et al., 

2020). Our assumptions are based on supplementation with linseed, which is relatively well studied and 

easily available in Switzerland (Engelke et al., 2019; Poteko et al., 2020). Such uncertainties, 

heterogeneous mitigation potentials and (partially) high costs are among the major challenges of 

integrating agriculture in general climate policies (Fellmann et al., 2018). Further uncertainties are 

rooted in model validation and parametrization, which is based on (self-assessed) survey data. A 

thorough uncertainty and sensitivity analysis can be found in the ODD+D protocol and in (Huber et al., 

2022), respectively.  

Finally, the assumption of a “no-network”, i.e. that there are no social interactions between farmers in 

our counterfactual scenario implies that our estimation of the social network effect must be seen as an 

upper bound of the economic value of these networks.  

We find that even in a hypothetical situation of a complete network integration and at a payment level 

of 500 CHF/tCO2eq, total GHG emissions reduction in our sample is at maximally 12% of baseline 

emissions when accounting for individual farmer characteristics and social interactions. This suggests 

that a substantial reduction of agricultural GHG emissions, especially in the livestock sector, will 

probably be rather limited (and costly) if current production levels and consumption patterns are to be 

held constant (Poore and Nemecek, 2018). Hence, the here assumed restriction to keeping constant 

production levels reflects a rather short-term perspective. 
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4.6 Conclusion  

We investigated the quantitative effect of farmers’ social networks on agricultural climate change 

mitigation and respective policy incentives based on a case study in Switzerland. Despite heterogeneous 

costs and reduction potentials of mitigation measures across farms, we find that information flow and 

knowledge exchange within farmers’ social networks can increase the diffusion of mitigation measures 

and consequently reduce GHG emissions of the dairy, suckler and bull-fattening farms in our sample. 

This would render policy incentives to increase adoption of mitigation practices more effective. Using 

the agent-based modelling framework FARMIND, we estimated the effect of social networks in terms 

of GHG reduction and income changes compared to a scenario without social ties. This constitutes an 

important contribution to the literature that has so far mainly assessed costs and benefits of agricultural 

mitigation measures without accounting for individual farmers’ characteristics and social interactions. 

Based on our findings, farmers’ knowledge exchange in social networks can increase the effectiveness 

of payments aiming at a reduction of agricultural GHG emissions.  

Our results have some important implications for policymakers: First, in addition to financial incentives 

compensating for the costs of mitigation, policymakers should seek to support the creation of farmers’ 

social networks targeted at information exchange related to climate change mitigation. Complementing 

payment schemes (e.g. to incentives uptake of climate change mitigation measures) with such additional 

effort can substantially increase the efficiency of policy measures. In particular, forming connections 

between early-adopters and those who have not yet adopted mitigation measures can be a promising 

way to support relevant information flow. Possible formats could be creating farmer networks, the 

organization of farm visits or regional workshops and events to support informal exchange. According 

to our simulations, such programs could save a considerable amount of governmental spending for 

paying farmers to reduce GHG emissions. Second and more generally, farmers need access to 

knowledge and expertise about agricultural climate change mitigation and respective on-farm practices. 

Common instruments are information campaigns as well as specific advisory services and trainings 

offered to farmers. The topic should also be integrated in regular curricula of farming schools. A 

combination of policies could hence be promising: a financial incentive to boost first adoption of some 

(pioneer) farmers accompanied by knowledge building and supporting the exchange among farmers to 

spread know-how and ultimately increase mitigation adoption (Le Coent et al., 2021).  

Further research on the magnitude of social network effects on climate change mitigation is however 

needed to underpin our findings and recommendations and make them more generalizable. In particular, 

different and larger samples, a broader range of mitigation measures, accounting for transaction costs 

and potential changes in production as well as other regions would be a valuable extension of our 

research. Beyond a binary assessment of the social network effect, investigating the role of specific 

features of the networks could be another interesting extension. Along these lines, the definition of social 

networks could be extended to e.g. social media discussions. Moreover, estimating the effects of 
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different policy interventions under consideration of social networks and farmer behavioural 

characteristics constitutes an interesting topic for future research.  
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Appendix A4 

A4.1: On-farm GHG emissions and farm income per area and livestock unit  

The following boxplots show the distribution of on-farm GHG emissions and farm income per ha and 

livestock unit across the simulated farms. Mean on-farm GHG emissions per ha of agricultural land are 

7.6 tons of CO2eq. Mean on-farm GHG emissions per unit of cattle livestock are 10.6 tons of CO2eq. 

Mean farm income per ha of agricultural land is 3374 CHF. Mean farm income per unit of cattle livesto 

is 6378 CHF. Distribution of GHG reduction and farm income changes relative to baseline emissions 
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A4.2: Distribution of GHG reduction and farm-level costs  

The following histograms show the distribution of GHG reduction and farm-level costs related to single 

mitigation measures across the simulated farms as percentage of baseline emissions and baseline farm 

income, respectively.  

GHG reduction 
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Farm-level costs  

    

    

A4.3: Distribution of on-farm GHG reduction potential and costs across mitigation measures  

The following boxplots illustrate the distribution of GHG reduction potentials as well as farm-level costs 

with adoption of single measures as well as all four measures. The first graphs are in absolute terms 

(tons of CO2eq reduced and CHF) while the second graphs show the distribution relative to baseline 

GHG emissions and baseline farm-incomes (% of baseline CO2eq and % of baseline CHF), respectively.  
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A4.4: Detailed simulation results  

 

Payment 120 CHF/t 

CO2eq  
Payment 500 CHF/t CO2eq  

Mean 

marginal 

abatement 

costs (at 

similar GHG 

reduction 

level) 

 
Overall GHG 

emissions 

reduction 

(tons) 

Overall 

income 

change 

(1000 

CHF) 

Overall GHG 

emissions 

reduction 

Overall 

income 

change 

CHF/tCO2eq  

No network  262 49 516 194 325 

Small random  

network  

440 83 982 351 192 

Observed network  511 100 1123 397 135 

Complete network  511 100 1323 476 135 

Detailed simulation results of overall GHG reduction, farm income changes and marginal abatement costs across four network 

scenarios at two payment levels. To compare based on similar GHG reduction levels, marginal abatement costs are simulated 

at a payment of 120 CHF/t CO2eq for network scenarios and 500 CHF/t CO2eq for the scenario without networks. 
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A4.5: Distribution of on-farm GHG reduction at different payment levels  

The following boxplots show the distribution of on-farm GHG reduction and farm income changes in 

the four simulated scenarios at both payment levels, 120 CHF/tCO2eq and 500 CHF/tCO2eq, 

respectively.  

GHG reduction  
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Farm income changes 
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Appendix A5: ODD + D Protocol FARMIND  

A5.1 Overview  

Purpose 

The purpose of the model is to simulate the effect of farmers’ social networks on the adoption of climate 

change mitigation measures on Swiss dairy and beef cattle farms and on the effectiveness and efficiency 

of a public payment for greenhouse gas (GHG) emission reduction. More specifically, the model 

simulates the impact of the policy with and without social network effects on the adoption decision 

considering heterogeneous cognitive, social, and dispositional factors across individual farmers. Based 

on benefits and cost of four mitigation measures (replacement of concentrate feed in feeding rations, 

increased number of lactations per dairy cow, use of drag hoses for manure application and methane 

reducing feed additives), the model simulates farmers’ individual adoption using survey data on farming 

objectives, risk preferences, and the tendency for social comparison. The emerging phenomena are the 

total amount of greenhouse gas (GHG) emissions reduced by the policy induced adoption of farm 

individual mitigation measures and the change in income for the individual farm as well as the whole 

farm community. Thus, the model allows to quantify the economic and environmental effect of social 

networks in the context of a public payment for GHG reduction in agriculture. By testing and comparing 

the effect of empirical and hypothetical social networks in different scenarios, the simulation results 

give quantitative insights into the relevance of social networks if the public supports climate change 

mitigation in agriculture. 

 

Entities, state variables and scales (cf. Table A5.1) 

Each agent represents an individual farmer. An agent has the following entities and state variables:  

(1) Farm specific profits and cost as well as GHG emission reduction potentials for four on-farm 

climate change mitigation measures. These are exogenous parameters calculated in the sub-

model FarmDyn (a farm optimization model parameterized with census data, see corresponding 

section below). Profits result from a payment for each ton of reduced CO2 equivalents (CO2eq). 

Farm specific cost emerge from implementing mitigation measures on each individual farm. 

(2) Personal characteristics including cognitive factors (i.e., risk parameters based on cumulative 

prospect theory, and reference income), social factors (i.e., tolerance for being dissimilar to 

other farmers), and dispositional factors (i.e., preferences for specific mitigation measures). 

These are exogenous parameters based on a farm survey in our case study region (Kreft et al., 

2020). 

(3) A social network between farmers derived from an interview based on social network analysis 

(Kreft et al., 2021c).  
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(4) Income changes and GHG emission reduction potentials resulting from the choice of GHG 

mitigation options. The agents’ income is used to calculate the prospect value based on the risk 

preferences of each individual farmer. The adoption choices of each farmer are used to calculate 

a dissimilarity index that drives social oriented behaviour. Income, GHG emissions, prospect 

value and dissimilarity index are model endogenous variables (see Table A5.1). 

Table A5.1: State variables and parameters 

Category State variable / parameters Abbreviation 
Source for 

initialization 

Farm  Adopted mitigation measures 𝐴 Kreft et al. (2020) 

 GHG emission reduction potential of 

measure 𝐴 
𝑦𝐴𝑡 Simulated in sub-

model FarmDyn 
 Income with adopted mitigation measures 𝑥𝐴𝑡  

Personal 

characteristics 
Loss aversion level λ 

Kreft et al. (2020) 

 Valuation of gains and losses α+/- 

 Probability weighting in gains and losses ϕ+/- 

 Reference income to determine perceived 

gains and losses and calculate satisfaction 
𝑉𝑖

𝑟𝑒𝑓
 

 Tolerance level for activity dissimilarity to 

determine information seeking behaviour 
𝑑𝑖

𝑡𝑜𝑙 

 Preference weight for mitigation measures 𝑅𝐴 

Social network Number of peers a farmer is linked to 

(number of social ties) 
n Kreft et al. (2021c) 

Outcome variables Prospect value 𝑉𝑖 

Model endogenous 
 Agents’ activity dissimilarity 𝑑𝑖 

 GHG emission reduction (in simulation run t) 𝑦𝑡  

 Income (in simulation run t) 𝑥𝑡 

 

The underlying data on income changes and GHG emission reductions are calculated per farm on a 

yearly basis. Thus, a model run represents one year (i.e., the temporal resolution). To simulate the effect 

of knowledge diffusion through the social network, we repeat the simulation over twelve runs. Our main 

results, however, are comparative static in the sense that we compare final states of GHG emissions and 

incomes in different scenarios. The model simulates individual farms with heterogeneous farm sizes and 

locations. The farm size varies between 12 and 73 hectares (ha) with an average at 35 ha per farm. The 

sample consists of 24 dairy farms, 15 suckler farms and 10 bull fattening farms. On average, farms have 

38 cattle livestock units. 
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Process overview and scheduling 

FARMIND includes a two-tiered decision-making mechanism for managing farm resources (Huber et 

al., 2022b). In a first step, agents choose a decision strategy. The model includes four behavioural 

strategies: repetition, optimization, imitation, and opt-out (see section “Individual decision-making” 

below for details). In a second step, farm agents choose their actual production decision, i.e., the 

adoption of a GHG mitigation measure based on the options provided in the corresponding strategy. 

This two-tiered decision-making is implemented in three coding steps (cf. right panel in Figure A5.1). 

 

Figure A5.1: (a) Conceptual framework and (b) implementation flowchart of FARMIND 

First, FARMIND calculates the income distribution over the farmers’ memory length and the income in 

the initialization year. On this basis, the model calculates the prospect value of the agent’s income 

considering the empirical based risk preferences (i.e., loss aversion, valuation of gains and losses and 

probability weighting). In addition, the model calculates the agents’ dissimilarity to the other agents in 

the network with respect to climate change mitigation measures. Prospect value and dissimilarity are 

then used to calculate a strategy of each individual farmer.  

Second, mitigation measures are ranked according to the personal preferences of the farmer 𝑅𝐴 

(identified in the survey). A fuzzy logic algorithm identifies a sub-set of strictly preferred activities in 

the different strategies. This implies that an agent that dislikes one of the mitigation measures may not 

receive the corresponding option in the choice set even though it could be optimal for maximizing farm 

income. 
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Third, based on the transferred choice sets, FARMIND chooses those mitigation activities that maximise 

farm income from the available options. The results of the adoption decision (income and mitigation 

measures) are then again transferred to the FARMIND strategic decision to update measures and income 

distribution of the agents in the next model run. 

A5.2 Design concepts 

Theoretical and empirical background 

We base our agent-based modelling framework on cumulative prospect theory and social network theory 

to link farmers’ heterogeneous cognitive, social, and dispositional factors to cost and benefits of climate 

change mitigation measures. FARMIND is based on the so-called CONSUMAT framework, which 

integrates the different theoretical concepts into a structured sequence of modelling steps (Schaat et al., 

2017). The parametrization of the model is based on the following empirical data: i) Risk preference 

parameters (based on the cumulative prospect theory) derived from a lottery included in an online survey 

with farmers in the case study region (Kreft et al., 2020). The lottery was based on Tanaka et al. (2010) 

and thus included values for risk aversion, valuation of gains and losses as well probability weighting 

(equal for gains and losses) ; ii) Stated preferences for mitigation options derived from the same survey 

(Kreft et al., 2020); iii) Information on the social network collected via face-to-face interviews using the 

survey software Network Canvas (https://networkcanvas.com); iv) Cantonal census data to calculate 

farm individual provision cost and GHG mitigation. 

 

Individual decision-making 

Following the CONSUMAT approach, agents make decisions on their behavioural strategies according 

to their satisfaction and willingness to engage in social processing. In FARMIND, an agent’s satisfaction 

level in a year is reflected by the prospect value of incomes 𝑉𝑖 in year t and all previous years within the 

memory length (here five years). Incomes above (below) the agents’ individual reference income are 

considered as gains (losses). Based on these gains or losses, the prospect value is calculated using 

individual value and probability weighting functions. If the prospect value is positive (negative), an 

agent is considered as satisfied (unsatisfied). Formally, assuming a set of past incomes of farm 𝑖 in year 

t {𝑥1, ⋯ , 𝑥𝑚}, a value function 𝑣(𝑥𝑡) and decision weight Φ(𝑥𝑡), the prospect value is defined for each 

farm by 

𝑉𝑖 = ∑ 𝑣(𝑥𝑡)𝛷(𝑥𝑡)𝑚
𝑡=1           Equation 6 

The value functions in the gain (+) and loss (-) domain, respectively, are: 

𝑣+(𝑥) = 𝑥𝑡
𝛼+

 for gains and   𝑣−(𝑥) = 𝜆 𝑥𝑡
𝛼−

 for losses,       Equations 7a/2b 

where λ is a measure of the agent’s individual loss aversion.  

The calculation of decision weight Φ(𝑥𝑡) is based on the distribution of incomes from past income 

values. Assuming historical incomes to follow normal distribution patterns over a given memory length 

https://networkcanvas.com/
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m (i.e., five years in our application), we can identify the cumulative distribution function of income 𝑥𝑡, 

denoted by 𝐹(𝑥𝑡). We then calculate the decision weight of each income.  

𝛷𝑥𝑡

+/−
= 𝑤+/−[1 − 𝐹(𝑥𝑡)] − 𝑤+/−[1 − 𝐹(𝑥𝑡 + ∆)]     Equation 8 

where 𝑤+/− is the probability weight function in the gain and loss domain, respectively, and ∆ is the 

difference between an income value and its adjacent value, e.g., 1 unit in the currency in which the 

income is expressed (here Swiss Francs CHF). The probability weight functions 𝑤+ and 𝑤− are defined 

as  

𝑤+/−(𝑝) =
𝑝𝜑+/−

(𝑝𝜑+/−
+(1−𝑝)𝜑+/−

)
1 𝜑+/−⁄

       Equation 9 

To calculate whether a farmer will engage in social processing or not, we calculate a dissimilarity index 

to represent the agent’s deviating behaviour from other farmers. We count the average number of 

mitigation measures in the agent’s network over the memory length. We then divide the average number 

for each measure that is adopted by the agent and the network by all mitigation measures performed in 

the corresponding network. The higher the value, the more similar an agent is to their peers, i.e., the 

same GHG mitigation measures had been adopted. This index is compared to a tolerance level, 

representing the individual aptitude to consider deviating behaviour of other farmers. A low dissimilarity 

tolerance level 𝑑𝑖
𝑡𝑜𝑙 implies that a farmer is more likely to comply with social norms, i.e., not wanting 

to be different from others.  

Formally, assuming that 𝑎 activities are performed by all the peers in the social network, agent 𝑖’s 

activity dissimilarity is  

𝑑𝑖 =
1

𝑎
∑

# 𝑜𝑓 𝑝𝑒𝑒𝑟𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝐴𝑗

𝑛
(1 − 𝑃(𝐴𝑗

𝑖))𝑎
𝑗=1      Equation 10 

where 𝑃(𝐴𝑗
𝑖) is agent 𝑖’s performance status for activity 𝑗; 𝑃(𝐴𝑗

𝑖) = 1 if 𝐴𝑖 is performed and otherwise 

𝑃(𝐴𝑗
𝑖) = 0 while 𝑛 is the number of peers to whom an agent is linked. The higher the value of di, the 

greater the similarity between an agent and their peers (measured on a relative scale with 1 implying all 

farms engage in the same activity). Please note that the agents’ dissimilarity also depends on the size of 

the network 𝑛 and the number of activities in the network 𝑎. The larger the network and the higher the 

number of activities within this network, the more likely it is that an agent will be dissimilar to their 

peers. 

Based on the combination of the agents’ satisfaction and dissimilarity, the strategic choice of the farmer 

is defined. If a farmer is satisfied and does not engage in social oriented behaviour, they will abide by a 

production decision (Repetition). A satisfied farmer who engages in information seeking behaviour will 

search for additional information and start considering the behaviour observed in the social network 
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(Imitation). Those who focus on individual behaviour but are dissatisfied will strive to optimize their 

situation (Optimization). Finally, the combination of dissatisfaction and social oriented behaviour leads 

to an examination of the behaviour adopted by other agents in general (Opt-out). Table A5.2 summarizes 

the four decision heuristics in FARMIND applied to the study of adopting climate change mitigation 

measures. 

Table A5.2: Strategic decision and choice sets in FARMIND 

  
Satisfaction 

Prospect value with reference income as threshold for the determination of 

gains and losses 

  > 0: satisfied < 0: dissatisfied 

Information 

seeking 

behaviour 

 

Values for 

determining 

individual or 

social 

processing 

(threshold for 

activity 

dissimilarity) 

< tolerance 

level: 

individual 

oriented 

Repetition 

The agent only considers those 

mitigation measures performed in 

the year before. 

Optimization 

The agent considers all mitigation 

measures only restricted by 

personal preferences. 

> tolerance 

level: social 

oriented 

Imitation 

The agent considers those 

mitigation measures that are applied 

in the social network and satisfy 

personal preferences. 

Opt-out 

The agent selects none of the 

mitigation measures. 

 

The choice of the decision strategy results in a choice-set of potential GHG mitigation measures. A 

repeating agent considers only those measures that had been applied in the last simulation run. An agent 

that optimizes considers all available mitigation option. An imitating agent considers those mitigation 

measures that had been successfully applied by socially connected agents. Finally, an agent that strives 

for individual behaviour and who is unsatisfied will choose none of the mitigation measures. In addition, 

FARMIND considers farmers’ individual preferences for mitigation measures. Based on their stated 

intention to implement specific mitigation measures, we apply the fuzzy out-ranking method to narrow 

down the options available to those preferred by the farmer. The higher the preference, the more likely 

the corresponding activity appears on the top of the fuzzy ranking and thus in the agent’s choice set in 

the second tier of decision-making. 

The ranking of mitigation measures is based on the following algorithm: For each mitigation activity 

and agent, we calculate a value 𝑅. This value is used as criterion to determine the so-called fuzzy 

concordance relations for each pair of mitigation measures. There are three types of relations: i) 

indifferent, ii) weakly preferred and iii) strictly preferred. If the difference between the normalized 

values of measure 𝐴1 (e.g., increased number of lactations with a high value) and 𝐴2 (e.g., replacement 

of concentrates in feeding ration with a low value) 𝑅𝐴1 − 𝑅𝐴2 is smaller than an exogenously set lower 

threshold 𝑞− these measures are regarded as indifferent, i.e., the agent has no preference between the 

two. If the difference is greater than the upper threshold 𝑞+, 𝐴1(increased number of lactations) is strictly 

preferred over 𝐴2 (replacement of concentrates). If the difference between the two activities falls within 
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the interval of the lower and upper threshold [ 𝑞−, 𝑞+], 𝐴1 is weakly preferred over 𝐴2. Formally, the 

matrix 𝑓(𝐴1, 𝐴2), describing the relation between the two activities 𝐴1 and 𝐴2, is defined by: 

𝑓(𝐴1, 𝐴2) =  {

0           𝑖𝑓 𝑅𝐴1 − 𝑅𝐴2 < 𝑞−

(𝑅𝐴1−𝑅𝐴2−𝑞_)

𝑞+−𝑞−  𝑖𝑓 𝑞− < 𝑅𝐴1 − 𝑅𝐴2 < 𝑞+

1          𝑖𝑓 𝑅𝐴1 − 𝑅𝐴2 > 𝑞+

     Equation 11 

This calculation allows that all mitigation activities for each agent can be ranked in a list. FARMIND 

then uses a non-dominance score (ND) algorithm (Equation 7) that endogenously defines a small sub-

set of mitigation activities. A characteristic of the non-dominance score is that it reduces the number of 

mitigation measures to a small sub-set that is strictly preferred to all the other measures.  

𝑁𝐷(𝐴1, 𝑋, 𝑓) = 1 − 𝑚𝑎𝑥
𝐴2∈𝑋

𝑚𝑎𝑥{𝑅(𝐴2, 𝐴1) − 𝑅(𝐴1, 𝐴2), 0},    Equation 12 

where 𝑋 is the set of all mitigation measures, 𝐴1 denotes the measures of interest, 𝐴𝑗 denotes other 

measures in 𝑋 and 𝑓(𝐴1, 𝐴𝑗) denotes the fuzzy pairwise preference matrix. The non-dominance score 

results in a reduced choice set for each agent, which is then passed to the second-tier decision-making 

step.  

The second tier of the agents’ individual decision-making consists of the choice of mitigation strategies 

with the highest profit within the choice-set according to the decision strategy and preferences. The 

profit for each agent is calculated in the sub-model FarmDyn (see section Sub-model below). The sub-

model provides a matrix with all profits, cost and potential GHG emission reduction for all mitigation 

measures as well as their interactions for each agent. FARMIND chooses the option with the highest 

profit in the available choice set of each agent. 

Learning 

Agents have a memory of the mitigation measures they have adopted. The length of memory is 

determined exogenously and is set to five years for each agent. The more experience an agent has with 

the corresponding mitigation measure, the higher its weight in the fuzzy preference ranking. More 

experience also increases the weight of the corresponding measure in the agent’s social network. Thus, 

agents learn from their peers about mitigation behaviour performed over a longer time horizon. Thereby, 

the weight of experience, the learning rate, is represented as a logarithmic function that converges to 

one over the period of the memory length (i.e., five years). This mechanism of learning from peers 

increases the probability of adaption of a mitigation measure when more agents perform this measure 

over a longer time horizon. 

Sensing 

Agents can correctly observe the mitigation measures their peers perform and memorize the production 

activities in the past. They can also observe their own income. Agents memorize this information for 

periods of their memory length (i.e., five years). Assumptions about prices, yields or other information 
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with respect to the adoption decision are condensed in the realised income (i.e., the results of the sub-

model FarmDyn). In principle, agents do not have cost for gathering information. However, the learning 

rate slows the information exchange between agents in the social network and thus information from the 

peers is not directly and in every time step available for the individual agent. 

Individual prediction  

Agents change their decision strategy based on their individual prospect value. Using their realised 

income in the past and the individual value and probability weighting functions, agents “predict” the 

value of their realised income according to the cumulative prospect theory.  

Interaction 

Agents observe the behaviour of their peers in the case they choose to imitate. Thus, they exchange 

information on the performance of climate change mitigation measures. 

Collectives 

The social network allows to predefine a static collective that is more likely to observe and imitate 

mitigation behaviour from each other. The observed social network in our case study is derived from a 

bottom-up farmer initiative aiming at collectively reducing on-farm GHG emissions (Kreft et al., 

2021b). There is, however, no dynamic mechanism from which collectives emerge or adapt. 

Heterogeneity 

Agents can differ with respect to all parameters presented in Table A5.1. This heterogeneity leads to 

different decision strategies for the individual agent, i.e., repetition, optimization, imitation, opt-out. 

Thus, agents are not fixed to a certain type of strategy but endogenously choose their strategy. 

Depending on the parametrization, agents can be fixed on a specific strategy, e.g., by setting high 

parameter values for reference income and dissimilarity tolerance, the agent will always choose 

“optimization” as strategy comparable to “econs” or “productivist” type of decision-making in ABMs 

using farmer typologies. In addition, the underlying sub-model FarmDyn also allows to differentiate the 

agents according to their production resources (labor, capital, land). This implies that each agent has the 

observed area, labor and capital endowment at disposal (derived from farm specific census data).  

Stochasticity 

There are no randomized variables or parameters in the calculation of satisfaction, information seeking 

behaviour and the choice sets. This implies that for each simulation run, one and only one solution exists. 

However, the model runs over several years. Between each simulation run, price levels for milk and 

meat products are randomly selected from a uniform distribution of prices between +/-15% of current 

price levels. This results in a certain randomness of the farmers’ strategic choices based on the realised 

output prices over the whole simulation length (here 12 runs). 
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Observation 

The model output of FARMIND are the type and amount of climate change mitigation measures and 

the corresponding reduction in GHG emissions as well as income changes depending on heterogeneous 

and individual farming decision strategies. The emergent phenomena are the impact of social networks 

on the distribution of GHG emissions across heterogeneous dairy and beef cattle farms in Switzerland 

and their total impact on climate change mitigation as well as farm incomes. 

A5.3 Details 

Implementation 

FARMIND is written in Java. The model is available on Github: https://github.com/AECP-

ETHZ/FARMIND. Code for the initialization and sensitivity analysis are written in R. The applied sub-

model (FarmDyn) in this contribution is written in GAMS and Python and uses a CPLEX solver. A 

graphical user interface (GGIG) is available to steer the simulations and is written in Java and Python. 

The source code of the applied sub-model in this contribution can be made available upon request. 

Figure A5.2 gives an overview of the implementation steps in our modelling approach. First, we 

prepared the input data sets (for details see Kreft et al., 2021b; Kreft et al., 2020) for the specific 

requirements of the FARMIND modelling environment. We used three input data sets: 1) Information 

about social networks which were collected using the survey software “Network Canvas”. 2) Farmers’ 

cognitive, social, and dispositional factors derived from an online survey in our case study region. 3) 

Census data by the Canton of Zürich on farm characteristics such as farm size, production activities and 

labor availability. To prepare the data matrix for the agents’ income and GHG emissions for the four 

reduction measures, we used the single farm optimization tool FarmDyn (Britz et al., 2021). The 

resulting csv files were used in FARMIND as model input data.  

We then run FARMIND in three steps: 1) We use the existing policy environment to calibrate the 

behavioural parameters “reference income” and “tolerance activity” to the observed adoption level of 

mitigation measures. 2) Based on different scenario set ups, the calibrated version of FARMIND is used 

to calculate the main results, i.e., the effect of different social networks on the effectiveness and 

efficiency of a payment for GHG emissions reductions (CHF/CO2eq). 3) We use the scenario set-up for 

a sensitivity analysis quantifying the contribution of the behavioural model parameters on the model 

outcome (i.e., the level of GHG emissions). We here use the methods of standardized regression 

coefficient (SRC) and standardized rank regression coefficient (SRRC) based on Latin Hypercube 

Sampling (LHS) with 1000 samples to analyse the impact of the different parameters (Saltelli et al., 

2008; Thiele et al., 2014). Finally, we analyse our simulation results and document our findings. 

https://github.com/AECP-ETHZ/FARMIND
https://github.com/AECP-ETHZ/FARMIND
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Figure A5.2: Overview of data flow and model interactions in FARMIND 

In the following, we describe each of these steps in more detail. First, we provide description of the 

input data used in our modelling approach. Next, we present the initialization of the model and describe 

in detail the scenarios that we used in our main modelling exercise. Finally, we explain model selection 

(based on validating the model output against observed adoption patterns) and describe and present the 

results of our sensitivity analysis. 

