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Preface

A recent study1 concluded that 56% of the maintenance costs for the Swiss civil engineering infrastruc-
ture are directly related to corrosion damage, summing up to 411 Mio. Swiss Francs spent annually on
average. The financial impact of corrosion is thus in the same range as that caused by natural hazards
(about CHF 300 Mio./yr.2) or fire incidents (about CHF 310 Mio./yr.3). Moreover, the effective re-
lated costs may even be much higher since the economic and environmental costs (for traffic jams, CO2
emissions, etc.) are not included in the figures above.

One of the main reasons for the high costs is the lack of knowledge regarding the assessment of
reinforced concrete structures affected by corrosion: Whereas the prevention and detection of corrosion,
as well as possible repair strategies, are an integral part of engineering education and practice, little is
known about the effects of corrosion damage on the structural behaviour. Consequently, no strategies
exist today to assess structural safety in case of corrosion, and structures are retrofitted or even replaced
as soon as corrosion damage is detected. This preventive repair and replacement – often much earlier
than initially planned in the structure’s life cycle – without clarifying its necessity and benefits by a
previous structural analysis is neither sustainable nor cost-effective.

The results of the present research project indicate that existing models tend to significantly under-
estimate the load-carrying and deformation capacity of locally corroded structures: Beneficial effects
caused by the triaxial stress state at the corrosion pits and the corrosion damage distribution among
the reinforcing bars were found to partly compensate for the negative influence of the reinforcing bars’
cross-section loss. Although these effects are not yet fully understood today, they imply that reinforced
concrete structures affected by local corrosion can be kept in service (without retrofitting) longer than it
is currently assumed. This finding is a milestone since maximising the service life of our infrastructure
is the most effective strategy to reduce its costs and carbon footprint.

This thesis aims to take a first step towards this goal by exploring the identified beneficial effects and
describing the underlying mechanisms on a sound mechanical basis. However, despite the promising
results of the experimental campaigns and theoretical investigations, more research is needed to fully
understand the load-bearing behaviour of locally corroded structures, and to elaborate corresponding
assessment guidelines. Nevertheless, the tremendous impact of prolonging the service life of affected
structures on their sustainability and maintenance costs compensates multifold for the effort spent on
additional research.

Zurich, January 2023 Severin Haefliger

1Yilmaz, D. and Angst, U., ‘Korrosionsbedingte Kosten an Ingenieurbauwerken im Schweizer Strassennetz,’ Beton- und
Stahlbetonbau, vol. 115, no. 6, pp. 448-458, 2020. DOI: 10.1002/best.202000004.

2Swiss Federal Office for the Environment, https://www.bafu.admin.ch/bafu/en/home/topics/natural-hazards/
in-brief.html (31.1.2023)

3Swiss Fire Prevention Advisory Service, https://www.bfb-cipi.ch/ueber-bfb/statistiken (31.1.2023)
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Summary

A growing number of ageing structures is affected by pitting corrosion due to the ingress of chlorides or
structural defects such as honeycombs. The resulting local damage reduces their load-carrying capacity
and – even more pronouncedly – their deformation capacity due to the corresponding strain localisation.
The latter is particularly critical for statically indeterminate structures whose structural safety relies on
plastic load redistributions or for structures whose main loading is deformation-dependent, such as the
earth pressure in the case of retaining walls. In fact, many design rules in current codes are based on the
lower bound theorem of the plasticity theory (though often implicitly, e. g. by neglecting initial internal
or external restraint stresses), which requires a sufficient deformation capacity as commonly available in
uncorroded elements. These rules are, however, no longer applicable to locally corroded structures unless
their deformation capacity is carefully assessed. Unfortunately, and despite much research conducted
over the past decades, no mechanically consistent, generally applicable assessment strategies in case of
local corrosion exist. This thesis addresses this knowledge gap by investigating the influence of local
corrosion on the load-deformation behaviour of reinforced concrete structures, focusing on the practical
case of corroding cantilever retaining walls.

A comprehensive series of tensile tests on artificially damaged bare reinforcing bars revealed the in-
fluences of (i) strain rate, (ii) varying microstructural layers over cross-section, and (iii) the pit geometry
on their load-deformation behaviour. Whereas the varying strain rate (i) along the bar axis tends to in-
crease the tensile strength at the corrosion pit, it is potentially reduced for increasing cross-section loss in
modern reinforcing bars exhibiting a varying microstructure (ii) over the cross-section, as it is character-
istic for quenched and self-tempered (“Tempcore”) reinforcing bars. Depending on the pit geometry (iii),
the apparent uniaxial tensile strength and the deformation capacity in the pit and in its vicinity increase
due to a triaxial stress state. This effect counteracts strain localisation and leads to a significantly higher
deformation capacity of affected bars than assumed by common strain localisation models.

A series of large-scale tests on cantilever retaining wall segments with artificially damaged reinforcing
bars confirmed a pronounced influence of the effective corrosion distribution among the reinforcing bars,
as anticipated based on a preliminary theoretical analysis: the load-carrying and deformation capacity of
structures containing many slightly corroded bars differs significantly from that of structures with only a
few but severely corroded bars, even if the total cross-section loss is equal in both cases. Hence, merely
indicating the mean cross-section loss is inappropriate to conclude on the load-deformation behaviour of
a structure. Two hybrid tests, where the corrosion damage was increased at simultaneously decreasing
load simulating the earth pressure, revealed that the deformation increase caused by an increasing cross-
section loss is very limited even for considerable damage (approximately 1 mrad rotation for 40% cross-
section loss). Deformations might notably increase only very close to failure, which challenges the
successful application of monitoring systems relying on deformation measurements.

Finally, a mechanically consistent model enabling the reliable assessment of the structural safety
and the load-deformation behaviour of locally corroded reinforced concrete structures was developed:
the Corroded Tension Chord Model. In its basic version, this model combines the effects of tension
stiffening and strain localisation. Based on the experimental observations, it was enhanced to account
for the effects of a triaxial stress state at the corrosion pit, considering axisymmetric damage. The model
predictions of the experimental results are very promising, with the comparison indicating an additional
softening effect – exceeding that of the triaxial axisymmetric stress state – at the corrosion pit, probably
caused by superimposed bending stresses due to unilateral corrosion. The deformation capacity of the
specimens was thus clearly less impaired than predicted by established strain localisation models.
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Zusammenfassung

Eine zunehmende Anzahl älterer Bauwerke ist von Lochfrasskorrosion betroffen, sei es durch Chlorid-
verseuchung oder infolge einer schadhaften Bewehrungsüberdeckung. Diese lokale Schädigung reduziert
den Tragwiderstands und insbesondere das Verformungsvermögens infolge einer Verformungslokalisie-
rung. Letzteres ist primär relevant bei statisch unbestimmten Tragwerken, deren Tragwiderstand plasti-
sche Lastumlagerungen voraussetzt, wie auch bei Tragwerken, deren Einwirkung von ihrer Verfomung
abhängt. Tatsächlich beruhen viele Bemessungs- und Überprüfungsmethoden auf dem unteren Grenz-
wertsatz der Plastizitätstheorie, was ein ausreichendes Verformungsvermögen voraussetzt (wie es bei in-
takten Tragwerken in der Regel auch vorhanden ist). Diese Methoden können daher nicht unbesehen auf
lokal korrodierte Tragwerke angewendet werden, vielmehr ist ein ausreichendes Verformungsvermögen
explizit nachzuweisen. Trotz intensiver Forschung existieren jedoch heute keine mechanisch konsten-
ten, allgemein anwendbaren Methoden für die Tragsicherheitsüberprüfung der von Lochfrasskorrosion
betroffenen Bauwerke. Die vorliegende Arbeit zielt darauf ab, diese Wissenslücke zu schliessen. Sie un-
tersucht dazu den Einfluss lokaler Korrosion auf das Last-Verformungsverhalten betroffener Tragwerke,
mit Schwerpunkt auf dem praktischen Anwendungsfall lokal korrodierender Winkelstützmauern.

Die Resultate einer umfassenden Serie von Zugversuchen an künstlich geschädigten Bewehrungs-
stäben zeigten den Einfluss (i) der Dehungsgeschwindigkeit, (ii) der unterschiedlichen Mikrostruktur
über den Stabquerschnitt und (iii) der Schädigungsgeometrie auf. Die über die Stablänge variierende
Dehnungsgeschwindigkeit (i) führt zu einer leichten Erhöhung der Zugfestigkeit im geschädigten Be-
reich, wohingegen moderne Bewehrungsstäbe mit unterschiedlicher Mikrostruktur über den Querschnitt
(ii) mit zunehmendem Querschnittsverlust überproportional an Zugfestigkeit einbüssen. Je nach Schä-
digungsgeometrie (iii) erhöht ein dreiachsiger Spannungszustand die einachsige Zugfestigkeit und das
Verformungsvermögen im Bereich der Schädigungsstelle. Diese Effekte wirken einer Verformungsloka-
lisierung entgegen, weshalb Modelle, welche alleinig auf der Verformungslokalisierung aufbauen, das
Verformungsvermögen lokal korrodierender Stäbe typischerweise stark unterschätzen.

Grossmassstäbliche Versuche an Winkelstützmauersegmenten bestätigten den deutlichen Einfluss
der Verteilung des Korrosionsschadens über die verschiedenen Bewehrungsstäbe, wie er aufgrund ei-
ner theoretischen Vorstudie vermutet wurde. So unterscheidet sich das Last-Verformungsverhalten von
Versuchskörpern mit vielen leicht korrodierten Stäben stark von denjenigen mit wenigen, stark korro-
dierten Stäben, selbst bei identischem Gesamtquerschnittsverlust. Die alleinige Angabe eines mittleren
Querschnittsverlusts reicht somit nicht aus, um die Tragsicherheit eines Bauwerks zu beurteilen. Zwei
Hybridversuche, bei denen der Querschnittsverlust während des Versuchs gesteigert und gleichzeitig
die Einwirkung analog dem Erddruck reduziert wurde, zeigten, dass eine Verformungszunahme infol-
ge zunehmenden Querschnittsverlusts selbst bei beachtlichen Verlusten sehr gering ist (ca. 1 mrad bei
40% Querschnittsverlust). Die Verformungen würden voraussichtlich erst kurz vor Erreichen des Bruch-
zustands markant zunehmen, was eine grosse Herausforderung für eine erfolgreiche Bauwerksüberwa-
chung auf Grundlage von Verfomungsmessungen darstellt.

Schliesslich wurde mit dem korrodierten Zuggurtmodell ein mechanisch konsistentes Modell entwi-
ckelt, mit dem das Last-Verformungsverhalten von lokal korrodierenden Tragwerken zuverlässig beur-
teilt werden kann. In seiner ursprünglichen Version kombiniert das Modell den Einfluss der Zugverstei-
fung mit jenem der Verformungslokalisierung. Es wurde aufgrund des in den Versuchen beobachteten
Verhaltens weiterentwickelt, um den Einfluss dreidimensionaler Spannungen an der Korrosionsstelle zu
berücksichtigen. Die Resultate der Versuchsnachrechnungen sind sehr vielversprechend und weisen auf
die Existenz eines zusätzlichen Effekts hin, der die Dehnsteifigkeit des Stabs im Bereich der Korrosions-
stelle weiter verringert. Dieser Effekt ist wahrscheinlich auf Biegespannungen bei einseitig angreifender
Korrosion zurückzuführen. Insgesamt war die Abnahme des Verformungsvermögens damit deutlich ge-
ringer als von bisherigen, rein auf Verformungslokalisierung basierenden Modellen vorausgesagt.
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1 Introduction

This thesis presents the results of a research programme [73] on the implications of local reinforcement
corrosion on the load-deformation behaviour of reinforced concrete (RC) structures. The programme
focused on cantilever retaining walls as case study objects since a considerable number of these ageing
structures are affected by local corrosion. Nevertheless, the findings and developed models are applicable
to a wide range of structural elements.

The introduction presents the context of the thesis and illustrates the effects of local corrosion damage
on the load-carrying and deformation capacity of RC cantilever retaining walls. After an overview of the
current state of the art, the open research questions and the research objectives are summarised. Finally,
the thesis structure is outlined.

1.1 Context and motivation of the present study

1.1.1 Deterioration processes related to corrosion

Carbonation-induced and chloride-induced corrosion are the two main corrosion types occurring in
RC structures, besides atmospheric and stray-current-induced corrosion, and hydrogen-induced stress-
corrosion cracking [25]. They differ regarding the depassivation mechanism, the corrosion rate, and the
deterioration effects, i. e. the occurrence of uniform or local corrosion.

Carbonation-induced uniform corrosion results from the ingress of carbon dioxide into concrete
(mostly dissolved as carbon acid in water), reacting with the calcium hydroxide of the cement paste,
which thus reduces the alkalinity and leads to steel depassivation. Since this process occurs extensively,
corrosion initiates over a considerable length of the affected reinforcing bars. However, the corrosion
rate is usually low due to the randomly located anodes and cathodes along the bar, leading to a diameter
loss in the order of merely 0.01 mm/yr. However, the volume expansion of the corrosion products often
causes further damage by cracking and spalling of the concrete cover [25].

Chloride-induced local corrosion results from the ingress of chloride ions dissolved in water (origin-
ating, e. g. from deicing salt), which locally destroy the protective passive layer on the reinforcing bar in
the alkaline concrete. Once the corrosion process is initiated, a local macrocell forms, with the corrosion
pit acting as small anode and the neighbouring parts of the still passive reinforcing bar, as well as elec-
trically connected further reinforcement, as large cathode. The electrochemical process is stabilised by
the aggressive acidic environment present in the pit and the increasing alkalinity at the cathode, protect-
ing the neighbouring steel. The macrocell causes high corrosion and penetration rates of up to 1 mm/yr.
In contrast to carbonation-induced corrosion, the corrosion products are dissolved in the acidic solution
in the pit, which prevents cracking and spalling of the concrete cover. Therefore, often no deterioration
signs are visible on the concrete surface [25].

1.1.2 Effects of corrosion on structural safety

The structural safety of RC structures affected by uniform corrosion is mainly impaired by the spalling of
the concrete cover, often occurring excessively, and the accompanying bond reduction, which potentially
leads to a loss of reinforcement anchorage and a deterioration of the concrete compression zone. Bond
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reduction further compromises structural serviceability by reducing the stiffness of the structure. On the
other hand, the loss of the bar cross-sectional area is rather a secondary problem for this corrosion type
since it progresses very slowly (see Section 1.1.1).

In contrast, local corrosion primarily reduces structural safety by the rapidly increasing bar cross-
section loss over a short length, leading to pronounced corrosion pits. The reduced bar cross-sectional
area directly impairs the load-carrying capacity of RC structures, and the localised nature of the deteri-
oration reduces their deformation capacity due to strain localisation. Since the plastic deformations of
reinforcing steel are an order of magnitude larger than the elastic ones, the bar length over which plastic
deformations occur is decisive for the deformation capacity. The latter thus significantly decreases if the
bar cross-sectional area is reduced over a short length, particularly if plastic deformations only occur in
the damaged part, whereas the remaining bar merely deforms elastically.

1.1.3 Cantilever retaining walls affected by local corrosion

A pilot study conducted by the Swiss Federal Roads Office FEDRO [52] revealed that many RC canti-
lever retaining walls, built in the 1960s and 1970s along the motorways and railroads, are affected by
local corrosion damage of the main tensile reinforcement at the backside of the wall. The corrosion oc-
curs just above the construction joint between the footing and the wall and is presumably caused by the
presence of honeycombs as a result of poor concrete compaction and segregation at the time of construc-
tion. Hence, the reinforcement in this area has not been entirely passivated, but instead, a limited part
of its surface has been easily accessible to water and oxygen. This led to atmospheric-induced corrosion
and, since only the bars at the honeycomb were active (anode) and the remaining reinforcement in the
wall was passivated (cathode), the formation of macrocells. The large difference in the anodic and cath-
odic surface area caused a very high corrosion rate and a rapid loss of cross-sectional area, resulting in the
typical pitting usually observed for chloride-induced corrosion, despite the absence of chlorides. Among
all investigated bars in the pilot study, 24% exhibited corrosion damage with a mean cross-section loss of
37%, resulting in an overall cross-section loss of approximately 9% [52]. According to a subsequently
conducted study [138] reinvestigating the results of the pilot study, 42% of all assessed retaining walls
revealed corrosion damage. Hence, the mean number of affected bars in a corroding wall needed to be
adjusted to 0.24/0.42 = 57%, and the mean cross-section loss was corrected to 0.09/0.42 = 21%.

Retaining walls are mainly loaded by earth pressure, whose value depends on the deformation of
the structure. Following the recommendations of the Swiss Code SIA 162 (in vigour between 1956
and 1989) [144], retaining walls in Switzerland were designed to resist the active earth pressure at the
ultimate limit state, which implicitly assumes that the deformation capacity of the structure is sufficient
for the earth pressure to drop from pressure at rest to active pressure. This assumption needs to be
carefully assessed for corroding retaining walls since their deformation capacity is most likely reduced
(see Section 1.1.2). In the unfavourable case that the residual deformation capacity is insufficient for the
earth pressure to adopt the active pressure, the load acting on the retaining wall will typically exceed the
one assumed in design. In combination with the reduced load-carrying capacity due to the cross-section
loss and the fact that most retaining walls are segmented in their longitudinal direction, impeding global
load redistributions, this increases the risk of affected walls to fail in a brittle manner.

In addition to the considerable uncertainty regarding structural safety, the mentioned pilot study re-
vealed that corrosion detection is highly challenging for retaining walls. The thickness of the wall above
the footing, which is usually >0.5 m, impedes detecting the corroding reinforcement at the rear side of
the walls with conventional methods applied at the front side, such as half-cell potential mapping or
georadar measurements [52]. Therefore, even severe corrosion damage is likely to remain undetected
until failure unless much more cost- and time-intense inspection methods (e. g. excavating the backfill)
are applied.
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1.1.4 Motivation and focus of this thesis

Although the effects of corrosion on the load-deformation behaviour of RC structures have been invest-
igated for several decades, they are still not fully understood, and hence, no general assessment strategy
for affected structures exists today. Due to this lack of knowledge and driven by the intention to minimise
the risk of a potential failure, structures are usually retrofitted or even replaced soon after corrosion is
detected, which may considerably shorten their actual service life compared to the initially planned life
span. Given the many kilometres of retaining walls in Switzerland and other countries being potentially
affected by local corrosion, this leads to high economic costs and is all but sustainable, thus raising the
need for assessment methods potentially prolonging the service life of structures after corrosion initi-
ation. Moreover, alternative approaches are needed to detect the corrosion damage in retaining walls and
monitor their behaviour, for whose development the understanding of the load-deformation behaviour is
equally relevant.

This thesis focuses on the load-deformation behaviour of RC structures affected by local corrosion.
Building on the knowledge of previous studies, it aims to identify and explore the key effects of local
corrosion influencing the global structural behaviour and to develop consistent mechanical models for
these effects. The focus for the design of the experimental campaigns is kept on retaining walls, whereas
their findings and derived models should be applicable to other types of structural elements.

1.2 Overview of the state of the art and open research questions

The following section presents an overview of the recent findings in corrosion research and identifies
open research questions. It focuses on the effects of corrosion on bare reinforcing bars, bond between
corroded bars and concrete, and the behaviour of structural elements containing corroded reinforcement;
other subdomains in corrosion research, such as the corrosion of prestressing tendons and the corrosion-
related deterioration of the concrete compression zone as well as reinforcing bars in compression, are
neglected. At the end of the section, additional research questions relevant to the structural modelling of
corroded RC structures are formulated.

1.2.1 Load-deformation behaviour of corroded reinforcing bars

The effects of corrosion on the load-deformation behaviour of reinforcing bars have been investigated in
numerous studies, many of them comprising tension tests on naturally corroded and artificially damaged
reinforcing bars. In most studies, the reinforcing bars were cast in concrete and damaged artificially
by electrochemically induced corrosion prior to testing [4, 10, 15, 34, 46, 53, 83, 85, 151], and only
a few studies conducted experiments on mechanically damaged reinforcing bars [34, 46] and naturally
corroded bars extracted from old existing structures and structural elements [62, 122]. The corrosion
damage has mostly been characterised by the average cross-section loss determined from the bar mass
loss [4, 10, 15, 46, 53, 83, 85], and only a few studies indicated the actual (maximum) cross-section loss
[34, 62, 122]. One study [151] referred the measured data to the average and maximum cross-section
loss, emphasising a significant difference in the obtained results.

All studies concluded that corrosion impairs the load-carrying and deformation capacity of reinforcing
bars, outlining an approximately linear relationship between the cross-section loss and the reduction of
load-carrying capacity, and a disproportionate decrease in deformation capacity with respect to the cross-
section loss. The apparent material properties were mostly found to be unaltered, but some authors [34,
62, 84, 151] indicated a slight increase in tensile strength (i. e. peak load referred to the minimum cross-
sectional area), and one study [62] pointed out an altered steel stress-strain behaviour including a loss of
the yield plateau, yet without offering an explanation.

Few researchers investigated the potential influence of the pit geometry on the bar load-deformation
behaviour theoretically [54, 80] or experimentally [8, 58, 166]. They varied the pit depth, pit length, pit
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shape (e. g. unilateral, bilateral, axisymmetric), and the number of consecutive pits, reporting a significant
influence on the load-carrying and deformation capacity despite the equal residual cross-sectional areas
of some specimens. It was hypothesised that the effects could be related to the occurrence of a triaxial
stress state and local bending moments at the pit. These studies concluded that referring the measured
data to the average cross-section loss, e. g. by indicating the steel mass loss, is inadequate to characterise
the corrosion damage. A few studies [86, 102] aimed at characterising the pit geometry with three-
dimensional surface scans and extracting the effective cross-sectional area, second moment of inertia,
and eccentricity of the section centroid to the original bar axis. They pointed out a rather weak correlation
between the average cross-section loss (determined from the mass loss) and structural parameters such
as the minimum cross-sectional area or the minimum second moment of inertia.

Since the early 1990s [137], a considerable amount of the reinforcement in many countries has been
produced as hot-rolled, quenched and self-tempered (QST) reinforcing bars (so-called Tempcore® or
Thermex® bars), exhibiting a varying microstructure over the cross-section (highly ductile core of mod-
erate strength, high-strength outer annulus of moderate ductility). Such bars continuously alter their
apparent (mean) material characteristics with increasing corrosion-induced cross-section loss due to the
change in the relative portion of the respective microstructures to the entire cross-sectional area [11, 12,
55, 139].

In the context of local corrosion damage of bare reinforcing bars, the following research questions remain
open:

(i) The damage pattern resulting from electrochemically induced corrosion is rather associated with
(severe) uniform corrosion than local pitting corrosion: the reinforcing bars are damaged along
their entire length, which hardly represents the single corrosion pits typically observed, e. g. in
retaining walls. The quantification of the corrosion damage using the global mass loss is of limited
significance for local corrosion since no conclusions can be drawn regarding relevant parameters,
such as the residual minimum cross-sectional area. Thus, it is unclear whether the findings of these
studies apply to corroding reinforcing bars where pitting is the predominant corrosion type.

(ii) The few studies investigating the influence of the pit geometry pointed out that the load-deformation
behaviour of reinforcing bars with different pit shapes may vary considerably, despite equal re-
sidual cross-sectional area. Although acknowledged as highly relevant for pitting corrosion, the
effects and their potential reasons have scarcely been investigated, and only two studies followed
up on the problem theoretically using Finite Element analyses [54, 80].

(iii) The studies reporting an increasing tensile strength (observed for local and uniform corrosion) and
describing a different yield behaviour of the reinforcing bars indicate an influence of the corro-
sion damage on the apparent mechanical properties of the bar. An altered stress-strain behaviour,
including a loss of the yield plateau, can also be observed in the published data of other studies
(e. g. [8, 34, 51, 58, 83, 166]) but was hardly ever discussed. The mechanical reason for the altered
behaviour is unclear but most relevant for a realistic modelling of the strain localisation effect
occurring for local corrosion.

(iv) The stresses observed in the plastic strain range from quasi-static tensile tests on reinforcing bars,
including the apparent yield stress and tensile strength, depend on the applied (quasi-static) strain
rate, as already shown decades ago, e. g. by [95, 98]. The strain rate may vary considerably over
the length of a bar with a local cross-section loss due to the differing tensile stiffness. Regarding
the observed increased tensile strength (see Point (iii)), the differences in strain rate should be
considered. However, no experimental data of tensile tests on modern reinforcing bars applying
quasi-static strain rates is available.

(v) Today, a large amount of the reinforcement is produced as QST bars, which are thus also widely
used in experimental campaigns on corrosion. However, results from corrosion experiments con-
ducted on such bars without accounting for the effects of the different microstructures are incon-
clusive. Although their behaviour has been investigated by some studies [11, 12, 55, 139], no
simple mechanical model to account for the varying mechanical properties of the different micro-
structure layers is available.
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1.2.2 Implications of corrosion on bond between reinforcement and concrete

The influence of uniform corrosion on bond has previously been investigated mainly with pullout tests
on artificially corroded reinforcing bars [16, 104, 115, 149]; the results of the different test campaigns
are comprehensively summarised in [56]. The studies reported a moderate bond strength increase for
slight cross-section losses up to approximately 10% due to a volume expansion of the corrosion products
and the corresponding increase of transverse pressure. However, the bond strength decreases to approx-
imately half its initial value for a further increasing cross-section loss, mainly because of longitudinal
cracking and eventual spalling of the concrete cover triggered by the further increasing volume expan-
sion of the corrosion products. A lubricating effect of the corrosion product layer and the decreasing
rib height due to the corrosion damage are secondary reasons for the bond strength decrease [24, 26].
Based on the published experimental results, modelling approaches to capture the influence of uniform
corrosion on bond have been presented [24, 26, 37, 41].

Many of the tested pullout specimens were damaged by electrochemically-induced corrosion, often
by applying very high electric currents leading to high corrosion rates. One study [109] claimed that the
applied electric current influences the composition of the resulting corrosion products, which differ in
volume expansion. This could lead, e. g. to a more severe concrete spalling behaviour in experiments
(with high currents to accelerate corrosion) than observed for naturally corroded structural elements and
thus influence the results of the pullout tests.

In the case of local corrosion, bond is much less deteriorated since either no significant corrosion
products are formed (for chloride-induced corrosion, see Section 1.1.1) or no significant transverse pres-
sure emerges (for atmospheric corrosion in the case of honeycombs with large voids; additionally, the
products are likely to be washed out by water ingress). Hence, this thesis does not further analyse the
implications of uniform corrosion on bond.

1.2.3 Load-deformation behaviour of corroded structural concrete members

The residual load-deformation behaviour of structural concrete members containing corroded reinforce-
ment was investigated in numerous studies [5, 17, 35, 36, 103, 110, 131, 135, 150, 157]. Mainly flex-
ural members were tested, which had been damaged by accelerated electrochemically induced corrosion
prior to loading, accompanied by the typical longitudinal cracks along the reinforcing bars and partly by
spalling of the concrete cover. Two studies [35, 150] tested beams in bending, whose reinforcement was
damaged by natural chloride-induced corrosion. All studies reported a reduction in load-carrying and de-
formation capacity with increasing cross-section loss, similar to the findings for the bare reinforcing bars.
One study [135] pointed out a change in failure mode, i. e. from flexural failure in the uncorroded refer-
ence specimen to shear failure in the corroded specimen, which was attributed to the corrosion damage
of the shear reinforcement. The experiments conducted by Rebhan et al. [131] are of particular interest
here since they tested artificially corroded cantilever retaining wall segments. The reinforcing bars were
subjected to electrochemically induced corrosion over a short length (recess of 25 mm, approximately
20 cm above the construction joint), applying rather high currents, until a mass loss of 50% was reached.
The specimens were subsequently loaded with an out-of-plane shear force at the top.

In most cases, the cross-section loss was estimated by calculating the average mass loss from the
applied electric current using Faraday’s law and assuming a spatially uniformly distributed cross-section
loss. One study [103] underlined that the average mass loss might be inadequate for characterising the
corrosion damage and estimating the specimen’s load-carrying capacity since the latter is attributed to
the minimum residual bar cross-sectional area and its location in the beam. To estimate the cross-section
loss among the bar length, the specimens investigated in that study were x-rayed in various positions,
and the cross-section loss was determined from the pictures.

In the context of localised corrosion damage on RC structural elements, the following research questions
remain open:
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(vi) Corrosion was induced electrochemically in most experiments in RC members, leading to a cross-
section loss over an extensive length of the bars, longitudinal cracking, and sometimes spalling
of the concrete cover. This deterioration is rather associated with uniform corrosion than pitting
corrosion, where the cross-section loss occurs pointwise and often without cracking of concrete
and bond deterioration (see Section 1.1.1). As for the corroded bare reinforcing bars, the residual
minimum cross-sectional areas in the bars and their locations cannot be determined from the global
mass loss. It is thus unlikely that the findings obtained in these studies apply to RC members
affected by pitting corrosion, where the cross-section loss is spatially limited.

(vii) In the analysed experiments, all bars were affected by corrosion due to the applied deterioration
method. This damage pattern is rather unusual for local corrosion, where often only a part of the
parallel reinforcing bars is affected by corrosion. Consequently, little is known about the behaviour
of members containing parallel reinforcing bars with varying individual corrosion damage.

(viii) It is uncertain if the load-deformation curves obtained in experiments on specimens with con-
stant corrosion damage and monotonically increasing load apply to structures with a constant or
decreasing load (e. g. the earth pressure loading on retaining walls) and increasing corrosion dam-
age. Load-path-dependent effects occurring in reinforced concrete may influence the behaviour
since either the corroding bars or the entire structure is unloaded.

1.2.4 Further effects influencing corroded RC structures and their modelling

It is challenging to include the findings on the load-deformation behaviour of locally corroded bare
reinforcing bars in structural models describing the behaviour of RC members since local phenomena
need to be accurately captured on a superordinate structural level. Including the effects of local corrosion
in approaches of continuum mechanics (e. g. Finite Element (FE) models) is not straightforward due to
the localised nature of the problem, which raises questions regarding the adequate size of a representative
volume element (RVE). If the RVE size is chosen very small (e. g. if individual reinforcing bars – with
and without corroded sections – are modelled inside a concrete matrix), the computational costs to model
the behaviour of an entire structure are excessive. On the other hand, if the RVE is chosen in an adequate
size to model an entire structure, the locally different behaviour in the corroded section, especially the
strain localisation effect, has to be captured in the element formulation. Hence, the following research
question on how to include local effects in continuum mechanical models remains open:

(ix) Today, no model exists at the interface between the different structural levels (superordinate struc-
tural level and local reinforcement corrosion). However, such models would have a great potential
for analysing the influence of local corrosion on the load-deformation behaviour of structures and
structural elements at reasonable computational costs and without neglecting the governing effects.

In retaining walls, a lap splice is typically located above the construction joint enabling an efficient
construction process. The double amount of reinforcement stiffens the lowest part of the wall and thus
limits its deformation capacity [118, 154, 155]. Furthermore, experimental results indicate that the
discontinuous deformation distribution over the splice length favours larger cracks at the lap splice ends
[3, 154, 155]. From the literature review, the following research question emerges:

(x) While the load-carrying capacity of lap splices is well examined, their load-deformation behaviour
has been investigated very scarcely, and very few – mainly empirical – approaches exist to model
the behaviour [155]. In retaining walls, where the lap splice is located in the highest loaded region
potentially undergoing plastic deformations, its influence on the load-deformation behaviour of
the structure needs to be carefully assessed.
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1.3 Research objectives and delimitations

1.3 Research objectives and delimitations

As mentioned in Section 1.1.4, this thesis aims at a better understanding of the load-deformation be-
haviour of structures affected by local corrosion, exploring the underlying mechanical phenomena, and
finding potential modelling approaches with regard to their future application in the assessment of locally
corroded retaining walls. Based on the research question (RQ) elaborated in Section 1.2, the following
main research objectives are formulated:

• Investigation of the phenomena occurring for bare reinforcing bars containing local corrosion dam-
age and their influences on the bar load-deformation behaviour (RQ (i)). A special focus is put on
the effects of the varying strain rate (RQ (iv)), the different microstructure layers for QST bars (RQ
(v)), the pit geometry (RQ (ii)), and reasons for a potentially altered yield behaviour (RQ (iii)).

• Development of a mechanical model based on the established Tension Chord Model to describe
the load-deformation behaviour of structural elements affected by local reinforcement corrosion
(RQ (ix)).

• Development of mechanical models suitable to describe the load-deformation behaviour of subele-
ments located in retaining walls, such as lap splices (RQ (x)).

• Validation of the aforementioned models with large-scale experiments on cantilever retaining wall
segments containing locally damaged reinforcement under varying loading conditions (RQ (vi)),
especially focussing on the influence of a varying corrosion distribution among the reinforcing
bars (RQ (vii)) and the influence of a decreasing load at increasing corrosion damage (RQ (viii)).

The following delimitations are made regarding related research questions and research fields:

• The thesis focuses on local pitting corrosion of reinforcing bars. Uniform corrosion is not analysed.

• Corrosion-related effects reducing the bond stresses are not investigated.

• The investigation is limited to structural elements carrying tensile and moment loads, and the
corrosion of the respective tensile and flexural reinforcement. Effects related to corrosion of the
shear reinforcement are excluded.

• Corrosion initiation mechanisms and corrosion propagation over time are not analysed.

• Corrosion detection methods and suitable strategies to monitor corroding structures are not treated
in detail.

• As an application case, the bending behaviour of cantilever retaining walls is analysed, without
considering other types of retaining walls, such as gravity walls and anchored retaining walls. The
shear resistance of the cantilever retaining walls is assumed to be sufficient.

• The thesis assumes the simplest possible load-carrying mechanism for cantilever retaining walls.
Potential global load redistributions in the longitudinal (horizontal) direction are not analysed since
most retaining walls are segmented over short distances.

• The soil-structure interaction is merely investigated from the structure’s point of view. Modelling
approaches regarding the behaviour of the earth pressure are adopted from [125].

Figure 1.1 shows a schematic load-deformation curve of a retaining wall segment at increasing (mean)
cross-section loss ζm (bending moment at construction joint vs mean wall rotation, grey) along with
potential earth pressure load paths to illustrate their interaction. It is assumed – inspired by the results
of this study as well as previous experimental investigations – that the deformation capacity decreases
disproportionally with an increasing cross-section loss. On the right side, potential influences on the
load-carrying and deformation capacity discussed in Section 1.2 are illustrated, and arrows indicate how
these effects are linked. Some effects influence the structural behaviour in multiple ways, which is
represented by additional grey dotted arrows. The illustration does not claim to be complete but rather
aims to visualise the possible influences discussed in the thesis and serve as a map providing guidance to
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Fig. 1.1 – Schematic load-deformation behaviour of cantilever retaining wall segment for increasing cross-section
loss (grey) along with earth pressure load paths and potential effects influencing the behaviour.

the reader: it is included at the beginning of each chapter in a slightly adapted version, highlighting the
key aspects covered in the respective chapter.

1.4 Structure of thesis

Chapter 2 presents an enhancement of the established Tension Chord Model (TCM) to capture the
effects of a corrosion pit close to a crack on the load-deformation behaviour of a crack element. It forms
the basis to include the effects of local corrosion in higher-level structural models (RQ (ix)).

Chapter 3 analyses the effects of strain rate on the apparent mechanical properties of reinforcing bars.
It addresses the question of whether the varying strain rates in the corroded and uncorroded bar sections
occurring in experiments need to be considered (RQ (iv)).

Chapter 4 investigates the mechanical properties of the different microstructure layers over the cross-
section of a QST reinforcing bar and how they contribute to the composite bar. It presents a simple
modelling approach to estimate the residual mechanical properties for unilateral and axisymmetric cross-
section loss (RQ (v)).

Chapter 5 explores the occurrence of a triaxial stress state for different geometries of axisymmetric
corrosion pits. It addresses the altered yield behaviour of the bar at the pit and in its vicinity, studies the
influence regarding the peak load, and proposes a simplified modelling approach based on an in-depth
FE analysis (RQ (i)-(iii)).

Chapter 6 presents the results of large-scale experiments on cantilever retaining wall segments invest-
igating the influence of local corrosion on the load-deformation behaviour. It comprises the findings
of hybrid tests, where the corrosion damage was increased during the tests and the load was adapted
depending on the wall deflections to simulate a decreasing earth pressure (RQ (vi)-(viii)).

Chapter 7 applies the concept of the TCM to lap splices to examine their load-deformation behaviour.
It provides new insights into the load transfer between two reinforcing bars and its implications on the
deformation capacity (RQ (x)).

Chapter 8 combines the developed modelling approaches for localised corrosion with existing models
based on the TCM to analyse the results obtained in the experimental campaign presented in Chapter
6. It explores the load-carrying mechanisms of the specimens exhibiting different corrosion damage and
examines the influence of local phenomena on the global structural behaviour (RQ (i)-(iii), (vi)-(x)).

Finally, Chapter 9 summarises the main findings, draws final conclusions, and gives an outlook on future
research.

Note that Chapters 2-7 correspond to scientific publications, as indicated at the beginning of each
chapter along with the information on the contributions of the authors.
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2 Corroded Tension Chord Model:
Load-deformation behaviour of structures with
locally corroded reinforcement
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This chapter presents an enhancement of the established Tension Chord Model (TCM) to account for
a local cross-section loss of the reinforcing bar near the crack. The emerging Corroded Tension Chord
Model (CTCM) forms the starting point to analyse the load-deformation behaviour of locally corroded
reinforced concrete members and reveals the basic effects of cross-section loss and strain localisation,
with the latter depending on the varying distribution of the corrosion damage among the reinforcing bars.
The chapter corresponds to the published version of the following article:

Haefliger, S. & Kaufmann, W. ‘Corroded Tension Chord Model: Load-deformation behaviour of
structures with locally corroded reinforcement,’ fib Structural Concrete, vol. 23, no. 1, pp. 104-
120, 2022. doi: 10.1002/suco.202100165.

The lead author (Severin Haefliger) built up on the idea and first calculations of the second author (Walter
Kaufmann) of modelling the load-deformation behaviour of locally corroding tension chords with an
enhancement of the TCM, refined the model in the course of his doctoral studies, and conducted the
presented numerical analyses under the supervision of the second author.

Abstract

Localised corrosion may considerably impair the load-bearing and deformation capacity of reinforced
concrete structures. The Corroded Tension Chord Model CTCM allows investigating the related effects.
The model combines the effects of tension stiffening and strain localisation due to a local cross-section
loss to calculate the load-deformation behaviour of tension members and entire structural elements con-
taining locally corroded reinforcing bars on a sound mechanical basis. Based on simple equilibrium
considerations, the critical loss of cross-sectional area is introduced, beyond which most of a reinfor-
cing bar’s ductility or a structure’s deformation capacity, respectively, is lost. For conventional European
reinforcing steel, even small cross-section losses may be sufficient to impair ductility drastically. Illus-
trative calculations on structural elements with various spatial corrosion distributions but identical mean
cross-section loss reveal that the load-deformation behaviour strongly depends on the specific corrosion
parameters: Structures with few heavily corroded reinforcing bars seem to be less critical regarding
strength and deformation capacity than structures with many slightly corroded reinforcing bars.
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2 Corroded Tension Chord Model: Load-deformation behaviour of structures with locally corroded reinforcement

2.1 Introduction

Local and/or uniform corrosion due to, e. g. chloride ingress or carbonation affects many ageing rein-
forced concrete structures. Both deterioration mechanisms considerably reduce the load-carrying capa-
city of structures due to cross-section loss of reinforcement, bond degradation and concrete spalling.
Corrosion reduces the cross-sectional area of affected reinforcing bars, whereby the cross-section is lost
much faster for pitting than for uniform corrosion due to the formation of macro elements [25]. Various
studies have shown that the pit morphology can have a significant influence and, in particular, affect the
tensile strength disproportionately to the cross-section loss, i. e. reduce the ultimate stress due to a triaxial
stress state and local bending moments in the vicinity of the pit [8, 58, 80, 166]. Uniform corrosion due
to, e. g. carbonation causes corrosion products with a larger volume than the original reinforcing bar. This
volumetric expansion can lead to excessive cracking and spalling of the surrounding concrete, which may
reduce the concrete compression zone and strongly degrade bond, leading to the loss of reinforcement
anchorage.

Local pitting corrosion affects the load-carrying capacity of a structure and strongly reduces its de-
formation capacity, as was experimentally verified by several studies [8, 34, 39, 46]. This effect is mainly
caused by strain localisation due to cross-section loss. It is particularly relevant for statically indeterm-
inate structures requiring moment redistributions (e. g. multi-span continuous girders) or in the case of
deformation dependent loading (e. g. earth pressure action on cantilever retaining walls). The assump-
tion of a sufficient deformation capacity, which is a prerequisite to applying models based on the lower
bound theorem of plasticity theory, is therefore no longer valid, and the residual deformation capacity of
such structures needs to be specifically assessed. However, to the authors’ knowledge, sound mechanical
models to determine the load-deformation behaviour of structures affected by localised corrosion are
currently missing.

The present study addresses this knowledge gap by extending the established Tension Chord Model
TCM [114], briefly outlined in Section 2.3.1, by considering a crack element containing a reinforcing
bar with reduced cross-section, simulating corrosion-induced damage. The resulting Corroded Tension
Chord Model (CTCM), Section 2.3.2, enables calculating the load-deformation behaviour of single crack
elements with locally corroded reinforcement. By assembling several crack elements – with or without
damaged reinforcement – and applying common mechanical concepts, the CTCM allows to predict the
elastic and plastic load-deformation behaviour of entire structural elements. Thereby, the model provides
a sound mechanical basis to explain several relevant phenomena occurring in locally corroded structural
elements, such as, e. g. the substantial decrease in deformation capacity observed in experiments [103].
In contrast to other models as, e. g. finite element analyses, it is based on only a few analytical equations,
and can thus easily be extended and combined with various other modelling approaches.

The basic concepts and first results of the CTCM were published in [77]. The present paper examines
the effects of localised corrosion on different structural levels and extends the concept of the CTCM to
a wider range of problems. Subsequently, the load-deformation behaviour of single and multiple crack
elements, assembled to structural elements, is analysed for several illustrative examples. A validation
of the proposed model against experimental data, including [77] will be presented in a future paper,
currently in preparation.

2.2 Effects of localised corrosion on different structural levels

2.2.1 Single reinforcing bar (microscopic level)

Localised corrosion alters a reinforcing bar’s load-deformation behaviour by several mechanisms. These
are (i) generally higher stresses in the corroded cross-section to resist equal tensile forces as the non-
corroded part, (ii) a varying strain rate due to the different stiffnesses of the corroded and non-corroded
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Fig. 2.1 – Effects of localised corrosion on different structural levels: (a) phenomena influencing a reinforcing
bar’s stress-strain behaviour in case of localised (pitting) corrosion (microscopic level); (b) single crack
element with corroding reinforcing bar surrounded by concrete, with indicated tension stiffening effect
(mesoscopic level), considering bond degradation and strain localisation due to cross-section loss; (c)
part of a structural element in bending delimited by two cracks (mesoscopic level), consisting of a
parallel assembly of crack elements and concrete in compression, indicating influences of corrosion on
compression and tension side (spalling and redistribution of tension forces); (d) structure in bending
(macroscopic level), e. g. cantilever retaining wall, with part analysed in (c), indicated load distribution
(active earth pressure, and earth pressure at rest) and maximum deflection with (wc) and without (wuc)
the influence of pitting corrosion.

parts, (iii) a distinct microstructure over cross-section for quenched and self-tempered (QST) reinfor-
cing bars, and (iv) a triaxial stress state and (v) local bending moment near the pit, as illustrated in
Figure 2.1(a).

The influence of strain rate, leading to higher exhibited stresses in steel in the plastic range when being
increased, has been known for a long time. It is well investigated for various strain rates [30, 31, 95, 98],
and has recently been revisited and confirmed for quasi-static strain rates of modern reinforcing bars
[69]. In the context of experiments on locally corroded reinforcing bars, this effect should be considered
since the various tensile stiffnesses in the corroded and non-corroded part of a bar lead to significantly
different strains rates.

QST reinforcing bars, also known as “Tempcore®” reinforcing bars, exhibit distinct microstructure
layers with different stress-strain characteristics over the cross-section (Figure 2.1(a)). In particular, they
consist of a ductile, lower strength core (ferritic/perlitic), surrounded by a transition zone (bainitic) and a
less ductile, higher strength outer annulus (martensitic). This results in a reinforcing bar combining the
favourable material characteristics but can lead to a considerable strength reduction in case of uniform
corrosion, as was shown by [55, 71, 80]. However, [71] pointed out that the change in stress-strain
characteristics is less pronounced for pitting corrosion compared to uniform corrosion.

11



2 Corroded Tension Chord Model: Load-deformation behaviour of structures with locally corroded reinforcement

The load-deformation behaviour of a reinforcing bar containing a corrosion pit is significantly in-
fluenced by the pit morphology [8, 39, 80, 166]. The stress trajectories are deviated due to the local
cross-section reduction, leading to a triaxial stress state in the pit region (Figure 2.1(a)). In the case of
unilateral corrosion damage, local bending moments due to a shift of the neutral axis potentially lead
to a lower failure load than expected when applying the nominal tensile strength to the reduced cross-
sectional area. These phenomena were encountered in many experimental campaigns [8, 39, 58, 166]
and, to date, primarily investigated with a Finite Element Model by [80]. Besides these publications and
despite the high relevance of these effects, they have only been scarcely treated in literature. Therefore,
the authors are currently extending the CTCM to account for these effects. However, this is work in
progress and beyond the scope of this paper.

2.2.2 Strain localisation due to cross-section loss (mesoscopic level)

When experimentally investigating reinforcing bars with single or multiple corrosion pits, a severe re-
duction of the elongation at ultimate load is often observed in experiments [34, 39, 46]. In some studies
on corrosion, this effect is related to corrosion-induced changes in material characteristics [10, 53, 55].
However, in the authors’ understanding, it is at most a secondary effect. Indeed, the reduced ductility
can perfectly be explained considering strain localisation due to cross-section loss, as also pointed out
by [39]. The related effects on the load-deformation behaviour, briefly outlined below, are not limited
to corrosion-induced damage but very well known, e. g. in metallurgy or from statically indeterminate
structures containing elements of distinct stiffnesses.

Consider a reinforcing bar consisting of an undamaged (uncorroded) part UC and a damaged (cor-
roded) part C, with length luc and lc, respectively, loaded by a tensile force F (Figure 2.2). Material
properties are uniform (yield stress fsy, tensile strength fsu), but the initial cross-sectional area As is
reduced in part C to

As,c = (1−ζ)As

0 < ζ = Alost/As ≤ 1
(2.1)

over the short length lc ≪ luc, where ζ denotes the relative loss of cross-sectional area. The total elonga-
tion of the bar corresponds to the sum of elongations of its undamaged and damaged parts, as indicated
in Figure 2.2

utot = us,uc +us,c = εs,uc · luc + εs,c · lc (2.2)

The stresses in the two parts of the bar differ by a factor (1−ζ) since by equilibrium

F = Asσs,uc = As,cσs,c = (1−ζ)Asσs,uc

σs,c (ζ) =
σs,uc

(1−ζ)

(2.3)

Under a given load F , reducing the cross-section increases the total elongation slightly due to the
resulting higher stresses and strains in the damaged part C. On the other hand, the ultimate load of the
bar and the stresses at ultimate in the undamaged part UC are reduced according to Equation (2.3) to

Fu = As,c fsu = (1−ζ)As fsu

σs,uc,max = (1−ζ) fsu

(2.4)
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Fig. 2.2 – Example to illustrate the strain localisation effect: (a) load-deformation behaviour of reinforcing bar
part UC with length luc and constant cross-section; (b) load-deformation behaviour of a reinforcing bar
part C with length lc ≪ luc and continuously reduced cross-section; (c) resulting load-bearing capacity
Fu vs. deformation capacity utot of entire bar (serially combining parts UC and C) with length luc + lc =
470mm, lc/luc = 0.044, and fsy/ fsu = 0.83.

Consequently, the total elongation of the bar at ultimate is reduced (see Figure 2.2(c)), as

εs,uc,max = εs (σs,uc,max) = εs ((1−ζ) fsu)< εs ( fsu) (2.5)

Since lc ≪ luc, the total elongation at ultimate decreases disproportionately with ζ, and is drastically
reduced if the bar in the undamaged part UC remains elastic over the length luc.

Two parameters govern the behaviour of the total reinforcing bar: the cross-section loss ζ and the
length ratio lc/luc. For steel, the critical cross-section loss ζcrit , as defined in Figure 2.2(c), beyond
which the damaged part C ruptures before the undamaged part UC reaches the yield stress, can be found
by simply formulating equilibrium (as recently also pointed out by [39])

As fsy
!
= (1−ζcrit)As fsu

ζcrit = 1−
fsy

fsu

(2.6)

For a cross-section loss smaller than ζcrit , the undamaged part of the reinforcing bar experiences large
inelastic strains, whereas for a higher cross-section loss, the remaining tensile strength of the damaged
section C is not sufficient to yield the undamaged part. Hence, plastic strains localise in the damaged part
C, and since lc ≪ luc, the total elongation at ultimate, essentially corresponding to the plastic deformation
capacity, is drastically reduced. As seen from Equation (2.6), ζcrit solely depends on the material char-
acteristics, particularly on the yield stress fsy and tensile strength fsu. For the characteristics of modern
European reinforcing steel with fsy ≈ 500MPa and fsu ≈ 590...650MPa, critical cross-section losses of
merely ζcrit ≈ 0.12...0.2 result. If the reinforcing steel strictly satisfies the minimum strain hardening ra-
tios required for code compliance according to EN 1992-1-1:2004 [38], values as low as ζcrit = 0.05,0.08
and 0.15 result for the ductility classes A, B and C, respectively. The residual deformation capacity, i. e.
the inelastic elongation of the entire bar at rupture, depends on the ratio lc/luc: the shorter the damaged
length lc compared to luc, the stronger the maximum elongation is reduced, with zero residual deforma-
tion capacity for ζ > ζcrit in the limiting case lc/luc → 0. For typical pit sizes and crack element lengths
sr (= crack spacing, see Figure 2.1(b)), this ratio is in the range of lc/luc ≈ 0.01...0.1, see Section 2.3.2.

Figure 2.3 illustrates the loss of deformation capacity due to strain localisation as the ratio of max-
imum elongations with and without cross-section loss ζ, respectively, for a hot-rolled (HR) and cold-
worked (CW) reinforcing bar. The length ratios were chosen at the boundaries of the estimated range
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Fig. 2.3 – Loss of deformation capacity shown as ratio of maximum elongation utot with cross-section loss ζ to
maximum elongation without cross-section loss for a hot-rolled (HR) and cold-worked (CW) reinforcing
bar with constitutive relationships according to Equations (2.15) and (2.16) and material characteristics
given in Table 2.1. The upper curve corresponds to a length ratio lc/luc = 30/300 = 0.1, the lower curve
to lc/luc = 10/800 = 0.013.

(see Section 2.3.2) as lc/luc = 10/800 = 0.013 and lc/luc = 30/300 = 0.1. While this example is merely
used to illustrate the general effect of strain localisation, the constitutive relationships and material prop-
erties were chosen to correspond to those used in the examples illustrating the CTCM (Sections 2.3.1 and
2.3.2) for comparison. It can be seen that most of the deformation capacity (88% and 96% for the HR
and CW steel, respectively) is lost even before reaching the critical cross-section loss ζcrit . For higher
cross-section losses ζ > ζcrit , there is no further notable decrease of the residual deformation capacity,
whose value beyond ζ = ζcrit mainly depends on the length ratio lc/luc. The constitutive relationship
(favourable effect of the yield plateau of HR steel) has a visible effect only for ζ < ζcrit .

2.2.3 Single crack element (mesoscopic level)

The effect of strain localisation has to be superimposed to the other effects mentioned in Section 2.2.1,
which influence the stress-strain diagram of the damaged part; this may potentially lead to an even more
critical behaviour. Additionally, as indicated in Figure 2.1(b), the deformation behaviour of a reinforcing
bar embedded in concrete is influenced by bond, leading to the tension stiffening effect. Steel stresses,
and hence strains, are reduced due to the contribution of the concrete over the length sr of a crack element,
i. e. the section between two cracks. This effect, which further reduces the deformation capacity, can be
described by the established Tension Chord Model (TCM), outlined in Section 2.3.1. The extended
version of this model, the Corroded Tension Chord Model (CTCM), Section 2.3.2, combines the effect
of tension stiffening and strain localisation due to cross-section loss. Additionally, bond degradation near
the pit caused by e. g. cracking due to a volumetric expansion of the corrosion products is considered.

2.2.4 Assembly of crack elements and combination with compression chord (mesoscopic
level)

In real structures, single reinforcing bars are hardly ever provided. Instead, several reinforcing bars carry
the applied load jointly. In many cases, these reinforcing bars are closely spaced, and the structural
elements have a high in-plane stiffness, such that identical elongations and equal crack spacings may
be assumed for reinforcing bars running in parallel (uc = uuc, compare Figure 2.1(c)). This central
assumption, commonly applied in structural concrete modelling, leads to a redistribution of forces from
damaged, softer elements to undamaged, stiffer elements in the CTCM.
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2.3 TCM and CTCM model description

The theory of the classic TCM was enhanced for modelling the load-deformation behaviour of ele-
ments in bending [93, 111]. A similar approach can be used to apply the CTCM to such elements, taking
into account further aspects of corrosion (Figure 2.1(c)). In addition to the redistribution of forces from
the corroded to the non-corroded elements by assuming equal elongations, the model allows consider-
ing concrete spalling at the compression side, caused, e. g. by a volumetric expansion of the corrosion
products (if the compression reinforcement is corroding). Even though spalling is less likely for pitting
corrosion, it may reduce the compression zone depth and consequently the lever arm of internal forces.

2.2.5 Entire structure (macroscopic level)

Based on the CTCM and using the principles of 2.2.4, the load-deformation behaviour of entire struc-
tural elements such as cantilever retaining walls or cantilevering bridge decks [162] can be modelled,
and the implications of local corrosion and its spatial distribution over the element can be analysed (Fig-
ure 2.1(d)). First calculations showed that effects on microscopic and mesoscopic levels, described in the
previous sections, affect the behaviour on the structural level (macroscopic level) quite severely. Due to
strain localisation, localised corrosion strongly reduces the deformation capacity of structures, as further
outlined in Sections 2.4.1 and 2.4.2.

This issue is a major problem for structures whose main loading is deformation dependent, such as
the earth pressure acting on retaining walls. Many of these were designed in the ultimate limit state of
structural safety for active earth pressure loading only, as e. g. typical walls built in Switzerland in the
1960s and 1970s, but also more recent ones. This presumes that the structure exhibits sufficient ductility
to undergo the deformations required to cause the earth pressure to diminish from pressure at rest e0 to
active pressure ea (Figure 2.1(d)). If this ductility is compromised by localised corrosion, as detected
in many retaining walls near the construction joint between footing and wall due to honeycombs [52],
the earth pressure does not drop (unless the entire wall overturns as a rigid body at a lower load, which
is unlikely due to higher safety margins in geotechnical design). In addition, the load-bearing capacity
is reduced due to corrosion. Combining the two effects, there is a major risk of a brittle failure of the
structure. Given the large number of possibly affected structures [52], there is an urgent need for models
such as the CTCM, allowing to assess the load-deformation behaviour of structures affected by localised
corrosion.

2.3 TCM and CTCM model description

2.3.1 Existing Tension Chord Model TCM

The Tension Chord Model [7, 114] was developed in the 1990s at ETH Zurich. It models the tension stiff-
ening effect, i. e. the effect of bond on structural elements loaded in tension, in a mechanically consistent
manner, using only the magnitudes of the bond shear stresses as empirical parameters. The bond shear
stress-slip behaviour τb-δ is assumed to be rigid-perfectly plastic, with a value τb0 for regions where the
reinforcing bar remains elastic and τb1 for regions where the reinforcing bar yields

τb0(δ(x)) = τb0 = 2 fct

τb1(δ(x)) = τb1 = fct

(2.7)

with fct = concrete tensile strength. Different to the bond-stress slip relationships shown in Figure 2.4(a),
which are generally obtained from conventional pullout tests, nominal bond-stresses τb are thus inde-
pendent of the slip δ, but rather a function of the steel stress σs, i. e. τb(σs). This assumption is related to
the work of [143] and enables to decouple the kinematic relations of a differential element of a reinfor-
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and (2.16) and stress-strain diagram of corresponding tension members with properties according to
Table 2.1; (c) zoom of stress-strain diagram in (b) at small strains (horizontal shift of the two curves
indicates the tension stiffening effect).

cing bar embedded in concrete

dδ(x)
dx

= εs(x)− εc(x) (2.8)

from the equilibrium conditions of the same element

dσs(x)
dx

=
4τb(δ(x))

Ø
!
=

4τb

Ø
(2.9)

with εs(x), εc(x) = steel and concrete strains along the reinforcing bar, σs(x), τb(x) = steel stress and bond
shear stress along the reinforcing bar, δ = slip between reinforcing bar and concrete, Ø = reinforcing
bar diameter. Hence, the differential equation of bond can be solved in closed form for linear elastic
behaviour [114]

d2δ(x)
dx2 =

4τb0(1+ρ(n−1))
EsØ(1−ρ)

(2.10)

with n = Es/Ec = modular ratio, ρ = As/Ac = geometrical reinforcement ratio. Similarly, determining
the load-deformation behaviour of tension chords with general stress-strain relationships for the bare
reinforcement is greatly simplified, as outlined in the following.

Generally, steel stresses in a reinforcing bar along a crack element, i. e. a tension chord element
bounded by two cracks (see Figure 2.5(a)), are obtained by integration of Equation (2.9). Using the
TCM, this integration is straightforward since the bond shear stresses are fully determined by the steel
stress at a specific location (known by equilibrium) rather than the bond slip (which is unknown a priori,
requiring solving the differential equation of bond). Steel stresses are thus defined by

σs(x) = σsr −
4

Ø2
π

τbπØx =
F
As

− 4τbx
Ø

(2.11)

with σsr = F/As = steel stress at the crack, where the reinforcement alone carries the applied tensile
force, and F = externally applied force on the tension member. Figure 2.5(a) shows the gradual decrease
of the steel stresses from the crack to the middle of the crack element caused by bond shear stresses.
Steel strains follow from the steel stresses using an appropriate constitutive relationship εs = f (σs) (Fig-
ure 2.4(b)). Integrating the steel strains over the length of the crack element yields the deformation of
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Fig. 2.5 – Modelling concepts of (a) TCM and (b) CTCM illustrated for a crack element of length sr and a stress
at the crack σsr = 550MPa. Shown are the distributions of bond stress τb, stress in concrete σc, steel
stress σs, steel strain εs, and steel deformations us. εm denotes the mean steel strain over the entire crack
element and is equivalent to the mean strain of the crack element. In (b), β/2 · sr denotes half of the
length of the corroded section of the reinforcing bar. In blue, the results are given for a cross-section
loss ζ1 = 0.05, in red for ζ2 = ζcrit = 0.17. For calculation, an HR reinforcing bar was used. Material
parameters are given in Table 2.1.

the reinforcing bar

us(x) =
∫

εs(x)dx =
∫

f (σs(x))dx (2.12)

and by dividing by the original length of the crack element sr, one gets the mean steel strain over the
entire crack element

εm =
us(x = sr)

sr
(2.13)

which is equivalent to the mean strain of the crack element. Using εm is particularly useful, as (i) the
elongation of any tension member can be directly estimated by multiplying with the member length and
(ii) the stress-strain relationships of the tension member – relevant for its global response – and the bare
steel can directly be compared, revealing the tension stiffening effect, as shown in Figure 2.4(c).

The slip between concrete and steel at the cracks, obtained by integrating Equation (2.8), can be in-
terpreted as (half) the crack width. Physically, it corresponds to the difference between the deformation
of the reinforcing bar us (Equation (2.12)) and the surrounding concrete uc. Practically, concrete de-
formations are often ignored, as they are magnitudes smaller than steel deformations. Hence, the crack
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2 Corroded Tension Chord Model: Load-deformation behaviour of structures with locally corroded reinforcement

Tab. 2.1 – Assumed material characteristics and model parameters.

fsy [MPa] 500 Ø [mm] 20 ρ [-] 0.01

fsu [MPa] 600 ka, kb [-] 0.002 τb0 [MPa] 5.8

εsy (HR) [-] 0.00244 kd [-] 0.0245 τb1 [MPa] 2.9

εsh (HR) [-] 0.018 fc [MPa] 30 sr0 [mm] 495

εsu (HR) [-] 0.1 fct [MPa] 2.9 λ 1) [-] 1.0

εsu (CW) [-] 0.08 Ec [GPa] 31 β · sr
1) [-] 20

Es [GPa] 205 n [-] 6.6
1) except for Figure 2.5: λ = 0.5, β · sr = 30mm

width is

wr = us −uc ≈ us (2.14)

The integral in Equation (2.12) can be solved analytically if an antiderivative to the chosen constitutive
model of the steel stress-strain curve exists. The reinforcing bar’s mean strain can then be expressed in
closed form. Solutions for various constitutive models can be found in [7], notably for hot-rolled and
cold-worked steels as well as a bilinear approximation.

The examples in Figures 2.3, 2.4, and 2.5 are calculated using the steel and concrete properties given
in Table 2.1 and the constitutive stress-strain relationships according to [7, 129] for cold-worked (CW)
steel

εs =
σs

Es
+

(
σs

kc

)a

a =
ln((εsu − fsu/Es)/ka)

ln( fsu/ fsy)

kc =
fsy

k1/a
b

normally ka = kb = Rp02 = 0.2%

(2.15)

and according to [7, 143] for hot-rolled (HR) steel

for 0 ≤ εs ≤ εsy = fsy/Es

σs = Esεs

for εsy ≤ εs ≤ εsh

σs = fsy

for εsh ≤ εs ≤ εsu

σs = fsy +( fsu − fsy)kd

(
1− e(εsh−εs)/b

)
b =

εsh − εsu

ln((kd −1)/kd)

(2.16)

The corresponding equations for the mean strain εm determined with the TCM by [7] are shown in the
appendix.
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2.3 TCM and CTCM model description

Evaluating the TCM for small tensile loads in the linear elastic range allows analysing the cracking
behaviour of a tension chord, i. e. the cracking load (see Figures 2.4(c) and 2.5)

σsr,cr =
fct

ρ
(1+ρ(n−1)) (2.17)

and the maximum crack spacing

sr0 =
fctØ(1−ρ)

2τb0ρ
(2.18)

which is equivalent to the maximum crack element length (see Figure 2.5). Whereas the cracking load
is a specific value, theoretical considerations show that the crack spacing can vary by a factor of 2, even
in the theoretical case of a constant tensile strength without any scatter, since at the middle between two
cracks with maximum spacing sr0, a new crack may form or not [7, 114]. The fact that it is impossible
to predict the crack spacing theoretically is very well reflected by the high scatter of crack spacings
observed in laboratory tests on tension chords. Therefore, the crack spacing sr in the TCM is defined as

sr0/2 ≤ sr ≤ sr0

sr = λ · sr0

0.5 ≤ λ ≤ 1.0

(2.19)

While the simplification of a stepped, rigid-perfectly plastic bond shear stress-slip relationship limits
the use of the TCM for analysing local bond behaviour, it is highly useful to assess the behaviour on
component and structural levels, e. g. the calculation of crack widths and deformations. As seen from
Equations (2.9), (2.12), and (2.14), the steel elongations and crack widths are obtained from the bond
stress-slip relationship after two integration steps. Further mechanical concepts (e. g. plane sections hy-
pothesis of Bernoulli-Navier) are then used to determine the deflections of a structure from the strains
and curvatures of all sections, typically involving two additional integrations. The averaging related to
each integration – along with the observation that idealising the complex phenomenon of bond by con-
sidering bond shear stresses uniformly distributed along a nominal perimeter is a drastic idealisation by
itself – justifies the simplified stepped, rigid-perfectly plastic bond shear stress-slip relationship. In fact,
despite this crude simplification, the TCM reveals excellent agreement with experimental data [7, 94].
Because of its good correlation with experimental data and its simplicity, the TCM is widely applicable
and builds part of many complex models such as the Cracked Membrane Model [22, 89, 90] or models
investigating the serviceability limit states of structural concrete [29]. It was further enhanced for very
small strains [140], bending elements [93, 111] and reversed loading [94].

2.3.2 Corroded Tension Chord Model CTCM

The Corroded Tension Chord Model (CTCM) aims at predicting the load-deformation behaviour of a
crack element containing a reinforcing bar with a locally corroded section, induced, e. g. by chloride
attack. It assumes that corrosion starts after cracking of the tension chord, i. e. the cracking load was
exceeded, and the crack elements are defined at the time of corrosion initiation. A damaged section of
total length β ·sr is assumed to be present at a crack (left end of crack element in Figure 2.5(b)), extending
symmetrically into both adjoining crack elements. In this damaged section, similar to the example in
Section 2.2.2, the reinforcing bar has a reduced cross-sectional area As,c according to Equation (2.1) and
hence, steel stresses σs,c and strains increase in this section according to Equation (2.3). Bond is often
reduced in the damaged section, due to corrosion-related bond degradation [56] or even missing because
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2 Corroded Tension Chord Model: Load-deformation behaviour of structures with locally corroded reinforcement

of honeycombs. This can be accounted for with a factor γ, which allows reducing bond proportionally:

τb,c = γτb

0 ≤ γ ≤ 1
(2.20)

Basically, any model for bond deterioration can be implemented, but often one will set γ = 0, as bond is
almost completely lost – except for very low levels of corrosion – due to lubricating effects of corrosion
products and longitudinal cracks. Moreover, the ductility reduction caused by tension stiffening in this
zone is negligible compared to the reduction caused by strain localisation due to cross-section loss,
particularly for small corrosion lengths β · sr.

