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Abstract

Machine learning has the potential to revolutionize the fields of biology and healthcare by pro-
viding new tools to help scientists and clinicians do research and decide what would be the right
treatment for patients. However, while recent approaches in representation learning give the im-
pression of being universal black-box solutions to all problems, research has shown that this is
not generally true. Even though models can perform well in a black-box fashion, they often suf-
fer from low generalization and are sensitive to distribution shifts. This highlights the need for
developing approaches that are informed by their downstream application and tailored to incor-
porate symmetries of the problem into themodel architecture. These inductive biases are essential
for performance on new data and for models to remain robust even when the data distribution
changes. Nevertheless, constructing good models is only half of the solution. To be sure that
models would translate well into clinical applications they also need to be evaluated appropriately
with this goal in mind. In this thesis, I address the above points while taking a detailed look at
structured data types present at the intersection of biology, medicine, and machine learning. In
terms of algorithmic contributions, I first present a new non-linear dimensionality reduction al-
gorithm that aims to preservemulti-scale relations. The cost reduction of genome sequencing and
the ability to sequence individual cells has led to exponentially increasing high-dimensional data
in the life sciences. Such data cannot be intuitively understood, making dimensionality reduction
approaches, which can capture the nested relationships present in biology, essential. Second, I de-
velopmethods for clinical applications where irregularly-sampled data are present. Conventional
machine learningmodels either require the conversion of such data into fixed-size representations
or the imputation of missing values prior to their application. I present two approaches tailored
for irregularly-sampled data that do not require such preprocessing steps. The first is a new kernel
for peaks derived from MALDI-TOF spectra, whereas the second is a deep learning model that
can be applied to irregularly-sampled time series by phrasing them as sets of observations. Third,
I present an extension to graph neural networks that allow themodels to account for global infor-
mation instead of requiring nodes to only exchange informationwith their neighbors. Graphs are
an important data structure for pharmacology as they are often used to represent small molecules.
In order to address the appropriate evaluation of such models, I present a detailed study of medi-
cal time seriesmodels with a focus on their capability to transfer to other datasets in the context of
a sepsis early prediction task. Further, I show that the conventional approach for the evaluation of
graph generative models is highly sensitive to the selection of hyperparameters which can lead to
biased performance estimates. Summarizing, my thesis addresses many problems at the intersec-
tion of machine learning, healthcare, and biology. It demonstrates how models can be improved
by includingmore (domain-specific) knowledge and where to pay attention when evaluating said
models.
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Zusammenfassung

Maschinelles Lernen hat das Potenzial, Biologie und Medizin zu revolutionieren, indem es neue
Werkzeuge bereitstellt, die Wissenschaftler und Kliniker bei der Forschung und bei der Entschei-
dung über die richtige Behandlung für Patienten unterstützen. Während die jüngstenAnsätze im
Bereich des Repräsentationslernens den Eindruck erwecken, universelle Lösungen für alle Prob-
leme zu sein, deutet aktuelle Forschung darauf hin, dass dies nicht generell der Fall ist. Auchwenn
solcheModelle bei naiver Anwendung gut funktionieren können, leiden sie oft unter einer gerin-
gen Generalisierung und reagieren empfindlich auf Veränderungen der Datenverteilung. Da-
her ist es wichtig Ansätze zu entwickeln, die sich an der Anwendung orientieren und darauf
zugeschnitten sind und so Symmetrien des Problems in die Modellarchitektur einbeziehen kön-
nen. Diese ”inductive biases” sind entscheidend für die Leistungsfähigkeit auf neuen Daten und
dafür, dass die Modelle robust bleiben, auch wenn sich die Datenverteilung ändert. Dennoch ist
die Konstruktion guter Modelle nur eine Hälfte der Lösung. Um sicher zu sein, dass sich Mod-
elle gut in klinische Anwendungen übertragen lassen, müssen sie auchmit diesem Ziel vor Augen
evaluiert werden. In dieser Arbeit adressiere ich die oben genannten Punkte und konzentriere
mich dabei auf strukturierte Datentypen an der Schnittstelle zwischen Biologie, Medizin und
maschinelles Lernen. Als algorithmischen Beitrag zum Feld stelle ich zuerst einen neuen Ansatz
zur nichtlinearenDimensionsreduktion vor, der darauf abzielt, Beziehungen aufmehreren Skalen
zu erhalten. Die Kostenreduzierung bei der Genomsequenzierung und dieMöglichkeit, einzelne
Zellen zu sequenzieren, haben zu einem exponentiellen Anstieg hochdimensionalen Daten in
den Biowissenschaften geführt. Solche Daten können nicht intuitiv verstanden werden, so dass
Dimensionsreduktionsansätze die die verschachtelten Beziehungen in der Biologie erfassen kön-
nen, unerlässlich sind. Zweitens, entwickle ich Modelle für klinische Anwendungen, bei de-
nen unregelmäßig abgetastete Daten vorliegen. Konventionelle Modelle des maschinellen ler-
nens erfordern entweder die Umwandlung solcher Daten in Repräsentationen fester Größe oder
die Imputation fehlender Werte vor ihrer Anwendung. Ich stelle zwei Ansätze vor, die für un-
regelmäßig abgetastete Daten entwickelt wurden und keine solchen Vorverarbeitungsschritte er-
fordern. Der Erste ist ein neuerKernel für Peaks ausMALDI-TOF-Spektren, während der Zweite
ein Deep-Learning-Modell ist, das auf unregelmäßig abgetastete Zeitreihen angewendet werden
kann, indem man sie als Mengen von Beobachtungen formuliert. Drittens, stelle ich eine Er-
weiterung vonGraphNeural Networks vor, die es denModellen ermöglicht, globale Informatio-
nen zu berücksichtigen, anstatt den Nachrichtenaustausch von Knoten auf ihre Nachbarschaft
zu limitieren. Graphen sind eine wichtige Datenstruktur für die Pharmakologie, da sie häufig zur
Darstellung von Molekülen verwendet werden. Um die korrekte Evaluierung solcher Modelle
zu adressieren, präsentiere ich eine detailiere Studiemedizinischer Zeitreihenmodellemit Schwer-
punkt auf derenÜbertragbarkeit auf andereDatensätze imKontext einer Sepsis-Frühwarnstudie.
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Schließlich zeige ich, dass der konventionelle Ansatz zur Evaluation von generativen Graphen-
modellen sehr empfindlich auf die Auswahl der Hyperparameter reagiert, was zu verzerrten Leis-
tungseinschätzungen führen kann. Zusammengefasst befasst sich meine Arbeit mit vielen Prob-
lemen an der Schnittstelle von maschinellem Lernen, Medizin und Biologie. Sie zeigt, wie Mod-
elle durch Einbeziehung von mehr domänenspezifischemWissen verbessert werden können und
worauf bei der Bewertung dieser Modelle zu achten ist.
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1 Introduction

Instead of trying to produce a programme to simu-

late the adult mind, why not rather try to produce

one which simulates the child’s? If this were then

subjected to an appropriate course of education one

would obtain the adult brain. — Alan Turing

The field of representation learning (often also called deep learning) has shifted our expecta-
tions on what to expect from machine learning in everyday tasks. Tasks that seemed impossible
a few years prior can now be solved by algorithms reliably and often better than human base-
lines [63]. After defeating humans in the game of chess [37], algorithms have moved on to reach
superhuman performance in the game ofGo [220] and also started to have an impact in themedi-
cal domain, where they compete with experts in skin cancer recognition performance [71]. While
tackling chess canmostly be attributed to themachine’s high computational performance and the
ability to enumerate every possible opponentmove, many tasks cannot be solved using a complete
enumeration strategy. Recent advances in machine learning have managed to make progress in
tasks where the number of potential combinations is larger than the number of atoms in the uni-
verse. Tasks ranging from recognizing objects in images [126] that we humans typically solve in-
tuitively orwithout thinking after sufficient experience to predicting the folding of proteins [116]
which we have not been able to reliably tackle despite over 60 years of research in this area.
While enabling an algorithm to recognize a cat in an image or understand the approximate con-

tent of a video is great for generating revenue by optimizing ad placement, only a few approaches
have been designed and applied to improve the living standards of humans. One exception rep-
resents the application of machine learning algorithms to healthcare and biology. Machine learn-
ing algorithms are powerful tools for exploring high-dimensional data in research, predicting the
properties of molecules in drug design or monitoring a patient’s state in the intensive care unit.
While some progress has been made towards transferring innovations to these fields, the data is
often incompatible: Dimensionality reduction algorithms for biology should preserve distances
across multiple scales [44], medical time-series show patterns of missingness due to irregular sam-
pling [108, 162], models on graphs often fail to capture the global structure [34] and correctly
evaluating generated small molecules is inherently difficult [174].
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1 Introduction

This thesis strives to fill some of the gaps that need to be filled for machine learning algorithms
to find wider applications in the fields of biology and healthcare. Yet, it is not a comprehensive
body of work that fixes all of them and claiming to would undermine the complexity of truly
bringing these models into application. Instead, we here focus on designing models which can
better handle the types of data that are present in biology and healthcare and highlight how evalu-
ation of such methods needs to take place for performance estimates to hopefully translate to the
real world.

Why Representation Learning? Much of machine learning research at the intersection
with biology and healthcare has concentrated on incorporating asmuch expert knowledge as pos-
sible into the representations used by models. This process called feature engineering was mostly
due to the limited availability of data. The main issue with this approach is that if the features
are not selected appropriately, the performance of the method is upper bounded, and finding the
right feature representation for the problem using manual (human-driven) search is highly non-
trivial. Often it already requires knowing to some degree what would be needed in order to solve
the task at hand. Problems begin to arise when we do not know which features to use because the
problem is insufficiently explored or there are too many levels of complexity between what we
can measure and the outcome we are trying to predict. In representation learning, task-specific
features are learned from raw data with little to no human interaction through optimization1.
Let us now look at somemotivational context to highlight, why representation learning can be

especially relevant for biology and healthcare. Due to the lack of a centralized entity that controls
every cell of an organism and the fact that communication between cells is mostly restricted to
their immediate locality, systems in biology andmedicine rely on emergence in order to construct
complex patterns and produce an outcome. Because of the many levels at which feedback loops
can take place and the non-linear effects that small changes to the system can have, it is unlikely
that biological systems could bemodeled using a set of simple equations, similar to theNewtonian
laws of physics [123, 223]. Yet, given sufficient data, representation learning could potentially un-
covermuch structure that is hidden away in the layers of emergent complexity. An example where
representation learninghas recently successfully overcome the limitations of past approaches is the
prediction of protein folding [116].
Protein folding is a multi-stage process where the final structure of the protein is non-trivially

connected to the mRNA (messenger RNA) sequence of the protein. AnmRNA strand encodes
amino acids, which form the primary structure of a protein. The charges of individual amino
acids and additional proteins such as chaperones then guide the folding of the protein into the

1There is still some engineering involved to align inductive biases of models with the problem one is trying to tackle.
We will touch on this later.
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secondary and tertiary structures. Finally, tertiary structures combine to form the quaternary
structure which is typically the active form of the protein. The function of the protein is then
defined by its 3D structure and thus emergent from the folding process given the sequence [2,
61]. As there are more potential folding configurations than atoms in the universe the search
space of structures is generally intractable, such that the problem of protein folding has remained
unsolved for a long time. Only recent Deep Learning approaches have been able to make some
progress on this front by learning heuristics from large amounts of data [116].

Thesis Structure and Contributions This thesis begins with an introductory chapter
that introduces some basic concepts from representation learning and algebraic topology that are
used to develop methods in this thesis. The chapter concludes with a summary of the potential
that representation learning can have in biology and healthcare and a section that describes the
contributions I had to the works presented in this thesis that were published under joint author-
ship. After the introduction, I present the main contributions of the thesis. They are split into
three parts:

∗ ∗ ∗

In part I – Dimensionality Reduction, I present a novel topology-inspired approach to non-
linear dimensionality reduction that leverages thepowerof autoencoders toderive low-dimensional
representations of input data. Dimensionality reduction is an importantmethodused for hypoth-
esis generation in the life sciences, yet few methods are suited to handle the multi-scale relation-
ships present in biological data. The presented approach has the unique capability of capturing
similarities of the input data at multiple scales and shows excellent performance on a synthetic
dataset as well as a series of image datasets.

∗ ∗ ∗

In part II – irregularly-sampled sequences, I present methods and studies related to irregularly-
sampled data in the medical domain. More precisely, in Chapter 3 I present a new approach for
the classification of MALDI-TOF MS spectra. MALDI-TOF MS data is of high importance in
the clinic and is used to analyze the composition of samples and to determine the presence of
microbes and their resistances. Only a few machine learning approaches have been specifically
developed for this data and all rely on binning of the spectrum which leads to information loss.
In contrast, I present an approach that can operate directly on the peaks of MALDI-TOF MS
spectra by constructing a kernel that operates on said peaks. I show that this leads to significantly
higher performance on an antibiotic resistance prediction task and allows the rejection of out-
of-distribution samples due to good uncertainty quantification when combined with a Gaussian
process classifier.

3



1 Introduction

Further, in Section 4.2 I present an alternative approach for classifying irregularly-sampled time
series data. Irregularly-sampled medical time series are omnipresent in electronic health records
and thus of great importance for machine learning in healthcare. Unfortunately, most machine
learning algorithms are not compatible with irregularly-sampled data leading to information loss
due to the necessity of binning or imputing values. The approach I propose is based on rephrasing
the classification of irregularly-sampled time series as a set classification problem. I demonstrate
the viability of this approach onmedical time series data, where it canbe uniquely appliedwithout
prior binning or imputation.
Moreover, in Section 4.3 I present an evaluation of medical time series models with a focus on

their capability to transfer to other datasets. As treatment protocols vary largely between loca-
tions, the transferability of models trained on data from one region to data from another region
is highly questionable. The study presents the first harmonized multi-region dataset with a focus
on sepsis early prediction. It highlights that the derivation of appropriate labels and the avoidance
of circularity are critical for the successful application ofmachine learningmodels to clinical data.
Further, it shows that in contrast to common expectations, deep learning models seem to be less
sensitive to distribution shifts between hospitals.

∗ ∗ ∗

In part III – Graphs, I present work on improving the performance of graph neural networks
and evaluating the predictions of graph generative models. Chapter 5, presents a graph neu-
ral model for improved supervised learning on graphs. Improving the expressivity and perfor-
mance of graph neural networks is an important task, as many GNNs are upper bounded by
theWeisfeiler-Leman test. The presented approach improves upon this expressivity bound by al-
lowing the model to access multi-scale information exposed through the framework of persistent
homology. Importantly, it does so without requiring the pre-computation of additional graph
features or by requiring a significantly higher computation budget. It shows higher classification
performance especially onmany graph learning tasks, especially when node labels are not present.
In Chapter 6, I show the importance of correctly evaluating graph generative models. Graph

generative models represent a relevant methodology for pharmaceutical applications where they
could be used to generate small molecules with desirable properties. The quantitative evaluation
of graph generativemodels is crucial aswe humans are not able to intuitively reason about the sim-
ilarity of graphs. Most models are evaluated using maximummean discrepancy combined with a
graph descriptor function. The study shows that the correct selection of hyperparameters is essen-
tial for correctly estimating performance and that incorrect selection can lead to arbitrary rank-
ings. Further, I present a sensitivity analysis of different hyperparameter selections using graph
perturbations.
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1.1 The Importance of Representations forMachine Learning

∗ ∗ ∗

Finally, I conclude the thesis in Chapter 7, where I present a holistic summary of the contribu-
tions of the thesis and provide an outlook over future research directions. The following section
begins the introduction by describing the importance of deriving the right representation in the
context of machine learning.

1.1 The Importance of Representations forMachine
Learning

The importance of the right representation has been known inmachine learning and statistics for
decades. Multiplying numbers is a classic example of how important the right representation is.
If we were given numbers to multiply in Roman numerals, the first thing we would do is convert
them to Arabic digits so we can apply the algorithms of multiplication we learned in high school.
While the information content between theRoman andArabic numerals is the same,we canwork
more efficiently with the Arabic representations (be it due to the fact that we learned how to use
it or because a system where each position represents a digit can more easily handle carry-over
operations) [87].
In machine learning the representation of the input data is hypothesized to be important as

it determines which aspects of the data are highlighted, entangled, and potentially also hidden.
A perfect representation would thus only encode the explanatory factors in the data that are of
relevance for the task at hand and thus formabstractions [18]. This process of removingunneeded
information for the task at hand is hypothesized to also be present in our brains [172].
In general, there have been two approaches to construct representations in machine learning:

feature engineering and feature learning (also called representation learning or deep learning). We
will discuss these in the following subsectionswhile puttingmore focus on representation learning
as it is the main focus of this thesis.

1.1.1 Engineering Representations

Muchappliedmachine learning researchhas focusedon feature engineering, wherehumanknowl-
edge is exploited to construct the representation used to fit a statistical model. This allows the
human to decide through which “perspective” a problem should be viewed. For example, while
the XOR-operation y = b1 XOR b2 between two binary numbers b1 and b2 cannot be learned
using a linear classifier, a linear classifier can correctly classify the outcome using a transformed
representation of the input data where b′1 = b1b2. Typical machine learning models which rely
on a feature engineering step prior to their application are “low-capacity”models (i.e. modelswith
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1 Introduction

limited flexibility in determining the decision surface) such as linear/logistic regression, decision
trees, and nearest neighbor models.

It is important to note that linear classifiers can also classify non-linear data if providedwith the
right representation (as shown in theXORexample above) yet cannot derive the non-linear repre-
sentation themselves as all components being optimized on the data are linear. One approach to
constructing non-linear classifiers is using kernel methods, where the representation is implicitly
defined via a kernel function, such that the effective feature space can evenbe infinite-dimensional.
These rely mostly on local smoothness properties in order to derive predictions, such that predic-
tions are a (potentially non-linear) weighted combination of the training labels of instances that
are considered close from the perspective of the kernel function. Interestingly, some parametric
kernels can also be learned via optimization such that kernels can be seen as at the intersection of
feature engineering and representation learning. For more details on kernels and their usage in
the context of representation learning, I refer interested readers to Section 3.1.

1.1.2 Learning Representations

In machine learning, representation learning (or also feature learning) describes approaches that
aim at deriving representations of raw input data that make the extraction of information easier
with limitedhuman engineering. This is oftenwith the goal of solving a single task or set of specific
downstream tasks [18]. Many current approaches derive representations from a long series of
non-linear transformations, where each non-linear transformation is summarized as a “layer”. As
many layers are chained creating “deep” stacks of transformations, this practice is often referred
to as deep learning [87]. The simplest type of neural network used in deep learning is the fully
connected feed-forward neural network, which we will formally introduce below.

