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Abstract—The accuracy limitation of physics-driven power
flow linearization approaches and the widespread deployment of
advanced metering infrastructure render data-driven power flow
linearization (DPFL) methods a valuable alternative. While DPFL
is still an emerging research topic, substantial studies have already
been carried out in this area. However, a comprehensive overview
and comparison of the available DPFL approaches are missing in
the existing literature. This paper intends to close this gap and,
therefore, provides a narrative overview of the current DPFL
research. Both the challenges (including data-related and power-
system-related issues) and methodologies (namely regression-based
and tailored approaches) in DPFL studies are surveyed in this
paper; numerous future research directions of DPFL analysis are
discussed and summarized as well.

Index Terms—Power flow linearization, data-driven, machine
learning, regression, programming

I. INTRODUCTION

L INEARIZED power flow models are broadly utilized in
today’s power system operation and analysis [1]–[3]. Tra-

ditional power flow linearization methods are mainly physics-
driven (a.k.a., model-driven). After decades of development,
physics-driven methods have seemingly reached the limit in
terms of their accuracy. Due to the widespread deployment
of advanced metering infrastructure [4], data-driven power
flow linearization (DPFL) approaches have emerged as a valid
strategy and drawn increasing attention [5].

DPFL methods use historical steady-state measurements of
the system to establish a linear model through data training
[6], [7]. The benefits include but are not limited to having (i)
higher approximation precision due to being assumption-free
[5], [7] and customizable [1], [8], (ii) better applicability to
cases where accurate physical parameters are unavailable [9],
[10], (iii) implicit integration of power losses [1], [6], [11],
(iv) integration of up-to-date system attributes [6], [12], and
(v) inclusion of realistic impacts, e.g., control actions [6] or
human behaviors [13].

Despite the above advantages, there are a variety of chal-
lenges standing in the way of widespread application. These
obstacles can be divided into data-related and system-related
issues. The former issue includes the problems caused by (i)
data multicollinearity [14]–[18], (ii) the presence of outliers
[16], [19]–[21], (iii) measurement noises [7], [18], [22], [23],
(iv) the temporal correlation among observations [24], and
(v) asynchronous data [5], [25]–[27]. The system-related
issue refers to the challenges particularly related to power
systems, namely (i) the inherent nonlinearity of the physical
characteristics in power flows [1], (ii) the lack of consensus
on the importance and usage of physical knowledge [1], [7],
[28]–[30], (iii) frequent variations in grid topologies [6], [27],
[31], (iv) inevitable variations in bus types [6], [32], and (iii)
the limited observability of the system [15], [21], [27].

To address the aforementioned issues, numerous DPFL
approaches have been designed. They can be classified into

two major categories: the classic regression-based methods
and more tailored methods. The former type adopts the classic
formulations of various regression programming models, while
the latter reorganizes the classic regression model by customiz-
ing the objective functions and/or constraints. Specifically, the
regression DPFL approaches include (i) least squares regression
and its variants [1], [3], [5], [7], [11], [14], [21], [24], [25],
[27], [33]–[37], (ii) partial least squares and its variants [6],
[11], [26], [38], (iii) ridge regression and its variants [15],
[18], [31], and (iv) support vector regression and its variants
[11], [21], [36], [39], [40]. The tailored DPFL methods consist
of (i) linearly constrained programming [7], [30], (ii) chance-
constrained programming [41], and (iii) distributionally robust
chance-constrained programming [42].

Although the research on DPFL has been extensive and
profound to date, the challenges faced by DPFL and the
corresponding solutions have not been thoroughly deliberated
and agreed upon in the existing literature. Future research
directions are also not comprehensively summarized. In a
nutshell, DPFL, as an emerging but blooming area, has not
been reviewed yet, nor discussed in any previous survey study.
Due to this fact, this paper contributes in the following aspects:

• Delivering a comprehensive review of DPFL, including the
obstacles and the corresponding methodologies, providing
an important reference point for future research on this
topic.

• Discussing open research questions for future directions
of DPFL studies.