Input data  

1) FARMIND uses six input data sets: 1) a social network including ties between agents; 2) a 

matrix of each agent’s preferences for the relevant mitigation measures; 3) a table of the agent’s 

individual characteristics (cf. Table A5.1); 4) a list of initial mitigation measures the agent 

performed; 5) a list of initial incomes over the memory length (i.e., five years); and 6) a list of 

years (corresponding each to a run of FARMIND) and output price levels. This input data is 

derived from the farm survey, the social network analysis, and the calculations in the sub-model 

FarmDyn. The input data for the social network was available for 21 farmers of the sample. We 

used an exponential random graph model (ERGM) to extend the empirical information to our 

social network. More precisely, we first fit an ERGM of the observed network of 21 farmers 

accounting for two important network characteristics, namely density and centralization. In a 

second step, social ties are simulated for the total network of 49 farmers based on the ERGM of 

the observed network. In general, an ERGM computes the overall probability of a network based 

on network statistics and takes the following general form: 
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𝑙𝑜𝑔(𝑒𝑥𝑝(𝜃′𝑔(𝑦))) =  𝜃1𝑔1(𝑦) + 𝜃2𝑔2(𝑦) + ⋯ + 𝜃𝑝𝑔𝑝(𝑦), 

 

where 𝑔(𝑦) is the set of network covariates (here, density and centralization), θ captures size 

and direction of the effects of the covariates and p is the number of terms in the model (Statnet 

Development Team, 2021). 

 

2) The input data for the agents’ preferences were derived from the following survey question in 

Kreft et al. (2021): “Which of the measures that you do not currently implement could you 

imagine to adopt in the future, which not?” The survey participants then had to tick a box for 

all mitigation measures applied in the model. In the FARMIND input data, participants who 

answered that they could not imagine adopting a certain measure in the future received the value 

1 for the corresponding measure and the value 5 otherwise. Given this parametrization, the non-

dominance score will find that measures with a 5 are always preferred over those with the value 

of one. This implies that farmers who said that they will not implement this measure in the 

future will never get it as an option in their choice set, independently from their strategic choice 

(i.e., repetition, optimization, imitation, opt-out). 

 

3) The Tanaka lottery applied in Kreft et al. (2021) allowed us to directly use the individual values 

for the risk parameters in FARMIND. Thus, each agent received the parameter value for the 

decision weight, loss aversion and the probability weighting directly from the survey. Please 

note that the lottery yields the same values for decision weights and probability weighting in the 

gain and loss domain. For the reference income and the threshold values for determining 

individual or social processing, we had to transform the survey data information to be able to 

use it as input data set in FARMIND. To do this, we did the following steps: First, we used 

individual information from each farmer with respect to the different questions. We asked the 

farmers about their current level of income and how satisfied they are with it (see Kreft et al., 

2020). Then we asked the farmers to indicate at what income level they would no longer be 

satisfied (Question in the survey: “Below what agricultural income per year would you be no 

longer satisfied (in CHF per year)?”). With the help of this information, we categorized farmers 

according to their ratio between current income and the tolerated income reduction i.e., before 

getting unsatisfied. This allowed us to identify a relative measure of their reference income that 

we could apply to the simulation results of FarmDyn. For example, farmers who responded that 

already a minor reduction in income would make them unsatisfied, received in the input data a 

reference income set to a level for which incomes only little below the current income level 

were perceived as losses in the calculation of the prospect value.  

A similar approach was taken for the threshold value for determining individual or social 

processing (i.e., threshold for activity dissimilarity). We used the farmers responses on the 
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following survey question (based on a five-point Likert scale): “If other farmers in my 

environment implement climate change measures, I want to implement such measures on my 

farm as well.” The response was used to derive a relative measure of their tolerance to activity 

dissimilarity between 0.01 (small differences with respect to peers make the corresponding 

agent social oriented) and 0.15 (large differences to peers still do not make agent act socially 

oriented). Since these thresholds are key for the simulation outcome in FARMIND (see 

sensitivity analysis in Huber et al., 2022), we calibrated the levels of these two parameters to 

the observed adoption levels in our case study region (see sub-chapter on model selection and 

validation). 

 

4/5) The model is initialized with agents that have not adopted any mitigation measures (see 

next section). Thus, the list of mitigation measures and the initial income for each agent (which 

are necessary to calculate the strategic choice in the first simulation run), are randomly drawn 

from the available baseline run in the FarmDyn model with variable output price levels). 

 

6) FARMIND runs over several years, which is controlled by the input parameter “year_run”. 

This parameter can be set by the modeller e.g., to create a certain price scenario. In this 

simulation, however, we assume that this parameter is fluctuating over years and thus create 

stochasticity in the simulation outcome. Thus, the input parameter is randomly selected from a 

uniform distribution of prices between +/-15% of current price levels. 

Table A5.3 illustrates the distribution of the raw data that was used to prepare the input parameters for 

FARMIND. Details on data collection can be found in Kreft et al. (2020) for the survey data, including 

a description of the applied Tanaka lottery, as well as in Kreft et al. (2021b) for the social network data. 

A description of the sub-model FarmDyn can be found below. 
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Table A5.3: Distribution plots of input variables from FarmDyn calculations (profits and GHG reduction 

potential), survey (behavioural variables) and social network analysis 

Farm      

Adopted 

mitigation 

measures 𝐴 

Replacing 

concentrate feed 

with legumes 

Increased no. of 

lactations 
Drag hoses Feed additives 

𝑦𝐴𝑡 

 

 

 

 

 

 

 

 

Range (t CO2eq) 39 – 775 154 – 707 42 – 764 41 – 722 

𝑥𝐴𝑡  

(with payment of 

120 CHF) 

 

 

 

 

 

 

 

 

Range (CHF) 5553  – 568 648 32927– 434 801 6046 – 588 958 5471 – 589 301 

Personal 

characteristics 
    

Reference income 

to determine 

perceived gains 

and losses and 

calculate 

satisfaction 𝑉𝑖
𝑟𝑒𝑓

 

Loss aversion level 

λ 

Valuation of gains 

and losses α+/- 

Probability weighting 

in gains and losses ϕ+/- 

Tolerance level for 

activity dissimilarity to 

determine information 

seeking behaviour 𝑑𝑖
𝑡𝑜𝑙 

 

 

 

 

 

 

 

 

 

 

5761 – 529 142 0.96 – 10.41 0.05 – 0.95 0.05 – 1.5 0.01 – 0.15 

Social network     

 No social network  
Empirical social 

network 

Random social 

network 

Complete social 

network 

Number of peers a 

farmer is linked to 

(Mean (Sd)) 

0(0) 13.4 (1.4) 1.3 (1.2) 48(0) 
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Initialization of simulation  

We initialize the model with agents not implementing any of the mitigation measures. In this model set-

up, agents have not performed any of the mitigation measures in the past, i.e., the list of mitigation 

measures an agent performed in the past is empty. Therefore, agents’ realised income in the past, which 

is used to calculate the prospect value in the first model run, is based on farm incomes without any 

measures adopted. In this case, the initial income is randomly drawn from the simulated FarmDyn data 

over the price range. We then simulate 12 years (runs) in FARMIND. In this period, agents 

endogenously choose a strategy and eventually adopt mitigation measures. The 12-year period serves as 

a timespan that allows FARMIND to achieve a saturation state at which the number of mitigation 

measures does not change anymore (even though strategies might still vary).  

 

Scenarios  

To model the adoption decision considering heterogeneous cognitive, social, and dispositional factors 

across individual farmers, we test and compare the effect of empirical and hypothetical social networks 

in different scenarios. The scenarios reflect different types of social networks, i.e., from agents without 

ties to a network in which all agents are connected (see Table A5.4). 

Table A5.4: Scenario definitions 

Scenario No social network Random network 
Observed 

Network 
Complete network 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Social network 
No network (agents 

are not interlinked) 

Small random 

network 
Empirical Network 

Full network (all 

agents are 

interlinked) 

Farm parameters 
Calibrated to 

survey data 

Calibrated to 

survey data 

Calibrated to 

survey data 

Calibrated to 

survey data 

Initial activities & 

performing years 

No adoption 

(counterfactual) 

Optimizing agents 

have initial activity 

Optimizing agents 

have initial activity 

Optimizing agents 

have initial activity 

Payment level for 

GHG reduction 

(CHF/CO2eq) 

0-500 0-500 0-500 0-500 

Exemplary 

illustration  

 

 

 

 

 

 

 

  
 

 

We run the four scenarios over the range of payment levels of 0 to 500 CHF per t of GHG reduced. We 

use an iterative process with a 20 CHF interval to calculate the payment level at which the simulation 

without social networks would provide the same GHG reduction level as in the case with networks. The 

underlying idea is that the effect of the social network on the efficiency of the payment can only be 

assessed if the same target reduction level is achieved with and without the network. With different 

reduction levels, a comparison of the scenarios would be biased since lower reduction levels would 
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automatically imply lower cost. This scenario set-up allows to calculate the effect of different social 

networks on i) the total amount of emissions; ii) the payment level and marginal abatement cost, and iii) 

the number of mitigation measures adopted. 

Overall, the specified scenarios allow to compare the empirically informed social network to 

counterfactual situations. The difference in total GHG emission reduction between the counterfactual 

“No social network” as well as the “Small random network” and the ”Complete network” can then be 

used to quantify and discuss the contribution of social networks to overall reduction of GHG emissions. 

Thus, the comparison of simulation results across scenarios gives quantitative insights into the relevance 

of social networks in agricultural climate change mitigation. 

Model selection and validation  

A key challenge in FARMIND is its parameterization given different potential pathways that result in 

the same level of adoption, i.e., model equifinality (Williams et al., 2020). This implies that multiple 

structures and/or parameterizations exist that generate outputs consistent with the observed adoption 

pattern in our case study region (e.g., Troost and Berger, 2015a). More specifically, while we were able 

to collect data on the underlying model parameters using census data, surveys and social network 

analysis, the strategic decisions, i.e., repetition, imitation, optimization and opt-out cannot be validated 

against observational data and different combinations of these strategies might result in the same model 

output. Consequently, the use of thresholds for determining the decision strategies in FARMIND implies 

that the calibration of these parameters has an important effect on simulation outcomes (see also Huber 

et al. 2021). The survey identified relative differences of the model parameters between agents. The 

absolute level of the reference income was determined by the income levels simulated in FarmDyn. 

To address this challenge, we calibrated the threshold parameters in FARMIND based on a sensitivity 

analysis (please note that we also performed an extensive sensitivity analysis to assess the robustness of 

our results, see section below). Here, we parameterized the profit changes in FarmDyn using the current 

support for GHG emission reduction measures in Switzerland. Since there is currently no support for 

feed additives and only very few farms stated that they already experimented with additives, we did not 

consider this mitigation measure in the calibration of our agent-based approach. We ran FARMIND 

with increasing levels for both thresholds, i.e., reference income and dissimilarity tolerance, and 

compared the adoption pattern with the observed data. Given that we increased the thresholds for all 

agents simultaneously, the relation between the individual thresholds derived from the survey data was 

kept constant. To assess model performance, we calculated the standardized mean errors of the model: 

𝐸𝑆𝐴𝐸 = 1 −
∑ |𝑦𝑖

𝑜𝑏𝑠−𝑦𝑖
𝑠𝑖𝑚|𝑖

∑ 𝑦𝑖
𝑜𝑏𝑠

𝑖
, 

with 𝑦𝑖
𝑜𝑏𝑠 as the observed adoption of mitigation measures 𝑖. We calculated model performance by 

fixing one parameter and changing the second parameter starting with parameter levels that were 
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insensitive to model output. We then changed the corresponding parameter levels which will first 

increase the goodness-of-fit. At a certain level, however, this goodness-of-fit (here measured by ESEA) 

starts to decrease. This allows to identify a “best” model that could explain the observed pattern with 

the simulated strategies in FARMIND.  

The two threshold levels have the following impact on the adoption of climate change mitigation 

measures in our simulations. First, increasing the reference income implies that more agents become 

unsatisfied and thus increases the probability of them choosing the optimization or opt-out strategy. The 

increase in adoption through optimizing behaviour is represented in the left panel of figure.3. In the 

simulations with increasing reference income levels (R1-R5), farmers do not have a social network and 

the adoption of mitigation measures is driven by optimizing behaviour only. The results show that with 

optimizing behaviour, the simulated adoption overshoots the observed level for drag hoses and lactations 

with higher threshold levels for being satisfied. This implies that we should observe more of these 

mitigation measures if farmers were pure profit maximisers. Second, adding the social network to 

simulations in which farmers have a high reference income, the agents are pushed to the opt-out strategy 

since they are not only unsatisfied but also very different to their peers. This suggests that lower levels 

of the reference income are more suitable to represent the observed adoption levels. Given these lower 

levels of the reference income (R2-R3), we then tested the agent’s sensitivity with respect to the 

tolerance level (how much they consider the behaviour of their peers, i.e., how much they are inclined 

to engage in social processing).  

Hence, we manipulated the levels of the threshold “tolerance activity” (N1-N5). This allowed us to 

compare adoption behaviour based on different combinations of reference income and dissimilarity 

tolerance (see right panel of figure 3). Overall, we find that models with social networks outperform 

models without interacting agents in terms of goodness-of-fit (we added R4 to the right panel of  

figure 3 to illustrate the outputs when agents are income maximisers only). If social networks are 

included, high and low levels of sensitivity towards social behaviour decrease model performance. The 

combinations of both threshold values in the middle of the possible ranges provide similar goodness-of-

fit (Table A5.5). This allows us to meaningfully choose a single best model for the analysis since our 

findings are robust within a certain range of threshold values and only extreme assumptions can be 

discarded. 
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Figure A5.3: Visual comparison between simulated and observed adoption of climate change mitigation measures. 

The dashed lines refer to the corresponding observed level of adoption. 

We are aware that other approaches exist such as pattern-oriented modelling (Grimm et al., 2005) or 

diverse model calibration (Williams et al., 2020) that relax some of the assumptions resulting from 

choosing a single best model. However, we here focused on model prediction, i.e., what if no social 

network existed (or it had different patterns). An equifinal model in our case would have to assume 

extreme values, i.e., all agents choose the same strategy (e.g., all were optimizers). Thus, our assumption 

is that farmers, in the context of adopting GHG mitigation measures, are not pure income optimizers. 

Indeed, the main purpose of our model is to include behavioural factors into simulating adoption 

decisions, and  recent literature on farmers’ behaviour suggests that optimization is only one of several 

types of decision-making strategies in agriculture (for a recent review see Bartkowski et al., 2022; 

Epanchin-Niell et al., 2022).  

Table A5.5: Standardized mean absolute error from different model parameterizations 

 Absolute error 

Legumes 

Absolute error 

Lactation 

Absolute error 

Drag hose 

ESAE 

R4 (no network) 5 -5.5 -4.8 0.78 

R3 (no network) 7.5 -4 -2.2 0.80 

R3 with N1 8.1 2 2.3 0.82 

R3 with N3 9.4 1 1 0.84 

M1: R3 with N4 8 1.2 1.3 0.85 

R2 with N4 6.5 -1.3 -1.3 0.87 

R3 with N5 7.9 0.4 0.7 0.87 

M1: R2 with N2 6.1 -1 -1 0.88 

M3: R2 with N3 6.3 -0.9 -0.9 0.88 

Note: R1-R5 refer to increasing reference income levels. N1-N5 for decreasing sensitivity level for social oriented 

behaviour.  

In addition, we also refrained from parameter screening and selection as described in Troost and Berger 

(2015a), i.e., a calibration of the important model parameters based on Latin Hypercube Sampling (LHS) 

over the whole parameter range. The reason is that we rely on individual data for each agent (based on 
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the survey), and we do not have to make assumptions about the distribution of parameters in the 

initialization process of the model. 

In summary, we can calibrate FARMIND to observed uptake of climate change mitigation measures in 

our case study region. Our simulation outcomes remain robust with respect to a meaningful variation in 

the threshold levels for determining the decision strategies in FARMIND. Thus, we are convinced that 

FARMIND is a valid approach to assess the effect of social networks on GHG mitigation in our case 

study region. To test external validity of FARMIND, however, more data and more case studies would 

be needed to generalize the effect of social networks on the effectiveness and efficiency of policy 

incentives to reduce farm-level GHG emissions. 

Output sensitivity analysis  

The main model outcomes are based on an uncertainty analysis, i.e., we run FARMIND with different 

social networks, output price levels and various levels of subsidies for CO2 (CHF/CO2eq) to achieve a 

given reduction level in GHG emissions. 

To assess the robustness of our findings, we also performed an output sensitivity analysis. We here used 

the methods of standardized regression coefficient (SRC) as well as Sobols’ method to assess the effects 

of behavioural parameters and model structures on GHG emission levels. We follow the protocol by 

Thiele et al., 2014 and calculate the contribution of farmers’ individual behavioural parameters as well 

as different model structures on the total amount of GHG emissions (see Table A5.6): 

Table A5.6: Parameter range for Latin Hypercube Sampling (LHS) in global sensitivity analyses 

State variable / parameters Abbreviation 

Lower range 

LHS  

(Min value) 

Upper range 

LHS  

(Max value) 

Loss aversion level 
% change for each agent 

λ 0.5 1.5 

Valuation of gains and losses 
% change for each agent 

α+/- 0.5 1.5 

Probability weighting in gains and losses 
% change for each agent 

ϕ+/- 0.5 1.5 

Reference income  
% change for each agent 

𝑉𝑖
𝑟𝑒𝑓

 0.8 1.2 

Tolerance level for activity dissimilarity 
% change for each agent 

𝑑𝑖
𝑡𝑜𝑙 0.5 1.5 

Preferences 
1 = cannot imagine adopting 

5 = can imagine adopting 

𝑅𝐴 1 5 

Output price level  
  1 = 0.60 CHF/kg (milk) 7 CHF/kg (meat) 

20 = 0.79 CHF/kg (milk) 9 CHF/kg (meat) 

 1 20 

Fuzzy size  
Maximum number of mitigation measures 

considered in choice set 

 1 5 

Social network 
Connection probability for random network 

 1 49 
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For each of the parameters, we use a uniform distribution of values with the observed value (i.e., taken 

from the survey) as the mean between a max. and a min. value (table 6). The mean values of behavioural 

factors are directly derived from the survey (and the corresponding lottery) or corresponds to the 

calibrated input values (in the case of the reference income and the tolerance for dissimilarity). Agent 

preference levels for different mitigation measures are set randomly in the sensitivity analysis. Price 

levels of beef and dairy products refer to the range of observed prices in Swiss agriculture. For the size 

of the choice set, the sensitivity analysis implies that either only the most preferred option appears in 

the choice set (if set to 1) or all options appear in the choice set (if set to 5). Thus, this factor tests for 

the effect of the fuzzy preference algorithm on the outcome. Finally, the overall impact of the network 

size is also tested by using a random network. 

SRC Standardized regression coefficient 

The standardized regression coefficient analysis includes two steps. First, a linear regression model is 

fitted to the simulation data generated from a Latin Hypercube Sample of the different parameters. The 

results from the standardized regression coefficient approach are here based on LHS with 1000 

parameter sets (samples) and 100 repeated simulation samples. 

Secondly, the regression coefficients are standardized. Thereby, the coefficients are multiplied with the 

ratio between standard deviations of the input parameter and the output value (Saltelli et al., 2004). Thus, 

the regression analysis shows the effect of an input on the output variables both normalized with a mean 

of zero and standard deviation of one. This allows to better interpret and communicate the absolute 

relationship between the inputs and output of FARMIND. 
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Figure A5.4: SRC for FARMIND in the context of adopting GHG mitigation measures in Swiss agriculture. Mark 

show mean SRC value. Sticks show maximum and minimal values of bootstrapped 95% confidence intervals of 

corresponding sensitivity indices. Parameter groups are represented in different colors. Yellow: threshold values 

that determine the choice between strategies i.e., reference income 𝑉𝑖
𝑟𝑒𝑓

and dissimilarity tolerance 𝑑𝑖
𝑡𝑜𝑙a. Blue: 

Parameters used to calculate the cumulative prospect value for each agent. Green: Structural parameters 

including fuzzy size, price levels, preferences, and social networks. 

Our sensitivity analysis provides four implications (cf. Figure A5.4): First, the reference income, i.e., 

the threshold parameter determining the choice between optimization and opt-out vs. imitation and 

repetition has the largest impact on the total amount of GHG emissions. An increase of the reference 

income by one standard unit increases the greenhouse gas emissions by approximately 0.6 standard 

deviation of all greenhouse gas emissions. The higher the reference income, the more likely agents are 

choosing the repetition or imitation strategy. Thus, theoretically, the sign of the threshold parameter 

could go in both directions since the imitation strategy would allow the agents to adopt mitigation 

measures whereas the repetition strategy would not. The results show that the effect of the repetition 

strategy, i.e., the agents’ reluctance to change is more important for the overall level of GHG emissions. 

Secondly, an increase of the behavioural factors describing cumulative prospect theory (α+, α-, ϕ+, ϕ-, 

and λ) have a much smaller impact on greenhouse gas emissions compared to the reference income. The 
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main effect of an increase of these parameter values by one standard unit is, on average, close to zero. 

The maximum and minimum values of these estimates are between 5 and 8% (of the standard deviation). 

The parameter determining the curvature of the value function in the gain (α+) and loss (α-) domain, 

respectively (i.e., the decision weights), are identical for each agent given our Tanaka design of the 

lottery. Higher values for α+ imply that the value function reduces the depreciation of high incomes in 

the gain domain. Ceteris paribus, this increases the probability that agents are satisfied (since there is 

lower devaluation). Consequently, the probability of imitation increases and the total amount of GHG 

emissions decreases with higher values for α+. We can observe the opposite effect for α-, which devalues 

low incomes in the loss domain. Higher values for dissimilarity tolerance imply that agents, ceteris 

paribus, get less inclined to social oriented behaviour (i.e., imitation and opt-out). As in the case of the 

reference income, the sign of the dissimilarity tolerance parameter depends on which of the two 

remaining strategies (i.e., optimization and repetition) dominates. In our simulation, higher dissimilarity 

tolerance increases the weight of the optimization strategy and therefore the total amount of GHG 

emissions decreases on average. 

Thirdly, the effect of structural variables such as the social network, the preference setting for mitigation 

measures or the price level for milk and meat have a larger effect on the total amount of GHG emissions 

compared to the cumulative prospect parameters, but a lower effect compared to the reference income. 

The higher the price levels, the higher the probability that agents are already satisfied without adopting 

mitigation measures and thus, ceteris paribus, the overall GHG emissions are higher. This suggests that 

exogenous assumptions on the price levels in FARMIND have an important effect on the adoption 

decision, but this is, compared to the threshold level, less important on the total level of GHG emissions. 

This is also an important consequence from using FarmDyn as a sub-model (see next Section for details). 

In FarmDyn, prices affect the income level relatively more than the amount of GHG emissions, i.e., the 

reduction potential of the different measures remains similar under different price scenarios. 

Fourthly, we observe that the sign of behavioural factors is ambiguous. This has two underlying 

mechanisms. First, for probability weighting parameters ϕ+ (ϕ-), the effect can theoretically be positive 

or negative because it depends on the underlying income distribution (Huber et al., 2020). Secondly, the 

behavioural parameters can decrease greenhouse gas emissions if they stimulate optimization or 

imitation and increase greenhouse gas emissions if they support repetition and opt-out (i.e., non-adoption 

of climate change mitigation measures). However, an increase in the parameter values of decision 

weights, for example, can increase both, the probability of optimization but also opt-out. Thus, the effect 

depends on the shares of agents that choose a certain strategy, which is in turn depends on the other 

parameter levels. To get more insights into this potential non-linear behaviour of the model, we also 

used Sobol’s method to assess the sensitivity of FARMIND. 
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Sobol’s method 

To investigate non-linear relationships between the input parameters and outputs, we apply Sobol’s 

method, a variance decomposition approach (Saltelli and Annoni, 2010). The underlying idea is to vary 

the input parameters and then to identify the effect of the individual parameter on output variance. In 

Sobol’s method, the total variance is composed of the so called main and interaction effect, which is 

determined by evaluating the partial effects using Monte-Carlo methods (Thiele et al., 2014).  

 

Figure A5.5: Results from Sobol sensitivity analysis for the four strategies. Dots represent the main effect of the 

parameter on the variability of the model outcome. Circles refer to the total effect, including interaction effects of 

the corresponding parameter on the strategy choice. Sticks show bootstrapped 95% confidence intervals of 

corresponding sensitivity indices. 

As in the case of the regression analysis, we use a Latin Hypercube Sampling to generate the range of 

input parameters in the sensitivity analysis. We applied the soboljansen function to identify the expected 

non-linear effect of the model parameters (with 8000 bootstrap replicates). 

The results from Sobol’s method shows the importance of interaction effects in FARMIND (Figure 

A5.5). The main factors that drive the agents’ behaviour in our model are the reference income and the 

social network. These two parameters drive the model especially for the repetition and imitation 
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strategies. For the optimization strategy, the output price level is more important than the social network. 

For these three strategies, behavioural factors become much more important when looking at the 

interactions (i.e., the total effect of the parameter). This exemplifies that the main influence of the 

underlying behavioural factors such as risk preferences or dissimilarity tolerance is indirect (i.e., via the 

calculation of the prospect value and the social oriented behaviour).  

In summary, the output sensitivity analysis shows that thresholds for determining the decision strategies 

in FARMIND are the key drivers in the simulation outcome. However, behavioural factors such as risk 

parameters or loss aversion are also sensitive with respect to the strategic decision and thus affect the 

amount of reduced GHG emissions. Given that our results are robust with respect to the choice of 

threshold levels in our data (see section above), the sensitivity analysis shows that the implications of 

our modelling results also remain with variation of the other factors within a large parameter space. 

FARMIND requires a sub-model which is able to optimize a farm for two primary causes. On the one 

hand, for the case in which a farmer decides for the strategic decision of optimization and on the other 

hand to determine the satisfaction level of a farmer. For this purpose, we use the bio-economic single 

farm optimization model FarmDyn (Britz et al. 2021), which is described in more detail below.  

Model introduction 

FarmDyn is a highly detailed bio-economic farm scale optimization model, building on mixed integer 

linear programming. It contains detailed information on bio-physical and economic (e.g., cash flow, 

investments) processes linked to farming activities. This bio-economic model setup allows to determine 

the trade-offs between economic and environmental indicators considering the production of both 

agricultural outputs and environmental externalities (Janssen and van Ittersum, 2007). 

FarmDyn has been extensively used for assessments of environmental policies such as the national 

implementation of the Nitrate Directive in Germany (Kuhn et al. (2019), Kuhn et al. (2020)) and the 

assessment of different greenhouse gas-indicators (GHG) and GHG mitigation measures for varying 

farming systems (Lengers et al. (2013), Lengers et al. (2014), Kokemohr et al. (2022)).  

Case study and FarmDyn adjustments 

The default version of FarmDyn is parameterized for the German agricultural sector. For this case study, 

FarmDyn’s database was adjusted to reflect the Swiss agricultural sector. This includes new data on 

variable input and output costs (Agridea, 2020), fixed costs for buildings and machinery (Agridea, 

2021), and relevant changes to farm (management) parameters such as yields (Agridea, 2021). In 

addition, a new FarmDyn module was developed to account for the Swiss cross compliance 

requirements (e.g. mandatory crop rotation, set aside rules) and the direct payment system (e.g. 

payments for land under food production, gras-based milk and meat production) (DZV, 2021). 
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Interplay of farm management and mitigation measures  

FarmDyn maximizes the farm profits given certain boundary conditions such as farm endowments, 

prices, and policies. It finds the optimal farm management program including decisions about which 

crops to plant, how to fertilize them, how many animals to keep, and how to feed them. Each of these 

activities are linked to GHG-emissions on a very detailed technical level (see section “GHG emissions 

in the model”). Based on the limited farm endowments and the interplay between farm management 

decisions, each change in a boundary condition impacts the GHG emissions of the farm. This is true, if 

for example the price for a certain GHG-intensive crop increases, which shifts the cropping pattern 

towards a higher GHG emission in total. This effect is especially pronounced if mitigation measures 

become compulsory which aim at the reduction of GHG emissions.  