Artificial Neural Networks (ANNs)

Artificial neural networks (ANNs) are a class of function approximators that take inspiration
frombiological neural networks and use similar language to describe them. Nevertheless, artificial
neural networks are typicallymuchmore simple than their biological counterparts asmuch of the
neuron processing is modeled by linear signal aggregation and a non-linear activation function
which determines if a neutral is “active” and thus would propagate signals to neurons connected
to it. The simplest Artificial Neural Network is the fully connected feedforward neural network
or multilayer perceptron (MLP) which we will briefly introduce below.

Fully connected feedforward neural networks are composed of stacks of affine transformations
separated with non-linearities.
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1.1 The Importance of Representations forMachine Learning

Definition 1.1 (MLP). A fully connected feedforward neural network g of depth n is a stack of
n affine transformations fi(x) = Aix+ bi, i = 1..n separated by non-linearities σi, i = 1..n

g(x) = σn ◦ fn ◦ σn−1 ◦ fn−1 ◦ · · · ◦ σ1 ◦ f1(x) (1.1)

where f ◦ g denotes the composition of functions f and g.

Without interspaced non-linearities, the stack of affine transformations would be mathemati-
cally equivalent to a single affine transformation and thus not more expressive than a single affine
transformation. Networks with many layers have higher depth and thus can be considered deep
neural networks.
A common non-linearity used in deep learning is the rectified linear unit (ReLU), which is

defined as σ(x) = max{0, x}. The ReLU preserves many properties which make linear models
easy to optimize via gradient descent. An “active”ReLUwithx > 0 passes gradients through un-
changed and thus does not lead to vanishing gradients as was the case with sigmoid non-linearities
used in early iterations of neural networks in the 1980s. Nevertheless, the unit does not pass any
gradient when it is inactive which can also lead to problems of “dead”ReLUs that remain inactive
during the complete course of training [145].

Gradient-Based Optimization of Artificial Neural Networks Using
Back-Propagation

Modern neural networks are almost exclusively trained using variants of stochastic gradient de-
scent with gradients derived by applying the back-propagation algorithm [87]. Stochastic gradi-
ent descent optimizes the parameters of the model following the direction of improvement (i.e.
the negative gradient with respect to the error signal) which is estimated on subsets of the data.

Definition 1.2 (Stochastic gradient descent). Stochastic gradient descent is an optimization
method that optimizes the parameters θ of a model gθ iteratively using gradients estimated on
subsets of the data∇l(gθ(x̃), ỹ), x̃, ỹ ⊂ D, where l represents a loss function. The parameters
are updated according to a learning rate η in the opposite direction of the gradient:

θt+1 = θt − η∇l(gθt(x̃), ỹ) (1.2)

While in many cases the gradient can be explicitly derived, the evaluation of the derivation can
often result in numerical issues/instability and is inefficient [87]. Most frameworks instead rely on
the back-propagation algorithm in order to derive the parameter gradient from the error signal. In
back-propagation, a forward pass or forward propagation is performed, where the data is passed
through the network to produce an output and a loss. This error signal is then converted into

7



1 Introduction

gradients by essentially following the chain rule for derivatives from the loss backward, which is
referred to as the backward pass. By reusing computations from layers closer to the loss, back-
propagation is more efficient and avoids instabilities due to numerical precision by ensuring that
gradients are consistent over the backward pass.
To clarify things, consider a simple example of a two-layer MLP with g(x) = W2σ(W1x +

b1)+ b2. We can simplify the notation by summarizing the layers as functions with parameters θ,
s.th. g(x) = f2(f1(x)) and denote intermediate representations between layers as h1 = f1(x)

and h2 = f2(h1). Using the chain rule one can compute the gradient of an input with respect to
the loss l(g(x), y) as

dl

dx
=
dh1
dx

>dh2
dh1

> dl

dh2

>
(1.3)

where dh1dx is the Jacobianmatrix off1, dh2dh1
is the Jacobianmatrix off2 and dl

dh2
is the Jacobianma-

trix off3(x) = l(·, y). The error signal at layer i is oftendenoted as δi = dhi+1

dhi

> dhi+2

dhi+1

>
. . . dl

dhd

>

and can thus be computed in a recursive fashion starting from the output of the network. The gra-
dients for the parameters of each layer are then computed with respect to the error signal applied
to the layer. For example, in the case of transformation f1 it holds that

dl

dW
=W>

1 σ
′δ1 (1.4)

such that the gradient computation can efficiently reusepast computation steps. Back-propagation
essentially represents the recursive application of the chain rule, to decompose the gradient com-
putation into reusable components.

Inductive Biases for Learnt Representations

WhileMLPs have universal approximation guarantees, i.e. are able to approximate arbitrary func-
tions to arbitrary precision if constructed to be large enough, some functions can be more easily
represented than others. The preference of or constraint to certain functional classes is referred to
as inductive biases [15, 38] and is determined by the model architecture. Many such architectures
exist and have been developed over the years a subset of which I will introduce in the following
paragraphs while concentrating on the types of data they support and their inductive biases. For a
moremathematical description, I refer the interested reader toGoodfellow, Bengio, andCourville
[87] for an explanation ofmost architectures developed prior to 2016 andVaswani et al. [239] for
the more recently developed transformer architecture.

ConvolutionalNeuralNetworks ConvolutionalNeuralNetworks (CNNs) have been
one of the main drivers of Deep Learning’s success in the image, video, and sound domains. A
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1.1 The Importance of Representations forMachine Learning

CNN layer is composed of a set of filters that are applied to the input data via convolution, similar
to filters in image processing. This results in a transformed representation of the input image ( ap-
proximately the same size as the image) where different filters focus on different patterns present
in the data. Similar to MLPs a non-linearity (typically ReLU) is applied to the transformed rep-
resentation before the output is passed on to the next layer.
Typically, CNN architectures increase the number of filters with increasing depth, while re-

ducing spatial resolution such that the number of features stays approximately the same. Spatial
resolution is decreased by applying pooling layers that compute the average (average pooling) or
maximum (max pooling) over a local set of spatial positions. This is necessary, as the convolution
operation applied in CNNs is local and thus would require very deep architectures to propagate
information from spatially distant locations. Further, pooling reduces the number of operations
that need to be performed and thus also increases the scalability of architectures [117].
Convolutional neural networks are the dominant architecture when working with data that

show regularly structured local relations among features, such that patterns can be detected on a
local scale. Essentially, CNNs perform a variant of template matching, not only on the raw input
image but also on transformed variants thereof. In the example of an image the first few layers
typically detect edges of varying orientation, the middle layers recognize smaller structures (such
as cat nose, ears, andmouth) and later layers integrate the outputs ofmiddle layers to a potentially
abstract concept (i.e. a cat)2. Similar notions of an increasingly coarse structure are present in
video and audio data, which explains whyCNNs have been successful in these domains [13, 177].
A further reason for the effectiveness of CNNs is their inductive bias. Inductive bias describes

the set of assumptions a model relies on to solve the learning task at hand. CNNs represent trans-
lation equivariant functionalmappings, such that the absolute position of an input is not relevant
to the output of the function, and if the input is shifted, the output is also shifted accordingly. In
the task of image classification, a cat remains a cat independent of it being in the bottom right or
top left of the image, such that translation equivariance is a very influential property for a model
to perform well in this task.

RecurrentNeuralNetworks Recurrentneural networks (RNNs) arenetworks that prop-
agate state information over a sequence of inputs. At each step (typically time is the axis along
which RNNs are unrolled), the model processes the input conditional on its internal, updates
the internal state, and outputs a value. As an RNN outputs a value at each step, RNNs can also
be stacked in layers to formmultiple levels of processing in order to increase expressiveness. RNNs

2This example, of course, assumes that the CNN was trained to recognize cats, and provides an intuitive grasp. In
practice, it is hard to exactly pinpoint the responsibility of filters, but some progress has been made in this direc-
tion [43].
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are typically used to process sequences of varying lengths, although their dominance in this realm
has been questioned in recent years [13].
While RNNs have been developed for a long time, they only became successful with the devel-

opment of the Long Short-Term Memory (LSTM) RNN [96], which addressed a fundamental
issue inRNNtraining namely, exploding and vanishing gradients. This allowed the research com-
munity to tacklemore challenging sequential tasks like speech recognition. VanillaRNNs are very
difficult to train as they essentially represent a very deep neural network where depth in this case
can bemeasured as the length of the input sequence. Let us denote the function f as themapping
from one state of the RNN to another. Due to the repeated application of f , the scale of outputs
will strongly depend on the behavior of f , more precisely on the eigenvalues of its Jacobian. As
shown in Section 1.1.2 the computation of gradients is essentially a series of multiplications of
Jacobian matrices of transformations involved in computing the loss, and thus for RNNs corre-
sponds to a matrix power of the Jacobian matrix of f . If the largest eigenvalue of the Jacobian
matrix of f is larger than 1 the output of these computations will grow exponentially and thus
the computed gradients will explode. Further, if the largest eigenvalue of the Jacobian is less than
1 gradients will shrink exponentially fast to zero [181]. Hochreiter and Schmidhuber [96] suggest
a mechanism, which allows parts of the gradient to be passed through without undergoing any
transformations, which ensures the largest eigenvalue of the Jacobian matrix is 1 for many time
steps and thus significantly improves training stability.

Topology as a Source for Inductive Biases In this thesis, I present manymethods that
draw inspiration from the field of topology and incorporate topology-specific computations into
the regular computations of neural networks. This allows computations of these augmented neu-
ral networks to directly leverage topological invariants and information frommultiple scales of the
data. As these augmentations require some background in the methods from topology they take
inspiration from, the following section will provide a brief introduction to the concepts from
topology that are of relevance to this thesis.

1.2 Representation LearningWith Topological Inductive
Biases

Many of the methods presented in this thesis rely on perspectives, notions, and formalisms from
the field of topology. This warrants a dedicated introduction to the subfields of topology that are
of relevance to this thesis and can be found in the following sections.
Topology is the field of mathematics that studies the properties and invariants of topological

spaces, in particular under specific types of transformations — so-called homeomorphisms. For
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the means of this thesis, a topological space is any set of points with a defined neighborhood re-
lationship. In contrast to, for example, the space in which we physically reside— the (Euclidean)
metric space — this neighborhood relationship does not require any notion of magnitude and
also does not have to follow any specific properties such as the triangle inequality. It is thus an in-
herently discrete notion of a space that solely captureswhich points or positions can be considered
neighboring.
Homeomorphisms on topological spaces define spaces that should be considered “equivalent”

from a topological standpoint. For example, a point should still be considered in the neighbor-
hood of another point even when their distances are scaled, all points are rotated or all points are
shifted to a new location. Two spaces are considered homeomorphic if there exists a mapping
(i.e. a homeomorphism) which allows us to smoothly move between these spaces while main-
taining neighborhood relationships. More formally, a homeomorphism is a bijective continu-
ous mapping f : X → Y between two topological spaces X and Y where the inverse mapping
f−1 : Y→ X is also continuous. Further, if f is bijective then f−1 must also naturally be bijec-
tive, the additional continuity constraints allowus to smoothly transition between the two spaces.
It is important to note that in this case, continuity refers to the topological notion of continuity
which requires that the preimage of any open set is also open. Interestingly, this coincides with
our natural understanding of continuous functions on real-valued spaces.

1.2.1 Algebraic Topology

Algebraic topology provides tools to study topological spaces by associating algebraic structures
such as groups and vector spaces to them that remain invariant under homeomorphisms [93].
In the composition of this section I relied on various previous works such that notations and
analogies might overlap with the following publications:

• B.Rieck. “PersistentHomology inMultivariateDataVisualization”. PhDthesis. Ruprecht-
Karls-Universität Heidelberg, 2017

• F.Hensel,M.Moor, andB.Rieck. “A Survey ofTopologicalMachine LearningMethods”.
Frontiers in Artificial Intelligence 4, 2021

• M. Horn∗ et al. “Topological Graph Neural Networks”. In: International Conference on
Learning Representations. 2022

Simplicial Complex One of the most important structures in algebraic topology is the no-
tion of a simplicial complex. A simplicial complex K is a structure that can be seen as a high-
dimensional generalization of a graph. It is composed of simplices of different dimensions, such as
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0-dimensional simplices (representing vertices) and 1-dimensional simplices (representing edges).
Besides representing structural elements of graphs, simplices can also representhigher-dimensional
structures such as triangles, which are then considered 2-dimensional. Each simplex σ ∈ K has a
potentially empty set of faces where each face τ needs to necessarily be part of the simplicial com-
plex τ ∈ K. Further, non-empty intersections of simplices should also be part of the simplicial
complex i.e. if σ ∩ σ′ 6= ∅ for σ, σ′ ∈ K then σ ∩ σ′ ∈ K. More informally, this means that a
simplicial complex is closed under the computation of faces of simplices.

v1

v2

v3 {v1, v2}

{v2, v3}

{v3, v1}

{v1, v2, v3}

Figure 1.1: Illustrative example of a simplicial com-
plex K modelling a triangle.

As an illustrative example, let us consider
the simplicial complex K of a triangle. The
triangle has vertices corresponding to the
corners of the triangle {{v1}, {v2}, {v3}},
and edges that connect the nodes together
{{v1, v2}, {v2, v3}, {v3, v1}}. Finally, we
include the face of the triangle {{v1, v2, v3}}
to highlight the possibility of higher dimen-
sional structures than those conventionally
found in a graph (which is also considered a
3-clique). The complete simplicial complex is
the union of all these structures and obeys the

rules defined above, i.e. K = {{v1}, {v2}, {v3}, {v1, v2}, {v2, v3}, {v3, v1}, {v1, v2, v3}}.
The intersections of the edges are the individual vertices which are part of the simplicial com-
plex itself, further vertices have empty faces and the faces of the edges are defined by the vertices
they connect, which are also part of the simplicial complex.

Chain groups With simplicial complexes as the basic building blocks, we can define further
notions in terms of vector spaces and groups to obtain computable representations. In particular,
the dth chain group of a simplicial complex K, is denoted as Cd(K) and represents the vector
space generated over all formal linear combinations of d–dimensional simplices in K such that all
elements of Cd are of the form

∑
jmiσj for σj ∈ K and mj ∈ Z2. Z2 is the finite field of

two elements (i.e. {0, 1}) and thus amounts to either including or excluding individual simplices.
The chain group over Z2 can thus also be thought of as all finite unions of simplices of a certain
dimension. While it is not generally required to compute chain groups solely overZ2, this will be
the only case that we consider in this thesis.
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The elements ofCd(K) are referred to as simplicial chains. ForCd(K) to represent a group,we
need to additionally define the groupoperationon two simplicial chains. For two simplicial chains
a and b the group operation+, or more precisely the addition withZ2 coefficients, is defined as

a+ b = (a ∪ b) \ (a ∩ b)

It is thus equivalent to the symmetric differencebetween the two simplicial chains. This formalism
allows us to nowperform algebraic operations on representations derived from topological spaces
and allows us to better reason about notions such as boundaries and holes of spaces. Moreover,
this operation is also easy to implement, making Z2 the preferred coefficient field for algebraic
topology.

Boundary Homomorphism Given a simplicial complex K, the dth boundary homomor-
phism∂d is a linear functionbetween thedth chain groupand the (d−1)th chain group∂d : Cd(K)→
Cd−1(K) that assigns each simplex to its boundary. The boundary of each simplex or simplicial
chain itself is thus again a simplicial chain. For a p-simplex σ = {v1, . . . , vd+1} it is defined as

∂dσ :=

d+1∑
i=1

{v1, . . . , vi−1, vi+1, . . . , vd+1},

i.e. each element vi is left out of the simplex once. The calculation extends to the computations
on chain groups due to the linearity of the boundary operator.
Looking back to our previous triangle example, we can show how the computation for this

specific case would take place. In order to compute ∂2 of our triangle K we collect the simplicial
chains of dimension 2 formK and apply the boundary operator: ∂2{v1, v2, v3} = {v1, v2} +
{v2, v3}+ {v3, v1}. This expression cannot be further reduced as it is required to be an element
of the chain groupCd−1. The boundary of the triangle face is thus the formal sum of its edges.
It is important to note that the kernel and image of the boundary operator are well-defined.

In particular, the kernel ker ∂d contains all simplices that do not have any boundary, these are
typically referred to as d-cycles. Further, the image of the boundary operator im ∂d contains the
boundaries of all d simplices.

1.2.2 Simplicial Homology

One of the main characteristics of a topological space is the “number of high-dimensional holes”
it contains. The study of spaces based on these characteristics is called homology. In order to
formally derive a definition of what a high-dimensional hole actually represents, we need to un-
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derstand how the presence of holes connects to our previous formalism of simplicial complexes,
chain complexes, and the boundary operator.

Homology groups To build intuition, let us consider our triangle example once again. The
simplicial complex K we considered earlier does not contain any holes, as we consider the triangle
{v1, v2, v3} to be part of the simplicial complex. Yet if we remove the triangle from our simplicial
complex, a hole will be present. This is due to the fact that the boundary of the triangle contains
exactly the elements that in the lower-dimensional simplex formed the hole we observed. This is
captured formally in the notion of homology groups.

Definition 1.3 (Homology Group). The dth homology group of a simplicial complex K is de-
fined as

Hd(K) := ker ∂d/ im ∂d+1

where the /-operator refers to the quotient group, i.e. the exclusion of elements. Following
the intuition we built, cycles should only be considered “real cycles” if they do not represent the
boundary of any higher dimensional simplex. This group has a rich structure in that it contains
whole classes of cycles, which can be considered equivalent.
Nevertheless, what does it mean that cycles would be considered equivalent in this context? As

shown in Figure 1.2, we can draw an arbitrary number of 1-cycles on a sphere, yet from a topologi-
cal standpoint, all of thesewould be considered equivalent as they could be formed into each other
without tearing the sphere surface. Moreover, strictly speaking, these are not even true cycles!

Figure 1.2: Example of sphere containing zero 1-
cycles and a single 2-cycle.

They are all part of the boundary defined
by the surface of the sphere, which repre-
sents a 2-cycle or void. Thus despite us be-
ing able to draw arbitrarily many of these cy-
cles, there is actually not even a single true cy-
cle present and the number of independent 1-
cycles would be considered 0. The surface of
the sphere, on the other hand, represents a 2-
cycle that could be arbitrarily rotated or de-
formed and still considered part of the same
cycle class as all cycles would be enclosing the
same void (i.e. the inside of the sphere) and
thus capture the sameproperty of the topolog-
ical space. As previously illustrated, this con-
cept allows us to reason about cycles in higher
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dimensional structures and further allows us to use computations to detect or count the number
of holes in a topological space. While it is possible to transfer these notions to structures of arbi-
trary dimension, this thesis focuses on 0 and 1 dimensional homology, which is computationally
very tractable [195].
For a more straightforward lower dimensional example, we can also turn our attention back

to triangles. Given two triangles , we can recognize the presence of two cycles. These same
cycles continue to exist even when the two triangles are connected to form . Thus, while the
representation of the cycles or their exactmanifestation changed, theywould still be considered to
represent the same homology class. It is important to note, though, that while in this example the
number of 1-cycles remains the same, the number of connected components does change when
the two triangles are fused. Thus both representations would not be considered equivalent from
the perspective of the 0th homology group.