In the following, Section II summarizes the challenges
in DPFL studies, while Section III reviews existing DPFL
approaches. Future research directions of DPFL are elaborated
on in Section IV. Section V concludes this paper.

II. CHALLENGE

DPFL faces a variety of challenges. These issues are
summarized in this section.

A. Data-related Challenges
1) Data Multicollinearity: Data multicollinearity (a.k.a., data

coherence [17] or data isotropic dispensation [18]) means that
the measurements of variables are highly linearly correlated
[14]–[16], [26], [34]. The corresponding training datasets
are therefore ill-conditioned or even singular [16]. In power
systems, the voltages of directly connected nodes [15], [16],
[39] tend to rise and fall simultaneously [15], [16], [39];
a similar observation can be made for the active power
injections. Hence, the multicollinearity issue is unavoidable in
measurements of the power grid state. Ignoring this issue will
result in severe negative impacts on the training result, such as
significant error, chaos effect, sample-dependent performance,
and overfitting [14], [34].



2) Data Outliers: Data outliers (a.k.a., “bad data” [19])
refer to the observations that deviate significantly from others.
This data quality issue, caused by measurement variability or
error, is a common issue in power systems [21]. If not handled
properly, data outliers can severely degrade the performance
of the resulting DPFL models [43].

3) Data Noise: Measurements from PMU [22] and SCADA
[23] systems are inevitably contaminated with noise [7], [18].
Noise will undoubtedly harm the training process, leading to
problematic DPFL models [18]. Note that repeated training
cannot always eliminate the impact of noise, particularly when
the noise does not have a non-zero mean.

4) Temporal Correlation in Data: The measurements of
power flows are, in fact, time series data [44]. For time series
data, realizations closer in time have higher correlations. In
other words, the observations of a power system within a time
window are not independent and not identically distributed
(i.i.d) — this violates the prerequisites of many standard data-
training algorithms. Dealing with the temporal correlation
significantly complicates the data-driven linearization process.

5) Asynchronous Data: Power flow measurements arrive
asynchronously and dynamically vary over time. Consequently,
it is challenging to find the most suitable training dataset
that ideally reflects the status of interest, especially when the
operating point changes frequently. In addition, the obtained
DPFL model should be continuously updated based on the
latest data available [6]. Achieving an efficient but also accurate
update for DPFL models is therefore challenging.

B. System-related Challenges

1) Inherent Nonlinearity: While the AC power flow models
for many systems indeed show certain linearity according to
existing studies, high nonlinearity has been observed even in
small-scale systems [1]. It seems impossible to use a linearized
hyperplane to match a highly curved hypersurface accurately.
Hence, a challenging question is how to ensure the accuracy
of DPFL when the target system is highly nonlinear.

2) Incorporation of Physical Knowledge: In order to im-
prove the performance of data-driven models, it is possible
to incorporate accessible physical knowledge of the system
into the data-driven training process. Although according to
[7], [28], [29], the integration of partial physical knowledge
seems to promote the accuracy of the DPFL model, the level
of the added benefit is debatable because some other studies
claim that physical knowledge is not of added value for the
model accuracy as long as the training data are sufficient
[1], [30]. Furthermore, the lack of a systemic approach to
integrating physical knowledge additionally hinders leveraging
this additional information.

3) Grid Topology Variation: Lines in a power grid may
switch quite often [6], especially in the distribution grid [31].
Accordingly, the measurements within a time window might
correspond to different topologies rather than the topology of
interest. Differentiating between data belonging to different
topologies is generally a difficult task, especially when topology
information is unavailable.

4) Bus Type Variation: Bus-type changes are not uncommon
in power flow calculations, e.g., some PV buses must transform
into PQ buses due to their reactive power output limits [32].
Such variations, however, might render the obtained DPFL
model invalid. This is because the DPFL model is usually
trained according to a fixed assignment of known/unknown
variables. Yet, bus-type changes will alter the assignment

of known/unknown variables. As a result, the DPFL model
obtained previously is not applicable any more.