For this study, four mitigation measures were implemented, which are described in detail in the 

following Table A5.7. The table shows for each of the measures the underlying assumption of how it 

reduces GHG emissions (means of mitigation). Further, the costs related to that measure are presented 

(associated costs) and finally the technical implementation (technical implementation) is described. To 

illustrate the complexity of the effect of a compulsory mitigation measure on GHG-emissions and 

associated costs, we have a look at the mitigation measure a) replacement of (imported) concentrate 

feed with on-farm fodder. The underlying assumption is that imported concentrate from overseas 

soybeans generate, due to its transport and land-use changes, high GHG emissions. To mitigate these 

emissions, the measure mandates that only on-farm fodder can be used leading to a production of protein 

fodder (legumes such as horse beans and peas). Due to the complexity of the model, the associated costs 

of the measure are a composition of multiple changes in the activities. First, the farm does not have to 

pay for the off-farm concentrate. Second, the required fodder has to be planted on-farm, leading to a 

costly production. Third, the production of on-farm fodder might replace previously grown cash crops, 

which diminish the overall farm income. This is a simple example on how these costs are generated. 

However, it can also have further on-farm effects if new crops such as legumes are more labour 

intensive, leading to a change in production elsewhere on the farm.  
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Table A5.7: Description of mitigation measures with underlying assumption of mitigating mechanism, its cost and 

the technical implementation in Farmdyn. 

Measure 

description 

Means of mitigation Associated costs Technical 

implementation   

a) Replacement 

of (imported) 

concentrate 

feed with on-

farm  

Replacing concentrate feed such 

as soybean with locally produced 

legumes (e.g., peas or horse bean) 

mitigates up-stream CO2-

emissions due to reduced 

transport and land-use changes  

 Replacement of cheap 

protein fodder by more 

costly own produced 

fodder 

 Cash crops replaced by 

legumes 

 

Variable on 

purchasing off-

farm 

concentrate 

equals zero 

b) Increase of 

lactation 

number per 

dairy cow 

Increasing the number of 

lactations per dairy cow reduces 

CH4-emissions of a herd due to a 

reduced replacement rate, i.e., 

less upraising of calves and 

heifers 

 No assumed costs 

 Reduced fodder costs 

and labor use due to 

reduced number of 

animals on farm 

Increased 

lactation 

number per cow 

from 3 to value 

7 

c) Use of 

emissions 

reducing 

manure 

application 

technique 

A close-to-ground application 

with trail hoses (or a similar 

technique) reduces N2O-

emissions of manure brought to 

the field and indirect N2O 

emissions from other nitrogen 

compounds  

 Purchasing of more 

costly application 

techniques such as drag 

hose compared to broad-

spreader 

Variable of the 

use of broadcast 

spreader equals 

zero 

d) Introduction 

of feed 

additives 

Introducing feed additives such as 

linseed reduces the CH4-

emissions from enteric 

fermentation by inhibiting 

methanogenesis in ruminants 

 Costs for purchasing the 

feed additive 

0.6 CHF per 

cow and day 

 

GHG emissions in the model 

For this study, FarmDyn considers the most relevant on- and off-farm GHG emission sources. This 

includes methane (CH4) emissions from enteric fermentation and manure storage, nitrous oxide (N2O) 

emissions from the application of manure and mineral fertilizer, as well as other nitrogen compounds 

leading to indirect N2O emissions. To assess mitigation measures which aim to reduce inputs with a 

high carbon footprint, we use data for upstream emissions for purchased inputs such as feed concentrate 

or chemical fertilizer. A complete list of the source of emission, the methodology applied, and the 

corresponding emission factors can be seen in Table A5.8.  
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Table A5.8: Source of on- and off farm emissions, applied methodology and corresponding emission factors used 

in FarmDyn 

Source of emission Methodology Applied Emission factor 

CH4 enteric fermentation IPCC(2006)-10.30 f. tier 

2+3 

Haenel et al. (2018) p.140, p.145, p.155, 

p.168, p.214, p.194, IPCC p.10.30 

CH4 stable, storage and 

pasture 

Haenel et al. (2018) p. 42 

No. 3.28 and 3.29 Following 

IPCC (2006) eq. 10.23 

Haenel et al. (2018) p.108 and p. 185. 

IPCC (2006) p.10.41 

NH3 emissions from stable 

and storage 

EMEP (2016) Haenel (2018) p.108, p. 109, Haenel et 

al. (2018) p.186 p.187 

N2O, NOx, N2 emissions 

from stable and storage 

EMEP (2016), Haenel 

(2018) p. 53 

Haenel 2018 p. 110, HAENEL et al. 

(2012), JARVIS & PAIN (1994), 

Haenel et al. (2015) pp. 188 

NH3 from manure 

application 

EMEP (2016) Haenel et al. (2018), pp. 111-112, 189, 

64 

N2O, NOx, N2 emissions 

from manure application 

EMEP (2016), Haenel et al. 

(2018), pp. 316-317 

Haenel et al. (2018) p.326, Stehfest and 

Bouwman (2006) N2 Roesemann et al. 

(2015) pp. 316-317 

NH3 from excreta from 

pasture 

EMEP (2016), Haenel et al. 

(2018) p.55 

Haenel (2018) p.137/EMEP(2013): 3B , 

pp. 27 

N2O, NOx, N2 emissions 

from excreta from pastures 

EMEP (2016), Haenel et al. 

(2018) p.55 

Haenel et al. (2018) p. 332; IPCC 

(2006) 11.11, table 11.1, Haenel et al. 

(2018) p. 332, Stehfest and Bouwman 

(2006) Roesemann et al. (2015), pp. 324 

NH3, N2O, NOx, N2 

emissions from mineral 

fertilizer application 

Haenel et al. (2018), pp. 316-

317 

Haenel et al. (2018) p.325, Haenel et al. 

(2018) p.326, Stehfest and Bouwman 

(2006) N2 Roesemann et al. (2015) 

Indirect N2O emissions 

from prior NOx, NH3 and 

NO3 emissions 

IPCC (2006) IPCC (2006)-11.24, Table 11.3 

CO2 emission from 

provision of inputs 

 KTBL (2021) 

Source: http://www.ilr.uni-bonn.de/em/rsrch/farmdyn/FarmDynDoku/template/environmental_accounting_module/ 
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Chapter 5: Action- vs. results-based policy designs for agricultural 

climate change mitigation20  
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Abstract  

Reducing agricultural greenhouse gas (GHG) emissions is key to achieve overall climate policy goals. 

Effective and efficient policy instruments are needed to incentivize farmers’ adoption of on-farm climate 

change mitigation practices. We compare action- and results-based policy designs for GHG reduction 

in agriculture and account for farmers’ heterogeneous behavioural characteristics such as individual 

farming preferences, reluctance to change and social interactions. An agent-based bio-economic 

modelling approach is used to simulate total GHG reduction, overall governmental spending and farm-

level marginal abatement cost of Swiss dairy and beef cattle farms under both action- and results-based 

policy designs. We find that total governmental spending associated with the compared policy designs 

depends on the cost and benefits of the considered measures as well as behavioural characteristics of 

farmers. More precisely, if farmers are reluctant to change, additional incentives are needed to increase 

adoption of a win-win measure. In such a case, targeting the payment on the cost of that particular 

measure (action-based design) instead of paying a uniform amount for abated emissions (results-based 

design) can lower governmental spending for agricultural climate change mitigation. Farm-level 

marginal cost of reducing GHG emissions are lower with results-based payments independent of the 

cost of measures. Moreover, we find that farmers’ individual preferences and reluctance to change 

substantially lower the adoption of mitigation measures and hence overall GHG reduction potential of 

farms.   

Keywords 

Climate change mitigation, agricultural policy assessment, action- and results-based policy design, 

agent-based modelling, Switzerland 

  

                                                      
20 This chapter corresponds to the following article: Kreft, C., Finger, Huber, R. (2023). Action- vs. results-based 

policy designs for agricultural climate change mitigation. Submitted. 
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5.1 Introduction  

Agricultural production is among the major contributors to global warming. At the same time, 

agriculture has large potential to effectively mitigate greenhouse gas (GHG) emissions and help with 

achieving global temperature targets (Roe et al., 2019). Hence, reducing agricultural GHG emissions 

has become a key policy goal in many countries (OECD, 2019). To achieve these goals, farmers have 

to adopt GHG mitigation measures (IPCC, 2019). However, these measures and practices require a 

certain know-how and often cause additional investment and/or transaction cost. To date, policy 

instruments to incentivize mitigation of agricultural GHG emissions in European countries are usually 

designed as compensating payments for the adoption of specific farming practices (Wreford et al., 2017). 

So-called action-based designs enable to target payments based on estimated costs and benefits of 

specific GHG reduction measures. In general, however, action-based payment schemes have been 

criticized for being inefficient, leading to windfall effects and low additionality in the provision of 

environmental benefits due to asymmetric information and heterogeneous ecological potential (Claassen 

et al., 2018; Hanley et al., 2012; White and Hanley, 2016; Wunder et al., 2018). Instead, results-based 

policy designs have been suggested as cost-efficient alternative to tackle certain agri-environmental 

problems (Engel, 2016; Sidemo-Holm et al., 2018; Wuepper and Huber, 2021). However, such results-

based designs have not been addressed for GHG emission reduction in agricultural production.  

We compare action- vs. results-based policy designs to reduce GHG emissions in the agricultural sector, 

i.e., payments for practice adoption vs. payments based on mitigation performance. To this end, we use 

an agent-based bio-economic simulation framework considering farmers’ behavioural characteristics, 

namely farming preferences, reluctance to change and social interactions. Agent -based models are used 

to simulate phenomena emerging from behaviour of individuals (agents) and their interactions (e.g., via 

land markets or exchange of knowledge). They allow to conduct computational experiments solving 

complex if-then scenario analyses based on data and theory. Since they enable to include heterogeneous 

individual characteristics such as personal preferences or social network ties, agent-based models are 

suitable tools to model the complexity of farmers’ decision-making processes and quantify the 

respective outcomes (Huber et al., 2022). Such a modelling approach that integrates structural data, a 

detailed farm-level model as well as survey data and social network analysis, allows to consider specific 

characteristics of different mitigation measures as well as heterogeneous farms and farmers. This 

differentiation is highly relevant for the ex-ante assessment of agricultural policy designs that target the 

reduction of on-farm GHG emissions. Moreover, bridging behavioural tools and ex-ante policy 

assessments in an agent-based modelling framework provides a better understanding of the role of 

behavioural characteristics on climate change mitigation adoption in agriculture. Based on a Swiss case 

study, we specifically simulate the effect of the differently designed policy incentives on the adoption 

of GHG mitigation measures on dairy and beef cattle farms (suckler cows and bulls for fattening), 

particularly accounting for farmers’ reluctance to change.  
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Previous studies have shown that subsidies for the implementation of emission mitigation practices 

could considerably reduce agricultural GHG emissions (Domínguez et al., 2016). However, existing 

greening policies of the Common Agricultural Policy in the EU are found to be rather ineffective with 

respect to GHG reduction in agriculture (Solazzo et al., 2016). In general, results-based designs in 

agricultural policy are found to be more efficient in achieving agri-environmental targets than action-

based designs (see e.g., review by Burton and Schwarz, 2013b; Wuepper and Huber, 2021). However, 

it is suggested that the actual gain in efficiency from result-orientation of payments depends on the 

specific policy goal (e.g., whether the outcome is measurable), behavioural factors such as individual 

characteristics and social networks of decision-makers as well as underlying cost and benefits of the 

considered measures (Moxey and White, 2014; White and Sadler, 2012). For example, recent research 

in the context of behavioural economics suggests that reluctance to change, status quo bias or inertia are 

important barriers to behavioural change among farmers and that this is one of the most important 

reasons why more sustainable practices and GHG mitigation measures are not readily adopted (e.g., 

Dessart et al., 2019). This might especially explain the non-adoption of mitigation measures that could 

be cost saving for farmers, i.e., win-win or no-regret measures (Fleming et al., 2019, Moran et al., 2013). 

For example, increasing the number of lactations per dairy cow can create synergies between GHG 

reduction and farm profitability (Alig et al., 2015; Grandl et al., 2019). Moreover, individual preferences 

and social interactions can take a key role in farmers’ decision-making regarding the adoption of climate 

change mitigation measures (Haden et al., 2012; Kreft et al., 2022a; Kreft et al., 2022; Kreft et al., 2021b; 

Niles et al., 2016). The consideration of behavioural factors in agri-environmental policy assessment is 

however still rare (e.g., Huber et al., 2018). The ex-ante assessment of action- vs. results-based policy 

designs under consideration of farmers’ individual (behavioural) characteristics thus constitutes another 

important research gap.  

We contribute to the existing literature by comparing action- and results-based policy designs for GHG 

emissions reduction. We use a case study of Swiss dairy and beef cattle farms accounting for farmers’ 

individual preferences and social interactions in an agent-based bio-economic modelling approach. 

More precisely, we use the agent-based model FARMIND (Huber et al., 2022a) in combination with the 

bio-economic farm model FarmDyn (Britz et al., 2019) to simulate total governmental spending, 

aggregated changes in farm incomes as well as farm-level marginal abatement cost associated with 

action- and results-based payments.  

To compare the efficiency of the different policy designs, we simulate a short-term reduction of 10% of 

baseline GHG emissions, assuming maintenance of current production levels and current numbers of 

livestock units. The simulations are based on a regional case study in Switzerland. We use a combination 

of census, survey, and detailed social network data of 49 Swiss dairy, suckler and bull-fattening farms. 

Our analysis provides three contributions. First, we compare the efficiency of action- and results-based 

policy designs considering measures that have heterogeneous costs and reduction potentials on farm 
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level. We consider four GHG mitigation measures in the analysis: i) replacing concentrate feed with 

legumes grown on the farm, ii) increasing the number of lactations per dairy cow, iii) applying manure 

using drag hoses and iv) introducing feed additives to reduce enteric fermentation of cattle. Second, we 

specifically investigate the role of a potential win-win measure (increased number of lactations, which 

may reduce GHG emission and increase profits) on the efficiency of action- and results-based policy 

designs. This provides quantitative results that can inform policymakers when choosing between policy 

designs to enhance climate change mitigation in agriculture. Third, we compare the overall reduction of 

GHG emissions achieved when accounting for farmers’ reluctance to change, individual farming 

preferences, and social interactions to a case where farmers are profit maximizers. This provides a better 

understanding of the role of behavioural characteristics on mitigation adoption in agriculture.  

Accordingly, our results are threefold: First, we find that total governmental spending to achieve a 

reduction of 10% of baseline GHG emissions is higher in the results-based policy design as compared 

to the action-based design. This suggests that an action-based payment would be more efficient from a 

governmental perspective. The result can be explained by the specific nature of the measure “increasing 

the number of lactations per dairy cow”, which is a win-win measure that reduces GHG emissions while 

at the same time increasing farm profits. If farmers’ behavioural characteristics such as reluctance to 

change prevent the adoption of win-win measures despite potential income gains, policy incentives are 

needed to overcome this inertia and enhance adoption. However, in such a case, targeting payments 

based on the cost of the specific win-win measure (action-based design) can lead to lower governmental 

spending than targeting it on farm-level cost-efficiency of GHG reduction (results-based design). This 

is particularly relevant in the context of agricultural climate change mitigation since recent research 

suggests that a considerable share of GHG emissions reduction in agriculture could be achieved at low 

cost or even net benefits due to such win-win measures (MacLeod et al., 2015; MacLeod et al., 2010; 

Moran et al., 2011). Second, when excluding the win-win measure from the simulations, we find that – 

in line with the existing literature – total governmental spending is lower in the results-based scheme 

than with action-based payments. Third, our results show that farmers’ individual preferences and 

reluctance to change lower overall reduction of GHG emissions by roughly 20% in both action- and 

results-based payment schemes compared to simulations considering only profit maximizing behaviour. 

Our findings indicate that a combined consideration of the characteristics of mitigation measures and 

behavioural factors is key to assess the efficiency gain from differently designed policy incentives in 

agricultural climate change mitigation. 

The remainder of this article is as follows: Section 2 provides information on action-and results-based 

payments as well as agricultural climate change mitigation and presents the conceptual framework. 

Section 3 introduces the agent-based modelling framework FARMIND, section 4 presents the results, 

which are discussed in section 5. Section 6 concludes. 
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5.2 Background and conceptual framework  

5.2.1 Agricultural climate change mitigation and policy designs 

Despite scientific evidence of agriculture’s large potential to effectively reduce GHG emissions (Smith 

et al., 2008), respective mitigation measures are currently not widely adopted by farmers. Consequently, 

agricultural GHG emissions remained relatively stable over the past two decades (European 

Environment Agency, 2021). However, many countries have introduced the agricultural sector in their 

overall climate policy goals committed to under the Paris Agreement (OECD, 2019). Switzerland for 

example aims at a 40% reduction of agricultural GHG emissions by 2050 as compared to the level of 

1990 (Swiss Federal Council, 2021). In the absence of binding standards and constraints regarding 

agricultural GHG emissions, policy instruments are required to incentivize and accelerate the uptake of 

climate-friendly farming practices. While agricultural policies explicitly targeting climate change 

mitigation are rare, the effectiveness and efficiency of differently designed policy instruments are well-

studied with respect to other agri-environmental goals, i.e., conservation of biodiversity, maintenance 

of cultural landscapes or sustainable resource use (Pe'Er et al., 2019; Uthes and Matzdorf, 2013; 

Wuepper and Huber, 2021). The majority of these policy incentives pay farmers for the implementation 

of previously specified measures. Among the advantages of these so-called action-based policy designs 

are low monitoring cost and relatively good acceptance by farmers due to high certainty of payments 

(Vainio et al., 2021). However, action-based agri-environmental policy schemes have some important 

disadvantages regarding actual environmental improvements and cost-efficiency. Main problems relate 

to information asymmetry, moral hazard, and adverse selection of participating farmers (Moxey and 

White, 2014; White, 2002). It is argued that action-based payments incentivize farmers to minimize 

opportunity cost of adoption and hence fail to achieve environmental goals (Dicks et al., 2014; Velten 

et al., 2018). Instead, paying farmers based on achieved environmental outcomes has been suggested as 

effective and efficient alternative. So-called results-based policy designs are found to have several 

advantages over action-based designs: Since they allow for flexible and innovative solutions by 

individual farmers, results-based payments can potentially achieve environmental improvements at 

lower public and private costs (Burton and Schwarz, 2013b; Moxey and White, 2014; Sidemo-Holm et 

al., 2018; Wuepper and Huber, 2021). However, results-based payments often have high administrative 

cost for monitoring outcomes, especially when the desired policy goal is hard to measure as is the case 

with GHG emissions on farm level. Moreover, farmers face higher uncertainty of payments with results-

based designs.  

5.2.2 Conceptual framework  

The conceptual framework of our analysis is captured in Figure 5.1. It integrates aspects of behavioural 

theories such as prospect theory accounting for heterogeneous risk preferences and subjective valuation 

of gains and losses (Kahneman and Tversky, 1979) and social network theory (Foster and Rosenzweig, 

1995; Borgatti and Ofem, 2010). Moreover, we draw from a large body of empirical literature on 
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economic, individual, and social factors affecting farmers’ (non-) adoption of sustainable farming 

practices (e.g., Defrancesco et al., 2008; Dessart et al., 2019; Finger and Möhring, 2022; Kreft et al., 

2021; Lastra-Bravo et al., 2015; Niles et al., 2016). Building on this theoretical and empirical 

background, we essentially assume that farmers are influenced in their decision to adopt climate change 

mitigation measures by three main factors: the design of policy incentives (action- or results-based 

design), the profitability of mitigation depending on the specificities of different types of mitigation 

measures, heterogeneous farm-level cost and GHG reduction potential, as well as farmers’ behavioural 

characteristics such as individual preferences for certain mitigation measures, reluctance to change and 

social interactions. Farmers’ adoption decisions determine the overall reduction of GHG emissions, total 

governmental spending and farm incomes. These outcomes in turn define the efficiency of the policy.   

 

Figure 5.1: Conceptual framework.  

An important boundary condition of our analysis is the assumption of constant production levels, i.e., 

farmers’ adoption decisions do not substantially change production type and yields. The motivation for 

this assumption is that keeping milk and meat production constant results in an effective reduction of 

GHG emissions per unit of production (e.g., kg of milk or meat). This is in line with current policy goals 

in Switzerland aiming at a reduction of GHG emissions while maintain a high degree of self-sufficiency 

in milk and meat (BLW 2022a).   
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5.3. Data and mitigation measures  

We simulate the adoption of four distinct mitigation measures, associated governmental spending, farm-

level marginal abatement cost and overall GHG emissions from 49 dairy and beef cattle farms in 

Switzerland. Our case study is located in the northern part of Canton Zurich (region of “Zürcher 

Weinland”) and comprises 24 dairy and 25 beef cattle, i.e., 15 suckler cow and 10 bull-fattening farms, 

in that region. With an average of 35 hectares (ha) and 38 cattle livestock units, the farms in our sample 

are larger than the average farm in Canton Zurich, which has 25 ha (Canton Zurich, 2018). We 

parametrize our model with census data on farm structures, survey data on farmers’ individual 

preferences (Kreft et al., 2020) and detailed social network data based on personal interviews (Kreft et 

al., 2021c).  

The here considered mitigation measures were selected based on scientific evidence (e.g., mitigation 

potential) and their suitability to Swiss dairy and beef cattle systems (Kreft et al., 2020). The current 

GHG emissions level, the mitigation potential of each measure as well as associated implementation 

cost are heterogeneous across farms and calculated for each farm with the bio-economic model FarmDyn 

(Britz et al., 2019). For the calculation of GHG reduction potentials and cost associated with mitigation 

measures, we assume constant production of milk and meat levels (however, FarmDyn allows farms to 

adjust crop areas and herd management) Underlying information on economic and bio-physical 

processes is based on planning data, IPCC emission factors, official statistics, and expert knowledge 

(Britz et al., 2019). 

The simulated overall baseline GHG emissions (without adoption of mitigation measures) in our sample 

amount to 14’240 tons of CO2 equivalents (t CO2eq), with a mean of 290 t CO2eq per farm. Figure 5.2 
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shows the distribution of marginal abatement cost across farms for the four analyzed measures. 

 

Figure 5.2: Distribution of marginal abatement costs for adoption of measures on individual farm-level without 

payments. Lower and upper boundaries of the grey box represent the 25th and 75th percentiles, respectively. 

Lower and upper error lines represent the 10th and 90th percentiles. The horizontal line inside the box depicts the 

median. Points represent individual farms. 

Replacing concentrate feed with legumes such as protein peas or horse beans produced on the farm is 

the most expensive measure (Swiss Francs/t CO2eq abated) on the modelled farms. It mainly reduces 

upstream emissions occurring in production and transportation of imported concentrate feed. Farmers 

in Switzerland receive a subsidy of 1000 Swiss Francs (CHF) per hectare (ha) of such legumes (Swiss 

Federal Council, 2022). Increasing the number of lactations is the most effective and efficient measure 

in our sample as it actually provides net benefits for most farmers while reducing GHG emissions mainly 

due to lower replacement rates in the herd. It is thus a win-win measure and will therefore be separately 

analyzed as such. A direct payment scheme for this measure is planned as part of a revised agricultural 

policy program in Switzerland as of 2024 (Swiss Federal Council, 2020). In our model, this measure is 

only relevant for farms that keep dairy cows. The use of drag hoses for manure application is the second 

most efficient measure in terms of marginal abatement cost, the absolute mitigation potential is, 

however, rather low. To date, farmers receive a payment of 30 CHF/ha for implementing this measure21. 

                                                      
21 As of 2024, it will be mandatory to use drag hoses or a similar technique to reduce emissions from manure 

application (BLW, 2022b).  
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Including certain additives in the feed ration of ruminants that reduce enteric fermentation is a rather 

expensive measure and there is currently no policy directly supporting the use of such feed additives. 

We base the assumed payment on the market price of a feed additive product available in Switzerland. 

Table 5.1 summarizes the information on measures, mean GHG reduction potential and marginal 

abatement cost in our sample as well as assumed action-based payments and scientific references. 

Table 5.1: Climate change mitigation measures included in the analysis (table based on Kreft et al., 2021).  

Measure 

description 

Mechanism of GHG 

emissions reduction 

Mean on-

farm GHG 

reduction 

potential  

(t CO2eq per 

unit) 

Mean 

marginal 

abatement 

costs  

(CHF per 

t CO2eq)   

Assumed 

action-based 

payment 

Base for 

assumed 

payment  

References 

a) Replacement 

of (imported) 

concentrate feed 

with legumes 

Replacing concentrate 

feed such as soybean 

with on-farm produced 

legumes (e.g., peas or 

horse bean) mitigates 

up-stream CO2-

emissions due to 

reduced transport and 

land-use changes  

2.4 t CO2eq 

per ha of 

legumes 

produced 

1467 

1000 CHF per 

ha of legumes 

produced 

Existing direct 

payment in 

Swiss 

agricultural 

policy 

(Baumgartner 

et al., 2008; 

Hörtenhuber 

et al., 2010; 

Knudsen et 

al., 2014; 

Mellado et 

al., 2011) 

b) Increase of 

lactation 

number per 

dairy cow 

Increasing the number 

of lactations per dairy 

cow reduces CH4-

emissions of a herd 

due to a reduced 

replacement rate, i.e., 

less upraising of calves 

and heifers 

0.8 t CO2eq 

per dairy cow 
- 92 

80 CHF per 

dairy cow 

Payment 

currently 

debated in 

parliament (10 

to 200 

CHF/cow 

depending on 

no. of 

lactations) 

(Alig et al., 

2015; Grandl 

et al., 2019; 

Schader et al., 

2014 ; 

Hansen et al., 

2021) 

c) Use of drag 

hoses for 

manure 

application 

A close-to-ground 

application with drag 

hoses (or a similar 

technique) reduces 

N2O-emissions of 

manure brought to the 

field and indirect N2O 

emissions from other 

nitrogen compounds  

0.07 t CO2eq 

per ha of total 

land 

116 

30 CHF per ha 

and application 

(here: average 

60 CHF) 

Existing direct 

payment in 

Swiss 

agricultural 

policy 

(mandatory as 

of 2024) 

(Thomsen et 

al., 2010; 

Weiske et al., 

2006; Wulf et 

al., 

2002 ;Huguen

in-Elie et al., 

2018) 

d) Introduction 

of feed additives 

Introducing feed 

additives such as 

linseed reduces the 

CH4-emissions from 

enteric fermentation by 

inhibiting 

methanogenesis in 

ruminants 

0.6 t CO2eq 

per cattle unit 
339 

250 CHF per 

cattle unit 

Product 

available on 

Swiss market 

(Engelke et 

al., 2019; 

Hristov et al., 

2013; 

Jayanegara et 

al., 2020 ; 

Poteko et al., 

2016) 

 

5.4 Modelling framework  

Our modelling framework aims to simulate the efficacy and efficiency of action- and results-based 

policy designs for climate change mitigation on Swiss dairy and beef cattle farms. The key emerging 

phenomena of the model are the overall achieved reduction of GHG emissions, associated governmental 
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spending and farm marginal abatement cost in both policy designs accounting for heterogeneous 

cognitive, dispositional and social factors across individual farmers.  

We apply the agent-based bio-economic modelling framework FARMIND (Huber et al., 2022a). This 

framework integrates aspects of cumulative prospect theory (Kahneman and Tversky, 1992) and social 

network analysis to link farmers’ individual behavioural characteristics and social interactions to 

effectiveness and efficiency of policy designs for GHG reduction in agriculture. FARMIND simulates 

individual decision-making of farmers as a two-step procedure: The farm decision-making includes the 

choice of a strategy (i.e., repeating, imitating, optimizing or opting-out) and a subsequent (non-) 

adoption of the income maximizing mitigation measure (Kreft et al., 2022).  

To additionally quantify the effect of behavioural characteristics on climate change mitigation in 

agriculture, we compare the total GHG reduction in two scenarios, i.e., with and without consideration 

of farmers’ reluctance to change, individual preferences for mitigation measures, and social networks. 

The methodological approach is further explained in three steps: i) agent characteristics, ii) agents’ 

decision-making and iii) set up of simulation and scenarios22.  

5.4.1 Agent characteristics  

In FARMIND, each agent is characterized by three sets of state variables: (1) Farm specific cost and 

GHG reduction potentials of four on-farm climate change mitigation measures. These exogenous 

parameters are calculated for each single farm with the bio-economic farm optimization model FarmDyn 

(Britz et al., 2019). This model was parametrized with farm-level census data. In our set-up, farmers 

receive a payment either for the adoption of a mitigation measure (action-based policy design) or for the 

achieved GHG reduction (results-based policy design). (2) Each agent has personal characteristics. 