β0 = 1 β0 = 1, β1 = 1 β0 = 1, β1 = 0, β2 = 1

Figure 1.3: Examples of topological structures and their associatedBetti numbers. From left to right: point,
circle, sphere

Betti numbers The most simple and straightforward summary of a homology group are the
so-calledBetti numbers. In essence, theyquantify thenumberofnon-equivalenthomology classes
present in the homology group. While this leads to a lot of structural information in the group
being lost, the number of classes is good at distinguishing simple spaces. It can be obtained by the
group-theoretic notion of rank, which characterizes the minimal number of elements required in
the generating set in order to give rise to the full group.

Definition 1.4 (Betti numbers). Given a homology groupHd(K) its Betti number is defined as

βd := rankHd(K)

Thus Betti numbers represent counts of distinct cycles that would be necessary to capture the
structure of the space. Less formally, we can refer to Betti numbers as counts of d-dimensional
holes. Some examples of topological structures and associated Betti numbers are provided in Fig-
ure 1.3.
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1.2.3 PersistentHomology

The notion of homology discussed above is inherently discrete and represents a very coarse de-
scription of the underlying topological spaces. Persistent homology extends these notions to allow
more nuanced reasoning over the structure of topological spaces. The core concept of persistent
homology is to compute homology not only on a single version of a simplicial complex but on a
nested sequence of simplicial complexes — a filtration.

Definition 1.5 (Filtration). The filtration of a simplicial complex K is a nested sequence of sim-
plicial complexes K(0) ⊆ · · · ⊆ K(m) such that

∅ = K(0) ⊆ K(1) ⊆ . . .K(m−1) ⊆ K(m) = K.

More precisely, this is a sublevel set filtration; however, as this is the only type of filtration of
relevance for this thesis, it will be used to define the general concept. A filtration is typically im-
plemented using a filtration function f : K → R, such thatK(i) :=

{
σ ∈ K | f(σ) ≤ f (i)

}
.

Each subset of a sublevel set filtration only contains the simplices whose function value is less
than or equal to the threshold. To ensure that all simplicial complexes in the filtration are valid,
the filtration function needs to satisfy the following requirement: The filtration values of faces
of simplices need to necessarily be lower or equal to the filtration value of the simplex itself, i.e.
maxτ∈σ f(τ) ≤ f(σ). In general, we can implement this by requiring the filtration to bemono-
tonic in the simplices, i.e. f(τ) ≤ f(σ) for all τ ⊆ σ.

v1

v2

v3

K(1)

v1

v2

v3

K(2)

v1

v2

v3

K(3)

Figure 1.4: Example filtration applied to the triangle example.
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In contrast to simplicial homology, this approach can potentially extract more information
from the topological space as it allows tracking changes in topological features. For example, if we
assume the following filtration function f : K→ R for our triangle example

f(σ) =



c0 if σ = ∅

c1 if σ ∈ {v1, v2, v3}

c2 if σ ∈ {{v1, v2}, {v2, v3}, {v3, v1}}

c3 if σ ∈ {{v1, v2, v3}}

with c0 < c1 < c2 < c3 we can observe an evolution of the simplicial complex as visualized
in Figure 1.4. We observe the creation of the vertices, i.e. 3 connected components such that
rankH0(K(1)) = 3, whereas at the next step in the filtration two connected components are
destroyed and a cycle is created such that rankH0(K(2)) = 1 and rankH1(K(2)) = 1. Finally,
the cycle is destroyed and the triangle is created: rankH1(K(3)) = 0 and rankH2(K(3)) = 1.
Persistent homology tracks these changes by associating each topological feature, i.e. a con-

nected component, cycle, or void, with a creation and destruction value, corresponding to the
filtration value at which simplices get added and removed from the homology groups. These
values are recorded as tuples of the form (f (i), f (j)) ∈ R2. It is important to note that some
features never get destroyed during the course of a filtration. For example, one connected compo-
nent continues to exist in the triangle and the triangle face itself cannot be destroyed as we have
no higher-order simplices in our simplicial complex to destroy it with. It is common practice to
associate topological features that are never destroyed with a tuple of the form (f (i),∞) and thus
consider its destruction at a filtration value of infinity. While there are ways to avoid this using
the notion of extended persistence these are computationally considerably more demanding [53].

Persistent homology groups The question that remains in the above example is how to
associate the topological features betweendifferent steps of the filtration. Due to the requirements
for the construction of a filtration, there is a clear connection between the different steps of a
filtration. Formally, the steps are connected by the inclusion homomorphism between K(i) ⊆
K(i+1). The composition of the inclusion homomorphism with the boundary homomorphism
itself induces a homomorphism between the corresponding homology groups of the filtration.
We will denote this map with ι(i,j)d : Hd(K(i)) → Hd(K(j)), it thus maps from the homology
group of the filtration at level i to the homology group of the filtration at level j and gives rise to
a sequence of homology groups

Hd(K(0))
ι
(0,1)
d−−−→ Hd(K(1))

ι
(1,2)
d−−−→ . . .

ι
(m−1,m)
d−−−−−→ Hd(K(m)) = Hd(K)
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for each dimension d. We can further denote the mapping between arbitrary subsequent ele-
ments of the filtration as a composition of the individual maps such that ι(i,j)d = ι

(j−1,j)
d ◦ · · · ◦

ι
(i+1,i+2)
d ◦ ι(i,i+1)

d for all i ≤ j, where we simply compose all consecutive mappings between
from the filtration at level i to the filtration at level j. For example, the mapping from level 1 to
level 3would be defined as ι(1,3) = ι(2,3) ◦ ι(1,2).
With this formalism, we can extend to notion of homology groups to persistent homology

groups. The dth persistent homology group of a simplicial complex Kwith a compatible filtration
f is defined as

H
(i,j)
d := ker ∂d

(
K(i)

)
/
(
im ∂d+1

(
K(j)

)
∩ ker ∂d

(
K(i)

))
for i ≤ j. Thus the persistent homology group is a generalization of the homology group to
different levels of a filtration and essentially contains all elements ofHd(K(i)) that are still present
inHd(K(j)). The intersection with ker ∂d

(
K(i)

)
is solely necessary to guarantee that we would

only remove elements that are actually contained in ker ∂d
(
K(i)

)
.

Taking a step back, we can transfer the notion of Betti numbers to persistent homology groups
by defining them in terms of the group rank, i.e. β(i,j)d := rankH(i,j)

d . As a strong simplifica-
tion, we can say that persistent homology generates a sequence of Betti numbers instead of only
a single number for each dimension. Nevertheless, we can extend this notion to additionally un-
derstand which individual homology classes are created at which step in the filtration and when
they become a part of a higher level feature, which will give us a more nuanced picture.

In particular, we can say that a class c ∈ Hd(K(i)) is created in K(i) if it is not an element of
an earlier persistent homology group, i.e. c 6∈ H i−1,i

d . This is due to the nesting relationship in-
duced by the filtration. If c were created in an even earlier filtration stepH i−2,i−1

d then it would
remain an element of the persistent homology group except if it were destroyed by the formation
of some other class. Yet if this were the case, then c would not be an element ofHd(K(i)) form-
ing a contradiction. Further, we can say the same class c 6∈ Hd(K(j)) is destroyed in K(j) if the
class is merged into another class while traversing the filtration from K(j−1) to K(j). Formally,
i
(i,j−1)
d (c) 6∈ H i−1,j−1

d , i.e. the homology class corresponding to c after applying the filtration
steps from i to j− 1 is not part of any earlier persistent homology groupH i−1,j−1

d (which repre-
sents those homology classes of K(i−1) that are still present in K(j−1)) and i(i,j)d (c) ∈ H i−1,j

d , i.e.
that the homology class of the merged feature i(i,j)d (c) is part of the persistent homology group
H i−1,j
d . In this case we would say that the class c persists from K(i) to K(j).

Persistence diagrams A common summary statistic for each topological feature is its per-
sistence, which defines how long a feature persists.
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Definition 1.6 (Persistence). For a homology class c filtered according to a filtration function f ,
created inK(i) and destroyed inK(j), we define the persistence as

pers c := f (j) − f (i),

where the persistence is non-negative pers ∈ R+3 due to properties of the filtration function
which prevent classes from being destroyed before they are created.
A persistence diagram is a way to visualize the creation and destruction of homology classes

during the course of a filtration. In particular, a persistence diagram of dimension d, denoted by
Dd, contains the filtration tuples (f (i), f (j)) of all d-dimensional topological features.

1.2.4 Computation of PersistentHomology

To give a more hands-on grasp of what topological features are and how they are derived in prac-
tice, Iwill briefly introduce a simple and fastmethod for the computation of 0-dimensional persis-
tence. The algorithm is based on the union–find data structure, which stores a disjoint collection
of sets and allows them to be queried using the find operation. While this approach is limited to 0-
d persistent homology (i.e. the detection of connected components and cycles) it is the algorithm
used in this thesis for the derivation of topological features. The union-find-based algorithm is
presented in Algorithm 1.
Given theunderstandingofpersistenthomologypresented in this introduction, it quite straight-

forward to see where the theory meets the computation. We initialize the union-find data struc-
ture – it will be used to keep track of the state of the simplicial complex during the course of the
filtration. We then sort the input simplices according to the filtration values and examine if their
faces are already present in the union-find data structure. Due to the nesting property of a filtra-
tion, this has to be the case for all faces in the simplex. Thus parents would only remain empty
if the simplex does not have any faces (which for instance can be the case if the simplices represent
vertices). We then add the simplices to our simplicial complex by keeping track of them in U, but
do not register a tuple in the persistence diagram as the creation of 0D objects (i.e. vertices) does
not destroy anything.
If the faces of the simplex are already present in U, thenwe derive the representative elements of

the corresponding connected components using U.find. The representative element is the first
element added to the connected component. In the case of 0-dimensional persistence, a simplex
can at most have two faces. As the simplex connects its faces, we merge the two connected com-
ponents that the faces of the simplex are connected to. This is done according to a convention by
merging the younger component (i.e. the componentwhichwas created later in the filtration pro-

3We defineR+ = {x ∈ R | x ≥ 0}
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Algorithm 1 Computation of 0-dimensional persistent homology using the union–find data
structure.
Require: Sequence of simplices σ1, . . . , σn with associated filtration function f
U←∅
D←∅
Sort simplices according to filtration values such that f(σ1) ≤ f(σ2) ≤ · · · ≤ f(σn)
for i = 1 to n do
parents←∅
for τ ∈ σi do {Iterate over faces τ of σi}

parents←parents∪U.find(σi) {Get parents of faces}
end for
if parents=∅ then {Simplex has no parents}

U.add(σi)
else

older←argminp∈parents f(p)
younger←argmaxp∈parents f(p)
if younger 6=older then
U.merge(younger, older) {Merge younger component into older one}
D.add(f(younger), f(σi))

else {This is a cycle, we do not add a feature to the diagram}
Keep track of cycles if needed (not part of the 0D algorithm).

end if
end if

end for
for root∈U.roots do {handle unpaired elements}
D.add(f(root),∞)

end for
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cess and thus has a larger filtration value) into the older component (i.e. the componentwhichwas
created earlier and thus has a lower filtration value), which is reflected by the U.merge operation.
If both faces already belong to the same connected component, the simplex we are introducing
will create a cycle. Cycles are not part of the 0D persistence diagram, such that we do not add any
elements to it. We can keep track of cycles as indicated in the algorithm.
After iterating over all simplices, we finally add the connected components that still exist by

iterating over U.roots and add them to the diagram paired with∞ as these were not destroyed
during the course of the filtration.

1.3 Bridge the Gap to Biological andMedical Applications

Many works in this thesis focus on domains where representation learning algorithms are applied
to tackle problems in biology and healthcare. This section will thus briefly discuss why machine
learning and in particular representation learning are of great potential for these fields and which
topics are being researched at their intersection.

1.3.1 Machine Learning for Biology

Whilemachine learningmethods have beenutilized in the context of biology formany years [211],
the development of high-throughput sequencing [193] and experimentation platforms has made
a much wider class of models applicable. There are multiple ways in which machine learning
approaches can support biologists in the process of doing research. In the following, Iwill describe
the two main branches to give a broad overview.
The first is to help researchers understand the large quantities of high-dimensional data. The

process of understanding data through visualization and the exploration of different representa-
tions and transformations is referred to as exploratory data analysis. It represents an integral com-
ponent in hypothesis generation, which can provide new directions for follow-up experiments.
Here, machine learning models can support researchers by reducing the complexity of the data
via dimensionality reduction. In dimensionality reduction, a machine learning model is applied
to the data to derive a representation of it that can be visualized and intuitively understood by
humans. There exist a large number of dimensionality reduction methods [106, 148, 153, 183,
209, 228] developed for general data visualization and understanding. Recently, there has further
been a line ofwork that concentrates ondevelopingdimensionality reductionmethods specifically
geared for biology [5, 62, 156, 238]. These approaches incorporate more information specific to
the data-generating process and show that further developments in this area have a great potential
to accelerate biological research.
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The second line I want to highlight is by providing accurate predictions of how biological sys-
tems will behave. Here, binding prediction can be used to estimate the potential interactions of
a protein with other proteins [33, 120] or DNA/RNA sequences [3, 234]. It can thus be used to
generate hypotheses for mechanisms of action or understand regulatory cascades. The prediction
of behavior and properties is further relevant in the context of bioengineering and synthetic bi-
ology, where the goal is to change or create biological systems and components to solve a defined
task. Approaches that accurately predict protein structure from sequences have the potential to
aid the development of new biological catalysers [116] and significantly accelerate research in this
domain. Further, the prediction of small molecular properties has been of great interest for the
pharmaceutical industry to avoid many experiments and focus on those with the largest poten-
tial [256]. Recent research has also investigated how machine learning models could be used to
predict the behavior of different cell types when exposed to perturbations [112].
Machine learning and representation learning in particular has great potential in shaping how

research is done by helping researchers with hypothesis generation and potentially even the sim-
ulation of outcomes. Deciphering protein folding has been a very important step towards even
more holistic models whichmight be able to simulate whole cells andmodel their responses to ex-
ternal stimuli. The work presented in this thesis contributes to the ongoing efforts to understand
complex biological systems by suggesting a novel dimensionality reduction approach designed
specifically for hierarchies of objects which show similarities at multiple scales (see Chapter 2).
Further, I present approaches that can improve the prediction of properties onmulti-scale graphs
that in turn can help in predicting the functionality of biological systems based on structures such
as proteins (using their subdomain connectivity) and small molecules (seeChapter 5). Finally, the
evaluation of generated graphs is discussed in this thesis (see Chapter 6), which is relevant for the
engineering of new small molecules. These small molecules are of great importance to the phar-
maceutical industry.

1.3.2 Machine Learning forHealthcare

The vast amount of biomedical data being collected inmodern digital health record systems [113]
hasmade healthcare a domainwheremachine learning algorithms could provide valuable support
to clinicians [154]. The deployment of such systems is already starting to have a measurable im-
pact on physicians, health systems, and patients [233]. The twomain areas in which these models
have been applied are medical imaging and electronic health records. While the former is not of
relevance to this thesis, I will still briefly provide an overview for interested readers.
Due to the success of deep learning approaches on images and the transferability of said archi-

tectures to data with similar characteristics, medical imaging has been the area most significantly
impacted by recent machine learning advancements. In medical imaging, the goal is to predict
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health states from an image which can be 2-dimensional (in the case of regular images, X-ray im-
ages, and images of probe slides) or 3-dimensional (in the case of computed tomography (CT),
positron emission tomography (PET) and magnetic resonance imaging (MRI)). The exact task
of the model is often to segment organs or parts of organs that show abnormalities linked to un-
derlying diseases such as cancer. When the object being examined is a slide, then the prediction
target can also be disease classification. While insufficient data availability is still an issue in some
contexts [269], many approaches have surpassed the performance of practitioners [71] and thus
can be assumed to already contribute to better health outcomes. Further, due to the potential re-
duction of specialist consultations, clinical care in rural areas can be improved by simultaneously
reducing costs.

A further line of research lies in the application ofmachine learningmodels to electronic health
records (EHRs), which encompass informationmeasured by continuousmonitoring systems, lab
measurements, and clinician notes [190]. Thesemodels focus on predicting treatment outcomes,
such asmortality (to assess if a patient is at high risk), length of stay (to allow the hospital to better
plan the utilization of its available resources), sepsis (to respond to the life threatening systemic
infection andprovide fast adequate treatment), readmissionprobability anddiagnosis. EHRs rep-
resent a highly challenging class of data, as formats fromdifferent hospitals are often incompatible
and the structure of medical notes can also vary between regions and doctors. As cross-hospital
heterogeneity is associated with low generalization performance, much of current research seeks
to improve performance in these scenarios [8, 162]. A further issue is the confidentiality of said
data where hospitals are often not allowed to share the data with researchers developing models.
Here, research is being conducted to apply federated learning methods to machine learning for
healthcare [198] whichwould alsomodels to be trainedwithout the data ever needing to leave the
hospital.

Summarizing, over the last few years the number of machine learningmethods that are applied
in a clinical context has risen significantly and some have already shown great potential to improve
the current state of care [233]. While there remain many areas where the gap to clinical appli-
cation is large, progress is being made at a rapid pace. This thesis concentrates on some of the
more technical aspects of how to design models that work with irregularly-sampled time series
present in EHRs (see Section 4.2) and irregularly-sampled MALDI-TOF peak data (see Chap-
ter 3). Here different approaches are followed based on the availability of data in the respective
domain. Further, we investigate the impact of distribution shifts between hospitals and show that
high-capacity models do not necessarily show lower performance in this context (see Section 4.3).
I hope the work here can help to improve the state of care in the long term.
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1.4 Attributions

During the course ofmy thesis I had the great pleasure towork togetherwithmany highly talented
people who show a great passion for the collaborative aspects of science. While this allowed me
to work on many different topics in joint efforts together with other Ph.D. students it is also my
responsibility to give credit where credit is due. I will thus in the following describe my contribu-
tions to the projects in this thesis, when theworkwas performed jointly with other PhD students.
These will be presented in the same order as the chapters in this thesis.