5) Limited Observability: Not all parts of the power system
are well-observed [15], [21], [27]. E.g., only the measurements
at substations and end users are obtainable in some distribution
grids [21]. When only part of a system is being monitored,
building a DPFL model of the whole system without the
complete set of measurements of all buses is challenging.

III. METHODOLOGY

Existing DPFL methods, including regression algorithms
and tailored algorithms, address part of the aforementioned
challenges. In the following, we use the term “independent
variable” to denote the known quantities in power flow
calculations while using “dependent variable” to represent the
unknown quantities (i.e., the power flow calculation results).

A. Regression Methods
To date, regression methods used in DPFL studies in-

clude least squares regression, partial least squares regression,
ridge regression, support vector regression, and their variants.
Bayesian regression has been tried only in [6] but concluded
to be unsatisfying. Hence, this regression method is excluded
from this paper.

1) Least Squares and Its Variants: Among the least squares
regression approaches, the ordinary least squares method is
most frequently used and has been adopted in a variety of
DPFL studies [3], [11], [21], [27], [33], [34]. The ordinary
least squares model is an unconstrained programming model
that aims to minimize the sum of squared residuals. Notably,
the solution, i.e., the estimation of the coefficients in the target
DPFL model, can be explicitly expressed using the inverse of
the Gramian matrix of the dataset [21]. However, the ordinary
least squares method suffers from multiple drawbacks, which
we list below. In this discussion, we also provide solutions that
have been proposed in the literature.
• Data Multicollinearity: In the ordinary least squares method,

the training dataset of the independent variables must be
full column rank [27]. In other words, the dataset must not
exhibit multicollinearity. This condition, however, is generally
not satisfied for electrical measurements, as explained in
Section II-A1. Correspondingly, the Gramian matrix of the
dataset is usually non-invertible, and therefore, the solution
of the ordinary least squares is unattainable either. To address
this issue, two ideas have been leveraged in DPFL studies.
The first one is to compute the inverse of the singular
Gramian matrix not directly but using the Moore–Penrose
inverse [14], complete orthogonal decomposition [1], [35], or
singular value decomposition [27], thus yielding three variant
approaches of the least squares. The second idea is based on
removing the correlation within the dataset by using Principal
component analysis [36]. Note that all the variant approaches
aforementioned have closed-form solutions.

• Data Outliers: The ordinary least squares method is sensitive
to data outliers. The main reason is that the squared residual
used in the objective function highly emphasizes the observa-
tions with large residuals, i.e., outliers. The training process is
thus dominated by these outliers, degrading the performance
of the ordinary least squares accordingly. To handle this
problem, the Huber loss function has been introduced to
the ordinary least squares model in the DPFL analysis [5],
[25]. By replacing the squared residual of the outlier with
its absolute residual, the Huber loss function weakens the
impact of bad data. The resulting programming model can be



transformed into an equivalent convex problem and therefore
solved efficiently [25], [45].

• Data Noise: The ordinary least squares method implicitly
assumes that only the observations of the dependent variables
are noisy. However, the observations of the independent
variables are also measured data, which contain noise as
well. To avoid this strong assumption, the total least squares
algorithm has been adopted in [7], such that the noises from
different measurement devices are weighted unequally. The
resulting problem can then be solved by converting the original
model into several approximated linearly constrained quadratic
optimization problems [7].

• Temporal Correlation: The ordinary least squares method
can generate the best linear unbiased estimation only when the
measurements have homoskedasticity and no autocorrelation.
That is, the observations for training must be i.i.d. This
condition might not hold in practice, as discussed in Section
II-A4. To overcome this issue, the generalized least squares
method has been used in [24]. The potential correlation
between data points is taken into account via the conditional
variance-covariance matrix of the residuals; this matrix is
obtained empirically [24]. Note that the generalized least
squares method also has a closed-form solution.