These include cognitive factors (i.e., loss aversion, valuation of gains and losses and probability 

weighting), dispositional factors (i.e., preferences for specific mitigation measures), and social factors 

(i.e., tolerance for being dissimilar to other farmers and a reference income that determines whether they 

are satisfied with the current income situation). These exogenous parameters are derived from a farm 

survey (Kreft et al., 2020). (3) Social ties to other farmers based on social network data derived from 

face-to-face interviews (Kreft et al., 2021c). 

5.4.2 Decision-making process and agents’ interactions 

FARMIND simulates a two-tiered decision-making process of farmers (Huber et al., 2022a). First, farm 

agents make a strategic decision by choosing among four possible strategies, namely repetition, 

optimization, imitation, and opting-out (here: non-adoption of mitigation measures). Second, farm 

agents make a production decision and choose whether or not to adopt one or several GHG mitigation 

measures.  

                                                      
22 Full details of the model as well as uncertainty and sensitivity analyses are provided in the ODD + D protocol 

in Appendix A7. 
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The strategic choice is determined by the combination of two model endogenous variables: i) the agents’ 

income satisfaction based on their reference income and ii) whether a farmer is inclined to engage in 

social processing with their peers or not. Table 5.2 summarizes the decision heuristics in FARMIND23.  

Table 5.2: Decision heuristics in FARMIND  

  
Satisfaction  

Prospect value with reference income as threshold for the determination of gains 

and losses 

  > 0: satisfied < 0: dissatisfied 

Information 

seeking behaviour 

Values for 

determining 

individual or social 

processing 

(threshold for 

activity 

dissimilarity) 

< tolerance 

level: individual 

oriented 

Repetition 

The agent only considers those 

mitigation measures performed in the 

year before. 

Optimization 

The agent considers all mitigation 

measures only restricted by his personal 

preferences. 

> tolerance 

level: social 

oriented 

Imitation 

The agent considers those mitigation 

measures that are applied in the social 

network and satisfy personal needs. 

Opt-out 

The agent selects none of the mitigation 

measures. 

 

The satisfaction of a farmer is defined by the farm-specific prospect value calculated based on an 

individual reference income and risk preferences. The latter comprise farmer specific information on 

valuation of gains and losses, loss aversion, and probability weighting, all derived from the survey and 

a multiple price list (i.e., a lottery) (Kreft et al., 2020; Tanaka et al., 2010). Whether a farmer is inclined 

in social processing is defined by the dissimilarity to the peers in their social networks, i.e., whether 

connected farmers adopt GHG reduction measures as well. This is compared to a tolerance level, which 

captures the individual aptitude to consider deviating behaviour of peers. The value of the tolerance 

level is derived from farmers’ response to a respective survey question and not related to the actual 

adoption behaviour (Kreft et al., 2020, and see ODD+D protocol in Appendix A7 for details). 

The levels of satisfaction and dissimilarity determine the strategic choice (see Jager and Jansen 2012 for 

details): If a farmer is satisfied and does not engage in social comparison, they will stick to the current 

production (Repetition). This behaviour reflects farmers’ reluctance to change. A satisfied farmer who 

is engaged in social comparison will search for additional information and consider the behaviour 

observed in their social network (Imitation). Farmers who are dissatisfied but focus on individual 

behaviour will strive to optimize their situation (Optimization). Those who are both dissatisfied and 

socially oriented will examine the behaviour adopted by other agents in general (Opt-out). 

Depending on the strategy chosen, a set of potential GHG mitigation measures is transferred to the 

second simulation step. Repeating agents only consider measures already applied in the last simulation 

run. Optimizing agents consider all mitigation measures available. Imitating agents consider mitigation 

measures successfully applied by their peers, and agents who opt-out choose none of the mitigation 

measures. The so transferred mitigation measures are then ranked with a fuzzy out-ranking method 

                                                      
23 See also ODD + D protocol in Appendix A7.  
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according to the personal preferences of the farmer derived from survey data (Kreft et al., 2020). Based 

on this, the agent in FARMIND chooses the mitigation activities that maximize farm income. The 

resulting income and adopted GHG mitigation measures are then again transferred to the FARMIND 

strategic decision level to update measures and income distribution of the farm agents.  

We conducted a specific sensitivity analysis to calibrate the two threshold parameters (individual 

reference income and dissimilarity tolerance) based on observed adoption of mitigation measures. The 

sensitivity analysis allowed to identify a model that reproduced the observed adoption patterns in our 

case study region (i.e., allowing for a minimal error between simulated and observed adoption 

decisions). This supports the validity of the model to assess the efficiency of different payment schemes 

under consideration of behavioural influences. (For more details on model selection and validation as 

well as further sensitivity analyses, please refer to the ODD + D protocol in Appendix A7.)   

As mentioned above, the GHG emission reduction and cost associated with the different mitigation 

measures as well as all combinations thereof are simulated for each agent with the bio-economic farm 

level model FarmDyn (Britz et al., 2019). Therein, farmers are assumed to be fully informed and rational 

decision-makers who maximise profits given a rich set of constraints. The model contains detailed 

information on bio-physical (e.g., nitrogen flows, GHG emissions) and economic (e.g., cash flow, 

investments) processes linked to farming activities based on official statistics, IPCC emission factors, 

planning data, and expert knowledge. 

5.4.3 Scenario description and simulation set-up  

We test and compare the cost-efficiency of different policies incentivizing agricultural climate change 

mitigation in four scenarios. These reflect the type of policy (action- or results-based payments) and 

whether behavioural aspects, i.e., reluctance to change, personal preferences and social networks are 

included or not. The assumed action-based payments per mitigation measure are based on current (or 

planned) policies in Switzerland. With these payments, a reduction of 10% of GHG emissions is reached. 

To compare the efficiency of the different policy designs, the results-based payment is stepwise in-

/decreased until a similar level of GHG reduction (i.e., 10% of baseline emissions) is achieved under 

both policy schemes. This is the case with a results-based payment of 370 CHF/tCO2eq. Both action- 

and results-based payments are designed to compensate farmers for the costs incurring from adoption 

of mitigation measures. Moreover, creating a counterfactual situation of strictly profit maximizing farm 

agents (who are risk neutral and don’t have any other behavioural characteristics nor social interactions) 

allows to assess the effect of behavioural factors on overall GHG reduction and associated cost. Thus, 

the comparison of simulation results gives quantitative insights into the relevance of behavioural 

economic factors for policies aiming at climate change mitigation in agriculture. 

The model is initialized with agents who do not implement any of the mitigation measures. FARMIND 

then simulates farmers’ adoption decisions over 12 years in which the agents endogenously choose a 

strategy and adopt mitigation measures. The number of runs is set such that FARMIND reaches an 
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equilibrium state where the adopted mitigation measures do not change anymore. Stochasticity is created 

by random selection of producer prices for milk and meat (+/- 15% of current price levels). This price 

range represents observed market conditions in our case study region (see BLW, 2021) and allows to 

consider the uncertainty of farmers’ strategic choices based on market developments. Over the entire 

simulation length of 12 runs, this allows for a certain randomness of farmers’ strategic choices based on 

their reference incomes realized (or not) under different price levels. We run the model with two 

scenarios, namely with the action- and results-based policy design. Farm profits change depending on 

farm individual opportunity cost and the adoption of measures or the GHG reduction achieved, 

respectively. To create the counterfactual situation without considering behavioural aspects, the 

reference income of each agent is set such that all agents start to maximize profits independent of 

individual preferences or social influences. This is also done for both policy scenarios. We finally run 

the same simulations while excluding the measure of increasing the number of lactations per dairy cow. 

This measure does increase farm profits while reducing GHG emissions and is hence a so-called win-

win measure. Paying farmers for an already profitable measure leads to windfall effects, which can be 

higher or lower depending on the payment scheme.   

5.5 Results  

We find that total governmental spending to achieve a GHG reduction of approximately 10% of baseline 

emissions is higher in the results-based policy design (+26%) than in the action-based design (Figure 

5.3)24. Figure 5.3 furthermore shows the contribution of each mitigation measure to the overall 

expenditure. Governmental spending to incentivize farmers to increase the number of lactation 

(“Lactation”) is much higher in the results-based scheme compared to the action-based scheme. The 

underlying mechanism in our model is the following: a win-win measure enters the farmer’s choice set 

if they choose a profit maximization strategy or if it is adopted by peers in the social network (with an 

imitation strategy) and fits the farmer’s personal preferences. Once it is in the choice set, a win-win 

measure will be adopted independent of the policy design. In that case, a lower (or even no) 

compensation would suffice to incentivize the adoption. This potentially renders an action-based policy 

more efficient from a governmental perspective. More precisely, the composition of adopting farms and 

adopted measures changes with the payment scheme: The results-based scheme incentivizes farms with 

comparably low abatement costs to adopt mitigation measures (i.e., farms that can efficiently mitigate 

GHG emissions). In contrast, the action-based scheme supports farms with low adoption costs per 

measure independent of the GHG reduction potential. In the case of the win-win measure, however, 

most farms do not have costs when adopting this measure. Thus, if this measure enters the farmer’s 

choice set, it will be adopted under both policy schemes irrespectively of the magnitude of the incentive 

since it is profitable per se. Therefore, the number of farms that adopt the win-win measure “increased 

                                                      
24 Detailed simulation results as well as additional figures on GHG reduction, farm income changes and mean marginal 

abatement cost by measure can be found in Appendix A6.  
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number of lactations per dairy cow” does not change between the results- and action-based policy 

designs in our simulations (see Figure 5.5 below). Since the action-based scheme addresses specific 

measures, a low payment for increasing the number of lactations is already sufficient for adoption. A 

homogeneous payment per ton of CO2eq reduced (i.e., results-based scheme), in contrast, is independent 

of the specific measure. In our simulations, the payment to achieve a 10% reduction level is 370 CHF / 

per t CO2 equivalent and the measure has a large potential to decrease GHG emissions. Consequently, 

the governmental support for the results-based payment is higher because it cannot does not consider 

the cost of the specific measure (i.e., in the case of the win-win measure the profit from adoption). 

Overall, this leads to lower governmental expenditures of action-based policy designs in our simulations 

when considering all four measures. 

However, mean marginal abatement cost25 of farms to reach an overall 10% GHG reduction are 

substantially lower with the results-based policy as compared to the action-based design (-85%). 

Moreover, dispersion across farms and hence the uncertainty of marginal abatement cost is higher in the 

action-based scheme (Figure 5.3). This can be explained by the fact that with action-based payments, 

farmers adopt measures that have relatively low opportunity cost independent of the associated GHG 

reduction potential. Consequently, farmers do not consider the amount of GHG emissions reduced in 

the action-based scheme, which potentially leads to the adoption of measures with low mitigation 

potential on the specific farm. This leads to a larger distribution and higher average marginal abatement 

cost in action-based designs. In contrast, when farmers are paid based on the achieved GHG reduction, 

the mitigation potential of measures is a key part of the adoption decision since it defines the profitability 

of adopting. Hence, farmers strive to minimize their marginal abatement cost, which is reflected in lower 

average marginal cost and less dispersion. 

                                                      
25 Marginal abatement cost are defined as the difference between a counterfactual base income without adoption 

of mitigation measures and the farm incomes including governmental payments for climate change mitigation. 
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Figure 5.3: Governmental spending and marginal abatement cost of four mitigation measures (including a win-

win measure).   

Note: Total governmental spending by measure and distribution of total marginal abatement cost for a 10%-

reduction of on-farm GHG emissions under action- and results-based policy designs. Four mitigation measures 

are included in the analysis: i) replacement of concentrate feed by legumes, ii) increased number of lactations per 

dairy cow (win-win measure), iii) drag hoses for manure application, iv) feed additives to inhibit enteric 

fermentation of cattle. Governments spend a total amount of CHF 424 782 under the action-based and CHF 536 

473 under the results-based policy design to achieve an approximate 10% reduction of baseline GHG emissions. 

Mean marginal abetment cost of farms is at CHF 1398 (Sd 3899) with action-based payments and CHF 247 (Sd: 

78) with results-based payments. 

When the win-win measure is excluded from the analysis, we find that a results-based design is more 

efficient in terms of lower governmental spending (-21%). This would be expected from a theoretical 

perspective. As in the above case, average marginal abatement cost on farm-level are lower in the 

results-based design than in the action-based design (Figure 5.4).  
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Figure 5.4: Governmental spending and marginal abatement cost of three mitigation measures (without win-win 

measure). 

Note: Total governmental spending by measure and distribution of total marginal abatement cost for a 10%-

reduction of on-farm GHG emissions under action- and results-based policy designs. Three mitigation measures 

are included in the analysis: i) replacement of concentrate feed by legumes, ii) drag hoses for manure application, 

iii) feed additives to inhibit enteric fermentation of cattle. Governments spend a total amount of CHF 321 948 

under the action-based and CHF 253 525 under the results-based policy design. Mean marginal abetment cost of 

farms is at CHF 1443 (Sd: 3996) with action-based payments and CHF 132 (Sd: 178) with results-based payments. 

Moreover, we find that the inclusion of behavioural factors, namely farmers’ individual preferences for 

certain mitigation measures as well as social networks substantially decreases adoption of mitigation 

measures and consequently the overall GHG reduction potential in our sample as compared to a scenario 

where farmers are profit maximizers. This holds for both compared policy designs. When the win-win 

measure is included, almost all farmers implement at least one mitigation measure in the case of profit 

maximization since adoption is profitable with the payments. Almost all farmers in our model that keep 

dairy cows would increase the number of lactations under profit maximization behaviour. However, 

when accounting for individual characteristics and preferences, less mitigation measures are adopted 

and up to 12 farmers do not adopt any measures. With both action- and results-based payments, the use 

of drag hoses for manure application is most widely adopted, followed by feed additives, increased 

number of lactations, and replacing concentrate feed by legumes. The same patterns of adoption show 

when the win-win measure is excluded from the analysis (Figure 5.5).
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Figure 5: Comparison of the adoption with four and three mitigation measures under action- and results-based payment schemes  
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These findings can essentially be explained by two mechanisms in our model: 1) Because of a 

combination of different behavioural characteristics and/or preferences for certain mitigation measures, 

farmers are reluctant to change. This leads agents to repeat their current farming practices instead of 

choosing an optimization strategy. Hence, in FARMIND, no new mitigation measures are available in 

the agent’s choice set. 2) When farmers are susceptible to social influences and choose an imitation 

strategy, only the measures already adopted by peers in the network are available in the choice set of the 

individual agent. Hence, not all potential mitigation measures are necessarily considered as would be 

the case with a fully rational and informed agent.  

5.6 Discussion  

The success of effective climate change mitigation in agriculture depends on farmers’ adoption of 

farming practices that can reduce GHG emissions from agricultural production. We provide an ex-ante 

analysis of different policy designs to reduce GHG emissions on 49 Swiss dairy and beef cattle farms 

accounting for different types of mitigation measures and farmers’ behavioural characteristics in the 

agent-based bio-economic modelling framework FARMIND (Huber et al., 2022). Our results show that 

the cost-efficiency of action- and results-based policy incentives for agricultural climate change 

mitigation depends on the specific cost structure and mitigation potential of the considered measures. 

Especially, if a policy aims to incentivize the adoption of a win-win measure by farmers who are 

otherwise reluctant to change (but learn from their peers and are eventually triggered to consider new 

measures due to adoption dynamics within their social networks), an action-based design can lead to 

lower governmental spending than a results-based design.  

This finding seems counterintuitive at first given that previous literature has usually found results-based 

policy designs to be more cost-efficient than action-based designs (e.g., Sidemo-Holm et al., 2018; 

Wuepper and Huber, 2021). However, in the case of a win-win situation where emissions are reduced 

while farm profits are increased, targeting payments to the cost and benefits of specific measures (i.e., 

defining the amount of the payment based on the measure specific characteristics) can be more efficient 

from a governmental perspective than targeting the policy to desired outcomes and cost-efficiency on 

farm-level. Accordingly, we find that when the win-win measure is excluded from the policy, the results-

based design achieves GHG reduction at lower public costs than the action-based, which corresponds to 

theory (e.g., Engel, 2016) and empirical literature (Claassen et al., 2018; Sidemo-Holm et al., 2018; 

White and Hanley, 2016; Wuepper and Huber, 2021). Yet, results-based policy designs for agricultural 

GHG reduction constitutes a challenge since the outcome is hard to measure. A promising way to 

overcome this challenge could be to (ex-ante) model the results instead of measuring them (Bartkowski 

et al., 2021).  

Independent of the type of measures (i.e., win-win or not), we find that the results-based policy design 

is more efficient on farm level as it leads to lower average marginal abatement cost than the action-
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based design. Moreover, the action-based policy results in larger dispersion of marginal cost across 

farms and is thus more uncertain compared to a results-based design. When farmers are paid for the 

adoption of mitigation measures independent of the actual GHG reduction potential of the farm, the 

adoption behaviour is mainly influenced by individual opportunity cost. Hence, farmers potentially 

adopt mitigation measures that barely reduce GHG emissions, which increases the cost per ton of CO2eq 

reduced. For the same reason, marginal abatement cost are very heterogeneous across individual farms 

when GHG reduction is not part of the adoption decision. These results provide a differentiated picture 

of the cost-efficiency of action- and results-based policy designs for agricultural climate change 

mitigation and shed light on potential trade-offs between different policy goals related to GHG reduction 

on one hand and supporting viable farm incomes on the other hand. Looking at the abatement cost 

without compensating payments for the adopted measures, the win-win measure of increasing the 

number of lactations creates overall net benefits while the introduction of feed additives produces the 

highest overall cost for farms (see Appendix A6, Figure A2). 

We do not account for potential changes in overall production intensity as a response to mitigation 

incentives since our model assumes fixed production levels. This enables to estimate GHG reductions 

per kg of milk and beef, which is a relevant measure since Switzerland is a net importer of food. If 

domestic production of milk and beef is reduced without major changes in consumption patterns, these 

products will be imported and hence, GHG emissions will occur elsewhere instead (Vellinga and de 

Vries, 2018). Clearly, this assumption reflects a rather short-term perspective since substantial 

reductions of GHG emissions from agriculture and food production will be limited under current 

consumption levels of animal-based proteins (Poore and Nemecek, 2018). However, the approach 

reflects current (short-term) Swiss policy goals to keep self-sufficiency in milk and meat at a high level. 

Moreover, we do not expect major incentives to increase or decrease production since the assumed 

payments for the selected measures only compensate farmers for the associated costs and are decoupled 

from production. Since adoption is not mandatory, only farms that remain profitable and can keep up 

production levels (with given payments) will implement a specific measure in our model. Moreover, the 

here analyzed GHG mitigation measures have been shown to not impact yield levels (Mellado et al., 

2011; Hansen et al., 2021; Huguenin-Elie et al., 2018; Poteko et al., 2016). 

Our results furthermore show that individual behavioural characteristics, and particularly farmers’ 

reluctance to change lower the overall GHG reduction potential of action- and results-based policy 

incentives. Such behavioural characteristics even prevent farmers from considering so-called win-win 

(or no-regret) measures that reduce emissions and increase farm profits at the same time as is the case 

with increasing the number of lactations of dairy cows. In our model, this is reflected by a two-step 

procedure of decision-making. Based on a farmer-specific combination of (dis-) satisfaction and (un-) 

certainty, the farmer decides for a strategy which determines the set of potential mitigation measures to 

choose from in the second step. So even if adoption of a certain measure would be profitable for the 
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farmer in the second step of the decision-making, they could refrain from doing so because of their 

personal preferences and/or their reluctance to change. In our simulation, aggregated farm profits 

forgone due to such behavioural influences amounts to roughly 1 156 CHF per farm (on average, 56’700 

CHF in total over all farms)) in the action-based scheme and to 1 272 CHF per farm (on average, 63’300 

CHF in total over all farms) in the results-based scheme. This is in line with research showing that up 

to 25% of GHG emissions from agricultural production could be mitigated at very low cost or even net 

gains, yet respective mitigation measures are still not readily adopted by farmers (Ancev, 2011; Eory et 

al., 2018). Our findings help to explain non-adoption of win-win GHG mitigation measures due to 

farmers’ reluctance to change and inertia, which are known to be among the most dominant barriers 

when it comes to adoption of agri-environmental measures (Dessart et al., 2019). In our model, inertia 

can be overcome by learning within farmers’ social networks. Especially, farmers who are reluctant to 

change but to some degree susceptible to social influences, start to consider the adoption of new 

mitigation measures when exchanging respective knowledge with connected peers (Kreft et al., 2022a; 

Kreft et al., 2022b). 

While we can parametrize our model drawing from a thorough data basis that includes detailed 

information on farm structural characteristics, farmers’ individual preferences and social interactions, 

our analysis faces some uncertainties. In general, the agent-based model FARMIND relies on certain 

parameter thresholds to simulate farmers’ decision-making. While risk preferences, sensitivity to social 

dissimilarity and farming preferences could be directly taken from the survey data, the absolute levels 

of the reference incomes are based on simulations with the bio-economic model FarmDyn (Britz et al., 

2019). However, the sensitivity analysis conducted in previous work based on the same model 

parametrization showed that FARMIND can well reproduce the observed adoption patterns in our case 

study region (see ODD+D protocol in Appendix A7). Another uncertainty concerns the amount of the 

results-based payment. To compare both policy designs based on the same level of achieved reduction 

of GHG emissions, the results-based payment was stepwise approximated until the same GHG reduction 

as with the action-based payments was reached. This leads to the payment of 370 CHF/tCO2eq, which 

is rather high when compared to e.g., the current CO2 tax on fossil fuels in Switzerland, which is at 120 

CHF/tCO2eq (Swiss Federal Council, 2022). There is furthermore uncertainty regarding the technical 

and economic potential of the mitigation measures included (for a detailed discussion of uncertainty 

related to GHG reduction potential of measures, see Kreft et al., 2022). In particular, the here highlighted 

win-win measure of increasing the number of lactations of dairy cows could for example increase 

veterinary costs due to health or fertility issues of older cows (Grandl et al., 2019; Mellado et al., 2011), 

which could also explain farmers’ non-adoption. Our model does not account for these types of costs or 

for potentially associated changes in milk yield. Finally, our analysis does not include potential 

transaction cost nor administrative cost, e.g., for the monitoring of result- but also action-based schemes. 
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5.7 Conclusion  

In this article, we compare action- vs. results-based policy designs to incentivize climate change 

mitigation in agriculture. Our ex-ante policy analysis accounts for heterogeneous behavioural 

characteristics of farmers, i.e., reluctance to change, personal preferences, and social interactions. We 

use an agent-based model in combination with a bio-economic model to simulate total governmental 

spending, farm-level marginal abatement cost and overall GHG reduction considering different types of 

mitigation measures.  

Our results suggest that cost-efficiency of action- and results-based policy designs depends on the 

characteristics of the considered measures. In particular, if farmers learn about a win-win measure 

(which reduces emissions while increasing farm incomes) within their social networks but reluctance to 

change prevents them from adopting it, an action-based policy to incentivize adoption of particular 

measures can be superior in terms of cost-efficiency from a governmental perspective. Our findings 

furthermore highlight that behavioural characteristics of farmers help to understand (non-) adoption of 

GHG reduction practices in agriculture. 

Our results have some important implications for the design of policies that aim at an effective and 

efficient reduction of GHG emissions from agricultural production. First, despite many advantages and 

theoretical efficiency gains, result-orientation of policies might not necessarily lead to higher efficiency 

and savings of public cost per se. Rather, underlying heterogeneity of structures, cost and characteristics 

of measures must be addressed and thoroughly analysed to achieve desired GHG reduction most 

efficiently (Moxey and White, 2014). For example, when the adoption of measures leads to profit gains 

of farms, targeting payments to the specific cost and mitigation potential of these measures can lead to 

lower cost for society than a design that primarily targets cost-efficiency on farm-level. Second, ex-ante 

analyses of policies should account for behavioural characteristics such as personal preferences and 

social networks of farmers, which are important determinants of decision-making and hence influence 

the effectiveness of policy instruments. Especially, farmers’ tendency to inertia or “status-quo bias” with 

respect to adoption of new practices must be overcome by information and appropriate policy incentives. 

This can be of particular relevance in the rather new field of agricultural climate change mitigation.  

Our analysis also has implications for future research. The efficiency of policies to incentivize 

agricultural GHG emissions based on larger samples and in different regions is needed to generalize 

findings and implications. Moreover, more mitigation measures shall be considered. Future studies 

should especially test the effect of different win-win measures on the efficiency of action- and results-

based policy incentives for agricultural climate change mitigation. Moreover, accounting for transaction 

and administrative cost of individual measures and payment designs could contribute important insights 

into the efficiency of climate change mitigation policies in agriculture.   
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5.10 Appendix A6 

A6.1: Detailed simulation results 

  Table A6.1: Detailed simulation results with and without including the win-win measure of increasing the number of 

lactations per dairy cow for action-and results-based policy designs. Two scenarios are compared, namely with and 

without including behavioural characteristics of farmers. Note that totals might differ from the sum of numbers by 

measure due to interaction effects when combining single measures.  

 4 mitigation measures  

(including win-win measure)  

3mitigation measures  

(excluding win-win measure) 
 Action-based Results-based Action-based Results-based 

 

Profit 

maximization 

Behavioural 

factors 

Profit 

maximization 

Behavioural 

factors 

Profit 

maximization 

Behavioural 

factors 

Profit 

maximization 

Behavioural 

factors 

Total GHG  

reduction (tCO2eq) 
1623 1412 1697 1396 943 705 1056 685 

Legumes 23  46 101 108 7 31 224 37 

Lactation 800  624 800 624     

Drag hose  129 84 128 83 129 78 128 77 

Feed additives 806 658 758 634 806 595 773 571 

Total change in farm 

incomes (CHF) 
328 499 271 814 420 304 357 976 183 255 149 362 133 131 88 545 

Legumes 14 791 11 351 7 738 6 600 16 431 12 991  54 697 9 716 

Lactation 149 794 119 060 367 212 288 000     

Drag hose  84 865 72 710  31 643 17 755 84 865 67 570 31 643 16 513 

Feed additives 77 511 68 693 71 164 65 017 77 511 65 748 71 432 62 345 

Total governmental 

spending (CHF) 
541 098 424 782 627 924 536 473 436 271 321 948 390 876 253 525 

Legumes 27 210 21 710 37 315 39 907 21 700 16 200 82 869 13 852 

Lactation 78 414 62 094 295 843 231 043     

Drag hose  106 178 89 561 47 381 30 793 106 043 83 245 47 381 28 510  

Feed additives 309 693 251 418 281 191 234 729 304 528 222 503 285 840 211 251 

Mean marginal 

abatement costs (Sd) 

(CHF/tCO2eq) 

1203 

(3591) 

1398 

(3899) 

241 

(99) 

247  

(78) 

1143 

(3611) 

1443 

(3996) 

131 

(166) 

132 

(178) 
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A6.2 Total abatement cost on farm-level by measure without payments 

 

 

Figure A6.2: Total abatement cost (income changes) on farm-level without payments. The underlying adoption choices are 

based on both the action- and results-based scheme. The upper graph shows costs without consideration of farmers’ 

behavioural characteristics, the lower graphs shows costs with consideration of behavioural characteristics. The win-win 

measure (increasing the number of lactation) creates net profits for farms without any payments and introducing feed additives 

creates highest cost in all scenarios. Since the underlying adoption choices are based on assumed payments, the profit 

maximization scenario (upper graph) creates slightly higher overall costs than when considering behavioural influences. This 

is due to the fact that farmers adopt more in the profit maximization scenario with payments.   
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A6.3: Total reduction of GHG emissions by measure under action- and results-based policy 

designs 

     

 

Figure A6.3: Simulated total reduction of GHG emissions due to adoption of four and three mitigation measures in action-

and results-based payment schemes. The upper part of the graph shows GHG reduction including a win-win measure in 

the payment scheme (increasing the number of lactations of dairy cows), the lower part of the graph shows GHG reduction 

without the win-win measure. 
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A6.4 Total changes in farm incomes by measure under action- and results-based policy designs 

          

  

Figure A6.4: Simulated total income changes (increases) due to adoption of four and three mitigation 

measures in action-and results-based payment schemes. The upper part of the graph shows income changes 

including a win-win measure in the payment scheme (increasing the number of lactations of dairy cows), the 

lower part of the graph shows income changes without this win-win measure. 
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A6.5 Mean marginal abatement cost by measure under action- and results-based policy 

designs 

 

 

Figure A6.5: Simulated mean marginal abatement costs of single measures in action-and results-based payment schemes. The 

upper part of the graph shows mean marginal abatement costs including a win-win measure in the payment scheme (increasing 

the number of lactations of dairy cows), the lower part of the graph shows mean marginal abatement costs without this win-

win measure.  
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5.11 Appendix A7: ODD+ D Protocol FARMIND 

A7.1 Overview 

Purpose 

The purpose of the agent-based model FARMIND is to simulate and compare the effect of action and 

results-based payments on farmers’ adoption of climate change mitigation measures on Swiss dairy and 

beef cattle farms. Thereby, the model considers heterogeneous cognitive, social, and dispositional 

factors across individual farmers. More specifically, we simulate the effect of individual farming 

preferences, reluctance to change and social interactions on the adoption decision of four climate change 

mitigation measures i.e., 1) replacement of concentrate feed in feeding rations, 2) increased number of 

lactations per dairy cow, 3) use of drag hoses for manure application and 4) methane reducing feed 

additives. The model is parameterized with survey data including a lottery to identify risk preferences 

and a social network analysis as well as cost and benefit calculations from the farm-level optimization 

model FarmDyn (see Britz et al., 2021). The emerging phenomena are the total amount of greenhouse 

gas (GHG) emissions reduced by the policy induced adoption of farm individual mitigation measures 

and the change in income for the individual farm as well as the whole farm community. Thus, the model 

allows to quantify the economic and environmental effect of behavioural factors on the cost-efficiency 

of differently designed public payments for GHG reduction in agriculture. 