Work presented in Chapter 2 and M. Moor∗, M. Horn∗, et al. “Topological Autoencoders”.
In: InternationalConference onMachine Learning. PMLR. 2020, pp. 7045–7054: BastianRieck
initiated the project and introduced Max Horn and Michael Moor to the concepts of persistent
homology for the characterization of manifolds. M.M. M.H. and B.R. jointly refined the project
direction and thought of ways how to integrate the computations of persistent homology into
autoencoder architectures. B.R. andM.M. implemented proofs for the applicability of persistent
homology to the level of subsets of the dataset. B.R. performed the empirical convergence rate
study for Hausdorff distances. M.M. designed the motivational Spheres dataset. M.H. concep-
tualized the topological loss term together with B.R., whereas M.M. derived its gradient. M.H.
implemented much of the code base, provided the initial project structure and ran most of the
initial experiments. M.M. implemented multiple neural network architectures, B.R. and M.M.
implemented the measures for non-linear dimensionality reduction. B.R. wrote the code for the
computation of persistent homology and the code for several experiments. The experiments for
the revision of the paper where run mostly by M.M.. B.R. and M.M. wrote most of the initial
manuscript, whereas M.H. helped in its refinement and revision. Karsten Borgwardt and B.R.
supervised the project. All authors contributed to the final version of the manuscript.

Work presented in Chapter 3 and C. Weis∗, M. Horn∗, B. Rieck∗, et al. “Topological and
kernel-based microbial phenotype prediction from MALDI-TOF mass spectra”. Bioinformatics
36, 2020, pp. i30–i38: Caroline Weis, Max Horn and Bastian Rieck jointly initiated the project,
as part of a greater collaboration and research direction initiated byAdrian Egli andKarsten Borg-
wardt. C.W. implemented the completeMALDIquantpreprocessing pipeline and took care of har-
monizing the datasets. Further, C.W. provided important insights over the properties ofMALDI-
TOF spectra and which had an impact on the design of the topological preprocessing and the
PIKE kernel. Aline Cuénod and A.E. are clinical collaborators which gathered the data and pro-
vided support with regard to clinical relevance. B.R. derived the theoretical foundations for the
topological preprocessing and the PIKE kernel. Further, C.W. and B.R. implemented the logistic
regression baseline and ran experiments for it. M.H. suggested the utilization of a GP and the fo-
cus on rejectingOODsamples. M.H. andB.R. implemented the PIKE kernel. B.R. implemented
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the topology based preprocessing. C.W., M.H. and B.R. jointly wrote the software package used
to run the experiments and process the MALDI-TOF spectra. The initial manuscript was writ-
ten by C.W. and B.R. M.H. wrote the section on Gaussian Processes and supported writing the
discussion of results. The work was supervised by K.B. All authors contributed to the refinement
of the manuscript.

Work presented in Section 4.3 andM.Moor∗, N. Bennet∗, D. Plecko∗, M. Horn∗, et al. “Pre-
dicting sepsis in multi-site, multi-national intensive care cohorts using deep learning”. Preprint.
2021. arXiv: 2107.05230 [cs.LG]: Michael Moor, Nicolas Bennet, Drago Plecko and Karsten
Borgwardt conceived the study. Nicolai Meinshausen, Peter Bühlmann and K.B. supervised the
study. M.M., N.B., D.P., M.H., B.R., P.B., K.B. designed the experiments. N.B., D.P. performed
the cleaning, harmonisation and label annotation. M.M., M.H. implemented the filtering and
feature extraction. M.H., M.M implemented the deep learning models. M.M., N.B., D.P. imple-
mented the non-deep ML models. N.B. implemented the clinical baselines. M.M. designed the
encounter-focused evaluation. M.M., Bastian Rieck implemented encounter-focused evaluation
plots. B.R., M.M. implemented and designed the performance plots. M.H., B.R. implemented
the Shapley value calculation. B.R. designed, implemented, and performed the Shapley value
analysis. M.M. ran the internal and external validation experiments for all methods. M.M. ran
the hyperparameter search of the deep learning models and LightGBM. B.R. ran the hyperpa-
rameter search of Logistic regression. N.B. investigated different feature sets. M.M. implemented
and ran the max pooling strategy. M.M. designed the pipeline overview figure. D.P., B.R. de-
signed the data harmonisation figure. N.B. designed the risk score illustration and the study flow
chart. D.P. devised the dataset table. P.B. and K.B. advised on algorithmic modelling, statistical
interpretation and evaluation. All authors contributed to the interpretation of the findings and
to the writing of the manuscript.

Work presented inChapter 5 andM.Horn∗, E. D. Brouwer∗, et al. “TopologicalGraphNeural
Networks”. In: International Conference on Learning Representations. 2022: Bastian Rieck con-
ceived the study, B.R. and Karsten Borgwardt supervised the study. Max Horn and Edward De
Brower refined the initially conjectured setup for compatibility with general GNN architectures.
M.H. implemented the torch C++ kernel used to compute the persistent homology on graphs
based on a python implementation of the union find algorithm from E.D. and B.R. M.H. and
E.D. implemented the codebase for training models and ran most of the experiments involving
training of neural networks in the publication. B.R. ran experiments for the WL and persistence
homology based methods. E.D. designed the synthetic datasets used in the motivational example
and ran the associated experiments for neural networks. M.H. proposed the design of the static
network variant, E.D. and M.H. jointly implemented the required changes and rand associated
experiments. B.R. contributed the theory in forms of theorems and proofs, bothM.H. and E.D.
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contributed to the refinement of the theory. B.R. wrote most of the theoretical sections of the
paper, the introduction to persistent homology in the supplements and the description of related
work on persistent homology. M.H. and E.D. jointly wrote the experimental section and conclu-
sion. MichaelMoor provided support in discussions on the experimental setup and helped in the
refinement of the final text. The main text of the publication was revisited multiple times in or-
der to include reviewer feedback, where B.R. and E.D. took care of most rewriting and additional
experiments. K.B. and Y.M. assisted in the refinement of the overall story, contributed to the text
and provided funding for this endeavour.
Work presented in Chapter 6 and L. O’Bray∗, M. Horn∗, et al. “EvaluationMetrics for Graph

Generative Models: Problems, Pitfalls, and Practical Solutions”. In: International Conference on
Learning Representations. 2022: The idea for the project was initially though of by Max Horn,
Bastian Rieck and Karsten Borgwardt. M.H. B.R and Leslie O’Bray wrote the initial draft of the
manuscript together. M.H. implemented the training pipeline for graph generative models, the
pipeline for the perturbation of graphs and ran the corresponding experiments. B.R. contributed
all of the theoretical results and implemented the code forMMDand theGaussian, Laplacian and
Linear kernels. L.O. took over the project fully after initial efforts by M.H. and ran the MMD
evaluations on perturbed and generated graphs together with M.H. Further, L.O. implemented
an accelerated MMD variant, the total variation kernel and ran all analysis experiments and cre-
ated all plots of the paper. B.R. and L.O. additionally explored the creation of topology based
scoring functions yet decided to move their efforts to a separate publication. M.H. gave advice
on the refinement of the manuscript, wrote some minor sections of the paper and helped revise
the final manuscript. B.R. and K.B. jointly supervised this project, all authors contributed to the
manuscript.
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Part I

Dimensionality Reduction

This part of the thesis concentrates on developing approaches for dimensionality reduction using
aspects from topoogy.
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2 Preserving Underlying Structure
usingMulti-Scale Topology

Figure 2.1: Visualization of cell differentiationduring hematopoiesis. Image byA.Rad andM.Häggström,
distributed under a CC-BY-SA 3.0 license1.

Oftenwedon’t know theunderlying structure of datawewould like to explore andunderstand.
Should we assume instances in the data are clustered? Are there hierarchical or nested structures
present? One core issue here is that these questions often require deciding on a scale at which
they should be answered. For example, how many points must be grouped to assume a cluster is
present? How close do these have to be together? Many approaches in dimensionality reduction
require the selection of hyperparameters which implicitly decide over the answers to the above
questions [44]. This is especially problematic in biological research where modern methods such
as single-cell sequencing allow the derivation of large amounts of high-dimensional data. What if
there is no appropriate scale thatwe should consider as there are hierarchies of similarities between
subpopulations? These situations arise naturally in biology as cells are not created completely
distinct from each other, but undergomany steps of differentiation before they take on their final

1
https://commons.wikimedia.org/wiki/File:Hematopoiesis_simple.svg
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2 Preserving Underlying Structure usingMulti-Scale Topology

form. Thus, each dataset would not only contain clusters of different cells but also cells that are
on a trajectory of transitioning from one less specialized cell type to a more specialized one.
A particularly striking example is the formation of our blood cells, hematopoiesis, which is

visualized in Figure 2.1. Here we see the clear presence of hierarchical and multi-scale structures
that can arise in biological systems. In this particular example, we would expect cells derived from
the same precursor to show similar gene expression patterns, compared to cells that have branched
off much earlier in the hierarchy. A further example from biology is the hierarchical structure
of cells forming tissues, tissues forming organs, and organs forming the overall organism. Here
we would also expect that cells of the same tissue are more similar to cells of different tissues or
organs. For example, it seems reasonable, that cells present in the brain show similar gene and
protein expression as they have to deal with the same environment compared to cells in the liver
or kidney where completely different environments are present [236].
This chapter introduces the problem of dimensionality reduction and shows how to use tech-

niques from persistent homology to derive lower-dimensional representations of data, which pre-
serve multi-scale relationships. It is largely based on the following published work:
M. Moor∗, M. Horn∗, et al. “Topological Autoencoders”. In: International Conference on Ma-
chine Learning. PMLR. 2020, pp. 7045–7054

2.1 Manifolds

M1 inR2 M2 inR3

Figure 2.2: Examples ofmanifolds embedded into higher dimensional spaces. Arrows indicate the tangents
to the manifold, that serve as coordinates in the approximately Euclidean neighborhood the
indicated point.

To talk aboutdimensionality reduction in aprincipled and formalmanner itmakes sense tofirst
understand the concept of a manifold. Given our knowledge of topological spaces as introduced
in Section 1.2, a manifold requires additional criteria on top of the definition of a topological
space. In particular, a d-dimensional manifold is a structure that locally looks like d-dimensional
Euclidean space. The most obvious simplified example one could give for a real-world manifold
thatwe all live on is earth (for simplicity of this example, we assume thatwe livemerely in 2D space
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instead of 3D space). While most people are reasonably convinced that our planet is a spherical
structure, formost purposes this is completely irrelevant and the earth could simply be considered
locally 2-dimensional as there are 2 axes on which we can move — the north-south and the east-
west axis. The earth thus appears to us locally as a 2-dimensional plane. Solely when we start
moving very long distances on this plane or try to fly into space does the actual 3D structure of
the sphere become relevant.
A lower-dimensional example of the above can be built by assuming a creature that lives on a

line forming a circle. For this creature, there exist only two directions forward and backward, thus
the space it lives on can be assumed to be the 1-dimensional line. Yet, while space seems locally 1D,
if the creature walks long enough in one direction, it will reach its previous position at some point
in time, uncovering the macroscopic perspective that the space it lives on is actually “bent”. This
notion of space being bent is closely related to what students of manifolds refer to as curvature.
Let us take a step back and formularise our insights.

Definition 2.1 (Manifold). A d-manifoldMd is a topological space, where each point has a
neighborhood that is homeomorphic to an open subset of d-dimensional Euclidean spaceRd.

Thus for each point we require the existence of a homeomorphism, i.e. a transformationwhich
“does not tear or glue space”, from the neighborhood of each point to the d-dimensional Eu-
clidean space. For the sake of clarity, we leave out some of themore formal requirements on topo-
logical manifolds and their classification 2.

2.1.1 TheManifoldHypothesis

M

Figure 2.3: Visualization of interpolations on a manifold using MNIST [130] digits. The manifoldM is
denotedwith a continuous line, whereas linear interpolation between instances of themanifold
is denoted with a dashed line.

2For example, we strictly require the topological space to be a Hausdorff space which would imply that for any two
points there exist neighborhoods that are disjoint. All requirements are satisfied inRd though.
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2 Preserving Underlying Structure usingMulti-Scale Topology

Themanifold hypothesis is one of themost widespread assumptions present inmachine learn-
ing. It assumes that the data we work with typically live on a lower dimensional manifoldMd1

embedded into the higher dimensional input space on which we operate,Rd2 . Thus the intrin-
sic dimensionality of a problem at hand is considered much lower than the dimensionality of the
input domain, i.e. d1 � d2.

Let us take an example from the computer vision domain. If our goal is to classify natural
images in Rw×h based on their contents, then it is clear that not any random input would be
considered a natural image. Thus our data, for example, a collection of cat pictures, is derived
from a subspace D ⊂ Rw×h of all possible inputs, and thus its intrinsic dimensionality and
complexity might be completely different from the input dimensions w × h. Moreover, if we
simply upsample w to 2 · w, this increases the dimensionality of the input space, but does not
necessarily change the complexity or intrinsic dimensionality of the problem.

A further perspective arises by considering interpolations of images. While linear interpolation
creates a mixture of two images, these images can often not be considered natural images. Ideally,
we would want that interpolations between two images would still be considered natural images.
This could be done by smoothly removing and adding features between the interpolated images.
If we would consider two pictures of a meadow, one with a tree on it and one with no trees, then
we would not want the tree to become more and more transparent when interpolating as trans-
parent trees are not natural. Instead, wewouldwant to take a path of increasingly smaller trees (or
better younger trees) until there is no tree to be seen anymore. An example on the MNIST [130]
digit manifold is shown in Figure 2.3. As in the tree example, the linear interpolation between
twoMNIST digits would also not be considered a real digit. In contrast, interpolation along the
manifold of MNIST digits, could lead to morphing our starting point of the digit 0 first into a 2
(and thus gradually removing one side of the digit) and then into a 6 (by moving the line to the
other side of the image and increasing the loop in the bottom).

2.1.2 Manifold Learning vs. Dimensionality Reduction

While one could see manifold learning as the idealized approach for deriving underlying struc-
tures from unstructured high-dimensional data, it is an inherently difficult task. Instead, most
research to date focuses on the topic of dimensionality reduction. Dimensionality reduction is
less constrained thanmanifold learning as it does not actually try to recover the underlying mani-
fold of the data, and thus does not have the additional smoothness and connectedness constraints
which arise due to the required local Euclidean structure. Instead, dimensionality reduction al-
lows neighborhoods of points to follow different geometries than those defined for a manifold.
It is thus a more flexible approach concerning the mapping between the high-dimensional and
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low-dimensional space, yet removes some of our ability to interpret the lower dimensional repre-
sentation.

2.2 Dimensionality Reduction

In general, we can phrase dimensionality reduction as an unsupervised regression task. The goal
is to find a mapping f : Rd → Rk from a d-dimensional input space xi ∈ Rd to a lower-
dimensional (k < d) representation zi ∈ Rk based on a provided datasetD = {x1, . . . , xn} ⊂
Rd. This low-dimensional representation is often referred to as embedding. Dimensionality re-
duction can be used to tackle many different tasks. As illustrated in the introduction of this sec-
tion, it might be used as a means to visualize the data in a space where we can have a better (intu-
itive) understanding of it (i.e. by reducing the dimensionality to 1, 2, or 3 dimensions). Further, it
can be utilized to regularize machine learning problems by reducing the number of input dimen-
sions provided to a machine learning model. Finally, dimensionality reduction can be used for
feature selection / fusion to derive lower dimensional representations of the data where features
are “more meaningful”.

As theproblemofdimensionality reductionwithout further constraints is inherently ill-defined,
the key question in dimensionality reduction arises naturally: Which mapping f of the potential
set ofmappings f ∈ F should be preferred over others and how is this class of potential mapping
defined? This question represents the dimensionality reduction version of a similar dilemma of
machine learning, the bias-variance tradeoff3.

2.2.1 Linear Dimensionality Reduction

In the case of linear dimensionality reduction, we constrain f to be of the form f(x) = W>x,
withW ∈ Rd×k. The most common approach to linear dimensionality reduction is Principal
Component Analysis (PCA), where besides the linear constraint, we additionally try tominimize
the mean squared distance between the inverse mapping applied to the lower dimensional rep-
resentation f−1(z) and the input data x. To ensure the uniqueness of the result, an additional
orthogonality constraint is applied to W , as we could otherwise simply rescale both the lower
dimensional representation as well asW itself.

3Here the question is how to balance the tradeoff between simplifying assumptions in the machine learning model,
i.e. restricting the class of potential mappings F , with its potential to overfit, i.e. how high is the variance of the
model’s predictions when trained on independent samples from the same distribution.
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2.2.2 Non-Linear Dimensionality Reduction

The class of non-linear dimensionality reduction methods allows much higher flexibility for the
function f , such that the function class is much larger. Thus the number of potential methods is
also significantly higher. I provide a short overview of prominent approaches below.

Multidimensional Scaling (MDS): Optimizes the positions of instances in the lower dimen-
sional space such that their distances approximate those of the input data. The mapping
f is thus non-parametric and only defined for points that were provided at the start of the
algorithm.

Isomap [228]: Application of MDS to geodesic distances which are approximated using only
distances of nearest neighbors. The whole geodesic distance matrix is computed efficiently
by exploiting the Floyd-Warshall shortest path algorithm.

t-distributed stochastic neighborhood embedding (t-SNE) [148]: Optimizes the points in
the lower dimensional space such that a constructed probability distribution of the origi-
nal data and the reduced dimensional data are close in terms of the KL-divergence. Here,
the probabilities in the data space and the reduced dimensional space are computed differ-
ently, in the former case using a Gaussian distribution and in the latter case using a Cauchy
distribution. t-SNE also does not provide a parametric map between data and reduced di-
mensional space.

Uniform Manifold Approximation and Projection (UMAP) [153]: Amethodbasedon the-
ory from Riemannian geometry and algebraic topology. Based on a set of assumptions
(uniform distribution on a manifold, locally constant Riemannian metric and local con-
nectedness of the manifold) the method models the data using a fuzzy topological struc-
ture and searches for a low-dimensional projection which is most aligned with the fuzzy
topology of the data.

Autoencoders [87]: Autoencoders learn a parametric mapping f between data and reduced di-
mensional space which is trained together with an inversemapping g thatmaps back to the
data space. The model is then trained using a reconstruction loss between the input x and
g(f(x)). Both f and g are often deep neural networks, which dependent on the type of
data being processed can either be conventional MLPs, CNNs or even RNNs.