• Inherent Nonlinearity: The ordinary least squares algorithm
can only generate a single, global linear power flow model.
This model might not be valid for a wide range of different
operating modes. The power flow model under various
operating points is a hypersurface, which often cannot be
approximated by a unified linear hyperplane. To solve this
issue, clustering algorithms such as K-means and Gaussian
mixture model are integrated into the ordinary least squares
model [37], i.e., carrying out the ordinary least squares fitting
for each clustered sub-dataset. The resulting clustering-based
least squares method therefore generates a piecewise linear
model, which can better capture the nonlinearity of power
flows [37].
2) Partial Least Squares and Its Variants: Owing to the

ability to deal with multicollinearity, partial least squares
approaches are widespread in DPFL studies. Similar to the
principal-component-analysis-based least squares method, the
ordinary partial least squares method also attempts to eliminate
the correlation in the ill-conditioned dataset [6], [11], [38]. To
this end, it projects the datasets of both dependent and inde-
pendent variables onto lower-dimensional spaces constituted
by their orthogonal score vectors. Since the resulting vectors
are uncorrelated, the collinear situation has been removed.
The most classic method is the nonlinear iterative partial
least squares (NIPALS) method proposed in [46], which
has been used in several DPFL studies such as [6], [26].
Various improvements toward this approach have been made
subsequently and leveraged in DPFL studies, aiming to handle
the following issues:
• Computational Burden: The NIPALS method suffers from

a high computational burden. To speed up the computation of
NIPALS and meanwhile lower its memory requirements, [47]
presents the SIMPLS algorithm, which has been applied in
[38] in the context of DPFL. Note that the SIMPLS approach,
as one of the most commonly used algorithms in partial least
squares analysis, is already available in commercial software
such as MATLAB (i.e., the built-in function plsregress[·]).

• Data Outliers: While the SIMPLS approach enjoys high
computational efficiency, it is sensitive to bad data. To deal
with data outliers, a robust version of the SIMPLS method

has been developed in [48]; the resulting robust SIMPLS
(RSIMPLS) is subsequently used in [33] to fit linear power
flow models.

• Asynchronous Data: Neither SIMPLS nor RSIMPLS can
update the DPFL model incrementally — they have to retrain
the model to account for new data, which is burdensome.
To continually and efficiently update the DPFL model as
new observations arrive, a recursive partial least squares
approach has been proposed in [26]. In this approach, the
matrix consisting of previous observations is equivalently
replaced with a decomposed matrix with much fewer rows,
thereby reducing the corresponding calculation time. The
above substitution process is recursive such that new data can
be integrated as they emerge.

3) Ridge Regression and Its Variants: The ridge regression
approaches can also address the multicollinearity issue, thereby
being broadly used in DPFL studies as well. Different from
the partial least squares methods, the ordinary ridge regression
algorithm directly tunes the singular matrix to enable its
invertibility [31]. The tuning is achieved by adding the
Tikhonov–Phillips regularization factor [18] to the diagonal
elements of the singular matrix [31]. It is noteworthy that
the regularization factor inevitably injects bias into the fitting
process. The tuning of this factor is therefore crucial and should
be carried out via systematic tuning approaches [15], [18], [36],
[49], e.g., using the ridge trace method [18]. The ordinary ridge
regression method has also been improved in multiple aspects
in DPFL studies, attempting to address the following:
• Asynchronous Data: The ordinary ridge regression approach

treats all historical observations equally. However, as men-
tioned in Section II-A5, historical observations are measured
at different time steps. They possibly correspond to different
operating modes of the system rather than the operating
point of interest. To distinguish the measurements, a locally
weighted ridge regression approach is proposed in [18]. This
approach only focuses on the power flow model around a
specific operating point. To this end, this method places a
higher emphasis on the data point closer to the operating
point of concern. The corresponding weight matrix is further
integrated into the model of the ridge regression method. The
solution to the resulting model can be explicitly expressed as
demonstrated in [18].