 

Entities, state variables and scales 

Each agent represents an individual farmer. An agent has the following entities and state variables:  

(1) Farm specific profits and cost as well as GHG emission reduction potentials for four on-farm 

climate change mitigation measures. These are exogenous parameters calculated in the sub-

model FarmDyn (a farm optimization model parameterized with census data, see corresponding 

section below). Profits result from either a payment for each ton of reduced CO2 equivalents 

(CO2eq) i.e., a results-based payment or from a payment for the implementation of the measure 

implemented on the farm i.e., an action-based payment. Farm specific cost emerge from 

implementing mitigation measures on each individual farm. The cost and benefits are calculated 

for an output price range of +/- 15% of current milk and meat prices. 

(2) Personal characteristics including cognitive factors (i.e., risk parameters based on cumulative 

prospect theory, and reference income), social factors (i.e., tolerance for being dissimilar to 

other farmers), and dispositional factors (i.e., preferences for specific mitigation measures, 

reluctance to change). These are exogenous parameters based on a farm survey in our case study 

region (Kreft et al., 2020). 

(3) A social network between farmers derived from an interview based on social network analysis 

(Kreft et al., 2021c).  
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(4) Income changes and GHG emission reduction potentials resulting from the choice of GHG 

mitigation options. The agents’ income is used to calculate the prospect value based on the risk 

preferences of each individual farmer. The adoption choices of each farmer are used to calculate 

a dissimilarity index that drives social oriented behaviour. Income, GHG emissions, prospect 

value and dissimilarity index are model endogenous variables (see Table A7.1). 

Table A7.1: State variables and parameters of FARMIND 

Category State variable / parameters Abbreviation 
Source for 

initialization 

Farm  Adopted mitigation measures 𝐴 Kreft et al. (2020) 

 GHG emission reduction potential of 

measure 𝐴 
𝑦𝐴𝑡 Simulated in sub-

model FarmDyn 
 Income with adopted mitigation measures 𝑥𝐴𝑡  

Personal 

characteristics 
Loss aversion level λ 

Kreft et al. (2020) 

 Valuation of gains and losses α+/- 

 Probability weighting in gains and losses ϕ+/- 

 Reference income to determine perceived 

gains and losses and calculate satisfaction 
𝑉𝑖

𝑟𝑒𝑓
 

 Tolerance level for activity dissimilarity to 

determine information seeking behaviour 
𝑑𝑖

𝑡𝑜𝑙 

 Preference weight for mitigation measures 𝑅𝐴 

Social network Number of peers a farmer is linked to 

(number of social ties) 
n Kreft et al. (2021c) 

Outcome variables Prospect value 𝑉𝑖 

Model endogenous 
 Agents’ activity dissimilarity 𝑑𝑖 

 GHG emission reduction (in simulation run t) 𝑦𝑡  

 Income (in simulation run t) 𝑥𝑡 

 

The underlying data on income changes and GHG emission reductions are calculated per farm on a 

yearly basis. Thus, a model run represents one year (i.e., the temporal resolution). To simulate the effect 

of knowledge diffusion through the social network, we repeat the simulation over twelve runs. Our main 

results, however, are comparative static in the sense that we compare final states of GHG emissions and 

incomes in different scenarios. The model simulates individual farms with heterogeneous farm sizes and 

locations. The farm size varies between 12 and 73 hectares (ha) with an average at 35 ha per farm. The 

sample consists of 24 dairy farms, 15 suckler farms and 10 bull fattening farms. On average, farms have 

38 cattle livestock units. Given milk prices range between 0.60 and 0.79 Swiss francs per kilogram. Beef 

prices range between 7 and 11 Swiss francs per kilogram.  
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Process overview and scheduling 

FARMIND includes a two-tiered decision-making mechanism for managing farm resources (Huber et 

al., 2022b). In a first step, agents choose a decision strategy. The model includes four behavioural 

strategies: repetition, optimization, imitation, and opt-out (see section “Individual decision-making” 

below for details). In a second step, farm agents choose their actual production decision, i.e., the 

adoption of a GHG mitigation measure based on the options provided in the corresponding strategy. 

This two-tiered decision-making is implemented in three coding steps (cf. right panel in Figure A7.1). 

 

Figure A7.1: (a) Conceptual framework and (b) implementation flowchart of FARMIND 

First, FARMIND calculates the income distribution over the farmers’ memory length and the income in 

the initialization year. On this basis, the model calculates the prospect value of the agent’s income 

considering the empirical based risk preferences (i.e., loss aversion, valuation of gains and losses and 

probability weighting). In addition, the model calculates the agents’ dissimilarity to the other agents in 

the network with respect to climate change mitigation measures. Prospect value and dissimilarity are 

then used to calculate a strategy of each individual farmer. The strategy is calculated endogenously in 

the model for every agent and every year (i.e., behavioural strategies are not fixed). 

Second, mitigation measures are ranked according to the personal preferences of the farmer 𝑅𝐴 

(identified in the survey). A fuzzy logic algorithm identifies a sub-set of strictly preferred activities in 

the different strategies. This implies that an agent that dislikes one of the mitigation measures may not 
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receive the corresponding option in the choice set even though it could be optimal for maximizing farm 

income. 

Third, based on the transferred choice sets, FARMIND chooses those mitigation activities that maximise 

farm income from the available options. The results of the adoption decision (income and mitigation 

measures) are then again transferred to the FARMIND strategic decision to update measures and income 

distribution of the agents in the next model run. 

A7.2 Design Concepts 

Theoretical and empirical background 

We base our agent-based modelling framework on cumulative prospect theory and social network theory 

to link farmers’ heterogeneous cognitive, social, and dispositional factors to cost and benefits of climate 

change mitigation measures. FARMIND is based on the so-called CONSUMAT framework, which 

integrates the different theoretical concepts into a structured sequence of modelling steps (Schaat et al., 

2017). We here specifically use on aspect of the CONSUMAT framework: The strategic choice in our 

first-tier decision-making concept includes the heuristic strategy of “repetition” which implies that an 

agent chooses his/her production portfolio only based on the experiences in the past. We here relate this 

behavioural strategy with the concept of “reluctance to change” (e.g., Burton et al., 2008; Dessart et al., 

2019). In addition, preferences for specific activities may also make farmers “reluctant to chance”. For 

example, farmers might dislike a certain mitigation measure, which in this case would not be adopted 

even though it could be profitable. 

The parametrization of the model is based on the following empirical data: i) Risk preference parameters 

(based on the cumulative prospect theory) derived from a lottery included in an online survey with 

farmers in the case study region (Kreft et al., 2020). The lottery was based on Tanaka et al. (2010) and 

thus included values for risk aversion, valuation of gains and losses as well probability weighting (equal 

for gains and losses) ; ii) Stated preferences for mitigation options derived from the same survey (Kreft 

et al., 2020); iii) Information on the social network collected via face-to-face interviews using the survey 

software Network Canvas (https://networkcanvas.com); iv) Cantonal census data to calculate farm 

individual provision cost and GHG mitigation. 

Individual decision-making 

Following the CONSUMAT approach, agents make decisions on their behavioural strategies according 

to their satisfaction and willingness to engage in social processing. In FARMIND, an agent’s satisfaction 

level in a year is reflected by the prospect value of incomes 𝑉𝑖 in year t and all previous years within the 

memory length (here five years). Incomes above (below) the agents’ individual reference income are 

considered as gains (losses). Based on these gains or losses, the prospect value is calculated using 

individual value and probability weighting functions. If the prospect value is positive (negative), an 

https://networkcanvas.com/
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agent is considered as satisfied (unsatisfied). Formally, assuming a set of past incomes of farm 𝑖 in year 

t {𝑥1, ⋯ , 𝑥𝑚}, a value function 𝑣(𝑥𝑡) and decision weight Φ(𝑥𝑡), the prospect value is defined for each 

farm by 

𝑉𝑖 = ∑ 𝑣(𝑥𝑡)𝛷(𝑥𝑡)𝑚
𝑡=1           Equation 13 

The value functions in the gain (+) and loss (-) domain, respectively, are: 

𝑣+(𝑥) = 𝑥𝑡
𝛼+

 for gains and   𝑣−(𝑥) = 𝜆 𝑥𝑡
𝛼−

 for losses,       Equations 14a/7b 

where λ is a measure of the agent’s individual loss aversion.  

The calculation of decision weight Φ(𝑥𝑡) is based on the distribution of incomes from past income 

values. Assuming historical incomes to follow normal distribution patterns over a given memory length 

m (i.e., five years in our application), we can identify the cumulative distribution function of income 𝑥𝑡, 

denoted by 𝐹(𝑥𝑡). We then calculate the decision weight of each income.  

𝛷𝑥𝑡

+/−
= 𝑤+/−[1 − 𝐹(𝑥𝑡)] − 𝑤+/−[1 − 𝐹(𝑥𝑡 + ∆)]     Equation 15 

where 𝑤+/− is the probability weight function in the gain and loss domain, respectively, and ∆ is the 

difference between an income value and its adjacent value, e.g., 1 unit in the currency in which the 

income is expressed (here Swiss Francs CHF). The probability weight functions 𝑤+ and 𝑤− are defined 

as  

𝑤+/−(𝑝) =
𝑝𝜑+/−

(𝑝𝜑+/−
+(1−𝑝)𝜑+/−

)
1 𝜑+/−⁄

       Equation 16 

The use of the prospect value for determining farmers’ satisfaction has the following implications for 

the agent’s decision-making in the context of climate change mitigation measures. For agents with a low 

reference income, the probability that a certain income is considered as a gain is higher compared to 

agents with high reference incomes. Thus, satisfaction (the sum of gains and losses over the memory 

length) is more likely to be positive for the former and the agent consequently is more likely to choose 

either repetition or imitation. In other words, agents with low reference incomes are more likely to be 

“reluctant to change” and thus not to adopt climate change mitigation measures. High risk aversion or 

loss aversion parameters affect the “contribution” of each income to the prospect value. For example, if 

one of the incomes is perceived as loss (event though the absolute income would be above the reference 

income), the calculation of the prospect value might switch from positive to negative, triggering an 

optimization or opt-out strategy. 

To calculate whether a farmer will engage in social processing or not, we calculate a dissimilarity index 

to represent the agent’s deviating behaviour from other farmers. We count the average number of 

mitigation measures in the agent’s network over the memory length. We then divide the average number 
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for each measure that is adopted by the agent and the network by all mitigation measures performed in 

the corresponding network. The higher the value, the more similar an agent is to their peers, i.e., the 

same GHG mitigation measures had been adopted. This index is compared to a tolerance level, 

representing the individual aptitude to consider deviating behaviour of other farmers. A low dissimilarity 

tolerance level 𝑑𝑖
𝑡𝑜𝑙 implies that a farmer is more likely to comply with social norms, i.e., not wanting 

to be different from others. The implementation of the dissimilarity index implies that the agents’ 

strategic choice is not only affected by the individual characteristics towards social and individual 

behaviour (i.e., the tolerance level) but also by the diffusion of other agents’ adoption of climate change 

mitigation measures. For example, an agent with a high tolerance for social dissimilarity might still 

consider the strategy “imitation” once many of his/her peers have adopted climate change mitigation 

measures.  

Formally, assuming that 𝑎 activities are performed by all the peers in the social network, agent 𝑖’s 

activity dissimilarity is  

𝑑𝑖 =
1

𝑎
∑

# 𝑜𝑓 𝑝𝑒𝑒𝑟𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝐴𝑗

𝑛
(1 − 𝑃(𝐴𝑗

𝑖))𝑎
𝑗=1      Equation 17 

where 𝑃(𝐴𝑗
𝑖) is agent 𝑖’s performance status for activity 𝑗; 𝑃(𝐴𝑗

𝑖) = 1 if 𝐴𝑖 is performed and otherwise 

𝑃(𝐴𝑗
𝑖) = 0 while 𝑛 is the number of peers to whom an agent is linked. The higher the value of di, the 

greater the similarity between an agent and their peers (measured on a relative scale with 1 implying all 

farms engage in the same activity). Please note that the agents’ dissimilarity also depends on the size of 

the network 𝑛 and the number of activities in the network 𝑎. The larger the network and the higher the 

number of activities within this network, the more likely it is that an agent will be dissimilar to their 

peers. 

Based on the combination of the agents’ satisfaction and dissimilarity, the strategic choice of the farmer 

is defined. If a farmer is satisfied and does not engage in social oriented behaviour, they will abide by a 

production decision (Repetition). A satisfied farmer who engages in information seeking behaviour will 

search for additional information and start considering the behaviour observed in the social network 

(Imitation). Those who focus on individual behaviour but are dissatisfied will strive to optimize their 

situation (Optimization). Finally, the combination of dissatisfaction and social oriented behaviour leads 

to an examination of the behaviour adopted by other agents in general but not specifically with respect 

to climate change mitigation measures (Opt-out). The underlying assumption is that agents’ who are 

unsatisfied and dissimilar have the highest commitment to change their behaviour and would engage in 

searching for farming options beyond the four climate change mitigation options provided in our 

simulation. 

Table A7.2 summarizes the four decision heuristics in FARMIND applied to the study of adopting 

climate change mitigation measures. It is important to note that the agents’ strategic choice is model 
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endogenous, i.e., it depends on price developments (simulated in the sub-model) and the adoption 

behaviour of the peers. For example, agents might first choose to repeat and only after their peers have 

adopted mitigation measures, they might consider the imitation strategy because of the emerging 

dissimilarity. This implies that all agents can endogenously switch back and forth between strategies.  

Table A7.2: Strategic decision and choice sets in FARMIND 

  
Satisfaction 

Prospect value with reference income as threshold for the determination of 

gains and losses 

  > 0: satisfied < 0: dissatisfied 

Information 

seeking 

behaviour 

 

Values for 

determining 

individual or 

social 

processing 

(threshold for 

activity 

dissimilarity) 

< tolerance 

level: 

individual 

oriented 

Repetition 

The agent only considers those 

mitigation measures performed in 

the years before. 

Optimization 

The agent considers all mitigation 

measures only restricted by 

personal preferences. 

> tolerance 

level: social 

oriented 

Imitation 

The agent considers those 

mitigation measures that are applied 

in the social network and satisfy 

personal preferences. 

Opt-out 

The agent selects none of the 

mitigation measures but searches 

for other production activities. 

 

The choice of the decision strategy results in a choice-set of potential GHG mitigation measures. A 

repeating agent considers only those measures that had been applied in the last simulation runs. An agent 

that optimizes considers all available mitigation option. An imitating agent considers those mitigation 

measures that had been successfully applied by socially connected agents. Finally, an agent that strives 

for individual behaviour and who is unsatisfied will choose none of the mitigation measures in the 

corresponding simulation run.  

In addition, FARMIND considers farmers’ individual preferences for mitigation measures. Based on 

their stated intention to implement specific mitigation measures, we apply the fuzzy out-ranking method 

to narrow down the options available to those preferred by the farmer. The higher the preference, the 

more likely the corresponding activity appears on the top of the fuzzy ranking and thus in the agent’s 

choice set in the second tier of decision-making. 

The ranking of mitigation measures is based on the following algorithm: For each mitigation activity 

and agent, we calculate a value 𝑅. This value is used as criterion to determine the so-called fuzzy 

concordance relations for each pair of mitigation measures. There are three types of relations: 1) 

indifferent, 2) weakly preferred and 3) strictly preferred. If the difference between the normalized values 

of measure 𝐴1 (e.g., increased number of lactations with a high value) and 𝐴2 (e.g., replacement of 

concentrates in feeding ration with a low value) 𝑅𝐴1 − 𝑅𝐴2 is smaller than an exogenously set lower 

threshold 𝑞− these measures are regarded as indifferent, i.e., the agent has no preference between the 

two. If the difference is greater than the upper threshold 𝑞+, 𝐴1(increased number of lactations) is strictly 

preferred over 𝐴2 (replacement of concentrates). If the difference between the two activities falls within 
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the interval of the lower and upper threshold [ 𝑞−, 𝑞+], 𝐴1 is weakly preferred over 𝐴2. Formally, the 

matrix 𝑓(𝐴1, 𝐴2), describing the relation between the two activities 𝐴1 and 𝐴2, is defined by: 

𝑓(𝐴1, 𝐴2) =  {

0           𝑖𝑓 𝑅𝐴1 − 𝑅𝐴2 < 𝑞−

(𝑅𝐴1−𝑅𝐴2−𝑞_)

𝑞+−𝑞−  𝑖𝑓 𝑞− < 𝑅𝐴1 − 𝑅𝐴2 < 𝑞+

1          𝑖𝑓 𝑅𝐴1 − 𝑅𝐴2 > 𝑞+

     Equation 18 

This calculation allows that all mitigation activities for each agent can be ranked in a list. FARMIND 

then uses a non-dominance score (ND) algorithm (Equation 7) that endogenously defines a small sub-

set of mitigation activities. A characteristic of the non-dominance score is that it reduces the number of 

mitigation measures to a small sub-set that is strictly preferred to all the other measures.  

𝑁𝐷(𝐴1, 𝑋, 𝑓) = 1 − 𝑚𝑎𝑥
𝐴2∈𝑋

𝑚𝑎𝑥{𝑅(𝐴2, 𝐴1) − 𝑅(𝐴1, 𝐴2), 0},    Equation 19 

where 𝑋 is the set of all mitigation measures, 𝐴1 denotes the measures of interest, 𝐴𝑗 denotes other 

measures in 𝑋 and 𝑓(𝐴1, 𝐴𝑗) denotes the fuzzy pairwise preference matrix. The non-dominance score 

results in a reduced choice set for each agent, which is then passed to the second-tier decision-making 

step. The use of the non-dominance score has the following implications for the agents’ decision-making 

with respect to the adoption of climate change mitigation measures in our model. An agent might dislike 

a certain measure for personal reasons but is open to all the other mitigation options. Consequently, the 

fuzzy ranking algorithm will put this specific measure at the end of the list and the dominance score will 

cut off the list before this final measure. This implies that the corresponding agent will not have this 

specific measure as a choice option in the optimization or imitation strategy, even though it would be 

potentially profitable (when optimizing) or had been adopted by peers (in the case of imitating).  

The second tier of the agents’ individual decision-making consists of the choice of mitigation strategies 

with the highest profit within the choice-set according to the decision strategy and preferences. The 

profit for each agent is calculated in the sub-model FarmDyn (see section Sub-model below). The sub-

model provides a matrix with all profits, cost and potential GHG emission reduction for all mitigation 

measures as well as their interactions for each agent. FARMIND chooses the option with the highest 

profit in the available choice set of each agent. 

Learning 

Agents have a memory of the mitigation measures they have adopted. The length of memory is 

determined exogenously and is set to five years for each agent. The more experience an agent has with 

the corresponding mitigation measure, the higher its weight in the fuzzy preference ranking. More 

experience also increases the weight of the corresponding measure in the agent’s social network. Thus, 

agents learn from their peers about mitigation behaviour performed over a longer time horizon. Thereby, 

the weight of experience, the learning rate, is represented as a logarithmic function that converges to 

one over the period of the memory length (i.e., five years). This mechanism of learning from peers 
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increases the probability of adaption of a mitigation measure when more agents perform this measure 

over a longer time horizon. 

Sensing 

Agents can correctly observe the mitigation measures their peers perform and memorize the production 

activities in the past. They can also observe their own income and the average income of their peers. 

Agents memorize this information for periods of their memory length (i.e., five years). Assumptions 

about prices, yields or other information with respect to the adoption decision are condensed in the 

realised income (i.e., the results of the sub-model FarmDyn). In principle, agents do not have cost for 

gathering information. However, the learning rate slows the information exchange between agents in 

the social network and thus information from the peers is not directly and in every time step available 

for the individual agent. 

Individual prediction  

Agents change their decision strategy based on their individual prospect value. Using their realised 

income in the past and the individual value and probability weighting functions, agents “predict” the 

value of their realised income according to the cumulative prospect theory.  

Interaction 

Agents observe the behaviour of their peers in the case they choose to imitate. Thus, they exchange 

information on the performance of climate change mitigation measures.  

Collectives 

The social network allows to predefine a static collective that is more likely to observe and imitate 

mitigation behaviour from each other. The observed social network in our case study is derived from a 

bottom-up farmer initiative aiming at collectively reducing on-farm GHG emissions (Kreft et al., 

2021b). There is, however, no dynamic mechanism from which collectives emerge or adapt. 

Heterogeneity 

Agents can differ with respect to all parameters presented in Table A7.1. This heterogeneity leads to 

different decision strategies for the individual agent, i.e., repetition, optimization, imitation, opt-out. 

Thus, agents are not fixed to a certain type of strategy but endogenously choose their strategy. 

Depending on the parametrization, agents can be fixed on a specific strategy, e.g., by setting high 

parameter values for reference income and dissimilarity tolerance, the agent will always choose 

“optimization” as strategy comparable to “econs” or “productivist” type of decision-making in ABMs 

using farmer typologies (Bartkowski et al., 2022). In addition, the underlying sub-model FarmDyn also 

allows to differentiate the agents according to their production resources (labour, capital, land). This 
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implies that each agent has the observed area, labour, and capital endowment at disposal (derived from 

farm specific census data).  

Stochasticity 

There are no randomized variables or parameters in the calculation of satisfaction, information seeking 

behaviour and the choice sets. This implies that for each simulation run, one and only one solution exists. 

However, the model runs over several years. Between each simulation run, price levels for milk and 

meat products are randomly selected from a uniform distribution of prices between +/-15% of current 

price levels. This results in a certain randomness of the farmers’ strategic choices based on the realised 

output prices over the whole simulation length (here 12 runs). This also implies that the strategic choice 

is not always the same for each agent in every model run. Depending on the sequence of randomly 

selected prices, more or fewer agents might be satisfied or not with subsequent consequences also for 

social (dis-)similarity.  

Observation 

The model output of FARMIND are the type and amount of climate change mitigation measures and 

the corresponding reduction in GHG emissions as well as income changes depending on heterogeneous 

and individual farming decision strategies. The emergent phenomena are the impact of social networks 

on the distribution of GHG emissions across heterogeneous dairy and beef cattle farms in Switzerland 

and their total impact on climate change mitigation as well as farm incomes. 

A7.3 Details 

Implementation 

The results presented in this contribution can be replicated from the following repository26. The 

replication package contains a “readme” file that gives detailed instructions how to replicate our 

simulations on any computer (only requiring R Studio and Java). FARMIND is written in Java. The 

model is available on Github: https://github.com/AECP-ETHZ/FARMIND. Code for the initialization 

and sensitivity analysis are written in R. The applied sub-model (FarmDyn) in this contribution is written 

in GAMS and Python and uses a CPLEX solver. A graphical user interface (GGIG) is available to steer 

the simulations and is written in Java and Python. The source code of the applied sub-model in this 

contribution can be made available upon request. The result files of the sub-model are exchanged 

between FARMIND and FarmDyn using csv files. Thus, a replication of the simulation results is 

possible without paying fees for GAMS and CPLEX. 

                                                      
26 The replication package is part of the submission. It will be made public after the publication process in the ETH 

Research Collection (see also the FARMIND repository:  

https://www.research-collection.ethz.ch/handle/20.500.11850/456722) 

 

https://github.com/AECP-ETHZ/FARMIND
https://www.research-collection.ethz.ch/handle/20.500.11850/456722
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Figure A7.2 gives an overview of the implementation steps in our modelling approach. First, we 

prepared the input data sets (for details see Kreft et al., 2021b; Kreft et al., 2020) for the specific 

requirements of the FARMIND modelling environment. We used three input data sets: 1) Information 

about social networks which were collected using the survey software “Network Canvas”. 2) Farmers’ 

cognitive, social, and dispositional factors derived from an online survey and a lottery in our case study 

region. 3) Census data by the Canton of Zürich on farm characteristics such as farm size, production 

activities and labour availability. To prepare the data matrix for the agents’ income and GHG emissions 

for the four reduction measures, we used the single farm optimization tool FarmDyn (Britz et al., 2021). 

The resulting csv files were used in FARMIND as model input data.  

We then run FARMIND in three steps: 1) We use the existing policy environment to calibrate the 

behavioural parameters “reference income” and “tolerance activity” to the observed adoption level of 

mitigation measures. 2) Based on different scenario set ups, the calibrated version of FARMIND is used 

to calculate the main results, i.e., the effect of different policy designs on GHG emissions reductions 

(CHF/CO2eq), governmental spending and marginal abatement costs. 3) We use the set-up of the results-

based payment for a sensitivity analysis quantifying the contribution of the behavioural model 

parameters on the model outcome (i.e., the level of GHG emissions). We here use the methods of 

standardized regression coefficient (SRC) and standardized rank regression coefficient (SRRC) as well 

as Sobols’ method based on Latin Hypercube Sampling (LHS) to analyse the impact of the different 

parameters (Saltelli et al., 2008; Thiele et al., 2014). Finally, we analyse our simulation results and 

document our findings. 

 

Figure A7.2: Overview of data flow and model interactions in FARMIND 
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In the following, we describe each of these steps in more detail. First, we provide description of the 

input data used in our modelling approach. Next, we present the initialization of the model and describe 

in detail the scenarios that we used in our main modelling exercise. Finally, we explain model selection 

(based on validating the model output against observed adoption patterns) and describe and present the 

results of our sensitivity analysis. 

Input data  

FARMIND uses six input data sets: 1) a social network including ties between agents; 2) a matrix of 

each agent’s preferences for the relevant mitigation measures; 3) a table of the agent’s individual 

characteristics; 4) a list of initial mitigation measures the agent performed; 5) a list of initial incomes 

over the memory length; and 6) a list of years (corresponding each to a run of FARMIND) and output 

price levels. This input data is derived from the farm survey, the social network analysis, and the 

calculations in the sub-model FarmDyn. 

1) The input data for the social network was available for 21 farmers of the sample. We used an 

exponential random graph model (ERGM)27 to extend the empirical information to our social network. 

More precisely, we first fit an ERGM of the observed network of 21 farmers accounting for two 

important network characteristics, namely density and centralization. In a second step, social ties are 

simulated for the total network of 49 farmers based on the ERGM of the observed network. In general, 

an ERGM computes the overall probability of a network based on network statistics and takes the 

following general form: 

𝑙𝑜𝑔(𝑒𝑥𝑝(𝜃′𝑔(𝑦))) =  𝜃1𝑔1(𝑦) + 𝜃2𝑔2(𝑦) + ⋯ + 𝜃𝑝𝑔𝑝(𝑦), 

where 𝑔(𝑦) is the set of network covariates (here, density and centralization), 𝜃 captures size and 

direction of the effects of the covariates and 𝑝 is the number of terms in the model (Statnet Development 

Team, 2021). 

2) The input data for the agents’ preferences were derived from the following survey question in Kreft 

et al. (2021): “Which of the measures that you do not currently implement could you imagine to adopt 

in the future, which not?” The survey participants had to tick a box for all mitigation measures applied 

in the model. In the FARMIND input data, participants who answered that they could not imagine 

adopting a certain measure in the future received the value 1 for the corresponding measure and the 

value 5 otherwise. Given this parametrization, the non-dominance score will find that measures with a 

5 are always preferred over those with the value of 1. This implies that farmers who said that they will 

not implement this measure in the future will not get his measure as an option in their choice set, 

independently from their strategic choice (i.e., repetition, optimization, imitation, opt-out). 