The concepts and equations of the TCM are extended, accounting for the behaviour in this damaged
section. For the case of γ = 0, the mean strain εm,c of the entire crack element, including the damaged
section, can be written as

εm,c =
(1−β) · srεm +β · srεs(σs,c(ζ))

sr
= (1−β) · εm +β · εs(σs,c(ζ)) (2.21)

with sr in Equations (2.A1) and (2.A2) (in the appendix) being replaced by (1− β)sr. As described
in Section 2.2.2, the length of the damaged section β · sr is a decisive parameter, which can strongly
influence the residual deformation capacity. In a comprehensive study [52], the corrosion parameters
(number of corroded reinforcing bars, pit geometry, cross-section loss, etc.) of 56 cantilever retaining
walls were assessed. The results revealed that typically, a single corrosion pit per reinforcing bar with a
length in the order of 10...30 mm occurred. Thus, β · sr = 20mm is adopted in this study. With typical
crack element lengths of 150...400 mm and considering two adjacent crack elements, this corresponds to
β = 0.01...0.1.

Figure 2.5(b) compares the stress distributions within a crack element containing a corroded reinfor-
cing bar with a cross-section loss ζ1 = 0.05 (blue line) and ζ2 = ζcrit = 0.17 (red line) to one containing
a non-corroded reinforcing bar in Figure 2.5(a), loaded to the same stress at the crack of σsr = 550MPa.
For the numerical calculations, the material characteristics given in Table 2.1 and λ = 0.5 were used. To
fulfil equilibrium, in its full cross-section next to the corrosion pit, the reinforcing bar exhibits a stress
according to Equation (2.3) of 523 MPa for ζ1 and 457 MPa for ζ2, respectively. The relatively moderate
drop in stress of 5% and 17% represents the reduction in load-bearing capacity of the damaged crack
element and obviously corresponds to the reduction in cross-sectional area of the corroded reinforcing
bar. When comparing the resulting mean strain εm,c of the corroded crack element, a reduction of 46%
and 82% compared to the non-corroded element is observed, exemplarily showing the strong reduction
in deformation capacity due to strain localisation.

2.3.3 Assembling corroded and non-corroded crack elements

Crack elements are assembled serially and in parallel to analyse structural elements with several corroded
and non-corroded reinforcing bars. The overall load-deformation behaviour of a tension chord consisting
of k serially coupled crack elements can be modelled by summing up the deformations of these k elements
(at equal force)

F1 ∝ Fi ∝ Fk

utot =
k

∑
i=1

ui

(2.22)

The number of corroded and non-corroded crack elements can be varied, applying the CTCM and the
TCM to each element accordingly. Whereas this procedure assumes that all crack elements are equally
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2.4 Effect of localised corrosion on the load-deformation behaviour

loaded, varying tension chord forces can be considered by discretising the force distribution, with the
crack spacing defining the discretisation length. Each element is then loaded differently, resulting in its
specific deformation. Together with further structural mechanical concepts, this approach allows e. g. to
predict the deflection of a cantilevering bridge deck with decreasing moment towards the parapet, with
tension chords simulating the part around the upper reinforcement layer [162].

The load-deformation behaviour of k crack elements assembled in parallel can be modelled by sum-
ming up their forces (at known elongation, compare Figure 2.1(c))

u1 = ui = uk

Ftot =
k

∑
i=1

Fi

(2.23)

Note that in contrast to serial crack elements, where the forces are identical by equilibrium, the
elongations of parallel tension chords are not necessarily equal: As the corroded crack elements contain
a softer section, they exhibit larger deformations at equal force than non-corroded crack elements. How-
ever, the assumption of equal deformations is often justified (similar to the plane sections hypothesis of
Bernoulli-Navier, see Section 2.2.4), e. g. in cantilevers or retaining walls with high in-plane stiffness.
Hence, corroded and non-corroded crack elements can be assembled in parallel in good approximation
by summing up their individual, distinct forces at equal elongation, which leads to a redistribution of
forces inside the structural element from (softer) corroding reinforcing bars to (stiffer) non-corroding
reinforcing bars.

2.4 Effect of localised corrosion on the load-deformation behaviour

2.4.1 Effect on a single crack element

Figure 2.6(a) shows the load-deformation behaviour F vs. um = εm,c · sr of a single crack element of
length sr = 495mm (λ = 1) containing a reinforcing bar with diameter 20 mm of hot-rolled (HR) steel,
which is corroded to various extents. Further material characteristics and model parameters are given in
Table 2.1, constitutive steel stress-strain relationships follow Equations (2.15) and (2.16). The response
of a bare reinforcing bar is plotted for comparison (dashed line). Obvious is the much stiffer behaviour of
the non-corroded crack element (black line) compared to the response of the bare reinforcing bar, which
is directly related to the tension stiffening effect.

The response of the crack element to the varying cross-section loss is shown with coloured lines,
and a circle indicates the ultimate deformation at failure. Apparent is the disproportional reduction in
deformation capacity with only slightly increasing corrosion, followed by a strong reduction in load-
bearing capacity for larger cross-section losses.

Figure 2.6(b) shows the ratio of deformation at failure um,max for a crack element containing a hot-
rolled (HR, black line) and a cold-worked (CW, blue line) reinforcing bar, respectively, with increasing
cross-section loss, compared to the deformation capacity of a crack element with a non-corroded HR
reinforcing bar uHR,m,max. Additionally, the ratio of load-bearing capacity Fu of a crack element with a
corroded reinforcing bar compared to a crack element without corrosion is plotted (red line). Similar
to Figure 2.5(b), the strong decrease in deformation capacity for a comparably low corrosion damage is
apparent: The deformation at failure is reduced by 86% at a relative loss of cross-sectional area ζcrit of
only 17%, whereas the failure load is reduced proportionally by 17%. For larger cross-section losses, the
deformation capacity does not change significantly, whereas the load-bearing capacity further decreases
proportionally with the cross-section loss. Note that the deformation capacity of a CW reinforcing bar is
generally lower compared to that of an HR reinforcing bar (even without corrosion, ζ = 0) due to (i) the
generally lower strain at peak stress εsu and (ii) the different stress-strain curve of the bare reinforcing
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Fig. 2.6 – CTCM model response for a single crack element containing a hot-rolled (HR) reinforcing bar with
varying cross-section loss ζ: (a) load-deformation behaviour with circles indicating the failure of the
crack element; (b) relative deformation capacity of a crack element with a hot-rolled (HR) and a cold-
worked (CW) reinforcing bar um,max(ζ), respectively, corroded to various extents, compared to a non-
corroded crack element with hot-rolled steel uHR,m,max(ζ = 0). Additionally, as red line, the relative
load-bearing capacity Fu of a corroded crack element, compared to a non-corroded crack element, is
shown.

bars, with a steeper gradient (due to the lacking yield plateau) at the beginning of the plastic range for
the CW bar (compare Figure 2.4(b)).

The strong initial reduction in deformation capacity, up to a relative cross-section loss ζcrit = 17%, is a
direct consequence of the strain localisation effect related to the short damage length β · sr. Remarkably,
the relative residual deformation capacity (at ζ = ζcrit) of 14% in Figure 2.6(b) for β = 0.02 is much
higher than that of the same bare reinforcing bar at equal length ratio β, which amounts to merely about
4% (compare Section 2.2.2 and Figure 2.3). This is not a contradiction, as the ratios of two different
elements (one with concrete, the other without) are compared. It shows that the findings on ductility
reduction due to strain localisation for bare reinforcing bars cannot be directly transferred to structures
containing locally corroded reinforcement, but that the tension stiffening effect has to be appropriately
considered and superimposed. However, other effects such as local bending moments in the corroded
section (see Section 2.2.1) may further reduce the deformation capacity.

2.4.2 Effect on multiple crack elements

Figure 2.7(a) shows the load-deformation behaviour F vs. um of 100 crack elements assembled in par-
allel, undergoing equal elongation, whereof 50 elements contain a corroded HR reinforcing bar. The
cross-section loss of the reinforcing bars varies within 4% and 60%. As dashed lines, the behaviour of
50 and 100 non-corroded crack elements is shown for comparison, and triangles indicate the peak load.

Similar to the observations in Figure 2.6(a), the deformation capacity of the entire structural element
decreases up to the critical cross-section loss ζcrit = 1− fsy/ fsu = 17%, followed by a strong reduction of
the load-bearing capacity with further increasing corrosion damage. As soon as the corroded reinforcing
bars rupture, the load drops to the capacity of the remaining 50 non-corroded crack elements, which still
have their full strength and deformation capacity. However, one has to consider that in force-controlled
situations, as it applies for the majority of the load cases, the structural elements fail when the maximum
load is reached, i. e. the load and deformation indicated with a triangle. Hence, even moderate corrosion
may cause a significant loss of deformation capacity.

Figure 2.7(b) shows the load-deformation behaviour of a structural element consisting of 100 crack
elements assembled in parallel, whereof nc elements contain a corroded reinforcing bar with cross-
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Fig. 2.7 – Load-deformation behaviour of a structural element with 100 crack elements in parallel. (a) nc = 50
crack elements are corroded to an extent ζ; (b) nc crack elements are corroded to an extent ζi, such that
the mean cross-section loss ζm = ζi ·nc/100 is constant at 5%. Note that an HR reinforcing bar was used
for calculation.

section loss of ζi. The mean cross-section loss ζm = ζi · nc/100 is kept constant at 5%. From the 94
possible pairs (nc, ζi), a selection of five is depicted. As dashed lines, the behaviour of 50 and 100
non-corroded crack elements is shown for comparison, and triangles indicate the peak load.

Despite the constant mean cross-section loss ζm, the load-bearing and deformation capacity decreases
strongly for a decreasing number of corroded crack elements. This is due to the increasing cross-section
loss for each corroded crack element, in order to keep the mean cross-section loss constant. This effect
reverses from a specific number of corroded crack elements: For the pairs (nc = 10, ζi = 50%) and
(nc = 6, ζi = 80%), the residual load-bearing capacity of the 90 and 94 non-corroded crack elements
is higher than the load at failure of the corroded crack elements. This is noteworthy, as these structural
elements maintain their full deformation capacity at a just slightly reduced failure load.

In Figure 2.8(a), for the same structural element as before, the relative deformation capacity um,max

is plotted for all pairs (nc, ζi) and for various mean cross-section losses ζm . The abscissa indicates
the cross-section loss ζi of the corroded crack elements. To keep the mean cross-section loss constant,
the number of corroded crack elements is given by nc = 100 · ζm/ζi. The number of corroded crack
elements nc decreases with increasing ζi and vice versa. Figure 2.8(b) shows the corresponding relative
load-bearing capacity Fu. Both figures indicate that a critical combination (nc,ζi)crit exists, for which
the structure’s load-bearing and deformation capacity is minimum – despite the constant mean cross-
section loss – whereas for other combinations (nc,ζi) the load-deformation behaviour is less impaired.
Therefore, it is obvious that only indicating the mean cross-section loss ζm is insufficient to draw any
conclusions on the load-deformation behaviour of a structure, as this depends on the corrosion distribu-
tion among the reinforcing bars of all crack elements: Generally, it is less critical to have only a few
reinforcing bars corroded to a high extent than vice versa, especially for a severe mean cross-section
loss ζm.

2.5 Conclusions

Localised corrosion reduces the load-carrying and deformation capacity of reinforced concrete structures
due to various effects on different structural levels. A reinforcing bar’s load-deformation behaviour can
strongly be affected by effects related to the pit morphology, such as a triaxial stress state and local
bending moments, leading to disproportionately reduced failure loads. The effect of strain localisation

23



2 Corroded Tension Chord Model: Load-deformation behaviour of structures with locally corroded reinforcement

0 0.2 0.4 0.6 0.8 1
individual cross-section loss 

i
(n

c
) [-]

0

0.2

0.4

0.6

0.8

1
u m

,m
ax

(
i
, n

c) 
/ 

u m
,m

ax
(

=
0)

 [
-]

n
c
 = 99

21

99

28

99

3499 40

increasing n
c

increasing 
i

(a)

m
 = 0.05

m
 = 0.1

m
 = 0.15

m
 = 0.2

0 0.2 0.4 0.6 0.8 1
individual cross-section loss 

i
(n

c
) [-]

0

0.2

0.4

0.6

0.8

1

F
u(

i
, n

c) 
/ 

F
u(

=
0)

 [
-]

increasing n
c

increasing 
i

(b)

Fig. 2.8 – Structural element assembled of 100 crack elements in parallel with a mean cross-section loss ζm, con-
taining nc reinforcing bars with a cross-section loss ζi = 100 · ζm/nc. (a) relative deformation capacity
um,max; (b) relative load-bearing capacity Fu. Circles indicate the critical combination (nc,ζi)crit with
lowest load-bearing and deformation capacity. Note that an HR reinforcing bar was used for calculation.

due to cross-section loss results in a strong reduction of the deformation capacity of the structure, even for
very low cross-section losses. This increases the risk of brittle failure for structures whose main loading
is deformation dependent or which are statically indeterminate. Their residual deformation capacity
therefore needs to be assessed appropriately.

The Corroded Tension Chord Model CTCM combines the effects of tension stiffening effect and strain
localisation due to cross-section loss, and therefore allows calculating the load-deformation behaviour
of concrete tension chords containing reinforcing bars affected by localised pitting corrosion on a sound
mechanical basis. Simple equilibrium considerations lead to the definition of the critical loss of cross-
section ζcrit beyond which most of a reinforcing bar’s ductility is lost, based solely on the steel yield
stress and tensile strength. The CTCM enables estimating the residual deformation capacity at this point.
By applying common structural mechanical concepts, corroded and non-corroded tension chords can be
assembled serially and in parallel, which enables predicting the load-deformation behaviour of entire
structural elements, such as, e. g. cantilever retaining walls.

First exemplary calculations on a structural element indicated a strong influence of the strain localisa-
tion effect, leading to a loss of deformation capacity of 83% at merely 17% cross-section loss for a typical
pit size and common material characteristics. This reduction is disproportionate to the decrease in load-
carrying capacity, which is in this case proportional to the cross-section loss. The calculations further
revealed the complexity of structures containing several corroded and non-corroded tension chords with
various corrosion damage. Even though the mean cross-section loss of structures may be identical, their
load-deformation behaviour can vary considerably, depending on the specific combination of the number
of affected reinforcing bars and their specific cross-section loss. Structures with few heavily corroded
reinforcing bars seem to be less critical regarding load-bearing and deformation capacity than structures
with a large number of slightly corroded reinforcing bars.1 The indication of a structure’s average cross-
section loss is therefore not sufficient to draw conclusions about its load-deformation behaviour. This
causes considerable uncertainty regarding the accurate assessment of structural safety, as information on
the specific spatial distribution of corrosion among the reinforcing bars is mostly missing in practice.

1For a specific mean cross-section loss ζm, the load-carrying and deformation capacity of a structure decreases (nonlinearly)
with a decreasing number of affected bars nc (and an increasing cross-section loss per bar ζi, see Figure 2.8). This trend
reverses for nc < (ζm + 0.2) · ntot (and ζi > ζm

/
(ζm + 0.2), respectively; ntot = total number of bars), for which the full

deformation capacity is reached and the load-carrying capacity increases again [73].
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2.5 Conclusions

Appendix

TCM-mean strain according to [7] for the constitutive stress-strain relationship of cold-worked (CW)
steel given in Equation (2.15)

for σsr ≤ fsy

εm =
σsr

Es
− τb0sr

EsØ
+

Ø
2τb0sr

· 1
(a+1)k a

c
·

(
σ

a+1
sr −

(
σsr −
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Ø

)a+1
)
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(
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Ø

)
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and for hot-rolled (HR) steel given in Equation (2.16)

for σsr ≤ fsy
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σsr
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− τb0sr

EsØ
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Ø

)
εm =

Ø
2τb1sr

[
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z1 = 1−
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z2 = 1−
σsr − fsy −2τb1sr/Ø
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(2.A2)

with a, b, kc, kd according to Equations (2.15) and (2.16). sr denotes the mean length of the crack
element according to Equation (2.19).
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2 Corroded Tension Chord Model: Load-deformation behaviour of structures with locally corroded reinforcement

Notation

Ac cross-sectional area of tensile member
As, As,c cross-sectional area of reinforcing bar (in general / in uncorroded section, in corroded section)
Ec, Es Young’s modulus (of concrete, of steel)
F , Fu applied tensile force (in general, at ultimate)
e0, ea earth pressure (at-rest, active)
fct concrete tensile strength
fsy, fsu steel yield stress, steel tensile strength
k total number of assembled crack elements
luc, lc length of uncorroded section, length of corroded section
n modular ratio; n = Es/Ec

nc number of corroded crack elements
sr, sr0 crack element length (in general, maximum)
um elongation of crack element and assembled crack elements, respectively, according to TCM and

CTCM; um = εm · sr and um = εm,c · sr, respectively
uc elongation of concrete
us, us,uc, us,c elongation of steel (in general, in uncorroded section, in corroded section)
utot sum of elongations
wr crack width; wr = us −uc ≈ us

β ratio of corroded length of reinforcing bar to length of crack element; β = lc/sr

γ ∈ [0,1] factor to account for reduction of bond stress; γ = τb,c/τb, with τb = τb0 or τb1, respectively
δ bond slip
εc concrete strains
εm, εm,c mean steel strain of crack element according to TCM and CTCM, respectively
εs, εs,uc, εs,c steel strains (in general, of uncorroded section, of corroded section)
εsy, εsh, εsu steel strains at yielding, at onset of hardening, at ultimate
λ ∈ [0.5,1] factor for crack element length; sr = λ · sr0

ρ geometrical reinforcement ratio; ρ = As/Ac

σs, σs,uc, σs,c steel stresses (in general, of uncorroded section, of corroded section)
σsr, σsr,cr steel stress at crack, steel stress at crack for cracking load; σsr = F/As

τb0, τb1 bond stresses (if steel stress σs(x)< fsy, if steel stress σs(x)≥ fsy); τb0 = 2τb1 = 2 fct

τb,c bond stress along corroded section of reinforcing bar
ζ,ζi ∈ (0,1] relative loss of cross-sectional area of single reinforcing bar; ζ = Alost/As

ζcrit critical relative loss of cross-sectional area, ζcrit = 1− fsy/ fsu

ζm mean relative loss of cross-sectional area for a structural element (assembled of multiple crack
elements)

Ø reinforcing bar diameter
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3 Influence of quasi-static strain rate on the
stress-strain characteristics of modern
reinforcing bars
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This chapter presents the findings of a comprehensive series of tensile tests on different reinforcing steel
types to investigate the influence of various quasi-static strain rates on the apparent yield stress and tensile
strength. The study was conducted since preliminary tests on locally damaged reinforcing bars exhibited
higher tensile strengths than expected, which was assumed to be partly caused by the locally varying
strain rate. The chapter corresponds to the published version of the following article:

Haefliger, S., Fomasi, S., Kaufmann, W. ‘Influence of quasi-static strain rate on the stress-strain
characteristics of modern reinforcing bars,’ Construction and Building Materials, vol. 287,
p. 122967, 2021. doi: 10.1016/j.conbuildmat.2021.122967.

The lead author (Severin Haefliger) planned the experiments, conducted them in close collaboration with
the second author (Sara Fomasi), evaluated the data, and developed the presented modelling approach
under the supervision of the third author (Walter Kaufmann).

Abstract

While it has been known for decades that even for quasi-static loading, increments in strain rate lead to
increased stresses in the inelastic range, this effect is often ignored. However, accurate knowledge of
the stress-strain characteristics of reinforcing bars is an indispensable prerequisite for the safe design of
new structures and the realistic assessment of the structural safety of existing ones, and the strain rate
dependency of the reinforcing steel characteristics should thus be accounted for in many situations. An
exemplary case is quality control: Reinforcing bars produced today are periodically tested to check their
conformity with specifications, determining their stress-strain characteristics in standard tensile tests.
However, the applied quasi-static strain rates may vary considerably but are not commonly reported.
Hence, the results are subject to considerable uncertainty. Another relevant case is the structural safety
assessment of existing structures affected by local corrosion of the reinforcement: Their cross-section
(and hence, stiffness) varies considerably along the bar axis and consequently, the strain rate in corroded
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3 Influence of quasi-static strain rate on the stress-strain characteristics of modern reinforcing bars

sections is significantly higher than in non-corroded sections, leading to higher yield stress and tensile
strength.

This study investigates the effect of quasi-static strain rates on the stress-strain characteristics of
modern reinforcing bars based on a comprehensive experimental campaign. In four series of experiments,
41 tensile tests on three different types of reinforcing bars were conducted, applying strain rates between
0.004 ‰/s and 1.0 ‰/s. Compared to the static stress, an increase of up to 8% in the dynamic stress
was observed, depending on the type of reinforcing bar. Based on these observations, a simplified model
for the strain rate dependency was developed and validated against experimental data, showing excellent
agreement.

3.1 Introduction

Numerous studies investigated the influence of strain rate on the mechanical behaviour of steel and
recognised an increase of stresses in the inelastic range with higher strain rates. The effect is particularly
significant for very high strain rates, in the order of 0.1s−1 to 1000s−1, which occur in structures in the
context of impacts, explosions, and earthquakes. Due to the high damage potential in these situations,
researchers thoroughly investigated the related strain rate effects, partially in combination with high
temperatures, on reinforcing bars in structural concrete (see, e. g. [30–32, 61, 108, 128, 164]). Studies
carried out in the 1970s and 1980s [95, 98] observed quite considerable strain rate effects also at very
low, quasi-static strain rates (10−6 s−1 to 10−3 s−1). However, though important in the context of quality
control, corrosion and fatigue of reinforcing bars, no recent studies are known to the authors that consider
quasi-static strain rates in modern reinforcing bars.

The effect of quasi-static strain rates is particularly relevant in quality control of reinforcing steel by
means of tensile tests. The testing standards EN ISO 6892-1:2016 and EN ISO 15630-1:2017 allow strain
rates for quality control between 0.25 ‰/s and 8 ‰/s, which leads to relevant variations in measured yield
stress and tensile strength. As it is uncommon to report the strain rate applied in the tensile test, this issue
impedes a direct comparison of results among different testing laboratories. Moreover, it introduces a
certain amount of arbitrariness when assessing the conformity of a production batch, particularly where
the characteristics are close to the required limit values.

Additionally, the effect of quasi-static strain rate may be relevant in experimental campaigns on struc-
tural concrete, particularly in the field of corrosion investigations: Reinforcing bars with non-constant
cross-section over their length, as commonly investigated in corrosion studies, exhibit different strain
rates and therefore different strengths in the intact and corroded sections, respectively. This is due to the
varying cross-section reduction along the bar axis and the correspondingly varying tensile stiffness EA.
In this context, it is important to note that apart from the effect of strain rate, many other influences have
to be considered when assessing the structural safety of corroded reinforced concrete structures. These
are in particular various steel microstructures with distinct mechanical properties within the cross-section
in quenched and self-tempered (QST) reinforcing bars [55, 71, 82, 139]; three-dimensional stress states
near the damage zone for local corrosion [80]; and bending effects for localised corrosion pits due to a
shift of the neutral axis [8, 80, 166].

In 1967, Lampert et al. [98] conducted tensile tests on four types of reinforcing bars produced in
the 1960s (brand names “Tor”, “Roto”, “Caron” and “Box”) at quasi-static strain rates varying between
0.05 ‰/s and 1.04 ‰/s. They thoroughly analysed the rate dependency of the exhibited stresses and
stated that (i) the dynamic stress, with running testing machine, is between 3% and 9% higher than the
static stress at halts, depending on the initial stress and the steel type; (ii) even small applied strain rates
increase strength considerably; and (iii) static stress is independent of the preceding strain rate. Ten
years later, Krempl [95] conducted tensile and relaxation tests on AISI Type 304 steel at low strain rates
varying between 10−5 ‰/s and 10 ‰/s. He stated that (i) the increase of the inelastic stress depends
on the strain rate; (ii) the static stress is independent of the preceding strain rate; and (iii) relaxation
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3.2 Experimental programme

time depends on the applied stress and the preceding strain rate. Krempl hypothesised that a boundary
between elastic and inelastic deformation does not exist, but inelasticity is rather a gradually developing
process, similar to the modelling approach of Ramberg & Osgood [129].

Contrary to the numerous studies on the influence of medium and high strain rates on the stress-
strain characteristics of steel in the past, the data set is scarce for modern reinforcing steel at quasi-static
strain rates. This missing data impedes a proper separation of the effects of different phenomena on the
stress-strain characteristics of corroded reinforcing bars as described above, and complicates a reliable
comparison of test results from different laboratories in production quality control. The present study
closes this knowledge gap with a comprehensive experimental campaign on 41 specimens of three types
of reinforcing steel, tested at strain rates between 0.004 ‰/s and 1 ‰/s. Stresses were found to increase
by 8% from static to dynamic state for a strain rate of 1 ‰/s and by 5% when comparing strain rates of
0.004 ‰/s and 1 ‰/s. Based on these findings, a simplified model is developed to describe the strain rate
dependency of the mechanical characteristics of modern reinforcing bars in the inelastic range.

3.2 Experimental programme

The experimental campaign carried out in the structural laboratory at ETH Zurich aimed at investigat-
ing the influence of strain rate on the relaxation and stress-strain behaviour of reinforcing bars in the
inelastic range. The four test series A1-A4 comprised a total of 41 reinforcing bars of three different
types of reinforcement. Series A1 contained 13 cold-worked (CW) reinforcing bars of the product type
“BSW-Superring TWR” (B500B) that were hot-rolled, stretched, and coiled for transportation. Series
A2 contained 14 hot-rolled, quenched and self-tempered (QST) reinforcing bars of the product type
“BSW Tempcore” (B500B) that were delivered as straight bars. Series A3 contained 13 QST reinforcing
bars of the product type “Pittini BST500 Jumbo HD” (B500B) which had been coiled for transporta-
tion and subsequently straightened before delivery (referred to as QST-R bars). Series A4 contained
two reinforcing bars of each type of Series A1 and A2. All reinforcing bars had a nominal diameter
of 20 mm and a length of 1200 mm and had been delivered to the laboratory as straight bars with the
required length. Reinforcing bars of the same type were taken from the same production batch. CW bars
contained a perlitic/ferritic microstructure, whereas QST and QST-R bars consisted of distinct layers of
perlite/ferrite (core), bainite (transition zone), and martensite (outer annulus). More information on the
different types of reinforcement used, particularly regarding their microstructural composition and its
implications on the stress-strain characteristics, can be found in [137] and in a companion paper [71].

All reinforcing bars were loaded displacement controlled until failure, applying varying strain rates,
in a universal tensile testing machine of type Schenck 480 kN, containing an Instron controller. They
were instrumented with a linear variable differential transformer (LVDT, type WLH50 from Messotron
with nominal stroke ±25mm) of 300 mm gauge length for elongation measurement. After weighing the
specimens and installing the LVDT in the middle of the bar’s axis, they were installed (clamped) in the
testing machine without any further preparation. In Series A1 to A3, the strain rate was kept constant
throughout the entire tensile test at either 0.004 ‰/s, 0.01 ‰/s, 0.04 ‰/s, 0.1 ‰/s, 0.4 ‰/s, or 1 ‰/s. To
investigate the relaxation behaviour of the reinforcing steel, the displacement of the machine head was
stopped, and the elongation of the reinforcing bars was kept constant for at least 2 minutes at a range of
strain values (A1: 5 ‰, 20 ‰, and 35 ‰; A2: within yield plateau, 25 ‰, 40 ‰, and 60 ‰; A3: 5 ‰,
20 ‰, and 50 ‰). For Series A4, the strain rate was varied within the same test to validate the results of
the previous three series.
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Fig. 3.1 – Stress-strain diagrams of Series A1-A3. Reinforcing bars were tested at the indicated strain rate. Tri-
angles indicate the peak stress and corresponding strain. (a) A1: hot-rolled, cold-stretched reinforcing
bar, coiled (CW); (b) A2: QST reinforcing bar, straight; (c) A3: QST-R reinforcing bar, coiled.

3.3 Results and Discussion

3.3.1 Basic observations

Figure 3.1 shows the stress-strain diagrams of Series A1 – A3 with colours indicating the various strain
rates. Stresses are calculated using the reinforcing bars effective cross-sectional area determined by their
weight. The different curve shapes, evident when comparing the stress-strain curves of Series A1 to A3,
are due to the different production methods of the reinforcing bars [71]. The CW reinforcing bars (A1)
lack a pronounced yield plateau and exhibit lower strains at peak load due to the cold-working. The QST
reinforcing bars (A2) obtain favourable mechanical characteristics by their composed microstructure
layers, exhibiting a pronounced yield plateau and higher strain at peak stress. The QST-R reinforcing
bars (A3) are produced in the same way as the QST reinforcing bars, except that they are coiled for
transportation, which may – but need not – lead to the absence of a yield plateau (as observed in these
tests) as the bars undergo plastic deformations when being coiled.
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Fig. 3.2 – Normalised stress decay over time for machine stops (at different strain levels) for various strain rates.
(a) A1: hot-rolled, cold stretched reinforcing bars (CW); (b) A2: QST reinforcing bars, straight.

The difference in stresses observed at equal strain caused by the varying strain rates is obvious for all
Series A1 to A3: The measured stress at a given strain in the plastic phase increases with a higher strain
rate. Furthermore, the stress decay from dynamic stress towards static stress due to relaxation when
the machine was stopped at various strain levels is clearly visible in Figure 3.1. For a given strain rate,
the magnitude of the stress decay between stopping and restarting the machine was found to increase
with higher initial stress σinit at the beginning of the machine stop. Therefore, in all further plots, the
stress decay is normalised with respect to the initial stress level σinit . Figure 3.2 shows the normalised
stress decay over time for CW and QST reinforcing bars for machine stops at various strain levels and
for different strain rates. The stop duration was set to 2 minutes for most of the experiments (similar to
[98]), and to 45 minutes for the remaining few tests. A logarithmic decay over time, with an increasing
slope in the first phase after stopping, was observed. For the higher strain rates of 1 ‰/s and 0.4 ‰/s,
the slope decreased after 70...100s and 400...500s, respectively. For the slow strain rate of 0.004 ‰/s,
the decay kept being logarithmic even after 45 minutes, without showing indications of a decrease of the
slope. This leads to the conclusion that the strain rate before stopping influences both, the magnitude
of the stress decay and its rate. Furthermore, it indicates that a duration of the machine stop of 2 min,
as commonly used in materials testing, is not sufficient for tests conducted at low strain rates to reach a
steady state and determine the static stress.

Plastic strains in metals and related strain rate effects are caused by movements of dislocations
through the crystalline grains. Orowan was among the first researchers describing the underlying mech-
anism [81, 96, 159, 160]. He postulated the Orowan equation relating the macroscopic plastic shear
strain rate to the microscopic parameters:

γ̇pl = kρmbv (3.1)

where k = dislocation orientation factor (Schmid factor), ρm = mobile dislocation density, b= magnitude
of Burgers vector (characterizing the intensity of a dislocation), and v = mean dislocation velocity. Fur-
ther, one may assume that v is related to the microscopic shear stress by the power function v = τn, where
n depends on the material properties [96, 160]. On the other hand, the macroscopic plastic shear strain
rate γ̇pl is proportional to the macroscopic plastic strain rate ε̇pl in direction of the applied force, which
is in turn approximately equal to the total strain rate ε̇ = ε̇pl + ε̇el ≈ ε̇pl in the plastic phase of a tensile
test [96]. Hence, since the microscopic shear stress τ is proportional to the macroscopic exhibited tensile
stress σ and the Taylor factor [136], one gets the proportionalities:

ε̇pl

ρm
∝

γ̇pl
ρm

∝ v ∝ τ
n

∝ σ
n (3.2)
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Fig. 3.3 – Approaches to determine stress decay exhibited for reinforcing bars tested with different strain rates:
(a) general approach; (b) approach to correct stress decay if stops differ slightly in strain level.

Generally, the mobile dislocation density ρm is not constant, but increases with, e. g. plastic deformation
[136, 159]. However, it is obvious from equation (3.2) that for equal values of ρm (i. e. at a specific strain
value in a test), the exhibited tensile stress σ must increase with the strain rate, i. e. σ ∝ n

√
ε̇pl .

3.3.2 Proposed modelling approach of relaxation behaviour

The influence of strain rate on the stress-strain diagram of a reinforcing bar can be mathematically de-
scribed using a function depending solely on the applied strain rate, but independent of the strain at
stopping. Experimental data and the findings of [95] imply that stresses at a given strain ε decay to the
same static stress σ0(ε), independently of strain rate. The final stress decay therefore can be written as
∆σ(ε̇,ε) = σinit(ε̇,ε)−σ0(ε). Normalising with the initial stress yields:

∆σ(ε̇,ε)/σinit(ε̇,ε) = 1−σ0(ε)/σinit(ε̇,ε) =C(ε̇) (3.3)

Here, C(ε̇) denotes a variable only depending on the strain rate. The independence of C from a spe-
cific strain value ε is assumed based on the findings in Figure 3.2. The difference in the stress decay
∆σ∗(ε̇1, ε̇2,ε) and the ratio between the corresponding dynamic stresses, σinit(ε̇2,ε)/σinit(ε̇1,ε), for two
different strain rates ε̇1 and ε̇2 at a specific strain level ε can be determined from Equation (3.4) (see
Figure 3.3(a)).

∆σ
∗(ε̇1, ε̇2,ε) = σinit(ε̇2,ε)−σinit(ε̇1,ε) = ∆σ(ε̇2,ε)−∆σ(ε̇1,ε)

=C(ε̇2)σinit(ε̇2,ε)−C(ε̇1)σinit(ε̇1,ε)

→ σinit(ε̇2,ε)

σinit(ε̇1,ε)
=

1−C(ε̇1)

1−C(ε̇2)

(3.4)

If C(ε̇) is known, the dynamic stress-strain diagram for any strain rate ε̇2 can be calculated using the
stress-strain diagram determined at any other strain rate ε̇1.

The value of C(ε̇) presumably depends on the material characteristics of the reinforcing bar. It can be
determined empirically using the measured stress decays at various strain rates, applying Equation (3.3).
However, while the stress at the beginning of the stress decay σinit(ε̇,ε) was measured, the static stress
σ0(ε) would theoretically only be reached after an infinitely long stop, and clearly was not reached in
most of our experiments (see Section 3.3.1). Hence, the following procedure was used to estimate the
decay from dynamic to static stress (see Figure 3.3(b)):

The results shown in Figure 3.2 imply that stresses had (almost) fully decayed after machine stops
of 2 minutes duration for the experiments with a strain rate of 1 ‰/s. Assuming the static stress σ0(ε)
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3.3 Results and Discussion

Tab. 3.1 – Mean and Coefficient of Variation CoV for the normalised stress decay C(ε̇) for the three Series A1-A3
(CW, QST and QST-R reinforcing bars).

strain rate [‰/s] 0.004 0.01 0.04 0.1 0.4 1.0

CW mean [%] 5.32 5.07 6.12 7.13 7.31 8.06

CoV [%] 19.2 14.9 12.0 36.1 27.7 28.9

QST mean [%] 2.36 3.18 5.77 5.75 7.31 6.84

CoV [%] 49.9 37.9 32.3 20.0 36.0 28.9

QST-R mean [%] 4.99 5.44 4.91 5.51 5.57 6.71

CoV [%] 5.4 5.6 8.9 9.3 12.9 25.1

to be independent of the applied strain rate, as proposed by [95], its value observed with a strain rate
of 1 ‰/s, σ0(ε̇1 =1 ‰/s, εi), at a specific strain εi equals the static stress observed at the same strain εi

for all experiments of one series conducted with any other strain rate. Thus, the static stress obtained
at ε̇1 =1 ‰/s is used as reference static stress σ0,re f (εi). The stress decay in a test with any other strain
rate ε̇2 is then determined by the difference between the stress at the beginning of the machine stop,
i. e. σinit(ε̇2,εi), and σ0,re f (εi) = σ0(ε̇1 =1 ‰/s,εi). Since the machine was stopped manually at distinct
strain levels, the actual strains ε j at stopping differed slightly from the targeted strain level εi. Hence, the
reference static stress σ0,re f (ε j) – which was not directly measured at this same strain – was corrected
based on the measured dynamic stresses in the experiments with a strain rate of 1 ‰/s, assuming the
stress decay ∆σ(ε̇1,εi) to be constant.

3.3.3 Determined values for normalised stress decay C(ε̇) and conclusions

Figure 3.4 shows the normalised stress decay C(ε̇) = ∆σ(ε̇,εi)/σinit(ε̇,εi) for Series A1, A2 and A3 as
a function of the applied strain rate. The symbols indicate the corresponding strain level at which the
machine was stopped. Results deviating by more than 40% from the median for Series A2 (QST) or 15%
of the median for Series A1 and A3 (CW and QST-R), shown in grey, were treated as outliers and were
not considered for the regression of C(ε̇). Table 3.1 contains the mean and coefficient of variation CoV
for each strain rate and test series.

The results clearly indicate that higher strain rates lead to larger stress decays, approximately fol-
lowing a logarithmic relation. As the static stress σ0(ε) is constant, the measured dynamic stress thus
increases with higher strain rates, to an extent depending on the steel type. Whereas for QST-R reinfor-
cing bars the increase is rather low, it is more pronounced for the CW and quite considerable for QST
reinforcing bars. Note that there is a significant difference between dynamic and static stress even for
very low strain rates. To correctly validate any calculation model with experimental results, the authors
therefore recommend using dynamic rather than static steel characteristics, as in many conducted exper-
iments the applied strain rate – particularly at failure – is still higher than the smallest strain rate applied
in the present test series.

A regression of the data shown in Figure 3.4 with a logarithmic formulation yields an empirical estima-
tion of C(ε̇):

C(ε̇) =
∆σ(ε̇,εi)

σinit(ε̇,εi)
= q+m · log(ε̇)≥ 0 with ε̇ in [‰ /s] (3.5)

The coefficients q and m can be determined separately for each type of reinforcing steel and are
reported in Table 3.2. As C(ε̇) has to be positive to represent a physically meaningful stress decay, the
equation is only valid for applied strain rates ε̇ ≥ ε̇min = 10−q/m. Table 3.2 also reports the minimum
strain rate for the given coefficients.
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Fig. 3.4 – Normalised stress decay as a function of the applied strain rate in the tensile test. Experimental results
are shown in black and grey, the corresponding regression line in red, and the results of Lampert et al.
[98] in blue for comparison. (a) A1: hot-rolled, cold stretched reinforcing bars, coiled (CW); (b) A2:
QST reinforcing bars, straight; (c) QST-R reinforcing bars, coiled.

The scatter of the data shown in Figure 3.4 differs depending on the reinforcing bar type. While the
CW and QST-R series show a comparably low variation, the scatter in the QST series is higher, particu-
larly for higher strain rates. Note that the static stress σ0(ε) for experiments with strain rates lower than
1 ‰/s was calculated using the procedure described in Section 3.3.2, which may affect the accuracy, and
that the given regression coefficients are strictly speaking only valid for the tested samples or production
batches of reinforcing steel. Nevertheless, the results can serve as an estimation for calculations using
the characteristics of other batches of the same reinforcing bar type.

In Figure 3.4 the results of the experiments of Lampert et al. [98] are included in blue. Their test
results obtained for the steel types Caron, Roto, and Tor are compared with the results of the CW series,
as they are also cold-worked steels. The relaxation as a function of the strain rate was less pronounced
in their tests compared to the CW series, although the slope of a possible regression is similar. The steel
type Box is compared with the QST series, although it is not a quenched and self-tempered reinforcing
steel, but a hot-rolled steel without further treatment (traded as “naturhart” in German). However, its
stress-strain diagram is similar, showing a pronounced yield plateau at about 430 MPa, with a tensile
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Tab. 3.2 – Model coefficients for different types of reinforcing steel in Equation (3.5).

CW QST QST-R

q [-] 0.0728 0.0762 0.0587

m [-] 0.0095 0.0183 0.0041

ε̇min [‰/s] 2.2 ·10−8 6.9 ·10−5 4.8 ·10−15

strength of 590 MPa at a strain of 17%. The results of normalised stress decay as a function of the strain
rate are almost equal to the QST series.

It is worth noting the implications of the findings on the periodic quality monitoring of reinforcing
steel. According to EN ISO 6892-1:2016, the strain rate for determining the tensile strength can be
chosen freely among the values 0.25 ‰/s, 2.0 ‰/s or 6.7 ‰/s for method A (control of cross-head via
extensometer) or up to 8 ‰/s for method B (control of cross-head via force measurement). To estimate
the effect of these high strain rates, the normalised stress decay can be approximated using Equation
(3.5), and the stress ratio between two different strain rates can be determined from Equation (3.4) for
any given strain. Table 3.3 shows the results of these calculations for the admissible strain rates of EN
ISO 6892-1:2016. Assuming that a batch of reinforcing bars exhibits a yield stress fy of 490 MPa and a
tensile strength fu of 650 MPa at a strain rate of 0.25 ‰/s, a yield stress of approximately 505 MPa and
a tensile strength up to 670 MPa will be measured at a strain rate of 8 ‰/s (QST reinforcing bar). With a
given minimum threshold of 500 MPa for the yield stress [145], the same batch would either fail or pass
the quality control, depending on which strain rate was applied for the tensile test. The authors therefore
highly recommend indicating the applied strain rate for every tensile test and, eventually, including a
correction factor for the strain rate used in a future revision of EN ISO 6892-1:2016.

3.3.4 Validation of proposed values for C(ε̇)

In Series A4, varying strain rates were applied during the tensile test of one reinforcing bar, similar to the
experiments of [95]. In Figure 3.5, changes in strain rate at various strain levels and the corresponding
sudden change in stress are clearly visible. With the values of Table 3.2 and Equations (3.4) and (3.5),
these stress changes can be predicted using the stress before each change in strain rate. Therefore, this
test can serve as a validation for the determined regression. Considering the variability of the results of
tensile tests even in the same batch of reinforcing bars, the predicted stresses (red lines in Figure 3.5) due
to changes in strain rate match the original data very well, except for the QST reinforcing bars at higher
load levels.

Tab. 3.3 – Estimated normalised stress decay C(ε̇) and stress ratio for various strain rates, and transformation to
absolute stress values for yield stress and tensile strength, fy and fu, respectively.

ε̇ [‰/s] C(ε̇) [%] σ(ε̇)/σ(ε̇ = 0.25‰/s) [-] estimated fy [MPa] estimated fu [MPa]

CW QST QST-R CW QST QST-R CW QST QST-R CW QST QST-R

0.25 6.7 6.5 5.6 1.000 1.000 1.000 490 490 490 650 650 650

2.0 7.6 8.2 6.0 1.009 1.018 1.004 495 499 492 656 662 653

6.7 8.1 9.1 6.2 1.015 1.029 1.006 497 504 493 660 669 654

8.0 8.1 9.3 6.2 1.016 1.030 1.007 498 505 493 660 670 654
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Fig. 3.5 – Stress-strain diagrams of tensile tests of Series A4 at varying strain rates as indicated. In red, the mod-
elled stresses and the deviation from the experimental curve are shown. (a) QST reinforcing bar; (b) CW
reinforcing bar.

3.4 Conclusions

This study investigated the effect of quasi-static strain rates between 0.004 ‰/s and 1.0 ‰/s on the
stresses in the plastic range for reinforcing bars of three different types (hot rolled & cold-stretched,
hot-rolled & QST in straight bars, and hot-rolled & QST on coils). Based on 41 tensile tests with various
quasi-static strain rates, it was found that compared to static stresses, dynamic stresses increase logar-
ithmically up to 8% with increasing strain rate. Furthermore, experiments confirmed that the preceding
strain rate does not influence the static stress, but affects the relaxation time required to reach the static
stress when pausing a displacement-controlled test. A model was proposed which describes the relation
between static and dynamic stress by a function C(ε̇) only depending on the strain rate. The coefficients
of this function depend on the material characteristics and may vary for different steel types, maybe
even among different production batches. Nevertheless, the values given in Table 3.2 can be used as first
estimates. The model matches very accurately with the results of the validation tests.

The implications of the findings on the periodic quality monitoring of reinforcing steel production
were discussed. Since the definition of yield stress and tensile strength is highly dependent on the applied
strain rate, it is highly recommended to document the strain rate used for each tensile test. The authors
suggest implementing a correction factor for the strain rate used in a future version of the standard EN
ISO 6892-1:2016.

Furthermore, the findings of this study related to the influence of strain rate on the stress-strain beha-
viour of reinforcing bars are an important step towards a better understanding of the overall response of
corroded reinforcing bars. They allow to reliably separate effects induced by the applied strain rate in ex-
periments on corroded reinforcing bars from other effects induced by the corrosion damage. One of these
effects, the influence of distinct microstructure layers in QST reinforcing bars, has been investigated in a
parallel study, and is discussed in a companion paper [71]; further effects, such as the three-dimensional
stress states near localised corrosion pits, or bending moments due to a shift of the neutral axis in case of
unilateral damage, are currently being researched by the authors, in order to finally be able to accurately
assess the residual safety of corroded reinforced concrete structures.
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Notation

C(ε̇) Strain rate coefficient, C(ε̇) = 1−σ0(ε)/σinit(ε̇,ε)

b Magnitude of Burgers vector
fy, fu Steel yield stress, steel tensile strength
k Dislocation orientation factor (Schmid factor)
m, n, q Fitting parameters
v Mean dislocation velocity
t Time
γ̇pl Macroscopic plastic shear strain rate
ε, εeng Steel strain (in general, engineering)
ε̇, ε̇el , ε̇pl Strain rate (total, elastic amount, plastic amount)
ρm Mobile dislocation density
σ, σeng Steel stress (in general, engineering)
∆σ(t) Steel stress decay over time
∆σ(ε̇,ε) Steel stress decay for t → ∞, given strain rate ε̇, and given strain level ε

∆∗σ(ε̇1, ε̇2,ε) Difference in steel stress decay for two different strain rates ε̇1 and ε̇2 at a given strain level ε

σ0(ε), σ0,re f (ε) Static stress and reference static stress at a given strain level ε

σinit(ε̇,ε) Initial stress before stress decay for given strain rate ε̇ and given strain level ε

τ Microscopic shear stress
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4 Influence of cross-section loss on the stress-strain
characteristics of corroded quenched and
self-tempered reinforcing bars
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This chapter presents the findings of a comprehensive series of tensile tests on hot rolled, quenched
and self-tempered (QST) reinforcing bars to investigate the influence of the varying mechanical char-
acteristics exhibited by the different microstructure layers over the cross-section. Corroding QST bars
change their apparent mechanical properties with increasing cross-section loss and thus influence the
load-carrying and deformation capacity of a corresponding reinforced concrete member. The chapter
corresponds to the published version of the following article:

Haefliger, S. & Kaufmann, W. ‘Influence of cross section loss on the stress-strain characteristics
of corroded quenched and self-tempered reinforcing bars,’ Construction and Building Materials,
vol. 282, p. 122598, 2021. doi: 10.1016/j.conbuildmat.2021.122598.

The lead author (Severin Haefliger) planned and conducted the experiments, and developed the presented
modelling approaches based on the obtained experimental data under the supervision of the second author
(Walter Kaufmann).

Abstract

Many ageing reinforced concrete structures are affected by severe damage of reinforcing bars due to
corrosion. Accurate knowledge of the stress-strain characteristics of the installed reinforcing bars is an
indispensable prerequisite for the realistic assessment of the structural safety of such structures. The
reduction in cross-section does not only reduce the load-bearing capacity of the reinforcing bars, but in
case of hot-rolled, quenched and self-tempered (QST, process branded as “Tempcore®” or “Termex®”)
reinforcing bars also changes their structural characteristics. Since these bars exhibit three distinct mi-
crostructures in core, transition zone and outer annulus, each with different mechanical characteristics,
the overall stress-strain behaviour of a corroded QST reinforcing bar depends on the composition of its
residual area, which varies significantly with ongoing corrosion. As QST reinforcement is widely used
in concrete structures worldwide, this effect is of high importance for any structural safety assessment of
structures affected by corrosion.
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4 Influence of cross-section loss on the stress-strain characteristics of corroded quenched and self-tempered reinforcing bars

This study investigates the influence of microstructure on the strength and ductility of QST reinforcing
bars subjected to axisymmetric cross-section loss. In a comprehensive experimental campaign, 31 tensile
tests on QST reinforcing bars with continuously reduced diameters were conducted, exploring the con-
tribution of the concentric layers of the cylindrical cross-section to the overall behaviour. Experimental
results indicate a pronounced variation of strength and ductility over the cross-section. Based on these
observations, a simplified model was developed for the relationship between loss of cross-section and
mechanical characteristics. A validation shows excellent agreement between the model and experimental
data.

4.1 Introduction

4.1.1 Overview of the effects of corrosion and on the focus of this study

The reinforcement of many ageing concrete structures is affected by local and /or uniform reinforcement
corrosion due to chloride attack and carbonation, respectively. Corrosion reduces the residual load-
bearing capacity by several mechanisms [14, 16, 34]. These affect the reinforcement, the concrete,
and the interaction between reinforcement and concrete. The initial passive layer of the reinforcement,
caused by the high alkalinity of concrete, is either attacked by carbonation of concrete or the presence
of chlorides, leading to a uniform or local reduction of the reinforcing bars’ cross-section, respectively.
Subsequently, concrete may be damaged by splitting or spalling due to the volume expansion of the
corrosion products [14, 16, 26], leading to a reduction of the concrete area. Furthermore, bond between
reinforcement and concrete is reduced as a result of the reduced cross-section of the reinforcing bars,
lubricating effects of the corrosion products, and the presence of cracks parallel to the reinforcement [24,
26, 56], which potentially leads to, e. g. anchorage failures and larger crack openings.

Given this multitude of corrosion effects, the structural safety of corroded structures clearly does not
depend exclusively on the residual mechanical properties of the corroded reinforcing bars. Nonetheless,
accurate knowledge of the stress-strain characteristics of damaged reinforcing bars is a prerequisite to
determine the load-bearing and deformation capacity of corroded structures. The following main effects
on this behaviour were identified by the authors: (i) the applied strain rate [69, 95, 98]; (ii) various steel
microstructures within the cross-section in quenched and self-tempered (QST) reinforcing bars [11, 12,
55, 82, 139]; (iii) a three-dimensional stress state near the damage zone for local corrosion [80]; and (iv)
bending effects for localised corrosion pits due to a shift in the neutral axis [80, 166].

The present paper addresses the effect of cross-section loss on the stress-strain characteristics of QST
reinforcing bars, which contain distinct microstructure layers within their cross-section, focusing on
the differences in the mechanical characteristics of the distinct layers. Due to these differences, QST
reinforcing bars alter their overall mechanical behaviour continuously when corroding, depending on the
ratio of areas of the residual layers. Few studies [55, 139] focused on this effect, and only one recent
study [82] succeeded in giving a sound mechanical explanation of the resulting stress-strain behaviour.

In order to isolate this influence from the remaining effects, which are closely related to the geometry
of the corroded reinforcing bars and have to be superimposed later on, an experimental campaign on
reinforcing bars with axisymmetrically reduced cross-section was carried out. The experiments indicate
a pronounced variation of strength and ductility over the cross-section. Based on these findings, a sim-
plified model is developed to describe the relationship between the loss of cross-section and mechanical
characteristics.

4.1.2 Effects not considered in this study

The further effects (i, iii, iv) mentioned above are beyond the scope of the present paper. The effect of
strain rate (i), known for decades, has been revisited and complemented by data for modern reinforcing
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4.1 Introduction

steels in a parallel study, and is discussed in a companion paper [69]. Three-dimensional stress states
(iii) and bending effects (iv), which are closely related to the geometry of the corroded reinforcing bar
and particularly relevant for natural corrosion, are briefly discussed in the following, along with two
additional aspects specific to QST reinforcing bars.

Doubtlessly, reinforcing bars embedded in concrete do not corrode axisymmetrically along the bar
axis, particularly in the case of pitting corrosion. Despite the widely recognised importance of the pit
geometry for the residual reinforcement characteristics, in most studies, the implications of corrosion
are treated by means of statistical approaches [10, 20, 46, 53, 83], correlating the global mass loss with
the global mechanical properties of the reinforcing bars; this is clearly of limited use for local corrosion.
Only few studies [8, 58, 86, 102, 166] consider the variation of the mechanically relevant geometrical
properties of corroded reinforcing bars (Ae f f , Iyy, Izz), and even less [8, 58, 166] correlate these properties
with experimental results from tensile tests. To the authors’ knowledge, Hingorani et al. [80] were
the only ones who theoretically studied the effects of bending due to non-axisymmetric corrosion, and
investigated the presence of a three-dimensional stress state for localised corrosion. Such investigations
on a sound mechanical basis are essential to understand the implications of the pit geometry on the
mechanical characteristics of corroded reinforcing bars. Authors are currently working on appropriate
models following this approach.

In QST reinforcing bars, corrosion implies further, potentially negative effects on the load-deformation
behaviour apart from the different mechanical characteristics of the distinct layers studied in this paper.
These effects include a different corrosion behaviour than observed for reinforcing bars with uniform mi-
crostructure [21], affecting the pit geometry and hence, the local mechanical behaviour. Furthermore, the
production process may cause surface micro cracks and impurities within the microstructure, which in
combination with chloride ingress have been associated with stress corrosion [11, 12]. Some studies also
point to possible issues related to a potential instability between the different phases of QST reinforcing
bars [11, 13]. All these effects are, however, beyond the scope of the present paper.

4.1.3 Production processes and related implications of cross-section loss

Today, mainly two production processes for reinforcing bars are used: Hot-rolling and cold-working
(CW) and hot-rolling, quenching and self-tempering (QST). In the CW process, the hot-rolled reinforcing
bar slowly cools down after the last rolling, which leads to a homogeneous microstructure over the cross-
section, consisting of a mixture of ferrite and perlite with high ductility but low yield stress. To increase
the strength, bars are mechanically stretched (cold-worked) after cooling. Due to the plastic deformation
induced by the process, such reinforcing bars lack a pronounced yield plateau and exhibit a lower strain
at peak stress, as well as a reduced strain hardening, i. e. a lower ratio of tensile strength to yield stress.

Though first produced already in the 1970s [137], QST reinforcing bars have drawn attention only
recently, as they have been produced in large quantities mainly since the early 1990s. In the QST pro-
cess, the hot-rolled reinforcing bar undergoes a brief, controlled water cooling (quenching), which leads
to the formation of high strength, low-ductile martensite at the outer part of the bar. This outer annulus
of the cross-section is then tempered by the still hot ferritic/perlitic core with lower strength but high
ductility. The final reinforcing bar is a composition of ferrite/perlite in the core, bainite in the trans-
ition zone and martensite in the outer annulus, combining the mechanical characteristics of these steel
microstructures. Hence, a pronounced yield plateau, a higher strain at peak stress and a higher strain
hardening are observed for this type of reinforcing bar. Due to these favourable characteristics and the
efficient production process, QST reinforcing bars have become the most used type of reinforcement in
many regions worldwide.

The mechanical characteristics of QST reinforcing bars with inhomogeneous microstructure over
their cross-section thus depend on the characteristics of the different steel microstructures and their rel-
ative areas. If a reinforcing bar is damaged, e. g. due to corrosion, its mechanical characteristics alter –
continuously in case of progressing corrosion –, starting at the martensitic outer annulus with its higher
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strength. Hence, the reduction in load-bearing capacity is higher than the loss of cross-section. Accurate
knowledge of the behaviour of damaged QST reinforcing bars is thus essential to accurately assess the
residual load-bearing and deformation capacity of structures affected by corrosion.

4.1.4 Current state of research on the static implications of the different microstructures
for QST reinforcing bars

Fernandez et al. [55] carried out tensile tests on QST reinforcing bars with initial diameter Ø12 mm
and various reduced diameters, and reported variable strengths of the layers (annuli) over the cross-
section. They succeeded in calculating the yield stress and tensile strengths of each layer and built up
a model based on these stress values. However, they completely ignored the influence of the differing
microstructure composition on the ductility of the reinforcing bar. Santos and Henriques [139] conducted
tensile and hardness tests on QST reinforcing bars with an initial diameter Ø20 mm and various reduced
diameters. They reported the yield stress and tensile strength of the specimens and the hardness over the
diameter, which allows for determining the boundaries of the distinct microstructure layers. Additionally,
the observed strains at yielding and peak stress are documented, but the results did not indicate any
variation regarding the distinct layers. Cadoni et al. [31] thoroughly investigated the hardness over the
diameter of a QST reinforcing bar Ø40 mm, including a specification of the microstructure. Moreover,
they extracted samples of diameter Ø6 mm and 40 mm length out of the different layers, on which they
performed tensile tests. They provide stress-strain diagrams of the different layers, clearly indicating
the higher strength and lower ductility of the outer annulus compared to the core and the undamaged
reinforcing bar. Rocha et al. [134] performed hardness tests over the diameter and a specification of
the microstructure. Hortigón Fuentes et al. [82] performed Vickers hardness tests over the diameter
and tensile tests on QST reinforcing bars with an initial diameter Ø14 mm and with reduced diameter.
To the authors’ knowledge, they were the first and so far only to comprehensively report and discuss
the behaviour of the distinct microstructure layers, providing some stress-strain diagrams of the layers’
behaviour as well as a finite element model.

Although the importance of the topic was recognised by the research community about a decade
ago and several studies and experimental campaigns were carried out, a sound mechanical modelling
approach for the influence of the distinct microstructure on the behaviour of corroded QST reinforcing
bars was established only recently [82]. This study presents a similar, but more general approach of
a consistent mechanical model, which is based on the experimental results of the conducted tensile
tests. It is capable of representing the stress-strain behaviour of the distinct microstructure layers and the
thereof composed reinforcing bar. The model therefore allows investigating the effects of inhomogeneous
microstructure for corroded QST reinforcing bars without any restraints regarding damage geometry.
Nevertheless, it is important to notice that other relevant effects in the case of pitting corrosion (pit
geometry, impurities in microstructure) are not investigated in this study and thus not covered by the
model.

4.2 Experimental programme

The experimental campaign was carried out in the structural laboratory at ETH Zurich and comprised 31
specimens of QST reinforcing bars, similar to those investigated in [69]. The specimens with a nominal
(initial) diameter of 20 mm were all taken from the same production batch. Over a length of 250 mm,
their cross-section was reduced axisymmetrically by machining on a lathe (turning) to target remaining
diameters of 10 mm (3 bars);

{
11, 12, 13, 14, 15, 16, 17

}
mm (2 bars each); 18 mm (6 bars); and{

18.5, 19
}

mm (2 bars each). As reference, 4 bars were tested without any diameter reduction. The
total specimen length was generally 500 mm; for small remaining diameters, it was reduced to improve
machining precision (to 370 mm for diameters 16 and 17 mm and to 310 mm for smaller diameters,
respectively). Constant cooling of the reinforcing bars during turning prevented heat inflow and ensured
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(a) (b)

Fig. 4.1 – (a) Heads of universal testing machine with specimen, spherical hinges and LVDT; (b) specimens with
residual diameter 11, 13, 16, 18, and 18.5 mm.

that steel microstructure and steel characteristics were not altered. The shape of all reinforcing bars
was scanned before testing using an optical three-dimensional scanner (ATOS Core by GOM). This
provided a very accurate measurement of the residual diameters, which differed slightly from the target
values. The geometry of diameter reduction was chosen to isolate the effect of the different mechanical
characteristics of the distinct microstructure layers, rather than trying to simulate the pit geometry of
reinforcing bars affected by natural pitting corrosion.

When testing short specimens, it is essential to avoid the influence of bending moments due to any
geometrical misalignment of the machine heads or the clamping. For this purpose, load introduction
heads with spherical hinges were installed on the tensile testing machine (see Figure 4.1). Specimens
were connected to the load introduction heads using stiff slotted steel plates (“two-part washers”). They
were loaded displacement controlled until failure at a constant strain rate of 0.1 ‰/s, using an LVDT
of 100 mm gauge length for elongation measurement in the part with reduced diameter. Additionally,
for this type of reinforcement and for comparison for a cold-worked reinforcing bar presented in [69]
(referred to as CW reinforcing bar), Vickers hardness distribution over the cross-section was determined
on cut and grinded samples, and the microstructure was analysed after polishing and edging (Nital 3%
for 5 s), using a microscope [27].

4.3 Results and Discussion

4.3.1 Microstructure analysis and Vickers Hardness Test

Cuts of the reinforcing bars of this test series and of a CW reinforcing bar reveal the distinct micro-
structure of the two types of reinforcing bars. Figure 4.2 shows an enlargement of the surface of the
different prepared cuts and photos of the corresponding samples (right lower corners). In Figures 4.2(a)
and (c), the various material layers of the QST reinforcing bars are visible even by eye (photos), whereas
the CW reinforcing bar visually shows a homogeneous surface (Figure 4.2(b)). Figures 4.2(a) and (c)
show enlargements of the microstructure of the QST reinforcing bar, for the central zone and for the
edge zone. The edge zone exhibits needle-like crystals which are typical for martensite [27]. The central
zone exhibits a structure with larger crystals, typical for a mixture of ferrite and perlite [27]. The same
crystal structure is found over the whole cross-section for the CW reinforcing bar, see Figure 4.2(b).
A Vickers hardness test performed on the QST reinforcing bar (Figure 4.2(d)) exhibits a zone with an
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Fig. 4.2 – (a) Microstructure in the centre of QST reinforcing bar; (b) microstructure close to edge of CW reinfor-
cing bar; (c) microstructure close to edge of QST reinforcing bar; (d) results of Vickers hardness tests
over cross-section for QST and CW reinforcing bar. Red lines denote layer boundaries of core, transition
zone and outer annulus of QST reinforcing bar. For r/R > 1, values correspond to the hardness of the
adjacent rib.

almost constant hardness of 170 kgf/mm2 up to a radii ratio rb1/R = 0.65, a zone of increasing hardness
up to rb2/R = 0.85, followed by a zone of again fairly constant hardness of 270 kgf/mm2. The hardness
of the various zones additionally indicates the distinct material layers of the QST reinforcing bars and
is consistent with the results of the microstructure analysis. A comparison of the location of the layer
boundaries with literature values in Table 4.1 shows a good agreement. Figure 4.2(d) also compares the
hardness over the cross-section of the QST and CW reinforcing bars, and illustrates that the CW reinfor-
cing bar exhibits a fairly constant hardness over its cross-section, confirming its uniform microstructure.

Tab. 4.1 – Layer boundaries between core and transition zone, and transition zone and outer annulus, obtained
from Vickers Hardness tests in various test series.

Researcher Cadoni
[31]

Cadoni
[31]

Santos
[139]

Fernandez
[55]

Bautista
[21]

This
study

diameter 2R [mm] 40 32 20 12 12 20

core - transition zone rb1/R [-] 0.5 0.5 0.6 0.66 0.79 0.65

transition zone - outer annulus rb2/R [-] 0.85 0.8 0.8 0.92 0.88 0.85
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Fig. 4.4 – Definition of variables for the calculation of the characteristics of the distinct layers.

4.3.2 Results of tensile tests

Figure 4.3(a) shows the results of the tensile tests on the specimens for varying residual diameters.
Stresses are calculated using the true (as opposed to nominal) residual cross-sectional area determined by
laser scanning. It can be seen that the yield stress and tensile strength decrease significantly with reduced
residual diameter, while the strain at peak stress exhibits a slight increase. In Figure 4.3(b), the measured
yield stresses and tensile strengths are plotted against the residual effective diameter dc, confirming
the higher strength with increasing (i. e. less reduced) diameter. The vertical red lines correspond to
diameter ratios r/R = 0.65 and 0.85, respectively (with R = 20.20mm being the true equivalent initial
bar radius, determined by laser scanning). They separate the three distinct regions determined by Vickers
hardness tests. For diameters below dc = 13.1mm (= 2x 0.65R), as well as diameters above dc = 17.2mm
(= 2x 0.85R), the tensile strength is fairly constant, with a transition zone of increasing strength between
these diameters. This result substantiates the findings of the Vickers hardness tests.

To determine the mechanical characteristics of the distinct layers (annuli), the contribution of Layer j,
bounded by diameters di−1 = 2ri−1 and di = 2ri (see Figure 4.4), to the total force of the reinforcing bar

1The published article contains an error in the legend of Figure 4.3(b) (reversed legend entries). The legend was corrected
accordingly.
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Fig. 4.5 – Calculated stress-strain diagrams for (a) core, (b) transition zone and (c) outer annulus. Triangles indic-
ate peak stress and corresponding strain. In grey, the curve of an original reinforcing bar of the same
batch is shown for comparison.

is calculated at specific strain values ε using Equation (4.1):

σ j(ε) =
Aiσi(ε)−Ai−1σi−1(ε)

Ai −Ai−1
(4.1)

Here, Aiσi(ε) denotes the measured force at a specific strain ε for a specimen with residual effective
diameter di, whereas Ai−1σi−1(ε) denotes the measured force at the same strain ε for a specimen with
the consecutive smaller diameter di−1. The difference in force is attributed to Layer j, having an area of
Ai −Ai−1.