• Inherent Nonlinearity: Similar to the ordinary least squares
approach, the ordinary ridge regression approach can only
build a single, global DPFL model. To better capture the
nonlinearity of the original power flow model, a clustering-
based ridge regression method has been developed in [15],
which can establish a piecewise DPFL model. The clustering
algorithm used in [15] is the K-plane clustering method. It
should be emphasized that different from the clustering-based
least squares method mentioned in Section III-A1, in the
clustering-based ridge regression method, the regression is
embedded into each iteration of the clustering procedure, i.e.,
the solution is found iteratively [15].
4) Support Vector Regression and Its Variants: It is well-

known that support vector regression approaches can overcome
bad data and multicollinearity issues. They are therefore
utilized in DPFL studies as well. Compared to the regression
approaches reviewed above, the ordinary support vector
regression algorithm includes two main differences [11], [39].
First, this algorithm replaces all the squared residual terms in
the objective function with the absolute residuals. Accordingly,
the objective is less sensitive to data outliers, as explained



in Section III-A1. Second, by leveraging the error-insensitive
function, it only takes the absolute residuals greater than a
preset threshold into account. The other residuals, as well as
the corresponding data points, are removed from the training
process. The above two changes significantly relax the emphasis
on the large residuals, thereby rendering the ordinary support
vector regression approach more robust to data outliers [21],
[39], [40]. The programming model derived from this approach
is typically solved by the sequential minimal optimization
algorithm [50]. The support vector regression approach can be
further generalized to handle the following issue:
• Inherent Nonlinearity: To better manage the inherent

nonlinearity of the original power flow model, projecting
variables into other spaces can resolve or reduce this issue,
as in a new space, the projected variables might enjoy
better linearity among them. It is possible, however, that
the dimension of the new space is unacceptably large due
to the permutation of numerous variables in power systems.
In that case, the calculation over the new space could be
unacceptably burdensome as well. To solve this issue, the
kernel-based support vector regression method has been
developed and subsequently used in DPFL analysis [21], [40].
In this approach, the projection of variables is carried out using
kernel functions selected from the reproducing Hilbert kernel
space. These particular functions guarantee that the high-
dimensional calculation, e.g., the inner product computation,
can be equivalently achieved via low-dimensional, low-cost
calculation [21], [40]. As a result, the model of the kernel-
based support vector regression can still be solved using the
sequential minimal optimization algorithm [51]. Note that the
DPFL model derived from this approach is no longer a linear
model of the original dependent and independent variables,
but rather a linear model of the variables after projection.

B. Tailored Methods

The tailored approaches are derived from adding or modify-
ing the objectives/constraints used in the regression algorithms.
These adaptations can be generally applied to various regression
approaches. According to the type of the programming model
used in the method, existing tailored DPFL algorithms can be
divided into the following three categories:

1) Linearly Constrained Programming: The goal of the
linearly constrained programming approaches is to integrate
accessible physical knowledge into the data-driven training
process. The integration is achieved by introducing addi-
tional constraints into the regression models [7], [30]. These
constraints, i.e., the (i) bound constraint [30], (ii) structure
constraint [7], and (iii) coupling constraint [30], attempt to
enforce physical restrictions on the estimation of the coefficients
in the target DPFL model.
• Bound Constraint: In the bound constraint, the upper/lower

limits of the coefficients are derived from the first-order Taylor
series expansion of the AC power flow model. The expansion
points of the Taylor approximations are used as the boundary
operational conditions of the target system. Accordingly, the
coefficients obtained from the Taylor linear approximations
are considered the physical limits [28], [30].

• Structure Constraint: Since coefficients obtained from
DPFL and Taylor approximations share a certain similarity,
the coefficient structure derived from the Taylor expansion
can thus guide the estimation of the DPFL coefficients.
The coefficients derived from the Taylor approximation
constitute the well-known Jacobian matrix. Under some mild

assumptions, the Jacobian matrix is symmetric; furthermore,
parts of the Jacobian matrix are diagonal. These properties
can be interpreted as structure constraints (a.k.a., Jacobian-
matrix-guided constraints) to restrict the optimization of the
coefficients in the DPFL model [7].