2.3 PersistentHomology inRd

Despite having previously discussed notions of manifolds and their relevance to the problem of
dimensionality reduction, it is still not clear how amanifold can be appropriately characterized. It
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(a) ε1 (b) ε7 (c) ε27

(d) ε33 (e) ε68

Figure 2.4: The Vietoris–Rips complex of a point cloud at different scales ε1, ε7, ε27, ε33 and ε68. The
simplicial complex changes as a function of the distance threshold ε leading to more and more
nodes to be considered connected.

turns out, that here topology and our previously introduced notions of persistent homology are
of high utility. In general, the requirement of local connectedness of manifolds ties back to the
core perspective that topology uses to examine topological spaces via homology — the presence
and character of holes. Two-dimensionalmanifolds such as spheres and tori (i.e. doughnut shapes)
behave very differently and cannot be smoothly formed into eachother. While the sphere is simply
connected, i.e. any loop on the sphere can be smoothly transformed into a point, this is not the
case for the torus as some loops cannot be reduced to a point without the necessity of gluing or
cutting. The insight that homology represents a good characteristic for a manifold dates back to
Henri Poincaré who showed that every simply connected and closed 2-manifold is equivalent to
the 2-sphere and famously conjectured that the same is true for simply connected3-manifolds to 3-
spheres. Further, research inpersistent homologyhas shown that the representations derived from
persistent homology are good characterizations of the manifold structure [69]. In the following,
we thus explain how the notions from persistent homology can be applied to spaces where the
connectivity of points is not predefined, such as point clouds.

TheVietoris–Rips Complex Whenworking with data in a high-dimensional spaceRd, we
don’t have any notion of connectivity, making notions of topology relatively ill-defined as in this
case the neighborhood of a point is not known. Generally, it is not clear at which distance or scale
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two points should be considered connected. In the framework of persistent homology, we avoid
this problem to some degree by constructing a filtration based on some properties of the input
space, which defines connectedness of neighborhoods in a nested manner. We would thus start
with no data points being connected, and end with all of them being connected. While there are
multiple ways how such a filtration could be defined to give rise to a simplicial complex, the most
widespread is the utilization of theVietoris–Rips complex [243]. TheVietoris–Rips complex can
be constructed on anymetric space and thus also on our high-dimensional spaceRd if we assume
a metric such as the Euclidean metric.

The Vietoris–Rips complex VR is constructed by forming a simplex for any finite set of points
with a maximum diameter of ε. In practice this means we consider two points connected if they
are maximally within ε-distance of each other. The Rips–Graph is a neighborhood graph used to
compute the Vietoris–Rips complex and can be defined asRε = (V,E), with

V := {1, 2, 3, . . . }

E := {(u, v) | dist(xu, xv) ≤ ε}

where xu, xv ∈ Rd.

Accordingly, we can define a sublevel set filtration function as

f(xi, xj) = dist(xi, xj) (2.1)

which would lead to a sequence of simplicial complexes for which ∅ = K(0) ⊆ · · · ⊆ K(n) for
ε0 ≤ · · · ≤ εn. Typically, it is assumed that all vertices (in our case data points in the high dimen-
sional space) are created at the beginning of the filtration, which can for example be implemented
by assigning them the filtration value of ε0 < f(x) < ε1. The overall process of constructing
a filtration via the Vietoris–Rips complex can be understood as increasing the neighborhood in
which points would be considered connected until we in the end have a fully-connected / com-
plete graph. A visualization hereof is depicted in Figure 2.4. The computation of filtrations using
the Vietoris–Rips complex can also be extended to higher dimensional structures such as trian-
gles, where we for example would define the filtration value using the maximum of the filtration
values of all involved edges to preserve the properties of filtrations:

f(xi, xj , xk) = max{dist(xi, xj), dist(xj , xk), dist(xk, xi)} (2.2)
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2.4 Topological Autoencoders

Z
Latent code

X
Input data

X̃
Recon-
struction

Reconstruction loss

ε

ε′

ε

ε′
Topological loss

Figure 2.5: Overview of the Topological Autoencoder method. The topological autoencoder consists of
two components 1. a regular autoencoder, which is trained to reconstruct the input based on a
lower dimensional (represented in red) and 2. a topological loss term that incentivises the neural
network to preserve the topological structure of the input data (represented in blue) . The topo-
logical loss is constructed using persistence diagrams derived from the Vietoris–Rips complex
calculated from the input and latent data points.

In the following section, I will present and discuss Topological AutoEncoders (TopoAE), a
non-linear dimensionality reduction approach which strives to preserve the multi-scale topolog-
ical structure of input data in a latent space of reduced dimensionality. The core idea of the ap-
proach is to harness the power of autoencoders to construct highly non-linear representations of
reduced dimensionality and combine them with the manifold characterizing properties of per-
sistent homology [68] to ensure that the low-dimensional representations preserve topological
structure.
The model computes a low dimensional representation of an input batch similar to a standard

autoencoder, yet additionally computes topological signatures from the batch of input elements
and the batch of their latent embeddings. These signatures are used to construct an additional
loss term that aims to match the topological signatures of input and latent space. The topolog-
ical loss and the reconstruction loss of the autoencoder are combined to form the final training
loss. An overview of the approach is shown in Figure 2.5. TopoAE relies on recent developments
for propagating gradients through the computation of persistent homology [98] and presents a
general way how to constrain autoencoders to preserve topological structure in the input space,
when computing lower dimensional latent representations.

Notation Given a collection of dataX with |X| = m we denote the matrix of all pairwise
distances between elements of X as AX , where AXi,j = dist(xi, xj). Further, we use the no-
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tation A[((i, j), (j, k))] := (Ai,j ,Aj,k) to indicate subsetting of the distance matrix. Addi-
tionally, we denote the Vietoris–Rips complex (see Section 2.3 for an introduction) constructed
using a threshold ε as VRε(X), and represent the complete filtration from the smallest distance
in the dataset ε0 = min{xi,xj}∈X dist(xi, xj) to the largest distance present εn = max{xi,xj}∈X
dist(xi, xj) as VR(X) = (VR(X)ε0 , . . . ,VR(X)εn), where VR(X)ε0 ⊆ · · · ⊆ VR(X)εn

and ε0 ≤ · · · ≤ εn. Further, we denote the computation of persistent homology on such a
complex as ph(VR(X)). The computation returns tuples of persistence diagrams and persistent
pairings for all considered dimensions of topological features ((D0,D1, . . . ), (π0, π1, . . . )).
Eachd-dimensional persistence diagram contains tuples of the form (ε, ε′), where εdenotes the

distance at which a topological feature is created and ε′ denotes the distance at which a topological
feature is destroyed. For a 0-dimensional persistence diagram, for example ε′ corresponds to the
distance at which two connected components merge into a single one. In the simplest case, this
could represent two vertices being connected via an edge. Then the persistence diagram would
contain a tuple with the value at which the older vertex is created and the value at which the edge
is introduced as its destruction point. The persistence pairings on the other hand contain the
indices (i, j)which correspond to the simplices si, sj ∈ VRε(X) that created and destroyed the
topological feature. In our simple example it would contain the index of one of the vertices and
the index of the edge which destroyed it.

Selectionof indices from persistence pairings Ourmethods rely on selecting indices
from the persistence pairing and mapping them back to the distance between two vertices. For
0-dimensional features, it is in practice sufficient to consider the indices of edges that always cor-
respond to the destroyer simplex of a persistent pairing. This makes sense, as we generally assume
all vertices to be created at the beginning of the filtration and thus their creation values would be
considered the same. For the 0-dimensional persistence diagram these edges correspond to edges
in the minimum spanning tree of the dataset. Based on preliminary experiments, this work limits
itself to the utilization of 0-dimensional topological features. The applicability of the method to
higher dimensional topological features is treated in further detail in the discussion.

Method description We consider a mini-batch of data X sampled from a data space X
with |X| = m, as a point cloud. Further, we define an autoencoder to be the composition of two
mappings h ◦ g where g : X → Z represents the encoder and h : Z → X the decoder and Z
represents the latent space of reduced dimensionality. Further, we denote the latent embeddings
of our input asZ := g(X). When computing the forward pass of the autoencoder, we compute
persistent homology both for the original mini-batch input (DX , πX) := ph(VR(X)) and the
latent representation of reduced dimensionality (DZ , πZ) := ph(VR(Z)).
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The 0-dimensional persistence diagram essentially represents a subset of the distance matrix
such that we write D ' A[π]. Thus informally, the persistent homology computation can be
seen as the selection of topologically relevant edges of the Vietoris–Rips complex. We denote the
topological regularisation term asLt(AX ,AZ , πX , πZ). It accounts for the degree of mismatch
between the two persistence diagrams that is introduced by the non-linear dimensionality reduc-
tion step of the autoencoder. We include this term in the overall loss term of the network used
during training

L := Lr + λLt

whereλ ∈ R controls the strength of the regularisation andLr corresponds to the reconstruction
loss of the autoencoder.

Topological loss term A possibility to ensure the latent space mimics the topology of the
input space, would be to directly calculate a loss based on the selected distances in both spaces. Yet
this would not lead to informative gradients for the autoencoder, as it only compares the topo-
logical features between both spaces, which could lead to the differences between completely un-
related edges being minimized as the identity (which node is actually responsible for creating or
destroying the topological feature) gets lost. While this makes sense in the comparison of com-
pletely unrelated spaces, we are in a scenariowheremore information is available. In particular, we
knowexactlywhich element in the input space, gets transformed intowhich latent representation.

One could thus use the intersection of edges selected in both persistence pairings, yet this could
lead to problems at the beginning of the optimization procedurewhere only very few edges would
actually be selected in both input and latent space. In particular, if we assume that distances be-
tween points are distorted to become completely random via the mapping g, the expected value
of matched edges is only 1 independent of the batch size. This would lead to extremely high vari-
ance in the topological regularization term as only a single edge might be used to characterize the
topological alignment of the two spaces.

Instead, we compute the topological loss term based on the union of both selected edges. In
particular,

Lt :=
1

2m

∥∥AX [πX ∪ πZ ]− AZ [πX ∪ πZ ]
∥∥2 (2.3)

where we define the union such that elements present in both persistence pairings will be present
twice in the union. The factor 2m is added to ensure the loss is on comparable scales for different
selections of the batch sizem. This formulation takes at least |X| = m distances into account
(when the persistence pairings are perfectly matched). The loss can be viewed as a generalization
of the loss introduced in [98], yet constructed with a different goal in mind. While our loss is
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zero when the “topologically relevant” distances fromX and Z align perfectly, it is not uniquely
minimized in this case, i.e. there exist scenarios whereLt = 0 yet, πX 6= πZ .

2.5 Theoretical Considerations

This section inspects the theoretical aspects of TopoAE. First, we verify that it is possible to com-
pute a gradient through the topological loss term, afterwards, we check if computing persistent
homology on the level of a mini-batch has similar theoretical guarantees as performing the com-
putation on the whole dataset.

2.5.1 Differentiability

The differentiability of persistent homology is based on the assumption that all pairwise distances
in the dataX are unique. This is a reasonable assumption to make if the data live on the domain
of real numbers Rd as then the probability of getting two times the same distance would have
Lebesgue measure 0. We will now show we can compute a gradient through the computation of
persistent homology given the above assumption.

Theorem 2.1 (Differentiability of Topological Loss). LetX be a data sample, fθ : X → Z a
differentiable encoding function with continuous parameters θ and dist a differentiable distance
metric. If all pairwise distances ofX are unique, i.e. there do not exist two distinct pairs of data
points xi, xj and xk, xl such that dist(xi, xj) = dist(xk, xl), then the topological loss term Lt
is differentiable with respect to θ.

Proof. Let ερ(1)(θ) denote a distance in the pairwise distance matrix AZθ of Z := fθ(X) with
regard to the sorting permutation ρ induced by ph, i.e. ερ(1)(θ) < ερ(2)(θ) < · · · < ερ(m)(θ),
wherem = |X|(|X| − 1)/2. By assumption, all ε values are unique, thus there exists a neigh-
borhood h around θ such that the ordering does not change given changes of θwithin this neigh-
borhood. Thus,

∃ε > 0∀h : |h| < ε =⇒ εi(θ + h) 6= εj(θ + h)

and
ερ(1)(θ + h) < ερ(2)(θ + h) < · · · < ερ(m)(θ + h).

This further, implies that for this sufficiently small changeof theparameters, the inducedfiltration
also does not change, such that the persistence pairings π remain constant, i.e.

πZ(θ) = πZ(θ + h)
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That allows us to threat the subsetting operation as constant when computing the derivative.
Thus also the union π = πX ∪ πZ of both persistence pairing can be treated as constant, as πX

does not change dependent on θ by definition.

d

dθ
=

d

dθ

(
1

2

∥∥AX [π]− AZ [π]
∥∥2)

= −ρT
(
dAZ [π]
dθ

)
where ρ :=

(
AX
[
πX
]
− AZ

[
πX
])
.

2.5.2 Stability

While it has been shown that the computations of persistent homology are stable with respect to
small perturbations [54], it is not yet clear if this also applies to individual subsets of the input data.
This is of particular interest as current neural network architectures are typically trained using
Stochastic Gradient Decent (SGD) which relies on stochastic updates to the parameters which
were computed on subsamples of the data. In the following we will formularise the problem
in terms of distances to the persistence diagram of the overall dataset and show that persistent
homology computations on a subset of the data is close to the diagram of the overall dataset in
terms of the bottleneck distance. We start with some definitions.

Definition 2.2 (Hausdorff Distance). The Hausdorff distance dH between two persistence dia-
gramsD andD′ is defined as

dH(D,D′) := max

{
sup
x∈D

inf
y∈D′

dist(x, y), sup
y∈D′

inf
x∈D

dist(x, y)

}
, (2.4)

where dist refers to a base distance such as the Euclidean distance.

The Hausdorff Distance thus represents the maximal distance that any element in D would
need to travel in order to reach an element ofD′. This allows also non-uniquematchings, i.e. that
multiple elements inD would consider the same element inD′ as their closest point. In contrast,
the Bottleneck Distance requires a bijection between points of the diagrams and thus represents
an upper bound to the Hausdorff distance.

Definition 2.3 (Bootleneck Distance). The bottleneck distance between db two persistence di-
agramsD andD′ is defined as

db(D,D′) := inf
η:D→D′

sup
x∈D
‖x− η(x)‖∞, (2.5)
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where η : D → D′ denotes a bijection between the points of the two diagrams and ‖·‖∞ refers
to the L∞ norm.

It refers to the maximal distance between two matched points (i.e. points that are mapped to
each other via the bijection ν), for the best possible matching between the two diagrams (the
matching which achieves the lowest distance). First, we show that we can upper bound the prob-
ability that the bottleneck distance between the persistence diagram of the whole datasetD and a
subsample thereofD(m) exceeds a value of ε by the probability of the Hausdorff distance exceed-
ing 2ε on the original input data.

Theorem 2.2 (Probabilistic Bound Bottleneck Distance). LetX be a point cloud of cardinality
n andX(m) be one subsample ofX of cardinalitym, i.e.X(m) ⊆ X , sampled without replace-
ment. We can bound the probability that two resulting persistence diagramsD(m) andD, exceed
a threshold in terms of the bottleneck distance as

P
(
db
(
DX ,DX(m)

)
> ε
)
≤ P

(
dH
(
X,X(m)

)
> 2ε

)
, (2.6)

where dH refers to the Hausdorff distance between the point cloud and its subsample.

Proof. Chazal, Silva, and Oudot [46] characterized the stability of persistent homology calcula-
tions for finite metric spaces. Applying their theorem to our context4, we can show that

db
(
DX ,D(m)

)
≤ 2 dGH

(
X,X(m)

)
, (2.7)

where dGH(·, ·) refers to the Gromov–Hausdorff distance [35, p. 254] of the two spaces and is
defined as the infimum Hausdorff distance over all isometric embeddings of the two spaces. In
our case we can assume both spaces to have the same metric as one is a subset of the other. By
definition of the Gromov–Hausdorff distance we can further upper bound this statement with
theHausdorff distance of a specific isometric embedding dGH(X,Y ) ≤ dH(X,Y ) such that we
thus have

db
(
DX ,DY

)
≤ 2 dH(X,Y ). (2.8)

The final statement arises by rewriting the above inequality in terms of probabilities.

Asm converges to the size of the complete dataset n, we have limm→n dH
(
X,X(m)

)
= 0.

4it is actually valid in a much more generic context then our case ofX(m) ⊂ X
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2.6 Experimental Evaluation

In the following, we compare the capability of TopoAE to derive lower dimensional represen-
tations via non-linear dimensionality reduction while preserving multi-scale topological struc-
ture (as quantified by persistent homology computations). For this, we first qualitatively com-
pare TopoAE to other linear and non-linear dimensionality reduction approaches on a synthetic
dataset where the multi-scale structure is present by design. We then qualitatively compare the
lower-dimensional representations of the approaches on common datasets. Finally, we evaluate
all approaches quantitatively using metrics used to quantify the performance of dimensionality
reduction approaches. We start by describing the experimental setup.

2.6.1 Experimental Setup

Datasets To explicitly visualize the topology-preserving structure of TopoAE, we created a
simulated dataset Spheres where the multi-scale topological structure is known. It contains 10
100-dimensional spheres living in a 101-dimensional space, that are enclosed by one larger sphere,
which contains the samenumber of points as the total of all nested inner spheres. Further, we con-
sider three image datasets MNIST [130], Fashion-MNIST [260] and CIFAR-10, which were
selected as real-world images are known to lie on low-dimensional manifolds [131, 184].

EvaluationMetrics To quantitatively assess the performance of all considered models, we
utilize a series of quality measures commonly used in non-linear dimensionality reduction liter-
ature and additionally include a metric we developed ourselves which can quantify the distribu-
tional alignment dependent on a selected scale. We construct this metric as the Kullback–Leibner
divergence between density estimates of the input and latent space, based on previous work by
Chazal, Cohen-Steiner, and Mérigot [45]. We derive the density estimates at different scales us-
ing a Gaussian kernel where we vary the lengthscale parameter σ ∈ R>0 and denote the density
estimate forX using the lengthscale σ as fσX(x) :=

∑
y∈X exp

(
−σ−1 dist(x, y)2

)
. We then

denote the evaluation metric based on the density estimates of input spaceX and latent space Z
as KLσ = KL

(
fσX ‖ fσZ

)
. To avoid confusion, we denote other metrics which quantify the

alignment of distances in latent and data space with `. We consider the `-RMSEwhich quantifies
the root mean square error between the distances of input and latent representation, the mean
relative rank error (`-MRRE), continuity (`-continuity), and trustworthiness (`-trust).

Baselines and Training Procedure We compare TopoAE to several dimensionality re-
duction techniques PCA, Isomap [228], t-SNE [148], UMAP [153] and a conventional Autoen-
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2 Preserving Underlying Structure usingMulti-Scale Topology

coder [87]. When running experimentswekeep the architecture of theAutoencoder andTopoAE
the same to solely quantify the contribution of the topological loss term.
To allow maximum comparability from a qualitative evaluation perspective, we enforce the

lower dimensional space to be two-dimensional. This allows us to easily visualize and compare the
lower dimensional representations. Evaluation and visualization of the approaches are performed
on a held out test split, where we rely on the predefined split forMNIST, Fashion-MNIST and
CIFAR-10 and create a random split of 10% of the data for the Spheres dataset. The hyper-
parameters of all approaches are optimized with respect to the KL0.1 dimensionality reduction
quality metrics on a 15% validation split of the training data. Both autoencoder approaches em-
ploy batch normalization [109] andwere optimized usingAdam [121]. In comparison to all other
methods, t-SNE cannot be evaluated on previously unseen test samples as it does not give rise to a
parametric embedding function. We thus evaluate t-SNE only on the train split, giving it a slight
advantage compared to the other approaches.