Repeating this calculation for various strain values ε and all tested diameters, one gets the stress-strain
diagrams for each Layer j shown in Figures 4.5(a)-(c). All layers up to diameter dc = 13mm exhibit
essentially the same mechanical behaviour; they belong to the perlitic/ferritic core of the reinforcing
bar. The results for yield stress and tensile strength match the values of the directly obtained stress-
strain diagrams of the corresponding specimens, see Figures 4.3(a) and (b). With increasing diameter,
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layers between dc = 13 and 18 mm show an increasing yield stress and tensile strength and a decreasing
strain at peak stress. The outer layers, between diameter dc = 18mm and the initial diameter, again
exhibit a more uniform mechanical behaviour. From Figure 4.5(c), it can be seen that the strains at peak
stress are very similar, but the yield stress and the tensile strength in the outer layers vary more. The
observed differences are presumably due to variations of the martensite content in the outermost layers:
The process of a uniform mechanical reduction of the cross-section is initially very demanding due to the
ribs, causing uncertainty when determining the centre of the bar area. Hence, the latter may deviate from
the bar axis, such that not all material that is removed is indeed part of the martensitic outer annulus.
Although having the same effective diameter, these specimens thus exhibit different tensile strengths.
However, the exhibited stress values of the outer annulus (between 700 and 800 MPa) are in all cases
significantly higher than those of the reinforcing bar without any reduction in cross-section (677 MPa,
see grey curve in Figure 4.5). This corresponds to results commonly found in literature ([31, 55, 82]).
The undamaged reinforcing bar can be interpreted as a composition of the different layers, and its stress-
strain behaviour thus equals the integral of all layer characteristics, i. e. the sum of layer characteristics
weighted by their corresponding areas when using discrete layers. Consequently, the martensitic outer
annulus has to exhibit a strength higher than the composite bar, as the ferritic/perlitic core exhibits a
strength lower than the one of the composite bar.

Comparing the stress-strain diagrams in Figure 4.5, one observes that a pronounced yield plateau
exists for the ferritic/perlitic core and the transition zone up to dc = 17mm, whereas the martensitic
outer annulus shows a behaviour similar to hot-rolled and cold-stretched reinforcing bars with a gradual
transition to hardening at the end of the elastic phase, lacking a yield plateau.

A substantial difference in the strain at peak stress is visible when comparing the results of the
martensitic layer (Figure 4.5(c), εeng,mart( feng,u) ≈ 60‰) and those of the undamaged reinforcing bar
(Figure 4.5(c), grey line, εeng,tot( feng,u)≈ 100‰). In the engineering stress-engineering strain diagram –
as commonly used in structural engineering –, this point marks the end of uniform elongation in a tensile
test, i. e. the beginning of necking in the failure zone, and corresponds to the tensile strength of the spe-
cimen, since engineering stresses are related to the initial, constant area. Nevertheless, the material itself
undergoes much higher stresses in the necking phase if the true area A(ε) is considered [136]. If strain
compatibility without slip between layers is postulated for the entire reinforcing bar during a tensile test,
true strains are equal across any cross-section and consequently, the martensitic layer is stretched beyond
its strain at peak engineering stress. As in the experiments neither cracks on the specimens’ surface nor
local necking were observed, it is highly probable that at strains beyond εeng,mart( feng,u), the area of the
martensitic layer – supported by the ferritic/perlitic core – was reduced uniformly, leading to an increase
in true stress. As soon as the tensile strength of the ferritic/ perlitic core is reached at higher strains,
necking over the entire cross-section occurred at the weakest point along the reinforcing bar, leading
to a failure of the whole reinforcing bar. Hortigón Fuentes et al. [82] independently set up the same
hypothesis, supported by experimental indications obtained from metallographic measurements of the
thicknesses of core and outer annulus.

Figure 4.6(a) shows the true stress-true strain diagram for the layers between diameter dc 18 and
20 mm (similar to Figure 4.5(c), where conventional engineering stresses and strains were used). The
general shape of the curve is not altered, but the strain at peak stress increases substantially (compare
grey lines in Figure 4.6(a)). The conversion from engineering to true stresses and strains was carried out
using the relationships:

εtr = ln(1+ εeng) (4.2)

σtr = σeng(1+ εeng) (4.3)

where Equation (4.2) can be derived by solving the differential equation of the true strains dεtr = dl/l
[136], and Equation (4.3) follows from the assumption of constant volume [136]. Hence, these equa-
tions apply only as long as no local necking (which involves the formation of voids) occurs, i. e. for
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with corresponding residual diameter dc.

εtr,max ≤ ln
(
1+ εeng,tot( feng,u)

)
≈ ln(1+ 0.1) = 0.095, with εeng,tot( feng,u) = strain at peak stress of the

undamaged reinforcing bar in engineering values. This value is reached shortly after passing the max-
imum true stress in Figure 4.6(a).

Figure 4.6(b) compares the true strains corresponding to the true tensile strength of the distinct lay-
ers (calculated values) to the results of the tensile tests (measured values). It can be seen that for the
martensitic outer annulus between diameter dc = 18 and 20 mm, true strains closely match the true
strains of the composite reinforcing bar. This result supports the hypothesis that the martensitic outer
annulus is strained above its strain at peak stress determined from the engineering stress-strain diagram,
as outlined in the previous section. Since the elongation beyond peak engineering stress of the outer an-
nulus is controlled by the more ductile perlitic/ferritic core, its true strains at peak true stress have to be
higher than in engineering values, which represent the behaviour of the material without the support of
the core (and for which the true strains at peak true stress are always smaller than in engineering values,
see Equation (4.2)).

4.3.3 Constitutive models for ferritic/perlitic core and martensitic outer annulus

In the following, constitutive relationships for the perlitic/ferritic core and the martensitic outer annulus
are proposed, that will subsequently be used to model the stress-strain behaviour of the entire reinforcing
bar composed of these two materials and bainite. Note that the basic characteristics (yield stress, tensile
strength and corresponding strains at yielding, onset of hardening and tensile strength, respectively) have
to be determined based on the true stress-true strain diagrams. They cannot be directly back-calculated
from the values obtained using engineering stress-strain diagrams as outlined below. However, once the
basic values have been obtained from the stress-strain diagram in true values, they can be converted back
to their equivalent points in engineering values using Equations (4.2) and (4.3).

The following equations are used to define the constitutive relationships for the perlitic/ferritic core
(see Figure 4.7 for notation):

elastic phase, i. e. 0 ≤ εtr ≤ εtr,y = ln

(
1+
√

1+4 ftr,y/Es

2

)
:

σtr = Esεeng (1+ εeng) = Eseεtr (eεtr −1)

(4.4)
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of the martensitic outer annulus.

yielding, i. e. εtr,y ≤ εtr ≤ εtr,h :

σtr = ftr,y
eεtr

eεtr,y
= Es (eεtr,y −1)eεtr

(4.5)

hardening, i. e. εtr,h ≤ εtr ≤ εtr ( ftr,u) :

σtr = eεtr

 ftr,u
eεtr( ftr,u)

−

(
ftr,u

eεtr( ftr,u)
−

ftr,y
∣∣
εtr=εtr,y

eεtr,y

)(
eεtr( ftr,u)− eεtr

eεtr( ftr,u)− eεtr,h

)β
 (4.6)

In Equation (4.6) (and Equation (4.8) below), β is a model coefficient whose value is determined by
regression of the experimental data in true values. Table 4.2 summarises the values of the material
characteristics in true values, as determined in our test series.

The constitutive relationships for the martensitic outer annulus are defined as follows:

elastic phase, i. e. 0 ≤ εtr ≤ εtr,y,th :

σtr = Esεeng (1+ εeng) = Eseεtr (eεtr −1)
(4.7)

hardening, i. e. εtr,y,th ≤ εtr ≤ εtr ( ftr,u) :

σtr = ftr,u − ( ftr,u − ftr,y)
(

εtr ( ftr,u)− εtr

εtr ( ftr,u)− εtr,y

)β (4.8)

Figure 4.8 shows the stress-strain curves for each layer back-calculated from experiments (in grey)
and the model curves based on the Equations (4.4) – (4.8) for the perlitic/ferritic core and the martensitic
outer annulus in engineering (a) and true values (b). The models closely capture the shape of the exper-
imental curves, despite that they contain merely one single fitting parameter (the exponent β). This is
particularly noteworthy for the part with negative slope of the martensitic outer annulus in Figure 4.8(a),
at strains beyond the engineering tensile strength, which is obtained directly from the model (expressed
in true values and transformed into engineering values) by simply inserting the basic characteristics ob-
tained from the experimentally observed true stress-strain diagram. Figure 4.8 nicely demonstrates that
for the martensitic outer annulus, the tensile strength (and corresponding strain) determined from true
values differs significantly from the tensile strength (and the corresponding strain) obtained directly in
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Fig. 4.8 – Stress-strain diagram of perlitic/ferritic core and martensitic outer annulus back-calculated from exper-
iments in grey, and constitutive material model in red in (a) engineering and (b) true values. Triangles
denote is the peak stress in the experimental curves and maximum true stress in the model curves (resp.
its equivalent in engineering values), and the corresponding strains.

engineering values. Hence, the proper failure point of the material can only be captured correctly from
the true stress-strain diagram.

4.3.4 Proposed model for a composed QST reinforcing bar

Based on the two constitutive relationships (Equations (4.4) – (4.8)), the stress-strain behaviour of a
reinforcing bar composed of a perlitic/ferritic core, a banitic transition zone and a martensitic outer
annulus is obtained by integration over the cross-section. The resulting model allows to describe the
behaviour of QST reinforcing bars with intact or reduced cross-section. While all calculations have to be
carried out using true stress-strain values, the results can finally be converted to engineering values.

Tab. 4.2 – Material characteristics of perlitic/ferritic core, martensitic outer annulus, and composed original rein-
forcing bar as determined in the experiments. Stresses and strains are given in true values.

Core Outer annulus Composed reinforcing bar

Es [GPa] 205 205 205

εtr,y [-] 0.002 0.0055 0.0047

εtr,y,th [-] - 0.0034 -

εtr,h [-] 0.017 - 0.016

εtr( ftr,u) [-] 0.121 0.092 0.0969

ftr,y
∣∣
εtr=εtr,y

[MPa] 410 707 542

ftr,y
∣∣
εtr=εtr,h

[MPa] 416 - 563

ftr,u [MPa] 627 852 712

β [-] 2.94 3.4 -
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The numerical model is based on the following principles and the notation shown in Figure 4.4 and
Figure 4.7:

1. Determine rb1 and rb2 denoting the border of the core and the transition zone.

2. Obtain the constitutive relationships for perlite/ferrite and martensite (Equations (4.4) – (4.8)).

3. Determine the constitutive relationship of the bainitic transition zone, using the relationship de-
rived for perlite/ferrite (Equations (4.4) – (4.6)), but assuming a linear variation of yield stress and
tensile strength from ferrite/perlite at r = rb1 to martensite at r = rb2:

for rb1 < r ≤ rb2 :

ftr,y,bain(r) = ( ftr,y,mart − ftr,y,core)(r− rb1)
/
(rb2 − rb1)+ ftr,y,core

ftr,u,bain(r) = ( ftr,u,mart − ftr,u,core)(r− rb1)
/
(rb2 − rb1)+ ftr,u,core

εtr,y,bain = ftr,y,bain/Es

εtr,h,bain = εtr,h,core

εtr,bain ( ftr,u) = εtr,core ( ftr,u)

Es = 205GPa

β = 3.8

(4.9)

4. Calculate sum of stresses in all layers for a specific strain value ε, weighted by their area A in the
cross-section with total area Atot :

σtr,tot (εtr) =
Acore

Atot
σtr,core (εtr)+∑

j

Abain (r j)

Atot
σtr,bain (r j,εtr)+

Amart

Atot
σtr,mart (εtr) (4.10)

Note that the contribution of the bainitic transition zone is nonlinear, as the strength of the bainite
is linear in r, and the total bainitic area is quadratic in r. To determine the behaviour of a reinforcing
bar with a non-axisymmetrically reduced cross-section, the area of the damaged zone can be discretised
over r and the weighted stresses of each element summed up. In the special case of a uniform, all-sided
reduction of the cross-section, Equation (4.10) can be simplified and a discretisation be avoided. With r̃
denoting the outermost radius of the (remaining) bainitic transition zone (rb1 < r̃ ≤ rb2) and α = r̃/rb1
the ratio of radii, integration of the total yield load and tensile resistance of the transition zone yields:

Ftr,y,bain(r̃) =
∫ r̃

rb1

2rπ ftr,y,bain(r)dr

=
πr3

b1
3(rb2 − rb1)

(α−1)2(2α+1)( ftr,y,mart − ftr,y,core)+
(
α

2 −1
)

πr2
b1 ftr,y,core

Ftr,u,bain(r̃) =
∫ r̃

rb1

2rπ ftr,u,bain(r)dr

=
πr3

b1
3(rb2 − rb1)

(α−1)2(2α+1)( ftr,u,mart − ftr,u,core)+
(
α

2 −1
)

πr2
b1 ftr,u,core

(4.11)

Dividing by the total area of the transition zone

Abain(r̃) =
∫ r̃

rb1

2rπdr = π
(
r̃2 − r2

b1
)
=
(
α

2 −1
)

πr2
b1 (4.12)

one gets the mean yield stress and tensile strength, ftr,y,bain(r̃) and ftr,u,bain(r̃), respectively:
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ftr,y,bain(r̃) = Ftr,y,bain(r̃)
/

Abain(r̃)

=
πrb1

3(rb2 − rb1)

(α−1)(2α+1)
(α+1)

( ftr,y,mart − ftr,y,core)+ ftr,y,core

ftr,u,bain(r̃) = Ftr,u,bain(r̃)
/

Abain(r̃)

=
πrb1

3(rb2 − rb1)

(α−1)(2α+1)
(α+1)

( ftr,u,mart − ftr,u,core)+ ftr,u,core

(4.13)

Yield stress and tensile strength, ftr,y,bain(r) and ftr,u,bain(r), can then be substituted in Equation (4.9)
by their mean values (Equation (4.13)), and the constitutive model for bainite be written accordingly,
resulting in an average stress in the bainitic transition zone σtr,bain(r̃,εtr) independent of the discretised
radius r. The second term of the sum in Equation (4.10) can thus be rewritten as:

∑
j

Abain (r j)

Atot
σtr,bain (r j,εtr) =

Abain(r̃)
Atot

σtr,bain (r̃,εtr) (4.14)

After having developed the model outlined above, the authors became aware of a publication of
Hortigón Fuentes et al. [82], who presented a similar approach for modelling the stress-strain behaviour
of a reinforcing bar by summing up weighted true stresses in concentric layers. However, they considered
only two zones with distinct thicknesses and material characteristics, and their model, requiring finite
element calculations to obtain the behaviour of the composite reinforcing bar, neither captures reinforcing
bar rupture nor the behaviour of damaged zones. These issues are overcome with the approach proposed
here, which considers all three relevant zones of an intact or damaged QST reinforcing bar and can easily
be implemented in a simple spreadsheet. Nevertheless, the similarity of both independently developed
models and their good correlation with experimental data show their potential and confirm the underlying
hypotheses.

4.3.5 Comparison of proposed model with experimental data

Figure 4.9 compares the experimental curves with the calculations of the model proposed in Section
4.3.4. Calculations were done in true stress-strain values and the results transformed to engineering
values. Model predictions and experimental data are in almost perfect agreement.

The observed behaviour at the transition from the elastic phase to yielding (see the zoomed-in region
in Figure 4.9 (b)) merits a closer look and discussion: A distinct upper yield point with subsequent
serrated flow at a fairly constant average stress was clearly observed for the perlitic/ferritic core and the
bainitic transition zone. As documented in literature [81, 132, 136], this is typical for the plastic flow of
metals with dissolved atoms of sufficient diffusivity (e. g. interstitial carbon atoms in ferritic steel) in a
displacement-controlled tensile test. Without applied stress, the interstitial atoms diffuse to the metal’s
defects at an atomic level, known as dislocations, and subsequently impede movements along gliding
planes at low applied stresses. Once the applied stresses exceed the upper yield point, dislocations can
break free and move freely, causing an immediate drop of the stress to the lower yield point. This
process starts in a small number of crystalline grains with optimally oriented gliding planes, where local
deformations build up. Dislocations then accumulate at the boundaries to the adjoining grains and stress
increases again, until the dislocations of the adjacent grain break free, leading to a cascaded formation
of strain localisations known as Lüders bands. The process continues at variable stress – between upper
and lower yield point – until all dislocations are unpinned and able to move. At this point, the yielding
phase ends, i. e. the end of the yield plateau in the stress-strain diagram has been reached, and the phase
of strain hardening begins subsequently.
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Fig. 4.9 – (a) Comparison of model and experimental curves of reinforcing bars with uniformly reduced diameter
dc; (b) zoomed-in region between yielding and hardening of selected experimental curves.

If the composed reinforcing bar includes a martensitic outer annulus, the observed behaviour changes
markedly. Rather than exhibiting a distinct upper yield point, the slope of the stress-strain curve decreases
gradually, and the stress clearly increases during the yielding phase with increasing strain. This change in
behaviour can be explained by the fact, that the stress-strain curve of the martensitic outer annulus does
not exhibit any yield plateau when reaching the yield stress. Instead, strain hardening in the martensitic
layer immediately follows the elastic phase. Furthermore, the yield stress for martensite is almost twice
as high as the yield point of the perlitic/ferritic core ( feng,y,mart = 706MPa ≫ feng,y,core = 409MPa in the
used samples). Consequently, the stress-strain curve of the composite reinforcing bar becomes flatter at
409 MPa (core is yielding, outer annulus is still elastic). Once the end of the elastic phase of the outer
annulus is reached (706 MPa for the martensitic outer annulus or 548 MPa on average of the composed
material), the curve flattens again. In the following phase, stresses increase since the martensitic outer
annulus strain hardens, whereas the perlitic/ferritic core and the bainitic transition zone yield at constant
stress. At the end of the yield plateau of core and transition zone, these layers start strain hardening,
causing the stress-strain curve of the composite bar to become markedly steeper again. The proposed
model represents these phenomena very well.

4.3.6 Influence of microstructure on the residual tensile strength of a corroded
reinforcing bar

Figure 4.10 compares the remaining tensile resistance of a unilaterally and uniformly damaged QST
reinforcing bar for a given loss of cross-sectional area ζ = Alost/Atot (a) to the tensile resistance of an
original reinforcing bar, and (b) to the residual tensile resistance of a cold-worked CW reinforcing bar
with the same initial strength and equal damage. Whereas due to its homogeneous composition, the
residual strength of the CW reinforcing bar is directly proportional to the loss of cross-section, the uni-
formly damaged QST reinforcing bar reveals a disproportionate loss of strength. This behaviour directly
results from the loss of the martensitic and bainitc layers, which are responsible for the high strength of
a QST reinforcing bar. At a residual cross-sectional area of 43 % of the original area (ζ = 0.57), only
the perlitic/ferritic core remains, having a markedly lower strength than the composite material. With
further degradation beyond this point, the residual force ratio between the QST and the CW reinforcing
bar remains constant (slightly above 0.85, see Figure 4.10(b)).

A unilaterally damaged QST reinforcing bar also exhibits a disproportionate strength degradation up
to a cross-section loss of 50%, but much less drastically than the uniformly damaged bar (minimum
strength ratio of 0.98 between a QST and a CW bar at ζ = 0.2). This is due to an approximately even re-
moval of martensitic and perlitic/ferritic material. For cross-section losses higher than 50%, the strength
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Fig. 4.10 – (a) Remaining tensile resistance of a uniformly damaged QST, a unilaterally damaged QST, and a cold-
worked CW reinforcing bar as a function of the cross-section loss, compared to the tensile resistance
of an original reinforcing bar; (b) ratio of remaining tensile resistance of a uniformly and a unilaterally
damaged QST reinforcing bar compared to a CW reinforcing bar with the same initial strength and
equal damage as a function of the cross-section loss.

ratio between a QST and an equally damaged CW reinforcing bar is even higher than 1, as the area of
the martensitic layer prevails.

The findings of Figure 4.10 highlight that depending on the damage geometry, QST reinforcing bars
can disproportionally lose strength if the martensitic layer is lost. Especially for uniformly corroded
reinforcing bars, this effect has to be taken into account when assessing the structural safety. In contrast,
unilaterally damaged QST reinforcing bars do not lose more strength than equally damaged CW reinfor-
cing bars. This is of high practical relevance, as chloride-induced corrosion leads in the majority of cases
to unilateral damage of reinforcing bars. However, it has to be noted that with severe unilateral damage,
other effects occur, such as local bending moments, which may significantly affect the bearing capacity
of the reinforcing bar [8, 58, 80, 166].

4.3.7 Estimation of model parameters for predicting the strength of damaged QST
reinforcing bars

In the validation above, the results of the model match the experimental curves very well since the input
values (yield stress and tensile strength and corresponding strains) could be obtained from the tensile
tests. Obviously, carrying out such an expensive experimental campaign to determine these input values
for a practical case, e. g. where the stress-strain characteristics of corroded reinforcing bars in an existing
structure should be assessed, can hardly be justified. Therefore, a simplified approach to calculate the
strength of a damaged composite reinforcing bar based on the results of conventional tensile tests is
proposed, distinguishing three levels of approximation. In all of them, the ratios

feng,u,core/ feng,y,core = 1.36

feng,u,mart/ feng,y,mart = 1.10
(4.15)

between tensile strength and yield stress, as observed in this study, are used. Furthermore, for simplicity,
it is assumed that the composite reinforcing bar consists of only two layers, i. e. a ferritic/perlitic core and
a martensitic outer annulus; the area of the bainitic layer in between is assigned equally to core and outer
annulus. This simplification can be justified as follows: The tensile strength of the composed reinforcing
bar is made up – according to the above simplification – proportionally by the tensile strength of core
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and outer annulus, i. e.

a · feng,u,core +(1−a) · feng,u,mart = feng,u,tot (4.16)

where a denotes a proportionality factor, which is equal to a = 0.58 for the tensile strength of the tested
specimens. On the other hand, the weighted area of the core and half of the adjacent bainitic zone, i. e.

b =
Acore +Abain/2

Atot
(4.17)

equals b = 0.57 ≈ a for the tested specimens. Hence, the simplification introduced above will yield
reasonable results.

First level of approximation

1. Determine the tensile strength feng,u,tot and the yield stress feng,y,tot of the composite reinforcing
bar from a conventional tensile test.

2. Assume that the true strain corresponding to the tensile strength of the martensitic layer coincides
with the true strain corresponding to the tensile strength of the composite bar, i. e. εtr,mart( ftr,u) =
εtr,tot( ftr,u). Assume – as observed in the present test series – the true strain at peak stress of the
perlitic/ferritic core to be 7 % larger than the true strain at peak stress of the composite bar, i. e.

εtr,core( ftr,u) = 1.07ln(1+ εeng,tot( feng,u)) (4.18)

The true strain at hardening of the core can be obtained from the engineering strain at hardening
of the composite bar, i. e. εtr,h,core = ln(1+ εeng,h,tot).

3. Assume that the relative area of the simplified core is Ãcore = b = 0.57 (as observed in the experi-
ments, see above) and the relative area of the simplified outer annulus is Ãmart = 1−b = 0.43.

4. Using Equation (4.15), determine the yield stress and the tensile strength of the ferritic/perlitic
core, feng,y,core and feng,u,core, and of the martensitic layer, feng,y,mart and feng,u,mart , respectively, by
solving the following linear system of equations:

feng,y,tot = Ãcore · feng,y,core + Ãmart · feng,y,mart

feng,u,tot = Ãcore · feng,u,core + Ãmart · feng,u,mart

(4.19)

Alternatively, the yield stress of the core material feng,y,core could also be estimated using the
stress-strain diagram of the composite reinforcing bar, as it coincides with the point where the
elastic region ends and the curve begins to flatten (see Figure 4.9(b)). This observation may be
used to verify the appropriateness of the assumptions and simplifications made.

5. The true values of the yield stress and the tensile strength can be calculated using Equation (4.2)
and (4.3), i. e.

ftr,y,core = feng,y,coreeεtr,y,core

ftr,y,mart = feng,y,marteεtr,y,mart

ftr,u,core = feng,u,coreeεtr,core( ftr,u)

ftr,u,mart = feng,u,marteεtr,mart( ftr,u)

(4.20)
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Second level of approximation

The values of the yield stress and the tensile strength of the core material, feng,y,core and feng,u,core, respect-
ively, are obtained by carrying out additional tensile tests on reinforcing bars with sufficiently reduced
cross-section to eliminate the transition zone (e. g. 50% reduction in diameter) over a length of about 10
times the original diameter. With these values, the assumption of the strength ratios (Equation (4.15)) can
be avoided, which will improve the approximation for the yield and tensile strength of the outer annulus
obtained from Equation (4.19). Additionally, the true strain at peak stress of the core can be set to its
experimentally determined value, rather than approximating it using Equation (4.18).

Third level of approximation

Performing a Vickers Hardness test over the cross-section of the sample, the relative areas of the core
and the outer annulus, Ãcore and Ãmart , respectively, are obtained. Using this information, combined with
the results of the tensile tests on the reinforcing bar with reduced diameter, the yield stress and the tensile
strength of the martensitic outer annulus feng,y,mart and feng,u,mart can be determined with good accuracy.

4.4 Conclusions

This study investigated the influence of the steel microstructure on the stress-strain behaviour of hot-
rolled, quenched and self-tempered (QST) reinforcing bars. As documented in literature, three distinct
material layers could be identified: A ferritic/perlitic core, a bainitic transition zone and a martensitic
outer annulus. Thicknesses of the distinct material layers, determined by Vickers hardness tests, were
found to closely correspond to values found in literature. Tensile tests on QST reinforcing bars with
gradually reduced diameters were used to reveal the stress-strain behaviour of the different microstruc-
ture layers. Constitutive relationships for the ferritic/perlitic core, the bainitic transition zone and the
martensitic outer annulus were shown, together with experimental stress-strain diagrams. Experimental
results confirmed that models composing a reinforcing bar out of its distinct layers cannot be formulated
in conventional engineering stress and strain, but true stress and true strain must be used. A simplified
model to predict the stress-strain behaviour of a QST reinforcing bar based on the constitutive rela-
tionships of its layers was proposed and validated against the experimental results, revealing excellent
agreement. Finally, three levels of approximation were suggested to determine the strength of damaged
QST reinforcing bars if no detailed information is available.

Knowledge about the stress-strain behaviour of the distinct layers of QST reinforcing bars and their
interaction is crucial to assess the residual strength and ductility of concrete structures affected by re-
inforcement corrosion. Experiments and calculations reveal that the strength of uniformly damaged
QST reinforcing bars is reduced up to 15% more than what would be expected if merely the loss of
cross-section were considered since the inner core has much lower strength than the outer layers. In
combination with the loss of cross-section area, the strength is thus disproportionately reduced. On the
other hand, if QST reinforcing bars are damaged unilaterally, the direct tensile strength does not alter
significantly. Therefore, the different stress-strain behaviour of the distinct microstructure layers only
has a minor influence in case of pitting corrosion, as this corrosion type leads in the majority of cases
to unilateral damage of reinforcing bars. However, other effects resulting from the pit geometry, such as
bending due to a shift of the neutral axis, may strongly affect the bearing capacity [80, 166].

The findings of this study related to the influence of microstructure on the stress-strain behaviour
of corroded reinforcing bars are a first important step towards a better understanding of the structural
response of concrete structures affected by reinforcement corrosion. Nonetheless, further effects need to
be considered, such as, e. g. the strain rate dependent strength of reinforcing bars [69], three-dimensional
stress states in the vicinity of localised corrosion pits, or bending moments in case of unilateral damage.
The authors are currently investigating these additional effects, in order to finally be able to accurately
assess the residual safety of corroded reinforced concrete structures.
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Notation

Atot Cross-sectional area of reinforcing bar (with original or reduced diameter), Atot = ∑Ai

Ai Cross-sectional area of a circle with diameter di, Ai =
(
d2

i π
)/

4
Acore, Abain, Amart Cross-sectional area of core, bainitic transition zone, and martensitic outer annulus
Ãcore, Ãmart Cross-sectional area of simplified core and simplified outer annulus
Alost Cross-sectional area lost by corrosion
Es Young’s modulus of reinforcing steel
HV Vickers Hardness
R Original radius of reinforcing bar, R = Ø

/
2

a, b Proportionality factors determining Ãcore and Ãmart

dc Residual diameter of specimen
di Outermost diameter of Layer j, di = 2ri

feng,y, feng,u Steel yield stress and tensile strength (engineering value)
ftr,y, ftr,y,core, ftr,y,bain(r),

ftr,y,mart

Yield stress (true values; in general, of core, bainitic transition zone, and martensitic outer
annulus); note that the value for the bainitic transition zone is a function of r

ftr,u, ftr,u,core, ftr,u,bain(r),
ftr,u,mart

Tensile strength (true values; in general, of core, bainitic transition zone, and martensitic outer
annulus); note that the value for the bainitic transition zone is a function of r

ftr,y,th Theoretical value of yield stress used for martensitic outer annulus (true value)
ftr,y,bain(r̃), ftr,u,bain(r̃) Mean yield stress and mean tensile strength of bainitic transition zone (true values)
r, ri, r j, r̃ Radius in general, outermost radius of Layer j, mean radius of Layer j, outermost radius of

bainitic transition zone
rb1, rb2 Outermost radius of core and bainitic transition zone, respectively
α Radii ratio, α = r̃

/
rb1

β Fitting parameter of constitutive relationship
εeng, εtr Steel strain (engineering value, true value)
εtr,y, εtr,y,core, εtr,y,bain,

εtr,y,mart

Strain at yield stress (true value; in general, of core, bainitic transition zone, and martensitic
outer annulus)

εtr,h, εtr,h,core, εtr,h,bain Strain at onset of hardening (true value; in general, of core, and bainitic transition zone)
εtr( ftr,u), εtr,core( ftr,u),

εtr,bain( ftr,u),
εtr,mart( ftr,u)

Strain at tensile strength (true value; in general, of core, bainitic transition zone, and martensitic
outer annulus)

εtr,y,th Strain at theoretical yield stress ftr,y,th (true value)
σeng, σtr Steel stress (engineering value, true value)
σtot Total stress exhibited by reinforcing bar with residual cross-sectional area Atot

σ j Stress exhibited by Layer j
σtr,bain(r̃,εtr) Average stress in bainitic transition zone (true value) in function of r̃ at specific strain
ζ Relative cross-section loss of reinforcing bar
Ø Original diameter of reinforcing bar
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5 Influence of a triaxial stress state on the
load-deformation behaviour of corroded
reinforcing bars
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This chapter presents the findings of a series of tensile tests on locally, axisymmetrically damaged re-
inforcing bars and a comprehensive series of nonlinear finite element analyses of locally damaged bars
to investigate the influence of a varying axisymmetric pit geometry on the bar load-carrying and de-
formation capacity. The investigation revealed a significant attenuation of the strain localisation effect
and a pronounced increase in the uniaxial tensile strength for locally damaged bars depending on the
geometrical parameters. The chapter corresponds to the submitted version (preprint) of the following
manuscript:

Haefliger, S., Thoma, K., Kaufmann, W. ‘Influence of a triaxial stress state on the load-deformation
behaviour of corroded reinforcing bars,’ submitted to Construction and Building Materials, 2022.

The lead author (Severin Haefliger) planned and conducted the experiments, did literature review on
the metallurgic background regarding the different types of yielding and the behaviour of Lüders bands,
and developed the presented models, which are based on a parametric nonlinear finite element (NLFE)
analysis. The latter he conducted in collaboration with the second author (Karel Thoma), who set up the
generic NLFE model, such that it could be controlled and evaluated with Matlab (by the lead author).
The third author (Walter Kaufmann) supervised the conducted research.

Abstract

Local corrosion damage reduces the load-bearing capacity of reinforcing bars and, even more severely,
their deformation capacity. These effects are mainly attributed to the reduced cross-sectional area and
the accompanying strain localisation. However, several experimental studies found an altered load-
deformation behaviour of naturally corroded as well as artificially damaged reinforcing bars, including
an apparently increased tensile strength, which cannot be explained solely by strain localisation. Ac-
cordingly, in an experimental campaign carried out by the authors on locally axisymmetrically damaged
reinforcing bars, the observed peak load increased with decreasing damage length, and the deformation
capacity was much less impaired than predicted by established strain localisation models. A series of
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nonlinear FE analyses was carried out to investigate a potential effect of the local stress state in the vicin-
ity of the local corrosion damage. The results indeed revealed a triaxial stress state in this region, caused
by the local deviation of the stress trajectories, explaining the experimental observations on a mechanical
basis, and indicating a pronounced influence of the triaxial stresses on the uniaxial stress-strain behaviour
of the bar in the vicinity of the corrosion pit. A parametric study was conducted to investigate a broader
range of corrosion damage geometries and the corresponding triaxial stresses. The results indicate that
the transverse stresses strongly affect the apparent uniaxial mechanical steel properties (yield stress,
tensile strength, deformation capacity, loss of yield plateau) for short damage lengths typically found for
pitting corrosion. A simplified modelling approach is proposed to capture the governing effects on the
apparent uniaxial stress-strain curve of locally corroded reinforcing bars.

5.1 Introduction

Uniform and local corrosion reduce the load-bearing capacity of reinforcing bars and reinforced concrete
(RC) structures due to the loss of cross-sectional area. In contrast to uniform corrosion, local corrosion
additionally impairs the deformation capacity, as shown in many experimental campaigns on naturally
corroded and artificially damaged reinforcing bars [8, 15, 34, 39, 58, 80, 83, 85, 122, 163, 166]. Recent
studies [39, 72, 74, 122, 163] attributed the reduced ductility to strain localisation, proposing independ-
ently similar modelling approaches [72, 163]. They introduced a critical cross-section loss beyond which
most of the deformation capacity of a reinforcing bar is lost [39, 72]. These studies also found that the
deformation capacity is reduced disproportionally to the cross-section loss, with one study reporting a
drastic reduction of the elongation at ultimate force by more than 80% for a cross-section loss of merely
17% [72].

The reduced deformation capacity of corroded reinforcing bars directly impairs the deformation ca-
pacity of the affected RC structure, depending on the variation of the residual cross-sectional area of the
bars [72, 74]. This is particularly crucial for structural safety assessment strategies applying the lower
bound theorem of the plasticity theory, which – though often only implicitly – presumes sufficient de-
formation capacity. Furthermore, quantifying the residual deformation capacity of corroded structures is
essential to successfully apply performance-based assessment strategies, i. e. to compare the deformation
capacity of a structure to its deformation demand. Such assessments are typically used for the analysis
of plastic load redistributions in statically indeterminate structures (e. g. imposed deformations in multi-
span bridges), and where the actions on the structure depend on its deformations (e. g. earth pressure on
a retaining wall, seismic loading). Therefore, the mechanical understanding and the accurate modelling
of the deformation capacity of corroded reinforcing bars is key for a safe assessment of corroded RC
structures.

5.1.1 Strain localisation effects

As mentioned above, strain localisation plays a crucial role in the mechanical explanation of the reduced
deformation capacity. It can readily be explained by modelling a corroded reinforcing bar as a chain of
tension members having different lengths, with equal normal force F but varying tensile stiffness EsAs,
where Es = tangent modulus of the reinforcing steel, and As = cross-sectional area of the reinforcing
bar (reduced by corrosion where applicable). If the tensile stiffness of a member is strongly reduced –
which may be caused by severe cross-section loss and/or yielding of the reinforcement – much higher
strains εs = N/EsAs occur in this weak member than in the remaining members, i. e. the strains localise
in the weak member. If this weak member is short, even very high localised strains cause only a small
overall elongation (see, e. g. [72]). This typically applies to reinforcing bars affected by severe pitting
corrosion, whose cross-section is reduced over a short length. It is particularly pronounced in cases
where the tensile strength in the damaged section is reached (i. e. the bar ruptures) while the tensile stress
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in the regular cross-section is still below the yield stress: substantial deformation occurs only in the short
damaged part, and the total elongation of the bar at ultimate load is strongly reduced.

Cross-section loss and damage length are thus decisive parameters regarding strain localisation. For
reinforcing bars affected by local corrosion, the extent of strain localisation further depends on the ma-
terial characteristics of the steel: The ratio of yield stress to tensile strength determines the critical cross-
section loss beyond which no plastic strains occur in the undamaged part of the reinforcing bar [39, 72]).
For smaller cross-section losses, the shape of the steel stress-strain curve, particularly the slope in the
strain-hardening phase, is highly relevant as well.

Models based on the strain localisation effect have been developed and successfully applied by [163]
to describe the behaviour of corroded bare reinforcing bars, and by [72] to describe the response of
concrete tension members containing locally corroded reinforcing bars, accounting for tension stiffening.
However, experimental results [8, 39, 58, 80, 84, 166] indicate that strain localisation alone cannot
explain the observed differences in the load-deformation behaviour of bars with varying pit geometry
(pit length and pit shape) but equal cross-section loss.

5.1.2 Effects beyond strain localisation: Influence of pit geometry

The pit geometry affects (i) the triaxial stress state in the pit region caused by the local deviation of the
stress trajectories and, in case of non-axisymmetric corrosion, (ii) local bending moments caused by the
shift of the centroidal axis in the pit region.

Triaxial stress states occurring in the vicinity of geometry variations are well investigated in material
and mechanical engineering, and their influence on the apparent uniaxial steel characteristics is well-
known [9, 19, 59, 60, 78, 105, 120]. The occurring stress concentrations can lead to unforeseen failures
(especially by fatigue) or undesired plastic deformations in mechanical parts, and considerable efforts
have been made to quantify them (see, e. g. [127]). Since the stress concentration and the triaxial stress
state strongly depend on the local geometry, closed-form solutions can at most be derived for simple
geometries and linear elastic behaviour. For general geometries and nonlinear material behaviour, such
as that of steel beyond the yield point, Finite Element analyses are applied nowadays, making use of
incremental plasticity models including von Mises’ J2-plasticity model and material damage models [9,
19]. With such analyses, the effects related to a triaxial stress state can be investigated, ranging from
an increase or decrease of the apparent uniaxial yield stress and tensile strength to larger strains at peak
stress.

Evidently, these effects are not limited to mechanical parts exhibiting geometrical variations, but
equally affect locally damaged reinforcing bars. Indeed, some of the mentioned effects have been ob-
served in experimental campaigns on corroded reinforcing bars: Zhu et al. [166] specifically investigated
bars with different pit geometries, reporting significant differences in the stress-strain behaviour among
the different geometries despite equal residual cross-sections and, hence, an equal degree of strain local-
isation. Several studies [39, 62, 83, 151] reported a slight to moderate increase of the apparent uniaxial
tensile strength (defined as ultimate load divided by the actual residual cross-sectional area in the dam-
aged zone) with increasing cross-section loss. These observations were either attributed to a variation
of material characteristics along the bar, or accounted for by using an average of the reduced and initial
cross-sectional areas, but maintaining the nominal uniaxial strength [84]. Only few researchers invest-
igated the triaxial stress state in the vicinity of corrosion pits to date, and to the authors’ knowledge, FE
analyses investigating the mechanical properties of reinforcing bars containing corrosion pits have only
been conducted by [54, 80], with [80] pointing out the effect of different pit geometries on the results.

In addition to the triaxial stress state caused by the deviation of the stress trajectories, bending stresses
occur in the vicinity of unilateral corrosion pits due to a shift of the centroidal axis at the pit. This effect
was observed in some experimental campaigns on bare reinforcing bars [8, 58], indicating a significant
influence on the stress-strain behaviour, and on concrete structures instrumented with fibre optic strain
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sensing [74], where the strains caused by the bending stresses were measured. Presumably, the super-
position of bending stresses leads to a premature steel rupture in the case of unilateral corrosion when
compared to an axisymmetrically corroded bar with equal cross-section loss: due to the non-uniform
tensile stresses caused by bending, the ultimate elongation on the tensile side of the cross-section is
reached while the average stress in the residual cross-section is below the tensile strength. However, a
quantification is complicated by the triaxial stress state in the vicinity of the corrosion pit, and would thus
require a parametric study based on FE analyses (similar to those carried out in this study for axisym-
metric damage, but requiring much more time and resources).

5.1.3 Focus of this study

This study investigates the influence of a triaxial stress state on the apparent uniaxial stress-strain be-
haviour and material characteristics of reinforcing bars with local corrosion damage. It focuses solely
on axisymmetric damage and deliberately excludes unilateral corrosion pits to avoid any superimposed
effects of bending stresses, which the authors intend to address in a future study.

An experimental campaign on reinforcing bars of two different steel types was conducted, with each
specimen having an artificially created local damage of different lengths. The specimens were instru-
mented using a three-dimensional digital image correlation system, enabling the observation of the stress-
strain behaviour in different regions near the pit, which are discussed and compared to simple engineering
approaches for strain localisation. In a second step, the experiments were modelled with the FE software
Ansys, using von Mises’ J2-plasticity model beyond the yield point. The effects of the occurring triaxial
stress state are discussed in detail. A comprehensive parametric study including 270 different datasets
for each steel type demonstrates the influence of a triaxial stress state for varying geometrical parameters.
Finally, a simplified modelling approach is presented, which allows estimating the stress-strain behaviour
of an axisymmetrically corroded reinforcing bar accounting for the effects of the triaxial stress state.

5.1.4 Further effects

A considerable amount of reinforcing bars used since the 1990s [137] are produced as quenched and
self-tempered (QST) bars, sold under the labels “Tempcore®” or “Thermex®”. In the last step of their
production process, these hot-rolled bars are quenched with water and then cooled under ambient con-
ditions. During the cooling period, the hot core of the reinforcing bar tempers the quenched outer an-
nulus. This process forms a reinforcing bar with distinct microstructure over the cross-section: The
ferritic/perlitic core with high ductility but moderate strength is surrounded by a bainitic transition zone
and a martensitic outer annulus with high strength but moderate ductility. The composed bar exhibits
favourable material characteristics of higher strength and ductility [92, 121, 130, 133]. However, QST
reinforcing bars change their apparent material characteristics during the corrosion degradation process
due to changes in the relative areas of the different microstructures.

This effect is well-investigated [54, 71, 82, 139], and a simple model to consider this influence for
corroded reinforcing bars is presented in [71], including different levels of approximation depending
on the available material data. This model is used to describe the stress-strain behaviour of one of the
investigated reinforcing steels; however, an in-depth analysis of the effect of distinct microstructure is
beyond the scope of this study.

5.2 Experimental programme

The experimental campaign was designed to investigate the influence of a triaxial stress state in the vicin-
ity of an axisymmetric cross-section reduction induced by corrosion. The diameter of the reinforcing bar
samples was reduced axisymmetrically to isolate the effect of triaxial stresses on their load-deformation
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(a) (b) (c)

Fig. 5.1 – Experiments on reinforcing bars with reduced diameter. Specimens of (a) CW series and (b) QST series
after sandblasting; (c) tensile testing machine with spherical hinges and DIC cameras mounted on front
side.

behaviour, rather than trying to simulate the pit geometry found in reinforcing bars affected by natural
corrosion, see Sections 5.1.2 and 5.1.3.

The experimental campaign was carried out in the structural laboratory at ETH Zurich and comprised
two series of QST and cold-worked (CW) reinforcing bars with 7 specimens each (see Figures 5.1(a) and
(b)). The 500 mm long specimens originated from the same production batch per series, and batches were
identical to those of [69, 71]. The initial (nominal) diameter of the bars was reduced from Ø = 20mm to
a remaining (target) diameter of Øc = 19mm over a distinct length Lc per specimen. The targeted cross-
section reduction of 10% was chosen to ensure that the bar outside the damage zone still undergoes plastic
deformation to attenuate the strain localisation. The diameter was reduced mechanically by machining
on a lathe (turning). During turning, the specimens were constantly cooled to prevent heat inflow and
an unintended alteration of steel microstructure and characteristics. The ratio (Lc/2)/Øc varied between
0.4 and 1.6, which resulted in the damage lengths Lc reported in Table 5.1; note that the numbers of the
specimen designation correspond to the damage length in millimetres. The geometry of all reinforcing
bars was scanned before testing using a three-dimensional optical scanner (ATOS Core by GOM). The
accurate measurements of initial and residual diameter allowed to precisely determine the cross-sectional
areas of the bars (see Table 5.1). With the effective initial diameter being a bit larger than 20 mm and the
precision of the mechanical diameter reduction, the effective cross-section loss was slightly higher than
targeted.

The specimens were tested deformation controlled until failure in a universal testing machine at a
constant strain rate of 10−4 s−1 (Figure 5.1(c)). Load introduction heads with spherical hinges were
installed on the testing machine to minimise unintentional bending moments in the specimens due to
geometrical misalignment of either the machine heads or the clamping, which can hardly be avoided
and could otherwise have affected the test results. Threads were provided at the specimen ends, which
were connected to the load introduction heads using spherical washers and nuts. A three-dimensional
digital image correlation system (DIC) with two ProSilica GT600-cameras containing a sensor of 6576
x 4384 Px = 29 MPx was used to capture the specimen deformations. To this end, the specimens were
sandblasted and subsequently painted white and speckled black (see Figures 5.1(a) and (b)). The cameras
were placed vertically at a distance of 900 mm from the specimen, with an inter-camera distance of
300 mm to enable optimal correlation of the curved bar surface. The system setup resulted in a resolution
of approximately 0.014 mm/px. The data was post-processed with a subset size of 29 px and a step size
of 7 px, providing data points at a distance of 0.4 mm.
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Fig. 5.2 – Stress-strain relationships and material characteristics from standard tensile tests of (a) QST reinforcing
bar Ø20, (b) QST reinforcing bar Ø19, (c) CW reinforcing bar Ø20. The plots show true and engineering
stress-strain curves of the test samples (grey curves, εs,tr, σs,tr and εs,eng, σs,eng, respectively), the steel
characteristics (dynamic yield stress fsy,dyn, dynamic tensile strength fsu,dyn and corresponding strain
Agt (marked with a triangle), and strain at onset of hardening εs,h) and the corresponding constitutive
relationships (black and red curves), see Section 5.3.2

Standard tensile tests were conducted on 1200 mm long bar samples at a constant strain rate of
10−4 s−1 to determine the material characteristics of the reinforcing bars, using an LVDT of 300 mm
gauge length to measure the deformations. Figure 5.2 shows the steel stress-strain relationships (true
and engineering strains and stresses, εs,tr, σs,tr and εs,eng, σs,eng, respectively) together with the corres-
ponding characteristics and the constitutive models (see Section 5.3.2) for (a) the QST reinforcing bars
with an initial diameter of 20 mm, (b) the QST reinforcing bars with a reduced diameter of 19 mm, and
(c) the CW reinforcing bars (diameter 20 mm). Although originating from the same production batch
as the specimens in [69, 71], the plotted stress-strain relationships and the steel characteristics were de-
termined from additional tensile tests conducted near-term to the experiments to avoid any influence of
strain ageing, which commonly affects CW reinforcement and is indeed evident when comparing the

Tab. 5.1 – Specimen specifications: CW = hot-rolled and cold-worked, QST = hot-rolled, quenched and self-
tempered; As, As,c = initial and reduced cross-sectional area obtained from GOM-Scan; Ø, Øc = initial
and reduced diameter; Lc = damage length; ζ = cross-section loss; and (Lc/2)/Øc = normalised damage
length.

Specimen Lc [mm] As [mm2] As,c [mm2] Ø [mm] Øc [mm] ζ [-] (Lc/2)/Øc [-]

CW-15 15 316.9 278.5 20.09 18.83 0.121 0.40

CW-19 19 316.6 270.7 20.08 18.56 0.145 0.51

CW-23 23 316.3 276.5 20.07 18.76 0.126 0.61

CW-27 27 316.9 279.7 20.09 18.87 0.118 0.72

CW-30 30 317.5 275.4 20.11 18.72 0.133 0.80

CW-38 38 317.5 276.5 20.11 18.76 0.129 1.01

CW-61 61 317.0 274.7 20.09 18.70 0.133 1.63

QST-15 15 329.6 285.7 20.48 19.07 0.133 0.39

QST-19 19 332.0 289.0 20.56 19.18 0.130 0.50

QST-23 23 330.8 289.4 20.52 19.20 0.125 0.60

QST-27 27 328.0 280.8 20.43 18.91 0.144 0.71

QST-30 30 328.1 280.6 20.44 18.90 0.145 0.79

QST-38 38 327.9 278.5 20.43 18.83 0.151 1.01

QST-61 61 328.1 279.9 20.44 18.88 0.147 1.62
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characteristics presented in Figure 5.2(c) to those reported in [69] (e. g. increase of yield stress by 5%
over time).

For the QST bars, separate constitutive relationships for Ø20 and Ø19 are shown in Figures 5.2(a) and
(b) to capture the effect of the distinct microstructure over the cross-section (see Section 5.1.4), which
needs to be considered in the analysis. Note that the relationship and characteristics of the QST bar Ø19
(Figure 5.2(b)) were taken from [71] since no strain ageing effect was observed for the QST reinforcing
bars Ø20 (comparing the results of Figure 5.2(a) to those reported in [69, 71]).

5.3 Definitions and basic theoretical models

5.3.1 Used definition of stress

Throughout this paper, the apparent uniaxial stress in the corroded damage zone (subscript c; in general
and at peak load) is defined as

σs,c =
F

As,c

σs,c,max =
Fu

As,c

(5.1)

and the stress in the undamaged part of the bar (uncorroded regular cross-section, subscript uc) as

σs,uc =
F
As

σs,uc,max =
Fu

As

(5.2)

with F , Fu = load and peak load, and As, As,c = initial and reduced cross-sectional areas of the bar (Table
5.1). The relative cross-section loss is defined as

ζ =
As −As,c

As
∈ [0,1] (5.3)

and hence, the stress in the damaged and undamaged parts is related by equilibrium

σs,uc = σs,c(1−ζ) (5.4)

The corresponding strains in the damaged and undamaged part, εs,c and εs,uc, follow from the stress-
strain relationships of Figure 5.2 or any constitutive material relationship.

5.3.2 Constitutive material relationships

The stress-strain relationships of the QST reinforcing bars Ø20 and Ø19 are approximated using the
constitutive model described in [71]. The input parameters for the model evaluation (i. e. characteristics
of the distinct microstructure layers perlite/ferrite, bainite, and martensite, as well as their amount on the
total cross-sectional area) are also taken from [71] since the specimens of both studies originate from the
identical production batch, and no strain ageing was observed in the QST bars. The model response is
shown in Figures 5.2(a) and (b) as solid black lines, virtually identical to the material test results.
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5 Influence of a triaxial stress state on the load-deformation behaviour of corroded reinforcing bars

The following constitutive relationship is used to approximate the results of the material tests of the
CW reinforcing bars:

εs (σs) =
σs

Es
+

(
c1

c2 −σs

)1/c3

+ c4

c1 =
Kc4

c3 fsu

K − cc3
4

c2 =
c1

cc3
4

K =

(
Agt −

fsu

Es
+ c4

)c3

εs, Agt in [-], σs, fsu, Es in [MPa]

(5.5)

with fsu, Agt = tensile strength and corresponding strain from the material tests, Es = 205GPa = steel
Young’s modulus, and c3, c4 = model parameters. The proposed relationship extends the one proposed
by Ramberg and Osgood [129] such that the curve accurately captures the behaviour of modern European
reinforcing steel. The model parameters were determined such that the material tests are closely approx-
imated, which resulted in c3 = 3.2 · 10−10 and c4 = 2.0 · 10−14 (in true stresses and true strains, which
can be reformulated to engineering stresses and strains, see Section 5.5.1). The model response is shown
in Figure 5.2(c) as a solid black line.

5.3.3 Strain localisation model (SLM)

Strain localisation is modelled by idealising the bars as tension members consisting of several sub-
members with different lengths, cross-sectional areas and stress-strain behaviour, which are serially
connected and, hence, subjected to an equal normal force. The stresses in the sub-members at any
given load are determined with respect to their actual cross-sectional areas (e. g. using Equations (5.1)
and (5.2)). The corresponding strains follow from the constitutive material model (e. g. Equation (5.5)),
and the sub-member elongations are obtained by multiplying the strains with the sub-member length.
Summing up the elongations of all sub-members and dividing by the total length yields the mean strain
of the entire tension member. For a reinforcing bar of total length Ltot and initial cross-sectional area
As, which contains a locally reduced cross-sectional area As,c over the damage length Lc, the mean strain
obtained by the SLM is (using the notation of Equations (5.1)-(5.3)):

ε
SLM
s,m (σs,c) =

Lcεs (σs,c)+(Ltot −Lc)εs (σs,uc)

Ltot
=

Lcεs (σs,c)+(Ltot −Lc)εs (σs,c(1−ζ))

Ltot
(5.6)

where εs(σs) denotes the constitutive material model. A detailed description of the concept, including
example calculations and accounting for tension stiffening in concrete tension members, can be found
in [72]. An identical model was successfully applied to bare reinforcing bars with artificially reduced
cross-sections by Zeng et al. [163].

5.4 Experimental results

5.4.1 Strain measurements and influence of ribs

The field of view of the DIC setup described in Section 5.2 covered almost the entire projection of half
the circumferential bar surface, as illustrated in Figures 5.3(a) and (b) for the surface geometry of the
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Fig. 5.3 – Strain measurements using DIC of Specimens (a) CW-15 and (b) QST-61, showing the bar geometry
(grey), the full-field strains at peak load (coloured), and the corresponding mean strain over the bar
width according to Equation 5.7; stress-mean strain curves σs,c vs εs,m of all specimens of (c) CW and
(d) QST reinforcing bars using the virtual gauges GO indicated in red in (a) and (b), with a length Ltot
reported in Table 5.2. Note: white areas in (a) and (b) could not be correlated.

Specimens CW-15 and QST-61 (in grey). The correlation of the images of the two cameras was very
satisfying; only the white areas below or above a rib could not be correlated since they were hidden by
the corresponding rib and out of sight for either of the cameras.

DIC provides deformation measurements of a specimen surface, which can deviate from the average
specimen deformation over the cross-section, especially if the surface exhibits elevations such as the ribs
of a reinforcing bar. This issue can be observed in the full-field strains at peak load shown in colour in
Figures 5.3(a) and (b). In the undamaged part, the location of the areas exhibiting small strains matches
the location of the ribs perfectly, indicating that the ribs deform much less than the bar on average. The
measured strains on the ribs do not necessarily need to represent the specimen deformation over the cross-
section, which is evident when comparing to the strains on the left and right side of a rib (at a horizontal
cross-section, e. g. at x = −50mm). Similar effects are known from other near-surface measurement
techniques, e. g. from fibre optic strain sensing on reinforcing bars, see [63, 100].

To overcome this issue, the mean strain over the instrumented bar width is calculated as

εs(x) =

∫ ymax

ymin

εs(x,y)dy

(ymax − ymin)
(5.7)

Results obtained from Equation (5.7) are shown as solid lines in Figures 5.3(a) and (b) for the strains
at peak load. While the mean strain is a simple and intuitive measure to qualitatively compare the strains
of different bar sections or between different specimens at equal load, it is inadequate to determine
strains and stresses quantitatively since the ribs still affect the calculated strain distribution εs(x) (as seen
in Figures 5.3(a) and (b)), as a specific strain value εs(x) depends on the number of measurement points
laying on or next to a rib.
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5 Influence of a triaxial stress state on the load-deformation behaviour of corroded reinforcing bars

Tab. 5.2 – Lengths Ltot of Gauge GO (Figure 5.3) per specimen, bridging the damaged section with length Lc and
instrumenting a length Luc with regular cross-section.

Specimen Lc [mm] Luc [mm] Ltot [mm]

CW-15 15 90 105

CW-19 19 86 105

CW-23 23 73 96

CW-27 27 73 100

CW-30 30 73 103

CW-38 38 79 117

CW-61 61 68 129

QST-15 15 88 103

QST-19 19 82 101

QST-23 23 93 116

QST-27 27 87 114

QST-30 30 81 111

QST-38 38 89 127

QST-61 61 65 126

A more robust measure for strains was found to be the integral of axial strains along the bar axis (or a
parallel to the latter) over an axial distance equal to the rib spacing, divided by this distance (essentially
corresponding to virtual strain gauges with the rib spacing as base length). For any lateral position y= y1,
this strain measure is defined as

εs (x,y = y1) =

∫ x+c/2

x−c/2
εs (x,y = y1)dx

c
(5.8)

with c = rib spacing. The ribs only negligibly influence the results since the number of measurement
points laying on or next to a rib is approximately constant for all locations x. However, if Equation (5.8)
is used continuously over x, it strongly underestimates steep strain gradients, e. g. in the cross-section
transition at the end of the damage zone (see Figure 5.3). To avoid this issue, discrete virtual gauges
with gauge length = rib spacing were placed along the bar, paying attention that no gauge overlaps the
cross-section transition (except for the gauge GO in Figure 5.3, which spans the entire bar), and strains
are calculated in this paper according to Equation (5.8) for the virtual gauges.

The lengths Ltot of the longest gauge GO (shown in red in Figures 5.3(a) and (b)), bridging the
damaged section with length Lc and a length Luc with regular cross-section, was approximately constant
for all experiments; the exact values are reported in Table 5.2. Ltot was chosen such that the gauge
endpoints were located at least one diameter away from the damage zone (where possible two or more
diameters, but observing the limitation by the field of view of the cameras).

Figures 5.3(c) and (d) show the stress-mean strain curves (σs,c vs εs,m) of all CW- and QST-specimens,
respectively, with εs,m = strain measured at the virtual gauge GO. The strain at peak stress is reduced by
approximately 50% compared to the corresponding Agt = 5.2% (CW), 9.4% (QST, Ø19) and 10.2%
(QST, Ø20, see Figure 5.2) of the undamaged bars (dashed lines in Figures 5.3(c) and (d)), which is
a direct consequence of strain localisation. However, the variation of the strain at peak stress among
the same steel type is remarkably small, considering their different damage lengths Lc (except for QST-
15, which failed prematurely). Moreover, the apparent uniaxial peak stress appears to increase with
decreasing damage length Lc, which is remarkable since the cross-section reduction was equal for all
specimens (small variations in the cross-sectional area, see Table 5.1, were accounted for in determining
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Fig. 5.4 – Experimental results of tension tests: (a) peak stress normalised with uniaxial tensile strength and (b)
mean strain at peak stress, normalised with mean strain predicted by SLM (Equation 5.6). Filled markers
result from evaluating Equation 5.6 with σs,uc =(1−ζ) fsu, and empty markers for σs,uc =(1−ζ)σs,c,max.

the stresses). These effects are attributed to a triaxial stress state in the vicinity of the damage zone,
which is further analysed in the following sections.

5.4.2 Increase in tensile strength and corresponding deformation

Figure 5.4(a) shows the peak stress in the damage zone measured in the experiments, normalised with
the tensile strength fsu of the material tests, vs the normalised damage length. The actual cross-sectional
areas (Table 5.1) were used to determine the stresses, and the tensile strength of the reduced cross-
section Ø19 (listed in Figure 5.2(b)) for the normalisation of the results of the QST reinforcing bars.
While the ratio σs,c,max/ fsu is close to 1 (±1%) for Lc/(2Øc)≥ 1, a significant increase in the peak stress
is observed for both steel types with decreasing damage length, with peak stresses exceeding the material
tensile strength by up to 5%.

In Figure 5.4(b), filled blue and red markers indicate the observed strains at peak stress εs,m(σs,c,max)
of the virtual gauge GO (Figure 5.3 and Table 5.2), plotted vs the normalised damage length. The meas-
ured strains are normalised with the strains expected according to the SLM (Equation (5.6)), assuming
σs,c = fsu. For the QST reinforcement (filled red markers), a steady increase of the strain at peak stress,
compared to the theoretical strains of the SLM, is observed with decreasing damage length, with a pro-
nounced strain increase even for the longest damage length (Lc/(2Øc) = 1.6). For the CW-reinforcement
(filled blue markers), the increase in peak strain is less pronounced for Lc/(2Øc) ≥ 0.6 but increases
sharply for shorter damage lengths.

Evidently, the strains at peak stress in the undamaged parts were higher than assumed by the calcula-
tions underlying the solid markers (using σs,c = fsu) due to the increased peak stress for shorter damage
lengths (see Figure 5.4(a)). To eliminate this effect and visualise a potentially altered stress-strain beha-
viour, the actually measured load is considered in a second step for determining the theoretically expected
strains, replacing the term σs,uc = fsu(1− ζ) in Equation (5.6) with σs,uc = σs,c,max(1− ζ). The results
are depicted in Figure 5.4(b) with empty markers in red and blue for the QST and CW reinforcement,
respectively. While the strain increase compared to the predictions of the SLM is somewhat reduced,
particularly at short damage lengths, the overall tendencies remain the same, indicating an altered stress-
strain behaviour.
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Fig. 5.5 – Stress-strain curves of different virtual gauges along the bar axis in the damage zone (red, yellow)
and the adjacent undamaged zone (blue) for the Specimens (a) CW-19 and (b) CW-61, with schematic
positions of the gauges shown to the right. The dashed black lines represent the reference curves of the
material tests. Stresses refer to the reduced cross-sectional area in the damage zone and to the initial
cross-sectional area in the undamaged part according to Equations (5.1) and (5.2), and Table 5.1.

5.4.3 Analysis of stress-strain behaviour inside and close to the damage zone

Figure 5.5 shows the stress-strain curves of several virtual strain gauges for the specimens (a) CW-19
(short damage length) and (b) CW-61 (long damage length). The gauges in the undamaged part span one
rib distance (as suggested in Section 5.4.1), while the gauge lengths in the damage zone without ribs are
shorter (11-12 mm and 5 mm, respectively); the gauge positions and lengths are shown schematically in
the figures and are reported in Table 5.3. Stresses (referred to the reduced cross-sectional area (Equation
(5.1)) and strains in the damage zone are depicted in red and yellow; stresses (referred to the initial
cross-sectional area (Equation (5.2)) and strains in the adjacent undamaged parts are shown in blue. The
stress-strain curve of the corresponding material test is shown as a dashed black curve for comparison,
and the peak load is marked with triangles.

In Specimen CW-19 (short damage length, Figure 5.5(a)), the curves of the gauges in the damage
zone (yellow and red) almost coincide, with slightly smaller strains at peak stress of the gauge closer to
cross-section transition (C1, red). The stresses of both curves are significantly higher than in the material
tests, and the apparent uniaxial yield stress and tensile strength are clearly increased. After passing the

Tab. 5.3 – Gauge length LG and position of gauge centre of the gauges shown in Figures 5.5 and 5.6 (x1 = distance
from damage zone centre, x2 = distance from cross-section transition, see Figures 5.5 and 5.6).

Gauge CW-15 CW-61 QST-15 QST-61

LG
[mm]

x1
[mm]

x2
[mm]

LG
[mm]

x1
[mm]

x2
[mm]

LG
[mm]

x1
[mm]

x2
[mm]

LG
[mm]

x1
[mm]

x2
[mm]

C4 5.3 0.2 -30.3 5.2 0.2 -30.2

C3 5.0 5.3 -25.2 4.8 5.2 -25.3

C2 3.8 0.3 -9.2 5.0 20.1 -10.4 4.9 0.0 -9.5 5.2 20.2 -10.3

C1 4.2 4.3 -5.2 5.6 25.4 -5.1 4.2 4.6 -4.9 5.6 25.6 -4.9

UC1 10.9 17.6 8.1 10.9 38.8 8.3 13.6 20.9 11.4 10.8 37.3 6.8

UC2 10.9 32.7 23.2 12.0 50.2 19.7 12.4 33.9 24.4 12.9 45.8 15.3

UC3 12.0 44.1 34.6 11.9 62.1 31.6 12.7 46.4 36.9 12.4 58.4 27.9

UC4 11.9 56.1 46.6 12.2 74.2 43.7 12.3 58.9 48.5 12.7 71.0 40.5
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yield point, the curves flatten pronouncedly and continue almost horizontally until the peak stress. On
the other hand, the stress-strain curves in the undamaged part exhibit a significantly softer behaviour
compared to the material test, with lower stiffnesses and, accordingly, higher strains at peak stress the
closer the gauges are located to the damage zone. Hence, while the curve of Gauge UC4 (light blue),
away from the damage zone, closely follows the material reference curve, the strains of UC1 are roughly
four times higher at equal stress. The strain of UC1 at peak stress is thus similar to the one of Gauge C1
in the damage zone although the cross-sectional area at UC1 was roughly 17% higher than at C1 in the
damage zone (compare Table 5.1).