• Coupling Constraint: According to the AC power flow model,
some coefficients in the DPFL model should be highly related.
E.g., in the model of a line flow, the voltage angles only appear
in the form of an angle difference, i.e., the angle of the “from”
bus minus that of the “to” bus. It can therefore be inferred
that the coefficients of these two angles in the DPFL model
should be opposites. This can be captured by the coupling
constraints of specific DPFL coefficients [30].
Note that the above three types of constraints are all

linear constraints. Adding them to regression models will not
deteriorate their solvability.

2) Chance-constrained Programming: Tuning the hyper-
parameters in support vector regression approaches is often
challenging [41]. Hence, the chance-constrained programming
method proposed in [41] aims to remove the hyperparameter
aforementioned. To this end, this method replaces the tolerance
of residuals (where the hyperparameter derives from) in the
support vector regression model with multiple single chance
constraints. The resulting programming model is then converted
into a mixed-integer linear programming problem via the classic
big-M method. The converted model can be solved efficiently
with the help of commercial solvers such as GUROBI or
CPLEX.

3) Distributionally Robust Chance-constrained Program-
ming: The DPFL model is generally obtained by minimizing
the sum of residuals. Hence, the obtained model is optimal
only in an average sense. That is, this model might still yield
notable worst-case errors in some other cases. In response
to this issue, [42] introduces distributionally robust chance
constraints (DRCCs) to explicitly restrict the worst-case errors
of the target DPFL model. Depending on the type of the
distribution ambiguity set, the DRCC-based model can either
be equivalently converted into a semi-definite programming
model [52], [53] and solved subsequently by MOSEK [42], or
be equivalently converted into a traditional chance-constrained
model [54] and then solved by GUROBI [42].

IV. OPEN QUESTION

The DPFL algorithms reviewed above address many chal-
lenges discussed in the previous section. However, numerous
open problems still exist, suggesting various future research
directions, as elaborated in this section.

A. Inherent Nonlinearity
• Linearity Pre-evaluation: Directly establishing a DPFL

model of a system with low linearity may lead to a noticeable
approximation error. It is thus crucial to be able to evaluate
the degree of linearity of the target system beforehand. The
pre-evaluation result will guide the subsequent choice of the
DPFL method. Note that the degree of nonlinearity does
not necessarily increase with the scale of the system [1];
see the numerical results in [14] for example. That is, the
system scale is not a valid indicator of nonlinearity. Designing
a computational-friendly evaluation method or an easily-
accessible indicator for the degree of linearity, therefore,
deserves further research.

• Coordinate Transformation: To deal with nonlinearity, many
DPFL approaches employ coordinate transformations for



variables, i.e., projecting original variables to new spaces.
The transformation means include the kernel function [21],
[40], as reviewed previously, and some other classic manners,
such as voltage squaring [15], [27], [30], [31], [39], [41],
voltage-angle coupling [21], [31], [40], and dimension lifting
[14]. Yet, it remains unclear which method performs the best.
More importantly, there is currently no systematic approach to
identify or design a better coordinate transformation method.

• Applicability: Generally, the DPFL model resulting from a
coordinate transformation is not well suited for optimization or
control [5]. This is because the obtained model is no longer
a linear function of original variables but of transformed
variables with limited or no physical meaning. Similarly,
the piecewise models derived from clustering-based DPFL
approaches are not well suited for practical applications as
well, since these models introduce integer decision variables
into optimization or control. How to systematically find a
better compromise between model accuracy and applicability
is an open but fundamental question.

B. Physical Knowledge

• Access to Information: DPFL approaches have adopted
different types of physical knowledge, including the boundary
operating point [7], topology [30], [41], line admittance [3],
[7], [38], structure of the original power flow model [3],
[27], [38], etc. The question, however, of how easily such
information can be accessed in practice arises. Given that
using physical knowledge is, to a certain degree, against
the motivation of data-driven approaches, the above question
should be clarified in future studies.