                                                      
27 We here use the ergm-function of the R package statnet. For more details on the functioning of ERGMs, refer 

to: http://statnet.org/Workshops/ergm_tutorial.html#1_Statistical_network_modeling_with_ERGMs 
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3) The Tanaka lottery applied in Kreft et al. (2021) allowed us to directly use the individual values for 

the risk parameters in FARMIND. Thus, each agent received the parameter value for the decision 

weight, loss aversion and the probability weighting directly from the survey. Please note that the lottery 

yields the same values for decision weights and probability weighting in the gain and loss domain. For 

the reference income and the threshold values for determining individual or social processing, we had 

to transform the survey data information to be able to use it as input data set in FARMIND.  

To do this, we did the following steps: First, we used individual information from each farmer with 

respect to the different questions. We asked farmers to rank six personal goals (e.g., high income, high 

yield, climate protection, environmental protection etc.) according to the importance they attributed to 

it (see Kreft et al., 2020) We used individual farmers’ ranking score of the “income goal” to identify a 

relative measure of their reference income that we could apply to the simulation results of FarmDyn. 

For example, farmers who ranked “high income” as most important goal, received in the input data a 

reference income set to a level for which incomes only little below the current income level were 

perceived as losses in the calculation of the prospect value.  

A similar approach was taken for the threshold value for determining individual or social processing 

(i.e., threshold for activity dissimilarity). We used the farmers’ responses on the following survey 

question (based on a five-point Likert scale): “If other farmers in my environment implement climate 

change measures, I want to implement such measures on my farm as well.” The response was used to 

derive a relative measure of their tolerance to activity dissimilarity between 0.01 (i.e., if a farmer has 10 

ties, he will start check for climate change mitigation options once 1 out of these 10 peers has adopted 

a mitigation measure) and 0.15 (i.e., he/she will only start to imitate if 8 out of 10 peers adopted a 

measure, which means that large differences to peers still do not make the agent act socially oriented). 

Since these thresholds are key for the simulation outcome in FARMIND (see sensitivity analysis in 

Huber et al., 2022), we calibrated the levels of these two parameters to the observed adoption levels in 

our case study region (see sub-chapter on model selection and validation). 

4 / 5) The model is initialized with agents that have not adopted any mitigation measures (see next 

Section). Thus, the list of mitigation measures and the initial income for each agent (which are necessary 

to calculate the strategic choice in the first simulation run), are randomly drawn from the available 

baseline run in the FarmDyn model with variable output price levels). 

6) FARMIND runs over several years, which is controlled by the input parameter “year_run”. This 

parameter can be set by the modeller, e.g., to create a certain price scenario. In this simulation, however, 

we assume that this parameter is fluctuating over years and thus create stochasticity in the simulation 

outcome. Thus, the input parameter is randomly selected from a uniform distribution of prices between 

+/-15% of current price levels. 
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Table A7.3 illustrates the distribution of the raw data that was used to prepare the input parameters for 

FARMIND. Details on data collection can be found in Kreft et al. (2020) for the survey data, including 

a description of the applied Tanaka lottery, as well as in Kreft et al. (2021b) for the social network data. 

A description of the sub-model FarmDyn can be found below. 

Table A7.3: Distribution plots of input variables from FarmDyn calculations (profits and GHG reduction 

potential), survey (behavioural variables) and social network analysis 

Farm      

Adopted 

mitigation 

measures 𝐴 

Replacing 

concentrate feed 

with legumes 

Increased no. of 

lactations 
Drag hoses Feed additives 

𝑦𝐴𝑡 

 

 

 

 

 

 

 

 

Range (t CO2eq) 39 – 775 154 – 707 42 – 764 41 – 722 

𝑥𝐴𝑡  

(with payment of 

120 CHF) 

 

 

 

 

 

 

 

 

Range (CHF) 5553 – 568 648 32927– 434 801 6046 – 588 958 5471 – 589 301 

Personal 

characteristics 
    

Reference income 

to determine 

perceived gains 

and losses and 

calculate 

satisfaction 𝑉𝑖
𝑟𝑒𝑓

 

Loss aversion level 

λ 

Valuation of gains 

and losses α+/- 

Probability weighting 

in gains and losses ϕ+/- 

Tolerance level for 

activity dissimilarity to 

determine information 

seeking behaviour 𝑑𝑖
𝑡𝑜𝑙 

 

 

 

 

 

 

 

 

 

 

5761 – 529 142 0.96 – 10.41 0.05 – 0.95 0.05 – 1.5 0.01 – 0.15 

Social network     

 
Empirical social 

network 

Random social 

network 

Complete social 

network 
 

Number of peers a 

farmer is linked to 

(Mean (Sd)) 

13.4 (1.4) 1.3 (1.2) 48(0)  
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Initialization of simulation  

We initialize the model with agents not implementing any of the mitigation measures. In this model set-

up, the agents did not perform any of the mitigation measures in the past, i.e., the list of mitigation 

measures the agent performed in the past contains no mitigation measure. Therefore, the agents’ realised 

income in the past, which is used to calculate the prospect value in the first model run, is only based on 

incomes without any measures adopted. In this case, the initial income is randomly drawn from the 

simulated FarmDyn data over the price range. We then simulate 12 years (runs) in FARMIND. In this 

period, agents endogenously choose a strategy and eventually adopt mitigation measures. The 12-year 

period serves as a timespan that allows FARMIND to achieve a saturation state at which the number of 

mitigation measures does not change anymore (even though strategies might still vary).  

Scenarios  

We run the model with two scenarios, namely with the action- and results-based policy design. Farm 

profits change depending on farm individual opportunity cost and the adoption of measures or the GHG 

reduction achieved, respectively. To create the counterfactual situation without considering behavioural 

aspects, the reference income of each agent is set such that all agents start to optimize independent of 

individual preferences or social influences. This is also done for both policy scenarios. We finally run 

the same simulations while excluding the measure of increasing the number of lactations per dairy cow 

(see Table A7.4). Overall, the specified scenarios allow to compare the two policy designs 

including/excluding the win-win measure to each other and to the counterfactual situation with income 

maximizing agents. 
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Table A7.4: Scenario definitions. Note: The payment level in the results-based payment scenario was increased 

until the reduction in GHG emission reached the same level as in the action-based payment scenario. 

Scenario Action-based Results-based 

Social network Empirical Network Empirical Network 

 

  
Farm parameters Calibrated from survey data Calibrated from survey data 

Initial activities & performing 

years 
No adoption No adoption 

Payment 

Legumes produced: 

1000 CHF/per ha 

0-400 CHF/CO2eq 

Longer lactation: 

80 CHF/cow 

Use of drag hose: 

60 CHF/ha 

Feed additives: 

250 CHF/cattle 

Counterfactual 
Farmers are income maximizers 

(Optimization strategy) 

Farmers are income maximizers 

(Optimization strategy) 

Sub-scenario to test for impact 

of “win-win” measure 

3 measures (without consideration 

“longer lactation”) 

3 measures (without consideration 

“longer lactation”) 

 

Model selection and validation  

A key challenge in FARMIND is its parameterization given different potential pathways that result in 

the same level of adoption, i.e., model equifinality (Williams et al., 2020). This implies that multiple 

structures and/or parameterizations in FARMIND exist that generate outputs consistent with the 

observed adoption pattern in our case study region (e.g., Troost and Berger, 2015a). More specifically, 

while we were able to collect data on the underlying model parameters using census data, surveys and 

social network analysis, the strategic decisions, i.e., repetition, imitation, optimization and opt-out 

cannot be validated against observational data and different combinations of these strategies might result 

in the same model output. Consequently, the use of thresholds for determining the decision strategies in 

FARMIND implies that the calibration of these parameters has an important effect on simulation 

outcomes (see also Huber et al. 2021). The survey identified relative differences of the model parameters 

between agents. The absolute level of the reference income was determined by the income levels 

simulated in FarmDyn. 

To address this challenge, we calibrated the threshold parameters in FARMIND based on a sensitivity 

analysis (please note that we also performed an extensive sensitivity analysis to assess the robustness of 

our results, see section below). Here, we parameterized the profit changes in FarmDyn using the current 

support for GHG emission reduction measures in Switzerland. Since there is currently no support for 

feed additives and only very few farms stated that they already experimented with additives, we did not 

consider this mitigation measure in the calibration of our agent-based approach. We ran FARMIND 

with increasing levels for both thresholds, i.e., reference income and dissimilarity tolerance, and 
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compared the adoption pattern with the observed data. Given that we increased the thresholds for all 

agents simultaneously, the relation between the individual thresholds derived from the survey data was 

kept constant. To assess model performance, we calculated the standardized mean errors of the model: 

𝐸𝑆𝐴𝐸 = 1 −
∑ |𝑦𝑖

𝑜𝑏𝑠−𝑦𝑖
𝑠𝑖𝑚|𝑖

∑ 𝑦𝑖
𝑜𝑏𝑠

𝑖
, 

with 𝑦𝑖
𝑜𝑏𝑠 as the observed adoption of mitigation measures 𝑖. We calculated model performance by 

fixing one parameter and changing the second parameter starting with parameter levels that were 

insensitive to model output. We then changed the corresponding parameter levels which will first 

increase the goodness-of-fit. At a certain level, however, this goodness-of-fit (here measured by ESEA) 

starts to decrease. This allows to identify a “best” model that could explain the observed pattern with 

the simulated strategies in FARMIND.  

The two threshold levels have the following impact on the adoption of climate change mitigation 

measures in our simulations. First, increasing the reference income implies that more agents become 

unsatisfied and thus increases the probability of them choosing the optimization or opt-out strategy. The 

increase in adoption through optimizing behaviour is represented in the left panel of Figure A7.3. In the 

simulations with increasing reference income levels (R1-R5), farmers do not have a social network and 

the adoption of mitigation measures is driven by optimizing behaviour only. The results show that with 

optimizing behaviour, the simulated adoption overshoots the observed level for drag hoses and lactations 

with higher threshold levels for being satisfied. This implies that we should observe more of these 

mitigation measures if farmers were pure profit maximisers. Second, adding the social network to 

simulations in which farmers have a high reference income, the agents are pushed to the opt-out strategy 

since they are not only unsatisfied but also very different to their peers. This suggests that lower levels 

of the reference income are more suitable to represent the observed adoption levels. Given these lower 

levels of the reference income (R2-R3), we then tested the agent’s sensitivity with respect to the 

tolerance level (how much they consider the behaviour of their peers, i.e., how much they are inclined 

to engage in social processing).  

Hence, we manipulated the levels of the threshold “tolerance activity” (N1-N5). This allowed us to 

compare adoption behaviour based on different combinations of reference income and dissimilarity 

tolerance (see right panel of Figure A7.3). Overall, we find that models with social networks outperform 

models without interacting agents in terms of goodness-of-fit (we added R4 to the right panel of Figure 

A7.3 to illustrate the outputs when agents are income maximisers only). If social networks are included, 

high and low levels of sensitivity towards social behaviour decrease model performance. The 

combinations of both threshold values in the middle of the possible ranges provide similar goodness-of-

fit (Table A7.5). This allows us to meaningfully choose a single best model for the analysis since our 

findings are robust within a certain range of threshold values and only extreme assumptions can be 

discarded. 
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Figure A7.3: Visual comparison between simulated and observed adoption of climate change mitigation measures. 

The dashed lines refer to the corresponding observed level of adoption. 

We are aware that other approaches exist such as pattern-oriented modelling (Grimm et al., 2005) or 

diverse model calibration (Williams et al., 2020) that relax some of the assumptions resulting from 

choosing a single best model. However, we here focused on model prediction, i.e., what if no social 

network existed (or it had different patterns). An equifinal model in our case would have to assume 

extreme values, i.e., all agents choose the same strategy (e.g., all were optimizers). Thus, our assumption 

is that farmers, in the context of adopting GHG mitigation measures, are not pure income optimizers. 

Indeed, the main purpose of our model is to include behavioural factors into simulating adoption 

decisions, and recent literature on farmers’ behaviour suggests that optimization is only one of several 

types of decision-making strategies in agriculture (for a recent review see Bartkowski et al., 2022; 

Epanchin-Niell et al., 2022).  

Table A7.5: Standardized mean absolute error from different model parameterizations 

 Absolute error 

Legumes 

Absolute error 

Lactation 

Absolute error 

Drag hose 

ESAE 

R4 (no network) 5 -5.5 -4.8 0.78 

R3 (no network) 7.5 -4 -2.2 0.80 

R3 with N1 8.1 2 2.3 0.82 

R3 with N3 9.4 1 1 0.84 

M1: R3 with N4 8 1.2 1.3 0.85 

R2 with N4 6.5 -1.3 -1.3 0.87 

R3 with N5 7.9 0.4 0.7 0.87 

M1: R2 with N2 6.1 -1 -1 0.88 

M3: R2 with N3 6.3 -0.9 -0.9 0.88 

Note: R1-R5 refer to increasing reference income levels. N1-N5 for decreasing sensitivity level for social oriented 

behaviour.  

In addition, we also refrained from parameter screening and selection as described in Troost and Berger 

(2015a), i.e., a calibration of the important model parameters based on Latin Hypercube Sampling (LHS) 

over the whole parameter range. The reason is that we rely on individual data for each agent (based on 
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the survey), and we do not have to make assumptions about the distribution of parameters in the 

initialization process of the model. 

In summary, we can calibrate FARMIND to observed uptake of climate change mitigation measures in 

our case study region. Our simulation outcomes remain robust with respect to a meaningful variation in 

the threshold levels for determining the decision strategies in FARMIND. Thus, we are convinced that 

FARMIND is a valid approach to assess the effect of different policy designs on adoption of climate 

change mitigation measures in our study region and associated governmental spending. To test external 

validity of FARMIND, however, more data and more case studies would be needed to generalize the 

effect of social networks on the effectiveness and efficiency of policy incentives to reduce farm-level 

GHG emissions. 

Output sensitivity analysis  

The main model outcomes are based on an uncertainty analysis, i.e., we run FARMIND with different 

social networks, output price levels and various levels of subsidies for CO2 (CHF/CO2eq) to achieve a 

given reduction level in GHG emissions. 

To assess the robustness of our findings, we also performed an output sensitivity analysis. We here used 

the methods of standardized regression coefficient (SRC) as well as Sobols’ method to assess the effects 

of behavioural parameters and model structures on GHG emission levels. We follow the protocol by 

Thiele et al., 2014 and calculate the contribution of farmers’ individual behavioural parameters as well 

as different model structures on the total amount of GHG emissions (see Table A7.6): 
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Table A7.6: Parameter range for Latin Hypercube Sampling (LHS) in global sensitivity analyses 

State variable / parameters Abbreviation 

Lower range 

LHS  

(Min value) 

Upper range 

LHS  

(Max value) 

Loss aversion level 
% change for each agent 

λ 0.5 1.5 

Valuation of gains and losses 
% change for each agent 

α+/- 0.5 1.5 

Probability weighting in gains and losses 
% change for each agent 

ϕ+/- 0.5 1.5 

Reference income  
% change for each agent 

𝑉𝑖
𝑟𝑒𝑓

 0.8 1.2 

Tolerance level for activity dissimilarity 
% change for each agent 

𝑑𝑖
𝑡𝑜𝑙 0.5 1.5 

Preferences 
1 = cannot imagine adopting 

5 = can imagine adopting 

𝑅𝐴 1 5 

Output price level  
  1 = 0.60 CHF/kg (milk) 7 CHF/kg (meat) 

20 = 0.79 CHF/kg (milk) 9 CHF/kg (meat) 

 1 20 

Fuzzy size  
Maximum number of mitigation measures 

considered in choice set 

 1 5 

Social network 
Connection probability for random network 

 1 49 

 

For each of the parameters, we use a uniform distribution of values with the observed value (i.e., taken 

from the survey) as the mean between a max. and a min. value (Table A7.6). The mean values of 

behavioural factors are directly derived from the survey (and the corresponding lottery) or corresponds 

to the calibrated input values (in the case of the reference income and the tolerance for dissimilarity). 

Agent preference levels for different mitigation measures are set randomly in the sensitivity analysis. 

Price levels of beef and dairy products refer to the range of observed prices in Swiss agriculture. For the 

size of the choice set, the sensitivity analysis implies that either only the most preferred option appears 

in the choice set (if set to 1) or all options appear in the choice set (if set to 5). Thus, this factor tests for 

the effect of the fuzzy preference algorithm on the outcome. Finally, the overall impact of the network 

size is also tested by using a random network. 

SRC Standardized regression coefficient 

The standardized regression coefficient analysis includes two steps. First, a linear regression model is 

fitted to the simulation data generated from a Latin Hypercube Sample of the different parameters. The 

results from the standardized regression coefficient approach are here based on LHS with 1000 

parameter sets (samples) and 100 repeated simulation samples. 

Secondly, the regression coefficients are standardized. Thereby, the coefficients are multiplied with the 

ratio between standard deviations of the input parameter and the output value (Saltelli et al., 2004). Thus, 

the regression analysis shows the effect of an input on the output variables both normalized with a mean 
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of zero and standard deviation of one. This allows to better interpret and communicate the absolute 

relationship between the inputs and output of FARMIND. 

 

Figure A7.4: SRC for FARMIND in the context of adopting GHG mitigation measures in Swiss agriculture. Mark 

show mean SRC value. Sticks show maximum and minimal values of bootstrapped 95% confidence intervals of 

corresponding sensitivity indices. Parameter groups are represented in different colors. Yellow: threshold values 

that determine the choice between strategies i.e., reference income 𝑉𝑖
𝑟𝑒𝑓

and dissimilarity tolerance 𝑑𝑖
𝑡𝑜𝑙a. 

Blue: Parameters used to calculate the cumulative prospect value for each agent. Green: Structural 

parameters including fuzzy size, price levels, preferences, and social networks. 

Our sensitivity analysis provides four implications (cf. Figure A7.4): First, the reference income, i.e., 

the threshold parameter determining the choice between optimization and opt-out vs. imitation and 

repetition has the largest impact on the total amount of GHG emissions. An increase of the reference 

income by one standard unit increases the greenhouse gas emissions by approximately 0.6 standard 

deviation of all greenhouse gas emissions. The higher the reference income, the more likely agents are 

choosing the repetition or imitation strategy. Thus, theoretically, the sign of the threshold parameter 

could go in both directions since the imitation strategy would allow the agents to adopt mitigation 

measures whereas the repetition strategy would not. The results show that the effect of the repetition 

strategy, i.e., the agents’ reluctance to change is more important for the overall level of GHG emissions. 
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Secondly, an increase of the behavioural factors describing cumulative prospect theory (α+, α-, ϕ+, ϕ-, 

and λ) have a much smaller impact on greenhouse gas emissions compared to the reference income. The 

main effect of an increase of these parameter values by one standard unit is, on average, close to zero. 

The maximum and minimum values of these estimates are between 5 and 8% (of the standard deviation). 

The parameter determining the curvature of the value function in the gain (α+) and loss (α-) domain, 

respectively (i.e., the decision weights), are identical for each agent given our Tanaka design of the 

lottery. Higher values for α+ imply that the value function reduces the depreciation of high incomes in 

the gain domain. Ceteris paribus, this increases the probability that agents are satisfied (since there is 

lower devaluation). Consequently, the probability of imitation increases and the total amount of GHG 

emissions decreases with higher values for α+. We can observe the opposite effect for α-, which devalues 

low incomes in the loss domain. Higher values for dissimilarity tolerance imply that agents, ceteris 

paribus, get less inclined to social oriented behaviour (i.e., imitation and opt-out). As in the case of the 

reference income, the sign of the dissimilarity tolerance parameter depends on which of the two 

remaining strategies (i.e., optimization and repetition) dominates. In our simulation, higher dissimilarity 

tolerance increases the weight of the optimization strategy and therefore the total amount of GHG 

emissions decreases on average. 

Thirdly, the effect of structural variables such as the social network, the preference setting for mitigation 

measures or the price level for milk and meat have a larger effect on the total amount of GHG emissions 

compared to the cumulative prospect parameters, but a lower effect compared to the reference income. 

The higher the price levels, the higher the probability that agents are already satisfied without adopting 

mitigation measures and thus, ceteris paribus, the overall GHG emissions are higher. This suggests that 

exogenous assumptions on the price levels in FARMIND have an important effect on the adoption 

decision, but this is, compared to the threshold level, less important on the total level of GHG emissions. 

This is also an important consequence from using FarmDyn as a sub-model (see next Section for details). 

In FarmDyn, prices affect the income level relatively more than the amount of GHG emissions, i.e., the 

reduction potential of the different measures remains similar under different price scenarios. 

Fourthly, we observe that the sign of behavioural factors is ambiguous. This has two underlying 

mechanisms. First, for probability weighting parameters ϕ+ (ϕ-), the effect can theoretically be positive 

or negative because it depends on the underlying income distribution (Huber et al., 2020). Secondly, the 

behavioural parameters can decrease greenhouse gas emissions if they stimulate optimization or 

imitation and increase greenhouse gas emissions if they support repetition and opt-out (i.e., non-adoption 

of climate change mitigation measures). However, an increase in the parameter values of decision 

weights, for example, can increase both, the probability of optimization but also opt-out. Thus, the effect 

depends on the shares of agents that choose a certain strategy, which is in turn depends on the other 

parameter levels. To get more insights into this potential non-linear behaviour of the model, we also 

used Sobols’ method to assess the sensitivity of FARMIND. 
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Sobol’ method 

To investigate non-linear relationships between the input parameters and outputs, we apply Sobol’ 

method, a variance decomposition approach (Saltelli and Annoni, 2010). The underlying idea is to vary 

the input parameters and then to identify the effect of the individual parameter on output variance. In 

Sobol’ method, the total variance is composed of the so called main and interaction effect, which is 

determined by evaluating the partial effects using Monte-Carlo methods (Thiele et al., 2014).  

 

Figure A7.5: Results from Sobol-Sensitivity analysis for the four strategies. Dots represent the main effect of the 

parameter on the variability of the model outcome. Circles refer to the total effect, including interaction effects of 

the corresponding parameter on the strategy choice. Sticks show bootstrapped 95% confidence intervals of 

corresponding sensitivity indices. 

As in the case of the regression analysis, we use a Latin Hypercube Sampling to generate the range of 

input parameters in the sensitivity analysis. We applied the soboljansen function to identify the expected 

non-linear effect of the model parameters (with 8000 bootstrap replicates). 
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The results from Sobol’ method shows the importance of interaction effects in FARMIND (Figure 

A7.5). The main factors that drive the agents’ behaviour in our model are the reference income and the 

social network. These two parameters drive the model especially for the repetition and imitation 

strategies. For the optimization strategy, the output price level is more important than the social network. 

For these three strategies, behavioural factors become much more important when looking at the 

interactions (i.e., the total effect of the parameter). This exemplifies that the main influence of the 

underlying behavioural factors such as risk preferences or dissimilarity tolerance is indirect (i.e., via the 

calculation of the prospect value and the social oriented behaviour).  

In summary, the output sensitivity analysis shows that thresholds for determining the decision strategies 

in FARMIND are the key drivers in the simulation outcome. However, behavioural factors such as risk 

parameters or loss aversion are also sensitive with respect to the strategic decision and thus affect the 

amount of reduced GHG emissions. Given that our results are robust with respect to the choice of 

threshold levels in our data (see section above), the sensitivity analysis shows that the implications of 

our modelling results also remain with variation of the other factors within a large parameter space. 

Sub-model FarmDyn 

FARMIND requires a sub-model which is able to optimize a farm for two primary causes. On the one 

hand, for the case in which a farmer decides for the strategic decision of optimization and on the other 

hand to determine the satisfaction level of a farmer. For this purpose, we use the bio-economic single 

farm optimization model FarmDyn (Britz et al. 2021), which is realised as a mixed-integer linear 

programming model in the programming language GAMS (General Algebraic Modelling System). 

FarmDyn assumes a fully informed and rational decision maker maximizing profits given a rich set of 

constraints. The model contains detailed information on bio-physical (e.g., nitrogen flows, GHG 

emissions) and economic (e.g., cash flow, investments) processes linked to farming activities. Data on 

the bio-physical and economic processes are taken from planning data, official statistics, and expert 

knowledge. 

In this study, all relevant economic parameters of dairy, suckler and bull-fattening farms are 

parameterized for Switzerland. This includes the in- and output prices, investment cost for machinery 

and stables, crop yields as well as feeding factors and output for animals. Additionally, FarmDyn was 

adapted to the complex cross compliance and premium system of the Swiss agricultural sector. For cross 

compliance this entails mandatory crop rotations and set aside levels, whereas the premium system 

provides payments for the general production of food (ensuring food supply, payments for arable land) 

or for the use of specific feeding patterns such as grass-based milk and meat production.  

We implemented four different mitigation measures with each one being able to be switched on and off, 

separately. Each mitigation measure has a distinct impact on the optimal farm management with links 

to related (opportunity) cost and a certain mechanism of GHG mitigation (see Table A7.7). The option 
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to independently make each measure mandatory allows to construct scenarios with different 

combinations of mitigation measures for each single farm.  

Table A7.7: Mitigation measures in FarmDyn 

Measure Short description of impact on the 

farm management decisions 
Im- and explicit cost 

Mechanism of GHG 

mitigation 

No external 

concentrates 

This measure prohibits the farmer in 

FarmDyn to purchase any non-

roughage products on the market 

including e.g., concentrates, grain 

products, legumes. 

The farmer reduces his 

purchasing cost for 

concentrate, at the same 

time the cost of fodder 

production on-farm 

increases. Further, area 

devoted to cash crops has 

to be replaced by fodder 

production. 

Up-stream CO2-eq. emissions 

associated with purchased 

non-roughage products are 

reduced to zero, whereas 

emissions on-farm can 

increase when arable land is 

diverted from cash crop 

production to fodder 

production. 
Increased 

number of 

lactation 

periods 

Lactations are exogenously extended 

to at least 5 (from 4) lactation periods 

per dairy or mother cow for farmers 

There are no relevant im- 

or explicit cost. 

The increased number of 

lactation periods leads to less 

required replacements in the 

cow herd, which means fewer 

heifers and calves on-farm and 

thus less CO2-eq. emissions 

from the herd. 

Alternative 

fertilizer 

application 

Mandatory use of drag hose or trailing 

shoe for organic fertilizer/manure are 

linked to new investment in 

machinery 

The farmer faces 

investment cost for the new 

machinery. 

Application of organic 

fertilizer close to or directly 

injected into the soil reduces 

nitrous oxide and indirect 

nitrous oxide from other 

nitrogen compounds. 

Feed additive This measure prescribes farmers in 

Farmdyn to apply feed additives for 

ruminants which intervene in the 

digestive system. These feed additives 

are linked to purchasing cost and 

For each unit of feed 

additives used for cows, 

the farmer must purchase 

the feed additive on the 

market. 

The use of feed additives aims 

to reduce the methane 

emissions from the ruminant 

 

FarmDyn runs a simulation for each farm in each scenario. Every farm is calibrated based on its given 

farm land (arable- and grassland), available working units, available crops, and animal numbers. For 

each simulation, FarmDyn returns results of farm profits and GHG emissions based on their source 

(crops, herds etc.).   
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Appendix Chapter 1: Data on farmers’ adoption of climate change 

mitigation measures, individual characteristics, risk attitudes and 

social influences in a region of Switzerland28  

 

Cordelia Krefta, David Wueppera, Robert Hubera, Robert Fingera  

a ETH Zurich, Agricultural Economics and Policy Group, Switzerland  

 

Abstract  

We present survey data on the adoption of agricultural climate change mitigation measures collected 

among 105 farmers in a region in Switzerland in 2019. We surveyed measures farmers use to reduce 

greenhouse gas emissions on the farm level. The list comprised 13 measures related to energy production 

and use, herd and manure management as well as crop production. Additionally, data was collected with 

regard to farmers’ individual concerns and perceptions of climate change, attitudes and goals, self-

efficacy and locus of control, income satisfaction and social influences. Moreover, risk preferences as 

well as loss aversion and probability weighting were elicited using a multiple price list. The survey data 

was matched with cantonal farm census data, containing information on farm size, farm type and age of 

the farmers.  

Keywords 

Agricultural climate change mitigation, farmers’ climate change attitudes and perceptions, risk attitudes, 

non-cognitive skills, social networks, Switzerland 

  

                                                      
28 This chapter is published as: Kreft, C. S., Huber, R., Wüpper, D. J., and Finger, R. (2020). Data on farmers’ 

adoption of climate change mitigation measures, individual characteristics, risk attitudes and social influences in 

a region of Switzerland. Data in brief 30, 105410.   
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Specifications Table  

 

Subject Agricultural economics   

Specific subject area Adoption of agricultural climate change mitigation measures, non-cognitive skills, 

social influences, risk preferences   

Type of data CSV file  

How data were acquired Online survey combined with farm census data 

Limesurvey 

R 

Data format Raw and partly filtered (for reasons of confidentiality)  

Parameters for data 

collection 

The survey targeted farmers of all production types in a specific region of Canton 

Zurich, Switzerland 

Description of data 

collection 

The online questionnaire was distributed via Limesurvey to 389 farmers registered 

in the region of Zürcher Weinland, Canton Zurich, Switzerland. Risk preferences, 

loss aversion and probability weighting were elicited using a multiple price list. 