In Specimen CW-61 (long damage length, Figure 5.5(b)), other than in Specimen CW-19, the peak
stresses in the damage zone are almost identical to the tensile strength of the material tests. Still, the
stress-strain curves in the damage zone show a stiffer behaviour closer to the cross-section transition
(Gauges C4 to C1, yellow to red): while Gauge C4 in the middle of the damage zone exhibits a stress-
strain behaviour similar to the reference curve, the strain at peak stress of Gauge C1 is reduced approx-
imately by a factor of 2. The curves of the gauges in the undamaged part (UC1 to UC4, blue) are very
similar to the corresponding curves of Specimen CW-19 (Figure 5.5(a)), with a softer stress-strain beha-
viour close to the damage zone. Again, the strains in Gauge UC4 (light blue) are similar to the reference
curve, whereas the strains in Gauge UC1 (dark blue) are comparable to those in the damage zone, and
even higher than the strains of Gauges C1 and C2. The strains at peak stress measured in the Gauges
UC2 to UC4 are almost identical for both specimens CW-19 and CW-61, irrespective of the different
damage lengths.

Figures 5.6(a) and (b) show the results of Specimens QST-19 and QST-61, respectively, with a zoom
to the yield point in (c) and (d). As a reference, the dashed lines show the stress-strain curve of the
material test on a bar Ø20, applying to the results of the gauges in the undamaged part (UC1 to UC4),
and the dash-dotted lines refer to the material test on a bar with reduced diameter Ø19, applying to the
results of the gauges in the damage zone (C1 to C4).

The results obtained for Specimen QST-19 (short damage length, Figure 5.6(a)) are similar to those
of Specimen CW-19 in Figure 5.5(a). The strains in Gauge C1 are similar to those of Gauge C2, and
both curves show a stiffer behaviour at the beginning of the inelastic phase. Nevertheless, strains at
peak stress are even higher in this specimen than in the reference test, and the peak stresses are again
increased compared to the tensile strength of the reference test. The stress-strain curves of the Gauges
UC1 to UC4 in Figure 5.6(c) in the adjacent undamaged part differ less from the reference curve than
those in Figure 5.5(a), except for Gauge UC1 closest to the damage zone, which clearly exhibits a softer
behaviour.

The stress-strain curves of the gauges in the damage zone (red, yellow) of Specimen QST-61 (long
damage length, Figure 5.6(b)) follow the curves of the reference test even closer than in Specimen QST-
19. Nevertheless, a stiffer behaviour is observed closer to the cross-section transition (C4 to C1), with
Curve C1 (red) differing significantly, exhibiting merely about 60% of the strain at peak stress compared
to C4. The curves of the gauges in the adjacent undamaged part UC1 to UC4 differ much less than
in Specimen CW-61 (Figure 5.5(b)) and closely follow the reference curve in the elastic range and at
hardening onset.

An interesting observation in Figure 5.6 is the loss of the yield plateau (i. e. of the approximately
horizontal part of the black reference stress-strain curve between the yield point and the hardening onset).
The same observation was made in tension tests of reinforcing bars with natural, unilateral corrosion pits
[62]. In the undamaged part, the yield plateau is absent for all gauges close to the cross-section transition
(UC1, UC2, C1 and C2). For UC1 of QST-19 and UC1 and UC2 of QST-61, the yield point is lowered
from 540 MPa to approximately 450 to 470 MPa, directly followed by the strain hardening phase. Except
for UC1 of QST-19, the curves pass the point (εsh, fsy) and then follow the reference curves again. This
stress-strain behaviour contrasts that of gauges further away from the damage zone (UC3, UC4), which
closely follow the reference curve and exhibit a yield plateau. Similarly, in all gauges of the damage zone
close to the cross-section transition (C1 and C2 for QST-19 and C1 for QST-61), the strain hardening

71



5 Influence of a triaxial stress state on the load-deformation behaviour of corroded reinforcing bars

0 0.02 0.04 0.06 0.08 0.1 0.12
steel strain εs [-]

400

450

500

550

600

650

st
ee

l s
tre

ss
 σ
s [M

Pa
]

Ø20
Ø19

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12
steel strain εs [-]

(b)

0 0.01 0.02 0.03 0.04 0.05
steel strain εs [-]

400

450

500

550

600

650

st
ee

l s
tre

ss
 σ
s [M

Pa
]

(c)

0 0.01 0.02 0.03 0.04 0.05
steel strain εs [-]

(d)

x1
x2

19

20 mm

65
 m

m
9.

5

C2 C1

UC1

UC2

UC3

UC4

x1

x2

19

20 mm

55
 m

m
30

.5
 m

m

C4 C3

C2
C1

UC1
UC2
UC3

UC4

Fig. 5.6 – Stress-strain curves of different virtual gauges along the bar axis in the damage zone (red, yellow) and
the adjacent undamaged zone (blue) for the Specimens (a) QST-19 and (b) QST-61, with schematic
positions of the gauges shown to the right. The dashed black lines represent the reference curve of
the material tests for Ø20, and the dash-dotted lines that for Ø19. Stresses refer to the reduced cross-
sectional area in the damage zone and to the initial cross-sectional area in the undamaged part according
to Equation (5.1) and (5.2), and Table 5.1.

phase directly seems to follow the yield point, while the curves observed at Gauges C3 and C4 in QST-61,
away from the transition, again follow the reference curve and exhibit a yield plateau.

A macroscopically visible yield plateau is related to the occurrence of Lüders bands and is associated
with discontinuous yielding. Presumably, the triaxial stress state at the cross-section transition influences
the deformation behaviour of crystal grains in the steel, preventing macroscopically visible discontinuous
yielding. The phenomenon is further investigated in Section 5.5.5, after analysing the triaxial stress state
near a local damage.

5.5 Analysis of triaxial stress state near local damages

5.5.1 Introduction and FE model description

For the assessment of the experiments, the reinforcing bars were modelled with the FE-software Ansys
Mechanical as concatenated smooth cylinders, with two cylinders of diameter Ø enclosing a cylinder of
length Lc and reduced diameter Øc (diameters according to Table 5.1). The composed bar has a total
length of 200 mm and is fixed at one end, whereas an increasing displacement is imposed at the other
end. The structure is meshed with PLANE183-elements at a size of 1.0 mm, which allows to exploit the
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5.5 Analysis of triaxial stress state near local damages

Tab. 5.4 – Fitting parameters for extrapolation of the hardening branch of constitutive material curves according
to Equation (5.10).

Material constitutive
relationship

b1 [-] b2 [-] Material constitutive
relationship

b1 [-] b2 [-]

CW 37.9 759.4

QST, Ø20 94.7 942.6

QST, Ø19 98.8 935.7

QST, Ø19.5 96.7 939.2 QST, Ø15.5 112.1 894.1

QST, Ø18.4 101.4 931.3 QST, Ø14.8 113.5 887.5

QST, Ø17.9 104.1 926.6 QST, Ø14.1 114.9 882.5

QST, Ø17.3 107.2 921.2 QST, Ø13.4 115.9 879.9

QST, Ø16.7 108.9 910.5 QST, ≤ Ø12.7 116.3 879.9

QST, Ø16.1 110.5 901.9

axial symmetry and reduce the calculation time. Von Mises’ J2-plasticity model (see Section 5.1.3) with
isotropic hardening was implemented as a material model, and the analyses accounted for geometrical
nonlinearity. A possible mesh-size dependency was not analysed since a similar study reported no such
influence for the chosen mesh size [9].

For material input, the engineering stress-strain relationships shown in Figure 5.2 need to be converted
to true values. True strains result from considering the deformations on a differential element, leading
to dεtr = dl/l. For true stresses, the force is referred to the actual cross-sectional area, which decreases
with increasing axial deformation due to volume conservation. The conversion can be approximated by
(see, e. g. [136])

εs,tr = ln(1+ εs,eng)

σs,tr = σs,eng (1+ εs,eng)
(5.9)

Assuming a homogeneous bar (no variation of mechanical properties along the bar axis), Equation
(5.9) can be applied to the data of the material tests up to the onset of necking, which occurs after having
reached the tensile strength. Figure 5.2 shows the converted stress-strain curves of the material tests in
grey and the constitutive material models in true values as dashed black lines.

Following the concept of [9], the input material curve is not limited to the tensile strength and the
corresponding strain, but extrapolated from the constitutive relationships (formulated in true values) up
to εs,tr = 0.2. Since the application range of the constitutive relationships is limited to the tensile strength
and cannot be evaluated beyond this point, a logarithmic equation of the form

σs,tr = b1 ln(εs,tr)+b2

εs,tr in [-], σs,tr in [MPa]
(5.10)

is fitted to the constitutive relationships in the hardening branch, i. e. in the range [εsh,Agt ] for the QST
reinforcement and [0.02,Agt ] for the CW reinforcement, with the parameters b1 and b2 summarised in
Table 5.4. The resulting curves are shown in Figure 5.2 as solid red lines. The second part of Table 5.4
contains the parameters for bars with a cross-section reduction beyond 19 mm, which are used for the
parametric study in Section 5.6.

The force-elongation diagram resulting from the FE analyses is not monotonically increasing, as one
might assume from the input material relationship. Since the FE-analysis considers the lateral contraction
of the bar in the damage zone due to the high axial strains, the cross-section is continuously reduced with
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Fig. 5.7 – Comparison of experimental results (black) with the SLM (Equation (5.6), blue) and the FE analyses
(red): (a)-(c) Series CW; (d)-(f) Series QST, specimens with damage lengths Lc = 15, 19, and 61 mm.
The markers indicate the peak loads. Additionally, the total gauge length Ltot and the mean strain at
peak load εs,m,max are reported, as well as the relative deviation between the models and the experimental
result.

increasing axial deformation, and beyond a certain elongation, the force decreases despite that the axial
stresses keep increasing. The elongation at the peak load – similar to the onset of necking in a tensile
test – is considered representative for comparison with the experimental results.

5.5.2 Comparison of experiments with different models

Figure 5.7 compares the force-mean strain curves obtained from the experiments (black) with the re-
sponse of the SLM (blue, see Section 5.3.3) and the FE analyses of Section 5.5.1 for the CW (Fig-
ures 5.7(a) to (c)) and the QST reinforcement (Figures 5.7(d) to (e)) with damage lengths Lc = 15, 19,
and 61 mm. The markers indicate the peak loads. The results of the remaining experiments with Lc

= 23, 27, 30, and 38 mm are enclosed in the appendix. The gauge lengths Ltot used for evaluating the
experimental data are reported in Table 5.2 and indicated in Figure 5.7. Equation (5.6) is used for the
SLM in combination with the constitutive material relationships of Section 5.3.2 and Table 5.1.

The results of Figures 5.7(a), (b), and (e) confirm the observation of Section 5.4.2 that the SLM
strongly underestimates the strain at peak stress (up to 40%) for short damage lengths and, to a minor
extent, also the peak stress. With increasing damage length, the accuracy of the SLM increases (compare
also Figure 5.A1), with the SLM being almost identical to the experimental results in Figure 5.7(c)
for Lc = 61 mm. In contrast, the responses of the FE analyses capture the experimental curves for all
damage lengths regarding curve shape, peak stress, and corresponding strain, except for Specimen QST-
15 (Figure 5.7(d)), which failed prematurely. Accordingly, both models overestimate the peak stress and
elongation of this experiment.

The results of the FE analyses support the hypothesis that the triaxial stress state at the cross-section
transition considerably alters the stress-strain behaviour of reinforcing bars containing local corrosion
damage. The hypothesis is further confirmed by the increasing prediction accuracy of the SLM for
longer damage lengths, where the local effects of the transition zones become less relevant.
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5.5 Analysis of triaxial stress state near local damages

5.5.3 Analysis of the triaxial stress state

Figure 5.8 illustrates the stress state for Specimens (a) CW-15 and (b) CW-61 at the peak load, showing
the engineering values of the von Mises stress σvM(r,x), the axial, radial, and tangential stresses, σx(r,x),
σr(r,x), and σϕ(r,x), the non-zero shear stress τrx(r,x), and the distribution of the axial and von Mises
stresses averaged over the cross-section, i. e.

σx(x) =

∫
A

σx(r,x)dA

A

σvM(x) =

∫
A

σvM(r,x)dA

A

A =

{
As,c in damage zone
As elsewhere

(5.11)

The results are shown for a section between the bar axis and the bar surface in cylindrical coordinates.
The maximum and minimum stress and the corresponding location are indicated per stress variable with
a circle (at the cross-section transition, a small distance from the edge was chosen to avoid reporting
potential singularities related to the FE mesh). Since the problem is axially symmetric and only a tensile
force is applied, stresses do not depend on the rotation angle ϕ in the rϕ-plane perpendicular to the x-
axis, and the shear stresses in ϕ-direction vanish, τrϕ = τxϕ = 0. Hence, the von Mises stress simplifies
to

σvM =

√
1
2

(
(σx −σr)

2 +
(
σr −σϕ

)2
+
(
σϕ −σx

)2
)
+6τ2

rx (5.12)

The von Mises stresses σvM(r,x) are similar for both specimens, with the maximum value in the range
of the material tensile strength fsu = 615MPa occurring at the centre of the damage zone. While they are
fairly constant along the damage length, the von Mises stresses start decreasing near the cross-section
transition, tending to a constant value (over both the cross-section and along the axis) at a distance
≥ 1Ø away from the damage zone, where the stress state is essentially uniaxial. At the centre of the
damage zone (x = 0), the von Mises stress is approximately constant over the cross-section for CW-61,
whereas it decreases towards the bar surface for CW-15.

The occurrence of a triaxial stress state within the damage zone (CW-15) or at its ends (CW-61)
can easily be seen from the radial and tangential stresses, σr(r,x) and σϕ(r,x). They are maximum
near the cross-section transition, with a positive sign (tensile stresses) at the ends of the damage zone
and a negative sign (compressive stresses) in the adjacent undamaged parts. The absolute shear stress
(its value depends on the coordinate system) is highest at the edge of the cross-section transition and
decreases radially and axially. For a short damage length, the radial and tangential stresses are much
higher than for a long damage length and extend over the entire damage zone, whereas an essentially
uniaxial stress state is reached at the centre of a long damage length. Considering the considerable radial
and tangential tensile stresses at x = 0 and Equation (5.12), it is evident that the axial stress can be
substantially increased for a short damage length until the von Mises stress reaches the material uniaxial
tensile stress. In contrast, no such increase is possible at the centre of a long damage length, where the
axial stress approximately equals the von Mises stress.

At the peak load, the von Mises stress averaged over the cross-section (Equation (5.11)) exactly
reaches the material uniaxial tensile strength for both specimens. This is noteworthy since the input
material curve was not limited to the material tensile strength. This result indicates excellent model
accuracy since the von Mises stress is the representative value for comparing a triaxial stress state with
uniaxial steel characteristics.
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Fig. 5.8 – Visualisation of triaxial stress state: Von Mises stress σvM , axial, radial and tangential stresses, σx, σr,
and σϕ, non-zero shear stresses τrx, and axial and von Mises stresses averaged over cross-section (Equa-
tion (5.11)) for (a) CW-15 and (b) CW-61. Location of maximum and minimum stress are indicated with
circles.

For CW-61, the mean axial stress at x = 0, coinciding with the von Mises stress, evidently also
reaches the tensile strength and remains fairly constant over the entire damage length. At the cross-
section transition, the mean axial stress drops sharply, whereas a gradual decrease is obtained for the
von Mises stress in this zone. Both stress values are slightly below the uniaxial yield stress in the
undamaged part, reaching a tensile stress of 534 MPa. This value can be validated by Equation (5.4), i. e.
σs,uc = σs,c(1−ζ) = 533MPa (with σs,c = fsu = 615MPa, and ζ = 0.133 according to Table 5.1).

In the damage zone of CW-15, the mean axial stress reaches a peak value of 643 MPa, which is 4.5%
higher than the uniaxial tensile strength (coinciding with the von Mises stress). This result matches well
with the experiment, where an increase in peak stress of 3.5% was observed compared to the uniaxial
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Fig. 5.9 – Influence of triaxial stress state on the mean von Mises and mean axial stress σvM(x) and σx(x), and the
mean axial strain over cross-section εx(x) for (a) the CW and (b) the QST reinforcement.

tensile strength. As for CW-61, the mean axial stress drops sharply at the ends of the damage zone,
whereas the von Mises stress gradually decreases over a length of approximately 1Ø from the damage
zone end. Both stresses reach a value of 564 MPa in the undamaged part in the FE analysis, which
corresponds well to the 565 MPa obtained from Equation (5.4) (σs,c = 642MPa and ζ = 0.121).

The FE analyses thus confirm the presence of a triaxial stress state near corrosion pits and underline
its significant influence on the apparent uniaxial tensile strength of bars containing a short damage length,
as it enables the activation of axial stresses exceeding the uniaxial tensile strength of the material. For
long damage lengths, a uniaxial stress state is again reached at the centre of the damage zone, with
conditions equal to those in a standard tensile test, and the apparent uniaxial peak stress cannot exceed
the uniaxial tensile strength of the material. The influence of the triaxial stress state on the deformation
behaviour is analysed in Section 5.5.4, and Section 5.6 explores for which damage geometries triaxial
stresses potentially develop.

5.5.4 Influence of a triaxial stress state on stresses and deformations

The left two columns of Figure 5.9 show the mean von Mises and mean axial stresses according to
Equation (5.11) at the peak load along the bar obtained from the FE analyses simulating (a) the CW
series and (b) the QST series. The black lines indicate the uniaxial tensile strength from the material
tests (shown in the damaged part) and the corresponding theoretical, reduced stress in the undamaged
part (determined from Equation (5.4)) as reference values. The plots in the right column of Figure 5.9
show the mean axial engineering strains over the cross-section εx(x), along with the strain at the peak
stress of the material tests in the damaged part and the corresponding theoretical value in the undamaged
part as reference (black lines). Results are shown for only half of the modelled reinforcing bar (with
the symmetry axis laying in the middle of the damage zones), and continuation is indicated with dotted
lines. Note that a different coordinate is used along the bar axis than in Figure 5.8, x′ = x−Lc/2, i. e.
the cross-section transition is positioned at x′ = 0, which facilitates the comparison between the different
damage lengths.
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For all damage lengths, the mean von Mises stress in the damages zone exactly matches the uniaxial
tensile strength for the CW series and is in good agreement for the QST series (indicating a slightly
weaker FE model accuracy for the QST series). In the adjacent undamaged part, the stress decreases and
reaches a constant value at a distance approximately 1Ø away from the damage zone, independently of
the damage length. This is noteworthy since the peak load of the specimens increases with decreasing
damage length, as indicated by the von Mises stresses at x = 40mm, and confirms the principle of de
Saint-Venant, stating that stress discontinuities generally attenuate over a length equal to the element
width.

The mean axial stresses in the damage zone, hence the peak load, decrease with increasing damage
length, reducing to the uniaxial material tensile strength for the damage lengths Lc = 38 and 61 mm
(again almost exactly for the CW series and in good agreement for the QST series). Unlike for the von
Mises stresses, there is a pronounced stress decrease at the cross-section transition, x′ = 0. Nevertheless,
the axial stress in the undamaged part equals the corresponding von Mises stress at a distance > 1Ø from
the damage zone.

The mean strain starts to increase in the undamaged part at a distance of approximately 0.5...1.0Ø
from the cross-section transition and reaches its maximum at the centre of the damage zone. The max-
imum strains are much higher than observed in the material tests, εx,max ≈ 2Agt for Lc = 15mm and
εx,max = 1.5Agt for Lc = 61mm. However, with increasing damage length, the mean strain is lower than
Agt over a considerable length at the ends of the damage zone, partly compensating the high maximum
strain at the centre. On the other hand, as mentioned above, the mean strain in the undamaged part
is higher than the expected theoretical strain over a length of 0.5...1.0Ø from the damage zone; hence
the bar exhibits additional deformation in this region. Further away from the damage zone, the mean
strain for specimens with long damage length equals the expected theoretical value, while it is higher for
shorter damage lengths due to the increased peak load (compare the increased mean axial stresses). This
strain increase is more pronounced for the QST bars due to the different shape of the stress-strain curve.

Figure 5.10 compares the experimental results (markers) with the FE analyses (solid lines) at the peak
load, plotting them against the normalised damage length: (a) peak stress in the damage zone, (b) mean
strain over the damage zone, (c) mean strain over the first 20 mm in the undamaged part adjacent to
the cross-section transition (between 0 ≤ x′ ≤ 20mm in Figure 5.9), and (d) mean strain at the Gauge
GO extending over the damage zone and the undamaged part, as shown in Figure 5.3. The results are
normalised with their corresponding theoretical values ( fsu, Agt , εs(σs,uc = (1−ζ) fsu), and εSLM

s,m (σs,c) =
fsu) according to the SLM and Equation (5.6)). Note that the experimental results in Figures 5.10(a) and
(d) correspond to those in Figures 5.4(a) and (b).

The results of the FE analyses match the experimentally observed increased peak stresses very well,
for the CW as well as the QST bars, see Figure 5.10(a). Regarding the mean strain over the damage
length (Figure 5.10(b)), the FE analyses predict the experimental results of the QST bars fairly well,
particularly compared to the conventional prediction (= Agt), which underestimates the experimentally
observed mean strain in the damage zone by up to 40%. The experimentally observed strains for the
CW series do not show a clear tendency regarding damage length, but all strains are below Agt . The
FE analyses predict strains slightly lower than Agt for long damage lengths, but a moderate increase for
shorter damage lengths. The mismatch might be due to a model inaccuracy or secondary effects having
influenced the strain measurements in the experiments (influence of ribs, presence of bending stresses
caused by a slight shift of the centroidal axis due to tolerances when reducing the diameter).

The experimentally observed mean strains measured over the first 20 mm (1Ø) of the undamaged part
(Figure 5.10(c)) – which are strongly underestimated by the SLM (roughly 20% for long damage lengths
and up to a factor of 3 for short damage lengths) – are fairly well predicted by the FE analyses for both,
the CW and the QST reinforcement. However, the large scatter of the experimental results reflects the
challenge of accurately measuring strains in reinforcing bars over a short reference length, even with
advanced measurement technologies.
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Fig. 5.10 – Influence of triaxial stress state on peak stress and deformation, depending on damage length: (a)
peak stress normalised by uniaxial material tensile strength; (b) strain in damage zone at peak stress,
normalised with strain at peak stress of material tensile tests; (c) mean strain in adjacent undamaged part
at peak stress, measured over a distance of one diameter from the cross-section transition, normalised
with strain corresponding to a stress σs,uc = (1− ζ) fsu (Equation (5.4)); positions of outlying values
are indicated with arrows; (d) strain of Gauge GO (Figure 5.3) at peak stress, normalised by strain
according to SLM.

Figure 5.10(d) shows the experimentally measured, normalised mean strain in Gauge GO of Fig-
ure 5.3 and the corresponding results of the FE analyses. The FE analyses match the experimental data
accurately for the CW reinforcement and slightly overpredict the results for the QST reinforcement. The
experimental results as well as the FE analyses indicate that for damage lengths shorter than twice the
reduced diameter, i. e. Lc ≤ 2Øc, the SLM tends to strongly underestimate the deformation capacity of
damaged reinforcing bars, by 10...70% in the cases investigated here. This is due to the beneficial ef-
fects of the triaxial stress state at the cross-section transition, which partly compensates for the strain
localisation effect described by the SLM (Equation (5.6)).

5.5.5 Influence of a triaxial stress state on the yield behaviour

The strain measurements of gauges near the cross-section transition of QST bars illustrated in Figure 5.6
revealed (i) a reduced yield stress and (ii) a loss of the yield plateau (see Section 5.4.3). The yield stress
increased again further away from the damage zone, and a yield plateau was retrieved. Both effects
directly result from the triaxial stress state near the cross-section transition.

The apparently reduced yield stress in the undamaged part adjoining the damaged zone follows from
the distribution of the von Mises stresses σvM in Figure 5.8(b), where the von Mises yield criterion
σvM = fsy is reached or exceeded for 30 ≤ |x| ≤ 40mm, and hence, yielding occurs, whereas the mean
axial stress is still below the yield stress, i. e. σx = 534MPa < fsy. In contrast, if one scales the mean von
Mises and mean axial stress distributions in Figure 5.8(a), it evolves that a stress state σvM ≤ fsy < σx
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exists where no plastic deformations occur in the damaged part, although the mean axial stresses exceed
the yield stress. Hence, the apparent yield stress is increased.

The macroscopic occurrence of a yield plateau in low carbon steel is related to the formation of Lüders
bands, i. e. discrete local bands of high deformation increase (discontinuous yielding) due to a sudden
break free of the dislocations from the interstitial carbon atoms (Cottrell-Bilby clouds), which propagate
along the reinforcing bar (see, e. g. [43, 45, 81, 132, 136, 165]). It has been shown that the Lüders
band front orients in the direction of the maximum shear stress (i. e. 45° to the bar axis for pure tension)
[45, 165]. The presence of shear stresses τxr at the cross-section transition (see Figure 5.8) causes the
stress trajectories to rotate, leading to a variation of the maximum shear stress direction over the cross-
section. This could hinder the Lüders bands from propagating in an ordered manner [101]. Moreover, it
is probable that the varying von Mises stress (which represents the yield criterion) over the cross-section
triggers the dislocations to break free from their interstitial atoms in only a few grains simultaneously.
This hypothesis is supported by the fact that in the FE analyses simulating bars with short damage
lengths – for which a wide range of stress values is exhibited over the cross-section, see Figure 5.8 – no
yield plateau was obtained either (see curves for Lc/2Øc = 0.2 in Figure 5.11(b)). Hence, these issues
presumably hinder the occurrence of macroscopically visible Lüders bands (i. e. a yield plateau) and
favour continuous yielding with strain hardening near the cross-section transition, as also observed in a
recent study in the context of bond [101].

5.6 Parametric study

5.6.1 Aim and setup

Besides the material characteristics, the formation of a triaxial stress state is mainly governed by the
diameter of the residual cross-section Øc and the length of the damage zone Lc. To investigate the
influence of these parameters on the triaxial stress state, a parametric study was conducted, investigating
the force-elongation behaviour of a reinforcing bar with a total length Ltot = 150mm and exhibiting
a cross-section loss ζ = 0.05...0.8 over a variable length Lc/(2Øc) = 0.2...1.4. The bar behaviour was
simulated using the FE model described in Section 5.5.1 and adopting the two material models of Section
5.3.2. The initial diameter was held constant at Ø = 20mm, yielding Øc = 8.95...19.5mm and Lc =
3.6...54.6mm. By normalising with Øc/Ø, Ø2

c/Ø2, and Lc/2Øc, respectively, the results apply to other
bar and damage geometries within the limitation set in this paper, i. e. an axisymmetric cross-section
reduction. A total number of 544 simulations (272 per steel type) were run and evaluated.

5.6.2 General results

As an overview, Figure 5.11 shows selected force-mean strain curves resulting from the parametric study
for (a) CW and (b) QST reinforcing bars with different damage lengths (Lc/(2Øc) = 0.2, 0.6, and 1.0,
indicated with different markers) and different cross-section losses (ζ = 0.1, 0.2, and 0.4, indicated with
different colours). The stress-strain curves of the undamaged bars are shown in black as a reference.

As expected, the peak load generally decreases with increasing cross-section loss. However, for a
specific cross-section loss, it varies considerably and increases with decreasing damage length. Similar
to the maximum load, the strain at peak stress generally decreases with increasing cross-section loss.
However, the results indicate that the peak strain for a short damage length (circular markers) can even
be larger than for a longer damage length (square and triangular markers) for small or moderate cross-
section loss (blue and red curves). This result contradicts the SLM (Equation (5.6)) and is caused by the
triaxial stress state.
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Fig. 5.11 – Selected force-mean strain curves of parametric study to illustrate the strong influence of a triaxial
stress state, depending on damage length Lc/(2Øc) and cross-section loss ζ, for (a) CW and (b) QST
reinforcement.

5.6.3 Load-carrying and deformation capacity compared to the SLM

Figures 5.12(a) and (b) show contour plots of the ratio σs,c,max/ fsu, i. e. the deviation of the peak stress
obtained by the FE analyses from the uniaxial material tensile strength, for (a) the CW and (b) the QST
reinforcing steel. Results are shown in the parameter range of the cross-section loss ζ and the normalised
damage length Lc/(2Øc) as defined in Section 5.6.1. Red colours indicate an underestimation of the peak
load; note that the colour map is limited to 1.1 fsu for a higher resolution in the main part of the diagram.
The maximum and minimum values and their locations are indicated with circles. Black lines indicate
constant normalised damage lengths Lc; they are curved because the residual bar diameter Øc and thus
the ratio Lc/(2Øc) constantly vary with the cross-section loss ζ. Isolines are plotted in grey, with an
equidistance of 0.05 in (a) and (b), and 0.5 in (c) and (d).

For damage lengths longer than 1Ø, the load-carrying capacity is underestimated by less than 5% for
both steel types, almost independently of the cross-section loss. The load-carrying capacity is underes-
timated by 5...10% for damage lengths in the range of 0.5Ø to 1Ø, and by 10...35% for shorter damage
lengths.

Figures 5.12(c) and (d) show contour plots of the strain ratio εs,m (σs,c,max)/εSLM
s,m (σs,c = fsu), i. e. the

deviation of the strain at peak load obtained by the FE analyses from the strain at peak load according
to the SLM (Equation (5.6)), for (c) the CW and (d) the QST reinforcing steel. Red colours indicate
an underestimation of the strain at peak stress by the SLM, and blue colours an overestimation. Note
that the colour map is limited to 0.8 and 1.5 for a higher resolution of the main part of the diagram.
The dashed line in Figure 5.12(d) indicates the critical cross-section loss ζcrit , denoting the maximum
cross-section loss for which the undamaged cross-section still reaches the yield stress at maximum load
according to the SLM (see [72]). Additionally, the cross-section loss ζmart indicates the complete loss
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Fig. 5.12 – Load-carrying and deformation capacity predicted by the FE analyses compared to the uniaxial tensile
strength and the SLM. (a), (b) ratios of the peak stress (FE) to the uniaxial material tensile strength for
CW and QST bars, respectively. (c), (d) ratios of strain at peak stress of the FE analyses to that of the
SLM for CW and QST bars, respectively. Solid black lines correspond to constant damage lengths,
circular markers show extreme values, and target markers correspond to the parameter sets analysed in
Figure 5.13. Isolines are plotted in grey, with an equidistance of 0.05 in (a, b) and 0.5 in (c, d).

of the martensitic outer annulus for the QST bar, and ζbain indicates the complete loss of the bainitic
transition zone (see [71]).

For the CW reinforcing steel in Figure 5.12(c) and the chosen parameter range, an empirical, elliptical
relationship was found, above which the error made by using an SLM is less than ±10%:

R(ζ,Lc) =

(
ζ

0.8
−1
)2

+

(
Lc

2Ø
√

1−ζ
−1.3

)2

≤ 1 (5.13)

The limit R(ζ,Lc) = 1.0 is shown in Figure 5.12(c) with a dash-dotted line. For shorter damage
lengths and smaller cross-section losses, the SLM underestimates the deformation capacity, especially
for ζ< 0.4 and Lc/(2Øc)< 0.4, where the peak strain ratio reaches a maximum value of εs,m/εSLM

s,m = 2.8.

For QST reinforcing bars, Figure 5.12(d) indicates that the underestimation of the deformation capa-
city by the SLM is acceptable, i. e. εs,m/εSLM

s,m < 1.2, for cross-section losses ζ > ζmart (and Lc/(2Øc)>
0.3); this might be an artefact of the constitutive material model formulated in [71], with an increase of
the strain at peak stress as soon as the martensitic outer annulus is completely lost. Independent of the
damage length, the SLM underestimates the deformation capacity most pronouncedly around the critical
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Fig. 5.13 – Stress-mean strain diagrams for the damage conditions indicated with black markers in Figure 5.12 for
(a) the CW and (b) the QST reinforcement. Solid lines correspond to the FE analyses, and dashed lines
to the SLM; (c) peak stresses and corresponding strains of FE analyses (triangles) and SLM (squares) in
the undamaged part far away from the damage zone together with the constitutive material relationships
(black) for validation. All stresses refer to the initial cross-sectional area.

cross-section loss ζcrit , with a maximum ratio εs,m/εSLM
s,m ≈ 5 for short damage lengths Lc ≤ Ø, and peak

strain ratios > 1.5 even for long damage lengths.

Figures 5.13(a) and (b) show the stress-mean strain diagrams for the simulated CW bars with Lc/(2Øc)
= 0.4, and QST bars with Lc/(2Øc) = 0.6, respectively, for cross-section losses ζ = 0.05...0.4. These
damage conditions (parameters (ζ|Lc/(2Øc))) are depicted with target markers in Figure 5.12. Solid lines
show the behaviour obtained from the FE analyses, and dashed lines show the predictions according to
the SLM (Equation (5.6)), with triangular (FE) and square (SLM) markers indicating the peak stress
and corresponding strain. The stress is related to the undamaged, initial cross-sectional area As (Equa-
tion (5.2)). Figure 5.13(c) shows the constitutive material relationships (black lines) and the stresses
and strains observed in the undamaged parts (far away from the damage zone) at the peak forces of the
calculations shown in Figures 5.13(a) and (b).

Figures 5.13(a) and (b) show a significantly decreasing load-carrying capacity with increasing dam-
age, and a substantial decrease in deformation capacity already for low cross-section losses. This is a
direct consequence of the strain localisation described in Section 5.1.1. The concept of the critical cross-
section loss [72] explains why the deformation capacity is almost entirely lost as soon as the stress in the
undamaged part drops below the yield stress.

For the CW bars, Figures 5.13(a) and (c) show that the difference in the mean strain at peak stress
between the FE analyses and the SLM is highest for low cross-section losses ζ < ζcrit , where the undam-
aged part of the bar also exhibits significant plastic strains. Since load variations in the plastic strain range
can lead to significantly different strains, it is evident that the FE analyses, which unlike the SLM account
for the increased maximum load due to the triaxial stress state, lead to significantly larger deformations
than the SLM. As soon as the undamaged part is not reaching the yield stress, the predicted strains at
peak stress of both models start converging, although the predicted peak loads still differ significantly.

The same observations apply to the QST reinforcing bars, Figures 5.13(b) and (c), where again sig-
nificant differences in strain at peak stress are observed for small cross-section losses, i. e. where the
undamaged part also exhibits plastic strains, with the largest difference between the two models occur-
ring for ζ = 0.2. For this cross-section loss, the undamaged part reaches strains at the onset of hardening
in the FE analyses (accounting for a higher peak load due to the triaxial stress state), whereas the strains
according to the SLM – with a 4% lower maximum load – are just below the elastic limit (yield point).
The FE- and SLM-strains in the undamaged zone thus differ by the length of the yield plateau (Lüders
strain, see Figure 5.13(c)). This explains the considerable differences (i. e. the high ratios) observed
in Figure 5.12(d) for QST bars with a cross-section loss ζ ≈ ζcrit , irrespective of the damage length.
Moreover, the loss of the martensitic outer annulus for ζ > 0.28 has a visible influence on the differences
between the model predictions, as can be seen from Figure 5.13(b).
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5 Influence of a triaxial stress state on the load-deformation behaviour of corroded reinforcing bars

5.7 Simplified modelling approach to estimate the influence of the triaxial
stress state

While FE analyses of reinforcing bars with local damage are well suited to investigate and explain the
effects of a triaxial stress state, modelling entire concrete structures containing locally corroded rein-
forcement on such a level of detail is not expedient, particularly due to the immense computational
effort. Hence, simplified models are needed to capture the governing effects with reasonable accuracy.
Such a simplified approach is proposed in this section, valid for the parameter ranges set in Section 5.6.1
and following the model strategy illustrated in Figure 5.14.

5.7.1 General model strategy

As seen in the previous sections, a shorter damage length leads to a considerable increase in the apparent
uniaxial tensile strength σs,c,max (Equation (5.1)), which is decisive for the differences between the FE
analyses and the SLM. The effect is captured in the following by the parameter pσ, defined as the ratio
of the maximum apparent uniaxial stress and the material tensile strength:

pσ =
σs,c,max

fsu
(5.14)

The proposed approach is based on the observation that in all FE analyses, the triaxial stress state had
a limited influence length, defined as the length between the cross-section transition and the point where
σvM(x) ≈ σx(x) (see Figures 5.8 and 5.9) and corresponding to 0.75...1.0Ø and min(Lc/2, 0.7...0.9Øc)
for the undamaged and damaged parts, respectively.

The results of the FE analyses align well with the principle of de Saint-Venant, whose direct applic-
ation would result in influence lengths of one diameter. For simplicity, this value is adopted in the fol-
lowing. The strains near the cross-section transition of the FE analyses were thus averaged over lengths
of 1Ø and min(Lc/2, Øc) in the undamaged and damaged part, respectively, resulting in the following
mean strains εs,c (damaged part) and εs,uc (undamaged part) at peak load F = Fu (see Figure 5.14):

εs,c =
∫ s

0
εx (x,F = Fu)dx

/
s

s = min(Lc/2,Øc)

(5.15)

εs,uc =
∫ 0

−Ø
εx (x,F = Fu)dx

/
Ø (5.16)

The stresses corresponding to these mean strains are determined from the stress-strain diagram of the
material tensile tests. By dividing the applied maximum force by these stresses, one gets the equivalent
cross-sectional areas Aeq

s,c and Aeq
s , i. e. the cross-sectional area of a fictitious bar exhibiting these mean

strains at peak load (Figure 5.14):

Aeq
s,c =

Fu

σs (εs = εs,c)
=

As,c fsu pσ

σs (εs = εs,c)

pε,c =
Aeq

s,c

As,c
=

fsu pσ

σs (εs = εs,c)

(5.17)
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Fig. 5.14 – Schematic representation of model strategy: (a) strain distribution at peak load (red) and mean strains
in the vicinity of the cross-section transition according to Equations (5.15) and (5.16); (b) stresses
resulting from material stress-strain curve for mean strains; (c) equivalent cross-sectional areas (red
dotted lines) according to Equations (5.17) and (5.18).

Aeq
s =

Fu

σs (εs = εs,uc)
=

As,c fsu pσ

σs (εs = εs,uc)

pε,uc =
Aeq

s

As
=

As,c

As

fsu pσ

σs (εs = εs,uc)

(5.18)

The parameters pε,c and pε,uc are the ratios between the equivalent and the actual cross-sectional
areas. The parameters pσ, pε,c, and pε,uc thus represent the effect of the triaxial stress state regarding peak
stress and corresponding strain on the bar load-deformation behaviour, i. e. the differences compared to
the SLM (Equation (5.6)). They were determined for every FE analysis and are analysed in the following
section.

5.7.2 Model parameter evaluation

Figure 5.15(a) illustrates the parameters pσ obtained for the CW bars with different ratios Øc/Ø in blue,
plotted vs the normalised damage length. The peak stress increases strongly with decreasing damage
length and residual diameter, while the influence of the triaxial stress state evidently vanishes at large
damage lengths, with no increase in the peak stress for Lc ≥ (2Øc), irrespective of the residual diameter.

The FE analyses showed that the parameters pσ and pε,c are virtually identical, and there are only
marginal differences between the CW and the QST bars despite the strongly differing steel characterist-
ics. The distribution of both parameters, pσ and pε,c, can thus be approximated by the same empirical
relationship, valid for the CW and the QST bars:

pσ = pε,c = ae−b(Lc/(2Øc))+ c (5.19)

with a,b,c = fitting parameters depending on the diameter ratio Øc/Ø and the steel type (CW or QST).
The parameter c is set equal to unity for the CW bars, as expected for long damage lengths, and slightly
higher (c = 1.01) to achieve a better fit for the QST bars. Figures 5.15(b) and (c) show the distribution
of the parameters a and b, respectively, found by linear regression, as functions of Øc/Ø and (Øc/Ø)2,
respectively, with triangles indicating the results for pσ and circles those for pε,c. The parameters for
the QST reinforcing steel are shown in blue, and those of the CW reinforcing steel in red. The virtually
identical values of both parameters and reinforcing steel types are seen in both figures.
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Fig. 5.15 – Simplified model approximating the effects of the triaxial stress state: (a) parameter pσ for the CW bars
as a function of normalised damage length and diameter ratio (blue), and evaluation of Equation (5.19)
(red); (b, c) regression parameters a and b, respectively, as functions of linear and squared diameter
ratios (coloured), and fits according to Equations (5.20) and (5.21) (dashed and dash-dotted black lines).

As a further simplification, the fitting parameter a is assumed to be bilinear in Øc/Ø, independent of
the steel type:

a =

{
−0.3Øc/Ø+1.3 for Øc/Ø ≤ 0.69
−3.6Øc/Ø+3.6 for Øc/Ø > 0.69

(5.20)

and the fitting parameter b is assumed to be bilinear in Ø2
c/Ø2, and slightly dependent on the steel type:

b(CW) =

{
1.0Ø2

c/Ø2 +6.1 for Ø2
c/Ø2 ≤ 0.5

−7.3Ø2
c/Ø2 +10.2 for Ø2

c/Ø2 > 0.5

b(QST) =

{
0.2Ø2

c/Ø2 +6.5 for Ø2
c/Ø2 ≤ 0.5

−6.5Ø2
c/Ø2 +9.9 for Ø2

c/Ø2 > 0.5

(5.21)

where the fitting coefficients were again obtained by regression. Figure 5.15(a) includes the results
obtained from Equation (5.19) as red lines for Øc/Ø = 0.98 (ζ = 0.05) and Øc/Ø = 0.45 (ζ = 0.8),
once using the parameters a and b found by the linear regression of the FE analyses (i. e. the values
indicated with red triangles in Figures 5.15(b) and (c)), and once using the bilinear parameters defined
by Equations (5.20) and (5.21). Both parameter sets fit the results of the FE analyses almost equally well.

Figure 5.16(a) shows the parameter pε,uc of the CW reinforcing steel in blue for different normalised
damage lengths Lc/(2Øc) vs the diameter ratio Øc/Ø. The curves are serrated for low Øc/Ø-ratios,
i. e. high cross-section losses, most probably due to the chosen load steps in the FE analyses. For a
specific damage length, pε,uc increases with the residual diameter, i. e. as the residual cross-sectional area
approximates the initial cross-sectional area, and the influence of the triaxial stress state in the adjacent
undamaged parts reduces. Similarly, pε,uc increases with the damage length, but only up to Lc = Øc

beyond which it is independent of Lc. This observation indicates that the damage length influences the
triaxial stress state in the adjacent undamaged part much less than the cross-section loss.

The parameter pε,uc was found to be roughly proportional to the diameter ratio, and can thus be
approximated by a straight line with the slope m

pε,uc = m(Øc/Ø−1)+1 (5.22)

Figure 5.16(b) shows the slopes obtained by linear regression of the FE analyses shown in Fig-
ure 5.16(a) (blue = CW bars, red = QST bars). The parameter m strongly depends on the type of reinfor-
cing steel, with the QST steel showing higher values than the CW steel, indicating a stronger influence

86



5.7 Simplified modelling approach to estimate the influence of the triaxial stress state

0.5 0.6 0.7 0.8 0.9 1
Øc / Ø [-]

0.4

0.5

0.6

0.7

0.8

0.9

1

p ε,
uc

 [-
] 1.4

0.75
0.5
0.2 L c

 / 
2Ø
c [

-]

(a)

FE analyses
Eq. (22) with FEM-coeff
Eq. (22) with coeff Eq. (23)

0.2 0.4 0.6 0.8 1 1.2 1.4
Lc / 2Øc [-]

0.5

0.6

0.7

0.8

0.9

1

1.1

m
 [-

]

(b)
pε,uc CW

pε,uc QST
Eq. (23), CW
Eq. (23), QST
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of the triaxial stress state. The slope stays approximately constant for Lc > Øc, i. e. the parameter pε,uc

merely depends on the diameter ratio, except for very short damage lengths.

The parameter m is assumed to be bilinear in Lc/(2Øc), hence one gets by regression:

m(CW)≈

{
−1.10(Lc/2Øc)+1.14 for Lc/2Øc ≤ 0.5
−0.05(Lc/2Øc)+0.62 for Lc/2Øc > 0.5

m(QST)≈

{
−0.95(Lc/2Øc)+1.26 for Lc/2Øc ≤ 0.5
−0.05(Lc/2Øc)+0.81 for Lc/2Øc > 0.5

(5.23)

Figure 5.16(a) shows the results of Equation (5.22) as red lines for Lc/Øc = 0.2 and Lc/Øc = 1.4. The
dashed lines are obtained for the parameter m found by the linear regression of the FE analyses (i. e. the
values indicated with red squares in Figure 5.16(b)), and the dash-dotted lines if m is chosen according
to Equation (5.23).

5.7.3 Model application

To assess the influence of the triaxial stress state on the force-elongation behaviour of a damaged reinfor-
cing bar, the SLM (Equation (5.6)) is enhanced with (i) the increased apparent uniaxial tensile strength
and (ii) the equivalent cross-sectional areas of the bar sections above and below the cross-section trans-
ition, see Figure 5.17.

The material stress-strain relationship εs - σs (e. g. from a conventional tensile test, black curve in
Figure 5.17) is converted into the relationship ε′s - σ′

s accounting for strain localisation and the triaxial
stresses, which applies for the bar over a length Ltot = Lc + 2Ø. For Ø = 18mm, Øc = 17mm, and
Lc = 10mm, the blue solid line results according to the SLM in Equation (5.6), exhibiting severe strain
localisation mainly due to the reduced strain outside the pit (dashed blue line). The red solid line results
from the simplified modelling approach, described in the following, and applying the model parameters
pσ, pε,c, and pε,uc to account for the effects of the triaxial stress state.

1. Estimate the fitting parameters a, b, m using Equations (5.20), (5.21), and (5.23), depending on the
steel type, with c = 1.0 (CW) or c = 1.01 (QST).

2. Use Equations (5.19) and (5.22) to determine the parameters pσ, pε,c, and pε,uc
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3. Determine the vector of apparent uniaxial stress σ′
s, and the auxiliary stress vectors σs,c and σs,uc:

σ
′
s = pσσs

σs,c =
σ′

s

pε,c
=

pσ

pε,c
σs

σs,uc =
σ′

sAs,c

pε,ucAs
=

pσ

pε,uc

As,c

As
σs

(5.24)

4. Obtain the strain vectors εs,c, εs,c, εs,uc, corresponding to the stresses determined in Step 3 from
the material stress-strain curve:

εs,c =

εs (σ
′
s) if σ′

s ≤ fsu

Agt if σ′
s > fsu

εs,c =

εs (σs,c) if σs,c ≤ fsu

Agt if σs,c > fsu

εs,uc =

εs (σs,uc) if σs,uc ≤ fsu

Agt if σs,uc > fsu

(5.25)

5. Determine the strain vector ε′s by weighting and summing up the strains of Step 4:

ε′s =
(Lc −2Øc)ε′s,c +2Øcεs,c +2Øεs,uc

Ltot
for Lc > 2Øc

ε′s =
Lcεs,c +2Øεs,uc

Ltot
for Lc ≤ 2Øc

(5.26)

Note the similarity of Equations (5.26) and (5.6). Inserting the stress σs,c = F/As,c (Equation (5.1))
in the ε′s - σ′

s relationship yields the mean strain exhibited by the bar section with length Ltot , accounting
for the effects of the triaxial stress state. Failure of the bar at the pit occurs, if σs,c = pσ fsu.
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Fig. 5.18 – Comparison of the strain at peak stress predicted by the FE analyses and the simplified model of Sec-
tions 5.7.2 and 5.7.3 for (a, b) CW and (d, e) QST bars. For (a, d), model coefficients for the simplified
model were chosen according to the FE analyses; for (b, e), coefficients were chosen according to
Equations (5.20), (5.21), and (5.23). (c, f) stress-mean strain curves of the FE analyses, the simplified
model, and the SLM at the points indicated with target markers in (a, b, d, e).

5.7.4 Model evaluation

Figures 5.18 (a, b, CW bars) and (d, e, QST bars) show the deviation in the strain at peak stress of the
simplified model from the FE analyses, similar to the comparison between FE analyses and the SLM
illustrated in Figure 5.12. The black lines correspond to constant normalised damage lengths, and circles
indicate the maximum and minimum ratios found in the parameter range.

Figures 5.18(a) and (d) show the results obtained using the individual regression parameters of each
FE analysis for evaluating Equations (5.19) and (5.22), while Figures 5.18(b) and (e) are based on the
regression parameters approximated with Equations (5.20), (5.21), and (5.23). In the former case, the
strain at peak stress is slightly underestimated; in the latter case, deviations are generally higher (as
expected, since two regression steps are now included), and the strain at peak stress is more pronouncedly
underestimated for very short damage lengths Lc/(2Øc) = 0.2...0.3. However, the deviations are still
much smaller than those of the SLM neglecting the effects of the triaxial stress state, see Figure 5.12.

Figures 5.18(c) and (f) show the stress-strain curves of the FE analyses, the SLM, and the simplified
model with original and approximated model parameters for the four coloured target markers included in
Figures 5.18(a, b, d, e), i. e. for the combinations ζ = 0.15, 0.4 and Lc/(2Øc) = 0.4, 0.8. It is observed
that the stress-strain curves of the FE analyses and both simplified models are virtually identical, whereas
the curve based on the SLM underestimates the peak load and the strain at peak stress, particularly for
shorter damage lengths.

The presented simplified model thus appears to reasonably capture the altered stress-strain behaviour
of bars containing axisymmetric corrosion damage, accounting for both strain localisation as well as the
effect of triaxial stresses near the cross-section transition. However, it needs to be validated in a larger
experimental campaign for different material behaviour and a wider range of geometrical parameters,
and extended to non-axisymmetric damage in future studies.

89
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5.8 Conclusions

Numerous experimental campaigns aiming to characterise the stress-strain behaviour of reinforcing bars
affected by local corrosion have been conducted to date, using both naturally corroded and artificially
damaged bars. However, the behaviour has been described mainly empirically, and only few researchers
tried to derive mechanically consistent models. However, such models are essential to understand and
describe the various effects caused by local corrosion damages.

This paper investigated the influence of a triaxial stress state on the stress-strain behaviour of reinfor-
cing bars affected by local corrosion, focusing on axisymmetric damage. It was found that the triaxial
stress state inside and near the damage zone of a corroded bar strongly influences the apparent uniaxial
stress-strain behaviour, typically enhancing the tensile strength and deformation capacity, which explains
experimental observations that cannot be attributed to strain localisation alone. Likewise strain localisa-
tion, the triaxial stress state is mainly governed by the material characteristics, especially in the inelastic
phase, and the geometrical characteristics of the damage. Therefore, if local corrosion is considered,
it is all the less expedient to describe damage of a bar merely by its mass loss, as it is still common
practice in many experimental campaigns despite having been criticised in former studies [58, 80, 102].
An effort should therefore be made to a better characterisation of the corrosion damage geometry and
its mechanical influence on the apparent uniaxial stress-strain behaviour of affected bars, as previously
suggested by other researchers [39, 58, 166].

The following findings emerged from experiments and theoretical considerations of this study:

• Due to the local deviation of the stress trajectories, a triaxial stress state occurs inside and near the
damage zone of reinforcing bars affected by local corrosion. The significant radial, tangential and
shear stresses present in the vicinity of the cross-section transition change the local steel stress-
strain behaviour, particularly for short damage lengths.

• For axisymmetric damage, the triaxial stress state mainly depends on the shape of the steel stress-
strain curve in the inelastic phase, the damage length and the cross-section reduction. Its effects
are most pronounced for severe cross-section losses and short damage lengths. For damage lengths
exceeding twice the residual diameter, the influence of the triaxial stresses on the apparent uniaxial
peak stress and deformation capacity is negligible.

• For short damage lengths, the triaxial stress state leads to a considerable increase of the apparent
uniaxial peak stress, which can be up to 35% higher than the uniaxial tensile strength for high
cross-section losses, with experimental evidence of up to 4% higher peak stresses even for slight
cross-section losses of merely 10...15%. Similar experimental findings were reported in previous
studies [39, 62, 84, 151], and are mechanically substantiated by this study.

• Experimental observations show that the tensile stiffness of a bar is reduced in the undamaged part
near the cross-section transition, but increased in the adjoining parts of the damage zone. This is
explained by the radial and tangential compressive and tensile stresses acting on the undamaged
and damaged side of the cross-section transition, respectively. The length over which the altered
behaviour is observed comprises approximately one bar diameter.

• The triaxial stress state was found to alter the yield behaviour near the corrosion damage of rein-
forcing steels exhibiting a yield plateau, as previously reported by [62]. The yield plateau (due to
the propagation of Lüders bands) is lost, and strain hardening directly follows the elastic phase.
The loss of the yield plateau might be caused by the rotating principal directions as a direct con-
sequence of the deviated stress trajectories, preventing the Lüders bands to progress.

• The lower stiffness and reduced yield strength in front of the damage zone, combined with the
higher peak stress, can lead to a significantly higher deformation capacity of damaged bars than
would be assumed by established concepts of strain localisation. This particularly applies to short
damage lengths and small to moderate cross-section losses below 15...20%.
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5.8 Conclusions

• While the triaxial stress state was investigated with a nonlinear FE model considering von Mises
/ J2-plasticity in this study, such a model is deemed inadequate for application to entire structures
due to its high computational cost. Hence, a simplified modelling approach is proposed to estim-
ate the combined influence of strain localisation and the triaxial stress state on the stress-strain
behaviour of damaged reinforcing bars.

• The simplified modelling approach correlates well with the FE analyses carried out in this study.
However, it is restricted to axisymmetric damage and needs to be validated in a larger experimental
campaign regarding different material characteristics and damage geometries.

• The application range of this study is limited to axisymmetric local damage of reinforcing bars,
and the results may not directly apply to bars exhibiting unilateral corrosion damage. It was shown
that unilateral damages additionally cause bending stresses in the pit vicinity [8, 74], which may
soften the stress-strain behaviour in this part of the bar (yield stress is reached at lower load), but
may also reduce the failure load.
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Fig. 5.A1 – Comparison of experimental results (black) with the SLM (Equation (5.6), blue) and the FE analyses
(red): (a, c, e, g) Series CW; (b, d, f, h) Series QST, specimens with damage lengths Lc = 23, 27, 30,
and 38 mm. The markers indicate the peak loads. Additionally, the total gauge length Ltot and the
strain at peak load εs,m,max are reported, as well as the relative deviation between the models and the
experimental result.
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Notation

Agt = ε
(

fsu,dyn
)

Strain at steel tensile strength
As, As,c Reinforcing bar cross-sectional area (initial, reduced)
Aeq

s , Aeq
s,c Equivalent cross-sectional areas in (undamaged, damaged) section, for simplified modelling

approach
Es Young’s modulus of reinforcing steel
F , Fu Axial normal force (in general, maximum)
K Coefficient for steel constitutive relationship
Ltot , Lc, Luc Total bar length, length of damaged section, length of section with initial diameter (undamaged)
a Fitting parameter
b, b1, b2 Fitting parameters
c Rib distance, fitting parameter
c1, c2, c3, c4 Coefficients for steel constitutive relationship
fsy, fsy,dyn Steel yield stress (in general, dynamic value)
fsu, fsu,dyn Steel tensile strength (in general, dynamic)
m Fitting parameter
pσ, pε,c, pε,uc Parameters to simplified modelling approach to account for the influence of the triaxial stresses

on the apparent uniaxial stress and axial strains
x, x′, x1, x2 Coordinates (parallel to bar axis), with x′ = x−Lc/2
εs,eng, εs,tr Steel strain (engineering, true, with εs,tr = ln

(
1+ εs,eng

)
)

εs, εs,c, εs,uc Steel strain in general, steel strain in section with (reduced, initial) cross-sectional area
εs,h Steel strain at hardening
εs,m, εSLM

s,m Mean strain over total bar length (measured, or according to strain localisation model (SLM))
εc, εuc Mean strain over 1Øc of damaged zone, and over 1Ø of adjacent undamaged section, respectively,

for simplified modelling approach
σs,eng, σs,tr Steel stress (engineering, true, with σs,tr = σs,eng

(
1+ εs,eng

)
)

σs, σs,c, σs,uc Steel stress in general, steel stress referred to (reduced, initial) cross-sectional area
σs,c,max, σs,uc,max Steel stress at maximum load referred to (reduced, initial) cross-sectional area
σvM , σvM Von Mises stress (in general, mean over cross-section)
σx, σx, σr, σϕ Axial stress (in general, mean over cross-section), radial, and tangential stress
τrx, τrϕ, τxϕ Shear stresses
ζ, ζcrit Relative cross-section loss of reinforcing bar (in general, critical)
ζmart , ζbain Relative cross-section loss of reinforcing bar for which (martensitic, bainitic) microstructure

layer is lost
Ø, Øc Reinforcing bar diameter (initial, reduced)
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6 Load-deformation behaviour of locally corroded
reinforced concrete retaining wall segments:
Experimental results

Mj

qm

deformation 
capacity

load-carrying 
capacity

earth pressure

strain 
localisation

pit geometry

material 
characteristics

corrosion
distribution

lap splice, 
anchorage

QST-effects

strain rate

triaxial stress state

bending stresses

cross-section
loss

This chapter presents the findings of a series of large-scale experiments conducted in the Large Uni-
versal Shell Element Tester LUSET on cantilever retaining wall segments containing reinforcing bars
with artificial local damage. The study investigated the load-deformation behaviour of the specimens
regarding a varying cross-section loss and different loading conditions, revealing a pronounced influence
of the distribution of the corrosion damage among the reinforcing bars. Furthermore, local effects at the
corrosion pits, such as local bending moments, were visualised using fibre optic strain sensing. In two
hybrid tests, the cross-section loss was increased during the experiment and the applied load simultan-
eously decreased, depending on the measured deformations, to realistically simulate the earth pressure
loading occurring for cantilever retaining walls. The chapter corresponds to the published version of the
following article:

Haefliger, S. & Kaufmann, W. ‘Load-deformation behavior of locally corroded reinforced concrete
retaining wall segments: Experimental results,’ fib Structural Concrete, vol. 24, no. 1, pp. 288-
317, 2023. doi: 10.1002/suco.202200405.

The lead author (Severin Haefliger) planned and conducted the experiments and analysed the measured
data under the supervision of the second author (Walter Kaufmann).

Abstract

Local reinforcement corrosion damage reduces the load-bearing capacity of reinforced concrete struc-
tures and, even more severely, their deformation capacity. This problem is of particular concern for
cantilever retaining walls, whose loading is dominated by earth pressure and hence, depends on the wall
deformations. With a limited deformation capacity at the ultimate limit state due to the locally corroded
reinforcement, the earth pressure may not drop to its reduced value typically assumed in design, and
simultaneously, the structural resistance may be severely impaired by the cross-section loss. Load redis-
tributions are impeded since retaining walls are statically determined vertically and typically segmented
longitudinally. This increases the risk that affected structures collapse, exhibiting a brittle failure. The

95

https://onlinelibrary.wiley.com/doi/full/10.1002/suco.202200405
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situation is aggravated by the fact that the wall deformations prior to failure are too small to be detected
by conventional monitoring, as indicated by a previous study.

To improve the basis for quantifying the related risks and the magnitude of pre-failure deflections,
this study investigates the load-deformation behaviour of cantilever retaining walls affected by local pit-
ting corrosion, focusing on (i) the influence of the corrosion pit distribution among different reinforcing
bars on the load-bearing and deformation capacity and (ii) the interdependence of corrosion, reduced
deformation capacity and deformation-dependent loading. To this end, eight large-scale experiments on
retaining wall segments were conducted in the Large Universal Shell Element Tester (LUSET), simulat-
ing the lower part of a 4.65 meter tall cantilever retaining wall. Five specimens contained initial damage
(pitting corrosion simulated by a spherical mill). In the remaining three specimens, artificial corrosion
damage was induced during the experiments. For two of the latter specimens, the loading was adapted
in real-time control depending on their deformation to simulate the decreasing earth pressure. These are
the first large-scale hybrid tests in the field of corrosion research to our knowledge.

The experiments confirmed that the ultimate load and the corresponding deformation strongly differ
depending on the corrosion pit distribution, even among specimens with equal mean cross-section loss.
Furthermore, it was found that the deformation increase due to corrosion damage depends on the load-
ing and, hence, on the compaction of the backfill. The observed deformation increase ranged between
0.8 mm and 1.4 mm per meter height at 40% cross-section loss, with loose soil causing a larger deforma-
tion increase. The load transfer between the damaged and undamaged reinforcing bars was found to take
place in the first two crack elements above the construction joint. Local bending moments occurred in
the reinforcing bars in the vicinity of the corrosion pits due to the shift of the centre of gravity of the bar
at the pit. Fibre optic strain sensing allowed visualising the bending moment decrease in the embedded
part of the damaged bars as a consequence of a lateral bearing pressure.

6.1 Introduction

Many cantilever retaining walls built in the 1960s and 1970s along Swiss motorways and railroads are
affected by severe local pitting corrosion, as revealed, e. g. by a pilot study of the Swiss Federal Roads
Office [52] on 36 retaining walls carried out in 2013. According to this study, the corrosion pits are
located exclusively at the construction joint between the footing and the wall and primarily affect the
main tensile reinforcement on the rear side, see Figures 6.1(a) and (b). The corrosion is most likely
caused by honeycombs resulting from poor concrete compaction in this region, which impeded the pas-
sivation of the reinforcement and enabled local ingress of water and oxygen. The electric connection
between the relatively small part of unprotected reinforcement (acting as anode) with the large amount
of passivated reinforcement in the remaining part of the retaining wall (acting as cathode) led to the
formation of a strong macro element and rapidly progressing pitting corrosion [25] (see Figure 6.1(c)),
affecting approximately 25% of the main tensile reinforcement with a mean cross-section loss of 37%
(total cross-section loss: 9.5%) [52]. The wall thickness above the footing (for many objects between
0.5 and 1.2 m) impedes detecting the corroding reinforcement at the wall’s rear side with conventional
methods applied at the front side, such as potential mapping or georadar measurements [52]. Therefore,
even severe corrosion damage is likely to remain undetected until failure.

Retaining walls are mainly loaded by earth pressure, whose magnitude depends on the deformation
of the loaded structure. Code provisions in the 1960s and 1970s (in Switzerland, SIA 162 [144]) recom-
mended designing cantilever retaining walls for reduced earth pressure, often assuming merely active
earth pressure at the ultimate limit state (ULS). Hence, it was implicitly assumed that the deformation
capacity is sufficient for the earth pressure to drop from pressure at rest to active pressure. However, the
occurrence of pitting corrosion not only reduces the load-bearing capacity of a structure but also – and
much more pronouncedly – impairs its deformation capacity [17, 35, 51, 103, 110]: recent studies [39,
72] show that limited cross-section losses of only 17% might reduce deformation capacity by as much
as 82% due to strain localisation in the vicinity of the corrosion pit. Hence, considerable uncertainty
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(a) (c)(b)

footingwall

construction 
joint

Fig. 6.1 – Retaining walls with locally corroded reinforcement: (a) affected wall along motorway (picture from
[52]); (b) detail of construction joint with corroded reinforcement (picture from [52]); (c) example of
reinforcing bar with local corrosion damage, extracted during the pilot study.

arises whether the residual deformation capacity of corroding retaining walls is sufficient to reach active
earth pressure at ULS. Otherwise, affected structures are at risk of failing in a brittle manner since (i) the
reduced load-bearing capacity will hardly be sufficient to resist an earth pressure substantially exceeding
the value assumed in design (active pressure), and (ii) most retaining walls are segmented by closely
spaced dilatation joints. Although sometimes provided with (rather weak) shear dowels, this segmenta-
tion impedes the activation of plate bending and a corresponding load redistribution in the longitudinal
direction. Moreover, the potentially small deformation increase due to corrosion until failure challenges
a successful application of the observation method [138], i. e. permanent monitoring of a structure’s
deformation to detect the exceeding of a predefined limit at an early stage.

The assessment of the residual deformation capacity of corroding structures is demanding, as it de-
pends on various aspects on different structural levels [72]. On the level of the reinforcing bar, the micro-
structural composition of the bar and the pit morphology are most relevant. Quenched and self-tempered
(QST) reinforcing bars, making up for most modern reinforcement, reveal a distinct microstructure over
their cross-section, and hence, change their mechanical properties continuously for an increasing cross-
section loss [55, 71, 82, 139]. The pit morphology strongly influences the behaviour of reinforcing bars
in the pit region by two distinct mechanisms. Depending on the pit length, a triaxial stress state can
influence the apparent mechanical steel characteristics and potentially lead to (i) a higher strength of the
bar than nominally expected [80] and (ii) an altered tensile stiffness (higher or lower) in the pit vicinity.
Furthermore, for unilateral corrosion damage, local bending moments occur in the vicinity of the pit due
to the shift of the centroidal bar axis, which can disproportionally impair the load-bearing capacity [8,
58, 86, 166].

On the level of a reinforced concrete cross-section, the distribution of the corrosion damage among
the reinforcing bars strongly influences the deformation capacity. When comparing two identical struc-
tures with the same mean cross-section loss but different corrosion pit distribution, a recent study [72]
concluded that the deformation capacity for the structure with few severely corroded bars is much higher
than that of the structure with many slightly corroded bars. This is due to a varying influence of strain
localisation and implies that knowledge of the mean cross-section loss of a corroded structure is insuffi-
cient to draw reliable conclusions on its load-deformation behaviour, particularly regarding deformation
capacity.