2.6.2 Qualitative Evaluation on Synthetic Data

(a) PCA (b) Isomap (c) t-SNE

(d) UMAP (e) Autoencoder (f) TopoAE

Figure 2.6: Visualization of latent representations derived by different methods of the Spheres dataset.
The identity of the individual spheres is color coded. TopoAE is able to represent the nesting
relationship present in the data, whereas all other approaches fail to capture the structure.

As shown in Figure 2.6, the preservation of the nested relationships between the inner spheres
and the encompassing sphere is not guaranteed formost dimensionality reductionmethods,which
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indicates that this task is particularly difficult if the topological structure is not accounted for. In
contrast, TopoAE is able to capture this nesting relationship reliably. We can identify mainly two
failure modes in the other approaches. While PCA, Isomap, and autoencoder all treat the sur-
rounding sphere as a kind of noise in between the other spheres or as a cluster itself, both t-SNE
and UMAP associate the instances of the outer sphere with individual inner spheres. Interest-
ingly, UMAP – the only other topologically motivated method – tries to capture the structure
of the nested spheres by representing them as (half) circles, yet does not capture the relation of
these spheres with the surrounding sphere. This highlights how it can be important to capture
relationships across multiple scales as we do in TopoAE.

It is important to note, that the task is by construction very difficult for many of the compar-
ison methods. This is partially due to them not trying to preserve global structure but instead
focusing on the local structure or because their design assumptions are not fulfilled. For example,
UMAP assumes the underlying data to be uniformly distributed on a locally connected Rieman-
nianmanifold [153], yet in our case, we generate data frommultiple disconnectedmanifolds (the
individual spheres). This thus also indicates how important the assumptions are that a dimen-
sionality reduction method has to the underlying data distribution. If these assumptions are not
met, the derived representation might not be meaningful, or at least not optimal.

2.6.3 Qualitative Evaluation on Image Data

PCA t-SNE UMAP Autoencoder TopoAE
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Figure 2.7: Visualization of latent representations derived from image datasets. Columns represent differ-
ent dimensionality reduction methods, whereas rows correspond to different datasets. Colors
correspond to classes in the datasets.
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2 Preserving Underlying Structure usingMulti-Scale Topology

We compare different latent representations derived from image datasets by visualizing them
in Figure 2.7. Here we can see interesting similarities between our method Topo-AE andUMAP.
The similarities are particularly striking for the Fashion-MNIST andCIFAR-10 datasets, where
both approaches give rise to a similar cluster structure and overall shape of the lower dimensional
space. Even neighborhoods of classes are largely consistent when comparing the two approaches.
Further, the individual classes represent relatively compact clusters in both cases. This is in line
with the fact that both TopoAE and UMAP are topologically motivated [153].
This is not the case for the (non-regularized) autoencoder,whichprimarily pulls different classes

apart in the latent space representation. Further, we can observe that t-SNE leads to clearly dis-
tinct clusters inMNIST andpartially fragments clusters in the Fashion-MNISTdataset. On the
MNIST dataset, both t-SNE and the autoencoder methods seem to lose some relationship infor-
mation between clusters by pulling them apart. Interestingly, here the structure of TopoAE and
the autoencoder are particularly similar. This could occur when the hyperparameter optimiza-
tion procedure selects very small values for the regularization strength λ, which would reduce the
impact of the topological loss term and thus make TopoAE closer to a standard autoencoder.
All approaches are having difficulties representingCIFAR-10 in a two-dimensional space. This

is not surprising as it is the most challenging dataset of the ones considered and contains natural
imageswhich showmuchmore variability compared to any of the other considered datasets. Nev-
ertheless, ourmethod seems to identify a linear substructure (in red) in theCIFAR-10,which is es-
pecially compact and separates the latent space representation into two parts. We can see a similar
type of structure being present in the embeddings of UMAP yet here it is much less pronounced.

2.6.4 Quantitative Evaluation

The results of the quantification are provided in Table 2.2. Of all non-linear dimensionality re-
duction methods, TopoAE consistently preserves the multi-scale structure of the data quantified
in terms of KL for different length scales. Here TopoAE is either the best approach or the sec-
ond best behind PCA. The good performance of PCA is not entirely surprising as even a random
linear projection would with high probability preserve distances in a lower dimensional space, ac-
cording to the Johnson–Lindenstrauss lemma [114]. Further, TopoAE is competitive in terms of
continuity, which indicates that neighbors in the data space are embedded close to each other in
the latent space. In contrast, trustworthiness is usually lower for TopoAE which shows that far
away points in data space are sometimes represented close to each other in the latent space. In this
context, it is important to note, that it is only possible to reach both perfect trustworthiness and
perfect continuity when points in data space reside in a linear subspace with the same dimension-
ality as the latent space. Only in this case would there exist an embedding that perfectly preserves
all distances and thus neighborhood relationships.
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2.7 Conclusion and Discussion

Table 2.1: Evaluation metrics used for quantitative evaluation. Here nKi and νKi denote the K-
neighborhood of instance i where the former refers to the data space X and the latter to the
latent space Z . Similarly, rij and ρij denote the rank of instance j in terms of distance with
respect to i for the two spaces.

Metric Equation

KLσ KL
(
fσX ‖ fσZ

)
`-MRRE [132] 1

N
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Additionally, the topological loss only has a minor impact on the reconstruction error. This is
important as it quantifies the degree of bias that we introduce with our approach. We expect the
autoencoder to show better reconstruction performance as its mapping is not regularised by the
additional loss term. If the reconstruction loss were very high, this would indicate that too much
information about the input image is being lost due to the latent encoding.
The other qualitymetrics indicate the good performance of t-SNE onmany datasets. Yet, these

metrics are not directly comparable as it was necessary to evaluate the t-SNE performance on a
subset of the training data due to a lack of a parametric mapping that could be applied to new
data. Further, it is important to note, that many of these metrics focus on the conservation of
local structure and do not respect how well the structure of data and latent space are aligned at
different scales. This is further underlined by our experiments on the spheres dataset shown in
Section 2.6.2. Here we see that t-SNE keeps the local structure in form of the spheres intact, yet
distorts the overarching global structure of the larger surrounding sphere.

2.7 Conclusion andDiscussion

In this chapter, we examined the problem of non-linear dimensionality reduction and presented a
newapproach that harnesses the expressivepowerof autoencoders and combines itwith structure-
preserving properties of topology. We showed that, under mild assumptions, we can propagate
gradients through the computation of persistent homology and that the representations derived
from persistent homology are also meaningful when computed on individual batches of a larger
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2 Preserving Underlying Structure usingMulti-Scale Topology

Table 2.2: Quantitative evaluation of embedding quality according to multiple evaluation metrics. The
hyperparameters of all methods were selected to minimize the objective KL0.1. For each metric
and dataset, the best-performing model is highlighted bold and underlined, the second-best
method is highlighted in bold. The column “Data MSE” shows the mean squared error of the
reconstructed image compared to the original image.

Data set Method KL0.01 KL0.1 KL1 `-MRRE `-Cont `-Trust `-RMSE Data MSE

Spheres

Isomap 0.181 0.420 0.00881 0.246 0.790 0.676 10.4 –
PCA 0.332 0.651 0.01530 0.294 0.747 0.626 11.8 0.9610
TSNE 0.152 0.527 0.01271 0.217 0.773 0.679 8.1 –
UMAP 0.157 0.613 0.01658 0.250 0.752 0.635 9.3 –
AE 0.566 0.746 0.01664 0.349 0.607 0.588 13.3 0.8155
TopoAE 0.085 0.326 0.00694 0.272 0.822 0.658 13.5 0.8681

F-MNIST

PCA 0.356 0.052 0.00069 0.057 0.968 0.917 9.1 0.1844
t-SNE 0.405 0.071 0.00198 0.020 0.967 0.974 41.3 –
UMAP 0.424 0.065 0.00163 0.029 0.981 0.959 13.7 –
AE 0.478 0.068 0.00125 0.026 0.968 0.974 20.7 0.1020
TopoAE 0.392 0.054 0.00100 0.032 0.980 0.956 20.5 0.1207

MNIST

PCA 0.389 0.163 0.00160 0.166 0.901 0.745 13.2 0.2227
t-SNE 0.277 0.133 0.00214 0.040 0.921 0.946 22.9 –
UMAP 0.321 0.146 0.00234 0.051 0.940 0.938 14.6 –
AE 0.620 0.155 0.00156 0.058 0.913 0.937 18.2 0.1373
TopoAE 0.341 0.110 0.00114 0.056 0.932 0.928 19.6 0.1388

CIFAR-10

PCA 0.591 0.020 0.00023 0.119 0.931 0.821 17.7 0.1482
t-SNE 0.627 0.030 0.00073 0.103 0.903 0.863 25.6 –
UMAP 0.617 0.026 0.00050 0.127 0.920 0.817 33.6 –
AE 0.668 0.035 0.00062 0.132 0.851 0.864 36.3 0.1403
TopoAE 0.556 0.019 0.00031 0.108 0.927 0.845 37.9 0.1398
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dataset. In the motivational example, we saw that TopoAE can capture nested relationships in
a synthetically generated dataset of high dimensional spheres, whereas other methods fail to re-
cover the multi-scale structure. This is particularly important as being able to cope with several
manifolds is a challenging task in the field of manifold learning [31]. When evaluating TopoAE
qualitatively on image datasets, we recognized its relation to other approaches inspired by topol-
ogy such as UMAP, and observed that it is capable of generating highly structured latent spaces of
high dimensional image data without discarding the relationships between clusters. In terms of
evaluation metrics, TopoAE showed promising performance, especially when considering multi-
ple evaluation scales. Further, the highperformance in termsof continuity indicated thatTopoAE
is giving higher priority towards the preservation of points in the neighborhood of the data space
while putting less weight on trustworthiness and thus allowing far-away data points in data space
to be introduced into the latent space neighborhood.

While there exists a plethora of dimensionality reduction methods, our approach is the first
to combine the expressive power of parametric non-linear dimensionality reduction via autoen-
coders with the ability of persistent homology to characterize manifolds [69]. Persistent homol-
ogy has been used to evaluate dimensionality reduction methods in the past [196], yet its utiliza-
tion inmachine learningmethods is still nascent [93]. We can relate this to some of the difficulties
that arise when using the persistent homology framework: Most prominently, persistent homol-
ogy operations are inherently discrete as creation and destruction events are also discrete. While
ourwork shows that gradients can be propagated through the PHcomputation, the gradient does
not contain any information about the PH computation procedure and instead assumes that it is
constant (which it is for infinitesimal perturbations). A straightforward approach to how gradi-
ents could be estimated including the PH computation can be implemented using evolutionary
strategies [204]. Here, noise vectors are sampled to perturb the input of the PH computation and
the computation and decoding steps are repeated using different noise values. By multiplying the
perturbation vectors with the resulting losses and computing the expectation over all noises, a gra-
dient estimate can be computed for the input of the PH computation. Nevertheless, it remains
unclear how this style of gradient estimation can be combined with back-propagation.

A further limitation of the proposed approach is the necessity of defining a distance metric
on the input and latent representation. While this work uses the Euclidean distance metrics, it
is arguably a bad metric for the computation of image distances and does not align with human
perception. Here a promising line of research could be the utilization of deep neural network
features as these highlight semantic and perceptual aspects of the data more prominently [270].
One of the issues with this approach is that features are influenced by the datasets the deep neural
networks were trained on. This would not be problematic if instead randomly initialized neural
networks were used for feature extraction, which has shown some success across domains [38,
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229]. This is in line with follow-up work on TopoAE where alternative distance metrics lead to
better separability of classes and improved visualizations [158].
Moreover, we limited the application of our approach to 0-dimensional topological features.

While it is possible to extend topological autoencoders to higher dimensional topological features
such as cycles and voids this could lead to problemswhen naively applied. Topological features are
in general stable tomany perturbations of the input data [54], yet the correspondence of a feature
with the simplex that causes its creation or destruction is generally unstable [17]. Our topologi-
cal loss term relies on the stability of this correspondence to derive meaningful gradients for the
topological loss. Further, including high-dimensional features requires us to construct mappings
for filtration values of higher-order simplices such as triangles. While this can, in theory, be easily
implemented using the maximum of the simplices to ensure the required subset relationship of
simplicial complexes, this would lead to sparse gradients that only influence single edges (i.e. the
edges that either created or destroyed the cycle). Thus implementing full support for higher-order
topological features, would require additional adaptations in the computation of persistent ho-
mology similar to Bendich, Bubenik, andWagner [17]. Nevertheless, the exploration of such ex-
tensions to enable the use of higher dimensional topological features in topological autoencoders
represents a promising direction for future research.
Furthermore, while our approachwas inspired with biological data inmind, it has not yet been

applied to itmaking further studies necessary. A first step could be an evaluation of the amount of
data needed to derive meaningful representations. As autoencoders often require large amounts
of data to be trained, this could make out approach unsuitable for some applications. Further, in
order for the approach to derive meaningful results an appropriate distance metrics is required.
In the context of single-cell data, this could be implemented using a metric that accounts for the
probability of dropout reads in the sequencing data, or by preprocessing the data using an impu-
tation strategy to remove those [238].
Finally, our approach relies on the predefined filtration of the Vietoris–Rips complex, which

limits which aspects of the data are considered important for the persistent homology computa-
tion. While this is similar to the previous point, an interesting approach would be to learn the
filtration during training. This was already demonstrated to be beneficial in the context of graph
classification [97, 102]. In the context of ourmethod, this of course leads to additional problems:
If the filtration function can be learned, nothing would prevent the filtration from mapping all
values to be very close to each other. This could be tackled by normalizing the filtration values and
thus making the filtration scale invariant or by applying tricks from self-supervised learning. For
example, filtration values of the input could be computed using an exponential moving average
of the learned filtration function, which in other scenarios has been shown to mitigate collapse
when applied appropriately [40].
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Part II

Irregularly-sampled sequences

This part of the thesis concentrates on the development and evaluation of approaches for the
classification of irregularly-sampled sequences often present in healthcare.

51





3 Uncertainty-Aware Antibiotic
Resistance Prediction from
MALDI-TOF Spectra

Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)mass spectrometry (MS),
is an important technique for the identification of microbes and has become a common tool in
clinical routine [59]. Themethod involves embedding a to-be-analyzed probe in amatrix solution
that stabilizes larger macromolecules. Then the components of the probe are fragmented and
ionized using a laser and accelerated using an electric field. The accelerated particles are passed
through a time-of-flight mass spectrometer, which essentially represents a long tube equipped
with a sensor to detect ions at the opposing end. Due to the difference in mass and charge and
thus speed of the individual particles, they can be distinguished according to their traveling time.
More massive molecules and less strongly charged molecules will have a lower speed when enter-
ing the device1 and less massive, more strongly-charged particles will be faster and thus traverse
the device in a shorter amount of time. This allows the creation of a spectrum of intensities at
different arrival times and thus different mass-to-charge (m/z) ratios.
While there are highly stochastic components to this process such as the fragmentationof larger

molecules, the resulting spectrum is known to be characteristic of different microbes and has also
been found useful in the prediction of bacterial characteristics, for example, the species of the
microbe and its antimicrobial resistance [252].
Despite its high significance in the clinic, only very fewmachine learning approaches were pro-

posed specifically forMALDI-TOFMSdata. The following chapter takes this as amotivation and
explores the construction of machine learning models that can directly be applied to the peaks of
MALDI-TOFMS spectra. This is accomplished by the construction of a non-parametric prepro-
cessing step, a novel heat-diffusion-inspired kernel forMALDI-TOFMSpeaks, and theutilization
of these in aGaussian process classifier. While themethod presented in the following sections was
designed for and evaluated onMALDI-TOFMS spectra, it solely incorporates inductive biases for
spectral data and not inductive biases specific toMALDI-TOFMS data. Thus themethod can be
1The higher mass causes the particles to be accelerated more slowly in the electric field, whereas lower charge reduces
the force applied to the particles in the electric field, thus also leading to less acceleration.
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applied in amuchwider setting than presented in this work and other types of mass spectrometry
data represent well-suited candidates for its future application.
In the following, I will begin by providing some background on the methodology that our ap-

proach is based on by introducing kernels and Gaussian processes. I will then move toward the
issues present in MALDI-TOF MS data and finally present our devised approach. This chapter
is based on the following published work:
C.Weis∗, M.Horn∗, B. Rieck∗, et al. “Topological and kernel-basedmicrobial phenotype predic-
tion fromMALDI-TOFmass spectra”. Bioinformatics 36, 2020, pp. i30–i38

3.1 Kernels

While it is evident that machine learning on MALDI-TOF MS spectra is important due to its
potential clinical implications, the exact way how this would be conducted is largely unclear.
MALDI-TOF MS spectra are irregular in the sense that they might contain a different number
of peaks and these peaks do not need to be aligned. What is more, they are not represented in a
way typically compatible withmachine learning algorithms. A potential solution to this problem
are kernels. Intuitively spoken, kernels represent similarity functions on objects and many ma-
chine learning methods can be expressed in terms of kernels [210]. They are thus a very lucrative
approach when tackling machine learning problems on structured data as they solely require rea-
soning about the objects in terms of similarity andnot in terms of the original data representation.
A series of different kernels have thus been proposed for structured data ranging from kernels on
graphs [24], kernels on irregularly sampledmedical time series [136], and kernels on strings [144].
We introduce kernels formally using the definition below.

Definition 3.1 (Kernel). Given a non-empty set X , a function k : X × X → R is a kernel if
there exists a Hilbert spaceH and a feature map φ : X → H such that for all x, x′ ∈ X

k(x, x′) : =
〈
φ(x), φ(x′)

〉
H. (3.1)

A kernel thus requires the existence of a feature map φ to a Hilbert spaceH where the inner
product of the features determines the value of the kernel. A Hilbert space is essentially a vector
space equipped with an inner product, where the implied distances are complete for the space2.
This of course gives rise to the question, ofwhywe should use kernels at all if we need the existence
of a feature representation in the end, why do not we directly use the feature representation to do
2Formally, this implies that all Cauchy sequences of elements in the Hilbert space are themselves elements of the
space.
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machine learning? Kernels have one additional advantage in this context: the feature representa-
tion can be very high dimensional or even infinite dimensional, as is for example the case for the
RBF-kernel. Thus depending on the dimensionality of the kernel, it might be computationally
very costly or even impossible to work with the explicit feature representation.