Participation was incentivized. In total, 105 respondents completed the survey. 

The data was anonymized.  

Data source location Zürcher Weinland, Canton Zurich, Switzerland 

Data accessibility Data is accessible via ETH Zürich Research Collection: 

http://hdl.handle.net/20.500.11850/383116 

 

Value of the Data 

 

 The data highlights which measures are taken by farmers to reduce greenhouse gas emissions 

and elicits climate change related perceptions, attitudes, self-efficacy, locus of control, social 

influences as well as risk preferences. Risk preferences, loss aversion and probability 

weighting were elicited by a multiple price list.  

 The data enables to understand the adoption of climate change mitigation measures in 

agriculture and associate it to farmers’ individual characteristics as well as farm structural 

characteristics.   

 The data can be used to analyse drivers of agricultural mitigation measures including a wide 

range of behavioural factors and farm characteristics. This allows for a broad range of control 

variables.  

 The data allows to interlink different individual factors, e.g., non-cognitive skills and risk 

preferences or climate change perceptions and concerns.  

  

http://hdl.handle.net/20.500.11850/383116
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6.1 Data Description 

We collected survey data on climate change mitigation measures adopted by farmers and combined 

them with cantonal farm census data. Mitigation measures in the survey were selected based on relevant 

literature and suitability for Swiss agriculture [1, 2]. The here presented data is based on a combination 

of census and survey data, which were matched by farmers’ email addresses29. It contains information 

on the adoption of greenhouse gas reduction measures, on farm structure and production as well as 

individual farmers’ characteristics. For reasons of confidentiality, any personally identifiable 

information (i.e., all qualitative data, names and contact details of respondents, names of other persons 

as well as personal feedback) was removed from the dataset. Risk preferences, loss aversion and 

probability weighting were elicited using a multiple price list following the approach of Tanaka et al. 

[3]. The original questionnaire30, the dataset and the codebook describing the variables are available on 

the ETH Zürich Research Collection: http://hdl.handle.net/20.500.11850/383116 

6.2 Experimental Design, Materials, and Methods 

The online survey (in German) was distributed in March 2019 via a link sent by email to all 389 farmers 

in the region of Zürcher Weinland, Canton Zurich, Switzerland, that were registered with cantonal 

authorities. The region includes 24 municipalities and is part of the political district of Andelfingen.  

 

 
Figure 6.1: Map of the region of Zürcher Weinland including 24 municipalities 

(https://www.feuerthalen.ch/tourismus/umgebung/zuercher-weinland.html/323) 

The email was accompanied by a supporting letter of the Cantonal Farmers Union. We used the online 

platform Limesurvey31 to design the survey and collect the data. The questionnaire was tested and 

                                                      
29 For three of the farmers who completed the survey, there were no entries in the farm census data for the period 

of question (e.g. because they did not apply for direct payments in the respective period).   
30 Please also find the full survey questionnaire in the supplementary material to this Appendix Chapter. 
31 www.limesurvey.org  

 

http://hdl.handle.net/20.500.11850/383116
http://www.limesurvey.org/
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improved in two rounds of pre-tests. First, we tested general wording, understanding and user-

friendliness with six students of agricultural sciences. In a next step, we obtained content-related 

feedback from ten farmers at the farming school of the Canton of Zurich. The survey was online for 

eight weeks. Two reminders were sent to farmers who had not filled out the questionnaire after two and 

four weeks. As an incentive to participate, we provided summary information on the first survey results. 

Moreover, farmers were given CHF 10 for answering all questions. Additionally, farmers had the chance 

to win up to CHF 190 based on real payouts from the lottery (multiple price list).      

 
The questionnaire contained 26 questions and on average, farmers needed 40 minutes to complete the 

survey. The survey was structured in following sections: 

 

(i) Expected consequences and perceptions of climate change 

(ii) Perceived self-efficacy and locus of control (non-cognitive skills)  

(iii) Current implementation and expected effectiveness of mitigation measures 

(iv) Education, personal preferences, goals and innovativeness 

(v) Income satisfaction 

(vi) Personal social networks and social comparison 

(vii) Risk preferences, loss aversion and probability weighting (multiple price list) 

 

6.2.1 Expected consequences and perceptions of climate change 

Farmers were asked if they expected negative or positive consequences of climate change with regard 

to the overall agricultural sector in Switzerland and the economic future of their own farm. Moreover, 

farmers were asked to indicate whether over the past 10 years they had experienced decreases or 

increases in occurrence of hail, permanent droughts, frost in autumn and spring, heavy precipitation, 

long rainy periods and heat waves. Here, we are primarily interested in climatic changes perceived by 

the farmers as we assume perception of climate change to be an important factor in decision-making 

regarding mitigation efforts. However, as the data relate to one specific region, real climate data could 

be easily matched to the survey data.  

 

6.2.2 Perceived self-efficacy and locus of control (non-cognitive skills)  

We included a question containing five items on self-efficacy (3 items) and locus of control (2 items) 

based on [4] and [5]. All items were related to the domain of agricultural climate change mitigation.  

 

6.2.3 Current implementation and expected effectiveness of mitigation measures 

Farmers were asked to indicate which measures they undertook to reduce GHG emissions on the farm. 

In total, 13 measures could be selected and respondents had the option to add additional measures they 
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adopted32. For reasons of identifiability, we did not include these additional measures in the raw data. 

Measures were carefully chosen regarding effectiveness, relevance and suitability for Swiss agriculture 

based on [1, 2]. The following measures were included:  

 

- Energy production and use 

o Solar panels 

o Biogas plant 

o Ecodrive mode for tractor 

- Livestock and manure management 

o Replacement of (imported) concentrate feed by domestic legumes 

o Reduction of concentrate feed to max. 10 percent of the ration 

o At least 5 lactation periods per dairy cow  

o Double purpose cattle breed 

o Feed of additives to reduce methane emissions from enteric fermentation  

o Coverage of manure storage 

o Composting of manure  

- Crop production  

o Emissions reducing fertilizer application technique (e.g., drag hoses)  

o Cover and catch crops in rotation  

o Tillage without plough  

 

For farms where a certain measure was not eligible (e.g., livestock measures for pure crop farms), 

respondents could chose the option “not relevant for my farm type”. Farmers were furthermore asked to 

indicate how effective for climate change mitigation they rated each measure (regardless of whether 

they adopted the measure or not). We also included a question on the potential adoption of each non-

adopted measure where farmers had to indicate whether they could imagine to adopt the measure in the 

future or not. 

6.2.4 Education, personal preferences, goals and innovativeness 

After a question about level of education, respondents were asked to indicate which agricultural 

activities they could generally imagine for their farms, namely dairy cows, cattle fattening, pig fattening, 

poultry, crop farming, specialized culture or options outside the agricultural sector. Each activity had to 

be rated. We also included a question on personal values, where farmers were asked to rate six different 

goals concerning agricultural production, namely protection of natural resources, reduction of GHG 

emissions, preservation of animal and plant biodiversity, high yields, generation of high agricultural 

income and acknowledgement from other farmers. This was followed by a question on the level of 

attainment of the six goals. To collect data on farmers’ innovativeness, a question containing five items 

was included regarding the pioneer character of respondents.  

                                                      
32 Other measures mentioned by farmers were for example use of vegetable carbon, dilution of cattle slurry, 

younger age of cow at first calving, reduction of pesticides, fungus-resistant varieties, regular maintenance of 

machines etc.   
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6.2.5 Income satisfaction 

This section of the questionnaire contained two questions referring to the satisfaction with the 

agricultural income (including direct payments) and two questions referring to satisfaction with the total 

household income (including employment outside the agricultural sector). We asked farmers to indicate 

at which yearly income level (on a scale from CHF 160 000 to CHF 40 000) they would not be satisfied 

anymore (note that the average total income of Swiss farms is CHF 97 000, consisting of CHF 65 000 

farm income and CHF 32 000 off-farm income, see e.g., www.agrarbericht.ch). We also queried the 

share (in percentage) of agricultural in total household income.  

 

6.2.6 Personal social networks and social comparison 

We included a question regarding the subjective importance respondents placed on the opinion of others 

about their own farm and farming abilities. Another question in this section concerned the importance 

of social comparison expressed by needs of superiority or conformity with regard to agricultural income 

and climate change mitigation.  

 

Respondents were furthermore asked to list the names (acronyms and nicknames were allowed as well) 

of up to ten persons in their direct social network with whom they regularly exchanged about general 

agricultural matters and agricultural climate change mitigation. To specify the type of relation, we 

further queried how the respondent was connected to each person listed, namely neighbour, colleague, 

friend, family member, partner, club colleague, veterinary, extension service or other. In the latter case 

(other), respondents were asked to specify the type of connection. Lastly, we included a question on 

how important the opinions, attitudes and activities of each person listed were for decision-making on 

the farm.  

 

6.2.7 Risk preferences, loss aversion and probability weighting (multiple price list) 

To elicit risk preferences, loss aversion and probability weighting, we added three multiple price lists 

(lottery tasks) proposed by [3] (see also [6] for an overview). The wording and level of payouts were 

adapted to the farming context and climate change mitigation. More precisely, farmers’ were presented 

the following introductory text: 

  

“In order to implement climate change mitigation on your farm, you can decide between investing in 

either measure A or measure B. Both investments offer a certain return, e.g., due to higher efficiency 

and cost reduction. Both investments have the same price and the respective return will be paid out at 

the same time. In three out of ten cases (30%), investment A offers a return of CHF 40 000 and in 7 out 

of ten cases (70%), investment A offers a return of CHF 10 000. Investment B offers a return of CHF 

68 000 in one of ten cases (10%) and in nine of ten cases (90%) a return of only 5000 CHF is offered.  
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The return of investment B with the lower probability (10%) is increased in the following tables. At 

which level of return would you be willing to take the higher risk and invest in B instead of the more 

stable alternative A. Note that there are no right or wrong answers – decide only according to your 

personal preferences.”  

 

 

  

 30% 70% 10% 90% 

1   ☐ 40.000 CHF 10.000 CHF 68.000 CHF 5000 CHF 

2   ☐ 40.000 CHF 10.000 CHF 75.000 CHF 5000 CHF 

3   ☐ 40.000 CHF 10.000 CHF 83.000 CHF 5000 CHF 

4   ☐ 40.000 CHF 10.000 CHF 93.000 CHF 5000 CHF 

5   ☐ 40.000 CHF 10.000 CHF 106.000 CHF 5000 CHF 

6   ☐ 40.000 CHF 10.000 CHF 125.000 CHF 5000 CHF 

7   ☐ 40.000 CHF 10.000 CHF 150.000 CHF 5000 CHF 

8   ☐ 40.000 CHF 10.000 CHF 185.000 CHF 5000 CHF 

9   ☐ 40.000 CHF 10.000 CHF 220.000 CHF 5000 CHF 

10 ☐ 40.000 CHF 10.000 CHF 300.000 CHF 5000 CHF 

11 ☐ 40.000 CHF 10.000 CHF 400.000 CHF 5000 CHF 

12 ☐ 40.000 CHF 10.000 CHF 600.000 CHF 5000 CHF 

13 ☐ 40.000 CHF 10.000 CHF 1.000.000 CHF 5000 CHF 

14 ☐ 40.000 CHF 10.000 CHF 1.700.000 CHF 5000 CHF 

Never ☐     

Figure 6.2: Example of multiple price list  

70%

30%

Investment A

10%

90%

Investment B
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For ease of understanding, farmers were additionally presented a short explanatory video clip (the clip 

is available on the ETH research collection: http://hdl.handle.net/20.500.11850/383116).  

 

Concerning the real payout modalities, we followed [7] and [8]. They were instructed that real payouts 

were based on their decisions. For every lottery, one row was randomly chosen using a macro-enabled 

Excel spreadsheet. Based on the decision in this randomly chosen row (investment A or B), the lottery 

was drawn. The final amount of all three tasks was summed up and divided by 10 000. As the third 

lottery could also entail a loss of up to CHF 5, participants were provided a secure endowment of CHF 

5 beforehand such that they could not lose any money for real.  

Participants could chose whether they wanted to receive the real gains from the lottery and give contact 

and bank details. All participants who chose this option were later informed about their gains via email. 

The theoretical minimum was CHF 3.9 (including CHF 5 security endowment from the third lottery) 

and the maximum win was CHF 190 (including CHF 5 security endowment). The expected return of 

each participant was approximately CHF 11.    
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Supplementary material 

Survey on agricultural climate change mitigation in the region of Zürcher Weinland 2019  

Introduction 

Dear farmers,  

Against the background of global warming, we are dealing with the options of climate protection in 

Swiss agriculture. In particular, we are interested in better understanding farmers’ decision-making with 

regard to practical climate change mitigation. Your assessments and personal network information, 

preferences and risk attitudes are central to this. Since it is about your very personal assessments, there 

are no wrong answers. 

Completing the questionnaire takes about 30 minutes. As a reward for answering all questions, you will 

receive CHF 10 at the end of the survey. You can also win up to CHF 190 in the last part. If you are 

interested, we will gladly send you a summary of the survey results. 

Your data and information will of course be kept strictly confidential and will be used anonymously for 

scientific purposes only. 

We thank you very much for your participation! 

 

  

https://doi.org/10.1093/erae/jbx011
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Assessments of climate change  

These questions deal with the consequences of climate change for Swiss agriculture and your farm. 

There are no right or wrong answers. It’s all about your own personal assessments. 

Q1. Do you think that climate change will have consequences for agriculture in Switzerland? 

Please select the appropriate answer for each item: 

Very negative 

consequences 

1 

2 
No consequences 

3 
4 

Very positive 

consequences 

5 

☐ ☐ ☐ ☐ ☐ 

Q2. How did you perceive the frequency of extreme weather events over the past 10 years on 

your farm? 

 Strong increase 

1 
2 

No change 

3 
4 

Strong decrease 

5 

Hail events ☐ ☐ ☐ ☐ ☐ 

Continuous dry phases ☐ ☐ ☐ ☐ ☐ 

Frost in autumn and spring ☐ ☐ ☐ ☐ ☐ 

Heavy rain ☐ ☐ ☐ ☐ ☐ 

Long rainy periods ☐ ☐ ☐ ☐ ☐ 

High temperatures and heat waves ☐ ☐ ☐ ☐ ☐ 

Q3. How do you assess the consequences of climate change for the economic development of 

your farm? 

Very negative 

consequences 

1 

2 
No consequences 

3 
4 

Very positive 

consequences 

5 

☐ ☐ ☐ ☐ ☐ 
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Q4. How would you rate the following statements regarding your role as a farmer in climate 

change mitigation? 

Please choose your answer on the scale from 1 ("strongly disagree") to 5 ("fully agree"). 

 

I do not agree at 

all 

1 

2 3 4 
I fully agree 

5 

I can do something about climate change on 

my farm by reducing greenhouse gases. ☐ ☐ ☐ ☐ ☐ 

My behaviour as a farmer influences climate 

change. ☐ ☐ ☐ ☐ ☐ 

How successfully I can reduce greenhouse 

gases on the farm depends mainly on my 

skills as a farmer. 

☐ ☐ ☐ ☐ ☐ 

I am confident that I can reduce greenhouse 

gases and at the same time produce 

successfully. 

☐ ☐ ☐ ☐ ☐ 

Climate change is a problem I can not 

change. ☐ ☐ ☐ ☐ ☐ 

Agricultural climate change mitigation 

In this part of the survey, we would like to find out which climate change mitigation measures you 

implement on your farm and how you assess the effectiveness of the single measures. 

Again, there is no right or wrong, it is all about your very personal assessment. 

Q5: Which of the following measures do you currently implement on your farm and do you 

consider the measures effective for climate change mitigation?  

Please indicate the appropriate answers for each measure. 

 Do you currently implement the 

measure?  
How effective do you think the measure is for climate change mitigation? 

 

Yes No 

Not 

relevant 

for my 

type of 

farm.  

Not 

effective 

at all. 

1 

2 3 4 

Very 

effective 

5 

I don’t 

know 

I substitute some of the 

(imported) concentrates 

for my animals with 

native grain legumes 

(e.g., peas, lupines, field 

beans, European soya). 

☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 

I reduce the concentrate 

content to a maximum of 

10 percent of the ration 

for my animals. 

☐ ☐ ☐ ☐ ☐ ☒ ☐ ☐ ☐ 

I keep my cows for at 

least 5 lactation periods. 
☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 

I keep cattle of a dual-

purpose breed (for 

example, original brown 

cattle). 

☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 

I feed my cattle tannins, 

flaxseed or similar feed 

additives to reduce 

methane emissions from 

digestion. 

☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 



233 

 

The manure storage on 

my farm is covered. 
☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 

I compost the farm 

manure. 
☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 

I apply the fertilizer close 

to the ground with a drag 

hose or a similar 

technology. 

☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 

I include cover or catch 

crops in my rotation. 
☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 

I do not use the plough 

for tillage.  
☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 

I have solar panels for 

energy production. 
☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 

Manure from my farm is 

fermented in a biogas 

plant. 

☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 

When working with the 

tractor I drive in eco-

drive mode (fuel-

efficient). 

☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 

Q5a: Are you currently implementing any other measures to reduce greenhouse gases on your 

farm? 

Please write this in the text field. 

Q6: Which of the measures that you do not currently implement could you imagine to adopt in 

the future, which not? 

 I can imagine to adopt this 

measure on my farm. 

I can not imagine to adopt this 

measure on my farm. 

I substitute some of the (imported) concentrates for my animals with 

native grain legumes (e.g., peas, lupines, field beans, European soya). 
☐ ☐ 

I reduce the concentrate content to a maximum of 10 percent of the ration 

for my animals. 
☐ ☐ 

I keep my cows for at least 5 lactation periods. ☐ ☐ 

I keep cattle of a dual-purpose breed (for example, original brown cattle). ☐ ☐ 

I feed my cattle tannins, flaxseed or similar feed additives to reduce 

methane emissions from digestion. 
☐ ☐ 

The manure storage on my farm is covered. ☐ ☐ 

I compost the farm manure. ☐ ☐ 

I apply the fertilizer close to the ground with a drag hose or a similar 

technology. 
☐ ☐ 

I include cover or catch crops in my rotation. ☐ ☐ 

I do not use the plough for tillage.  ☐ ☐ 

I have solar panels for energy production. ☐ ☐ 

Manure from my farm is fermented in a biogas plant. ☐ ☐ 

When working with the tractor I drive in eco-drive mode (fuel-efficient). ☐ ☐ 

Personal values and preferences  

The following questions serve to assess your personal values and preferences regarding agriculture and 

climate change. We also want to find out how you assess your farm and yourself in agricultural climate 

protection. 

Q7: What is the highest education you have completed? 

☐  Agricultural apprenticeship   

☐  Agricultural mastership examination 
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☐  Agri-technician   

☐  Technical college, university, ETH  

☐  Other: …………………………………………. 

          

Q8: Which activities can you prinicipally imagine for your company and which not? 

To answer the question, it does not matter what you currently produce on your farm. 

 I would 

definitely do that  

    

1 

   

2 

    

3 

    

4 

I would definitely 

not do that 

   

5 

Dairy farming ☐ ☐ ☐ ☐ ☐ 

Cattle fattening  ☐ ☐ ☐ ☐ ☐ 

Pig fattening  ☐ ☐ ☐ ☐ ☐ 

Poultry  ☐ ☐ ☐ ☐ ☐ 

Arable farming ☐ ☐ ☐ ☐ ☐ 

Specialized crops  ☐ ☐ ☐ ☐ ☐ 

Off-farm activity   ☐ ☐ ☐ ☐ ☐ 

Q9: Please rank the following goals according to how important they are to you when making 

decisions on the farm. 

Put the items on the right-hand side (highest rating above). The elements can be moved with the 

mouse. Double-click moves an element to the other list. 

To protect the environment and natural resources.  

To reduce greenhouse gases on the farm. 

To achieve the highest possible yield. 

To be acknowledged by other farmers in the region. 

To generate the highest possible income from agriculture. 

To preserve a high biodiversity of animals and plants on my land. 

Q10: How well do the following statements apply to you and your farm? 

Please choose your answer on the scale from 1 ("does not apply at all") to 5 ("fully applies"). 

 Does not apply at all 

1 2 3 4 

Fully applies 

5 

With the management of my farm, I make a contribution to 

climate change mitigation. 
☐ ☐ ☐ ☐ ☐ 

I regularly achieve high yields.  ☐ ☐ ☐ ☐ ☐ 

The biodiversity of animals and plants on the land I 

cultivate is high. 
☐ ☐ ☐ ☐ ☐ 

My soil is healthy and fertile.      

My agricultural income allows me and my family a good 

life. 
☐ ☐ ☐ ☐ ☐ 

I feel acknowledged by the farmers in the region. ☐ ☐ ☐ ☐ ☐ 

Q11: How well do the following statements apply to you personally? 

Please choose your answer on the scale from 1 ("does not apply at all") to 5 ("fully applies"). 

 Does not apply at all 

1 
2 3 4 

Fully applies 

5 

I am a pioneer in climate change mitigation and 

implement appropriate measures, even if they involve 

economic risks. 

☐ ☐ ☐ ☐ ☐ 
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I am ready to implement climate change mitigation 

measures earlier than other farmers in the region. 
☐ ☐ ☐ ☐ ☐ 

I am open to climate change mitigation, but I want to 

think through all aspects first. While doing so, I focus on 

the experiences of other farmers. 

☐ ☐ ☐ ☐ ☐ 

In principle, I only implement climate change mitigation 

measures if they have already been implemented by others 

for a while and have proven themselves. 

☐ ☐ ☐ ☐ ☐ 

I rely on the tried and tested. Implementing climate 

change mitigation measures on my farm is economically 

too risky for me. 

☐ ☐ ☐ ☐ ☐ 

Income and satisfaction 

This part is about your satisfaction with your current income. The first two questions refer to the purely 

agricultural income per year (including direct payments, excluding off-farm income). The third and 

fourth questions relate to your total earned income per year (agricultural income, self-employment and 

other off-farm income). 

Q12: How satisfied are you currently with your annual agricultural income (including direct 

payments, excluding off-farm income)? 

   

Very satisfied  

1 

  

Satisfied 

2 

  

So-so 

3 

  

Unsatisfied 

4 

   

Very unsatisfied 

5 

☐ ☐ ☐ ☐ ☐ 

Q13: Below what agricultural income per year would you be no longer satisfied (in CHF per 

year)? 

130 000 120 000 110 000 100 000 90 000 80 000 70 000 60 000 50 000 40 000 30 000 20 000 10 000 

☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 

Q14: How satisfied are you currently with your total earned income (agricultural income, self-

employment and other off-farm income)? 

   

Very satisfied  

1 

  

Satisfied 

2 

  

So-so 

3 

  

Unsatisfied 

4 

   

Very unsatisfied 

5 

☐ ☐ ☐ ☐ ☐ 

Q15: Below what total income per year would you be no longer satisfied (in CHF per year)? 

160 000 150 000 140 000 130 000 120 000 110 000 100 000 90 000 80 000 70 000 60 000 50 000 40 000 

☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 
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Q16: What is the share of your purely agricultural income (including direct payments, excluding 

off-farm income) of your total earned income? 

☐  0-25%  

☐  26-50% 

☐  51-75%  

☐ 76-100% 

 

The social network  

The following questions will help us to understand the role that farmers' social relationships and 

networks play in agricultural climate change mitigation (e.g. by sharing knowledge and sharing 

experience or information). 

Q17: How important is it to you what people around you think about the success of your farm 

and your farming skills? 

Very important 

1 
2 3 4 

Not important at all 

5 

☐ ☐ ☒ ☐ ☐ 

Q18: How well do the following statements apply to you personally? 

Please choose your answer on the scale from 1 ("does not apply at all") to 5 ("fully applies"). 

 Does not apply at 

all 

1 

2 3 4 
Fully applies 

5 

It is important to me to impress 

other farmers with my farm. 
☐ ☐ ☐ ☐ ☐ 

I feel confirmed if I earn more than 

other farms. 
☐ ☐ ☐ ☐ ☐ 

On my farm, I want to produce 

more environmentally and climate-

friendly than other farmers in my 

area. 

☐ ☐ ☐ ☐ ☐ 

If other farmers in my environment 

earn more than I do, it bothers me. 
☐ ☐ ☐ ☐ ☐ 

If other farmers in my environment 

implement climate change 

measures, I want to implement such 

measures on my farm as well.  

☐ ☐ ☐ ☐ ☐ 

Q19: With whom do you regularly discuss general agricultural topics and agricultural climate 

protection? 

Please enter the names (also abbreviations or nicknames possible) of a maximum of 10 people who 

come to your mind. 

Person 1 

Person 2 

Person 3 

Person 4 

Person 5 

Person 6 
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Person 7 

Person 8 

Person 9  

Person 10 

Q21: Please indicate how you know the person or how you relate to the person (to be completed 

per person). 

Neighbour Workmate 

 

Friend 

 

Family member 

 

Partner 
Club-/association 

colleague 

Extension 

Service 
Other 

☐ ☐ ☐ ☐ ☐ ☒ ☐ ☐ 

Q23: How important are the opinions, attitudes and activities of these people when making 

decisions on your farm? 

For example, imagine you are faced with deciding whether or not to implement a new climate change 

mitigation measure on your farm. How important for your decision is what the named person thinks, 

says or does on his own behalf? 

Very important Important Not important 

☐ ☐ ☐ 

 

Risk preferences   

The last three questions are about how you assess risks. Findings on farmers' risk attitudes help to better 

understand practical decisions on the farm - for example, in agricultural climate change mitigation. 

To answer these last questions lasts a maximum of 10 minutes and you can win up to 190 CHF. 

Please have a look at our short explanatory video or carefully read the text below. 

 

 

 

 Imagine you want to implement climate change mitigation on you farm. 

 To this end, you can invest in either measure A or measure B. 

 Both investments promise a certain return, e.g. through higher efficiency and cost savings. Both 

investments cost the same amount and the respective return is paid out at the same time. 

 Investment A generates a return of CHF 40,000 in 3 out of 10 cases (or 30%) and a return of CHF 

10,000 in 7 out of 10 cases (or 70%). 

 Investment B generates a return of 68,000 CHF in 1 out of 10 cases (or 10%), but only 5,000 CHF 

in 9 out of 10 cases (90%). 

 In the following tables, the less likely return on investment B increases with each series. 

 For each question, ask yourself for which return of B you are willing to take the higher risk and 

invest in B instead of the safer variant A. 

 There are no right or wrong answers – it is all about your personal preferences.   

Your decisions determine how much money you can actually win: 

Lottery-Explanation.mp4 (Command Line)
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For each of the following three questions, a row is randomly drawn. 

 Based on your decision in exactly this row, investment A or B will be used for this question. 

 According to the probabilities of the investment (A or B) your profit will be drawn (in question 3 

it may also be a loss). 

 The amounts from each question are added together and divided by 10,000. 

You can choose between investment A and investment B in each row. Both have the same costs and the 

respective return is paid out at the same time. However, A and B differ in their predictability: Investment A 

is stable across the rows. Investment B is less stable, but the potential return from row to row increases. 

Q24: Please indicate from which row you choose investment B. 

You can make a selection by clicking on the row in the table. This corresponds to the first row in which you 

select B. 

 

 
 

 30% 70% 10% 90% 

1   ☐ 40.000 CHF 10.000 CHF 68.000 CHF 5000 CHF 

2   ☐ 40.000 CHF 10.000 CHF 75.000 CHF 5000 CHF 

3   ☐ 40.000 CHF 10.000 CHF 83.000 CHF 5000 CHF 

4   ☐ 40.000 CHF 10.000 CHF 93.000 CHF 5000 CHF 

5   ☐ 40.000 CHF 10.000 CHF 106.000 CHF 5000 CHF 

6   ☐ 40.000 CHF 10.000 CHF 125.000 CHF 5000 CHF 

7   ☐ 40.000 CHF 10.000 CHF 150.000 CHF 5000 CHF 

8   ☐ 40.000 CHF 10.000 CHF 185.000 CHF 5000 CHF 

9   ☐ 40.000 CHF 10.000 CHF 220.000 CHF 5000 CHF 

10 ☐ 40.000 CHF 10.000 CHF 300.000 CHF 5000 CHF 

11 ☐ 40.000 CHF 10.000 CHF 400.000 CHF 5000 CHF 

12 ☐ 40.000 CHF 10.000 CHF 600.000 CHF 5000 CHF 

13 ☐ 40.000 CHF 10.000 CHF 1.000.000 CHF 5000 CHF 

14 ☐ 40.000 CHF 10.000 CHF 1.700.000 CHF 5000 CHF 

Never ☐     

 

 

70%

30%

Investition A

10%

90%

Investition B
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Q25: Please indicate from which row you choose investment B. 