The pit morphology and pit distribution significantly influence the load (re-)distribution in a rein-
forced concrete cross-section between reinforcing bars with and without cross-section loss, and govern
a structure’s load-deformation behaviour in case of pure pitting corrosion (where in contrast to uniform
or mixed corrosion, no appreciable deterioration of bond due to corrosion is expected). Experimental
studies on damaged bare reinforcing bars with different pit geometries and structural elements with
systematically varied pit distributions are needed to develop and validate models for the corresponding
structural effects. Whereas individual experimental results and first modelling approaches exist for bare
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reinforcing bars [8, 58, 76, 80, 86, 166], experimental data reflecting these effects is scarce for structural
elements.

The hazard potential of locally corroding retaining walls is substantial due to the large number of po-
tentially affected structures, the difficulty of corrosion detection, and the various critical aspects, partic-
ularly the interdependence of corrosion, altered load-deformation behaviour and deformation-dependent
loading. Since this interdependence and the underlying load-transfer mechanisms have barely been in-
vestigated on a structural level, a comprehensive experimental campaign on retaining walls with loc-
ally damaged reinforcement was set up at ETH Zurich. It aimed at investigating (i) the general load-
deformation behaviour of uncorroded retaining walls as a reference (behaviour of construction joint,
footing and lap splice), (ii) the influence of the corrosion pit distribution on the load-deformation be-
haviour, and (iii) the interaction between the deformation increase due to corrosion damage and the
deformation-dependent loading. For this purpose, eight large-scale experiments on retaining wall seg-
ments of two meters in width and height were conducted in the Large Universal Shell Element tester (LU-
SET) [88], simulating the lower part of 4.65 m tall retaining walls. Five specimens with varying initial
corrosion damage were loaded until failure. The three remaining specimens were loaded to characteristic
load, and corrosion damage was subsequently increased. Two of the latter were tested in a hybrid mode,
with the load being adapted depending on the actual wall deflection, to simulate the decrease of the earth
pressure loading with increasing deformation due to corrosion. To the authors’ knowledge, these are the
first large-scale hybrid tests conducted in corrosion research.

This paper presents the design of the specimens (Section 6.2) and the experimental setup (Section
6.3), including details on the instrumentation and the hybrid testing. The experimental results are com-
prehensively discussed in Section 6.4, focusing on the influence of the corrosion pit distribution on the
load-deformation behaviour, the load-transfer mechanism in the pit region, and the occurrence of local
bending effects. A comprehensive discussion of the load-deformation behaviour of the footing and lap
splice region, and the theoretical assessment of the experimental data based on the Corroded Tension
Chord Model [70, 72], is envisaged for a future separate publication. The geotechnical aspects of the
problem, particularly the relation between earth pressure and a structure’s deformation, are part of a sep-
arate research project; comprehensive information can be found in the corresponding publication [125].

Tab. 6.1 – Number of assessed cantilever retaining walls for parametric analysis by location and year of construc-
tion.

Origin (Canton) Number of assessed walls

Berne 12

Grisons 1

St. Gallen 5

Vaud 11

Zurich 1

Year of construction Number of assessed walls

1968 - 1970 7

1971 - 1975 11

1976 - 1980 3

1981 - 1985 7

1996 1
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Fig. 6.2 – Geometry of assessed retaining walls: (a) parameter definition; (b)-(d) relations between different geo-
metrical parameters. The solid red dots in (b) and (d) indicate the parameters chosen for the specimens
of the experimental campaign.

6.2 Design of existing retaining walls

Accurate knowledge of typical design parameters of existing cantilever retaining walls is indispensable
for producing representative specimens for experimental purposes. Therefore, prior to the experimental
campaign, a parametric study was carried out based on 158 sections of 30 cantilever retaining walls loc-
ated in different regions of Switzerland and built in different years, mainly between 1968 and 1985 (Table
6.1). The data was collected mainly from the original construction plans of retaining walls, including
those assessed in the pilot study [52].

Figure 6.2 shows the relations between the different geometric parameters of the assessed walls, with
Figure 6.2(a) defining the parameters (he f f = wall height above footing, tin f = wall thickness above
footing, t f oot = thickness of footing, and w f oot = width of footing). All sections of one retaining wall
are indicated with a marker of identical shape and colour. As seen from Figure 6.2(b), retaining walls
with heights (above footing) up to 3 m typically exhibit a slenderness between 1:4 and 1:7, whereas the
slenderness of higher walls varies roughly between 1:5 and 1:12. This is presumably owed to a minimum
wall thickness due to the detailing rules (e. g. minimum bar spacing), causing lower walls to be less
slender. The wide range of slenderness is potentially also caused by the various boundary conditions of
the respective projects. According to Figure 6.2(c), the slenderness of footings tends to be smaller and
less correlated to the wall height, with most values between 1:3 and 1:10. Figure 6.2(d) indicates that the
footing thicknesses range from 0.5 to 1 times the wall thickness at its base. This is reasonable, as the wall
base moment is carried by one side or shared between two sides of the footing depending on its position
(L-shaped or reversed-T-shaped wall).

Most of the analysed retaining walls are segmented longitudinally at distances of roughly 0.7 to
2 times the wall height. The segments are sometimes connected with shear dowels (e. g. Ø20@500) to
avoid differential deformations of two neighbouring segments in service. However, these dowels are
neither designed for nor sufficient to compensate for a reduction in structural resistance of a segment.
Hence, cantilever retaining walls are statically determined vertically and cannot redistribute substantial
loads in the longitudinal direction by plate action.

Figure 6.3 shows the reinforcement properties of the analysed retaining walls. The design values of
the bending moment due to active earth pressure (assuming a triangular distribution) acting on a retaining
wall mEd and the bending resistance mRd can be approximated by

mEd = γq ·
1
6

Kahγsoilh3
e f f

mRd = z ·as fyd ≈ 0.8tin f ·ρtin f fyd

(6.1)
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Fig. 6.3 – Reinforcement of assessed walls: (a) relation between reinforcement ratio and geometrical parameters
according to Equation (6.3); (b, c) reinforcing bar diameters and spacings vs cross-sectional area of
reinforcement. The solid red dots indicate the parameters chosen for the specimens of the experimental
campaign.

with γsoil = specific weight of soil, γq = partial safety factor, z ≈ 0.8 · tin f = lever arm of internal forces, as

= reinforcement cross-sectional area per unit length, ρ = as/tin f = reinforcement ratio at wall base, fyd =
design value of reinforcing steel yield stress, and Kah = Coulomb’s horizontal earth pressure coefficient
[99]

Kah =

 cosϕ

1+
√

sin(δ+ϕ)sinϕ

cosδ

2

(6.2)

where ϕ = internal angle of friction and δ = wall friction angle. Setting mEd = mRd , one gets the
reinforcement ratio required to ensure structural safety:

ρ ≈ Kahγsoil

6 ·0.8 · fyd

h3
e f f

t2
in f

(6.3)

which is proportional to the geometrical parameter h3
e f f /t2

in f . Note that the actual yield stress of the
reinforcement (depending on the time it was produced) needs to be used in Equation (6.3). Figure 6.3(a)
illustrates the correlation of the reinforcement ratios in the assessed walls with Equation (6.3), along with
a black line indicating a degree of compliance doc = 1.0 when assuming typical values of Kah = 0.28
(gravel sand with ϕ = 30◦ and δ = 2/3ϕ), γsoil = 20kN/m3, fyd = 240MPa, and γq = 1.0 according to
the Swiss Design Code SIA 162 of 1968 [144] (in vigour until 1989). The reinforcement ratio of almost
all analysed wall sections lies above the minimum, with tall and slender walls exhibiting higher safety
margins than low and compact walls. Figures 6.3(b) and (c) illustrate the reinforcing bar diameters Ø
and spacings s used depending on the cross-sectional area of reinforcement.

6.3 Experimental design

Eight cantilever retaining wall segments were prepared and subsequently tested in the LUSET [88] at
the structures laboratory of ETH Zurich. Representative dimensions and reinforcement layouts were
chosen based on the parametric study described in Section 6.2. The test specimens represented the
lower part of a 4.65 m tall retaining wall segment, which was achieved by applying the corresponding
bending moment and shear force, caused by earth pressure on the upper (not physically represented) part
of the wall, along the top edge of the specimens with the LUSET. All specimens were identical except
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Fig. 6.4 – Drawings of test setup in the Large Universal Shell Element Tester (LUSET): (a) specimen dimensions,
connection to LUSET yokes, and definition of the coordinate system; (b) reinforcement layout and detail
of a reinforcing bar in the region of the corroded zone.

for the corrosion damage and the loading, which were the only parameters that varied throughout the
experimental campaign.

6.3.1 Geometry and reinforcement layout

As shown in Figure 6.4(a), the specimens consisted of a 1.7 m tall and 2.0 m wide wall with a thickness
of 0.38 m, built on a footing measuring 1.4 · 2.1 · 0.4 m3. The specimens are rather slender (he f f /tin f =
4.65/0.38 ≈ 12 : 1) compared to the assessed walls, as illustrated in Figure 6.2(b). This slenderness was
deliberately chosen to explore the behaviour of a typical bending element, minimising the influence of
shear deformations and avoiding the formation of a direct compression strut. The height of the footing
was defined with the ratio h f oot/tin f = 1 using Figure 6.2(d), and its length was bounded by the yoke
dimensions of the testing machine.

Figure 6.4(b) illustrates the schematic reinforcement layout; the photos in Figures 6.5(a) and (b) show
the footing and the wall before casting, and Figure 5 (c) shows the reference specimen prior to testing.
The reinforcement ratio of the main tensile reinforcement was chosen such that the degree of compliance
according to the design code SIA 162 of 1968 [144] with the parameters defined in Section 6.2 equalled
doc = 1.0 (Figure 6.3(a)). This led to a ratio ρ = 0.33%, which was achieved with reinforcing bars of
diameter Ø = 18 mm and a typical bar spacing of s= 200 mm (see Figures 6.3(b) and (c)). The specimens
were cast in two steps, as common for retaining walls, starting with the footing and continuing with
the wall. Therefore, the vertical reinforcement was anchored in the footing and spliced just above the
construction joint over a length of 50Ø, representing the typical detailing of existing retaining walls (no
seismic design), see Figure 6.5(b).

Additional transverse reinforcement Ø14, longitudinal reinforcement Ø12, and stirrups Ø12 were
placed in the footing to account for shrinkage and ensure a proper transfer of the moment and shear force
from the construction joint to the supports. In the wall, shrinkage reinforcement Ø12@150 was placed
longitudinally, and the load introduction zone at the wall head was confined with stirrups Ø8. No shear
reinforcement was placed in the wall. All reinforcing bars had a minimum concrete cover of 30 mm.
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Fig. 6.5 – Test specimens: (a) footing before casting; (b) wall before casting; (c) Specimen CD-0 with installed
load introduction plates.

6.3.2 Experimental programme

The experimental campaign consisted of two test series, with five and three specimens, respectively.
Series CD (“Corrosion Distribution”) aimed at investigating the influence of different corrosion pit dis-
tributions on the load-deformation behaviour of cantilever retaining walls since theoretical studies indic-
ated a pronounced influence [72]. Series EP (“Earth Pressure”) addressed the influence of a decreasing
earth pressure loading with increasing wall deformation due to corrosion damage. The experimental
programme is summarised in Table 6.2, where the individual cross-section loss per reinforcing bar ζi and
the mean cross-section loss ζm per specimen are defined as

ζi =
As,lost

As

ζm =

∑
nc

As,lost

∑
ntot

As
=

∑
nc

ζi

ntot

(6.4)

with As,lost = lost cross-sectional area of the reinforcing bar, As = original cross-sectional area of the
bar, nc = number of damaged (corroded) bars, and ntot = total number of reinforcing bars (damaged and
undamaged, all with the same nominal diameter).

In the specimens of Series CD, the cross-sections of a number of reinforcing bars were reduced be-
fore casting, and the load was increased during the experiments until failure (without further reduction
of the bar cross-sections). After the reference test CD-0 without any damaged reinforcing bars, Speci-
men CD-3-10 (ζm = 0.03, ζi = 0.1) provided insight into the behaviour of a segment with few slightly
damaged reinforcing bars. In the following three specimens (CD-9-15/30/var), the mean cross-section
loss was held constant at ζm = 0.09, similar to that found in the pilot study [52], by providing (i) a
few severely damaged reinforcing bars (CD-9-30, ζi = 0.3), (ii) many slightly damaged bars (CD-9-15,
ζi = 0.15), and (iii) many bars with different cross-section losses (CD-9-var).

In the specimens of Series EP, the cross-section of four reinforcing bars was reduced with drilling
machines after applying the characteristic load (see Sections 6.3.5 and 6.3.7 for more details). In Speci-
men EP-CL, the load was held constant during drilling and increased to failure after the bars had been
completely drilled through. In the Tests EP-LD (“Low Density”, loose soil) and EP-HD (“High Density”,
compacted soil), a different characteristic load was applied and subsequently decreased during drilling,
depending on the increasing wall deformation (see Section 6.3.7). Again, the load was increased to
failure after the four bars had been completely drilled through.
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Tab. 6.2 – Experimental programme. The cross-section loss per bar and the mean cross-section loss are defined
according to Equation (6.4).

Test
name

Mean cross-
section loss
ζm [-]

Affected
bars nc

Cross-section loss
per bar ζi [-]

Loading Remarks

CD-0 0 0/10 0 Increasing load Reference test

CD-3-10 0.03 3/10 0.1 Few affected bars,
slight damage

CD-9-30 0.09 3/10 0.3 Few affected bars,
severe damage

CD-9-15 0.09 6/10 0.15 Increasing load Many affected bars,
slight damage

CD-9-var 0.09 5/10 0.1 (1x), 0.15 (2x),
0.2 (1x), 0.3 (1x)

Many affected bars,
various damage

EP-CL 0. . . 0.4 4/10 0. . . 1.0 Constant characteristic load
caused by loose soil

EP-LD 0. . . 0.4 4/10 0. . . 1.0 Characteristic load caused
by loose soil (“Low
Density”), decreasing with
increasing deformation

Increasing damage,
starting after
application of
characteristic load

EP-HD 0. . . 0.4 4/10 0. . . 1.0 Characteristic load caused
by compacted soil (“High
Density”), decreasing with
increasing deformation

6.3.3 Material properties

The main tensile reinforcement Ø18 originated from the same production batch for all specimens. It
consisted of B500B cold-worked bars with the product name “BSW-Superring TWR” (producer: Badis-
che Stahlwerke GmbH). For this type of reinforcing bar, the microstructure is homogeneous over the
entire cross-section, other than in QST bars that exhibit a distinct microstructure over the cross-section.
Conventional tension tests were carried out at a strain rate of 0.01 %/s to determine the steel stress-strain
characteristics. The results are shown in Figure 6.6 along with the typical values of the dynamic yield
stress fy,dyn, dynamic tensile strength fu,dyn, and strain at peak stress Agt = ε( fu,dyn), as well as the static
values fy,stat and fu,stat determined by stopping the deformation-controlled loading for two min after
reaching the yield stress and close to the tensile strength, respectively.

A conventional concrete C25/30 with a maximum aggregate size of 16 mm was used. On the day of
each experiment, two cube and three cylinder compression tests and two double punch tests [113] were
carried out to determine the concrete compressive ( fcc and fc) and tensile strength fct . This was done
separately for the footing and the wall since the wall was cast approximately 30 days after the footing (see
Section 6.3.1) and thus exhibited different concrete properties. Table 6.3 summarises the mean values of
the concrete material tests, along with the maximum absolute deviation in parentheses.
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the dynamic tensile strength fu,dyn and the corresponding strain Agt . Note that all stress values were
determined with the nominal cross-sectional area.

Tab. 6.3 – Results of concrete material tests for footing and wall of each specimen in [MPa]: mean values and
maximum absolute deviation (in parentheses).

Test name Footing Wall

Cube
compressive
strength fcc

Cylinder
compressive
strength fc

Double
punch tensile
strength fct

Cube
compressive
strength fcc

Cylinder
compressive
strength fc

Double
punch tensile
strength fct

CD-0 36.9 (0.2) 31.0 (2.1) 2.3 (0.2) 41.1 (0.3) 34.3 (0.2) 2.7 (0.1)

CD-3-10 38.7 (1.1) 34.0 (2.2) 2.9 (0.3) 43.7 (1.4) 36.7 (1.4) 3.3 (0.3)

CD-9-30 40.3 (0.6) 36.3 (1.1) 2.7 (0.2) 43.6 (0.2) 43.7 (0.6) 3.3 (0.2)

CD-9-15 39.8 (0.6) 33.4 (2.6) 2.9 (0.1) 43.8 (1.2) 40.8 (3.0) 3.5 (0.1)

CD-9-var 40.8 (0.5) 35.6 (1.0) 3.1 (0.1) 41.8 (0.9) 39.2 (1.5) 2.9 (0.3)

EP-CL 39.3 (2.3) 35.9 (0.8) 2.8 (0.2) 38.7 (2.0) 37.9 (2.0) 2.8 (0.1)

EP-LD 45.4 (0.2) 41.5 (0.2) 3.2 (0.1) 41.7 (0.3) 36.6 (0.6) 2.9 (0.1)

EP-HD 44.4 (0.2) 41.5 (0.3) 3.1 (0.2) 42.5 (0.7) 38.0 (0.6) 2.8 (0.4)

6.3.4 Artificial corrosion damage

The cross-section of the nc = 0...6 reinforcing bars per specimen affected by corrosion, as indicated
in Table 6.2, which were anchored in the footing and passing into the wall, was reduced mechanically
just above the construction joint using a spherical mill to simulate corrosion damage. This procedure
had already been successfully applied by [34]. It has the advantage that the diameter of the mill and
the penetration depth define the cross-section loss and the pit geometry. Preceding pilot tests on bare
reinforcing bars and tension chords comparing this degradation method to others, e. g. electrochemically
induced corrosion damage, showed only minor differences regarding the load-deformation behaviour
[161]. No accumulation of corrosion products and resulting cracks or spalling of the concrete cover are
to be expected in case of honeycombs, since (i) no pressure can build up in the highly porous concrete
and (ii) most products are washed away with the entering water [25].

The mill diameter was chosen to be 20 mm, closely matching the average pit length found in the pilot
study [52]. The bars were provided with a single pit (in contrast to several pits in series) since several
bars extracted from existing walls during the pilot study [52] exhibited this pit configuration. Moreover,
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(c) (d)(b)(a)

Fig. 6.7 – Details of artificial corrosion: (a) 3D scan of a reinforcing bar Ø18 mm with corrosion pit generated by
drilling, corresponding to a maximum cross-section loss ζi = 0.1; (b) drilling machine with automatic
feed used for hybrid tests, positioned in front of recess and fixed with concrete anchors; (c) recess with
reinforcing bar damaged prior to experiment (ζi = 0.3); (d) recess with reinforcing bar drilled through
during the experiment, after removal of drilling machine.

a study on the influence of the pit geometry on the bar load-deformation behaviour indicated that a single
pit is the worst possible configuration regarding the loss of deformation capacity [58].

In Series CD, the cross-section of the nc = 0...6 bars per specimen was reduced before casting, and
the region around the pit was scanned using the 3D-scanning system ATOS Core® by GOM to have a
reference measurement of the calculated cross-section loss (see Figure 6.7(a)). In Series EP, the cross-
section of nc = 4 reinforcing bars per specimen was reduced simultaneously in steps of ∆ζi = 0.05
during each experiment. To this end, four industrial drilling machines fitted with an automatic feed
and a high-precision laser distance sensing system were fixed to the footing by means of four concrete
anchors per machine (see Figure 6.7(b)). By combining the measured penetration depth with the radii of
the reinforcing bar and spherical mill, the removed and remaining cross-sectional areas were precisely
known throughout the entire experiment.

In order to provide access to the reinforcing bars to be drilled during the experiment, a recess of
100 mm height, 60 mm depth and 40 mm width was provided around the future corrosion pit during
casting by means of a styrofoam formwork inlay (see Figure 6.4(b), Detail A, and Figures 6.7(c) and (d)).
Identical recesses were also provided in the Series CD for reinforcing bars containing initial damage to
have comparable experimental conditions. While the recesses facilitate access for precisely controlled
drilling, they have the apparent disadvantage of a locally missing bond. However, this is no major
concern here since the bond strength in the affected region is also reduced in the real retaining walls due
to the honeycombs triggering the corrosion damage (see Section 6.1).

6.3.5 Test setup and instrumentation

Figure 6.8(a) shows one of the specimens of Series EP installed in the LUSET; the identical setup, but
without drilling machines at the base, was used in Series CD. The specimen footing was placed onto
two steel strips positioned on the bottom yokes of the LUSET, which ensured a properly defined load
introduction, and clamped with preloaded M36 bolts (see Figure 6.4(a)). At the top edge of the specimen,
five load introduction plates were placed onto a mortar layer, connecting the tensile reinforcement at the
specimen head to the plates by means of reinforcing bar couplers (BARTEC ® Type X18-24) fixed
with M24 bolts (Figure 6.4(b)). This ensured a direct contact of the plates to the specimen and a slip-
free moment and shear force introduction. Each of the five load introduction plates was subsequently
connected to the corresponding top yoke of the LUSET using preloaded M36 bolts.

All reinforcing bars of the main tensile reinforcement were instrumented with a fibre optic strain
sensing system (Odisi 6104 from Luna Inc. [106]), which enabled a quasi-continuous strain sensing
along the entire length of the bars using a virtual gauge length of 1.3 mm [63, 100, 116]. To this end,
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Fig. 6.8 – Test setup and detail of instrumentation: (a) specimen in the Large Universal Shell Element Tester
(LUSET) with installed drilling machines for hybrid test; (b) glass fibre glued in groove, with adjacent
transition zone where the fibre continues in protecting tube; (c) location of fibre in the reinforcing bar
with respect to drilling direction, with global coordinate system shown for reference.

optical glass fibres were placed into small grooves of 1x1 mm cross-section carved along the inner side
of the reinforcing bars (opposite the present or future artificial corrosion pit) and glued with epoxy resin
[63, 100, 116] (see Figures 6.8(b) and (c)). Note that a transition zone of approximately 10 cm length
exists at both ends of each bar where the glass fibre leaves the groove and continues in a protecting
tube and, therefore, is not bonded to the bar (Figure 6.8(b)). Hence, the fibre optic measurements do
not extend over the full reinforcing bar length. Measurements were carefully post-processed using the
consolidating methods and filters described in Appendix B1.

A three-dimensional digital image correlation (DIC) system (VIC-3D of Correlated Solutions [42],
FLIR Grasshopper 3 cameras with a resolution of 4096x3000 px) was used to measure the surface de-
formations of the specimens. To this end, the footing and wall’s surface (at the side in tension) were
primed white and speckled black. Besides recording the overall deformations, the kinematics of the
cracks occurring during the tests were automatically determined from the deformation field using the
Automated Crack Detection and Measurement tool ACDM [65, 66, 116]. Different correlation para-
meters were used depending on the purpose, resulting in a measurement precision of approximately
20...40 µm for the out-of-plane displacement and 10 µm for the crack kinematics (see Appendix B2).

The applied loads were measured using the load pins installed at the 50 actuators of the LUSET
(out of 100) used in this configuration, and the resultants were calculated with the actuator’s position
measurements. Lagrangian optimisation was used to reduce possible noise (see Appendix B3).

6.3.6 Boundary conditions and loading

As a boundary condition, it was assumed that the simulated retaining wall is built on rock or stiff, com-
pacted ground such that wall deflections resulting from a rotation of the footing can be neglected. Con-
sequently, the bottom yokes of the LUSET were controlled to zero rotation and displacement throughout
all experiments. The top yokes applied a combination of normal force, out-of-plane shear force and
bending moment at the specimen head. Figure 6.9(a) shows the triangular loading of the simulated
4.65 m tall retaining wall (blue and light grey) and that of the specimen (red and dark grey), along with
the corresponding shear force and moment lines, bending stiffness, and deflection. The loading of the
specimens was chosen such that the moment at the construction joint M j and the displacement at the
specimen head vexp(z = h) were equal to that of a retaining wall with he f f = 4.65m subjected to a trian-
gular earth pressure distribution qe f f (z). The bending moment Mtop and shear force Vtop to be applied at
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respectively, resulting from Equation (6.5). Red curves show the theoretically exact path, black lines
represent the simplified path implemented in the control system of the Large Universal Shell Element
Tester (LUSET).

the specimen head can thus be determined by solving the following two equations for Mtop and Vtop (see
Figure 6.9(a)):

M j,exp = Mtop +h ·Vtop
!
= M j,e f f =

∫∫ he f f

0
qe f f (z)dz

vexp(z = h) =
∫∫ h

0

M(z)
EI(z)

dz !
= ve f f (z = h) =

∫∫ h

0

Me f f (z)
EI(z)

dz

(6.5)

The solution of Equation (6.5) is plotted in red in Figure 6.9(b) as a function of the distributed load
q (earth pressure) acting at the location of the construction joint. The analytical solution can be found
in the appendix. A simplified, bilinear load path was implemented in the control system of the LUSET,
yielding a good approximation (see Figure 6.A1 and black lines in Figure 6.9(b)). A quasi-static loading
rate of dM j/dt = 5kNm/min was chosen.

The specimens were first loaded with a normal force of Ntop = (he f f −h)btin f γconc =−56kN, simulat-
ing the self-weight of the fictitious upper part of the retaining wall (geometry of wall with he f f = 4.65m,
h = 1.7m, tin f = 0.38m, b = 2.0m, and γconc = 25kN/m3) but neglecting wall friction. As an exception,
Specimen CD-0 was tested without normal force. Subsequently, the shear force at the specimen head was
increased continuously at a rate of dVtop/dt = 2.95kN/min (corresponding to dM j/dt = 5kNm/min)
until a shear force Vtop = 132kN was reached. Subsequently, the shear force was increased at dVtop/dt =
1.96kN/min (corresponding to dM j/dt = 3.33kNm/min), and an additional bending moment was ap-
plied at the specimen head at a rate of dMtop/dt = 1.66kNm/min; the total bending moment rate at the
construction joint thus remained constant at dM j/dt = 5kNm/min.

In Series CD, the load was monotonically increased until failure. The specimens of Series EP were
first loaded to the characteristic load following the load path of Figure 6.9(b), and subsequently, four
reinforcing bars were damaged by drilling while the load was either kept constant (EP-CL) or reduced
as a function of the deformations (EP-LD and EP-HD, see Table 6.2). For Specimens EP-CL and EP-
LD, the characteristic moment at the construction joint M j,k was determined assuming loose soil with
ϕ = 30◦, γ = 22kN/m3 and δ = 2/3ϕ from

M j,k = Kγ
h3

e f f b

6
(6.6)
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Fig. 6.10 – Control loops for hybrid tests: (a)-(c) details of high-precision laser measurements of the wall head
displacement and drill feed; (d) overview of feedback loops for drilling machines (orange) and
deformation-dependent load (blue) based on the earth pressure model developed by [125] for loose
(Specimen EP-LD) and compacted (Specimen EP-HD) soil.

with K0 = 1−sinϕ, Kah = horizontal earth pressure coefficient (see Equation (6.2)), and K =(Kah+K0)/2
= mean earth pressure coefficient, as often used in serviceability limit state (SLS) design. This resulted in
a bending moment at the construction joint of M j,k = 288kNm (q= 39.9kN/m2). For Specimen EP-HD,
the same soil parameters were assumed, but the earth pressure was determined assuming compaction in
five layers using a model provided by [125], resulting in M j,k = 394kNm (q = 54.7kN/m2). If the
specimen did not fail after drilling through the reinforcing bars, the load was subsequently increased
again, following the load path illustrated in Figure 6.9(b).

6.3.7 Hybrid tests

Series EP, including the two hybrid tests, aimed at investigating (i) the deflection increase in the SLS
due to corrosion and, hence, an expected decrease in stiffness, and (ii) the interaction between corrosion,
increasing deflection and decreasing earth pressure, i. e. the soil-structure interaction with increasing
corrosion damage.

Figure 6.10 shows the control loops for the hybrid tests. The feed of the drilling machines was con-
trolled using the penetration depth measurement resulting from the corresponding distance laser (orange
loop in Figure 6.10). Together with the bar diameter and the mill radius, the current cross-section loss
was obtained from the penetration depth by integration, which was compared to the current set point.
Subsequently, the controller regulated the corresponding machine feed to meet the set point.

To simulate the decreasing earth pressure with increasing deformation, the load applied during the
drilling phase in the Tests EP-LD and EP-HD was controlled in function of the specimen head displace-
ment (blue loop in Figure 6.10). The displacement was measured using an additional high-precision
distance laser, which was installed on a stiff rod connected to the specimen footing (to avoid any er-
rors due to potential unwanted movements of the specimen base in the LUSET). The model describing
the earth pressure behaviour was developed within a companion project at the Chair of Geomechanics
at ETH Zurich [125] and customised to fit the input-output structure of the hybrid tests. It relates the
displacement at z = h = 1.7m of the simulated wall with he f f = 4.65m to an earth pressure distribution
and the resulting bending moment acting at the construction joint M j, see Figure 6.10. As outlined in
Section 6.3.6, two different earth pressure distributions were adopted, simulating loose soil (EP-LD) and
compacted soil (EP-HD). The base moment M j was converted to an equivalent shear force and bending
moment at the specimen head, Mtop and Vtop, respectively, which were forwarded to the LUSET control
system as new set points.
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Fig. 6.11 – Crack widths and deformations of cantilever retaining walls with a lap splice (LS): (a) Specimen CD-0
with crack pattern at end of test (yellow and red = cracks in LS region, green = cracks at upper LS
boundary, blue = cracks above the LS; line thicknesses proportional to scaled-up (36:1) crack opening;
(b, c) crack openings and opening of construction joint at different scale of abscissa; (d) deflections for
different load steps.

6.4 Experimental results and discussion

6.4.1 General load-deformation behaviour

This section elaborates on the general load-deformation behaviour of the specimens and, hence, canti-
lever retaining walls with a similar reinforcement layout, independent of a potential corrosion damage.
The particularities in the case of pitting corrosion damage are described in Section 6.4.2.

Figure 6.11(a) shows a front view of specimen CD-0 with the crack pattern at the end of the test.
The grey shaded area illustrates the area of interest (AOI) evaluated in the DIC post-processing; a dash-
dotted line marks the construction joint, and a dashed line indicates the top end of the lap splice (LS)
region. Bending cracks occurring in the LS region are shown in yellow and red, those at the upper LS
boundary in green, and bending cracks above the LS in blue, whereas all other cracks are plotted in black.
The thickness of the crack lines is proportional to the (scaled-up, 36:1) crack opening. Figures 6.11(b)
and (c) show the measured opening of the construction joint (black) and the bending cracks (coloured
according to Figure 6.11(a)) vs the moment at the construction joint M j at different scales of the abscissa.
The bending crack opening was extracted from the DIC data using the ACDM techniques described in
Section 6.3.5. The latter was not possible to determine the crack opening of the construction joint since
it is located at the border of the AOI. Therefore, it was determined as displacement of the lower part of
the AOI with reference to two plates fixed at the side of the footing. This results in a slightly higher noise
level compared to the ACDM data.

Figures 6.11(b) and (c) show that the opening of the construction joint is one order of magnitude larger
than that of the remaining bending cracks. This is due to the crack-width contribution of (i) the footing,
where the reinforcement is anchored with its deformation accumulating towards the crack at the joint,
and (ii) the lower LS boundary, which concentrates the deformation of the adjacent 1-2 crack elements in
the crack at the LS boundary, as outlined in a recent study [75]: the boundary elements of a LS contribute
most to its total deformation, whereas the inner elements behave approximately as conventional crack
elements with twice as much reinforcement. This is also reflected by the opening of the cracks at the
upper end of the LS (z = 900mm), which are more than twice as large as the crack openings inside
the LS (compare green and red lines in Figure 6.11(c)), despite the much lower bending moment at
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Tab. 6.4 – Peak moment at construction joint M j,u and corresponding displacement of the specimen head vtop,u.

Test name M j,u [kNm] vtop,u [mm]

CD-0 518 43.2

CD-3-10 532 38.5

CD-9-30 450 25.6

CD-9-15 507 33.2

CD-9-var 481 30.6

this location. The latter underlines the much stiffer behaviour of the LS compared to an element with
continuous reinforcement. Additionally, the crack spacing inside the LS is significantly smaller than
above the LS, confirming the theoretical approach of [75] regarding the double reinforcement ratio.

Figure 6.11(d) shows the deflections of Specimen CD-0 for different load steps. The curves are almost
linear for all load steps, with the wall essentially rotating as a rigid body around the construction joint.
This behaviour is due to a combination of the disproportionally decreasing bending moment in z and the
significantly increased stiffness in the LS region. At the upper end of the LS (z = 900mm), an additional
kink occurs in the deflection curve (clearly visible for M j = 500kNm, where a grey straight line repres-
enting the extrapolation of the deformation of the lower part was added as reference). These observations
are in accordance with the comparably large crack opening at this location, seen in Figures 6.11(a) and
(c) (green lines).

Overall, the deformation of a cantilever retaining wall containing a LS right above the construction
joint (which is the typical case in practice) can be well approximated by a rigid body rotating around
the joint. This observation is independent of a potential corrosion damage, which merely affects the
(maximum) rotation angle but does not influence the general shape of the deflection curve. Consequently,
the LS placed at the construction joint significantly stiffens the lowest part of the retaining wall and
strongly reduces its deformation capacity.

6.4.2 Implications of corrosion on load-deformation behaviour

Figure 6.12(a) shows the load-deformation behaviour in terms of the moment at the construction joint
M j vs displacement of the specimen head vtop in the five experiments of Series CD with increasing load
at constant cross-section loss. The behaviour of the reference test CD-0 without any cross-section loss
is shown in black, and that of Specimen CD-3-10 with a slight mean cross-section loss (ζm = 0.03) in
blue. The tests CD-9-30, CD-9-15 and CD-9-var, with a varying number of corroded bars of different
residual cross-sectional areas but equal mean cross-section loss of ζm = 0.09, are shown in green, orange
and purple, respectively. Triangles indicate the maximum moment at the construction joint M j,u and the
corresponding displacement of the specimen head vtop,u; the corresponding numerical values are com-
piled in Table 6.4. Compared to the reference test CD-0, the displacement at maximum load of Specimen
CD-3-10 was reduced by 11% (−4.7 mm), whereas the maximum load itself slightly increased by 2.9%
(+15 kNm). The latter effect is presumably due to a triaxial stress state at the corrosion pit, leading to an
increase of the exhibited tensile strength for slight cross-section losses; the related effects are currently
being investigated by the authors. In the specimens CD-9-30, CD-9-var, and CD-9-15, the displacement
at maximum load was reduced by 40.8%, 29.1%, and 23.2% (−12.6 mm, −10.0 mm, −7.6 mm), respect-
ively, and the maximum load decreased by 13.0%, 7.1%, and 2.1% (−68 kNm, −37 kNm, −11 kNm),
respectively.

Figure 6.12(b) summarises the results by comparing the Tests CD-3-10 and CD-9-15/30/var with the
reference test CD-0 in terms of the variation of the deformation capacity (ratio vtop,u(ζ)/vtop,u(ζ = 0),
circles) and the moment capacity (ratio M j,u(ζ)/M j,u(ζ = 0), squares) with the mean cross-section loss
ζm. The results confirm that (i) the reduction of moment capacity is approximately proportional to
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Fig. 6.12 – Results of Series CD: (a) load-deformation behaviour (ζi = cross-section loss of individual reinforcing
bars and ζm = mean cross-section loss for the entire specimen, see Equation (6.4) and Table 6.2; max-
imum load and corresponding displacement indicated with a triangle); (b) variation of moment capacity
ratios (squares) and deformation capacity ratios (circles) with mean cross-section loss.

the mean cross-section loss, (ii) the deformation capacity is disproportionally reduced, and (iii) neither
of the two capacity losses can be explained merely by the mean cross-section loss, as evidenced by
the different results obtained in the Tests CD-9-15/30/var, all with equal mean cross-section loss of
ζm = 0.09. Accordingly, among two corroding structures exhibiting an identical mean cross-section loss,
the one containing few corroded reinforcing bars with a severe cross-section loss tends to exhibit lower
capacities than the structure containing a larger number of corroding reinforcing bars with a smaller
cross-section loss. This effect is due to a more severe strain localisation for larger cross-section losses
and depends on the individual pit distribution among the reinforcing bars. It was theoretically explained
by the authors in [72] for tension chords, including the tension stiffening effect, and in [39] for bare
reinforcing bars and is validated for members subject to bending by the experiments presented in this
paper. Note, however, that theoretical calculations [72] predict a trend reversal for structures containing
an even smaller amount of damaged bars with larger cross-section loss (exemplified in the mentioned
study [72] for 20% of bars at ζi = 0.45 or 10% of bars at ζi = 0.9).

The specimens of the CD series were provided with a varying number of recesses, i. e. an unbonded
length of 100 mm (three for CD-3-10 and CD-9-30, five for CD-9-var, and six for CD-9-15). Since the
deformation capacity is closely related to the bond conditions, a part of the observed deformations of
these specimens may have been due to the unbonded length. Hence, the already reduced deformation
capacity observed in the experiments even overestimates that of the real retaining walls. On the other
hand, the honeycombs cause a substantial reduction of the bond stresses (though not to zero as in the
case of a recess), partly counteracting the overestimation.
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Fig. 6.13 – Results of Series EP: (a, b) load-deformation behaviour, drilling phase highlighted in colour (EP-CL =
constant load in drilling phase, EP-LD and EP-HD = hybrid tests with deformation-dependent decreas-
ing load, see Section 6.3.7); (c) displacement increase during drilling vs mean cross-section loss.

Figures 6.13(a) and (b) show the load-deformation behaviour of the three experiments of Series EP
with increasing cross-section loss during the entire experiments and in detail during the drilling phase,
respectively; note that the part of the experiments where the four reinforcing bars were drilled is shown
in colour. Before the cross-section reduction, Specimens EP-CL and EP-HD were subjected to one
unloading-reloading cycle in the elastic load range. For these tests, a downwards-pointing triangle in-
dicates the maximum load and the corresponding displacement reached upon increasing the load after
all four artificially corroded bars had been drilled through, i. e. at failure of the remaining, uncorroded
reinforcing bars.

As described in Section 6.3.7, after loading the specimens to a specified moment at the construction
joint in load control mode, the control system was switched to the hybrid mode for the drilling phase.
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The load was either kept constant for EP-CL (blue line) or decreased for EP-LD and EP-HD (orange and
green lines) in function of the displacement of the specimen head. The black dotted curves indicate the
targeted load paths according to the model [125], which the control system followed very well. A circle
marks the beginning of the drilling phase, and a square indicates its end, i. e. the point where the bars
were completely drilled through.

When switching from load control mode to hybrid mode, the system was set to hold the current
actuator positions for a short time (approximately 6 minutes). A slight drop in the load was observed for
EP-HD (compare the locations of load peak and the circle in Figure 6.13(b)), as frequently observed in
structural testing and investigated, e. g. in [69]. This relaxation is caused by the change in the strain rate
(in this case, by the machine stop and the subsequent constant position holding) and occurs pronouncedly
for reinforcing steel loaded in its inelastic range. For a moment of M j = 400kNm, the ten reinforcing bars
exhibited a steel stress at the wall base of σs ≈ 477MPa and a corresponding total strain of εs = 0.26%
(according to Figure 6.6), i. e. they were just at the beginning of the inelastic load range with a plastic
steel strain εs,pl = εs −σs/Es = 0.03%.

After the four reinforcing bars had been drilled through, the system was switched back to load con-
trol, keeping the last applied load constant. Subsequently, the load was increased until the undamaged
bars failed. Upwards pointing triangles in Figure 6.13(b) indicate the start of the load increase. For
the specimens EP-CL and EP-LD, the time between switching to load control and the start of the load
increase was approximately 23 min and 19 min, respectively. A significant deformation increase was
observed during this time in both specimens, which can be attributed to creep of (mainly) the rein-
forcing bars under constant load: while the stresses in the concrete were relatively low, the remaining
six reinforcing bars exhibited steel stresses of σs ≈ 547MPa (EP-CL) and σs ≈ 511MPa (EP-LD; total
strain εs = 0.44% and εs = 0.31%, using Figure 6.6), and hence, a plastic steel strain of εs,pl = 0.17%
and εs,pl = 0.06%, respectively. In line with the shorter duration under constant load and lower stress
[69], the creep deformation was lower for Specimen EP-LD compared to EP-CL. In Specimen EP-HD,
the time between switching the control mode and the subsequent start of the load increase was only 2
minutes, and accordingly, no significant creep deformation was observed.

Figure 6.13(c) shows the displacement increase of the specimen head vs the mean cross-section loss;
note that the displacement is considered between the start of drilling and the complete cross-section loss
of the damaged bars, without the subsequent creep deformation (i. e. the displacement measured between
the circle and the corresponding square in Figures 6.13(a) and (b)). The shape of the curves reflects
the reduction of the cross-section in steps of ∆ζi = 0.05. The displacement increase was highest under
constant load (EP-CL), whereas it was significantly lower under deformation-dependent, decreasing load
(−16% and −46% for EP-LD and EP-HD, respectively). This lower increase is likely due to the global
unloading of specimens: although the six reinforcing bars without cross-section loss could compensate
for the strength loss of the four drilled bars and, therefore, exhibited higher stresses near the construction
joint, the loading of the entire structure decreased, resulting in significantly reduced deformations. In
addition to the load decrease, smaller deformations were presumably also caused by the stiffer unloading
behaviour, as observed in the unloading branches prior to the drilling phase for EP-CL and EP-HD (see
Figure 6.13(a)). This stiffer behaviour is due to partial slip reversal and a corresponding reversal of bond
stresses (see, e. g. [7, 94]) and appears to clearly outweigh the loss of stiffness caused by the cross-section
loss of the damaged bars, as outlined in the following section.

6.4.3 Load-transfer mechanism and load distribution among bars

Figure 6.14 shows the stress distribution obtained from the fibre optic strain sensing data in reinforcing
bars of the hybrid tests (a) EP-CL, (b) EP-LD, and (c) EP-HD for various individual cross-section losses
ζi. For each specimen, one undamaged and one damaged pair of reinforcing bars is shown, with a pair
consisting of the reinforcing bar crossing the construction joint (L) and its corresponding splicing bar (S;
note the different scale of the abscissa for L- and S-bars). The black curve corresponds to the state without
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Fig. 6.14 – Steel stresses determined from fibre optic strain sensing data in undamaged (left) and damaged (right)
pairs of reinforcing bars in the specimens (a) EP-CL (constant load in drilling phase), (b) EP-LD, and
(c) EP-HD (hybrid tests with deformation-dependent decreasing load). Each pair of reinforcing bars
(blue lines) consists of a bar crossing the construction joint (L) and the corresponding splicing bar (S).
The red area indicates the drilled section, and the solid and dashed horizontal black lines indicate the
construction joint and the location of observed bending cracks, respectively. Note the different scale of
the abscissa for L- and S-bars.
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any cross-section loss prior to drilling (ζi = 0), and the orange curve corresponds to a cross-section loss
of the damaged bars of ζi = 0.9 for Specimen EP-CL and ζi = 0.8 for EP-LD and EP-HD. The grey
curves correspond to cross-section losses between these values, shown at intervals of ∆ζi = 0.1. The
blue vertical lines represent the reinforcing bars; a red area indicates the section penetrated by the mill.
A square indicates the recess around the corrosion pit and marks the unbonded length of the damaged
reinforcing bar. A solid horizontal line at z = 0 specifies the construction joint, and the dashed horizontal
lines visualise the mean crack locations extracted from the ACDM data. The fibre optic measurements
are missing for the lowest part of the spliced reinforcing bars (S) since the bars were not instrumented
there (see Figure 6.8(b)).

The measurements of the damaged L-bars in the pit region −50mm ≤ z ≤ 180mm reveal a superpos-
ition of tensile and bending stresses and cannot directly be compared to other results of the graph. For
this reason, the pit region is excluded from the following interpretations and analysed in detail in Section
6.4.4.

For all three experiments, a stress increase (difference between the orange and the black curve) for the
undamaged L-bar and a stress decrease for the damaged L-bar (for z > 180mm) is visible with increasing
cross-section loss ζi: the cross-section loss was accompanied by a loss of tensile stiffness of the affected
L-bars in the pit region, which triggered a load transfer towards the stiffer undamaged bars. This load
transfer is facilitated by a difference in bond shear stresses acting along the individual bars over a certain
transfer length, whose extent is mainly governed by the in-plane wall stiffness and the bond strength. It
approximately corresponded to the first two crack elements in the experiments: The stress increase in
the undamaged L- and S-bars started within the second crack element (z = 370, 300, and 240 mm for
EP-CL, EP-LD, and EP-HD) and extended in negative z-direction towards the construction joint. At the
joint, the stress increase was highest in the L-bar, whereas the S-bar must exhibit zero stress at its end
by equilibrium. The damaged L-bars exhibited a stress decrease over the same length (for z > 180mm,
see Section 6.4.4 for the part below). The corresponding S-bars were unloaded in the upper part of the
transfer length and loaded closer to the construction joint. The latter occurred due to the stiffness loss of
the neighbouring damaged L-bars, for which the S-bars partly compensated.

In the footing, at depths −50mm ≥ z ≥ −150mm, the reinforcing bars essentially exhibited a pull-
out behaviour without a pronounced load transfer between the bars along the short embedment length
between the construction joint (z = 0) and the beginning of the bent part at z =−217mm.

The load transfer mechanism between corroded and uncorroded reinforcing bars has to be superim-
posed with the load transfer due to the lap splice [75] and with the global loading of the specimens. In
the Specimens EP-LD and EP-HD, the load-transfer length was shorter than in Specimen EP-CL due
to the pronounced unloading of the former specimens. Accordingly, the stress increase of the undam-
aged L-bar at the joint in Specimen EP-HD was approximately half of that in EP-CL. All other bars of
Specimen EP-HD exhibited a stress decrease, i. e. they were unloaded. Considering the generally stiffer
unloading behaviour commented in Section 6.4.2, the findings of Figure 6.14(c) are in line with the lower
displacement increase in Specimen EP-HD illustrated in Figure 6.13(c).

Figure 6.15(a) shows the variation of the mean stresses of the undamaged L-bars at the construction
joint σs,uc in the specimens of Series CD vs the bending moment at the joint M j. A cross marks the
rupture of the glass fibres (not to be confused with the failure of the specimens). Figure 6.15(b) shows
the difference in the mean stresses at the construction joint of the specimens of Series CD compared to
Specimen CD-3-10. The latter is used as a reference in this plot since some of the fibre optical strain
data of specimen CD-0, which would be the natural choice of reference, contained excessive noise due
to technical issues during the test. Again, the fibre failure is marked with a cross, and the failure of a
specimen is indicated with three triangles indicating possible failure stress levels (whose actual value is
unknown since the glass fibres had ruptured at this point).

Deviations of the steel stresses in the uncorroded bars (Figure 6.15(a)) from the reference test, and a
persisting stress difference in Figure 6.15(b), indicate a load transfer from the damaged to the undamaged
reinforcing bars. Note that assessing this load transfer by directly comparing the stresses in the damaged
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Fig. 6.15 – Mean steel stresses obtained from strain sensing data in L-bars at construction joint: (a) mean stresses
in undamaged reinforcing bars of Series CD; (b) difference of mean stresses in undamaged reinforcing
bars between Specimens CD-9-15/30/var and CD-3-10 (used as reference); (c) difference of mean
stress at a particular cross-section loss and mean stress prior to drilling in Series EP.

bars in the vicinity of the construction joint is not possible due to the superimposed bending effects in
the pit region mentioned before. As shown in Figure 6.15(b), the mean steel stresses in the specimens
CD-9-15 (red line) and CD-3-10 (reference) were virtually identical. This is remarkable since the total
steel cross-sectional area of CD-9-15 is 6% lower than that of CD-3-10, and hence, a more pronounced
load transfer to the undamaged bars would have been expected. As the load transfer between damaged
and undamaged reinforcing bars is related to a difference in tensile stiffness, this observation implies an
almost equal stiffness of the damaged bars in Specimens CD-3-10 and CD-9-15 despite the obviously
different steel cross-sectional areas. This apparent contradiction can be resolved by considering that
the stress trajectories in the vicinity of the corrosion pit are strongly deviated due to the local change
in cross-section (corrosion pit), causing triaxial stress states, which affect the local tensile stiffness and
yield behaviour (considering, e. g. von Mises plasticity). Furthermore, it can be observed from Fig-
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ure 6.15(b) that the steel stress differences of the specimens CD-9-15/30/var vary despite their identical
total steel cross-sectional area, with CD-9-30 (green line) containing few bars with high cross-section
loss exhibiting a stronger load transfer than CD-9-var (magenta) or CD-9-15 (red), which contain more
bars with smaller cross-section losses. These findings confirm the conclusions drawn from Figure 6.12,
i. e. the load-deformation behaviour cannot be explained based on the mean cross-section loss alone. The
results can be attributed to the superposition of the influence of the mentioned triaxial stress state and the
local bending moments in the pit region, combined with the resulting variation of the localisation effect
explained in [72].

Figure 6.15(c) shows the observed stress increase in the undamaged L-bars at the construction joint
for the tests of Series EP as a function of the individual cross-section loss ζi. The increase was calculated
as the difference in the mean steel stress of all undamaged L-bars at a given cross-section loss and at
the beginning of the drilling phase (without cross-section loss). The curves in Figure 6.15(c) are similar
to those of Figure 6.13(c) and confirm the findings of Figure 6.14: (i) The stresses in the undamaged
reinforcing bars at the joint increased with the cross-section loss due to the load transfer from the less stiff
damaged bars; (ii) the global unloading of the Specimens EP-LD and EP-HD resulted in a significantly
lower stress increase compared to Specimen EP-CL tested under constant load.

6.4.4 Bending effects in the reinforcing bars near the corrosion pit

In reinforcing bars loaded in tension and affected by unilateral corrosion, bending moments in the vi-
cinity of the corrosion pits have been encountered in experimental campaigns [8, 102, 166] (note that
throughout this section, the terms bending moment and shear force, as well as deflections, refer to the
individual reinforcing bars, rather than the wall). Several models have been developed that adjust the
effective reinforcing steel parameters to account for the altered strength of the affected reinforcing bars
[8, 58, 166]. The bending moments are a second-order effect caused by the shift of the centre of gravity
of the bar near the unilateral pit, causing the reinforcing bar to act essentially as a bending-resistant tie
(see Figure 6.16(a) showing the deflection, moment, and shear force distributions for a bar in tension).
The embedment of the reinforcing bar in the surrounding concrete restrains its lateral deformation, caus-
ing lateral reactions (bearing pressure) and corresponding variations of the bending moment along the
bar axis, as in a beam on an elastic foundation, see Figure 6.16(b). The magnitude of the bearing pres-
sure, corresponding to the second derivative of the bending moments, depends on the tensile force, the
maximum pit depth, and the stiffness of the surrounding concrete.

Figure 6.17 illustrates the observed behaviour of selected damaged L-reinforcing bars of Series EP
(same bars as shown in Figure 6.14). The left graph in the figures (a) and (b) shows the stress variation,
measured at the backside of the bar, in the vicinity of the pit for a varying cross-section loss ζi with
respect to the state prior to drilling (ζi = 0), i. e.

∆σs
(
M j,z,ζi

)
= σs

(
M j,z,ζi

)
−σs

(
M j,z,ζi = 0

)
(6.7)

In Specimen EP-CL (Figure 6.17(a)), the stress variation depends solely on the cross-section loss
since the moment at the joint M j = 288kNm was held constant during drilling, i. e. ∆σs = ∆σs (z,ζi).
The same holds in good approximation for Specimen EP-LD (Figure 6.17(b)) considering the minor
moment reduction during drilling. The blue curves indicate the stress distribution for ζi = 0.1, and the
orange curves show the stress distribution for ζi = 0.9 (EP-CL) and ζi = 0.8 (EP-LD), respectively. The
grey curves show the stress variation for intermediate cross-section losses at intervals of ∆ζi = 0.1. Two
black horizontal lines indicate the construction joint and the end of the recess, marking the unbonded
length of the reinforcing bar. The drilling axis and the diameter of the mill are shown as red stripes, and
a green area indicates the region with steel stresses above the yield strength fy = 554MPa. Its edge is
curved since the plots show the difference between the yield strength and the stresses prior to drilling
(see Figure 6.14), which varied along the bar axis primarily due to bond, but also slightly in the recess.
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Fig. 6.16 – Second-order effect for reinforcing bars with unilateral corrosion pit: Deflection, moment, and shear
force distributions (a) for a reinforcing bar in tension and (b) for one of the damaged reinforcing bars
in the specimens. The embedment above and below the recess restrains the bar deformation and causes
lateral bearing pressure (green).

Since the glass fibre is glued on the reinforcing bar side opposite to the mill (see Figure 6.8(c)), the
measured stresses are caused by the normal force Ns and the bending moment Ms in the reinforcing bar.
For steel stresses below the yield strength, i. e. ∆σs ≤

(
fy −σs (ζi = 0)

)
, the stress variation is thus

∆σs (z,ζi) =
∆Ns (z,ζi)

As
+

∆Ms (∆Ns,z,ζi)

Ix

Ø
2

(6.8)

with ∆Ns and ∆Ms = variation of normal force and bending moment and Ix = second moment of inertia
of the reinforcing bar cross-section, all at a specific location along the bar axis. As usual in second-
order analyses, the bending moment and its variation depend on the normal force, which in this case is
influenced by the cross-section loss, as the latter influences the internal load transfer between the bars.
The bending moment also depends on the maximum pit depth (hence, the cross-section loss) and the
location z due to the bearing pressure. The normal force varies along the length of the bar due to the
bond stresses and, therefore, generally also depends on the location z. Note that Equation (6.8) only
approximates the actual steel stresses in the immediate vicinity of the pit: the effects of the triaxial stress
state would have to be considered over a length corresponding to 1-2 bar diameters on either side of the
pit edges.

Figures 6.17(a) and (b) show that at the pit, a local steel stress reduction – compared to the steel
stresses in the adjoining parts of the reinforcing bars – occurred for cross-section losses below ζi =
0.4...0.6. This is due to the bending moment caused by the local shift of the centre of gravity and the
acting tensile force (see Figure 6.16(a)). For larger cross-section losses, the steel stresses approached
the yield stress, and the local steel stress reduction vanished, presumably because a local plastic hinge
formed. Away from the drilling axis and in the embedded parts close to the recess, the steel stress
variation increased with the cross-section loss but decreased with the distance from the recess.
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-10
0

0 1
00

2
00

stress variation

Δσ
s
(ζ
i
) [MPa]

-200

-100

0

100

200

300

he
ig

ht
 z

 [
m

m
]

ζ
i
 = 0.1

0.2
0.3
...
0.8
0.9

yield
stress

(a)

-2 0 2

shear force

V
s
 [kN]

constr.
joint

end of
recess

drill
axis

-10
0

0 1
00

bearing pressure

q
s
 [kN/m]

-10
0

0 1
00

2
00

stress variation

Δσ
s
(ζ
i
) [MPa]

ζ
i
 = 0.1

0.2
0.3
...
0.7
0.8

(b)

-2 0 2

shear force

V
s
 [kN]

-10
0

0 1
00

bearing pressure

q
s
 [kN/m]

-200

-100

0

(c)

-0.6 0

displacement

v
s
 [mm]

-200

-100

0

(d)

Fig. 6.17 – Variation of steel stresses opposite the mill, estimated shear force (based on Equation (6.12)) and
bearing pressure (based on Equation (6.14)) along one damaged reinforcing bar in (a) Specimen EP-
CL (constant load in drilling phase) and (b) Specimen EP-LD (hybrid test with deformation-dependent
decreasing load) for varying cross-section losses, referred to the state prior to drilling (drilled section
indicated by red stripes); (c, d) lateral deflection of the reinforcing bar in Specimens EP-CL and EP-
LD, respectively, for varying cross-section losses.

The embedded parts of the reinforcing bars remained elastic for all measurements, i. e.
∆σs ≤

(
fy −σs (ζi = 0)

)
. Rewriting Equation (6.8), one gets the bending moment in the reinforcing bar

Ms (Ns,z,ζi) =
2Ix

Ø

(
σs (z,ζi)−

Ns (z,ζi)

As

)
(6.9)

and, using the relationship dNs = πØτbdx [114], its derivative corresponds to the shear force

Vs (Ns,z,ζi) =
dMs

dz
=

2Ix

Ø

(
dσs (z,ζi)

dz
− 4

Ø
τb (z,ζi)

)
(6.10)

with τb = bond shear stress. However, the shear force cannot be directly determined from the measured
data (i. e. the steel stresses obtained from fibre optic strain measurements) since the share of steel stress
variations caused by (i) bond shear stresses and (ii) bending moment variations due to the shear force is
unknown. Nevertheless, a good estimation can be found using the shear force variation

∆Vs (Ns,z,ζi) =Vs (Ns,z,ζi)−Vs (Ns,z,0)︸ ︷︷ ︸
= 0

=Vs (Ns,z,ζi) (6.11)

which is identical to the shear force since the latter is zero (in good approximation) prior to drilling.
Inserting Equation (6.10) in Equation (6.11) yields the shear force

Vs (Ns,z,ζi) =
2Ix

Ø

(
d∆σs (z,ζi)

dz
− 4

Ø
∆τb (z,ζi)

)
(6.12)

where ∆τb = variation of bond stresses due to cross-section loss. As ∆τb tends to be much smaller than
τb, this formulation improves the estimation quality of the shear force. Additionally, many bond models
assume a zone of reduced (or even absent) bond in the vicinity of cracks or a surface perpendicular to
the bar (e. g. Eligehausen et al. [49] suggested a reduced bond over a distance of 5Ø = 90 mm from
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6 Load-deformation behaviour of locally corroded reinforced concrete retaining wall segments: Experimental results

the crack). This further reduces the influence of bond in Equation (6.12) since the considered region is
located at the construction joint, where a crack is present. The middle plots in Figures 6.17(a) and (b)
show the shear forces calculated using Equation (6.12) with ∆τb = 0, with maxima of 2.7 kN near the
recess in both specimens. Considering a strong bond stress variation of ∆τb =−5MPa or −10MPa, the
maximum shear force would merely change by 0.2 and 0.4 kN to 2.9 and 3.1 kN, respectively, confirming
the subordinate influence of bond on the results.

Differentiating Equation (6.10) with respect to z yields the bearing pressure acting on the bar and the
surrounding concrete

qs (Ns,z,ζi) =
2Ix

Ø

(
d2σs

dz2 − 4
Ø

dτb (z,ζi)

dz

)
(6.13)

which can be reformulated, again using Equations (6.11) and (6.12), as

qs (Ns,z,ζi) =
2Ix

Ø

d2∆σs

dz2 − 4
Ø

d∆τb (z,ζi)

dz︸ ︷︷ ︸
≈ 0

≈ 2Ix

Ø
d2∆σs

dz2 (6.14)

Neglecting the second term in the parentheses in Equation (6.14) is justified since the variation of
the bond stresses along the bar axis is almost constant at a specific section under increasing load in the
elastic range (see, e. g. [47, 142, 143]).

The right plots in Figures 6.17(a) and (b) show the bearing pressure obtained from Equation (6.14).
Since differentiating experimental data leads to high variability, a low pass filter with a lower cut-off fre-
quency (compared to the post-processing of the other fibre optic measurements) was used to compensate
for additional noise, with the drawback of flattening the maxima (see Section B1 in the appendix). Hence,
the absolute values are subject to higher uncertainty, whereas the overall distribution (location of roots
and maxima) remains unaffected. Positive values of the bearing pressure correspond to forces directed
towards the concrete surface, and negative values to forces directed to the specimen’s inside. The values
along the recess are artefacts of measurement inaccuracy in the pit region and the calculation proced-
ures and, therefore, are shown as dotted lines. Relevant bearing pressures occurred over a distance of
100...150 mm on either side of the recess, changing their signs twice for lower cross-section losses and
three times for larger cross-section losses, in line with the increase in the acting bending moment.

Figures 6.17(c) and (d) show the estimated deflection of the corresponding reinforcing bars in Spe-
cimens EP-CL and EP-LD, obtained by integrating the curvatures corresponding to the steel stress vari-
ations twice. Since the negative stresses may partly be overestimated due to the superimposed unloading
of the damaged bars, the plotted deflections are merely an approximation. Nevertheless, Figure 6.17 gives
a valuable insight into the processes evolving in the pit region and the neighbouring concrete sections
despite the uncertainties.

Figure 6.18(a) shows the absolute bearing pressure and (b) the bending moment and the bending
stress in the reinforcing bar at the transitions to the recess, i. e. at z = 0mm (solid lines) and z = 100mm
(dashed lines), for an increasing cross-section loss. Despite the uncertainty regarding the absolute values
due to the low pass filter, these sections of the reinforcing bar exhibit an increasing bending moment
(and consequently increasing local lateral forces) up to a cross-section loss of ζi = 0.55 for EP-CL and
ζi = 0.4 for EP-LD, respectively. Subsequently, the bending moment remains constant, indicating that
the normal force in the bar (transferred over the pit) decreased at a similar rate as the eccentricity of the
centre of gravity, i. e. approximately half the maximum pit depth, increased.
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Fig. 6.18 – (a) Absolute bearing pressure and (b) local bending moment and bending stresses at the transition to
the recess as a function of the cross-section loss.

6.5 Conclusions and recommendations for future research

The structural safety of cantilever retaining walls with locally corroded reinforcement is concerning due
to considerable uncertainties: Corrosion at the rear of the wall base is difficult to detect with stand-
ard techniques due to the common wall dimensions, but the related localised damage strongly reduces
the load-bearing and deformation capacity. On the other hand, the earth pressure (a retaining wall’s
main loading) is typically deformation dependent, and many walls have been designed for loads at the
lower limit of the possible range (active pressure) relying on a sufficient deformation capacity. Thus, if
the residual deformation capacity is insufficient, the actual load acting on the walls will be higher than
assumed in design. The situation is further aggravated by the fact that many aspects related to the quan-
tification of the residual deformation capacity are scarcely investigated, such as, e. g. the influence of the
corrosion pit distribution among different reinforcing bars and the influence of the local stress state in
the vicinity of corrosion pits. This complicates a comparison of deformation capacity and deformation
demand, whereas the latter is still under investigation itself (see [125]). Moreover, the statically determ-
ined system of cantilever walls in the vertical direction, along with the closely spaced segmentation in
the longitudinal direction, impedes substantial load redistributions. In conclusion, the risk for a brittle
failure of affected structures – presumably without prior detectable deformations – is high.

In order to improve the basis for the quantification of the related risks and the deformations prior to
failure, this study investigated the load-deformation behaviour of retaining walls with localised corrosion
of the main tensile reinforcement, focusing on (i) the influence of the corrosion pit distribution among
different reinforcing bars and (ii) the interdependence of deformation-dependent loading, corrosion, and
deformation capacity. To this end, eight large-scale experiments on retaining wall segments with varying
corrosion pit distribution were conducted in the LUSET [88][20], revealing the following results:
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6 Load-deformation behaviour of locally corroded reinforced concrete retaining wall segments: Experimental results

• Cantilever retaining walls containing a lap splice right above the construction joint deform almost
as a rigid body rotating around the joint. This is caused by the significantly higher bending stiffness
in the lap splice region, leading to a large crack opening at the construction joint, amounting to
several millimetres in the present experimental series. Hence, lap splices placed directly at the
construction joint impair the deformation capacity of the walls.

• The load-deformation behaviour, specifically the maximum load and corresponding deformation,
strongly depends on the corrosion pit distribution: The deformation capacity is lower for a struc-
ture containing few bars with a large cross-section loss (here, 30% of bars at ζi = 0.3) than one
containing many bars with lower cross-section loss (here, 60% of bars at ζi = 0.15)1. This res-
ult confirms previous theoretical studies [72] and can, i.a., be attributed to a varying localisation
effect. It demonstrates that merely indicating the mean cross-section loss of a structure (here in
both cases equal ζm = 0.09) is insufficient to draw reliable conclusions on its load-deformation
behaviour. Note, however, that theoretical calculations [72] predict a trend reversal for structures
containing an even smaller amount of damaged bars with larger cross-section loss (exemplified in
that study [72] for 20% of bars at ζi = 0.45 or 10% of bars at ζi = 0.9).

• The relative reduction of the deformation capacity observed in the tests is more pronounced than
the relative reduction in load-bearing capacity, as predicted by [39, 72]. However, it is to note that
a part of the exhibited deformation of the specimens might be attributed to the unbonded length in
the recess, and hence, the reduced deformation capacity of the tests might even be overestimated.

• Stresses in the undamaged reinforcing bars back-calculated from the measured strains indicate
that the local tensile stiffness in the vicinity of the corrosion pit is higher than could be assumed
when merely considering the reduction of cross-sectional area. This effect may be attributed to a
triaxial stress state caused by the strongly deviated stress trajectories in the pit region. Together
with locally acting bending moments in the pit vicinity, the latter effect presumably also influences
the yield behaviour of damaged bars in the pit region (considering, e. g. von Mises plasticity).

• The displacement increase of the specimen head due to an increasing cross-section loss was found
to be non-linear, laying in the range of 0.8 to 1.4 mm per meter height for a maximum cross-
section loss of 40% (40% of bars drilled through, i. e. ζi = 1.0), depending on the actual earth
pressure. This corresponds to a total displacement of 3.7 to 6.5 mm at the head of a 4.65 m tall
retaining wall, considering that the deformation localises in the construction joint. This magnitude
of displacement is potentially too small for a successful application of the observation method, as
it is highly challenging to recognise an increasing displacement trend resulting from an increasing
cross-section loss in field data, and distinguish it from displacements caused by many other effects
(seasonal and daily temperature variations, temporary water pressure, etc.).