Interestingly, it is not always necessary to derive an implicit feature representation in order to
ensure that a function is a valid kernel. The existence of a feature representation in some Hilbert
space is intrinsically connected to a property of functions called positive definiteness. TheMoore–
Aronszajn theorem [6] states that given a symmetric positive definite function k : X × X →
R there exists a unique Hilbert space, in which the function is a reproducing kernel k and thus
defined as the inner product of the space. The reproducing property reflects that the evaluation
of any function f ∈ H can be represented in terms of an inner product with the reproducing
kernel, i.e. f(x) = 〈f(·), k(·, x)〉H = 〈f, φ(x)〉H, where f(·) = f represents the function
coefficients and k(·, x) = φ(x) is the feature representation of x.

3.2 Gaussian Processes

Gaussian Processes are a particular type of machine learning model, which allow regression (and
due to extensions also classification)usingkernels. Brieflyput, aGaussianProcess (GP) is a stochas-
tic process for which every finite collection of variables follows a multivariate Gaussian distribu-
tion. The subsequent introduction follows the book by Rasmussen andWilliams [191]. In gen-
eral, a GP can be seen to describe a distribution over functions f where f : X → Y and X
represents the data domain andY the prediction domain. A Gaussian Process can be completely
specified by its mean functionm(x) and kernel function k(x, x′) which, based on an observed
function f , are defined as:

m(x) := E[f ]

k(x, x′) := E
[
(f(x)−m(x))(f(x′)−m(x′))

] (3.2)

We can then denote aGaussian Process as f ∼ GP(m(x), k(x, x′)), which is equivalent to defin-
ing a prior over functions, where the kernel k captures how the function can vary over its domain.
GPs are particularly attractive because their conditional distributions are themselvesGaussian dis-
tributions and can thus be computed in a closed form. Typically, we are interested in the posterior
distribution of function values f∗ at the location of the test pointsX∗, while conditioning on the
training dataX . For regression tasks, wewant to compute the predictive distribution f∗|X∗, X, f
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which, thanks to the properties of theGaussian Process also follows amultivariateGaussian/Nor-
mal distribution. This distribution of function values f∗ at the pointsX∗ can be expressed as

f∗|X∗, X, f ∼ N (K(X∗, X)K(X,X)−1f,

K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)),

whereKx,x∗ = k(x, x∗) represents the covariancematrix—evaluatedusing the kernel function—
between the instances in the training set and the test set, respectively. While this can already be
used to describe an idealized setting of observing the true function values without noise, obser-
vation noise is omnipresent. We can account for additional observation noise by describing the
observed values as being drawn from the latent (unobserved) function with additive noise, such
that y = f(x) + ε, where ε is drawn from a Gaussian distribution. This gives rise to conven-
tional Gaussian process regression, where we optimize or sample the kernel and noise parameters
according to the marginal likelihood of the model p(y|X) =

∫
p(y|f, X)p(f|X) df, which can

be computed analytically. Afterward, the predictive mean and predictive variance can be derived
in closed form.

Extensiontoclassificationscenarios WhileGaussianProcesses can approximate func-
tions, the Gaussian likelihood is often incompatible with downstream tasks. For example, when
predicting a binary classification endpoint the image of the prediction function should be the
range of probabilities f : X → [0, 1]. In contrast, the Gaussian Likelihood associates non-zero
probability to values outside of this range and thuswould also allow invalid values to be predicted.
Luckily, we can adapt Gaussian Processes to all kinds of domains by utilizing tools of statistics for
regressionmodels. In particular, we can apply the idea of link functions used in generalized linear
models [168, 191]. A link function typically transforms the response variable in a regression task
to a continuous variable defined over the complete real line, and thus allows the application of
linear regression to many different problem types.

In the context of Gaussian Processes we typically take the opposing perspective, we use the in-
verse link function, to transformour continuous randomfunction into a variable that is “squished”
to the correct function codomain. In this case, the latent function is called a nuisance function as
we never actually observed its values but only its transformed representation. For example in a
binary classification problem, the latent function f∗ is transformed using the logistic function
σ(x) = 1

1+exp(−x) to represent probability estimates of the classes, resulting in a distribution of
label predictions π∗. The prediction typically consists of two steps. First, the distribution of the
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latent function f∗ at the test points x∗ is computed conditional on the observed training data and
labels via

p(f∗|X, y, x∗) =
∫
p(f∗|X, x∗, f)p(f|X, y) df, (3.3)

where p(f|X, y) = p(y|f)p(f|X)/p(y|X) is the posterior over the latent functions. Afterward,
predictions can be made based on the distribution of f∗ by passing the function values through
σ and computing the expectation of the label distribution, i.e. p(y∗ = 1|X, y, x∗) = E[π∗] =∫
σ(f∗)p(f∗|X, y, x∗) df∗. Unfortunately, these integrals cannot be computed in a closed form

and the posterior of f need not be Gaussian due to the nonlinearity of σ. It is thus necessary to
apply approximation techniques to obtain a tractable solution.

A common approach is to apply the Laplace approximation to the posterior. The Laplace
method approximates the posterior distribution of f in Equation 3.3 using a Gaussian distribu-
tion / second-order Taylor expansion at the maximum a posteriori estimate. The derivation of
this approximation requires the computation of the Hessian of the log-likelihood log p(y|X).
The Hessian is a matrix of all second-order partial derivatives of a function with respect to its
input parameters. It is defined as

Hf =



∂2f

∂x21

∂2f

∂x1 ∂x2
· · · ∂2f

∂x1 ∂xn

∂2f

∂x2 ∂x1
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...

...
. . .

...

∂2f

∂xn ∂x1

∂2f

∂xn ∂x2
· · · ∂2f

∂x2n


.

We can use the Hessian to determine the covariance of a Gaussian which would have the same
Hessian as our function by simply computing the inverse of the negative Hessian matrix, i.e.
Σ =

(
−Hlog p(y|X)

)−1. This provides us with an approximation to the posterior of the latent
function values f denoted as q(f|X, y) = N (̂f,

(
−Hlog p(y|X)

)−1
) [149, 191]. Using the ap-

proximated posterior it is then possible to make predictions on new data by simply applying the
predictive mean and variance equations of Gaussian processes to the approximated posterior of
latent functions values as

E
q
[f∗|X, y, x∗] = k(x∗)>∇ log p(y|f̂) (3.4)

Var[f∗|X, y, x∗] = k(x∗, x∗)− k>∗
(
−Hlog p(y|X)

)−1k∗ (3.5)
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where∇ log p(y|f̂) is the gradient of the log-likelihood given the most probable latent function
values f̂ , k∗ if the kernel is evaluated between all new data points x∗ and the training data X .
Given themean and variance above, we can simply compute the expected prediction according to

E
q
[π∗|X, y, x∗] =

∫
σ(f∗)q(f∗|X, y, x∗) df∗, (3.6)

where q(f∗|X, y, x∗) is the PDF of theGaussianDistribution defined by Equation 3.4 and Equa-
tion 3.5. Further, when using the logistic function, the integral in Equation 3.4 can not be solved
analytically and needs for example to be approximated via sampling or by using variational ap-
proximations [146].

As outlined above it is possible to derive an approximate posterior distribution for Gaussian
Processes yet this does not yet allow for optimizing the hyperparameters of the kernel. Optimiz-
ing parameters of the prior is often referred to as type-II maximum likelihood, empirical Bayes,
or maximal marginal likelihood. The marginal likelihood or model evidence is computed by
marginalizing all latent variables. It is thus defined as

p(y|x, θ) =
∫
p(y|f)p(f |X, θ) =

∫
exp(log p(y|X, f, θ)) df (3.7)

which by applying a Laplace approximation to the log-likelihood at f̂ (the maximum a posteriori
estimate) can be approximated as

q(y|X, θ) = exp(log p(y|X, f̂ , θ))∫
exp
(
−1

2
(f − f̂)>(−∇∇ log p(y|X, f, θ)|f=f̂ )(f − f̂)

)
df,

(3.8)

where the marginal likelihood is denoted as q(y|X, θ) and∇∇ log p(y|X, f, θ)|f=f̂ is the Hes-
sian of the log-likelihood evaluated at the maximum a posteriori estimate. The statement above
constitutes a Gaussian integral and thus can be solved in closed form to give rise to

log q(y|X) = log p(y|X, f̂ , θ)− 1

2
det
(
−2π∇∇ log p(y|X, f, θ)|f=f̂

)
(3.9)

which can be used to optimize the kernel hyperparameters θ. This is typically done by alternating
iterations of gradient descent on the marginal log-likelihood above, and Newton optimization
steps to derive f̂ for the updated hyperparameters.
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3.3 Issues withMALDI-TOF Spectra Processing

As MALDI-TOF data is a niche data source, specialized preprocessing pipelines have been de-
veloped by researchers [84] and companies [150]. These pipelines rely on a large number of hy-
perparameters, where common values are tailored with specific use cases in mind. This gives rise
to difficulties when trying to transfer to new application domains, which have not previously
been considered. The theoretical foundation of these concerns is rooted in the fundamental data-
processing theorem [149] which is stated below:

Theorem 3.1 (Data Processing Inequality). Assuming three random variables form a Markov
chainA→ B → C such that their jointprobability distribution canbewritten asP (A,B,C) =
P (A)P (B|A)P (C|B) then

I(A;C) ≤ I(A;B), (3.10)

where I(A;C) is themutual information of the random variablesA andC .

In simplified terms, it states that any type of information processing can only destroy informa-
tion, as the less processed version of A, i.e. B, will always be more informative about A than its
more processed variantC . A typical machine learning pipeline strives to reduce the amount of in-
formation between a representation and the input data, but increasemutual information between
the representation and a label with additional processing.

This brings us back to our initial problem: complicated preprocessing objectives which involve
many steps with decisions on hyperparameters will always have to be adapted when transferred
to new applications. Due to the multi-step nature and the many involved hyperparameters in
the processing pipelines, this can be a very challenging task. This is particularly important in the
domain of MALDI-TOF data where spectra are often binned to create fixed-size representations
which canbe harnessed in off-the-shelfmachine learning algorithms [58, 152, 242]. In general, we
would expect that depending on the task the binning parametermight vary greatly. For example, a
coarse binningmight be sufficientwhen trying toderive a coarse label that canbe easily determined
by visually comparing spectra, yet for tasks that requiremore nuance in the examination of spectra
this parameter might be completely off.

In our work, we show that instead of transforming the MALDI-TOF spectrum into a binned
representation and thus losing a lot of the locational information of peaks we can yield improved
performance by operating on the peaks directly. For this, we construct a conservative topology-
based preprocessing pipeline that relies only on a single hyperparameter and devise a kernel that
can operate directly on peak representations. I will introduce the two parts of our approach in the
following.

59
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3.4 Topology-Based Peak Detection

The peak detection algorithm we propose is based on the concept of persistence from computa-
tional topology [68] and constructs a filtration based on sublevel sets of a spectrum. A spectrum
S is typically a set of n evenly spaced points mass to charge ratiosm/z and associated intensity
values, i.e.S = {(x1, y1), . . . , (xn, yn)}. In ourmethod, we treat a spectrum as a functionmap-
ping from a compact domainD ⊆ R, i.e. the domain of x values defined in the spectrum, to the
real values f : D→ R.
Further, we construct a filtration, i.e. a process which “grows” the function, from no points

being present in the collection to all points being present in the collection, according to a prede-
fined structure. In contrast to the other topology-inspired approaches in this thesis, we construct
this filtration based on the superlevel sets of the function, i.e. L+(c) := {x ∈ D | f(x) ≥ c}.
Two points (x, y) and (x′, y′) inL+(c) are considered connected, if we can traverse from one to
the other, without descending to a minimum which is lower than c. As a more creative example,
imagine a hiker hiking in a flooded mountain range, where the level of the water corresponds to
the value c. If we assume the hiker does notwant to swim, hewould then be considered connected
(thus he can reach these points) to any mountain top, which does not require him to descend to
a level lower than the water level c. As the level of the water decreases, he will be able to reach
more and more points in the landscape until, when to water is completely gone, he can traverse
the whole landscape.
If we apply persistent homology computations to this type of filtered function this leads to

connected components being created at (global and local) maxima of the function and merged /
destroyed atminima (as aminimummust alwaysbe inbetween two local or globalmaxima). These
pairings are denoted in persistence diagrams as tuples of maxima and associated minima. It is
important to note that in this context, we also account for maxima andminima at the boundaries
of the superlevel set. In this simplified case we can look inmore detail at how the persistence pairs
are computed. We denote two points to be connected x ∼c x′ given a level c if the path between
them is a subset ofL+(c). The persistent homology computationmaps eachpointx to the largest
possible value c at which it would be able to reach a higher connected partner point x′ within the
superlevel set L+(c). Thus any point will be mapped to a local minimum. We can define this
pairing function π : D→ R explicitly as

x 7→ sup{c ≤ f(x) | ∃x′ 6= x : f(x′) ≥ f(x) ∧ x ∼c x′}. (3.11)

π thus maps a point x ∈ D to a point that corresponds to the largest possible function value c
where one can reach a higher point f(x′) within L+(c). In the case of a global maximum, no
such point exists (as there is no higher point that one could be connected to) and we define the

60



3.4 Topology-Based Peak Detection

supremum of the empty set to be the point which leads to the smallest function value sup ∅ =

minx f(x).
We can interpret this pairing as a prominencemeasure of a point. Points in between amaximum

and a minimum will have f(x) ≈ f ◦ π(x), as each point being added to the superlevel set will
already be connected to points with larger function values. This means that the largest possible
value c will correspond to the level set L+(c) that x was just merged into such that in this case
c = x. In contrast, the maxima will be associated with the minimum that connects them to an
even larger maximum. Composing f and π we can construct a prominence map or persistence
diagramDf : D→ R2 according to

x 7→ (f(x), f ◦ π(x)) (3.12)

and associate each value with a prominence pers(x) = |f(x)−f ◦π(x)| or the persistence of the
topological feature in the persistence diagram. The encoding shown in Equation 3.12 is known to
be stable to perturbations [54] such that two function which are close in terms of the Hausdorff
distance will also be close in diagram space of Equation 3.12 in terms of the Bottleneck distance.
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Figure 3.1: Example of aMALDI-TOFMS spectrum before (left) and after applying the persistence trans-
form pre-processing (right). The pre-processing of the raw spectrum leads yields a simplified
and cleaner representation of the spectrumwhich can be used in a downstreammachine learn-
ing pipeline. The y-axis changes in interpretation as the values do not represent actual intensity
values, but persistences of maxima. These are still of the same unit as the intensity and can be
interpreted as a “relative” notion of intensity. From this representation we can easily create a
sparse representation composed of the k peaks with the highest persistence.

Persistence Transform Finally, we describe how the computations above can be used to
create an alternative representation of aMALDI-TOFMS spectrum, where many artifacts are re-
moved. We derive this transformed spectrum representation f̃(x) : D → R by applying the
persistence transform such that f̃(x) := pers(x). The persistence transform automatically de-
tects peaks as local maxima are associated with large persistence values due to the construction
of the superlevel set filtration. Further, it automatically removes the typical baseline intensity
level present inMALDI-TOFMS spectra. We can see a visualization of the persistence transform
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3 Uncertainty-Aware Antibiotic Resistance Prediction fromMALDI-TOF Spectra

applied to a MALDI-TOFMS spectrum in Figure 3.1. It is important to note, that this prepro-
cessing does not perform any type of alignment of the peaks and does not depend on information
from other spectra. It is a simple per-spectrum transform that allows us to derive a more tangi-
ble representation of a spectrum. We assume, that properties such as alignment or invariances to
shifts of peaks should be implemented in the downstream machine learning model. This allows
them to potentially be optimized using specific parameters and thus allows us (to some degree) to
avoid issues due to the data processing inequality.

3.5 The Peak Information Kernel
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Figure 3.2: Visualization of the effect of the smoothing parameter t. Larger values of t lead to increased
smoothing of the peaks. This means that peaks are more spread out and their exact position
matters less.

One particular approach to work with these spectra is the construction of a data structure-
specific kernel. This kernel should encode our understanding of the similarity between two spec-
tra and allow us to leverage a large set of existingmachine learningmodels on this type of data (see
Section 3.1 for an introduction) [191, 210]. In the following, I will present the Peak Information
Kernel (PIKE) designed forMALDI-TOF spectra, which is inspired by heat diffusion approaches
for structured objects [16, 192]. We will start by explaining the feature representation of PIKE
and will then show how to compute the inner product of the feature representation in practice.

Heat Diffusion Features The feature representation we propose here, is specifically con-
structed for sets of tuples, and thus does not require binning the spectrum into a fixed-length
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3.5 The Peak Information Kernel

feature vector. This is achieved by operating on a smoothed functional representation of the in-
dividual peaks. Assume each spectrum is encoded as a set of tuples of the form S = {(x1, λ1),
(x2, λ2), . . . , (xn, λn)}, where xi represents the position of the peak on the m/z axis and λi ∈
R>0 is the intensity (or after using our topological preprocessing approach the persistence) of the
peak. Further, define δxi(x) to represent the Dirac delta function centered at a point xi ∈ R.
We can then define the spectrum as the sum of these Dirac delta functions of defined height and
position as

s(x) =
n∑
i=1

λiδxi(x), (3.13)

where, s(x) is 0 for any value besides the exact locations of the peaks andλi is the height of the ith
peak at the position xi. We then model the features of each spectrum as a heat diffusion process
that evolves starting from the boundary condition s(x). Let u(x, t) denote the solution to the
following partial differential equation (PDE)

∂u

∂t
= ∇2u (3.14)

lim
t→0

u(x, t) = s(x) =

n∑
i=1

λiδxi(x) (3.15)

Assuming square-integrable functions on the real line, i.e. u(x, t) ∈ L2(R), this PDE has
a unique solution. Nevertheless, as s(x) is technically not square integrable, and the boundary
should also be a solution to the PDE for t = 0, we define the boundary in terms of a limit.
Practically, this means that we don’t use s(x) at the limit, but a twice integrable approximation
to it. The closed-form solution to the PDE [199, Chapter 7] in this case is defined as

u(x, t) =
1

2
√
πt

∑
i

λi exp
(
−(x− xi)2

4t

)
. (3.16)

From the perspective of kernel theory, we can interpret this as a parametrizable feature mapΦt :
S → L2(R), i.e. mapping from the space of spectrums to the space of square-integrable func-
tions. In this case, the functional representation itself represents the features associated with a
spectrum and the resulting feature map is infinite-dimensional as this function is continuous.
Given a spectrum S and t ∈ R, we can denote the feature map byΦt(S) := uS(x, t)where the
subscript indicates that u(x, t) is constructed using the peaks from S. Intuitively, we can inter-
pret the feature map as a smoothed representation of the original spectrum. The larger the value
t, the more smoothing we apply. For very large values of t the heat diffusion will dissipate all in-
formation of individual peaks until at some point the function would converge to a constant i.e.
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3 Uncertainty-Aware Antibiotic Resistance Prediction fromMALDI-TOF Spectra

limt→∞ u(x, t) = c. A visualization of functions generated for different values of t is shown in
Figure 3.2.