• Clarification on Necessity: As mentioned earlier, it remains
unclear whether integrating physical knowledge can reliably
improve model accuracy, especially when there are sufficient
training data available. Although [1], [30] observe that the
extra benefit brought by physical knowledge decreases with
the increase of the training data size, each study has only
verified one type of knowledge using one specific approach for
integration. Sophisticated evaluations regarding different types
of physical knowledge, diverse integration approaches, and
various data sizes are still needed to gain deeper insights into
the added value of integrating physical knowledge. Certainly,
developing a general integration approach for various types
of physical knowledge will also benefit the above exploration.

• Effectiveness Evaluation: While different types of physical
information are utilized in DPFL approaches already, which
kind of knowledge provides the most considerable improve-
ment in model accuracy is still unclear. It is thus necessary
to develop an evaluation method to measure the usefulness
of various categories of physical knowledge.

C. Grid Topology Variation

• Theoretical Guarantees: So far, topological variations are
handled in various but rather heuristic ways. E.g, (i) topology
enumeration [27], i.e., establishing DPFL model for each
possible topology, (ii) topology identification [31], i.e., as-
suming the highly correlated measurements are from the
same topology [55], and (iii) forgetting factor [5], [25]–
[27], i.e., weighting recent measurements heavier than the
previous ones. Though these practical, heuristic strategies
might apply to some cases, their validity is compromised
either by the increase in computational burden due to the
combinatorial nature of enumerating topologies, or by the
lack of a theoretical guarantees. It is thus important to design

a better solution backed by a theoretical basis in light of the
frequent topological variations in reality.

D. Bus Type Variation
• Reliable Solution: Reference [6] proposes a scheme to

handle the bus-type changes by bundling known and unknown
variables and assigning them elaborately to both sides of
the target linear model. While requiring no retraining after
bus-type changes, this scheme might result in very large
linearization errors. The reason lies in that an additional
inverse calculation is required when employing this strategy,
whereas the corresponding matrix, comprised of the estimated
coefficients, sometimes is near-singular. Note that the invert-
ibility of this matrix has not been theoretically guaranteed by
[6] either. It is hence imperative to find a reliable solution to
the issue of bus-type variation in the future.

E. Limited Observability
• Finding a Solution: So far, existing DPFL approaches can

only build a truncated linear power flow model given that not
all variables in the system are measured [15], [21], [40]. Note
that the situation with zero-power-injected buses is also a
special case of the limited observability issue — while these
buses are well observed, their measurements, i.e., the zero
values, must be removed from the training dataset, and the
corresponding variables have to be excluded from the DPFL
model as well. How to build a DPFL model for the whole
system with only limited observations is still an open question.
Finding a solution should be the first step in future studies.

F. Temporal Correlation
• Correlation Calculation: As discussed in Section III-A1, the

generalized least squares method has been adopted in DPFL
studies to take into account the correlation among time series
measurements. The key to using this method lies in knowing
the correlation among observations beforehand. Note that this
correlation refers to the conditional variance-covariance matrix
of the residuals [24]. The ground-truth value of this correlation
matrix, however, is generally unknown and challenging to
compute. This is because residuals are training results instead
of measurements. The correlation matrix computed from the
training results can hardly be considered true if the actual
correlation has not been incorporated into the training process.
As a result, a method to reliably compute the correlation
matrix of the residuals is required.

G. Asynchronous Data
• Sample Selection: As mentioned before, the training dataset

should change dynamically with time as new operating modes
continually emerge [37]. Simply weighting forgetting factors
to measurements could be imprecise. How to dynamically,
automatically, and continually identify which samples to keep
for the current training, particularly when the operating point
changes frequently, should be but has not been answered
sufficiently up to now.

V. CONCLUSION

This paper provides an overview of existing DPFL studies.
The current obstacles faced by DPFL methods and the latest
developments in the corresponding methodologies are both
outlined and discussed. Meanwhile, this paper proposes a
variety of research directions for future DPFL studies. Overall,
DPFL is an emerging and promising research topic. It provides
an enormous opportunity to resolve the accuracy bottleneck of
classic power flow linearization methods.
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