• The displacement increase of the specimen head due to an increasing cross-section loss was lower
in the hybrid test simulating compacted soil than in that simulating loose soil, although the earth
pressure is higher in the first case. This was attributed to a more pronounced decrease of the
earth pressure in compacted soil with increasing wall deformation [125]: the load increase of the
undamaged reinforcing bars due to the internal force redistribution caused by corrosion damage is
balanced or even outweighed by the strong decrease of the total applied load. The latter observation
was confirmed by the fibre optic strain measurements of the undamaged reinforcing bars. However,
further investigations are needed to confirm these findings.

1This conclusion refers to the context of the published article, where the maximum cross-section loss per bar was ζi =
0.3. Regarding larger cross-section losses per bar, the trend may reverse (see Figure 2.8): Structures containing many
reinforcing bars with slight cross-section losses (ζi < ζcrit ) or only a few heavily corroded bars (nc < (ζm +0.2) ·ntot and
ζi > ζm

/
(ζm+0.2); nc = number of affected bars, ntot = total number of bars) exhibit a larger load-carrying and deformation

capacity for a specific mean cross-section loss ζm than structures with a moderate number of affected bars. Both capacities
are minimum for nc ≈ (ζm +0.2) ·ntot and ζi ≈ ζm

/
(ζm +0.2) [73].
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• The load transfer between the damaged and the undamaged reinforcing bars for an increasing
cross-section loss was found to occur in the region up to the first or second crack above the con-
struction joint (depending on the total external load).

• As stated in previous works [8, 166], unilateral local corrosion damage leads to bending moments
in the vicinity of the pit. Additional strains attributed to such bending moments present at the pit
and in the adjacent embedded part of the reinforcing bars were measured with fibre optic strain
sensing. The results allow conclusions on the bearing pressure distribution acting laterally on the
bar and the length over which the bending moment decreases to zero (roughly 120 to 150 mm in
this study, corresponding to 6. . . 8 bar diameters).

This study outlines the importance of further research on reinforcing bars affected by pitting corrosion
and describing their load-deformation behaviour on a sound mechanical basis. The authors are currently
investigating the influence of the triaxial stress state due to deviated stress trajectories (axial tensile
stiffness and apparent tensile strength) and the influence of local bending moments due to the shift of
the centre of gravity in the pit region on the tensile resistance. A publication detailing the modelling
approach outlined in [70] for locally corroded structural elements in bending based on the Corroded
Tension Chord Model [72] is envisaged.
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6 Load-deformation behaviour of locally corroded reinforced concrete retaining wall segments: Experimental results

Appendix A: Derivation of graphical results in Figure 6.9 from Equation
(6.5)

The distribution of shear force and bending moment for a simulated, effective retaining wall of height
he f f , loaded by a triangular distributed load qe f f (z) (see Figure 6.9(a)), i. e. Ve f f (z) and Me f f (z), are
given with

qe f f (z) =
q

he f f
(he f f − z)

Ve f f (z) =
∫

qe f f (z)dz =
q

he f f

(he f f − z)2

2

Me f f (z) =
∫

−Ve f f (z)dz =− q
he f f

(he f f − z)3

6

(6.A1)

For a specimen of height h, loaded at the top by a force Vtop and a bending moment Mtop, the shear
force and bending moment distributions, Vexp(z) and Mexp(z), are

Vexp(z) =Vtop

Mexp(z) =−Mtop −Vtop(h− z)
(6.A2)

The rotation ϕ(z) and the deflection v(z) in Equation (6.A3) follow by integrating Equations (6.A1)
and (6.A2), respectively,

ϕ(z) =
∫

− M(z)
EI(z)

dz

v(z) =
∫

ϕ(z)dz

(6.A3)

with the bending stiffness

EI(z) = EII for M(z)< Mcr

EI(z) = EIII = αcrEII for Mcr ≤ M(z)< My

EI(z) = EIy = αyEII for My ≤ M(z)

(6.A4)

where Mcr = cracking moment and My = yielding moment. Equations (6.A1) and (6.A2) yield the height
zcr where the bending moment equals the cracking moment:

Me f f (zcr,e f f ) =− q
he f f

(he f f − zcr,e f f )
3

6
=−Mcr → zcr,e f f = he f f − 3

√
6Mcrhe f f

q

Mexp (zcr,exp) =−Mtop −Vtop (h− zcr,exp) =−Mcr → zcr,exp = h−
Mcr −Mtop

Vtop

(6.A5)

As a second condition, Equation (6.5) sets the displacement of the specimen head equal to the deflec-
tion of the simulated retaining wall at the same height, i. e. vexp(z = h) = ve f f (z = h). This condition can
be approximated in the elastic range by setting the height where the bending moment equals the cracking
moment equal for the specimen and the effective retaining wall, i. e. zcr,exp = zcr,e f f . This approximation
is sufficiently accurate (also for the plastic range, as shown below) since the cracked part at the bottom
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Fig. 6.A1 – Deviation between the expected displacement of the specimen head and of a 4.65 m tall retaining wall
at z = h (assuming αcr = 1/3 and αy = 1/9). The loading is given in Figure 6.9(a) (triangular) and (b)
(black curves).

of the wall contributes most to the deflection. Thus, Equation (6.A5) is replaced by

Mexp(z = 0) = Me f f (z = 0)

zcr,exp = zcr,e f f

(6.A6)

yielding the following solution for Vtop and Mtop:

Vtop =
Me f f (z = 0)−Mcr

zcr,e f f
=

qh2
e f f −6Mcr

6
(

he f f − 3
√

6he f f Mcr
q

)
Mtop = Me f f (z = 0)

(
1− h

zcr,e f f

)
+Mcr

h
zcr,e f f

=
qh2

e f f

6

1− h

he f f − 3
√

6he f f Mcr
q

+Mcr
h

he f f − 3
√

6he f f Mcr
q

(6.A7)

With the cracking moment

Mcr =
t2
in f b

6
fct (6.A8)

and h = 1.7m, he f f = 4.65m, tin f = 0.38m, b = 2.0m, and assuming fct = 3.5MPa, Equation (6.A7)
yields the red curves plotted in Figure 6.9(b).

As mentioned in Section 6.3.6, the loading path of Figure 6.9(b), red curves, was further simplified
(black curves) for the implementation in the control system of LUSET. Whereas the first condition of
Equation (6.A6) was exactly met, the second condition was approximated. Figure 6.A1 shows the devi-
ation between the expected displacement of the specimen head and the 4.65 m tall retaining wall at z = h
(assuming αcr = 1/3 and αy = 1/9). For the elastic range, the expected absolute deviation is < 0.2 mm,
and for the plastic range, it increases with a peak value at failure of approximately 1.2 mm. Given the
uncertainties of the assumptions (bending stiffness, effective cracking moment, etc.), these values are
acceptable.
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6 Load-deformation behaviour of locally corroded reinforced concrete retaining wall segments: Experimental results

Appendix B: Data post-processing and data accuracy

B1 Fibre optic strain data

The strain data of the fibre optic measurement recorded with 1.25 Hz (1 measurement every 0.8 s) was
first consolidated to 0.104 Hz (1 measurement every 9.6 s) using the median in the time domain. This
procedure reliably rejects outlying data. Afterwards, the influence of the ribs of the reinforcing bar
surface on the local strains was reduced by applying a moving average filter in the space domain (see
[63]). A window size of 16 for a virtual gauge length of 1.3 mm was chosen to approximately meet the
double rib spacing of 10.5 mm (16 ·1.3mm = 20.8mm ≈ 21mm = 2 ·10.5mm). A low-pass filter with a
cutoff frequency of 0.05 mm−1 (the sampling frequency is 1/1.3 = 0.77 mm−1) was applied in the space
domain to reduce noise further. The chosen frequency corresponds to keeping a periodic signal with
a wavelength larger than 1/0.05 = 20 mm, and attenuating signals with smaller wavelengths. For a bar
diameter of 18 mm, this cutoff frequency leads to results at low noise without losing relevant information:
For slender instrumented elements with negligible shear deformations, like reinforcing bars, strain data
at a spatial resolution smaller than the thickness of the instrumented carrier material does not provide
useful additional information. However, note that for the evaluations shown in Section 6.4.4, a low-pass
filter with a cutoff frequency of 0.02 mm−1 was applied to prevent a substantial noise increase for the
derivatives. The curve’s shape remains valid for this cutoff frequency, but the absolute values have to be
interpreted with care.

B2 Deformation data of DIC

The sampling frequency of the DIC system during the experiments was 0.1 Hz (1 picture every 10 s).
For correlating the pictures, a subset size of 31 pixels and a step size of 8 pixels were chosen for the
deformation measurements, and a subset size of 15 pixels and a step size of 2 pixels for evaluating the
crack kinematics with ACDM. The different correlation parameters enabled high accuracy for measuring
the out-of-plane deformations (where it is essential to determine the absolute movement of the top and
the bottom part of the specimen with little noise) and simultaneously a high accuracy for detecting the
cracks and determining their kinematics (where it is essential to localise connecting strain peaks with
a high spatial resolution). A moving average filter was subsequently applied in the time domain (same
virtual subset over several pictures) with a window size of 15 for the deformation measurements and 5
for the crack kinematics. Since the specimens slightly rotated as rigid bodies at the beginning of the
experiment (due to slip in the clamping), a rigid body motion removal technique based on Sorkine-
Hornung and Rabinovich [147] was applied using the data of the front side of the footing.

Prior to each experiment, a Zero-Displacement-Test (ZDT) and a Zero-Strain-Test (ZST) were carried
out following the recommendations by Mata-Fálcon et al. [116] and technical guidelines of VDI [158].
Whereas the ZDT gives information on the noise floor depending on the correlation parameters (subset
size and step size), the ZST gives information on the noise floor depending on the displacement of the
area of interest (AOI) for one specific set of correlation parameters. For the ZDT, the specimen was held
in place, and approximately 80 pictures were taken; for the ZST, the specimen was moved stress-free in
the YZ-plane, following a virtual square of 100 mm side length, and approximately 700 pictures were
taken.

In the ZDT, where the measured mean virtual displacement uk is almost zero for all subsets, the
standard deviation sk of the virtual displacement in z-direction estimates the noise floor for the actual
in-plane displacement field during the experiment for a given calibration parameter set; the standard
deviation in y-direction estimates the noise floor out-of-plane

sk =

√√√√√ n

∑
i=1

(ui,k −uk)
2

n−1
≈

√√√√√ n

∑
i=1

u2
i,k

n−1
(6.B1)
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displacements; (b) standard deviation of ZST per subarea; (c) standard deviation distribution of ZST
at specific absolute displacements of specimen for in-plane and out-of-plane displacement.

with k = kth subset, i = ith picture, n = total number of pictures of ZDT, ui,k = measured displacement (in
y or z-direction) in kth subset and ith picture. Figure 6.B1(a) shows the in-plane and out-of-plane standard
deviation for CD-9-30 as a function of the chosen subset size. The blue line represents the median of
the in-plane standard deviation, i. e. the standard deviation of the virtually measured displacements in
the z-direction, evaluated over all subsets of the AOI; the blue line represents the median of the out-of-
plane standard deviation (y-direction). Four histograms characterise the standard deviation distributions
for two specific subset sizes, and grey lines indicate the maximum and minimum histogram boundaries.
The noise floor decreases logarithmically for larger subset sizes due to the stronger averaging effect
for bigger subsets, at a trade-off of an increasing information loss. Therefore, as explained above, two
different correlation parameter sets were chosen for different purposes (in-plane crack kinematics and
out-of-plane displacement measurements).

For the evaluation of the ZST, the rigid body motion was removed from the displacement data (lead-
ing to zero mean displacements). Hence, the remaining measured virtual displacement in each subarea
corresponds to noise. The AOI was divided into 20 ·20 = 400 subareas; Figure 6.B1(b) shows the stand-
ard deviation of the virtual displacement of CD-9-30 per subarea, evaluated with the in-plane correlation
parameters (subset size 15, step size 2). Here, the standard deviation sk was calculated according to
Equation (6.B1), with k = kth subarea (instead of subset) and n = total number of pictures of ZST. A
slightly higher noise is visible at the border of the AOI, which can be attributed to a distortion of the
camera lenses. Nevertheless, the average noise of 5 µm for the whole AOI is very low.

In Figure 6.B1(c), box plots characterise the distribution of the standard deviation sk for the measured
virtual displacements among the 400 subareas at specific absolute displacements of the specimen. Again,
it is distinguished between measured in-plane and out-of-plane displacement and correlation parameters
(z-direction, subset size 15, step size 2, and y-direction, subset size 31, step size 8, respectively). As
expected, the noise for the measured out-of-plane displacements is higher than for the in-plane displace-
ments, and its corresponding distribution (characterised by the interquartile range and the neighbouring
values) is broader. Nevertheless, the result is not influenced by the absolute displacement of the speci-
men. Hence, the noise floor can be assumed constant for the experimental results and is approximately
11 µm out-of-plane and 4 µm in-plane on average.

Table 6.B1 summarises the analysed noise values for all experiments. In conclusion, the out-of-
plane displacement can be determined with a measurement precision of approximately 2s̃k = 20...40 µm.
The crack opening and slip (in-plane displacement) can be determined with a measurement precision of
approximately 2s̃k = 10 µm.
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6 Load-deformation behaviour of locally corroded reinforced concrete retaining wall segments: Experimental results

Tab. 6.B1 – Median and standard deviation (in parentheses) of distribution of sk according to Equation (6.B1) for
in-plane and out-of-plane displacement, in µm.

Test name In-plane Out-of-plane

ZDT ZST ZDT ZST

CD-0 6.9 (2.1) 6.5 (1.7) 26.1 (13.9) 22.5 (7.5)

CD-3-10 6.1 (1.1) 6.5 (1.5) 16.5 (2.6) 18.0 (3.7)

CD-9-30 4.7 (0.8) 4.7 (1.0) 11.8 (1.5) 11.5 (2.3)

CD-9-15 4.3 (0.6) 4.4 (0.9) 10.9 (1.5) 11.1 (2.8)

CD-9-var 3.6 (0.6) 4.0 (2.3) 9.0 (1.3) 10.1 (4.4)

EP-CL 3.8 (0.5) 3.9 (1.2) 12.8 (2.9) 11.7 (3.9)

EP-LD 3.7 (0.6) 4.3 (2.5) 11.4 (2.7) 11.4 (4.3)

EP-HD 4.2 (0.8) 4.3 (1.6) 14.6 (3.8) 14.0 (4.4)

B3 Force data

The Lagrangian optimisation method was applied to the 50 independently measured force signals during
the experiment to account for possible noise and non-linearities of the load pins. The six global equilib-
rium conditions served as equality constraints. The three force and moment resultants were calculated
accounting for the displaced yoke positions, i. e. using the actuator stroke and the corresponding direction
vector calculated by the LUSET control system.
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6.5 Conclusions and recommendations for future research

Notation

Agt = ε
(

fu,dyn
)

Strain at steel tensile strength
As,As,lost Reinforcing bar cross-sectional area, lost cross-sectional area
Es Young’s modulus of reinforcing steel
EI, EII , EIII , EIy Bending stiffness of wall cross-section (in general, uncracked, cracked, at yielding of

reinforcement)
Ix Second moment of inertia of reinforcing bar cross-section
K0, Kah, K Earth pressure coefficients (at rest K0 = 1− sinϕ, Coulomb’s horizontal earth pressure coeffi-

cient, mean coefficient K = (K0 +Kah)/2)
M, Me f f , Mexp Bending moment (in general, of simulated wall, of specimen)
M j, M j,u Bending moment at construction joint (in general, maximum)
Mtop Bending moment at specimen head
Mcr, My Cracking moment and yield moment of specimen cross-section
Ms Local bending moment in reinforcing bar near corrosion pit
Ns Normal force in reinforcing bar
Ntop Normal force at specimen head
Rmill Mill radius
V , Ve f f , Vexp Shear force (in general, in simulated wall, in specimen)
Vtop Shear force at specimen head
Vs Shear force in reinforcing bar
as Reinforcement cross-sectional area per unit length
b Specimen width
fcc, fc, fct Concrete compressive strength (cube and cylinder), concrete tensile strength
fy,stat , fy,dyn, fyd Steel yield stress (static, dynamic, design value)
fu,stat , fu,dyn Steel tensile strength (static, dynamic)
h, he f f Wall height above footing (specimen, simulated wall or existing wall (parametric study))
mEd , mRd Design bending moment and bending resistance of retaining wall
nc, ntot Number of damaged reinforcing bars in specimen, total number of reinforcing bars in specimen

(of equal diameter)
q, qe f f Distributed load (earth pressure): value above footing, distribution along z-axis of simulated wall
qs Bearing pressure acting laterally on reinforcing bar
s Bar spacing
t f oot , tin f Thickness of footing, of wall/specimen above footing
tp Penetration depth of mill
v, ve f f , vexp Displacement (in general, of simulated wall, of specimen)
vtop, vtop,u Displacement of specimen head (in general, maximum)
wcr Crack width
w f oot Width of footing
z Coordinate axis or lever arm of internal forces
zcr, zcr,e f f , zcr,exp Height where bending moment equals cracking moment (in general, simulated wall, specimen)
αcr, αy Bending stiffness factors αcr = EIII/EII , αy = EIy/EII

γsoil , γc Specific weight: of soil, of concrete
γq Partial safety factor for load
δ Wall friction angle
εs, εs,pl Steel strain (in general, plastic amount εs,pl = εs −σs/Es)
ρ = as/tin f Reinforcement ratio at wall base
σs, σs,uc Steel stress (in general, of undamaged bars)
τb Bond shear stress
ϕ Internal angle of friction of soil
ζi, ζm Individual relative cross-section loss per reinforcing bar, mean relative cross-section loss per

specimen
Ø Reinforcing bar diameter
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7 Modelling the load-deformation behaviour of lap
splices with the Tension Chord Model
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This chapter presents the findings of a theoretical study on the load-deformation behaviour of lap splices
with an adapted version of the Tension Chord Model (TCM). It revealed that lap splices considerably
decrease the deformation capacity of a reinforced concrete member at their location and that the deform-
ation localises in the boundary cracks. The chapter corresponds to the published version of the following
article:

Haefliger, S., Kaufmann, W., Thoma, K. ‘Modelling the load-deformation behaviour of lap splices
with the Tension Chord Model,’ Engineering Structures, vol. 252, p. 113606, 2022. doi: 10.1016/
j.engstruct.2021.113606.

The lead author (Severin Haefliger) derived the theoretical fundamentals of the adapted TCM, conducted
the parametric study, and validated the model against available experimental data, under the supervision
of the second and the third author (Walter Kaufmann, Karel Thoma). The third author prepared the
presented figures based on the drafts of the first author.

Abstract

Lap splices are part of virtually every structure made of reinforced concrete. As loads need to be trans-
ferred safely along these discontinuities, numerous studies focused on their strength. However, even
though they are traditionally placed also in highly loaded regions of elements, which are potentially
undergoing plastic deformations, little attention has been paid to their load-deformation behaviour and
deformation capacity. This study presents a sound mechanical model based on the established Tension
Chord Model to assess the load-deformation behaviour of lap splices. A thorough analysis of the load
transfer mechanism reveals that the major part of the load is transferred at the beginning and the end
of a lap splice. Therefore, the lap splice acts as a double-reinforced tensile element over a considerable
length, which drastically reduces its deformation capacity to less than half of the minimum value ex-
pected for adjacent parts. This especially needs to be addressed in performance-based design methods,
where the deformation demand is compared to the existing deformation capacity. The theoretical results
are validated with a recently conducted experimental campaign, exhibiting excellent agreement between
the model and the experimental data. Besides a comprehensive analysis of the influencing parameters, a
simplified modelling approach for practical applications and design recommendations for new structures
are presented in this publication.
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7 Modelling the load-deformation behaviour of lap splices with the Tension Chord Model

7.1 Introduction

Lap splices are an indispensable element of reinforced concrete structures, as it is typically impossible
to place the entire reinforcement as continuous bars. In the past, the primary objective was to reliably
prevent a failure of the load transfer between the spliced bars. Consequently, research in this field has
mainly focused on characterising the strength of lap splices and their safe design under various conditions
(see, e. g. [44, 48, 68, 118]). However, deformation capacity and its distribution along the structure’s ele-
ments is paramount for assessing existing structures, where load redistributions have to be considered,
and the design of new structures using capacity design, such as, e. g. performance-based design in earth-
quake engineering, where the deformation demand is compared to the existing deformation capacity.
As lap splices induce a discontinuity in the reinforcement layout, information on their load-deformation
behaviour is of high importance to answer questions related to the deformation capacity of an element.
However, this topic has only been treated scarcely in experimental and theoretical research over the last
decades.

Almeida et al. [3] and Tarquini et al. [154] elaborated a comprehensive literature review on theoretical
and experimental investigations on lap splices. They concluded that there are many studies regarding the
strength of lap splices, but only a few studies investigated their inelastic behaviour and deformation
capacity. Presumably, this knowledge gap led to modern code specifications, prohibiting lap splices in
regions where plastic hinges are expected (e. g. above the supports of continuous bridges) [3]. However,
efficient construction processes favour locating lap splices in highly loaded zones, potentially undergoing
plastic deformations. Examples are cantilever retaining walls, where the reinforcement is commonly
spliced just above the construction joint between footing and wall, or monolithically connected bridge
piers, where lap splices can typically be found at the joints between foundation and pier, and between
pier and bridge deck. These zones should provide sufficient ductility in both cases, as either the loading
depends on the deformation (earth pressure for retaining walls) or as rotation capacity is needed in
performance-based design (earthquake loading for bridges).

The knowledge gap regarding the load-deformation behaviour of lap splices was lately addressed by
Tarquini et al., who analysed the problem experimentally [153, 154] with uniaxial cyclic tension and
compression tests, as well as theoretically [152, 155] with Shell Element Simulations and using some
aspects of the established Tension Chord Model [7, 114]. Their experiments aimed at investigating the
influence of lap splice length, confining reinforcement and loading history on the deformation capacity
of lap splices. They pointed out the importance of sufficient confinement of the longitudinal reinforce-
ment, which besides the lap splice length, governed the behaviour. The load-deformation behaviour was
numerically modelled using some aspects of the Tension Chord Model [155] but neglecting the tension
stiffening effect. An empirical formulation was proposed to predict the ultimate deformation at failure,
induced in most specimens by concrete splitting and a subsequent loss of bond [154].

In this paper, a mechanically sound approach is presented, which allows predicting the load-deforma-
tion behaviour of lap splices based on the concepts of the Tension Chord Model (TCM), including the
tension stiffening effect. After revisiting the theory of the established TCM, the influence of a discontinu-
ity in the reinforcement layout on the crack spacing is analysed. A set of equations based on equilibrium
and kinematic conditions is derived to predict the deformation of a lap splice under a given tensile load.
The model is validated using the experimental results of Tarquini et al. [153]. A comprehensive para-
meter variation reveals the influence of lap splice length, reinforcing bar diameter, reinforcement ratio,
and concrete compressive strength. Based on the findings, a simplified modelling approach and design
recommendations are deduced.

7.2 The established Tension Chord Model TCM

The characterisation of the force transfer between reinforcement and concrete, commonly referred to as
bond, is highly challenging, which is reflected by the variety and scatter of proposed bond shear stress-
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7.2 The established Tension Chord Model TCM

slip relationships (see, e. g. [33, 49, 56, 143]). The established Tension Chord Model (TCM) used in this
paper circumvents the problem of accurately describing the relationship between bond shear stresses and
slip by shifting the focus from the level of a differential element on the reinforcing bar to the structural
level and its related parameters. This is possible by upscaling the reference length (for bond problems,
this is approximately the bar diameter; for the TCM, this is the crack spacing, i. e. the distance between
adjacent cracks, see Figure 7.1), and the fact, that the structurally relevant parameters, e. g. crack width
and elongation, are obtained by integrating local strains over this reference length. Furthermore, as
outlined below, the local bond shear stresses correspond to the derivative of the stresses in reinforcement
and concrete, respectively. Hence, crack widths and elongations are related to the bond shear stresses
by two integration steps. Mathematically, these integrations correspond to the calculation of the initial
function mean values f (x)

∣∣b
a =

∫ b
a f (x)dx

/
(b−a). As only the integral F =

∫ b
a f (x)dx = f (x)

∣∣b
a(b−a) is

of interest, knowing the initial function mean value f (x)
∣∣b
a is sufficient, while the initial function’s shape,

i. e. moderate variations of strains and local bond shear stresses, are unimportant. This justifies the
assumption of mean bond shear stresses for analysing the structural behaviour. While this simplification
predicts the behaviour on a structural level very well, it clearly cannot be used for investigating the local
bond behaviour (which is beyond the scope of this paper, as well as of the TCM).

With a stepped rigid-perfectly plastic bond stress-slip relationship, which relates the magnitude of
bond shear stresses to the steel stresses (rather than to the slip), the TCM allows decoupling the kin-
ematic relationships from the equilibrium of forces. The differential equation of bond can therefore be
solved analytically. Hence, while reliably predicting the relevant output parameters on the structural level
(element elongation, crack width, crack pattern), the calculation of deformations of a structural element
in tension is greatly simplified and computationally much more efficient, making the model suitable for
implementation in large-scale NLFE codes. First established by Marti et al. for tension chords [7, 114],
the model was enhanced and comprehensively validated against experimental results by Kaufmann for
membranes [22, 89] (known as Cracked Membrane Model CMM), by Kenel for bending elements [93],
by Pfyl and Markic for fibre reinforced concrete [111, 126], by Burns for investigating the Service Limit
State [29], and by Haefliger for corroded elements [72, 77]. The implementation of a constitutive re-
lationship for reinforced concrete based on the TCM and CMM for nonlinear finite element analysis is
presented by Thoma [156].

The original TCM describes a tension element of a composite material consisting of a single reinfor-
cing bar and surrounding concrete, which is longitudinally divided into crack elements (CE) of length sr,
i. e. sections between two cracks (see Figure 7.1). Each CE combines the distinct load-deformation beha-
viour of reinforcing steel and concrete, coupled by bond, and therefore represents the load-deformation
behaviour of the composed material, including the tension stiffening effect. The CE thus defines the
basic module of the TCM, separated by two cracks, where the reinforcing bar alone transmits the applied
load.

In a CE, bond stresses are defined as τb0 for regions where the reinforcing bar is elastic, and τb1 where
the reinforcing bar yields, i. e. σs(x)≥ fsy, with the following values proposed by [7, 114, 146]

τb0 = 2 fct

τb1 = τb0/2 = fct

(7.1)

where fct denotes the concrete tensile strength. Note that for rigid bond (no slip), 0 ≤ τb ≤ τb0 according
to the rigid-perfectly plastic bond shear stress-slip relationship of the TCM. With the steel stress at the
crack σsr – where the reinforcing bar transmits the external load F solely –, steel stresses σs(x) in the CE
evolve with the constant gradient (without calculating the corresponding local slip).

σsr = F/As

σs(x+dx)−σs(x) = 4τb/Ø
(7.2)
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Figure 1 - (87.5x95mm)
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Fig. 7.1 – Crack element (CE) of length sr and cross-sectional area Ac with reinforcing bar (cross-sectional area
As) and external load F . Further indicated are the distribution of bond-stress τb(x), stress in concrete
σc(x), steel stresses σs(x), steel strains εs(x), and the elongation of the reinforcing bar us(x) along the
element. Index r denotes the value of the corresponding variable at the crack (e. g. σsr = steel stress at
the crack), and εm denotes the mean strain of the entire CE.

with Ø = reinforcing bar diameter. Concrete stresses σc(x) can be derived using the geometrical rein-
forcement ratio ρ

σc(x) =
4τb0ρx

Ø(1−ρ)

ρ = ρs = As/Ac

(7.3)

with As = cross-sectional area of reinforcing bar, Ac = cross-sectional area of tensile member (includ-
ing As)1. Steel strains εs(x) = f (σs(x)) follow directly from the steel stress by using the stress-strain
relationship of the bare reinforcement. Integrating the steel strains along the bar’s axis yields the elong-
ation of the reinforcing bar us(x). By subtracting the concrete deformation uc(x), one gets the bond slip
δ(x) = us(x)− uc(x), from which the crack width wr follows by integrating the bond slip over half the
length of CEs at either side of the crack. Thereby, the concrete deformation is often neglected as it is one
order of magnitude smaller than the elongation of the reinforcing bar. Hence, the contribution of a CE to
the crack width is given by

wr/2 = us(x = sr/2)−uc(x = sr/2)≈ us(x = sr/2) (7.4)

corresponding to half the total crack width in case of equal CEs on either side of the crack. Dividing the
total elongation by the original length of the CE, one gets the mean tensile strain

εm =
wr

sr
=

2us(x = sr/2)
sr

(7.5)

1The published article contains an error in the equation for the concrete stresses σc(x) (numerator and denominator are
reversed). Equation (7.3) was corrected accordingly.
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7.3 TCM applied to lap splices - model description

This strain represents the deformation of the CE and therefore allows deriving the deformation of a
tension element, taking into account tension stiffening. With the decoupling of the kinematic relations
from the equilibrium of forces, closed-form analytical expressions for the mean tensile strain as a func-
tion of the applied tensile load can be derived for common steel stress-strain relationships, see, e. g. [7]
and [72].

Evaluating the TCM at the cracking load allows determining the crack spacing, i. e. the CE length. At
the maximum theoretically possible crack spacing sTCM

r,max , the concrete stress in the middle of the CE just
reaches the tensile strength, i. e. σc(sr/2) = fct in Equation (7.3), without forming an additional crack
[114] (see Figure 7.1):

sTCM
r,max =

fctØ(1−ρ)

2τb0ρ
(7.6)

Consequently, the minimum crack spacing is sTCM
r,max /2, representing the case where an additional crack

forms in the middle of the CE. The actual crack distance can reach any value between these boundar-
ies and cannot be theoretically determined. However, in experiments, the observed crack spacing often
equals the distance between local discontinuities, e. g. stirrup spacing. Furthermore, statistical consider-
ations suggest that the mean crack spacing adopts a value of approximately 0.67sTCM

r,max [23, 79, 91, 117].
Hence, in the TCM, the mean crack spacing sr is defined by

sr = λ · sTCM
r,max

λ ∈ [0.5,1]
(7.7)

Similar to the derivation of the crack spacing, the cracking load in terms of the stress at the crack is
given by [114]

σ
TCM
sr,cr =

fct

ρ
(1+ρ(n−1)) (7.8)

with n = Es/Ec representing the ratio of Young’s moduli of steel and concrete. Because of the assumed
constant concrete tensile strength fct , in load control (no drop of applied load at cracking) the crack
pattern establishes at once and remains unchanged. The concrete stresses remain constant with increasing
load, and only the steel stresses (and strains) increase proportionally.

7.3 TCM applied to lap splices - model description

To investigate the lap splice load-deformation behaviour, the basic principles of the TCM are applied to
CEs containing two reinforcing bars. Figure 7.2 shows the first part of a lap splice consisting of a series
of k CEs of length s j

r , where Reinforcing Bar 1 introduces the load F into the lap splice. The load-free
end of Reinforcing Bar 2 is located at a distance x0 within the first CE. The two reinforcing bars share the
force F1+F2 = F at the cracks, and bond stresses (τb0 and τb1, respectively) lead to continuous unloading
of the bars inside the CE, i. e. the steel stresses decrease towards the middle of the CE. In contrast to the
original TCM, the location of the minimum steel stresses is not located at x j = s j

r/2 but can be anywhere
inside the element, and is generally different for the two reinforcing bars. This leads to a persisting force
increase or reduction of the corresponding reinforcing bar. Given the load F , the number of CEs k, and
their length s j

r , the resulting set of 2k unknowns for x j
1 and x j

2, j = 1...k for Reinforcing Bars 1 and 2
describes the stress state in the lap splice. Equilibrium of forces and compatibility of deformations at
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Fig. 7.2 – First part of a lap splice consisting of a series of k CEs of distinct length s j
r . Bar 1 is spliced by Bar 2,

whose end is located at a distance x0 inside the first CE. Bar 1 introduces the total load F , which is then
distributed among the two reinforcing bars. Indicated are the stress distribution of the two reinforcing
bars, σs1(x) for Bar 1 and σs2(x) for Bar 2, and the contribution of the different parts of the reinforcement
to the crack widths (in red, the contribution of CE j to a specific crack, and in green, the contribution of
CE j+1, respectively).

each crack, neglecting concrete deformations, yield 2k−2 equations (see Figure 7.2 for notation)

As1σ
j
1L +As2σ

j
2L = As1σ

j
1R = As2σ

j
2R = F

w j
1R +w j+1

1L = w j
2R +w j+1

2L

(7.9)

w j
1L =

x j
1∫

0

εs1(x j)dx j and w j
1R =

s j
r∫

x j
1

εs1(x j)dx j

w j
2L =

x j
2∫

0

εs2(x j)dx j and w j
2R =

s j
r∫

x j
2

εs2(x j)dx j

(7.10)

with σ
j
1R = σ

j+1
1L and σ

j
2R = σ

j+1
2L , and w j=1

2L = w j=k
1R = 0. The boundary conditions at both ends of the lap

splice deliver two additional equations

σ
j=1
1L = F/As1 σ

j=1
2L = 0

σ
j=k
1R = 0 σ

j=k
2R = F/As2

(7.11)

The length s j
r of every CE will generally be different. For equal reinforcing bar diameter and symmetric

configurations of CEs with respect to the central vertical axis of the lap splice, it is sufficient to evaluate
only one half of the entire lap splice, with the second boundary condition in Equation (7.11) changing to

σ
j=k/2
1R = σ

j=k/2
2R if k is even

σ
j=(k+1)/2
1R = σ

j=(k+1)/2
2L if k is odd

(7.12)
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Fig. 7.3 – Slipping bond in the boundary element in case of a short embedment length of Reinforcing Bar 2 or at
high load for Reinforcing Bar 1: (a) pull-out of Reinforcing Bar 2 and (b) pull-through of Reinforcing
Bar 1.

The set of 2k equations can be solved for any external load F between cracking load and reinforcement
rupture, i. e. Asσsr,cr ≤ F ≤ As fsu with fsu = reinforcement tensile strength. Due to the coupling of several
CEs, the nonlinear system of equations can only be solved numerically. However, for the elastic range
F ≤ As fsy, the convergence of the solving algorithm is much faster, as bond stresses are always τb = τb0
and the steel strains depend linearly on the corresponding stresses. This accelerates the integration to
derive the deformations.

Depending on the bar diameter and the CE length, Bar 2 may experience slipping bond over the entire
embedded length in the first CE, i. e. x j=1

2 = x0, as illustrated in Figure 7.3(a). This happens if Bar 2
has a short embedment length in the first CE, and may as well occur at loads lower than the ultimate
load Fu < As fsu. If the load is further increased, the unloaded end of Bar 2 experiences slip, and the
compatibility condition of Equation (7.9) is thus no longer valid. Solutions for the system of equations
at increasing loads can be found by abolishing this compatibility condition and instead setting x j=1

2 = x0
for all further load steps. This implies that the steel stresses of Bar 2 are known and remain constant
for all further load steps. Hence, Bar 2 is pulled out of the CE. The deformation w j=1

2R now consists of
the elongation of Bar 2 due to the applied force and the end slip of Bar 2 inside the CE (indicated in
Figure 7.3(a) in dark and light red, respectively). It can be determined from the compatibility condition
w j

2R = w j
1R +w j+1

1L −w j+1
2L .

Similarly, Bar 1 may experience slipping bond over its entire embedded length in the first CE (with
bond stresses acting in the same direction), or even in one of the subsequent CEs if they are short. In
this case, the location of minimum stress in Bar 1 reaches the boundary of the CE, i. e. x j

1 = s j
r , see Fig-

ure 7.3(b). Analogously to the case of a pull-out of Bar 2, the compatibility condition of Equation (7.9)
no longer applies. Solutions for increasing load can be found by replacing this compatibility condition
with x j

1 = s j
r . This implies that the steel stress difference in Bar 1 between the cracks for all further load

steps is given by σ
j
1L −σ

j
1R = 4τbs j

r/Ø1 (note that the absolute stresses σ
j
1L and σ

j
1R can still increase),

and that Bar 1 is pulled through the CE. The deformation w j
1R can be determined from the compatibil-

ity condition w j
1R = w j

2R +w j+1
2L −w j+1

1L and adopts a negative value indicating the dislocation of Bar 1;
w j

1R subsequently has to be added to the deformation w j
1L at the other side of the CE. In combination

with a drop in bond stress due to the yielding of Bar 1 (from τb0 to τb1), the steel stress difference
σ

j
1L −σ

j
1R will decrease, which leads to an unloading of Bar 2 (by equilibrium, e. g. for the boundary CE

As2σ
j=1
2R = As1(σ

j=1
1L −σ

j=1
1R )). This is captured approximately by setting w j

2R = const. for all further load
steps.
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7 Modelling the load-deformation behaviour of lap splices with the Tension Chord Model

7.4 Length of crack elements and cracking load

The modelling approach outlined in Section 7.3 allows analysing members where two reinforcing bars
of distinct diameters Ø1 and Ø2 overlap (reinforcement staggering). Lap splices represent a special case
of reinforcement staggering, as the bars are of the same diameter Ø1 = Ø2. While this study focuses
on this special case, the equations in this section are written in general form, using the diameter ratio
η = Ø1/Ø2.

Generally, just as in the conventional TCM, the maximum CE length s j
r,max , i. e. the maximum dis-

tance between two cracks, is defined as the length for which the maximum concrete stress just reaches
the tensile strength fct , and the minimum steel stress of Bar 1 is thus n · fct , where n = Es/Ec is the
modular ratio (equal for both reinforcing bars, Es1 = Es2 = Es):

max(σc(x)) = fct

min(σ j
s1(x)) = n · fct

(7.13)

The second condition implies that concrete and reinforcing Bar 1 exhibit equal strains εs = εc in this
point at cracking. The cracking load is the corresponding external load to reach this stress state. The
minimum CE length s j

r,min is the distance between a given crack and the location of maximum concrete
stress, implying that another crack may form at this point.

To simplify the equations following in this section, the net cross-sectional area of concrete is defined
as

Ac,net = Ac −As1 −As2 =
Ac

η2

(
η

2 −ρ(η2 +1)
)

(7.14)

with ρ = As1/Ac.

7.4.1 Inner crack elements

To determine the minimum and maximum length of a CE laying inside the lap splice, the stress distribu-
tion for the two reinforcing bars and the surrounding concrete is assumed as shown in Figure 7.4. The
length x j

2 indicates the distance between the crack and the point where Bar 2 is in rigid bond and exhibits
the same strain as the concrete, i. e. εc = εs2. According to Equation (7.13), the minimum CE length sIE

r,min
extends from the crack to the point, where the concrete stress equals its tensile strength fct , and the steel
stress in Bar 1 equals σs1 = n · fct . Formulating equilibrium at this section and deformation compatibility
at the crack, one gets the minimum CE length and the steel stresses at cracking:

sIE
r,min =

fctØ1

4τb0ρ

η3
(
η2 +ρ(n−1−η2)

)(
η2 −ρ(η2 +1)

)
ψ

(η+1)
(
η2 +ρ(n−1−η2)

)
+η(ψ−1)

(
η2 −ρ(η2 +1)

)
ψ =

√√√√η

(
η2 +ρ

(
n(η+1)−η2 −1

))
η2 +ρ(n−1)(η2 +1)

(7.15)

σ
IE
1L,cr =

fct

ρ

η3
(
η2 +ρ(n−1−η2)

)(
η2 −ρ(η2 +1)

)
ψ

(η+1)
(
η2 +ρ(n−1−η2)

)
+η(ψ−1)

(
η2 −ρ(η2 +1)

) +nρ

σ
IE
2L,cr =

fct

ρ

(
η2 +ρ

(
n(η+1)−η2 −1

))(
η2 +ρ(n−1−η2)

)
(η+1)

(
η2 +ρ(n−1−η2)

)
+η(ψ−1)

(
η2 −ρ(η2 +1)

)
(7.16)
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Fig. 7.4 – Stress distribution for both reinforcing bars σs1(x) and σs2(x), and for the surrounding concrete σc(x) at
cracking for a CE inside the lap splice.

Equations (7.15) and (7.16) were first derived by Alvarez [7] for the general case of mixed passive
and prestressed reinforcement. The cracking load follows by simply multiplying the steel stresses given
by Equation (7.16) with the respective cross-sectional areas of the reinforcing bars. Due to symmetry in
the elastic loading range, the maximum CE length is

sIE
r,max = 2sIE

r,min (7.17)

For η = 1, Equation (7.15) yields a CE length equal to the one from the original TCM with double
the reinforcement ratio ρ = 2ρs

sIE
r,min(η = 1) = sTCM

r,min(ρ = 2ρs) =
fctØ(1−2ρ)

4τb02ρ
(7.18)

and the cracking load of Equation (7.16) simplifies to

σ
IE
1L,cr(η = 1) = σ

IE
2L,cr(η = 1) =

fct

ρ

(
1+2ρ(n−1)

)
2

(7.19)

7.4.2 Boundary crack elements

To determine the minimum and maximum length of the boundary CE – the first CE inside which the
reinforcing bars overlap –, two cases have to be distinguished: Case I, where the stress σs2 = n ·σc in
Bar 2 is reached to the left of xI

1 = the location of the minimum stress σs1 = n · fct in Bar 1 (Figure 7.5),
i. e. x0 + x2a < xI

1, and Case II, where x0 + x2a ≥ xI
1 (Figure 7.6).

Case I

Figures 7.5(a) and (b) illustrate the stress states of both reinforcing bars and the concrete stresses in the
first part of the CE for Case I, directly after the crack to the left of the splice has occurred. The distance
between the crack and the location of maximum concrete stress (and minimum steel stress in Bar 1) is
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7 Modelling the load-deformation behaviour of lap splices with the Tension Chord Model
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Fig. 7.5 – Stress distribution in Case I for both reinforcing bars σs1(x) and σs2(x), and for the surrounding concrete
σc(x) in a boundary element at cracking, with a crack occurring to the left of Bar 2, so that x0+x2a < xI

1.
(a) stress state for small x0 < x2a + x2b; (b) stress state for increasing x0 and x2b → 0.

defined by xI
1. According to Equation (7.13), both reinforcing bars and the concrete are in rigid bond to

the right of this location and exhibit the same strains εc = εs1 = εs2, and hence, σs1 = σs2 = n ·σc. The
stress in Bar 2 develops over the length x2a + x2b, separated into two sections x2a and x2b, with slipping
and rigid bond, respectively. Note that bond slip in Section x2a is caused by concrete displacements
(relative to Bar 2) to the left, caused by the tensile concrete stresses induced by Bar 1, and that 0 ≤
τb ≤ τb0 in Section x2b (with rigid bond) due to the assumed rigid-perfectly plastic bond shear stress-slip
relationship. With increasing distance x0, the section x2b decreases as shown in Figure 7.5(b) until at
x2b → 0 the application boundary of Case I reached, i. e. x0 + x2a = xI

1.

Formulating equilibrium on the part delimited by the crack and the location of maximum concrete
stress yields the minimum CE length sI

r,min and the cracking load, as a function of the stress σI
sr,cr of Bar

1 at the crack:

σ
I
sr,crAs1 =

(
σ

I
sr,cr −

4τb0xI
1

Ø1

)
As1 + fct(Ac,net +nAs2)

⇒ sI
r,min = xI

1 =

(
1−ρ+

ρ(n−1)
η2

)
fctØ1

4τb0ρ

(7.20)

σ
I
sr,cr =

fct

ρ

(
1+ρ(n−1)

(
1+

1
η2

))
(7.21)

The maximum boundary CE length is obtained if no crack forms between the CE of Figure 7.5 and
the adjoining inner CE shown in Figure 7.4 (mirrored). The sum of the minimum lengths of these two
elements (Equations (7.18) and (7.20)) equals the maximum length of the boundary CE:

sI
r,max = sI

r,min + sIE
r,min (7.22)

As observed from Equations (7.20) to (7.22), the distance x0 does not influence the CE length. With
Equation (7.20), the application limits for Case I can be written as

0 ≤ x0 < sI
r,min − x2a

0 ≤ x0 <
(

η
2 −ρ

(
η

2 +1+n(1−η)
)) fctØ1

4τb0ρη2

(7.23)
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7.4 Length of crack elements and cracking load

Tab. 7.1 – Equations for maximum and minimum CE length, sr,min and sr,max, and cracking load σsr,cr for a bound-
ary element according to Equations (7.20) to (7.29) and η = 1.

original TCM Case I Case II 1)

application
limits

- 0 ≤ x0 ≤
fctØ

4τb0ρ
(1−2ρ)

f ′ctØ
4τb0ρ

(1−2ρ)≤ x0 ≤
f ′ctØ

2τb0ρ
(1−2ρ)

sr,min
fctØ

4τb0ρ
(1+ρ(n−2))

fctØ
4τb0ρ

(1−ρ) =
fctØ

4τb0ρ
(1−2ρ)+

n fctØ
4τb0

x0, otherwise Case I applies
(even if f ′ct < fct )

sr,max sI
r,min + sTCM

r,min(ρ = 2ρs) sTCM
r,min +

x0

2

2
fctØ

4τb0ρ
(1−ρ) =

3
2

fctØ
4τb0ρ

(1−2ρ)+
n fctØ
4τb0

3
2

f ′ctØ
4τb0ρ

(1−2ρ) for x0,min

2
f ′ctØ

4τb0ρ
(1−2ρ) for x0,max

σsr,cr
fct

ρ

(
1+2ρ(n−1)

)
fct

ρ

(
1+ρ(n−1)

)
=

fct

ρ

(
1+ρ(n−2)

)
+n fct

fct

ρ

(
1+ρ(n−1)

)
1) Case II only applies if the concrete tensile strength in the lap splice region f ′ct is lower than the concrete

tensile strength in the surrounding tension element, i. e. f ′ct ≤ 0.9...0.95 fct (see Section 7.4.2, Case I), or if the
tensile force is higher in the lap splice (e. g. in a tension chord of a bending member, with the splice locating at
the location of maximum bending moment). Otherwise, Case I governs.

For lap splices, the diameter ratio is η = 1 and Equations (7.20) to (7.23) can be simplified as shown
in Table 7.1. The term (1− 2ρ) in the equations for Case I is almost equal to the term (1− ρ) in the
original TCM (less than 2% difference for typical reinforcement ratios ρ). It is caused by the slightly
different net cross-sectional area of concrete (Ac,net = Ac − 2As vs Ac,net = Ac −As). Compared to the
original TCM, the resulting minimum length of the boundary CE in Case I is 3% to 13% longer (due
to the additional term n fctØ/4τb0), and its maximum length is 19% to 24% shorter if evaluated for
ρ = 0.007...0.02 and n = 5.5...7.5, respectively. Regarding the cracking load, the additional term n · fct

for Case I (see Table 7.1) leads to approximately 5% to 10% higher values compared to the original
TCM. This implies that cracks evolve first in the tension chord outside the lap splice and hence, the crack
pattern around the lap splice (and the distance x0) has already formed when the cracking load of the lap
splice is reached. Note in this context, that for η = 1, the cracking load for the boundary CE equals the
cracking load of the inner CEs, i. e. Fcr = Asσ

I
sr,cr(η = 1) = F1 +F2 = 2Asσ

IE
1L,cr(η = 1).

Case II

Figures 7.6(a) and (b) show the stress state of both reinforcing bars and the concrete stresses in the first
part of a CE for Case II, directly after the crack at the left side has formed. For the limit case xI

1 = x0+x2a,
it is observed in Figure 7.6(a) that the maximum concrete stress occurs at a distance x0 = xII

1 from the
crack. The minimum CE length and the cracking load for Case II are therefore equal to the original TCM

sII
r,min = xII

1 =
fctØ1

4τb0ρ
(1−ρ) (7.24)
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Fig. 7.6 – Stress distribution in Case II for both reinforcing bars σs1(x) and σs2(x), and for the surrounding concrete
σc(x) in a boundary element at cracking, with a crack occurring to the left of Bar 2, so that x0+x2a ≥ xI

1.
(a) stress state for xI

1 = x0 + x2a; (b) stress state for xI
1 < x0 + x2a. (c) stress state in a lap splice at

cracking for the particular case of a reduced concrete tensile strength in the lap splice region f ′ct < fct ,
with a crack occurring to the right of the unloaded end of Bar 2.

σ
II
sr,cr =

fct

ρ
(1+ρ(n−1)) (7.25)

The location of maximum concrete stress and the minimum CE length sII
r,min are unaffected by values

xI
1 < x0 + x2a as shown in Figure 7.6(b). To the right of the unloaded end of Bar 2 in Figure 7.6(b),

concrete stresses and the steel stress of Bar 1 have to decrease to fulfil the kinematic restriction of rigid
bond εc = εs1 = εs2. Formulating equilibrium, and using Equation (7.25), one gets

(nAs1 +nAs2 +Ac)σc = As1σ
II
sr,cr

⇒ σc = α · fct

α =
η2
(
1+ρ(n−1)

)
η2 +ρ(n−1)(η2 +1)

(7.26)

For a lap splice with reinforcing bars of equal diameter, i. e. η = 1, the factor α in Equation (7.26)
is always α < 1 (approximately α = 0.9...0.95, for ρ = 0.007...0.02 and n = 5.5...7.5), and hence the
concrete stress is σc < fct . Unless the tensile load varies along the element, this implies that with reaching
the cracking load according to Equation (7.25), σII

sr,cr =σTCM
sr,cr , the lap splice region will remain uncracked

(except for the theoretical case where the distance x0 is exactly x0 = xI
1−x2a and a crack may form inside

the lap splice region, see Figure 7.6(a)). However, when reaching the cracking load of the lap splice
σI

sr,cr > σII
sr,cr (see Equation (7.21) and Table 7.1), a crack will form within the length x0 − sII

r,min in front
of Bar 2 since the concrete tensile strength is exceeded (see Figure 7.6(b)). Because Equations (7.24)
and (7.25), which are equal to the original TCM, apply for the part in front of Bar 2, the boundaries for
the distance x0 in Case II are

sII
r,min = sTCM

r,min = sI
r,min − x2a ≤ x0 ≤ sII

r,max = sTCM
r,max = 2sII

r,min (7.27)

It follows (i) that always a crack will form within the length sTCM
r,min in front of Bar 2, and hence, (ii)

that the equations of Case I are valid without restrictions to describe the cracking load and the boundary
element length.
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Fig. 7.7 – Potential CE lengths of a boundary element (normalised by the maximum element length of the original
TCM sTCM

r,max ) as a function of the distance x0. Valid CE lengths can only occur in the green-shaded area.

However, the cracking load of Case II σII
sr,cr is only about 5% to 10% lower than σI

sr,cr, and the
concrete tensile strength may vary considerably inside a structural element due to, e. g. the distribution
of the aggregates or erratic compaction of concrete when vibrating. With the assumption that the concrete
tensile strength in the lap splice region is lower and approximately f ′ct = 0.9...0.95 fct , the lap splice will
crack at the same load σII

sr,cr ≈ σTCM
sr,cr as the other parts of the structural element. Therefore, a crack might

form closely behind the end of Bar 2, as shown in Figure 7.6(c). Similarly, a crack may form at this
location if the tensile force is higher in the lap splice, as is the case in a bending member with the splice
located at the location of the maximum bending moment. Formulating equilibrium on the element shown
in Figure 7.6(c) between Section A-A and the crack leads to the following equation for the maximum
length of a boundary element in Case II

As1n f ′ct +Ac,net f ′ct = As1

(
n f ′ct +

4τb0

Ø1

(
sII

r,max − sII
r,min

(
f ′ct
)))

+As2
4τb0

Ø2

(
sII

r,max − x0
)

⇒ sII
r,max =

η

η+1

(
2sII

r,min
(

f ′ct
)
+

x0

η

)
=

η

η+1

(
2

f ′ctØ1

4τb0ρ
(1−ρ)+

x0

η

) (7.28)

Equation (7.28) indicates that the maximum CE length, in this case, depends on the distance x0. For
the limits of Equation (7.27) and η = 1, the maximum CE length is:

sII
r,max

(
x0 = sTCM

r,min
)
= 1.5sTCM

r,min

sII
r,max

(
x0 = sTCM

r,max
)
= 2sTCM

r,min = sTCM
r,max

(7.29)

The maximum CE length for x0,max coincides with the solution of the original TCM for the maximum
crack spacing, which complies with the stress state shown as a dashed line in Figure 7.6(c).

Assuming that a crack forms at a distance sII
r,min ≤ xcr ≤ x0, the separated element on the left in

Figure 7.6(c) contains only one reinforcing bar, as the second bar only exists in the element to the right
side of the considered crack. For the element to the right of the crack, the distance x′0 = x0 − xcr is in the
range

(
x0,min − sII

r,min
)
= 0 ≤ x′0 <

(
x0,max − sII

r,min
)
= sII

r,min = sI
r,min−x2a, see Equation (7.27). This equals

the application limits for Case I (Equation (7.23)), which consequently also applies to this element.
Therefore, Case II is only applicable if the length of the left CE is sr > x0, and the minimum CE length
for Case II shall be rewritten as sII

r,min = x0.

Figure 7.7 represents all potential CE lengths of a boundary element (normalised by the maximum
element length of the original TCM sTCM

r,max ) as a function of the normalised distance x0. The element can
take any length in the green shaded area, bounded by the two horizontal lines representing the minimum
and maximum CE length, sI

r,min and sI
r,max , and the vertical line at x0/sTCM

r,max = 0.5. If the concrete tensile
strength in the lap splice region is lower than in the adjacent tension chord, i. e. f ′ct < fct , CE lengths
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7 Modelling the load-deformation behaviour of lap splices with the Tension Chord Model

Tab. 7.2 – Defined standard parameters to evaluate various influences on the lap splice response (η = 1).

fc [MPa] 30 n = Es/Ec [-] 6.6

fct [MPa] 2.9 (Eq. (7.32)) lb [Ø] 40

Ec [GPa] 31.1 (Eq. (7.32)) s j=1
r,max 1. CE [mm] 384 (Eq. (7.22))

τb0 [MPa] 5.6 (Eq. (7.1)) s j=1
r,min 1. CE [mm] 262 (Eq. (7.20))

τb1 [MPa] 2.9 (Eq. (7.1)) s j
r,max j. CE [mm] 245 (Eq. (7.17))

Ø [mm] 20 s j
r,min j. CE [mm] 122.5 (Eq. (7.18))

ρ [-] 0.01 xI
0,max Case I [mm] 122.5 (Eq. (7.23))

may also assume values in the green shaded area with x0/sTCM
r,max > 0.5. For CE lengths shorter than the

distance x0, i. e. sr < x0, the corresponding point lays in the red shaded area. Such CE lengths cannot
occur; instead, an element with a single reinforcing bar will be separated in front of the lap splice, and
Case I applies for the boundary element with x′0 < sTCM

r,min .

In conclusion, the concept of sr as shown in Equation (7.7) for the original TCM must be adapted to

sr = sI/II
r,min +(2λ−1)

(
sI/II

r,max − sI/II
r,min

)
λ ∈ [0.5,1]

(7.30)

7.5 Parametric study

7.5.1 Modelling parameters

For the evaluations in Sections 7.5 and 7.6, material characteristics similar to those observed in the
experiments of Tarquini et al. [153] are assumed. From the conducted tensile tests of the longitudinal
reinforcement, a constitutive relationship according to [143] is adopted (see Figure 7.8)

for 0 ≤ εs ≤ εsy = fsy/Es

σs = Esεs

for εsy ≤ εs ≤ εsh

σs = fsy

for εsh ≤ εs ≤ εsu

σs = fsy +( fsu − fsy)kd

(
1− e(εsh−εs)/b

)
b =

εsh − εsu

ln
(
(kd −1)/kd

)

(7.31)

with kd = 1.06 and steel characteristics given in Figure 7.8. A concrete compressive strength of fc =
30MPa is assumed, and the concrete tensile strength fct and its Young’s Modulus Ec are estimated from
the concrete compressive strength, using the following equations

fct = 0.3 f 2/3
c fc and fct in [MPa]

Ec = 10000 f 1/3
c fc and Ec in [MPa]

(7.32)

All assumed model parameters are summarised in Table 7.2.
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Fig. 7.8 – Results of steel tension tests (grey) reported in [153] and fitted model (blue) using the constitutive rela-
tionship of Equation (7.31)

7.5.2 Influence of CE length on load-deformation behaviour

To analyse the influences of different CE lengths on the stress distribution of the reinforcing bars, the
described model is evaluated for a lap splice with overlapping length lb = 40Ø = 800mm using four
distinct CE configurations: By assembling the minimum or maximum number of CEs, so that the total
splice length is ltot =min

(
∑s j

r

)
≥ lb = 800mm or ltot =max

(
∑s j

r

)
≤ lb+2xI

0,max = 800+2 ·122.5mm,

respectively, each with either short (s j
r,min,∀ j) or long (s j

r,max ,∀ j) CEs.

Figure 7.9 shows the stress distribution for half of the total length in Reinforcing Bar 1 (blue) and 2
(red) for various load steps between cracking Fcr = Asσsr,cr and ultimate load Fu = As fsu. Apparent is the
serrated stress distribution, with a local stress maximum at the crack and a local minimum inside the CE.
Unlike the original TCM, the local minima of steel stresses are shifted from the CE centres towards the
load-free end of each reinforcing bar, corresponding to the unloading of the bar in this direction. Towards
the middle of the lap splice, the locations of the two minima are approaching each other, indicating that
the load is balanced and carried equally by both bars.

Figure 7.9(a) shows the stress distribution for the lap splice consisting of three CEs with length s j
r,max .

The increasing external load leads to an increase of the activated embedded length of Bar 2 in the first CE,
with the location of σ

j=1
s2 = n ·σc approaching the end of the bar at x = 0. The load of Bar 1 is transferred

to Bar 2 mainly in the first CE, and the load difference decreases significantly already until the first crack.
Figure 7.9(b) shows the stress distribution for a lap splice consisting of four CEs with length s j

r,max, and
consequently a distance x0 much longer than in (a). The embedded length of Bar 2 in the first element
is fully activated even for low external loads, and a considerable amount of the load is transferred from
Bar 1 to Bar 2 only in the second element. As a consequence of the full activation over the embedded
length and the necessity to fulfil deformation compatibility at the crack, Bar 2 is pulled out of the first
CE (compare Section 7.3). Figure 7.9(c) shows the stress distribution for a lap splice consisting of five
CE with length s j

r,min. For higher external loads, Bar 1 yields over a considerable length, which leads to
a decrease of bond stresses from τb0 to τb1 = τb0/2 and unloading of the embedded length of Bar 2 in
the first CE by equilibrium. Furthermore, the reduction in bond stress causes the location of minimum
stress for Bar 1 to shift to the right until it coincides with the crack location. Beyond this point, the
load transfer in the first element stays constant, and the load is mainly transferred in the second CE (as
in case (b)). For higher external loads, Bar 1 is pulled through the CE as deformation compatibility at
the crack needs to be satisfied (compare Section 7.3). Figure 7.9(d) shows the stress distribution for the
lap splice consisting of seven CE with length s j

r,min, and a comparably long distance x0. Here, the two
phenomena described for cases (b) and (c) are combined: Because of the short embedded length of Bar
2 in the first element, the bar is pulled out. Consequently, there is only limited load transfer between
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Fig. 7.9 – Influence of CE-length on load-deformation behaviour: Stresses in Reinforcing Bar 1 (blue) and 2 (red)
over half of the lap splice for parameters according to Table 7.2 and various external loads between
Asσsr,cr and As fsu. Indicated are the CEs (separated by the cracks = ordinate axes and vertical dashed
lines) and the distance x0 between the first crack and the unloaded end of Bar 2 (negative values on
horizontal axis). A horizontal dashed line indicates the yield stress fsy. (a) 3 CEs (min. number) with
length s j

r,max (λ = 1, ∀ j) (b) 4 CEs (max. number) with length s j
r,max (λ = 1, ∀ j); (c) 5 CEs (min.

number) with length s j
r,min(λ = 0.5, ∀ j); (d) 7 CE (max. number) with length s j

r,min(λ = 0.5, ∀ j).

the two reinforcing bars. As the second element is short and Bar 1 is still highly loaded, a pull-through
of Bar 1 in the second element occurs. The load is mainly transferred in the second and third CE. As
the implemented algorithm was not conceived to consider a pull-through of a bar in the second CE, the
calculation stops shortly before reaching the ultimate load (in this case at σsr = 610MPa).
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Fig. 7.10 – Influence of CE-length on load-deformation behaviour: (a, b) steel strains εs1(x) and εs2(x) of Bar 1
and 2 over half of the total lap splice length for the same CE-configuration and load steps as depicted in
Figures 7.9(b) and (c). A horizontal dashed line indicates the strain at yield stress εsy; (c) stress at crack
vs mean strain for the CE-configurations shown in Figure 7.9; (d) crack widths occurring along the lap
splice for the CE-configurations shown in Figure 7.9. Note that for the first crack, only the contribution
of the first CE to the crack width is shown (and the contribution of the adjacent single-reinforced CE
would have to be added to receive the actual crack width). Horizontal lines indicate the minimum and
maximum crack width expected by the original TCM for ρ = ρs and ρ = 2ρs.

Figures 7.10(a) and (b) illustrate the steel strain distribution along half of the lap splice length for
(a) the combination

{
maximum number of CEs with length s j

r,max , compare Figure 7.9(b)
}

and (b) the
combination

{
minimum number of CEs with length s j

r,min, see Figure 7.9(c)
}

, at the same load steps as in
Figure 7.9. It can be observed that Bar 1 undergoes plastic deformations only in the first CE, and in case
of Figure 7.10(a) even only inside the distance x0. In all other parts of the lap splice, both reinforcing bars
remain elastic. Figure 7.10(c) shows the steel stress at crack-mean strain diagrams for the four analysed
lap splices of Figure 7.9; note that σsr (= steel stress at the crack crossed only by Bar 1) is proportional
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to the applied load, i. e. F = As1σsr. It is visible that depending on the CE-combination (i. e. the crack
pattern), the deformation capacity varies by ∆εm = 0.4%, with the combinations

{
minimum number of

CEs with length s j
r,min

}
and

{
maximum number of CEs with length s j

r,max

}
setting a lower and upper

bound, respectively.

Figure 7.10(d) shows the corresponding crack widths at σsr = 610MPa. Additionally, the minimum
and maximum crack widths calculated with the original TCM for reinforcement ratios ρ= ρs and ρ= 2ρs

are indicated. For the first crack, the indicated width represents the contribution of the first CE of the lap
splice, and the contribution of the adjacent tension chord element would have to be added to receive the
actual crack width. The contribution of the first CE to the crack width, i. e. the elongation of Bar 1 in the
first element, approximately equals half the crack width of the original TCM, i. e. wr

(
sTCM

r,max (ρ = ρs)
)/

2
and wr

(
sTCM

r,min(ρ = ρs)
)/

2. The widths of Cracks 2 to 4 equal the crack widths expected by the original
TCM for ρ = 2ρs (except for some variation at the second crack). The similarity of the results per crack
for all four CE-configuration reveals that neither the number of used CEs (and hence the variation in
distance x0) nor their length (s j

r,min or s j
r,max ) significantly influences the expected crack widths. Further-

more, the results indicate that the cracks at both ends of the lap splice generate approximately 90% of a
lap splice’s deformation capacity. The cracks inside the lap splice do not significantly contribute since
their CEs behave similarly to a conventional tension chord with a double reinforcement ratio ρ = 2ρs.

7.5.3 Influence of lap splice length on load-deformation behaviour

Figure 7.11 shows the stress distributions at the ultimate load σsr = fsu of the two reinforcing bars for
seven lap splices with varying overlapping lengths of lb = 35...60Ø and the CE-configuration

{
s j

r,min, min.
number of CEs

}
. Below the graph, the CEs over half of the lap splice length with the two reinforcing

bars and the varying distance x0 is shown. The increase in overlapping length is accommodated by a
higher number of CEs, and the length difference between the overlapping length and total lap splice
length is compensated by the distance x0, i. e. ltot = ∑s j

r = lb +2x0. With the chosen CE configuration,
the variation of x0 for the different overlapping lengths is comparatively small, and the embedded length
s j=1

r − x0 in the first CE is sufficient in all cases that no pull-out of Bar 2 occurs. The depicted stress
distributions for the different overlapping lengths almost coincide, except for the short overlapping length
lb = 35Ø. This outlines the fact, that the load is transferred mainly in the first and the second CEs, i. e.
in the discontinuity region of the lap splice. All remaining CEs for overlapping lengths longer than
lb = 40Ø do not significantly contribute to the load transfer and behave like tension chord elements with
double reinforcement ratio ρ = 2ρs.