You can make a selection by clicking on the row in the table. This corresponds to the first row in which you 

select B. 

  

 
 

 90% 10% 70% 30% 

1    ☐ 40.000 CHF 30.000 CHF 54.000 CHF   5000 CHF 

2   ☐ 40.000 CHF 30.000 CHF 56.000 CHF 5000 CHF 

3   ☐ 40.000  CHF 30.000 CHF 58.000 CHF 5000 CHF 

4   ☐ 40.000 CHF 30.000 CHF 60.000 CHF 5000 CHF 

5   ☐ 40.000 CHF 30.000 CHF 62.000 CHF 5000 CHF 

6   ☐ 40.000 CHF 30.000 CHF 65.000 CHF 5000 CHF 

7   ☐ 40.000 CHF 30.000 CHF 68.000 CHF 5000 CHF 

8   ☐ 40.000 CHF 30.000 CHF 72.000 CHF 5000 CHF 

9   ☐ 40.000 CHF 30.000 CHF 77.000 CHF 5000 CHF 

10 ☐ 40.000 CHF 30.000 CHF 83.000 CHF 5000 CHF 

11 ☐ 40.000 CHF 30.000 CHF 90.000 CHF 5000 CHF 

12 ☐ 40.000 CHF 30.000 CHF 100.000 CHF 5000 CHF 

13 ☐ 40.000 CHF 30.000 CHF 110.000 CHF 5000 CHF 

14 ☐ 40.000 CHF 30.000 CHF 130.000 CHF 5000 CHF 

Never ☐     

 

70%

30%

Investition B 

10%

90%

Investition A
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Q26: Please indicate from which row you choose investment B. 

You can make a selection by clicking on the row in the table. This corresponds to the first row in which you 

select B. 

Please note: You can also lose money in this question. Therefore, you will now receive 5 CHF, from 

which any losses due to this task will be deducted when calculating your total gain. In no case can 

you lose more than this CHF 5. 

 

  

 50% 50% 50% 50% 

1    ☐ 25.000 CHF - 4000 CHF 300.000 CHF  - 21.000 CHF 

2   ☐ 4000 CHF - 4000 CHF 300.000 CHF - 21.000 CHF 

3   ☐ 1000 CHF - 4000 CHF 3000 CHF - 21.000 CHF 

4   ☐ 1000 CHF - 4000 CHF 3000 CHF - 16.000 CHF 

5   ☐ 1000 CHF - 8000 CHF 3000 CHF - 16.000 CHF 

6   ☐ 1000 CHF - 8000 CHF 3000 CHF - 14.000 CHF 

7   ☐ 1000 CHF - 8000 CHF 3000 CHF - 11.000 CHF 

Never ☐     

Q27: After completing the survey, would you like to receive 10 CHF in return for your 

participation and profit? 

Yes No 

☐ ☐ 

Q28: If so, please provide your account details so that we can transfer you CHF 10 and your 

profit after the poll has ended. 

Account holder:  

IBAN:  

Q29: Would you like to receive a summary of the survey results? 

Yes No 

☐ ☐ 

Q30: Do you have any final feedback or comments?  

 

 

50%50%

Investition A

50%50%

Investition B
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Thank you very much for your participation! 

Your details and personal data will of course be kept strictly confidential and will be used exclusively 

for scientific purposes. 

After the survey, we will determine your gains from the last part of the survey. If you answered "Yes" 

to the question and provided your account details, we will transfer your winnings to your account. 

We will also gladly send you a summary of the survey results, if you have indicated your interest 

accordingly. 
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Appendix Chapter 2: Social network data of Swiss farmers related 

to agricultural climate change mitigation33  

 

Cordelia Krefta, Mario Angst b, Robert Hubera, Robert Fingera  

a ETH Zurich, Agricultural Economics and Policy Group, Switzerland  

b University of Zurich, Digital Society Initiative, Switzerland  

 

Abstract  

We present social network data of Swiss farmers, focusing on exchange and advice relations regarding 

agricultural climate change mitigation. The data were generated via face-to-face interviews in 2019 

using the survey software Network Canvas (https://networkcanvas.com). We interviewed 50 farmers, 

with 25 of these participating in a regional climate protection initiative in Switzerland as well as 25 

farmers located in the same region who did not participate in the initiative. Farmers were asked to 

indicate the persons with whom they regularly exchanged on topics related to climate change and 

mitigation in agriculture. The farmers assessed the type and strength of their relationships and were 

asked to rate the knowledge of their contacts regarding climate change mitigation. We also collected 

data on the perceived influence of farmers and other persons on farming decisions. Information on 

farmers’ adoption of climate change mitigation measures and behavioural characteristics was collected 

in a previous online survey. Farm characteristics were obtained from census data.  

 

Keywords 

Farmers’ social networks, agricultural climate change mitigation, grassroots initiative, social learning, 

Network Canvas software, Switzerland  

  

                                                      
33 This chapter is published as: Kreft, C. S., Angst, M., Huber, R., and Finger, R. (2021c). Social network data of 

Swiss farmers related to agricultural climate change mitigation. Data in Brief 35, 106898.  

https://networkcanvas.com/
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Specifications Table  

Subject Agricultural Economics; Climate Change  

Specific subject area Farmers’ social networks with regard to agricultural climate change mitigation  

Type of data Table  

How data were acquired Face-to-face interviews using Network Canvas Software on tablets, online 

surveys, farm census data  

Data format Raw and partly filtered (for reasons of confidentiality) 

Parameters for data 

collection 

Interviews were conducted with farmers participating in a regional climate 

protection initiative as well as with non-participating farmers in the same 

region 

Description of data 

collection 

Interviews with farmers were scheduled by telephone and conducted face-to-

face on site (usually on the farm) by four trained interviewers. Questions were 

asked using the network survey tool Network Canvas installed on tablets. 

Farmers were asked to directly place named contacts on different sociograms 

on the tablet. The data was anonymized.  

Data source location Region of Zürcher Weinland, Canton Zurich, Switzerland  

Data accessibility Data is accessible via ETH Zürich Research Collection: 

http://hdl.handle.net/20.500.11850/458053 

 
 

Value of the data  

 The data provides detailed information on farmers’ social networks and their potential role in 

reduction of agricultural greenhouse gas emissions. The combination with farm census data as 

well as data from a previous online survey on adoption of mitigation measures and behavioural 

characteristics represents a comprehensive data basis.       

 The data allows for in-depth insights in famers’ decision-making in the context of climate 

change mitigation.  

 The data can be used to analyse the role of social networks in adoption of climate change 

mitigation measures. A wide range of behavioural factors and farm characteristics allows for a 

comprehensive set of control variables.  

 The data enables the use of social network analysis techniques in combination with econometric 

analyses and/or mathematical modelling.  

7.1 Data Description 

We collected data on social networks of farmers with regard to climate change mitigation in the region 

of Zürcher Weinland, Canton Zurich, Switzerland. Interviews were conducted face-to-face with 25 

farmers participating in the bottom-up climate protection initiative AgroCO2ncept Flaachtal [1] 

(hereafter: AgroCO2ncept) as well as with 25 farmers in the same region who were not participating in 

the initiative. The two interview questionnaires were slightly different for AgroCO2ncept participants 

http://hdl.handle.net/20.500.11850/458053
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and non-participants, e.g., participants were specifically asked about the project. Both questionnaires34, 

all resulting datasets as well as the codebooks describing the variables are available through the ETH 

Zürich Research Collection: http://hdl.handle.net/20.500.11850/458053.  

10 datasets resulted from the interviews as listed in Table 7.1.  

Table 7.1: Overview of datasets 

Farmers 

interviewed 

Dataset 

ID 
Data content 

Complete datasets 

available 
Data file name 

AgroCO2ncept 

participants 

(n=25)  

1 Farmers’ personal 

attributes derived 

from interviews 

(“ego attributes”)  

25  Atts_agroconcept_int.csv 

2 Additional farmers’ 

attributes from online 

survey and census 

data 

24 (ID 16 has not 

answered survey) 

Atts_agroconcept_survey.csv 

3 Ties between 

AgroCO2ncept 

farmers only 

(complete network)  

25 senders, 25 

receivers  

Edges_agroconcept_complete.csv 

4 Ties between 

AgroCO2ncept 

farmers as well as 

with non-members 

(external contacts) 

25 senders, 53 

receivers  

Edges_agroconcept_and_external_

contacts.csv 

5 Influential people in 

the region named by 

AgroCO2ncept 

farmers  

24 senders, 32 

receivers 

Influence_agroconcept.csv 

Farmers not 

participating in 

AgroCO2ncept 

(n=25) 

6 Farmers’ personal 

attributes derived 

from interviews 

(“ego attributes”) 

25 Atts_nonpart_int.csv 

7 Additional farmers’ 

attributes from online 

survey and census 

data 

22 Atts_nonpart_survey.csv 

8 All ties named by 

non-participants   

25 senders, 74 

receivers  

Edges_nonpart_all.csv 

9 Ties from non-

participants to 

AgroCO2ncept 

members only  

25 senders, 30 

receivers 

(including some 

co-managers of 

AgroCO2ncept 

farms)  

Edges_nonpart_to_agroconcept.csv 

10 Influential people in 

the region named by 

non-participants 

16 senders, 25 

receivers 

Influence_nonagroconcept.csv 

The presented data contain information on farmers’ social ties to AgroCO2ncept members as well as to 

non-members. The ties are defined by regular exchange on agricultural climate change mitigation. Also, 

the strength of the ties and the type of relationship were assessed (datasets 3,4,8,9). Moreover, farmers 

were asked about some personal characteristics including attitudes towards climate change mitigation, 

                                                      
34 Please also find the questionnaires in the supplementary material S1 and S2 to this Appendix Chapter. 

http://hdl.handle.net/20.500.11850/458053
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assessment of the AgroCO2ncept project and their own mitigation behaviour (datasets 1, 6). Farmers 

were furthermore asked to identify the perceived social influence of previously named contacts as well 

as (optionally) of additional persons (datasets 5, 10). For reasons of confidentiality, any comments, 

qualitative data or other personal information such as contact details of farmers were removed from the 

data.   

The obtained interview data were matched with previously collected survey data35 on farmers’ adoption 

of mitigation measures, farmers’ behavioural characteristics as well as cantonal census data on farm 

structures and demographics (datasets 2, 7). In the survey, mitigation behaviour was assessed by asking 

farmers to indicate which out of 13 selected mitigation measures they had adopted on their farm. 

7.2 Experimental Design, Materials and Methods 

Out of the 50 interviewed farmers, 46 had previously participated in an online survey on behavioural 

factors of agricultural climate change mitigation, which was conducted by the authors in March and 

April 2019 [2]. The farms were located in the region of Zürcher Weinland, Canton Zurich in Switzerland. 

The region includes 24 municipalities and is part of the political district of Andelfingen. Interview 

appointments were individually scheduled on the phone. AgroCO2ncept farmers were chosen based on 

their participation in the initiative. Additionally, we aimed to interview 25 farmers who did not 

participate and had ideally answered the online survey [2]. We asked approximately 60 farmers in the 

region out of which 25 were willing to participate.  

 

 
Figure 7.1: Map of the region of Zürcher Weinland including 24 municipalities 

(https://www.feuerthalen.ch/tourismus/umgebung/zuercher-weinland.html/323; see also [2]) 

                                                      
35 For a detailed description of the survey data used see [2].  

https://www.feuerthalen.ch/tourismus/umgebung/zuercher-weinland.html/323


246 

 

The participating farmers were interviewed in November and December 2019 face-to-face by four 

trained interviewers on-site (usually on the farm). We used the free and open source network data 

collection software Network Canvas to design the questionnaire on tablets [3]. A touchscreen based data 

collection has been found to be more efficient than paper based methods of network data collection. The 

chosen Network Canvas software is a particularly modern, scientific and at the same time intuitive and 

user friendly tool [4]. Figure 7.2 and Figure 7.3 show examples of the touchscreen based questions.  

 

 

Figure 7.2: Alter-alter relations (“Please draw lines between the persons of whom you think they regularly 

exchange about agricultural climate change mitigation”) 



247 

 

 
Figure 7.3: Influence ranking (“Please place people whom you perceive as very influential in the center of the 

concentric circle, less influential persons on the outer boundaries”) 

Questions were read aloud by interviewers and simultaneously shown to farmers on the tablet. Most 

answers were inserted in the questionnaire by the interviewer. Some network related tasks (e.g., to draw 

ties between contacts or place persons on a concentric circle according to their influence) were directly 

executed by the interviewees on the tablet. Both questionnaires (for AgroCO2ncept participants and 

non-participants) were pre-tested for understanding, wording and user-friendliness with six students of 

agricultural sciences and three experts of social network research.    

 

The questionnaire contained 29 questions for AgroCO2ncept participants and 25 questions for non-

participants. On average, interviews lasted for about 30-40 minutes. The questionnaire for 

AgroCO2ncept farmers was structured in the following subsections:  

i) Personal characteristics and AgroCO2ncept participation  

ii) Agricultural climate change mitigation on the farm  

iii) Name generator for regular exchange on agricultural climate change mitigation  

iv) Name interpreter questions  

v) Alter-alter relations  

vi) Influential people  

 

Similarly, the questionnaire for farmers not participating in AgroCO2ncept contained the following 

subsections:  
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vii) Personal characteristics and agricultural climate change mitigation on the farm  

viii) Name generator for regular exchange on agricultural climate change mitigation  

ix) Name interpreter questions  

x) Alter-alter relations  

xi) AgroCO2ncept project  

xii) Contact to AgroCO2ncept participants  

xiii) Name interpreter questions to AgrCO2ncept contacts  

xiv) Influential people  

 

7.2.1 AgroCO2ncept participants  

i) Personal characteristics and AgroCO2ncept participation  

Farmers participating in AgroCO2ncept were asked about the year in which they joined the initiative 

and how happy they were with it so far. Moreover, we asked whether they felt that their personal interests 

and opinions were sufficiently taken into account in the decision-making process of AgroCO2ncept and 

how they assessed the success of the project regarding the overall greenhouse gas reduction target. All 

questions had to be answered on 3- or 5-point Likert Scales. 

ii) Agricultural climate change mitigation on the farm 

We asked farmers to answer questions related to agricultural climate change mitigation. First, farmers 

were asked whether they considered to adopt (additional) mitigation measures on their farm. Next, we 

wanted to know how they assessed their success regarding the personal greenhouse gas reduction target 

committed to within AgroCO2ncept. Moreover, we asked farmers how important climate change 

mitigation was for their farming decisions in general and how that importance changed compared to 10 

years ago. All questions had to be answered on 3- or 5-point Likert Scales.  

iii) Name generator for regular exchange on agricultural climate change mitigation  

Farmers were asked to indicate with whom they regularly exchanged about agricultural climate change 

mitigation. We here based on the existing literature on the important role of social networks in farmers’ 

adoption decisions, as for example shown in [5] and [6].  Interviewees (egos) were presented a roster 

with the names of all other AgroCO2ncept participants (alters). In order to choose a person as a contact, 

interviewees had to draw the name from the roster to an empty box on the touchscreen of the tablet. In 

addition, farmers had the option to name any other external person with whom they exchanged on the 

topic.  

iv) Name interpreter questions  

The following questions served to obtain information on the chosen alters and on the type and strength 

of the relationships [7]. Farmers were asked about the frequency of the exchange with the chosen 

contacts today and before joining AgroCO2ncept. Next, we asked them to indicate how they were 

currently related to them (e.g., friend, workmate, neighbour, family member etc.) and how they were 

related before joining AgroCO2ncept. We further asked participants how strongly every alter had 

influenced ego’s decision to join the initiative. The following questions covered the alters’ perceived 

knowledge about agricultural climate change mitigation, how often the ego would ask the alters for 
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advice on farming decisions and how much they would trust them. All questions had to be answered on 

3- or 5-point Likert Scales.  

v) Alter-alter relations  

Here, farmers were asked to indicate whether the chosen alters would regularly exchange on agricultural 

climate change mitigation amongst each other. Knowing alter-alter relations allows for a deeper analysis 

of so-called “egocentric” networks (individual actors networks) [8]. To this end, interviewees had to 

randomly place the alters on the tablet and draw lines between those who were connected (see Figure 

AC2.2).  

vi) Influential people  

Lastly, we asked farmers to indicate whom they perceived as influential for decision-making of farmers 

in the region. Interviewees were presented the roster with all AgroCO2ncept participants again and could 

additionally name any external person who came to their mind in this context. In a next step, farmers 

were asked to rank the influence of the named persons on a concentric circle (see Figure AC2.3).   

 

7.2.2 Farmers not participating in AgroCO2ncept  

vii) Personal characteristics and agricultural climate change mitigation on the farm  

First, farmers not participating in AgroCO2ncept were asked about the main production focus of their 

farm (in case no survey data was available for these farmers). Next, we asked whether they considered 

to adopt (additional) mitigation measures on their farm. As for AgroCO2ncept farmers in section ii) 

above, we asked about the importance of climate change mitigation for farming decisions today and 10 

years ago.  

viii) Name generator for regular exchange on agricultural climate change mitigation  

Farmers were asked to indicate with whom they regularly exchanged about agricultural climate change 

mitigation. Interviewees (egos) could name any person (alter) by adding their name to a field on the 

tablet.  

ix) Name interpreter questions 

We asked for the same information about alters as presented in the AgroCO2ncept questionnaire above, 

see section iv). The questions about influence on the decision to join AgroCO2ncept as well as about 

the relationship before joining were left out.   

x) Alter-alter relations  

See v) for AgroCO2ncept participants.  

xi) AgroCO2ncept project  

Farmers not participating in AgroCO2ncept were asked whether they knew the project and whether they 

had ever considered to join the project.  

xii) Contact to AgroCO2ncept participants  

Interviewees were presented a roster containing all AgroCO2nept participants, and asked to indicate 

whom they had regular contact with. In order to choose a person, they had to be clicked on the tablet.  
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xiii) Name interpreter questions to AgrCO2ncept contacts  

Interviewees were asked to specify the type of relationship (e.g., friend, workmate, neighbour, family 

member etc.) and the frequency of exchange on agricultural climate change mitigation with the chosen 

AgroCO2ncept contact.  

xiv) Influential people  

See section vi) for AgroCO2ncept participants.   

7.3 Ethics statement  

All participating interviewees were thoroughly informed about the content and the scope of the study 

before participation. Thus, informed consent was obtained from the participants prior to the interviews. 

Participation was completely voluntary. Moreover, anonymity of the data is guaranteed by excluding all 

personal identifiable information of respondents.  
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Supplementary material 

S1: Questionnaire for AgroCO2ncept participants (designed with software Network Canvas) 

Personal characteristics and AgroCO2ncept participation  

Q1. Please insert your pre- and surname  

Q2. In what year have you joined the project AgroCO2ncept Flaachtal?  

Q3. What were most important reasons to join the project?  

Q4. How happy are you with the project?  

Very happy 

5 

Rather happy 

4 

Partly 

3 

Rather unhappy 

2 

Very unhappy 

1 

☐ ☐ ☐ ☐ ☐ 

Q5. What are you particularly happy with?  

Q6. What are you particularly unhappy with?  

Q7. Do you feel that your interests and opinions are taken into account in the decision-making 

processes within AgroCO2ncept?  

Yes, absolutely 

5 

Rather yes 

4 

More or less 

3 

Rather not 

2 

No, not at all 

1 

☐ ☐ ☐ ☐ ☐ 

Q8. Do you think AgroCO2ncept has so far been successful regarding its greenhouse gas 

reduction targets?   

Yes, absolutely 

5 

Rather yes 

4 

Partly 

3 

Rather not 

2 

No, not at all 

1 

☐ ☐ ☐ ☐ ☐ 

Q9. Would you decide to participate again today?  

Yes No Maybe 

☐ ☐ ☐ 

Q10. If no, why not?  

Agricultural climate change mitigation on the farm  

Q11. Do you consider to implement further mitigation measures on your farm?   

Yes No Maybe 

☐ ☐ ☐ 

Q12. If yes, which measures do you plan to adopt?  
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Q13. How well have you reached your personal greenhouse gas reduction targets agreed upon in 

AgroCO2ncept?    

Fully reached 

5 

Mostly reached 

4 

Partly 

3 

Mostly not reached 

2 

Not reached at all 

1 

☐ ☐ ☐ ☐ ☐ 

Q14. How important is climate change mitigation for your decisions on the farm?  

Sehr wichtig 

5 

Eher wichtig 

4 

To some extent 

3 

Eher nicht wichtig 

2 

Gar nicht wichtig 

1 

☐ ☐ ☐ ☐ ☐ 

Q15. How important is climate change mitigation for your decisions on the farm today 

compared to 10 years ago?  

Much more important 

5 

More important 

4 

Equally important 

3 

Less important 

2 

Much less important 

1 

☐ ☐ ☐ ☐ ☐ 

Name generator  

Q16. With whom of the following persons do you regularly exchange on agricultural climate change 

mitigation?    

(To choose from the roster with the names of all farmers participating in AgroCO2ncept, click on the 

circle with the respective name and draw it to the free space on the right. Please also consider additional 

external contacts and add them with pre-and surname using the symbol on the bottom right).      

Name interpreter questions  

We now ask you to answer the following questions to the persons you have just named.  

Q17. How often do you exchange with this person on agricultural climate change mitigation?   

Every day 

5 

Once per week 

4 

Once per month 

3 

Every other month 

2 

Once per year  

1 

☐ ☐ ☐ ☐ ☐ 

Q18. Please indicate how you are currently related to the person (multiple answers possible).   

Friend Workmate  Neighbour  Family member  Partner  
Association 

colleague 
Other 

☐ ☐ ☐ ☐ ☐ ☐ ☐ 

Q19. If other, please specify 
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Q20. How often did you have contact with the person before joining AgroCO2ncept?   

Every day 

5 

Once per week 

4 

Once per month 

3 

Every other month 

2 

Once per year  

1 

Never 

0 

☐ ☐ ☐ ☐ ☐ ☐ 

Q21. Please indicate how you were related to the person before joining AgroCO2ncept (multiple 

answers possible).    

Friend Workmate  Neighbour  Family member  Partner  
Association 

colleague 
Other 

☐ ☐ ☐ ☐ ☐ ☐ ☐ 

Q22. If other, please specify  

Q23. How strong was the person’s influence on your decision to join AgroCO2ncept?   

Very strong 

5 

Strong  

4 

Rather weak 

3 

Weak 

2 

The person did not 

influence me 

1 

☐ ☐ ☐ ☐ ☐ 

Q24. In your perception, how much does the person know about agricultural climate change 

mitigation?  

Very much 

5 

Much 

4 

Rather little 

3 

Little 

2 

Nothing 

1 

☐ ☐ ☐ ☐ ☐ 

Q25. How often do you consult the person for advice on decisions regarding your farm?    

Every day  

5 

Once per week 

4 

Once per month 

3 

Every other month 

2 

Once per year 

1 

Never  

0 

☐ ☐ ☐ ☐ ☐ ☐ 

Q26. How much do you trust the persons’ knowledge and advice?   

Very much 

5 

Much 

4 

To some extent 

3 

Rather little 

2 

Not at all 

1 

☐ ☐ ☐ ☐ ☐ 

Alter-alter relations 

Q27. Please connect the persons you have chosen before if you think that they exchange 

regularly about agricultural climate change mitigation.  
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Influential people  

Q28. Which persons do you perceive as influential for decision-making of other farmers in the 

region?  

(To choose from the roster with the names of all farmers participating in AgroCO2ncept, click on the 

circle with the respective name and draw it to the free space on the right. Please also consider additional 

external persons and add them with pre-and surname using the symbol on the bottom right).      

Q29. Please place very influential persons in the center of the concentric circle, place less 

influential persons towards the outer margins of the circle.  
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S2: Questionnaire for farmers not participating in AgroCO2ncept (non-participants) (designed 

with software Network Canvas)  

Farm characteristics and agricultural climate change on the farm 

Q1. Please insert your pre- and surname  

Q2. Please indicate the main production focus on your farm 

Suckler cows  
Arable 

farming 
Dairy cows 

Cattle 

fattening 
Forest Vegetables Fruits Other 

☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 

Q3. If other, please specify  

Q4. Do you plan to implement (additional) greenhouse gas reduction measures on your farm?   

Yes No Maybe 

☐ ☐ ☐ 

Q5. If yes, which measures do you plan to adopt? 

Q6. How important is climate change mitigation for your decisions on the farm?  

Very important 

5 

Rather important 

4 

To some extent 

3 

Rather not important 

2 

Not important at all 

1 

☐ ☐ ☐ ☐ ☐ 

Q7. How important is climate change mitigation for your decisions on the farm today compared 

to 10 years ago?  

Much more important 

5 

More important 

4 

Equally important 

3 

Less important 

2 

Much less important 

1 

☐ ☐ ☐ ☐ ☐ 

Name generator  

Q8. With whom do you regularly exchange on agricultural climate change mitigation?    

(Please add any persons that come to your mind with pre-and surname using the symbol on the bottom 

right).      

Name interpreter questions  

We now ask you to answer the following questions to the persons you have just named.  
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Q9. How often do you exchange with the person on agricultural climate change mitigation?   

Every day 

5 

Once per week 

4 

Once per month 

3 

Every other month 

2 

Once per year  

1 

☐ ☐ ☐ ☐ ☐ 

Q10. Please indicate how you are currently related to the person (multiple answers possible).   

Friend Workmate  Neighbour  Family member  Partner  
Association 

colleague 
Other 

☐ ☐ ☐ ☐ ☐ ☐ ☐ 

Q11. If other, please specify 

Q12. In your perception, how much does the person know about agricultural climate change 

mitigation?  

Very much 

5 

Much 

4 

Rather little 

3 

Little 

2 

Nothing 

1 

☐ ☐ ☐ ☐ ☐ 

Q13. How often do you consult the person for advice on decisions regarding your farm?    

Every day  

5 

Once per week 

4 

Once per month 

3 

Every other month 

2 

Once per year 

1 

Never  

0 

☐ ☐ ☐ ☐ ☐ ☐ 

Q14. How much do you trust the persons’ knowledge and advice?   

Very much 

5 

Much 

4 

To some extent 

3 

Rather little 

2 

Not at all 

1 

☐ ☐ ☐ ☐ ☐ 

Alter-alter relations 

Q15. Please connect the persons you have named before if you think that they exchange 

regularly about agricultural climate change mitigation.  

AgroCO2ncept project  

Q16. Do you know the climate change mitigation initiative AgroCO2ncept Flaachtal?  

Yes No 

☐ ☐ 

Q17. Have you considered to join the project?  

Yes No 

☐ ☐ 
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Q18. Why have you decided against joining AgroCO2ncept?  

Contact to AgroCO2ncept participants   

Q19. With whom of the farmers participating in AgroCO2ncept do you have regular contact?  

Please choose from the roster with the names of all AgroCO2ncept participants.  

Name interpreter questions to AgroCO2ncept contacts 

We now ask you to answer the following questions to the AgroCO2ncept participants who have chosen.  

Q20. Since when do you know the person?  

Q21. Please indicate how you are currently related to the person (multiple answers possible).   

Friend Workmate  Neighbour  Family member  Partner  
Association 

colleague 
Other 

☐ ☐ ☐ ☐ ☐ ☐ ☐ 

Q22. If other, please specify  

Q23. How often do you exchange with the person on agricultural climate change mitigation?  

Every day 

5 

Once per week 

4 

Once per month 

3 

Every other month 

2 

Once per year  

1 

Never  

0 

☐ ☐ ☐ ☐ ☐ ☐ 

 

Influential people  

Q24. Which persons do you perceive as influential for decision-making of other farmers in the 

region?  

(To choose from the roster with the names of all farmers participating in AgroCO2ncept, click on the 

circle with the respective name and draw it to the free space on the right. Please also consider additional 

external persons and add them with pre-and surname using the symbol on the bottom right).      

Q25. Please place very influential persons in the center of the concentric circle, place less 

influential persons towards the outer margins of the circle.  
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