Figure 7.12(a) shows the crack widths for the lap splices of Figure 7.11 at σsr = 610MPa, together
with the minimum and maximum crack width calculated with the original TCM for the reinforcement
ratios ρ = ρs and ρ = 2ρs. Similar to Figure 7.10(d), the indicated width of the first crack corres-
ponds to the contribution of the first CE of the lap splice, and the contribution of the adjacent single-
reinforced tension chord element would have to be added to receive the actual crack width. As already
observed for Figure 7.10(d), the contribution of the first CE to the crack width approximately equals
half of the crack width expected by the TCM with sTCM

r,max (ρ = ρs), regardless of the actual overlapping
length. The other crack widths are approximately equal to those corresponding to a tension chord with
sTCM

r,max (ρ= 2ρs). This emphasis that plastic deformations localise at the beginning (and the end) of the lap
splice, and demonstrates the discontinuous nature of lap splices regarding strain calculations: With in-
creasing overlapping length, the total elongation for a specific external load stays approximately constant,
i. e. wtot = ∑w j

r ≈ const., causing the mean strain over the lap splice εm = ∑w j
r
/

∑s j
r = wtot

/
(lb+2x0) to

decrease. The stress at the crack vs mean strain of the seven lap splices is shown in Figure 7.12(b), indic-
ating this pronounced decrease in deformation capacity with increasing overlapping length. For example,
increasing the overlapping length from lb = 35Ø to lb = 60Ø results in a decrease of the deformation ca-
pacity by a factor of 1.6. Note in Figure 7.12(b) that the two curves for lb = 45Ø and lb = 50Ø are
identical since their stress distribution and the total lap splice length are equal (see Figure 7.11).
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0,max = λsTCM
r,max . The minimum and maximum deformation capacity according to

the original TCM for ρ = ρs and ρ = 2ρs are shown with horizontal lines.

7.5.4 Influence of crack pattern in boundary element on deformation capacity

To investigate the influence of the distance x0 on a lap splice’s deformation capacity, a lap splice with
overlapping length lb = 40Ø and parameters according to Table 7.2 and Figure 7.8 is analysed. The
distance x0 in the boundary element is varied in the range 0 ≤ x0 ≤ sTCM

r,max . The CE lengths are chosen
as s j

r with λ = [0.5, 0.7, 0.9, 1.0] according to Equation (7.30). The splice is modelled by choosing
the number of CEs such that the difference between targeted and modelled total lap splice length is
minimum, i. e.

∣∣∣ltot −∑s j
r

∣∣∣= ∣∣∣lb +2x0 −∑s j
r

∣∣∣→ min.

Figure 7.13 shows the deformation capacity of the analysed lap splices for a given distance x0 at max-
imum load σsr = fsu. The deformation capacity is highest at x0 = 0 and decreases continuously for all CE
lengths until x0 ≈ 0.6 ·λsTCM

r,max . The reason for this decrease in deformation capacity is an increase of the
total lap splice length ltot = ∑s j

r = lb +2x0, with the total elongation wtot = ∑w j
r staying approximately

constant (similar but less pronounced to an increase in overlapping length, compare Section 7.5.3, and
Figure 7.12(b)). Note in this context that values x0 > 0.5 · λsTCM

r,max = λxI
0,max (indicated with circles in

Figure 7.13) correspond to Case II and can only be reached if the concrete tensile strength in the region
of the lap splice is lower than in the other parts of the structural elements ( f ′ct < fct , indicated as dashed
lines, compare Section 7.4.2, Case II). For 0.6 ·λsTCM

r,max < x0 < λsTCM
r,max , the embedded length of Bar 2 is

fully utilised and short, such that only a minor part of the force can be transferred from Bar 1 to Bar 2
(see Figure 7.9(d)). Consequently, Bar 1 is loaded above the yield point over the entire length of the first
CE, generating large deformations in this part of the lap splice. Therefore, the total elongation and the
deformation capacity again increase. For x0 = λsTCM

r,max (indicated with squares in Figure 7.13), the first
CE contains only one reinforcing bar and represents a conventional tension chord element, which cannot
be considered part of the lap splice. The lap splice itself behaves as for x0 = 0 and exhibits maximum
deformation capacity.

For the analysed lap splices, the deformation capacity decreases by approximately 35% for an in-
creasing distance x0 up to 0.6 ·λsTCM

r,max . Hence, the location of the boundary crack, and consequently the
crack pattern of the adjacent element, influences the deformation behaviour of a lap splice and requires
considering the limiting cases xI

0,min = 0 and xI
0,max = sTCM

r,min when assessing a structure’s deformation.
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7.5.5 Influence of further lap splice parameters on deformation capacity

The influence of the bar diameter, the concrete compressive strength, the reinforcement ratio, and the
overlapping length on the deformation capacity of a lap splice is analysed by a parameter variation. One
parameter is varied in each analysis, whereas the others are held constant at their default values given
in Table 7.2 (and marked bold in Table 7.3). The variation range of the varied parameters is given in
Table 7.3. As described in Section 7.5.2, four CE-combinations are analysed for each varied parameter:
maximum and minimum number of CEs in the range lb ≤ ∑s j

r ≤ lb + 2xI
0,max, with either short (s j

r,min)
or long (s j

r,max ) CEs. The model is evaluated for a maximum stress σsr = 610MPa, since a higher stress
would cause a pull-through at inner CEs for some of the analysed configurations (e. g. lap splices with
many short CEs). Figure 7.14(a) shows the influence of the bar diameter on the lap splice deformation
capacity, along with the results calculated with the original TCM for one and two reinforcing bars (ρs

and 2ρs). The lines for the combinations
{

s j
r,max , min. number of CE

}
and

{
s j

r,min, min. number of
CE
}

, and the lines for the combinations
{

s j
r,max , max. number of CE

}
and

{
s j

r,min, max. number of
CE
}

are virtually identical. In contrast to the original TCM, shorter CEs do not significantly increase a
lap splice’s deformation capacity. The deformation increase in the boundary elements is compensated
by a larger number of CEs in the lap splice, which reduces the contribution of the boundary elements
to the total deformation. On the other hand, as outlined in Section 7.5.4, a larger total lap splice length
ltot = lb +2x0 reduces the deformation capacity due to the longer distance x0. The effect appears to gain
influence with increasing bar diameter.

Again in contrast to the original TCM, a lap splice’s deformation capacity increases with increasing
bar diameter (at an equal reinforcement ratio). The increasing diameter results in longer CEs, which leads
to a composition with fewer CEs for the same overlapping length. As mainly the boundary elements
contribute to the overall deformation capacity, their influence grows with a smaller number of CEs.
Therefore, the deformation capacity increases discretely whenever the total number of CE is decreased
(depicted jumps of the lines with increasing diameter in Figure 7.14(a)) and stays constant otherwise
(e. g. in between diameter 22 mm and 30 mm).

Figure 7.14(b) shows the influence of the concrete compressive strength on a lap splice’s deformation
capacity. It decreases with increasing compressive strength, similar to the results obtained by the original
TCM. As the concrete tensile strength and the bond strength increase due to their link to the compress-
ive strength (compare Equation (7.32)), tension stiffening becomes more pronounced with increasing
compressive strength, which leads to a decrease in deformation capacity.

Figure 7.14(c) shows the influence of an increasing reinforcement ratio, which leads to shorter CEs
(compare Equation (7.6)). As described for Figure 7.14(a), the increase in deformation capacity due
to the shorter CE is compensated by a larger number of CEs in the lap splice, which diminishes the
contribution of the boundary elements to the total deformation. Therefore, the deformation capacity of a
lap splice stays approximately constant with an increasing reinforcement ratio.

Figure 7.14(d) shows the influence of the overlapping length lb. As pointed out in Section 7.5.3, a
longer overlapping length reduces the deformation capacity of a lap splice, as the load is mainly trans-
ferred at both lap splice ends, and the inner elements behave similarly to conventional tension chord ele-

Tab. 7.3 – Varied parameters and applied variation range to analyse their influence on the deformation capacity of
lap splices. Default values are marked in bold.

analysis varied parameters variation range

(a) Ø [mm] 12, 14, ... , 20, ... , 26, 30

(b) fc [MPa] 20, 25, 30, ... , 50

(c) ρ [%] 0.7, 0.8, 1.0, 1.2, ... , 2.0

(d) lb [Ø] 30, 35, 40, ... , 60
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Fig. 7.14 – Influence of varying parameters on the mean deformation of lap splices with different CE-configura-
tions and overlapping length lb = 40Ø at σsr = 610MPa. Variation of (a) reinforcing bar diameter;
(b) concrete compressive strength; (c) reinforcement ratio; (d) lap splice length. Parameters chosen
according to Table 7.2.

ments with double reinforcement ratio. For an increase of overlapping length from lb = 30Ø to lb = 60Ø,
the deformation capacity decreases by 30%. . . 37%.

The parametric study indicates that lap splices exhibit a maximum deformation capacity of merely
about 30% and 50% of the minimum deformation capacity of the adjacent elements, but are less sensitive
to parameter variations than continuously reinforced tension chords. In all analysed cases, the deform-
ation capacity is bounded by the two combinations

{
s j

r,min, min. number of CEs
}

and
{

s j
r,max , max.

number of CEs
}

. Hence, these two combinations can be used as lower and upper bound, respectively, to
estimate a lap splice’s deformation capacity.
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Fig. 7.15 – Experimental setup to investigate the behaviour of lap splices under cyclic loading [154]: (a) specimen
geometry, reinforcing layout with indicated minimum and maximum lap splice lengths, and specimen
cross-section; (b) optical marker positions for elongation measurement and examples of analysed sec-
tions (grey for lb = 25Ø, green for lb = 60Ø). The data of the optical marker just above the lap splice
was used for elongation measurement. Figure modified from [154].

7.6 Experimental validation

7.6.1 Description of analysed experiments

Tarquini, Almeida and Beyer [153, 154] carried out 24 experiments on reinforced concrete members
containing a lap splice and two reference tests with continuous reinforcement under uniaxial tension-
compression cyclic loading. They published the excellently documented experimental data for free
download on the Zenodo platform (https://doi.org/10.5281/zenodo.1205887). The most suited experi-
ments were analysed herein to validate the above-proposed model.

Figure 7.15 shows the 1260 mm high specimens with a cross-section of 200x200 mm. Adjacent
foundation blocks with dimensions 550x550x300 mm were used to anchor the reinforcement and to
connect the specimens to the testing machine. The longitudinal reinforcement consisted of 4x Ø14 mm
reinforcing bars of the same production batch with steel properties given in Figure 7.8. The bars were
spliced above the bottom foundation, and four different overlapping lengths lb = [25, 40, 50, 60]Ø were
tested. Some specimens contained transverse reinforcement, consisting of Ø6 mm closed stirrups, placed
at variable spacing. The used concrete revealed a compressive strength similar to a C25/30. The specific
properties of the analysed specimens are given in Table 7.4, along with the loading parameters. Further
information on the specimens, the setup, and the instrumentation are published in [153, 154].

Additionally to the force measurement with a load cell, all specimens were instrumented by Linear
Variable Differential Transducers (LVDTs) and a series of optical markers. In the following, the meas-
urements with optical markers are used to evaluate the load-deformation behaviour; they are zeroed at
the first tensile cycle. The analysed length, and hence the base length, is defined as the distance between
the optical marker just above the joint between specimen and foundation block (to avoid any influences
caused by the reinforcement anchorage), and the nearest optical marker above the respective overlapping
length, see Figure 7.15.
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7 Modelling the load-deformation behaviour of lap splices with the Tension Chord Model

Tab. 7.4 – Analysed experiments and corresponding concrete compressive strength fc, stirrup spacing, overlapping
length lb, loading history, and failure mode, according to [153, 154].

experiment fc stirrup spacing lb loading history failure mode

[MPa] [mm] [Ø] and [mm] [min., max. load, kN]

P1 31.7 100 40Ø = 560 cyclic [-1074, +362] splitting, loss of bond

P2 31.7 300 40Ø = 560 cyclic [-568, +323] splitting, loss of bond

P3 31.7 200 40Ø = 560 cyclic [-682, +326] splitting, loss of bond

P5 30.4 300 60Ø = 840 cyclic [-1018, +357] splitting, loss of bond,
and bar buckling

P6 31.7 200 40Ø = 560 monotonic [0, +321] splitting, loss of bond

P8 31.7 200 40Ø = 560 monotonic [0, +340] splitting, loss of bond

P10 31.7 100 60Ø = 840 cyclic [-1163, +311] spalling, bar buckling,
and concrete crushing

P11 33.2 200 25Ø = 350 cyclic [-281, +252] splitting, loss of bond

P13 33.2 200 60Ø = 840 cyclic [-973, +363] spalling, bar buckling,
and concrete crushing

P14 31.7 no stirrups 60Ø = 840 cyclic [-835, +342] splitting, loss of bond

P15 34.4 no stirrups 40Ø = 560 cyclic [-315, +322] splitting, loss of bond

P18 34.4 200 50Ø = 700 cyclic [-1091, +355] splitting, loss of bond

P19 33.5 120 40Ø = 560 monotonic [0, +333] splitting, loss of bond

7.6.2 Calculation parameters

The concrete tensile strength fct and the concrete Young’s Modulus Ec are estimated from the concrete
compressive strength in Table 7.4, using Equation (7.32). The distance between the end of the second
reinforcing bar and the closest crack is assumed as x0 = 0. This assumption is justified by the obser-
vation that the lower lap splice boundary is located at the joint between tension chord and foundation
block, which forms a geometrical discontinuity. Therefore, a crack was observed at this location in
all analysed experiments. Similar to the concept in Section 7.5.4, the lap splices are modelled with
the necessary number of CEs such that the difference between the experimental and modelled over-
lapping length

∣∣∣lb −∑s j
r

∣∣∣ is a minimum. For the CEs, three different lengths are chosen: s j
r,min and

s j
r,max as theoretical boundaries, and s j

r with λ = 0.67 as best guess according to [79, 91]. With η = 1
and ρ = ρs = 4 · (142π)/2002 = 1.5%, Equations (7.17), (7.18), (7.20), (7.22), and (7.30) yield the CE
lengths summarised in Table 7.5. Since the spacing of the stirrups (100, 200, and 300 mm) was ap-
proximately equal or larger than the maximum crack distance s j

r,max in all experiments (except for the
boundary element combined with 100 mm stirrup spacing), it did not influence the length of the CEs, as
could otherwise be assumed, compare Section 7.3.

Tab. 7.5 – Length of CE according to Equations (7.17), (7.18), (7.20), (7.22), and (7.30) for Ø14, η= 1, ρ= 0.015,
and fct = 3MPa according to (7.32).

s j=1
r s j

r j ≥ 2

[mm] [mm]

λ = 0.5 121 55

λ = 0.67 140 74

λ = 1.0 176 110
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Fig. 7.16 – Experimental results of specimen P1 (load cycles only indicated with spikes), together with model cal-
culations with different CE lengths (λ= [0.5, 0.67, and 1.0]) with and without accounting for shrinkage
(εc0), and theoretical boundaries set by the original TCM. (a) full experimental curve range, (b) zoom
to the elastic part; indicated are further the theoretical and experimentally observed cracking load.

For the model, the base length, the total elongation, and the corresponding mean strain are defined as

lbase = ∑s j
r + sTCM

r
/

2

∆ = ∑

(
w j

1L +w j
1R

)
−w j=1

1L + ε
TCM
m · sTCM

r
/

2

εm = ∆/lbase

(7.33)

As shown in Figure 7.15, the first considered optical marker is just above the bottom crack separating
the specimen and the foundation block. Therefore, the contribution w j=1

1L of the lap splice to the opening
of this bottom crack is subtracted from the overall elongation ∆ in Equation (7.33). On the other hand,
to capture the influence on the deformation induced by the CE just above the lap splice (as the analysed
region reaches to the optical marker above the lap splice, see Figure 7.15), half a conventional tension
chord element with length sr = λsTCM

r,max is considered for the elongation ∆ in Equation (7.33).

7.6.3 Results and Discussion

Figure 7.16(a) illustrates the result of Experiment P1 (green) together with the model predictions. Fig-
ure 7.16(b) shows a zoom of the elastic range. The load F is indicated as the total applied load, and the
deformation is given as mean strain εm according to Equation (7.33). For the sake of better readability,
the applied load cycles (compressive and tensile reloading) are omitted, and starting and endpoint are
only indicated (spikes in the green curve). The two dashed blue lines illustrate the results obtained with
the original TCM (single reinforcing bar) with the reinforcement ratio ρ = ρs and ρ = 2ρs, representing
the theoretical boundaries for all theoretical (and experimental) curves. The model results correspond-
ing to λ = 0.5 and 1.0 are shown as magenta curves (dashed and solid); the red curve corresponds to
λ = 0.67. The difference between these three curves is negligible in the elastic range but increases in
the plastic range due to the much smaller slope of the curve. The black line is identical to the red line
(λ = 0.67) but shifted by the shrinkage strain εc0 of the reinforced element, which was estimated based
on the difference between the theoretical and the experimentally observed cracking load, Fcr, theor and
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7 Modelling the load-deformation behaviour of lap splices with the Tension Chord Model

Fcr, exp (see Figure 7.16(b)), and common mechanical concepts as

εc0 =
(Fcr, exp −Fcr, theor)

(EA)uncracked

(1−ρ)

nρ

Fcr, theor = n · fct
(EA)uncracked

Es

(EA)uncracked = EcAc(1+ρ(n−1))

(7.34)

The model accounting for shrinkage matches the experimental data in the elastic range excellently;
the predicted stiffness (slope of the curve) is almost identical. The yield load is slightly underestimated,
but nevertheless, the plastic range of the experiment is very well predicted. According to [153], the
specimen failed in the experiment by splitting of the concrete and a subsequent loss of bond. Therefore,
the ultimate deformation observed in the experiment is much lower than what could have been expected
for a specimen failing by rupture of the reinforcement without loss of bond.

Figure 7.17 shows the predicted response for λ = 0.67, with and without a shift accounting for shrink-
age, along with the results for all analysed experiments. Similar to Experiment P1, the specimens failed
by splitting and bond loss (except for P10 and P13, which failed in compression by spalling, buckling
of the reinforcing bars, and concrete crushing, compare Table 7.4). Hence, only the elastic branch and
the beginning of the plastic load range are analysed. The model is in excellent agreement with the ex-
perimental data regarding elastic stiffness and the beginning of the plastic range. In the elastic range of
the experimental curves, horizontal shifts are visible for all experiments with cyclic loading, which in-
dicate starting points and endpoints of the load cycles. Obviously, these two points do not match, which
indicates an impairment of bond induced by the cyclic loading (an issue also reported by, e. g. [94]).
Accordingly, the experimental curve is shifted with respect to the model prediction. Nevertheless, the
slope of the model fits the slope of the experimental curve very accurately in between these horizontal
shifts, with the two lines being in parallel for most of the analysed experiments. Moreover, contrary to
experiment P1, the yield point is predicted accurately for most experiments.

The model is designed for monotonic tensile loading, assuming steady bond conditions, and adopts
failure by reaching the ultimate tensile load. Hence, it is not able (and does not aim) to account for the
failure modes observed in the experiments of [153, 154]. Validation of the predicted deformation capa-
city was not possible, as the specimen design (partly confined longitudinal reinforcement) and loading
(continuous bond degradation due to load cycles, compare [94]) lead to premature failure by splitting
and bond loss. Hence, the model predictions on the deformation capacity at ultimate load (with a rupture
of the longitudinal reinforcement) need to be validated in further experiments.
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Fig. 7.18 – Experimental results and model predictions of crack widths of Specimen P1: (a) crack pattern for lower
part of the specimen with cracks at boundary CE (blue) and inner CE (red). Further indicated are the
overlapping length lb and the base length to evaluate the crack width of the boundary CE ∆BC and
the inner CE ∆IC; (b) load-crack width curve of boundary CE and inner CE (blue and red solid lines,
respectively), along with model predictions (dashed lines).

Figure 7.18(a) shows the crack pattern at failure load in the lower part of Specimen P1 and the attached
optical markers, along with the overlapping length and the base length to evaluate the deformation of a
boundary CE ∆BC and an inner CE ∆IC, respectively. Figure 7.18(b) shows the elongation of the boundary
CE and the inner CE (blue and red solid lines), together with model predictions (dashed lines). The
elongation of the inner CE directly equals the crack width at this location. At the boundary CE, two
cracks occurred, and the elongation equals the sum of their widths. Nevertheless, the spacing of these
two cracks is very small (less than 40 mm), so that their behaviour can be treated in good approximation
as of one single crack.

Figure 7.18(b) reveals that over the entire load path, the opening of the boundary crack is much larger
than the opening of the inner crack. This leads to a significantly larger contribution of the boundary crack
to the total lap splice elongation, confirming the theoretical observations described in Section 7.5.2. Fur-
thermore, the crack widths predicted with the proposed model match the observed data exceptionally
well, especially for the boundary crack and λ = 0.67. The crack width of the inner CE is slightly under-
estimated, with an absolute deviation of approximately 0.05 mm. However, considering the challenges
when measuring such small elongations, this result is satisfying all the same.

7.7 Simplified approach to estimate the load-deformation behaviour of
lap splices

The calculation of the load-deformation behaviour of a lap splice with the model described in Section
7.3 is elaborate, and the time expenses can hardly be justified for daily problems in engineering practice.
Section 7.5.5 reveals that as a rule of thumb, a lap splice’s deformation capacity can be assumed to be ap-
proximately half the deformation capacity of a conventional tension chord element with CE length sTCM

r,max
(λ = 1), except for reinforcement ratios greater than ρ > 0.015. Here, or if the entire load-deformation
behaviour is needed, the following simplified approach is proposed. Considering the findings of Sections
7.5.2 and 7.5.4 about the load-deformation behaviour depending on the established crack pattern, the
chosen approach defines an upper and a lower bound for the deformation.
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Fig. 7.19 – Simplified approach to estimate load-deformation behaviour: (a) comparison of original model curves
(solid lines) and approximation (dashed lines) of a lap splice’s stress-mean strain behaviour for three of
the analysed CE-configuration of Section 7.5.2; (b) comparison of the lap splice’s deformation capacity
from the parameter study in Section 7.5.5 and the corresponding results of the approximation. Dashed
lines indicate a deviation of +/-10% of the approximation from the original model.

1. Calculate the maximum and minimum length of the boundary elements sBE
r,min and sBE

r,max according
to Equations (7.20) and (7.22) or Table 7.1 (Case I). Assume all inner elements to have the length
of a conventional tension chord element with double reinforcement ratio according to Equations
(7.17) and (7.18), i. e. sIE

r,min = sTCM
r,min(ρ = 2ρs) and sIE

r,max = 2sIE
r,min.

2. Use the overlapping length lb of the lap splice and the CE with minimum length (sBE
r,min and sIE

r,min) to
determine the appropriate number of CEs (2 boundary elements and (kmin −2) inner elements) for
the upper bound. Use the total length ltot = lb +2xI

0,max ≈ lb +2sIE
r,max of the lap splice and the CE

with maximum length (sBE
r,max and sIE

r,max) to determine the appropriate number of CEs (2 boundary
elements and (kmax −2) inner elements) for the lower bound.

3. For the boundary elements, use the equations of the conventional TCM (see [7, 72]) to calculate
the stress-mean strain relationship with a reinforcement ratio ρBE = 1.046 ·ρ for the upper bound
and ρBE = 1.054 · ρ for the lower bound, respectively (meaning that the stress at the crack σsr

causes a mean strain εm
(
σsr/ρBE

)
). The adapted reinforcement ratio accounts for the contribution

of the second reinforcing bar in the boundary element.

4. For the inner elements, use the equations of the conventional TCM (see [7, 72]) to calculate the
stress-mean strain relationship with double reinforcement ratio ρIE = 2ρ (meaning that the stress
at the crack σsr causes a mean strain εm (σsr/2)).

5. The lower and upper bound of the mean strain over the entire lap splice can then be approximated
as

ε
lower bound
m, lap, approx =

(
2sBE

r,maxεm
(
ρ

BE)+(kmax −2) · sIE
r,maxεm

(
ρ

IE))/(2sBE
r,max +(kmax −2) · sIE

r,max

)
ε

upper bound
m, lap, approx =

(
2sBE

r,minεm
(
ρ

BE)+(kmin −2) · sIE
r,minεm

(
ρ

IE))/(2sBE
r,min +(kmin −2) · sIE

r,min

)
(7.35)

Figure 7.19(a) shows the stress-mean strain curves for three of the analysed CE-configurations for
a lap splice with overlapping length lb = 40Ø and standard parameters (Table 7.2) of Section 7.5.2:
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{
s j

r,max , max. number of CE, magenta, lower bound
}

,
{

s j
r,max , min. number of CE, red

}
, and

{
s j

r,min,
min. number of CE, black, upper bound

}
. With dashed lines, the corresponding approximation is shown.

The approximation curves reveal a stiffer behaviour near the yield point compared to the original model
due to the higher reinforcement ratio ρBE . Hence, the approximation underestimates deformations in
this part. For higher loads, the original model curves and the corresponding approximation are in perfect
agreement.

A comparison between the deformation capacity predicted by the original model for the lap splice
configuration analysed in the parametric study in Section 7.5.5 and the approximation is given in Fig-
ure 7.19(b). With few exceptions, the approximation results are in the range of +/-10% and closely
distributed around the diagonal. The mean value of the deviation is x

(
ε

approx
m,u − ε

original
m,u

)
= −3.3 · 10−5

(= –0.03 millistrain), the standard deviation is s
(
ε

approx
m,u − ε

original
m,u

)
= 6.8 ·10−4 (= 0.68 millistrain).

7.8 Design recommendations

As outlined in Section 7.5, lap splices reduce the deformation capacity of structural elements to roughly
half of their non-spliced capacity. Hence, they should be (i) avoided in zones where plastic hinges are
likely to occur, (ii) kept as short as possible, and (iii) taken into account whenever structures are assessed
using performance-based methods (comparison of deformation demand and deformation capacity).

The first recommendation is consistent with modern seismic design requirements [124], and is prob-
ably the most effective approach to guarantee sufficient ductility for a structural element. As indicated in
the proposed reinforcement layout of Detail A in Figure 7.20, the entire lap splice is shifted outside the
potential plastic hinge region, which is often assumed to be at least 1.3. . . 1.5-times the section height,
i. e. > 1.3h...1.5h [1, 18]. The same concept can be applied to other structural elements, such as, e. g.
retaining walls. For elements with a high reinforcement ratio or undergoing high compressive forces, the
assumption for the plastic hinge length of 1.3h...1.5h has to be critically assessed.

In bridges where the superstructure is longitudinally stabilised only by the piers, i. e. superstructure is
free to move at the abutments, the piers are often connected monolithically to the superstructure. Thereby,
as shown in Figure 7.20, the top longitudinal reinforcement of the bridge girder is commonly continued
above the pier (so-called continuous reinforcement). On the other hand, the vertical pier reinforcement
continues into the bridge girder, being bent and anchored in the longitudinal direction, enabling the
compression strut required for moment transfer to emerge (see stress field in Figure 7.20, Detail B).
Conventionally, this anchorage length is not considered for the resisting moment of the superstructure,
and the continuous reinforcement is dimensioned to cover the design hogging moment of the girder by
itself. In reality, however, due to the deformation compatibility of the entire nodal region, the tension
chord force above the pier is shared between the continuous girder reinforcement and pier reinforcement
continuing into the girder, causing the diagram of effective moment resistance to increase above the pier
(red dashed line in Figure 7.20). Since the length needed to transfer the load from the continuous girder
reinforcement to the spliced pier reinforcement is much shorter than commonly assumed (as outlined in
Sections 7.5.2 and 7.5.3), the major part of the anchorage length of the pier reinforcement acts as rein-
forcement staggering, which drastically reduces the bridge girder’s deformation capacity above the pier.
The same applies to buildings where the main structure consists of an RC frame with monolithic con-
nections between columns and slabs. It is therefore strongly recommended (a) to include the anchoring
reinforcement in the calculation of the moment resistance and deformation capacity of the superstructure
(e. g. when checking the ductility by the ratio of the depth of compression zone to the effective depth,
i. e. xc/d) and (b) to partly reduce the amount of continuous reinforcement to account for the additional
moment resistance induced by the pier reinforcement (red solid line in Figure 7.20) at least in cases
where a high rotation capacity is required.

The second recommendation aims at keeping the region with reduced ductility as short as possible
and, additionally, to increase the lap splice’s deformation capacity (see Figure 7.14(d) and Section 7.5.5).
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Fig. 7.20 – Design recommendations for lap splices: Detail A: Conventional and proposed reinforcement layout
in highly loaded regions potentially undergoing plastic deformations. Detail B: Typical reinforcement
layout above bridge piers which are monolithically connected to the bridge deck, along with the stress
field and the moment distribution in this region. Shown are the moment resistance from conventional
design, where the continuous reinforcement covers the design load alone (dashed line), and the moment
resistance with the proposed reduction of the continuous reinforcement.

The minimum overlapping lengths given in various codes containing reasonable safety margins to avoid
lap splice failure should be complied with but not exceeded, particularly if the lap splice is located in a
zone potentially undergoing plastic deformations.

Finally, it is recommended to carefully assess the deformation capacity of elements containing a lap
splice, especially if the corresponding region is highly loaded. If performance-based methods are used,
deformation capacity should be approximated using the simplified method proposed in this paper.

7.9 Conclusions

Lap splices are an indispensable part of reinforced concrete structures. They have been, and still are often
placed in regions where potential plastic deformations occur, e. g. in piers monolithically connected to
the bridge deck, or directly above the construction joints of piers and retaining walls. Therefore, com-
prehensive knowledge of their load-deformation behaviour is essential to reliably assess such structural
elements, especially if performance-based methods, comparing deformation demand and capacity, are
applied.

This paper presents a mechanically consistent method to describe a lap splice’s load-deformation
behaviour based on the concepts of the established Tension Chord Model, together with predictions of
the crack spacings and crack widths in the lap splice region. The deformation behaviour is studied in
detail, and a parametric study is carried out to investigate different influences on the deformation capacity.
A simplified modelling approach for practical use is developed, approximating the load-deformation
behaviour of lap splices. Despite its straightforward formulation, the simplified approach exhibits high
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7 Modelling the load-deformation behaviour of lap splices with the Tension Chord Model

accuracy compared with the original model and is therefore suitable for applications in engineering
practice. Finally, three design recommendations for handling lap splices are presented.

The model is validated for the elastic and the first part of the plastic phase regarding load-deformation
behaviour and crack width with experimental results published in [153, 154], revealing excellent agree-
ment. As the specimens underwent cyclic loading and the lap splices were only partially confined, all of
them failed by excessive splitting and a subsequent loss of bond. Hence, it was not possible to validate
the deformation capacity predicted by the model. Therefore, the validation of the model for high plastic
deformations in tension needs to be addressed in future research.

The study reveals the following general findings on the behaviour of lap splices:

• The crack spacing in lap splices is reduced to approximately half the crack spacing of the adjacent
structural parts, except at the end of the second bar.

• The load transfer between the two reinforcing bars mainly occurs at both ends of the lap splice (in
the first and the second crack element). The section in between these – which forms the largest
part of a lap splice – behaves like a conventional structural element with a double reinforcement
ratio. Here, the yield point is never exceeded and deformations are accordingly small. This load
transfer mechanism is key for understanding the discontinuous behaviour of the lap splice region.

• Consequently, the crack elements at both ends of the lap splice exhibit most (typically > 90%) of
the deformations. This leads to a wide crack at either end of the lap splice, whose crack widths
exceed the crack widths observed outside the lap splice. In contrast, the crack widths in the central
part of the lap splice remain much smaller compared to the element outside the lap splice region.
Note that the large crack opening at the lap splice’s ends may impair durability.

• The maximum deformation capacity of the entire lap splice is typically about half the minimum
deformation capacity of the parts outside the splice. For high reinforcement ratios ρ > 0.015, the
capacity even decreases to 1/3 (or even less). The effective deformation capacity depends strongly
on the crack pattern but is less sensitive to parameter variations than a continuously reinforced
tension chord.

• With the presented simplified approximation, an upper and lower bound of the expected deforma-
tion capacity of a lap splice can be derived. This is especially useful for practical applications to
everyday engineering problems. Whenever assessing existing structures with lap splices located in
zones potentially forming plastic hinges, their deformation capacity should be carefully analysed.

• For new structures, it is strongly recommended to place lap splices at least 1.3h (1.3 times the
section height) away from highly loaded regions which potentially undergo plastic deformations.
If this is not possible, account for the effect of lap splices (as additional reinforcement) on the
behaviour. Furthermore, the overlapping length should be kept as short as possible.
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7.9 Conclusions

Notation

Ac Cross-sectional area of tension member (concrete and reinforcement)
As, As1, As2 Cross-sectional area of reinforcing bar (in general, of Bar 1, of Bar 2)
Ac,net Cross-sectional area of concrete (without reinforcement)
Ec, Es Young’s moduli of concrete and steel
F , F1, F2 External load, load of Bar 1, load of Bar 2
d Effective reinforcement depth (section height minus concrete cover)
fc Concrete compressive strength
fct , f ′ct Concrete tensile strength, with f ′ct < fct

fsy, fsu Steel yield stress and tensile strength
h Section height
k Total number of crack elements in lap splice
lb, ltot Net overlapping length of reinforcing bars and total lap splice length with ltot = lb +2x0 = ∑s j

r

n = Es/Ec Ratio of Young’s moduli of steel and concrete
sTCM
r,max, sTCM

r,min Maximum and minimum crack element length for original TCM
sr, s j

r Crack element length (for element j)
s j
r,max, s j

r,min Maximum and minimum length of crack element j of lap splice
sI
r,max, sI

r,min, sII
r,max, sII

r,min Maximum and minimum length of boundary crack element for Case I and II
uc(x), us(x) Elongation of concrete section and reinforcing bar, respectively
wr Crack width
w j

1L, w j
1R, w j

2L, w j
2R Contribution of Bar 1 and 2 to crack width of crack element j, left crack (L) and right crack (R)

x0 Distance from end of Bar 2 (splicing bar) to left crack of boundary element
x j

1, x j
2 Location of minimum stress of Bar 1 and Bar 2 in crack element j

xI
1, xI

2, xII
1 , xII

2 Distance from crack to location of maximum concrete stress in boundary crack element for
Case I and II

x2a, x2b Subdivision of length xI
2 − x0: part with rigid bond, part with slipping bond

xc Depth of concrete compressive zone
∆ Specimen deformation
εc, εc0 Concrete strain and shrinkage strain of reinforced concrete member
εm, εm,u Mean strain of crack element (in general and at ultimate load = deformation capacity)
εs, εs1, εs2 Steel strain (in general, of Bar 1, of Bar 2)
εsy, εsh, εsu Steel strain at yielding, at onset of hardening and at ultimate load
λ ∈ [0.5,1] Factor for mean crack element length sr

η = Ø1/Ø2 Ratio of reinforcing bar diameters in lap splice
ρ = As1/Ac Reinforcement ratio for lap splice, defined using As of Bar 1 (Bar 2 considered via η)
ρs = As/Ac Reinforcement ratio defined for TCM with single reinforcing bar
σc Concrete stress
σs, σs1, σs2 Steel stress (in general, of Bar 1, and of Bar 2)
σ

j
1L, σ

j
1R, σ

j
2L, σ

j
2R Steel stress in crack element j of Bar 1 and Bar 2, at left crack (L) and right crack (R)

σsr, σsr,cr, σTCM
sr,cr Steel stress at crack (in general, at cracking load)

σI
sr,cr, σII

sr,cr Steel stress at crack for boundary element in Case I and II at cracking load
τb0, τb1 Bond stress if reinforcing bar is elastic (0) and plastic (1), respectively
Ø, Ø1, Ø2 Reinforcing bar diameter (in general, of Bar 1, of Bar 2)
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8 Modelling the load-deformation behaviour of
retaining walls affected by local corrosion
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This chapter presents the findings of a modelling approach to predict the load-deformation behaviour
of bending elements containing locally corroded reinforcing bars by combining the models presented
in the previous chapters. Various further aspects influencing the behaviour are discussed, such as the
effect of loading-unloading-sequences and the pullout behaviour of bent reinforcement. The model is
validated against the results obtained in the experimental campaign on cantilever retaining wall segments,
and conclusions regarding an observed softening effect are drawn. This chapter and the corresponding
findings are not published nor submitted to a scientific journal. Severin Haefliger developed the presented
modelling approaches and evaluated the resulting model predictions under the supervision of Walter
Kaufmann.

8.1 Introduction

This chapter presents a modelling approach to predict the load-deformation behaviour of retaining walls
containing locally corroded reinforcement. The chapter focuses on the effects of local corrosion damage
observed in a pilot study conducted by the Swiss Federal Roads Office FEDRO [52] for existing canti-
lever retaining walls, which affects the main tensile reinforcement in the construction joint between the
footing and the wall. Nevertheless, the model is generic and can be adapted to other corrosion situations
and other types of structures.

The proposed model (see Figure 8.1) builds on existing moment-rotation relationships for flexural
crack elements based on the Tension Chord Model (TCM), as developed by Burns [29], Kenel [93],
and Pfyl [126]. These relationships are complemented with the findings regarding the load-deformation
behaviour of corroded reinforcing bars, presented in the previous chapters, by means of the Corroded
Tension Chord Model (CTCM) [72]. The model further accounts for the load-deformation behaviour
of lap splices [75] – as commonly present directly above the construction joint in retaining walls – and
includes a pull-out model for the anchorage of the reinforcement in the footing.

Thanks to its sound mechanical basis, the CTCM can readily be adapted to account for additional
effects, such as the specific load-deformation behaviour of the reinforcing bar at a corrosion pit or a
varying microstructure over the bar cross-section, as encountered in modern quenched and self-tempered
(Tempcore®) reinforcing bars [71]. The latter effect is neglected here since most retaining walls af-
fected by corrosion were built in the 1960s and 1970s, when only reinforcing bars with homogeneous
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8 Modelling the load-deformation behaviour of retaining walls affected by local corrosion

flexural crack element:
TCM enhanced
for bending

CTCM

TCM for
lap splices

slip of 
anchored bar

effects of triaxial 
stress state

distinct microstructure 
layers over cross-section

further effects

Fig. 8.1 – Combination of different models based on the TCM to assess the load-deformation behaviour of retain-
ing walls affected by local corrosion of the reinforcement. The CTCM can be supplemented by other
models describing specific effects regarding the load-deformation behaviour of the reinforcing bar at the
corrosion pit. Figure adapted from [70].

microstructure were used (the Tempcore-process has found wide application only since the 1990s [137]).
However, the CTCM is supplemented in the following to account for the effects of the triaxial stress state
(TSS) at the corrosion pit and in its direct vicinity [76].

As mentioned in Section 1.3, the following aspects are not discussed in this chapter:

• The shear strength of retaining walls is deemed to be sufficient and thus not further investigated.
The effect of shear forces on the tension chord force (tension shift) is, however, accounted for in a
simplified manner.

• No load redistribution in longitudinal direction, i. e. between corroded and uncorroded segments
of a retaining wall, is considered.

• The local load transfer between corroded and uncorroded reinforcing bars is not analysed in depth.
As shown in the experimental campaign on retaining wall segments (Section 6.4.3), this transfer
is possible by activating either the longitudinal reinforcement or the concrete tensile strength (no
vertical cracks occurred in the experiments).

After briefly summarising existing moment-rotation models for flexural crack elements and their en-
hancement with the CTCM, the general application of the modelling concept to retaining walls and
related aspects are introduced. The model is validated with the experiments on corroded retaining wall
segments [74], and its accuracy is comprehensively discussed.

8.2 Modelling the moment-mean curvature relationship of flexural crack
elements

Several approaches have been developed to predict the moment-mean curvature relationship of flexural
crack elements (i. e. the moment-rotation relationship averaged over a flexural crack element) based on
the TCM, i. e. consistently accounting for tension stiffening. As summarised by Galkovski et al. [64],
the approaches can be divided into (i) models reducing the deformations obtained from a conventional
cross-sectional analysis by considering tension stiffening a posteriori, and (ii) models which directly
account for tension stiffening and related effects, such as a variable lever arm of internal forces, when
formulating equilibrium. The first model type is referred to as tension chord-based model (TCB), and the
second type as equilibrium-based models accounting for deformation compatibility (DC), as proposed
by [64].
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Fig. 8.2 – Constitutive relationships of (a) bare reinforcing steel and (b) concrete. Triangles indicate the peak load
and the corresponding stress, and a circle indicates the yield stress (Rp02).

8.2.1 Constitutive material relationships

The stress-strain relationship of the bare reinforcing steel is modelled using Equation (5.5) of Section
5.3.2, with the coefficients c3 = 5.2 · 10−7 and c4 = 0.18, and steel characteristics as indicated in Fig-
ure 8.2(a) (equal to Figure 6.6). Figure 8.2(a) shows the results of the material tests (grey) and the
constitutive relationship (red).

The concrete compression zone is modelled using a linear elastic-perfectly plastic stress-strain rela-
tionship as shown in Figure 8.2(b), a simplification often used in design (see, e. g. [145]). The concrete
cylinder compressive strength fc (different for every specimen and also different for wall and correspond-
ing footing) and the elastic modulus Ec (Ec ≈ kE

3
√

fc [MPa], kE = 10000 [145]) result from the concrete
material tests summarised in Table 6.3.

Bond is modelled according to the TCM [7] (see Section 2.3.1) using the concrete tensile strength fct

summarised in Table 6.3.

The results obtained in Chapters 2 and 5 indicate that the stress-strain behaviour of the steel is decis-
ive to accurately capture the load-deformation behaviour of a corroding structure. Hence, an elaborate
constitutive relationship, closely matching that of the reinforcing bars, is used (Figure 8.2(a)). On the
other hand, the shape of the stress-strain relationship of the concrete has a minor effect on the deforma-
tion capacity of bending elements due to the small depth of the compression zone, and rather influences
the post-peak softening behaviour of the element. Since the latter is not analysed in this thesis, the simple
bilinear relationship shown in Figure 8.2(b) is adopted.

8.2.2 Tension chord-based model TCB

Based on the TCM [7, 114], Burns [29] presented an approach to account for tension stiffening following
a conventional cross-sectional analysis for elements in pure bending and linear elastic-cracked material
behaviour. Formulating equilibrium at a crack for a rectangular cross-section, assuming plane sections to
remain plane (hypothesis of Navier-Bernoulli), and neglecting the compression reinforcement, one gets:

N = 0 = σsAs −
σcxcb

2

M = σc
x2

cb
3

+σsAs (d − xc) = σsAs

(
d − xc

3

) (8.1)
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8 Modelling the load-deformation behaviour of retaining walls affected by local corrosion

with N, M = normal force and bending moment, σs, σc = steel and concrete stresses at the crack, b =
section width, As = reinforcement cross-sectional area, d = effective static depth, and xc = compression
zone depth. With the curvature

χ =
εs

d − xc
=

M
EI

(8.2)

where εs = σs/Es, Es = elastic modulus of steel, the bending stiffness EIII of the fully cracked elastic
cross-section follows as

EIII =
M(d − xc)

εs
= EsAs(d − xc)

(
d − xc

3

)
(8.3)

Due to tension stiffening, the steel stresses and strains are highest at the crack and decrease towards
the middle of a flexural crack element. Assuming a rigid-perfectly plastic bond shear stress-slip relation-
ship following the TCM with a bond strength τb0 = 2 fct for σs(x) ≤ fsy ( fct = concrete tensile strength,
fsy = steel yield stress), steel stresses and strains decrease linearly towards the middle of the crack ele-
ment, similarly as in a tension chord introduced in Sections 2.3.1 and 7.2. Hence, a mean strain difference
∆εsm can be defined as the difference between the steel strain at the crack and the average strain along the
tension chord. Using the notation of the TCM and Equation (2.A1) or (2.A2), the mean strain difference
for linear elastic behaviour is

∆εsm = εs − εsm =
σsr

Es
−
(

σsr

Es
− τb0sr

EsØ

)
=

τb0λsr,max

EsØ
=

λ fct(1−ρ)

2Esρ
(8.4)

with σsr = steel stress at crack, sr = λ · sr,max = crack element length (crack spacing), λ ∈ [0.5,1], Ø = re-
inforcing bar diameter, ρ = As/Ac = reinforcement ratio, and Ac = effective area of cross-section.

The mean strain difference is constant for a fully established crack pattern and independent of the
external load, as seen from Equation (8.4). However, unlike for a tension chord, the effective reinforce-
ment ratio ρ is not clearly defined for a flexural element and is still a focus of ongoing research [64].
A mechanically consistent approach consists in postulating that at crack formation (i. e. for the cracking
moment), the steel stress at the crack in the flexural element is equal to the steel stress at the crack of a
tension chord element with the effective reinforcement ratio ρ [29]; a recent study investigating the ten-
sion zone of reinforced concrete beams in four-point bending tests instrumented with fibre optic strain
sensing showed that this assumption correlates well with experimental results [64]. Using this approach,
Equations (8.2) and (7.8) yield

σsr,cr =
McrEs (d − xc)

EIII
!
=

fct

ρ
(1+ρ(n−1))

→ ρ =

(
McrEs (d − xc)

fctEIII −n+1
)−1

=

(
Mcr

As fct (d − xc/3)
−n+1

)−1

≈
(

bh2

6As (d − xc/3)
−n+1

)−1

(8.5)

with Mcr = cracking moment, σsr,cr = steel stress at crack for M = Mcr, n = Es/Ec = ratio of elastic
moduli, Ec = elastic modulus of concrete, and h = section height. As seen from Equation (8.5), the
equivalent reinforcement ratio is significantly higher than the geometrical reinforcement ratio As/(bd).
Using the mean strain difference ∆εsm of the tension chord, the mean curvature difference follows from
the assumption of plane sections remaining plane as

∆χm =
∆εsm

d − xc
=

λ fct(1−ρ)

2ρEs (d − xc)
=

λ

2

(
Mcr

EIII −
n fct

Es (d − xc)

)
(8.6)
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8.2 Modelling the moment-mean curvature relationship of flexural crack elements

Subtracting the curvature difference from the curvature resulting from a conventional cross-sectional
analysis (neglecting tension stiffening) yields the moment-mean curvature relationship accounting for
tension stiffening.

Whereas Burns [29] analysed the elastic load-deformation behaviour of flexural elements to invest-
igate questions related to serviceability, the approach can be enhanced for nonlinear material behaviour.
The length of flexural crack elements λ · sr,max follows from inserting the reinforcement ratio ρ determ-
ined by Equation (8.5) in the corresponding equation of the TCM (Equation (7.7) in Section 7.2). The
assumption that a stabilised crack pattern does not change with increasing external load, i. e. the crack
element length is constant, allows determining the mean steel strains εsm of a corresponding tension
chord for arbitrary external loads using the TCM (Equations (2.A1) and (2.A2)). Inserting this mean
steel strain in Equations (8.4) and (8.6) and combining the resulting mean curvature difference with a
nonlinear cross-sectional analysis yields the mean curvature of a flexural crack element for elastic and
plastic material behaviour.

8.2.3 Equilibrium-based models accounting for deformation compatibility

Equilibrium-based models accounting for the deformation compatibility of a flexural crack element have
been established for conventionally reinforced concrete by Kenel [93] and for steel fibre reinforced con-
crete (including conventional reinforcement) by Pfyl [126]. The latter approach, which is very similar to
Kenel’s model and yields essentially the same results if the steel fibres are omitted (see comment at the
end of this section), is presented below and used subsequently.

Consider a symmetrical crack element with the dimensions illustrated in Figure 8.3 (sr = flexural crack
spacing = element length), assuming rigid bond in the compression zone (i. e. steel and concrete strains
coincide along the entire element). In the tension zone, however, the steel and concrete strains generally
differ substantially, causing slip (i. e. relative displacements between steel and concrete, vanishing in
Section I due to symmetry).

A cross-sectional analysis is first conducted for Section I at the centre between two cracks, assuming a
linear distribution of the axial strains over the depth of the cross-section and accounting for the combined
action of reinforcement and concrete in the compression and tension zone. Assuming a linear elastic
behaviour of the concrete in Section I (but an arbitrary stress-strain relationship for the reinforcement),
one gets by equilibrium:

N = Asσ
I
s
(
εI

s
)

+EcεI
c,in f b

h− xI
c

2
−EcεI

c,supb
xI

c

2
−EsA′

sε
′ I
s

M = Asσ
I
s
(
ε

I
s
)(

d − xI
c
)︸ ︷︷ ︸

tensile reinforcement

+Ecε
I
c,in f b

(
h− xI

c
)2

3︸ ︷︷ ︸
concrete in tension

−Ecε
I
c,supb

(
xI

c
)2

3︸ ︷︷ ︸
concrete in compression

−EsA′
sε

′ I
s
(
xI

c +d −h
)︸ ︷︷ ︸

compressive reinforcement

−N
(

h
2
− xI

c

)

(8.7)

with A′
s = cross-sectional area of reinforcement in compression zone. The concrete strains at the lower

and upper edges of the cross-section, εc,in f and εc,sup, and the steel strains in the compression zone, ε′s,
are related by the conditions εc,in f = (d − xI

c)εc,sup/xI
c and ε′s = (xI

c − h+ d)εc,sup/xI
c (assuming equal

concrete cover at top and bottom).

Following the concept of the TCM, the bond stresses acting along the reinforcing bar in the tensile
zone merely depend on the steel stress, i. e. τb0 = 2 fct where σs(x)≤ fsy and τb1 = fct where σs(x)> fsy.
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Hence, starting from the steel stress σI
s in Section I, the steel stress in Section II follows as:

σ
II
s = σ

I
s +

4τb0

Ø
sr

2
≤ fsy for σ

I
s < fsy

σ
II
s = fsy −

(
fsy −σ

I
s
) τb1

τb0
+

4τb1

Ø
sr

2
> fsy for σ

I
s < fsy

σ
II
s = σ

l
s +

4τb1

Ø
sr

2
> fsy for σ

l
s ≥ fsy

. (8.8)

Using the steel stress determined by Equation (8.8), a cross-sectional analysis is now conducted in
Section II, assuming a linear distribution of the axial strains over the depth of the compression zone. For
arbitrary stress-strain relationships of steel and concrete, equilibrium yields:

N = Asσ
II
s −

∫ xII
c

0
σc
(
ε

II
c,sup

)
bdz −A′

sσ
′ II
s
(
ε′ II

s
)

M = Asσ
II
s
(
d − xII

c
)︸ ︷︷ ︸

tensile reinforcement

−
∫ xII

c

0
σc
(
ε

II
c,sup

)
zbdz︸ ︷︷ ︸

concrete in compression

−A′
sσ

′ II
s
(
ε
′ II
s
)(

xII
c −h+d

)︸ ︷︷ ︸
compressive reinforcement

−N
(

h
2
− xII

c

)
(8.9)

with the identical applied loads M and N as in Equation (8.7). For linear elastic material behaviour, the

terms for the concrete contribution simplify to
∫ xII

c

0
σs
(
ε

II
c,sup

)
bdz = Ecε

II
c,supb

xII
c

2
and∫ xII

c

0
σs
(
ε

II
c,sup

)
bzdz = Ecε

II
c,supb

(
xII

c
)2

3
.

As mentioned above, the steel strains in the tension zone do not need to be compatible with the
concrete strain plane, as assumed in conventional cross-sectional analyses. Instead, compatibility is
established by the condition that axial deformations vary linearly over the depth of the cross-section.
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8.2 Modelling the moment-mean curvature relationship of flexural crack elements

They vanish at the depth of the neutral axis in Section II, i. e.

ϕ =
us

d − xII
c
=

uc

xII
c

(8.10)

where ϕ = relative rotation of cross-section II. The reinforcing bar elongation us equals the integral of
the steel strains (obtained from the steel stresses and a suitable constitutive relationship) over half the
element length. The concrete strains are assumed to vary linearly along the element, and the shortening
uc follows by integration along the element half:

us =
∫ sr/2

0
εs(x)dx

uc =
∫ sr/2

0
εc,sup(x)dx =

(
εI

c + εII
c
)

sup

2
sr

2

(8.11)

The six independent Equations (8.7) to (8.11) yield a unique solution for the six unknowns
{

εI
s, εI

c,in f ,

xI
c, εII

s , εII
c,sup, xII

c
}

for any set of applied loads N and M. However, the validity of the made assump-
tions and the compliance with the boundary conditions, e. g. the material properties, need to be verified.
In particular, the concrete stress σI

c,in f in Section I should not excessively exceed the concrete tensile
strength; the chosen crack element length might be inappropriate otherwise.

The theoretical upper bound of the crack element length sr,max is determined by treating it as unknown
in Equations (8.7) to (8.11), and setting the concrete tensile strain in Section I equal to the strain at
cracking, εI

c,in f = fct/Ec. As in the TCM, the lower bound of the crack element length is sr,max/2 since
an additional crack may form at the centre of two cracks with a spacing sr,max.

The models of Kenel [93] and Pfyl [126] merely differ in the assumptions made regarding Section I.
Whereas Pfyl considers concrete stresses over the entire cross-section (in the tension and compression
zone) independent of the applied bending moment, Kenel neglects the concrete contribution in the tensile
zone for M > Mcr and, in such cases, superimposes the strain planes obtained for Mcr and M −Mcr

(with and without concrete contribution in the tensile zone, respectively). Interestingly, despite the very
different concrete compressive stresses in Section I resulting for increased loads, the moment-mean
curvature relationships predicted by both models almost coincide, with Pfyl’s model being slightly softer.

8.2.4 Enhancement of equilibrium-based model with the CTCM

In the following, the concept of the CTCM is implemented in the equilibrium-based model of Pfyl
introduced in Section 8.2.3, i. e. the tension chord (Equation (8.8)) is complemented by a corrosion pit,
as illustrated in Figure 8.4: the cross-section of the reinforcing bar in tension is reduced to (1−ζ)As over
a length β · sr adjacent to one of the cracks bounding the flexural crack element (see Section 2.2.2 and
Equation (2.1)). A loss of bond simulating the effect of a honeycomb is considered over an additional
length δ · sr, thereby reducing the length of the conventional flexural crack element to (1−β−δ)sr.

Over the length (β+ δ)sr, the tensile force in the reinforcement is constant due to the loss of bond;
hence, the concrete compressive stresses and the location of the neutral axis are constant over this length,
and Equations (8.7) to (8.9) remain valid except for the shorter element length. As in the CTCM, steel
stresses increase at the corrosion pit due to the reduced cross-sectional area. The deformations in Equa-
tion (8.11) at the crack (Section III) change to

us = us,uc +us,c =
∫ (1−β−δ)sr/2

0
εs(x)dx+βsrεs

(
σII

s

1−ζ

)
+δ srεs

(
σ

II
s
)

uc = uc,uc +uc,c =

(
εI

c + εII
c
)

sup

2
(1−β−δ)sr

2
+ ε

II
c,sup(β+δ)sr

(8.12)
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with us,uc, us,c = elongation of the bar over its uncorroded and corroded (and bond-free) length, and us,uc,
us,c = shortening of concrete between Sections I-II and II-III, respectively. The deformation compatibility
condition of Equation (8.10) is modified to

ϕ = ϕuc +ϕc =
us,uc +us,c

d − xII
c

=
uc,uc +uc,c

xII
c

(8.13)

and the mean curvature over the entire flexural crack element changes to

χ =
ϕc +2ϕuc

sr
(8.14)

8.3 Modelling the load-deformation behaviour of corroded cantilever
retaining walls

To predict the load-deformation behaviour of cantilever retaining walls with corroded main tensile rein-
forcement, the models for the moment-mean curvature relationships of corroded and uncorroded flexural
crack elements presented in Sections 8.2.3 and 8.2.4 are combined with previously developed approaches
capturing the effects of lap splices (Chapter 7) and the loading history (loading-unloading behaviour)
[7, 94]. Furthermore, this section outlines how the effects of a triaxial stress state at the corrosion pit
(Chapter 5) and the influence of longitudinal splitting cracks on the bond behaviour of flexural elements
[2, 64] can be considered.
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8.3.1 General modelling concept

For the analysis, the retaining wall is discretised into flexural crack elements, whose load-deformation
behaviour is subsequently predicted. It is assumed that crack elements in parallel (corresponding to the
individual reinforcing bars with different corrosion damage) exhibit equal deformations. This assump-
tion bases on the high in-plane stiffness of the uncracked concrete between adjoining cracks, and leads
to force redistributions between elements of different stiffness. Finally, the deformations of the crack
elements are summed up over the wall height to obtain the global deformation of the retaining wall.

Discretisation of the wall and assigning the loads

A retaining wall of a given height H, width B, and bar spacing s is divided into ktot = B/s wall strips
of width b = s, i. e. one strip per reinforcing bar. For simplicity, only retaining walls with constant geo-
metrical properties along their length, i. e. constant cross-section, reinforcing bar diameter and spacing,
are considered in the following. All cracks are assumed to run horizontally along the entire wall width,
dividing the wall height into layers of flexural crack elements. The mean crack spacing sr = λ · sr,max

defines the height of the crack element layers, where λ ∈ [0.5,1] for every layer and sr,max = maximum
crack element length resulting from the model described in Section 8.2.3. Each crack element is further
divided into two half crack elements whose deformations are determined independently. For a simpler
notation, the half crack elements above and below a crack are combined to one element and assigned the
same index i, rather than considering a crack element bounded by two cracks. The subscript inf denotes
the half crack element below the crack, and the subscript sup the one above, see Figure 8.5(a).

Retaining walls are generally subjected to a combination of vertical normal force and variable out-of-
plane shear forces. Thus, the bending moment varies along the wall height, in contrast to the equilibrium-
based models described in Section 8.2.3, which assume constant bending moments, i. e. dM/dz = 0. To
use these models, the bending moment profile is approximated by a stepped distribution, where the
bending moment Mi at the location of a crack corresponds to the exact value. It is kept constant over the
adjacent half crack elements above and below the crack, resulting in a discontinuity at the centre between
two cracks, see Figure 8.5(a).
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8 Modelling the load-deformation behaviour of retaining walls affected by local corrosion

Half crack elements subjected to a bending moment exceeding the cracking moment, i. e. Mi > Mcr,
are modelled according to Section 8.2.3, resulting in a serrated steel stress distribution as shown in blue
in Figure 8.5(a). The deformation of the sections in the uncracked region (potential cracks forming at
a higher load are indicated with dotted lines in Figure 8.5(a)) is modelled using the uncracked elastic
bending stiffness. The construction joint (i = 0) is assumed to be a cold joint with zero tensile strength,
and thus to be cracked from the beginning. The influence of the shear force V is considered in the
cross-sectional analysis of the cracked layers in Equations (8.7) and (8.9) by adding a tensile normal
force V · cotan(θr) to the tension and compression chord forces caused by bending. This corresponds
to accounting for the tension shift in members without shear reinforcement as proposed in [87] (i. e.
assuming cracks inclined at an angle θr to the z-axis transferring pure shear stresses in their direction).
With the experimentally observed crack inclination of θr = 78° with respect to the vertical, this results in
slightly higher tensile stresses for crack elements i ≥ 1, denoted with σsr(M,V ) in Figure 8.5(a).

Moment-rotation behaviour of a cracked layer

The rotation ϕi,in f/sup of the half crack elements is calculated for the corresponding bending moment Mi,k
using Equations (8.7) to (8.13). If the reinforcement is uncorroded, it is sufficient to calculate the rotation
for one of the parallel crack elements along the wall width, with Mi,k = Mi/ktot . For layers consisting
of corroded and uncorroded reinforcing bars, however, different bending moments Mi,k result for each
parallel crack element due to the varying stiffness. The bending moments can be determined by requiring
compatibility at the cracks, i. e. all parallel crack elements need to exhibit equal rotation:

ϕi,k = ϕi

ktot

∑
k=1

Mi,k = Mi

(8.15)

with the rotation of each parallel crack element corresponding to the sum of the rotations of the half
crack elements above and below the crack, i. e. ϕi,k = ϕi,k,in f +ϕi,k,sup, see Figures 8.5(a) and (b). At the
construction joint, the rotation is

ϕ0,k = ϕ0,k,sup +ϕ f ,k

ϕ f ,k =
us, f ,k

d − xII
0,k,sup

(8.16)

with xII
0,k,sup = compression zone depth of the half crack element above the construction joint. The rotation

ϕ f ,k in Equation (8.16) is caused by the pull-out of the reinforcement anchored in the footing, causing a
deformation us, f ,k, whose value is discussed in Section 8.4.

The compatibility condition in Equation (8.15) is similar to the one introduced in the CTCM for
several corroded and uncorroded tension chords acting in parallel (Equation (2.23) in Section 2.3.3). It
assumes that the in-plane stiffness of the parallel crack elements is sufficient to compensate for their
differing moment-rotation behaviour, and that resulting load differences are balanced within one crack
element layer, i. e. the half crack elements above and below the crack. This assumption was validated
using fibre optic strain measurements in the experimental campaign on corroded retaining wall segments,
where the load difference was found to be balanced within a length of less than two crack elements (see
Section 6.4.3).

Load-deformation behaviour of the entire retaining wall

The moment-rotation relationships of the single half crack elements directly result from the calculations
outlined in the previous section. Summing the rotation of the half crack elements below and above a
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crack i and multiplying with the adjacent crack element length yields the wall displacement at crack
i+1, and the wall head, respectively

v(z) = (ϕ f +ϕ0,sup)sr,1 +∑
i≥1

(ϕi,in f +ϕi,sup)sr,i+1 (8.17)

with the length of the last crack element sr,i = Luncracked (see Figure 8.5(a)) and ϕ f according to Equation
(8.16). Note that the elastic contribution of the uncracked wall section to the total wall rotation is neg-
lected in Equation (8.17) as it is magnitudes smaller compared to the rotations resulting from the cracked
part and the opening of the construction joint; the rigid-body rotation of the uncracked part is, however,
accounted for.

8.3.2 Further effects on the moment-rotation behaviour

Load reversal

For an increasing cross-section loss at constant (or decreasing) load, the bending moment Mi,k of the
corroded crack elements decreases due to the reduced tensile stiffness of the reinforcing bar (see the
behaviour of parallel Tension Chords in Section 2.3.3 and the experimental results in Section 6.4.3). The
unloading of a reinforcing bar in concrete is accompanied by a progressive slip reversal and a reversal
of the bond stress direction. Alvarez [7] presented a first concept to capture the unloading behaviour
based on the TCM, which was revisited and experimentally validated by Koppitz et al. [94]. The concept
assumes that a reversed slip immediately leads to reversed bond stresses, which propagate from the
crack towards the crack element centre with decreasing load, see Figure 8.6. Experiments on reinforced
concrete beams tested in four-point bending and instrumented with fibre optic strain sensing indicated
that bond is degraded even for the first unloading-reloading cycle, and the reversed bond stresses τbr are
thus lower than the initial bond stresses τb0 [94]. Based on the experimental results, a value τbr = τb1 was
suggested for regions undergoing slip reversal. For a full unloading-reloading cycle, the reduced bond
stress leads to an asymmetric stress state in the crack element (Figure 8.6) and, therefore, to a hysteresis
in the load-deformation curve.
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8 Modelling the load-deformation behaviour of retaining walls affected by local corrosion

The concept proposed in [94] is adopted for bending elements by replacing Equation (8.8) as outlined
below. To this end, for the sake of conciseness, the effective reinforcement ratio ρe f f of a bending
element is introduced; this ratio is based on the fictitious net concrete area Ac,net activated in tension
at the crack element centre (Section I), assuming that constant tensile stresses λ fct act over Ac,net at
crack formation. Since the tensile force Fc,cr = λ fctAc,net is transferred to the concrete by the bond shear
stresses acting over half the crack spacing sr, one gets:

Fc,cr =
4τb0

Ø
sr

2
As

Ac,net =
Fc,cr

λ fct
=

2τb0

λ fct

sr

Ø
As

ρe f f =
As

As +Ac,net
=

λ fctØ
2τb0sr +λ fctØ

(8.18)

Note that ρe f f is defined as usual, based on the gross concrete area Ac = Ac,net +As, rather than the net
concrete area. For a stress decrease ∆σII

s at the crack, slip reversal occurs over the length xr, and the
following equations are found by formulating equilibrium on the free body between Section I and II (see
[94]):

As∆σ
I
s +Ac,net∆σ

I
c = As∆σ

II
s

∆σ
I
s = n ·∆σ

I
c for

∣∣∆σ
I
c

∣∣≤ λ fct

(
1+

τbr

τb0

)
→ ∆σ

I
s =

nρe f f

1+ρe f f (n−1)
∆σ

II
s for

∣∣∆σ
II
s

∣∣≤ λ fct

(
1+

τbr

τb0

)
1+ρe f f (n−1)

ρe f f

(8.19)

For a steel stress decrease
∣∣∆σII

s

∣∣ exceeding the indicated application limit of Equation (8.19), the
concrete stress in Section I remains constant at σc =−λ fctτbr/τb0 (Figure 8.6) and the steel stress in the
same section is σI

s = σII
s +2τbrsr/Ø.

Lap splice

As outlined in Chapter 7, the load transfer between two reinforcing bars in a lap splice mainly occurs at
its ends. The first and last crack element was found to behave approximately like a conventional crack
element with a reinforcement ratio ρ = ρs, whereas all other crack elements behave like crack elements
with double reinforcement ratio ρ = 2ρs (regarding element length and load-deformation behaviour).
These findings are adopted for modelling the lap splice in a retaining wall by assigning the double steel
cross-sectional area 2As to the crack elements over the lap splice length, except for the first and the last
crack element (i. e. the first and last two half crack elements).

In a lap splice, the load is transferred from one bar to the other by an asymmetric distribution of bond
stresses and a shift of the location of minimum steel stress towards one of the cracks (see Figure 7.2).
For high external loads and short crack elements, the reinforcing bar may even be pulled through the first
crack element(s), see Figure 7.3(b). In this case, the location of minimum steel stress coincides with the
crack location. Figures 7.9(b) and (c) show that a pull-through can occur for the first or even the first two
crack elements.

Similarly, flexural crack elements subjected to a bending moment gradient |dM(z)/dz|> 0 exhibit an
asymmetric bond stress distribution, as already discussed by Sigrist [146], causing a shift of the location
of minimum steel stress to the less loaded side. The magnitude of the shift depends on the local bending
moment gradient, which is typically substantial at the base of a retaining wall due to the triangular earth
pressure distribution.
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8.3 Modelling the load-deformation behaviour of corroded cantilever retaining walls

If a lap splice is placed in this zone of high bending moment gradient, the shifts of the minimum
steel stress location caused by (i) the bending moment gradient and (ii) the lap splice boundary are
superimposed, which leads to a considerable deformation increase on the side of the footing already
for moderate loads. For high loads, a pull-trough of the reinforcing bar is likely to occur since the
element length is short due to the high reinforcement ratio of the lap splice. To approximately capture
the influence of the asymmetric steel stress distributions in the crack elements at the wall bottom on the
global wall deformations, Equation (8.16) is modified, and the following rotations are used in Equation
(8.17):

ϕ0 = ϕ f +ϕ0,sup +ϕ1,in f

ϕ1 = ϕ1,sup +ϕ2,in f

ϕ2 = ϕ2,sup

(8.20)

with ϕi = rotation in crack i. With this modification, the rotations determined for the affected cracks
(without considering the asymmetric steel stress behaviour) are partly assigned to the crack below, res-
ulting in higher wall deflections. This approximation allows to use the model outlined in Section 8.2.3
and the discretisation proposed in Section 8.3.1 without underestimating the global wall deformations.

Bond stresses in case of splitting cracks

The occurrence of splitting cracks leads to significantly lower bond stresses, as shown by several studies
(for an overview, see [33, 56, 57]). For a mean concrete compressive strength of 42 MPa (average strength
of walls in experiments described in Chapter 6, see Table 6.3), the Model Code 2010 [57] proposes to
reduce the maximum and residual bond strength in case of splitting cracks to 49%...56% of the reference
values (for pull-out conditions, no splitting cracks). Recent studies on reinforced concrete beams and
slab strips tested in four-point bending and instrumented with fibre optic strain sensing reported a very
similar reduction [2, 64]; the measured bond strength was reduced by approximately 50% compared to
literature values in the case of splitting cracks.

In the experiments on retaining wall segments (Chapter 6), splitting cracks occurred at load stages
close to failure (i) at the outermost reinforcing bars (Bars 1 and 10) over the length of the lap splice and
(ii) for many of the bars in the bottom crack element adjacent to the footing (see Figure 6.11(a)). For
some of the experiments, additional splitting cracks were observed post-peak in the last crack element
of the lap splice (0.9 m above the footing). The splitting cracks at the outermost reinforcing bars can be
explained by the reduced lateral geometrical confinement, compared to the interior bars. The splitting
cracks close to the footing at high loads are potentially caused by the situation of a yielding reinforcing
bar, presumably pulled through the crack element (see previous section), next to the passive end of the
splicing bar exhibiting almost no deformations. If these explanations apply, the phenomenon would have
to be expected generally for lap splice ends undergoing high loads in combination with high load gradi-
ents. However, further studies are required to substantiate this hypothesis. Regardless of this remark, the
experimentally observed splitting cracks are accounted for in the model by reducing the bond stress in
the bottom crack element after yielding onset to 50% of the original value, i. e. τb1 = fct/2 (instead of
τb1 = fct).

8.3.3 Stress-strain behaviour of corrosion pit

Triaxial stress state (TSS)

Since the influence of a triaxial stress state (TSS) on the stress-strain relationship of corroded reinforcing
bars was investigated in Chapter 5 for axisymmetric damage, the results cannot directly be applied to the
reinforcing bars in the experimental campaign exhibiting unilateral damage. Nevertheless, its potential
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Tab. 8.1 – Maximum, mean, and minimum damage lengths Lc depending on the cross-section loss, defined ac-
cording to Figure 8.7.

cross-section loss
ζ [-]

maximum pit
depth t [mm]

position of centroidal
axis tc [mm]

Lc,max [mm] Lc,m [mm] Lc,min [mm]

0.10 3.4 1.4 15.0 12.0 7.5

0.15 4.5 1.9 16.7 13.6 8.4

0.20 5.5 2.3 17.9 14.8 9.0

0.30 7.3 3.0 19.2 16.4 9.6

influence can be investigated by approximating the geometry of a unilateral, spherical corrosion pit
with an axisymmetric damage geometry of equal cross-section loss and three different damage lengths
β · sr = Lc, see Figure 8.7. The maximum damage length Lc,max equals the length over which the cross-
section is reduced, and the minimum length is chosen to Lc,min = Lc,max/2. The mean length Lc,m is
defined by the intersection of the centroidal axis of the maximum pit cross-section with the pit boundary
(see Figure 8.7). The resulting lengths Lc are summarised in Table 8.1 for a varying cross-section loss;
note that the values are independent of the bar diameter.

A pertinent constitutive relationship is assigned to the corroded reinforcing bar over the length β ·sr =
Lc, based on (i) the original steel stress-strain curve, (ii) the damage geometry defined above, and (iii)
the simplified model proposed in Section 5.7.3. The additional deformation resulting from the softer
behaviour of the bar section over a distance 1Ø above and below the corrosion pit is assigned to the
deformation of the pit for maximum model versatility (e. g. in case δ = 0 in Equation (8.12)). Hence, the
mean strain over the corrosion pit is

εβ =
εs,cβsr +2(εs,uc − εs,uc)Ø

βsr
(8.21)

with εs,c, εs,uc and εs,uc according to Equation (5.25). The steel strains εs,uc need to be subtracted in
Equation (8.21) since only the additional deformation of the parts above and below the pit is assigned to
the pit deformation.

178



8.3 Modelling the load-deformation behaviour of corroded cantilever retaining walls

0 0.1 0.2 0.3 0.4 0.5

Steel strain ε
s
 [-]

450

500

550

600

650
S

te
el

 s
tr

es
s 

σ
s [

M
P

a]

experiment
model

0 0.01 0.02 0.03 0.04

Steel strain ε
s
 [-]

0

100

200

300

400

500

600

S
te

el
 s

tr
es

s 
σ
s [

M
P

a]

0.025 0.03 0.035 0.04

590

600

610

620
Bar 1

Bar 2

Bar 1 + Bar 2

m = -200 MPam = -300 MPa
m = -400 M

Pa

m
 = -500 M

Pa m = -200, -400, -600, -800 MPa

(a) (b)

Fig. 8.8 – Post-peak softening of reinforcing bars with reduced cross-section: (a) stress-strain curve of tensile test
on two reinforcing bars with initial diameter Ø = 20 mm and reduced diameter Øc = 19 mm (black)
and model predictions (red); (b) example to visualise the influence of post-peak softening. Stress-strain
curve of Bar 1 (black) and Bar 2 (red), and of a system where both bars are connected in parallel (blue).
Peak load is indicated with a triangle and actual rupture with a cross.

Post-peak softening behaviour

In a conventional material tensile test, the reinforcing bar undergoes necking after having reached the
peak stress. Between the onset of necking and the eventual failure of the bar, the engineering stresses
decrease with increasing deformation, similar to the softening behaviour of quasi-brittle materials. How-
ever, the term “post-peak softening” used in this context may not be entirely correct since the material in
the necking zone still undergoes strain hardening, which is evident if stresses are referred to the actual
cross-sectional area (true stresses), rather than to the nominal or original one (engineering stresses). The
measured strains in the post-peak range depend on the reference length since only the necking region
of 1..2Ø length is further deformed, whereas all other parts of the reinforcing bar are unloaded. For
most application cases, this part of the stress-strain diagram is neglected since the load does not further
increase. However, the post-peak softening behaviour after necking onset might influence the global
behaviour of a corroding structure.

Figure 8.8(a) shows the steel stress-strain curves (black) of two reinforcing bars of diameter Ø = 20 mm,
which exhibit a cross-section loss of approximately 10% (Øc = 19 mm) over a length Lc = 15 mm and
19 mm, respectively. The measurements originate from the experimental campaign investigating the TSS
(Chapter 5). Stresses refer to the reduced cross-sectional area, and strains were measured over the length
of the damage zone, where necking occurred post-peak. The peak stress is denoted with a triangle and
occurred at Agt = 0.042, whereas the actual rupture occurred at εsu = 0.4...0.5 (indicated with a cross).
Hence, the additional post-peak elongation is Lc · (εsu −Agt) = 5.4...8.7 mm (neglecting the elastic short-
ening of the unloaded uncorroded parts). The gradient of the post-peak softening varies in the range
m = dσ/dε = -200...-500 MPa (red lines; the transition m = 0...-200 MPa over a short strain range after
the peak stress is neglected here).

Tension chord elements containing corroded and uncorroded reinforcing bars connected in parallel
need to exhibit the same deformation to fulfil compatibility (see Sections 2.3.3 and 8.3.1). Hence, if
failure is associated with one or more corroded bars reaching their tensile strength, the elongation of
all elements at peak load is typically strongly reduced due to strain localisation in the corroded bars.
However, if failure is defined as the point when the corroded bars actually rupture and post-peak softening
is considered, (i) a more pronounced load transfer from the corroded to the uncorroded bars is initiated,
and (ii) the failure load is increased since the uncorroded bars are not yet fully utilised at the given strain.
Therefore, the deformation capacity increases.
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8 Modelling the load-deformation behaviour of retaining walls affected by local corrosion

This behaviour is illustrated in a grossly simplified manner in Figure 8.8(b), using two reinforcing
bars of equal length connected in parallel. Bar 1 exhibits a stress-strain characteristic corresponding to
the black curve; Bar 2 exhibits characteristics as shown with red dashed curves. The behaviour of the
coupled system is shown in blue, with peak loads indicated by triangles. It is observed that the load-
carrying and deformation capacity of the coupled system is increased compared to the peak load and
corresponding strain of Bar 2 (red triangle), depending on the gradient m of the softening branch.

Evidently, the actual behaviour is much more complicated since it further depends on the effective
load distribution among the bars, and hence, on the number of corroded and uncorroded bars, the actual
cross-section losses of the corroded bars, and the length of the uncorroded parts being unloaded post-peak
and undergoing elastic shortening.

For the model validation with the experiments on corroded retaining wall segments, post-peak soften-
ing is tentatively considered to explore the potential influence of a softening element. It is accounted for
in combination with the effect of a TSS (mean damage length), i. e. after having reached the increased
tensile strength. A minimum softening gradient m is chosen (i. e. max(|m|)) for which model conver-
gence was reached. In any case, the rupture strain is assumed to εsu = 0.18, and post-peak softening is
assumed to occur over the length of the corrosion pit.

8.4 Load-deformation behaviour of reinforcement anchored in the footing

The anchorage of straight reinforcing bars is a fundamental topic in structural concrete research and
has been investigated in many theoretical and experimental studies. Pull-out tests with long embedment
lengths and similar experiments on structural elements were used to develop and validate bond models
(e. g. [50, 97, 107, 143]). Other researchers successfully used bond models developed from pull-out
tests with short embedment lengths to investigate the load-deformation behaviour of reinforcing bar
anchorages [6, 123, 141].

However, only a few experimental campaigns have been dedicated to the behaviour of anchorages
of bent reinforcing bars, such as the L-shaped bars commonly used at the base of retaining walls.
Brantschen et al. [28] studied the bond shear stress-slip behaviour of hooked and U-shaped reinfor-
cing bars using fibre optic strain measurements. Marques and Jirsa [112] and Soroushian et al. [148]
investigated the pull-out behaviour of reinforcing bars with a 90°-end-hook in experimental campaigns,
measuring the force-slip behaviour along the bar length [112], and presented a corresponding bond shear
stress-slip model [148]. They reported zero slip at the free bar end (i. e. full anchorage of the bar at this
point) until sudden failure of the specimen occurred by excessive spalling.

Since the bar geometry investigated in [28] does not apply to reinforcement with a large bending
radius, as typically placed in the footings of retaining walls, and the model proposed by [148] was
developed for rather short embedment lengths, the topic is revisited in the following section.

8.4.1 Results of experiments on retaining wall segments

In the specimens of the experimental campaign on retaining wall segments, the main reinforcement
anchored in the footing below the construction joint runs vertically for 217 mm, is bent by 90° with a
code-compliant mandrel diameter d1 = 15Ø = 270 mm, and finally continues horizontally over a length
of 677 mm to the opposite footing edge, see Figure 8.9(a). Figure 8.9(b) shows the steel stresses back-
calculated from the fibre optic strain data (blue) of one representative L-reinforcing bar of Specimen
CD-0 for specific bending moments at the construction joint. Figure 8.9(c) shows the corresponding slip
of the same bar, obtained by integrating the measured strains. As mentioned in Section 6.3.5, the optical
glass fibre was glued on the inside of the bend (see Figure 8.9(a)). The beginning and end of the bend
are indicated with solid black lines, and dashed black lines indicate angular sections of 22.5°. A black
dotted line indicates the point on the bar which lies directly below the wall edge.
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Fig. 8.9 – Pull-out behaviour of reinforcement anchored in the footing: (a) bent reinforcing bar below construction
joint with presumed internal crack locations (red) and schematic steel stress distribution along the bar.
(b) Steel stresses back-calculated from measured steel strains (blue) for specific bending moments in a
reinforcing bar of CD-0, including mean steel stress decrease (orange). (c) Slip along reinforcing bar
(= integrated steel strains) for same bending moments. (d) Scaled derivative of steel stresses (blue) and
mean values between presumed cracks (orange) for M j = 400 kNm. (e) Detail of steel stress distribution
along the bar in straight part according to existing models (orange) and measurements (blue), and cor-
responding direction of bond stresses.

Generally, stresses are highest at the loaded end and decrease towards the bend, as seen in Fig-
ure 8.9(b). For bending moments M j ≤ 100 kNm (approximately σs(z = 0) = 100 MPa at the construc-
tion joint), the vertical straight part of the bar is sufficient to anchor the load. For higher loads, the point
of zero stress shifts into the bend, but not beyond its end. Steel stresses decrease much stronger in the
bent part than in the straight part of the bar, reaching a maximum gradient in the first quarter of the
bend. This strong decrease is caused by high bond forces acting on the inside of the bend, rather than
by common bond shear stresses uniformly distributed around the bar perimeter. These high bond forces
are enabled by the strong compressive forces between the bar and the surrounding concrete caused by
the deviation of the bar in tension. This phenomenon was already described by [6, 148] and recently
confirmed with modern measurement techniques by [28, 119].

Figure 8.9(b) reveals that the steel stresses undulate along the bar length, rather than decreasing mono-
tonically; the red dashed lines indicate the location of the observed local peaks. The undulations first
occur for stresses σs(z= 0)> 200 MPa, intensify for higher loads and are most pronounced in the straight
part. The gradient of the mean stresses between these peaks, indicated by the orange lines connecting
the peaks, decreases with increasing load (compare the two orange lines for σs(z = 0) > 300 MPa and
σs(z = 0) > 500 MPa). This contradicts existing bond and anchorage models (e. g. [49, 141]), which
predict increasing bond stresses (i. e. increasing steel stress gradients) for the range of the observed slip
δs < 1 mm (Figure 8.9(c)). Two similar peaks, though less pronounced, are observed in the first and the
last quarter of the bent part.

Figure 8.9(d) shows the scaled derivative of the steel stresses at a bending moment of M j = 400 kNm,
i. e.

T(z) =
Ø
4

dσs

dz

= τb(z) for z <−217 mm
(8.22)
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Fig. 8.10 – Evaluating the pull-out behaviour of the reinforcement anchored in the footing after the test. (a) Cone
breakout at the construction joint. (b) Reinforcing bar after removing the breakout cone. (c) Normalised
mean bond stresses observed in the elastic (τb0) and plastic (τb1) strain range of the reinforcement.

which corresponds to the local nominal bond shear stresses in the straight part of the bar z < -217 mm (in
the bent part, the nominal bond stresses are meaningless due to the different load transfer mechanism).
The resulting nominal bond stresses are in a typical range of |τb,loc| ≤ 10 MPa but partly exhibit a negative
sign, i. e. acting in the opposite direction. Hence, the mean bond stress (orange line) between two peaks
is much smaller than the maximum local bond stress.

Based on these observations, the stress peaks presumably result from internal cracks and splitting
cones (as schematically shown in Figure 8.9(a)). Similar as reported in [40], such cones were found at the
surface of the specimen footings after the tests. Examples are shown in Figure 8.10(a) before removing
the cone, and Figure 8.10(b) after cone removal. Consequently, it is assumed that the elements between
the cracks in the straight part of the bar act as conventional crack elements subjected to a varying normal
force, i. e. with their location of minimum stress shifted backwards from the element centre. Similar to
lap splices and flexural crack elements (see Section 8.3.2), this shift allows for an overall stress decrease
in a crack element. Although no loss of the local bond strength is observed, these internal cracks reduce
the mean bond strength.

The standard modelling approach for the anchorage of straight reinforcing bars, which forms the
basis of existing design codes (e. g. [145]), is shown in Figure 8.9(e) with an orange line. It assumes
that steel stresses σs decrease linearly due to the bond shear stresses, which counteract the applied load.
In contrast, the findings described here imply a steel stress distribution as indicated by the blue line,
with bond stresses of magnitudes similar to existing bond models but alternating bond stress directions.
Nevertheless, the principle of the established anchorage models can be adopted by accounting for the
influence of the internal cracks on the mean bond stresses. Therefore, the latter are further analysed in
the following.

The mean bond stresses were determined using the fibre optic strain data of the 50 L-reinforcing bars
of the CD series (Chapter 6) at different bending moments 50 ≤ M j ≤ 400 kNm. The mean bond stress
and the slip are determined in the straight part of the bar, i. e. for −217 ≤ z ≤ 0 mm, as

(i) the mean values between the (presumed) internal cracks, i. e. the locations of pronounced stress
peaks, if such peaks occurred (similar as shown in Figure 8.9(d))

(ii) the mean values between z = 0 and the location where σs = 0 or the end of the straight part, i. e.
max{z|σs(x) = 0,z =−217 mm}, if no stress peaks were observed (yet).

Similar as in the original TCM, two mean bond stress values are defined: τb0,m where the reinforcing
bar is elastic, i. e. the observed mean strain between two cracks is εs,m ≤ 0.0024, and τb1,m where the
reinforcing bar exhibits plastic mean strains, i. e. εs,m > 0.0024. The limit of εs,m = 0.0024 equals the
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8.4 Load-deformation behaviour of reinforcement anchored in the footing

Tab. 8.2 – Experimental results (mean and standard deviation) of the normalised mean bond stress in the elastic
and plastic range of the reinforcing bar and normalised mean bond stresses according to Sigrist [146],
for comparison.

experimental results Sigrist

mean standard
deviation

τb0,m/ f 2/3
c [-] 0.37 0.24 0.55...0.65

τb1,m/ f 2/3
c [-] 0.25 0.09 0.28...0.33

observed steel proportionality limit (i. e. the strain, where the bare steel stress-strain curve leaves the
elastic straight line; for εs = 0.0024, the stress is σsy = 480 MPa).

Figure 8.10(c) shows the histograms of the experimentally observed mean bond stresses τb0,m and
τb1,m, normalised with f 2/3

c . Additionally, Table 8.2 summarises the mean and standard deviation of
the normalised mean bond stresses, along with the values reported by Sigrist [146] in order to calibrate
the TCM. The mean bond stresses in the elastic and inelastic range are approximately 38% and 23%,
respectively, lower than the values reported by Sigrist. The standard deviation is rather high for τb0,m,
reflecting the broad variation in the range of τb0,m/ f 2/3

c = 0.1...0.4.

While the lower values observed in the footings could be explained by the formation of internal
cracks as outlined above, it must be noted that Sigrist determined the bond stresses from pull-out tests
conducted by Engström [50] and Shima [143] on reinforcing bars with long embedment lengths, where
internal cracks may also have occurred. Hence, the lower mean bond stresses observed in the footings
could also be due to different bond conditions (steel characteristics, rib areas, etc.).

8.4.2 Anchorage model

The anchorage of the bent reinforcing bars is modelled using a surrogate straight bar, which is fixed at
its end (i. e. zero slip) and is embedded over a length

Lb = zstraight +
d1 +Ø

2
π

2
(8.23)

with zstraight = length of the straight part and d1 = mandrel diameter. The second term equals the length of
the bend. The length and boundary condition (fixed end) were selected based on the observation that the
slip at this point was virtually zero in all tests, even for high loads. The surrogate straight bar is loaded
at its active end, and steel stresses decrease due to the reduced mean bond stresses

τb0 =
0.37
0.6

· (2 fct) = 1.2 fct

τb1 =
0.2
0.3

· ( fct) = 0.65 fct

(8.24)

according to the observations and values discussed in Section 8.4.1 (Table 8.2). The bond stress for
plastic strains is slightly reduced (reduction of half a standard deviation) to compensate for the complete
loss of bond in the top part of the anchorage due to the cone outbreaks observed in the experiments (see
Figures 8.10(a) and (b)). For high applied loads, the surrogate bar is not fully anchored by these bond
stresses; the remaining force is assumed to be resisted by the fictitious bearing at the fixed end.
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8 Modelling the load-deformation behaviour of retaining walls affected by local corrosion

8.4.3 Concluding remarks

The model presented in Section 8.4.2 is a strong simplification of the real behaviour of the anchorage of
a bent bar with a large bending radius. For high loads, where low bond stresses τb1 are assumed over
almost the entire fictitious embedment length, the steel stresses in the bent part are strongly overestim-
ated. This is obvious when considering Figure 8.9(b) for M j = 400 kNm, where the observed steel stress
decreases rapidly in the first quarter of the bent part, but the model predicts stresses in the extension
of the orange line. In contrast, compared to the observed large opening of the construction joint (see
Figure 6.11, Section 6.4.1), which is caused to a significant part by the pull-out of the anchored rein-
forcement, the anchorage model does not overestimate the deformations. This leads to the conclusion
that the experimentally observed pull-out of the reinforcement in the experiments is not only caused by
the slip between reinforcement and concrete but also by an upward-directed movement of the bend due
to concrete crushing under the high contact pressure. Such deformations and concrete deterioration were
described by [112] and recently by [28]. Accordingly, the measured strains have to be interpreted care-
fully since the deformations caused by concrete crushing along the bend are superimposed to the results.
If such deformations indeed took place in the experiments, the proposed model – having been calibrated
on the experimental results – accounts for them as part of the predicted bar elongation.
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8.5 Assessment of corroded retaining wall segments

8.5 Assessment of corroded retaining wall segments

The model presented in Section 8.3, including the additional effects discussed in Section 8.4, is validated
with the results of the experimental campaign described in Chapter 6. After some comments on the
model implementation, the model predictions are compared to the experimental results of the tests with
increasing load (Series CD) and the hybrid tests (Series EP).

8.5.1 Model implementation

The modelling approach is implemented in Matlab as a load-controlled model, i. e. calculating the de-
formation of the structural system for a given load. This calculation strategy works well for monotonic-
ally increasing load steps, but convergence can be lost if several crack elements are unloaded to different
extents (e. g. if several corroding bars reach post-peak softening in different load steps (Specimen CD-
9-var) or if all bars are unloaded in one load step due to a global load reduction, but to different extents
since corrosion is simultaneously increasing (Specimen EP-HD)). Calculations affected by convergence
loss are mentioned in the discussion section.

The modelled wall segments are loaded identically as in the experiments with a combination of shear
force and bending moment at the wall head according to Figure 6.9(b) and a normal compressive force
of -56 kN. The loading of the modelled hybrid tests follows the moment-deflection curves shown in
Figure 6.10. The crack element lengths are chosen as observed in the experiments, determined from
the DIC measurements (see Figure 6.11), and the recess at damaged bars was considered by setting the
parameter (β+ δ) · sr = 100 mm. The cracking moment is set to Mcr = 120 kNm, corresponding to
the mean value observed in the experiments. The reinforcement yield stress, where the bond stresses
decrease from τb0 to τb1 in the TCM, is set to the proportionality limit at σsy = 480 MPa, i. e. the point
where the bare steel stress-strain curve leaves the elastic straight line (in contrast to the definition of
fsy = Rp02 = 554 MPa at 0.2% remaining plastic strain).

8.5.2 Results and discussion of experiments with constant cross-section loss

Figure 8.11(a) plots the bending moment at the construction joint M j vs the displacement of the wall head
vtop at z = 1.7 m of Specimen CD-0, i. e. the reference test without cross-section loss. The experimental
curve is shown in black, and the model result in red. The maximum bending moment and corresponding
head displacement according to the experiments and the model calculations are summarised in Table 3.
The model prediction and the experimental data are in very good agreement, confirming the ability of the
modelling approach to capture the load-deformation behaviour for the case without reinforcement cross-
section loss. Despite the uncertainty regarding the appropriate modelling of the force-slip behaviour of
the anchorage in the footing (Section 8.4.3), the model prediction is very satisfying.

Figure 8.11(b) shows the experimental results and model predictions for Specimen CD-3-10 (3 bars
with 10% cross-section loss). The model is evaluated using different assumptions: without the effect of a
TSS (w/o TSS, red), with the effect of the TSS (green), and considering the TSS and post-peak softening
after the onset of necking at the corrosion pit (blue). The different damage lengths used in the models
are indicated with a circle (= maximum length), a triangle (= mean length), and a square (= minimum
length). The post-peak softening gradient m is indicated in the figure legend. The model prediction of
Specimen CD-0 is shown in grey as a reference.

The experimentally observed deformation capacity is slightly reduced for Specimen CD-3-10 com-
pared to CD-0, but the peak bending moment is slightly higher. The model neglecting a potential in-
fluence of the TSS (i. e. merely considering strain localisation) strongly underestimates the deformation
capacity. The model considering the effects of a TSS predicts increasing deformations at peak load with
decreasing damage length and closely matches the experimental result when assuming a minimum dam-
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Fig. 8.11 – Experimental results and model predictions for Specimens CD-0 and CD-3-10. (a) Moment-
displacement curve of CD-0 with experimental result (black) and model prediction (red). (b) Moment-
displacement curve of CD-3-10 with experimental result (black) and different model predictions (col-
oured). (c) Stress-strain model curves of corroded (dashed lines) and uncorroded (solid lines) bars at
the crack. For the corroded bars, the stresses and strains refer to the reduced cross-sectional area and
the relative deformation over the pit length. (d) Same as (c), but stress and strain values of the corroded
bars referred to the initial cross-sectional area and strains outside the pit. Marker shapes and colours in
(c) and (d) correspond to same model assumptions as in (b).

age length. The model considering post-peak softening after necking onset also captures the behaviour
accurately.

The finding that the model accounting for a TSS predicts larger deformations for a shorter damage
length is counter-intuitive from the perspective of strain localisation but can be explained by the increas-
ing apparent tensile strength with decreasing damage length (see Section 5.6.3). Figure 8.11(c) plots the
steel stress vs the steel strain at the crack at different load stages for the corroded bars (dashed lines)
and the uncorroded bars (solid lines); the marker types and colours correspond to those used in Fig-
ure 8.11(b). The stress in the corroded bars is referred to the reduced cross-sectional area, and the strains
represent the relative deformations of the pit according to Equation (8.21). The solid lines essentially
correspond to the material stress-strain relationship, as confirmed by the black cross indicating the tensile
strength and corresponding strain of the bare undamaged steel. If no increase of the peak stress in the pit
by the TSS is considered, the corroded reinforcing bars reach the peak stress (red empty circle behind
the black cross), while the uncorroded bars just start to deform plastically (solid red circle). The increase
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8.5 Assessment of corroded retaining wall segments

Tab. 8.3 – Experimental results and model predictions: maximum bending moment and corresponding head dis-
placement.

Specimen Experiment Model

w/o TSS with TSS with TSS and
p.-p. softening

Lc,max Lc,m Lc,min Lc,m

Mmax
[kNm]

wmax
[mm]

Mmax
[kNm]

wmax
[mm]

Mmax
[kNm]

wmax
[mm]

Mmax
[kNm]

wmax
[mm]

Mmax
[kNm]

wmax
[mm]

Mmax
[kNm]

wmax
[mm]

CD-0 517.6 43.2 519.7 41.2

CD-3-10 532.4 38.5 494.6 21.9 509.7 27.6 515.7 31.4 524.7 40.1 519.7 37.6

CD-9-30 449.9 25.6 438.5 15.2 443.5 15.6 440.5 15.1 451.6 16.1 468.6 23.0

CD-9-15 506.8 33.2 466.6 18.4 480.6 20.6 486.6 21.6 508.7 31.2 490.6 28.1

CD-9-var 480.8 30.6 444.5 14.7 450.5 15.1 448.5 14.7 453.6 14.9 477.6 21.2

of the tensile strength in the pit region caused by the TSS allows for a global force increase sufficient to
induce considerable plastic deformations in the uncorroded reinforcing bars (solid green markers). The
model prediction in Figure 8.11(b) is already considerably improved for the maximum damage length
and meets the experimental result for the minimum damage length. Considering post-peak softening at
the onset of necking has a similar effect: the decreasing steel stress at increasing steel strains in the cor-
rosion pit leads to an increasing force transfer from the corroded to the uncorroded reinforcing bars. The
applied load can be increased as long as the hardening of the uncorroded bars compensates the post-peak
softening of the corroded bars (see Section 8.3.3).

While the steel stresses at the pit in Figure 8.11(c) may imply that the corroded bars are higher
loaded than the uncorroded ones, it has to be noted that the stress of these bars in the part adjacent to
the corrosion pit, with the initial cross-sectional area, is lower by a factor (1− ζ). This is illustrated in
Figure 8.11(d), where the steel stresses and strains of the corroded bars refer to the initial cross-sectional
area and to the relative deformations outside the pit (empty markers), respectively. The load carried
by a corroded bar is thus lower than that carried by an uncorroded bar, and hence, the strains and the
deformation of the half crack elements containing a corroded bar are lower outside the pit. For the model
considering post-peak softening, the parts away from the pit are even unloaded, leading to a substantial
load transfer towards the uncorroded bars. Nevertheless, the sum of deformations (rotations) exhibited
by the pit and the corresponding crack element equals the deformation (rotation) of the crack elements
containing an uncorroded bar (as required by the compatibility condition, see Equation (8.15)).

Figure 8.12 shows the experimental and model results for Specimens CD-9-30, CD-9-15, and CD-9-
var with an equal mean cross-section loss of 9%, yet differently distributed among the reinforcing bars
(3x 30%, 6x 15%, and {10%, 2x 15%, 20%, 30%}). Figures 8.12(a), (c), and (e) show the bending
moment at the construction joint M j vs the displacement of the wall head vtop at z = 1.7 m, and Fig-
ures 8.12(b), (d), and (f) the stresses and strains at the crack of the corroded and uncorroded bars. The
stresses and strains of the corroded bars refer to the corrosion pit, i. e. the reduced cross-sectional area
and the relative pit deformation according to Equation (8.21). The predictions used identical model as-
sumptions as for Specimen CD-3-10 and are presented using the same colour and marker scheme. The
model curve of CD-0 is again shown in grey as a reference.

For Specimen CD-9-30 in Figure 8.12(a), the model predictions with and without the effects of the
TSS do not differ significantly. The load-carrying capacity is reasonably captured but the correspond-
ing deformation is strongly underestimated. In contrast, the model considering post-peak softening fits
the experimental results better. This is explained by the stress-strain curves of the pit shown in Fig-
ure 8.12(b): the apparent tensile strength of the corroded bars is significantly increased with shorter
damage length due to the TSS, but the corresponding strain at peak stress is only slightly higher than
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Fig. 8.12 – Experimental results and model predictions for Specimens (a,b) CD-9-30, (c,d) CD-9-15, and (e,f)
CD-9-var. (a,c,e) Moment-displacement curves of experiments (black) and different model predictions
(coloured). The model curve for Specimen CD-0 is shown as reference (grey). (b,d,f) Stress-strain
model curves of corroded (dashed lines) and uncorroded (solid lines) bars at the crack. For the corroded
bars, the stresses and strains refer to the reduced cross-sectional area and the relative deformation over
the pit length.

Agt since the maximum force carried by the section with reduced cross-sectional area is lower than the
yield force of the adjacent parts of the bar. For the minimum damage length, the stress in the uncorroded
parts is σs,uc = (1− ζ)σs,c = (1− 0.3) · 690 MPa = 483 MPa; considering a stress increase by a factor
1/pε,uc = 1.15 according to the TSS model to calculate the corresponding strains near the pit, one gets
σs,uc/pε,uc = 555 MPa, which is equal to the yield stress. Hence, the increase in tensile strength due to
the TSS is insufficient to compensate for the cross-section loss, and the behaviour is mainly governed by
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8.5 Assessment of corroded retaining wall segments

strain localisation. On the other hand, post-peak softening in the pit region after necking onset leads to
locally high deformations and, hence, to a load transfer from the corroded to the uncorroded bars. The
increasing load of the uncorroded bars is associated with a global deformation increase.

The comparison of experimental results and model predictions, with the latter being consistently
stiffer, implies that the model does not fully account for a softening effect being present at the pit and
potentially in the parts in the direct pit vicinity. Apart from the post-peak softening included in the
model, the softer behaviour could be due to a combination of TSS effects and local bending moments.
Such bending moments were experimentally observed for unilateral pits, e. g. by [8], and confirmed in
this study by the fibre optic strain measurements presented in Section 6.4.4. They are not captured by the
current TSS modelling approach and could indeed lead to a softer axial behaviour due to superimposed
bending stresses, as also hypothesised by [80].

The model predictions for Specimen CD-9-15 in Figures 8.12(c) and (d) show similarities to the
results of Specimens CD-3-10 and CD-9-30. The model considering a TSS with minimum damage
length accurately captures the experimental result, as in this case the increase in tensile strength in the
pit is sufficient to cause substantial yielding in the sections near the pit: σs,uc = (1 − ζ)σs,c = (1 −
0.15) · 683 MPa = 580 MPa; considering the stress increase due to the TSS of 1/pε,uc = 1.08, one gets
σs,uc/pε,uc = 626 MPa for the strain calculation in the parts directly adjoining the pit, and hence, large
plastic strains. However, similar to Specimen CD-9-30, the increased tensile strength of the models
considering the TSS with mean or maximum damage does not cause significant plastic strains in the
sections near the pit (σs,uc ≈ 544 MPa, 1/pε,uc ≈ 1.05). The deformations exhibited in the experiment
are thus underestimated. The model with mean damage length but accounting for post-peak softening
compensates partly for the underestimated deformations but underpredicts the peak load.

The model results for Specimen CD-9-var are shown in Figures 8.12(e) and (f). The stress-strain
curves of the corroded bar in Figure 8.12(f) are illustrated for the bar with 30% cross-section loss. The
overall result is similar to that of Specimen CD-9-30, with the bar affected by 30% cross-section loss
dominating the behaviour. All models strongly underestimate the deformation capacity if no post-peak
softening behaviour is considered. The best prediction is obtained with the model with post-peak soften-
ing, which, however, lost convergence before reaching the assumed rupture strain εsu = 0.18. Possibly,
a refined calculation ensuring convergence would lead to a better result, underlining the importance of
considering post-peak softening and exploring potential further softening effects, such as bending due to
unilateral corrosion.

8.5.3 Results and discussion of hybrid tests

Figure 8.13 compares the experimental results and model predictions of the tests with increasing cross-
section loss (one at constant load, EP-CL, and two hybrid tests simulating the earth pressure decrease
with increasing deformation, EP-LD and EP-HD, see Sections 6.3.7 and 6.4.2). Two approaches are
used to model the deflection increase due to an increasing cross-section loss: the Intersection Approach
(IA) and the Full Calculation Approach (FCA). The IA evaluates the retaining wall model at increasing
load for varying cross-section losses, resulting in the red and blue load-deformation curves shown in Fig-
ure 8.13(a). As in the experiments, the cross-section of four reinforcing bars is reduced stepwise by 10%,
and the model is evaluated considering the effects of the TSS, once with the maximum (red) and once
with the minimum damage length (blue). For Specimen EP-CL, where the load was held constant dur-
ing cross-section reduction at M j = 286 kNm (solid black line), the intersection of the load-deformation
curves with the horizontal moment line is determined (red and blue crosses), leading to a deflection in-
crease with increasing corrosion. Similarly, the earth pressure models provided by [125] (dashed and
dash-dotted black curves) are used for the Specimens EP-LD and EP-HD to find the intersection with the
load-deformation curves.

The FCA evaluates the model for the entire load path as in the experiments, i. e. the simulated retain-
ing wall is first loaded without cross-section loss to service load, and the cross-section of the corroding
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Fig. 8.13 – Experimental results and model predictions for the tests with increasing cross-section loss at constant
or decreasing load (hybrid tests): (a) principle of Intersection Approach (IA), with load-deformation
curves (coloured) and loading lines (black); (b-d) observed (black) and predicted (coloured) deflection
increase at wall head.

bars is subsequently reduced stepwise at constant or decreasing load. The approach has the advantage
that the unloading behaviour of the structure is simulated: Unloading-reloading a structure differs from
a monotonic load increase – as in the IA – since the potentially reduced bond stresses and imposed de-
formations influence the global load-deformation behaviour (see Section 8.3.2). One of the drawbacks of
the FCA is its challenges regarding model convergence since several parameters change simultaneously
in a calculation step involving unloading effects.

The black lines in Figures 8.13(b) to (d) illustrate the experimentally observed deflection increase of
the wall head (at z = 1.7 m) with increasing cross-section loss for the experiments of the EP series. Note
that the cross-section loss ζ here refers to that of each of the four drilled bars, which is linked to the mean
cross-section loss by a factor 4/10, i. e. ζm = 4/10 · ζ. The coloured lines show the model predictions.
The FCA was evaluated considering the effects of the TSS for the three different damage lengths, and its
predictions are shown in green with the marker type indicating the damage length. For Specimen EP-HD,
convergence was lost for all damage lengths beyond a cross-section loss of approximately 20%, and the
FCA results are thus omitted in Figure 8.13(d). The same applies to EP-LD for the FCA with minimum
damage length (Figure 8.13(c)). The predictions obtained from the IA with minimum and maximum
damage length are shown in blue and red, respectively.
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All model approaches underpredict the wall head displacements observed in the experiments up to a
cross-section loss of ζ = 0.5 for EP-CL and EP-LD, and ζ = 0.3 for EP-HD, indicating that the mod-
els do not realistically account for the softening effect caused by the cross-section reductions in the
elastic load range. However, it should be noted that the observed deformation increases are very small
(0.3...0.7 mm for ζ = 0.5 (ζm = 0.2)); considering the dimensions of the specimens, these deflections
(1/5700...1/2400 of the wall height) are an order of magnitude smaller than the accuracy of most models
in structural concrete, given the uncertainties regarding materials, bond, geometry, etc. For higher cross-
section losses, the deformation resulting from the two approaches increases and meets the experimental
results for ζ = 0.6...0.7 for EP-CL and EP-LD, and ζ = 0.4...0.5 for EP-HD, respectively.

The IA and FCA give very similar results for all three specimens, indicating that accurately capturing
the unloading behaviour is of minor importance for this kind of problem. The varying damage length
has a noticeable effect, with higher accuracy of the model predictions with longer damage length in this
case. Since the geometrical ratios are Lc/(2Øc)≈ 0.7...1.2 and Øc/Ø ≈ 0.5...0.6 for large cross-section
losses, the influence of the TSS strongly diminishes, and the apparent tensile strength does not increase
(pσ ≤ 1.01, see Section 5.7). Therefore, the behaviour is governed by strain localisation, and longer
damage lengths lead to larger deformations.

In Figures 8.13(b) to (d), the model curves do not reach ζ = 1.0 since all approaches predict a failure
of the damaged reinforcing bars for a cross-section loss of ζ = 0.6...0.7, i. e. they underestimate the load
transfer from the damaged to the undamaged reinforcing bars. This indicates that the model predicts an
overly stiff force-elongation behaviour of the corroded bars for high cross-section losses. Since the bars
were damaged unilaterally in the experiments causing a significant shift of the centroidal axis at the pit
for high cross-section losses, it is hypothesised that local bending stresses softened the bars’ response in
the tests. As mentioned in Section 8.5.2, these effects are currently not captured by the models but might
be relevant for a realistic failure estimate.

8.6 Conclusions

This chapter investigated a modelling approach combining various models based on the TCM to assess
the load-deformation behaviour of cantilever retaining walls affected by local corrosion damage of the
main tensile reinforcement at the construction joint between footing and wall.

The following conclusions can be drawn regarding the modelling approach in general:

• The models of Kenel [93] and Pfyl [126] only differ in the assumption regarding the concrete strain
distribution at the centre between adjoining flexural cracks and yield very similar moment-mean
curvature relationships. However, compared to the approach proposed by Burns [29], these models
are computationally less efficient since they need several iteration loops to achieve convergence.
In contrast, the approach of Burns is straightforward for implementation but has so far only been
validated in the elastic load range. A possible model extension to plastic steel deformations is
presented in Section 8.2.2 but needs further validation.

• All presented models for predicting the load-deformation behaviour of flexural crack elements
assume constant bending moments along the crack element length and hence, symmetrical stress
and deformation distributions. In the case of non-zero shear forces causing bending moment gradi-
ents, these distributions are no longer symmetrical, and the deformations are larger at one of the
two cracks, as already shown by Sigrist [146]. The deformations may thus be substantially un-
derestimated, especially at the location of structural elements amplifying the unequal deformation
distribution (e. g. at the end of lap splices). An approach accounting for the influence of unequal
stress distributions on the global deformation behaviour was presented in Section 8.3.2. The cor-
responding model predictions match the experimental results accurately, but further validation is
needed regarding the general applicability of the approach.
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8 Modelling the load-deformation behaviour of retaining walls affected by local corrosion

• The anchorage of reinforcing bars with a 90°-bend of large mandrel diameter is very common in
structural concrete. However, only a few experimental studies have been conducted on their pull-
out behaviour. The experimental results of the campaign on retaining wall segments indicate that
a considerable part of the displacement at the active bar end may result from concrete crushing
in the bend, leading to a translation of the bar in addition to the slip between steel and concrete.
Moreover, the bond strength above the bend appears to be reduced due to internal cracking. Since
the experimental campaign was not designed to thoroughly investigate these phenomena and the
results are thus merely indicative, it may be worth analysing the behaviour of this anchorage type
in a separate experimental study using modern measurement techniques.

• Despite the model uncertainties described in the two previous points, the proposed modelling ap-
proach accurately captured the experimental result of the reference specimen, proving its suitability
for conventional, non-damaged reinforced concrete structures.

• It is recommended to implement a future version of the modelling approach in a deformation-
controlled way, i. e. to calculate the bending moments for a given deformation (rotation) of the
crack element. Convergence problems, occurring especially when post-peak softening is con-
sidered, can thus be avoided.

The following conclusions can be drawn regarding the load-deformation behaviour of corroded rein-
forced concrete structures based on the comparison of the experimental results with the predictions of
the different modelling approaches:

• The CTCM alone, considering merely the effect of strain localisation, considerably underestimates
the deformation capacity observed in the experiments.

• Combining the CTCM with a simplified approach to capture the effects of a triaxial stress state
occurring at concentric corrosion pits (Chapter 5) improves the prediction accuracy. The unilateral
damage was approximated with a concentric damage of half the effective pit length. This approach
accurately captured the load-deformation behaviour of specimens containing reinforcing bars with
a maximum cross-section loss of 15%.

• However, the same approach underpredicts the deformation capacity of specimens containing re-
inforcing bars with more severe cross-section losses, unless an additional softening effect at the
corrosion pit is considered. Apart from post-peak softening after the onset of necking considered in
this study, softening may be caused by superimposed local bending moments at the pit, as outlined
in the following point.

• The bent stress trajectories occurring at local corrosion pits strongly influence the bar load-defor-
mation behaviour, as it was analysed in Chapter 5 for concentric damage. The behaviour for
unilateral damage might be different since additional bending stresses – occurring due to a shift
of the centroidal axis – potentially lead to a softer force-elongation behaviour of the bar at the pit.
Since the corroded and uncorroded reinforcing bars are positioned in parallel, this softening causes
a load transfer from the corroded to the uncorroded, not fully utilised bars (as in a system of soft
and stiff springs in parallel), and thus increases the load-carrying and deformation capacity of the
structure. This positive effect of the local stress state at the pit is not captured by established strain
localisation models. It depends on the pit morphology and its influence on the load-deformation
behaviour, which is only rudimentarily understood today. However, the assessment of the experi-
mental campaign highlighted the importance of further investigating this relevant effect.

• The two approaches proposed in Section 8.5.3 to predict the deflection increase of retaining walls
with increasing corrosion damage lead to similar results. It is thus recommended to use the more
straightforward approach of seeking the intersection between the load-deformation curves of the
structure (varying with the corrosion damage) and the load path. However, due to the issues out-
lined in the previous points and since the deformation increase caused by the increasing corrosion
damage is very small, an accurate prediction for severe cross-section losses is challenging.
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8.6 Conclusions

• The proposed modelling approach is suited to assess corroding retaining walls and leads to accurate
results for bar cross-section losses lower than 15%. For more severe cross-section losses, the model
predictions are conservative, and the actual load-deformation behaviour is more benign.

193



8 Modelling the load-deformation behaviour of retaining walls affected by local corrosion

Notation

Agt = εs( fsu) Steel strain at steel tensile strength
As, A′

s, As,c Reinforcing bar cross-sectional area (in tension and compression zone, corroded section)
Ac, Ac,net Concrete cross-sectional area (gross and net, with Ac,net = Ac −As)
B Width of wall (in longitudinal direction)
Es, Ec Young’s modulus of reinforcing steel and concrete
EI, EII , EIII Bending stiffness of wall cross-section (in general, uncracked, cracked)
Fc,cr Force taken by concrete in crack element at the moment of cracking
H Wall height
Lb Anchorage length of bars in footing
Lc, Lc,max, Lc,m, Lc,min Damage length (in general, maximum, mean, minimum), Lc = β · sr

M, Mcr Applied bending moment (in general, at cracking)
Mi,k Bending moment at crack i for vertical wall strip k
M j Bending moment at construction joint
Mtop Bending moment at specimen head
N, Ntop Normal force (in general, at specimen head)
Rp02 Steel stress at 0.2% plastic strain
Vtop Shear force at specimen head
b Cross-section width
d Effective static depth
d1 Mandrel diameter
fc, fct Concrete cylinder compressive strength, concrete tensile strength
fsy, fsu Steel yield stress and tensile strength, with fsy = Rp02

h Cross-section height
m Post-peak softening gradient
n Ratio of elastic moduli, n = Es/Ec

s Bar spacing
sr, sr,max Crack element length (in general, maximum), sr = λ · sr,max,
t, tc Maximum pit penetration depth, position of bar’s centroidal axis
us, uc Elongation of reinforcing bar and concrete compression (integrated strains over half the crack

element length)
v, vtop Displacement of retaining wall (in general, at wall head)
xc Compression zone depth
z Vertical coordinate axis
β · sr Length of corrosion pit
δ · sr Unbonded length
δs Slip between reinforcing bar and concrete
εs, ε′s Steel strain (in tension zone, in compression zone)
εsu Rupture strain of bar (after post-peak softening)
εs,m Mean strain of tension chord element / crack element
εc, εc,in f , εc,sup Concrete strain (in general, at lower and upper edge of cross-section)
ρ = As/Ac Reinforcement ratio
σc Concrete stress
σs, σs,c, σs,uc Steel stress (in general, referring to reduced and initial cross-sectional area)
σsy Steel proportionality limit (σs = Esεs for σs ≤ σsy)
τb, τb0, τb1, τbr Bond shear stress (in general, if σs(x)≤ fsy, if σs(x)> fsy, at unloading)
ϕ Element rotation at crack (integrated curvature over half the crack element length)
ϕi,k,in f/sup Rotation of half crack element at crack i for vertical wall strip k; subscript "inf" = below corres-

ponding crack, "sup" = above corresponding crack
ϕ f Rotation of footing layer
ζ, ζm Relative cross-section loss (of single reinforcing bar and mean loss of a structure)
χ Curvature
Ø, Øc Reinforcing bar diameter (initial, reduced due to corrosion)
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9 Conclusions and outlook on future research

This chapter highlights the main findings of the thesis, draws final conclusions, and gives an outlook on
future research.

9.1 Main findings

On the level of the reinforcing bar, local corrosion significantly influences the load-deformation be-
haviour of the region around the corrosion pit. Strain localisation resulting from the short damage
length impairs the deformation capacity of the reinforcing bar, and the cross-section loss reduces its
load-carrying capacity. However, depending on the pit geometry, a triaxial stress state may alter the
apparent tensile strength and the corresponding strain. For an axisymmetrically damaged bar, the tensile
strength (referred to the residual cross-sectional area) in the damaged section increases with decreasing
pit length for low and moderate cross-section losses (depending on the ratio of pit length to residual
diameter). The increased tensile strength at the pit leads to a stress and deformation increase in the
uncorroded parts. Moreover, the undamaged parts close to the pit exhibit larger deformations due to a
softer stress-strain behaviour, generating additional deformations. The sum of these effects attenuates
strain localisation, and the deformation capacity is thus less impaired. However, the behaviour depends
on the type of reinforcing steel since the steel stress-strain behaviour, particularly the ratio of tensile
strength to yield stress and the gradient of the hardening branch, governs the intensity of the occurring
strain localisation and triaxial stress state. Furthermore, the triaxial stress state influences the apparent
uniaxial yield stress and potentially the movement of dislocations, which explains the altered shape of the
stress-strain curve observed in the experimental results of many publications. Although clearly noticable,
it seems that the altered yield behaviour has not been addressed in previous studies so far. Finally, it can
be concluded that due to the effects related to strain localisation and the pit geometry, it is inappropriate
to describe the corrosion damage by merely indicating the steel mass loss in the case of local corrosion.

For quenched and self-tempered reinforcing steel, corrosion leads to a change in the relative por-
tion of the different microstructure layers to the remaining cross-sectional area and, hence, to an altered
stress-strain behaviour. The deformation capacity increases moderately for axisymmetric damage while
the yield stress and tensile strength decrease. In contrast, the properties of the residual bar remain ap-
proximately constant for unilateral damage.

The strain rate applied to a reinforcing bar influences its yield stress and tensile strength. The cor-
roded sections of a bar tend to exhibit an increased yield stress and tensile strength in a tensile test since
the strain rate in these sections is usually higher than the one applied in a reference material test (on an
uncorroded bar) due to the lower tensile stiffness. However, this influence is less pronounced than the
varying microstructure and pit geometry. A simplified model was formulated for all three effects (tri-
axial stress state, varying microstructure, and strain rate), successfully capturing their influence on the
load-deformation behaviour of reinforcing bars.

On the level of a structural concrete member, local corrosion may pronouncedly impair its load-
carrying and deformation capacity due to strain localisation occurring at the corrosion pits. For the case
where the corrosion damage is limited to a single section of an RC member (e. g. above the construction
joint of a cantilever retaining wall), the reduction in load-carrying and deformation capacity depends on
the total loss of steel cross-sectional area and its distribution among the reinforcing bars. The capacity
reduction is less pronounced if many bars exhibit a slight cross-section loss or very few bars a severe
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9 Conclusions and outlook on future research

cross-section loss, compared to the case where some bars exhibit a moderate cross-section loss. This
finding is explained by the varying degree of strain localisation and implies that the mean cross-section
loss is an insufficient indication to predict the load-deformation behaviour of corroded RC members.

For most existing cantilever retaining walls affected by local corrosion, the rotation increase due
to an increasing cross-section loss is very limited in case of earth pressure loading (0.8...1.2 mm/m for
40% mean cross-section loss). In both hybrid tests, the plastic range of the load-deformation curve was
not reached and the uncorroded bars merely exhibited elastic strains when the damaged bars had been
drilled through, although the exhibited deformation was too small for the earth pressure to reach the
active pressure. It was found that for a loose backfill, the effectively acting moment caused by the earth
pressure is much lower than the yield moment due to the structural safety provided in design (γd = 1.88
based on the concept of SIA 162 [144] for walls built before 1989), which causes the retaining wall to
exhibit merely elastic deformations up to a mean cross-section loss of approximately 60...70%. In the
case of a compacted backfill, the initial earth pressure is higher, but decreases rapidly with additional
wall deformation. In the hybrid tests, the additional deformation due to an increasing cross-section loss
was even smaller than in the case of a loose backfill.

The lap splice above the construction joint – as typically found in retaining walls – combined with
the reinforcement anchorage in the footing leads to a large opening of the joint, which is unfavourable
regarding durability. Additionally, the double reinforcement ratio significantly stiffens the lap splice
region, lowering its rotation capacity by at least 50%. Consequently, approximately 85% of the wall
deformation is caused by a rotation of the entire wall around the construction joint, and only 15% by a
deflection of the part above the lap splice. The finding that lap splice regions exhibit a reduced deforma-
tion capacity is further relevant for all parts of RC structures potentially undergoing plastic deformations,
such as bridge decks above monolitically connected piers, where the anchorage of the pier reinforcement
in the deck reduces the maximum deck rotation.

The Corroded Tension Chord Model combines the effects of tension stiffening and strain localisa-
tion. Thanks to its sound mechanical basis, it can readily be extended by models accounting for further
effects, such as the triaxial stress state at the corrosion pit. On the other hand, it retains the modelling
approach of the established TCM, i. e. to reliably capture the mean deformations of a crack element
without having to solve the differential equation of bond. This allows the model to be included in a
computationally efficient manner in higher-level structural models (e. g. as a constitutive material law in
a Finite Element (FE) model). The CTCM was successfully applied in combination with the simplified
model for the triaxial stress state to assess the experimental campaign on locally corroded retaining wall
segments, capturing the load-deformation behaviour fairly well.

The intersection approach, i. e. setting the CTCM predictions (enhanced with approaches to capture
the local effects at the pits) for specific cross-section losses equal to the load path of the earth pressure (see
black dots on load-deformation curves in Figure 9.1), is suited to assess the load-deformation behaviour
and the structural safety of cantilever retaining walls mainly loaded by the earth pressure. However, since
the additional deformations caused by the increasing cross-section loss are in the range of merely a few
millimetres, an accurate prediction of the behaviour is challenging.

The investigations on the triaxial stress state at the corrosion pits and the assessment of the experi-
mental campaign with the CTCM revealed that models solely considering strain localisation significantly
underestimate the residual deformation capacity of corroding structures. Furthermore, the experimental
results indicated an additional softening effect, which seems to gain influence with an increasing unilat-
eral cross-section loss. This softening might result from superimposed bending stresses at the unilateral
corrosion pits, leading to higher mean normal strains as soon as the bar begins to yield. In fact, the fibre
optic strain measurements revealed local bending strains, increasing with the unilateral cross-section
loss. The effect could partly also be explained by post-peak softening at the pit after necking onset,
being stabilised by a sufficient tensile stiffness of the uncorroded reinforcing bars.
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Fig. 9.1 – Schematic load-deformation behaviour of cantilever retaining wall segment for different cross-section
losses on characteristic and design level (dashed and solid lines, respectively), along with earth pressure
load paths (green) and the actual load-deformation behaviour in the hybrid tests for an increasing cross-
section loss (black).

9.2 Conclusions

Based on the experimental curves observed in the hybrid tests, Figure 9.1 schematically illustrates the
load paths (bending moment at construction joint vs mean rotation) of the earth pressure for a loose and
a compacted backfill (green) along with the load-deformation curves of specimens exhibiting different
corrosion damages (grey and blue). The latter curves represent the load-deformation behaviour if one
accounts merely for the uncorroded bars, i. e. assuming a full cross-section loss of the corroded bars.
As an example, the curve for ζm = 0.4 considers 4 of 10 bars being fully corroded (cross-section loss
ζi = 1), while the remaining 6 bars are assumed to be uncorroded. Note that this scenario yields an upper
bound of the deformation since, generally, the corroding reinforcing bars increase the stiffness until a
cross-section loss ζi = 1 is reached. The load paths followed in the two hybrid tests (with ζm = 0.4) are
shown in black; they ended at the light red triangle when the damaged bars were fully drilled through,
thus lying on the dashed light blue curve with equal ζm.

Figure 9.1 highlights the challenges for structural monitoring of corroding retaining walls:

(i) Monitoring systems would need to be capable of measuring the small elastic deformations of the
wall, in a range as observed during the drilling phase in the hybrid tests; significant plastic deform-
ations due to an increasing cross-section loss are only expected to occur for a significant damage
close to failure (e. g. for ζm ≈ 0.6...0.7 in Figure 9.1, curves not plotted). However, the small
deformations due to an increasing cross-section loss are superimposed by deformations caused
by many other effects (daily and seasonal temperature variations, temporary backwater pressure),
which are typically much larger. This complicates detecting a weak long-term trend in the meas-
ured data caused by a progressing cross-section loss (even in the considered case shown in Fig-
ure 9.1, which rather underestimates the stiffness), and it may be highly demanding to indicate a
reliable deformation limit.

(ii) The initial cross-section loss at the start of the structural monitoring, illustrated in Figure 9.1
with orange squares, is usually unknown. It is thus not possible to relate a measured deformation
increase to an absolute cross-section loss. Due to the non-linear load path of the earth pressure
and since the corrosion rate might not be constant, it even appears hardly feasible to reliably relate
the measured deformation to a relative increase in cross-section loss. Moreover, the occurring
corrosion damage per bar will hardly be equal, and the real behaviour thus much more complex
than for the case illustrated in Figure 9.1.
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(iii) In Figure 9.1, intersection points between the earth pressure load paths and the structure load-
deformation curves, representing states of equilibrium, are found for mean cross-section losses
ζm = 0.4 and 0.5 (indicated with light and dark red triangles) if material and soil properties are
considered on the characteristic level (dashed lines). However, if partial safety factors are con-
sidered (solid lines; for simplicity, γs = 1.15 and γq = 1.35 are both applied to the resistance,
which can thus be compared to the characteristic earth pressure curves), an intersection point is
found for ζm = 0.4, but not for ζm = 0.5. Hence, structural safety would only be sufficient for a
cross-section loss ζm ≤ 0.4 (note that this could have been expected since the hybrid tests were
dimensioned with a global safety factor in the range of γd ≈ 1.88, as used in the design of typical
Swiss cantilever retaining walls in the years between 1956 and 1989 [73]). This raises the question
of whether a reduced safety margin can be accepted if the structure is monitored in return, which
is, however, beyond the scope of this thesis.

Thanks to beneficial effects at the corrosion pit (triaxial stress state, additional softening effect),
the deformation capacity of a structure is less severely impaired by local corrosion than assumed by
established strain localisation models. Therefore, a plastic redistribution of forces for statically inde-
terminate systems (slabs, multi-span beams) from corroded to uncorroded regions might be possible if
the uncorroded regions exhibit overcapacities. A corroding structure would thus not necessarily need to
be retrofitted, and its service life could be extended under the conditions that (i) models for a reliable
structural assessment – allowing to quantify the residual load-carrying and deformation capacity – exist,
and (ii) the corrosion propagation can be reliably predicted or even stopped (e. g. by cathodic protection).

However, in practice, information on the necessary input parameters to reliably model the load-
deformation behaviour of corroded structures is scarce. Often, the construction documents of older
structures are incomplete or missing, and hence, little is known about the used steel type and the re-
inforcement layout. The methods for structural health assessment, e. g. half-cell potential mapping,
resistivity measurements, and determining the chloride content and the carbonation depth, are suited to
indicate if and where corrosion is likely to be present in a structure. However, no information can be
derived from the results of these measurements on the pit geometry, the location of the pits regarding
the different reinforcement layers, or the number of affected bars. As outlined in Section 1.2.1, these
parameters are decisive to predict the load-deformation behaviour of a structural element, in particular,
to account for the beneficial effects of a triaxial stress state.

For the simple case of corroding reinforcing bars being located in only one section of an RC member
with constant mean cross-section loss ζm, the CTCM was evaluated for a varying number of corroding
reinforcing bars nc with an individual cross-section loss ζi, i. e. various combinations of {nc,ζi}. The
analysis indicated that there exists a critical combination {nc,ζi}crit for which the load-carrying and
deformation capacity of the member is minimum (see also [73]). For cantilever retaining walls, this
critical combination could serve as a lower bound estimate for the case that only the mean cross-section
loss is known but no information on the corrosion distribution is available. The conducted analysis
assumed a simple load-bearing mechanism and only one corrosion pit of constant length per corroded
bar. However, it might be possible to find similar critical pit combinations also for varying pit lengths
and members with multi-dimensional load-bearing mechanisms.

9.3 Outlook on future research

On the level of the reinforcing bars, an approach was presented to capture the influence of a triaxial
stress state at the corrosion pit on the local load-deformation behaviour of the reinforcing bar for axisym-
metric damage. However, further research is needed to analyse the effects caused by different pit geo-
metries, such as the observed additional softening effect potentially occurring due to unilateral damage.
Possible parameters to be varied are the pit shape (narrow or wide, angular or circular), the pit geometry
(depth and length), and the corresponding position of the centroidal axis with respect to the bar axis (i. e.
unilateral or axisymmetric damage). It is proposed to compile a comprehensive set of pit geometries
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with reasonable parameter boundaries and to conduct tensile tests on prepared bare reinforcing bars for a
selected pit geometry subset. In a second step, Finite Element analyses could be conducted on the entire
geometry set, and their results be validated with the results of the tensile tests. Possible correlations
between the pit geometry and and the observed load-deformation behaviour of the bars could thus be
identified. Particular attention should be paid to the stress-strain behaviour of the used reinforcing steel
since it potentially influences the results, as outlined in Section 9.1.

On the level of structural concrete elements, this work applied the CTCM in combination with a
first approach to consider the effects of the pit geometry on cantilever retaining walls, pointing out an
additional softening effect not yet considered. Once this shortcoming is solved, segmented retaining
walls could be analysed with the proposed algorithm for different geometrical, material, loading, and
corrosion parameters – similar to a parametric study – to investigate whether a subset of walls can be
identified that reacts sensitively to a certain corrosion scenario and, hence, needs to be assessed primarily.

The reduced deformation capacity of lap splices predicted by the proposed modelling approach has
not been experimentally validated due to a lack of data in the ultimate load range. Furthermore, the load-
deformation behaviour of a lap splice located in a zone with high gradients of normal force or bending
moment might differ from that of a splice loaded by a constant normal force, as investigated in this study.
Since a lap splice is positioned above the footing in most retaining walls and thus pronouncedly influ-
ences their overall deformation capacity, a validation of the model predictions and further investigations
regarding the influence of the bending moment gradient would be essential.

The experimental results indicated that the anchorage of bent reinforcing bars with large radius differs
significantly from that of straight bars regarding its load-deformation behaviour. Although the simplified
anchorage model used in this study approximately captures the experimentally observed deformations,
the underlying mechanical effects need to be investigated.

The simple load-bearing mechanism of longitudinally segmented retaining walls or beams in bending
affected by corrosion can be accurately modelled using the proposed algorithm (CTCM for bending crack
elements). However, a more sophisticated modelling strategy is needed for structural elements with a
multi-dimensional load-bearing mechanism (e. g. slabs). The CTCM is located at the interface between
a localised problem formulation for the corroding bar and understanding the corroded crack element as
part of a continuum. It is thus suited to be included in an FE analyses tool as a constitutive material
model, using similar approaches as presented by Thoma et al. [156], who included the TCM as a user-
defined material in a Nonlinear Finite Element (NLFE) analysis software. Regarding the representative
volume element, strategies need to be found to relate the local corrosion damage to a reference length (in
the CTCM, this is the crack element length) while maintaining the approach of treating an FE element
as a continuum. First promising steps in this direction were made in an explorative approach [67].

The influence of local corrosion on the load-carrying and deformation capacity of slabs has not yet
been analysed, neither theoretically nor experimentally, although they represent a large part of the struc-
tural elements affected by chloride-induced pitting corrosion (e. g. bridge decks). The structural safety of
such elements may be less impaired by local corrosion than expected due to the two-dimensional load-
carrying mechanism and since the deformation capacity of corroded bars is less reduced than predicted
by strain localisation models. Analysing selected pit patterns in a subarea of a modelled slab using
the CTCM implemented in an NLFE analysis tool could help to understand the altered load-carrying
behaviour. It is evident that the predicted behaviour needs experimental validation in a next step.

In practice, information on the extent of corrosion damage, the pit pattern, and the pit geometry
is mostly missing. This issue might be tackled by analysing the influence of statistically generated
random pit patterns on the load-carrying behaviour, similar to a Monte-Carlo simulation or using AI-
based algorithms. In a later step, it may even be possible to combine such analyses of real structures with
the results obtained from in-situ half-cell potential mapping.

As for slabs, little is known on the influence of local corrosion on elements in shear so far (e. g. shear
walls and bridge girders). Combining the CTCM with the Cracked Membrane Model [89], which is
already implemented in an NLFE analysis tool [156], could be a starting point to model and understand
the corresponding implications.
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