Peak Information Kernel In the end we aim at using the feature map Φ to compute a
kernel, i.e. a similarity between spectra. This kernel is typically computed using the inner product
of the matching Hilbert space of the features. In our case, the feature space is the space of square-
integrable functions, where the inner product is defined as the integral over the product of two
functions, thus the kernel between two spectra S and S′ is defined as

kt(S, S
′) :=

〈
Φt(S),Φt(S

′)
〉
:=

∫
R

Φt(S)(x)Φt(S
′)(x)dx. (3.17)

Given the structure of our functions, we can derive the above integral in closed form. While
deriving the closed form we can drop some of the error function components which are equal
to 1 given finite peak heights. This leads to the following equation for the computation of the
kernel

kt(S, S
′) =

1

2
√
2πt

∑
i,j

λiλ
′
j exp

(
−
(xi − x′j)2

8t

)
, (3.18)

where λ and λ′ are peak heights from spectrumS andS′ whereas x and x′ denote corresponding
positions of peaks. This represents a valid kernel, as a sum of squared exponentials with positive
weights is still positive definite and thus a valid kernel [210]. Nevertheless, while being a valid ker-
nel, Equation 3.18 shows some failure cases which could lead to unexpected results. In particular,
if peak heights λ are less than 1, this would result in these being less similar compared to spectra
with the same peak locations but peak intensities larger than 1. This is in contrast to our expecta-
tions that there should not be a threshold where peaks count more or less. We thus scale all peaks
before the application of the kernel such that the smallest peak in the dataset has an intensity value
of 1.
PIKE has a variety of properties, which we would like to highlight briefly. It is able to assess

interactions between different peaks, as Equation 3.18 includes the distances between all pairs of
peaks of the two spectra. Further, PIKE can easily be applied to spectra of different cardinalities
without loss of information as would be the case when converting the spectra into a binning vec-
tor of fixed size. Finally, PIKE only contains a single continuous parameter t which governs the
amount of smoothing applied to each spectrum. This has the particular benefit, that we can ap-
ply type-II maximum likelihood estimation (often also referred to as empirical Bayes or maximum
marginal likelihood) [20] in order to derive values for the continuous kernel hyperparameter.
Of course, these properties also lead to limitations of PIKE. In particular, PIKE does not scale

well to non-sparsified spectra, where very many peaks need to be compared due to its quadratic
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scaling in the number of peaks. While one can argue that this is not a limitation in practice as
MALDI-TOF spectra typically consist of only a few hundred non-noisy peaks, it does prevent
the application of PIKE to raw unprocessed spectra.

3.6 Experimental Evaluation

In the experiments we concentrated both on the evaluation of the classification performance of
the model, and also on evaluating its confidence estimates. The latter is especially important in
the clinical setting, where overconfident classifiers might (incorrectly) lead doctors to assume that
a scenario is highly probable and act inappropriately.

Preprocessing We compare our approach to the common practice of applying logistic re-
gression to the binned spectra. For the baseline, we preprocessed the spectra according to com-
mon practice, using the MALDIquant package [85] while relying on preprocessing parameters
consistent with previous work [152]. The complete preprocessing pipeline is a multi-stage pro-
cess which consists of (1) transforming spectra intensities, (2) smoothing, (3) baseline removal,
(4) normalization, (5) peak detection, (6) peak frequency filtration, (7) warping of spectra and
(8) trimming. This results in a total of 216 peaks selected by the pipeline which are then used
to compute binned spectra for the input to the logistic regression model. For our topological
preprocessing approach, we select the 200most prominent peaks such that both approaches are
comparable. For further details, on the exact preprocessing parameters we refer the reader to the
original work [253].

Figure 3.3: Summary statistics of the dataset utilized in this study.

Species Antibiotic # samples % resistant

E. coli amoxicillin / clavulanic acid 1043 28.9
ceftriaxone 1060 20.4
ciprofloxacin 1051 29.7

K. pneumoniae ceftriaxone 597 15.1
ciprofloxacin 596 16.8
piperacillin / tazobactam 576 13.9

S. aureus amoxicillin / clavulanic acid 973 13.7
ciprofloxacin 987 14.7
penicillin 941 71.4
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Experimental Setup In our experiments, we concentrate on the task of microbial resistance
prediction as it is of high clinical relevance. The dataset used in this study was acquired at the
University Hospital Basel and consists of 2676 MALDI-TOF MS spectra collected for clinical
routine measurements in the year 2008. It is composed of measurements from three different
species of bacteria Escherichia coli (E. coli, 1068 spectra),Krebsiella pneumoniae (K. pneumoniae,
603 spectra), and Staphylococcus aureus (S. aureus, 1005 spectra). For each species, we utilize the
resistance information on antibiotics typically considered in treating the respective species. A
summary of the available prediction endpoints for each species and the prevalences can be found
in Table 3.3. Each species–antibiotic combination is treated as a binary classification problem.
For further detail on the acquisition of the spectra, we refer the reader to the original publication
of this work [253].
All classifiers are evaluated on 5 random class-stratified splits, where 80% of the data where

selected for training and 20% for testing, report mean and standard deviation of the test split per-
formance metrics. In order to select the hyperparameters for the logistic regression model, each
individual train split is used in a 5-fold cross-validation scheme. We select the hyperparameters for
each random split such that they have the highest average performance on the cross-validation test
splits and then refit themodel to the complete training data of the random split. For theGaussian
Process classifier in combinationwithPIKE,we instead rely on type-IImaximum likelihood toop-
timize the kernel hyperparameters on each random training split. To simulate a balanced setting,
we oversample theminority class for all approaches during training but donot apply oversampling
during testing. This ensures that the model does not account for the prevalence of classes when
predicting. Otherwise, the model might treat errors in the minority class as less important due to
the lower probability of them occurring.
For the logistic regressionbaseline, webin spectra into same-size bins, where the intensity values

of each bin are formed by the sum of the intensities of all peaks which get allocated to the bin.
We select hyperparameters from a large grid of possible combinations. In particular, we vary the
number of bins to bin the spectrum (300, 600, 1800 and 3600), the regularization (L1,L2,L1+

L2 and no regularization) and the regularization strength (10−4, 10−3, 10−2, 10−1, 100, 101,
102, 103 and 104).

3.6.1 Antibiotic Resistance Prediction

SummaryofResults We present the results of the study inTable 3.1, where to increase read-
abilitywe always only refer to the first antibiotic of an endpoint ifmultiple antibiotics are grouped
as shown inTable 3.3. We compare the application of logistic regression (LR) and aGaussian Pro-
cesses (GP) with an RBF kernel on the MALDIquant preprocessed and binned spectra in order to
disentangle the effects of preprocessing, kernel, and downstream classifier. We find that when as-
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Table 3.1: Results for antibiotic resistance prediction. The performance of the methods on the individual
binary classification tasks is shown in terms of the mean area under the precision-recall curve
(AUPRC). Each method is composed of two parts, the preprocessing part, which shows if the
MALDIquant preprocessing pipeline (MQ) or the persistence transform pipeline (PT) was used,
and the downstreammodel, which can be one of logistic regressionwith binning (LR),Gaussian
Process with binning and RBF kernel (GP-RBF) and Gaussian Process with PIKE (GP-PIKE).

Species Antibiotic MQ–LR PT–LR MQ–GP–RBF PT–GP–PIKE MQ–GP–PIKE

E. coli amoxicillin 40.96± 7.41 35.72± 2.70 32.50± 8.48 38.89± 2.03 47.07± 3.85
ceftriaxone 63.22± 6.08 58.04± 3.14 46.29± 24.00 62.78± 3.19 70.64± 3.21
ciprofloxacin 61.37± 8.52 55.14± 3.84 34.65± 10.71 54.02± 4.04 67.99± 3.01

K. pneumoniae ceftriaxone 58.20± 9.79 56.47± 6.26 58.72± 25.29 72.38± 9.03 77.04± 6.82
ciprofloxacin 41.71± 9.82 35.04± 7.74 30.88± 13.54 40.15± 13.29 54.63± 10.12
piperacillin 31.58± 6.81 38.62± 8.65 13.79± 0.00 48.95± 9.90 56.46± 9.68

S. aureus amoxicillin 52.88± 3.91 55.21± 4.08 13.85± 0.00 61.02± 12.45 69.15± 9.15
ciprofloxacin 34.11± 3.26 26.30± 6.16 23.32± 11.88 30.51± 2.95 39.37± 6.62
penicillin 79.66± 3.34 79.61± 4.66 74.15± 3.15 80.67± 1.92 83.17± 3.54

suming conventional preprocessing, the LRmodel always outperforms theGPmodel when using
an RBF kernel, yet the GP combined with our kernel PIKE performs consistently better than all
comparison approaches and in many cases outperforms the LR classifier by a large margin. Inter-
estingly, we find that MALDIquant preprocessing is very important for good performance and the
persistence based preprocessing cannot to a satisfying degree replace the established multi-stage
preprocessing pipeline. Generally, we observe that the different experiments lead to very strong
differences in improvement over the baseline. This could for example be explained by different re-
sistance mechanisms which would manifest themselves to different extents in the MALDI-TOF
MS spectrum.

Performance of MQ–GP–PIKE Method Our proposed kernel PIKE combined with a
Gaussian Process classifier applied to the MALDIquant processed spectra leads to superior per-
formance in all tested scenarios. We can attribute this to two factors. First, PIKE is capable of
considering non-linear interactions between peaks due to the smoothing process. This is espe-
cially important as proteinsmight be fragmented intomultiple smaller ions and thus the presence
of a protein in the cell could be linked to several peaks in the spectrum. Further, each ion can be
charged with multiples of the elemental charge of an electron, such that the same fragment could
also occur at multiple discrete locations in the spectrum. While a binned spectrum can represent
the multiple versions of a protein, it aggregates the presence of peaks over an interval, such that
these cannot be differentiated afterward. An additional benefit of PIKE stems from the fact that
it only relies on continuous parameters, which allows for type-II maximum likelihood estimation
when combined with a GP. In contrast, the number of bins cannot be optimized as part of the
model training and thus needs to be evaluated over a grid of potential values lowering the resolu-
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tion of the search and potentiallymissing the optimal value. Finally, PIKEwas designed such that
minor misalignments between peaks can be compensated by increased smoothing. This allows
the selection of a t parameter by the GP which would compensate optimally for the amount of
“mismatch” in peak positions.

Effect ofGPKernel As shown in the results, the choice of data representation and kernel is
very important for good performance of the GP. The approach of utilizing the binned spectra in
combination with an RBF kernel leads to significantly worse performance compared to applying
PIKE to the peaks of the spectrum directly. Given the featurization of binned spectra, logistic
regression typically performs favorably compared to the GP with RBF kernel, which indicates
that the higher performance of the GP-PIKE approach is mostly attributable to the PIKE kernel
and its direct operation on the peaks of the spectra. While it is also possible to apply a kernel in
kernel regression or support vector machines we concentrate on utilizing Gaussian Processes in
this study due to their probabilistic nature and prior reversion when provided with samples far
away from the training data. We will explore this aspect of GPs in more detail in the next section.

Effect of Preprocessing When comparing the performance of the topological preprocess-
ing proposed in this work (PT–LR) with the conventional preprocessing pipeline (MQ–LR), we
observe that the conventional pipeline usually leads to better performance in terms of the area
under the precision-recall curve (AUPRC). Nevertheless, in many scenarios, the differences in
the approaches are not significant. We hypothesize that these differences are mainly due to the
warping step, which aligns the peak positions of the spectra based on prominent peaks. In con-
trast, our preprocessing pipeline does not change the location of peaks, such that shifts along the
m/z-axis cannot be corrected. This can to some degree be accounted for in the kernel by selecting
higher smoothing values t, which explains the improved performance of PT-GP-PIKE compared
to PT-LR. The gains of using aligned peaks seem to be much larger though, as the smoothing
also leads to a loss of information as peaks becomemore strongly spread out andmerge into other
peaks. It is important to mention though, that warping is not always possible especially if the
dataset contains very heterogeneous samples. The warping step requires the existence of reliably
measured peaks such that they can be used as landmarks for the alignment of the spectra. What
is more, the warping step needs to utilize all data, which is contrary to the common practice of
machine learning, where performance is evaluated on a strictly held-out part of the data to avoid
overconfident generalization estimates. We thus conclude that while the topological preprocess-
ing might not be beneficial in our specific setup, there are scenarios in which it might be a good
choice. In particular, we conjecture that the development of more advanced kernels forMALDI-
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TOF spectra (which might account for shifts in the m/z position without loss of information)
could lead to significant improvements in this approach.

3.6.2 Rejection of Low-Confidence Samples
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Figure 3.4: Histogram showing the different distributions of the maximum class probability maxc p(c|x)
for the logistic regression (left column) and theGaussian Process classifier with PIKE (right col-
umn) trained on S. aureus. The upper figure depicts the in-training distribution of maximum
class probabilities, i.e. class probabilities with respect to S. aureus, while the middle and lower
figures show the values for out-of-distributions species (E. coli and K. pneumoniae). It is vis-
ible that the distribution of confidences for the logistic regression model is highly skewed to
high probabilities even on data themodel was not trained on. In contrast, the Gaussian process
model shifts probability mass to lower probabilities when applied to the out-of-distribution
data, and thus recognizes appropriately that no clear prediction can be made in this case.

In a clinical setting, it is important that amodel can also signal to the clinical practitioner when
no confident prediction can be made. This for example could be the case when samples are very
close to the decision boundary of the model, which is commonly referred to as aleatoric uncer-
tainty. Further, this could also occur when data provided to the model is very different from the
training data, which is referred to as epistemic uncertainty. In both cases we would want our
model to ideally be able a reject a sample such that the clinician can rely on other data for making
a decision. Whilemost classifiers can in theory reject samples that are close to the decision bound-
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ary, only a few are able to understand if a given data point is close to their training distribution.
One example of a model which can recognize the latter case is a Gaussian Process. Combined
with an appropriate kernel, Gaussian processes show the property of prior reversion, such that
predictions far away from the training data become increasingly close to the prior [142].

In the context of predictionsonMALDI-TOFMSspectra, this is extremely relevant and impor-
tant. Here amodel might be confronted with spectra from species that have not been seen during
trainingwhen for example a strainwas picked up during travels in a distant country. In these cases,
it is of crucial importance for a doctor to purely rely on the antibiotics resistance tests and not on
the predictions of the machine learning model. To investigate if our proposed approach abides
with the above requirements, we run a series of additional experiments. In particular, we extract
the confidence of the classifier on the data points by noting the maximum class probability over
the classes maxc p(c|x). In an ideal scenario, we would want the classifier to have high confidence
on all samples drawn from the same distribution as the training data and low confidence on out
of distribution samples. This would allow the application of a threshold θ ∈ [0.0, 1.0] that only
keeps samples satisfying maxc p(c|x) > θ and thus reject out-of-distribution samples.

Wecan see a comparisonof thedistributionof confidences forbothMQ–LRandMQ–GP–PIKE
on in-distribution (ID) andout-of-distribution (OOD)data inFigure 3.4. While both approaches
showa relativelywidedistributionof confidences for the in-distributiondata of the speciesS. aureus,
the predictions of MQ–LR are skewed toward higher confidence values. The skew does not re-
semble a problem in the training data, yet the problem of overconfidence on OOD becomes ev-
ident when examining the other confidence distributions. Here MQ–LR predicts higher confi-
dence than ID data due to its inability to estimate epistemic uncertainty. In contrast, the MQ–
GP–PIKE approach clearly assigns lower confidence values to theOODdata, which would allow
the construction of a thresholding rule as previously described. The GP is able to recognize that
these samples are not close to the training data and thuswith increasing distance from any training
sample, reverts to the prior probability of 50%. The ability to recognize OOD data of course also
relates to the feature representation: While the probability that all peaks are distributed the same
way for different datasets is relatively low (as we have exact peak locations), this is not the case if
we apply binning. It is important to note that while we expect the GP to be able to well recognize
OOD data for small values of t, this does not have to be the case for larger values of t. We can
attribute this to the fact that for large values of t, our kernel PIKE does not have to converge to
low similarities as the spectra become increasingly distinct.

To characterize the degree towhichOODsamples can be rejectedwithout rejecting ID samples
we compare the rejection ratios of OOD and ID samples over different thresholds and different
splits in the left panel of Figure 3.5. It is evident that using our approachwe can rejectmostOOD
spectra while only rejecting very few ID spectra and that this holds if we compare different types
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Figure 3.5: Left: Trade-offbetween the proportion of rejected in-distribution and out-of-distribution sam-
ples ofMQ–GP–PIKE trained on S. aureus for amoxicillin resistance prediction. Right: Accu-
racy when rejecting samples according to threshold θ forMQ–GP–PIKE andMQ–LR trained
on S. aureus for amoxicillin resistance prediction.

of OOD spectra. With our method, it is possible to reject all out-of-distribution samples, while
only rejecting 30% of the in-distribution data. This very conservative threshold could be a poten-
tially suitable trade-off in clinical contexts in order to avoid false positive predictions on which
the method would not be considered reliable. The ideal threshold is of course highly dependent
on the risks and costs of rejecting ID vs OOD samples and should be determined by a clinical
practitioner.
Interestingly, compared to the MQ–LR approach our method can better represent the actual

uncertainty of the prediction, as accuracy improves while rejecting more uncertain samples as
is shown in the right panel of Figure 3.5. While the MQ–LR approach also shows slightly im-
proved performance when rejecting samples close to the decision boundary, the rate of improve-
ment is much lower and the performance deteriorates strongly when reaching the highly confi-
dent regime. This highlights that the MQ–LRmodel assigns high confidences to samples that it
classifies incorrectly.

3.7 Conclusion andDiscussion

In this chapter, I presented MALDI-TOFMS data and highlighted how current approaches for
machine learning in this domain suffer from issues that hinder reproducibility and transfer of
models betweendifferenthospitals. I presented anovel approach forpeak extraction fromMALDI-
TOF MS data based on notions from persistent homology. In our work, we showcase that it
relies on a single parameter and partially removes the necessity for complicated multi-stage pre-
processing pipelines. Further, we show that our heat-diffusion-inspired Peak Information Ker-
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nel (PIKE) avoids the necessity of binning the spectra to derive fixed-size representations used in
the field to train conventional machine learning algorithms. PIKE only contains a single con-
tinuous parameter, making it amenable to optimization using type-II maximum likelihood and
allowing it to be combined with probabilistic Gaussian Process classifiers. We showcase how our
kernel can be used in a clinical antibiotic resistance prediction scenario and highlight that our ap-
proach outperforms conventional machine learning pipelines onMALDI-TOFMS spectra. Fur-
ther, the quantification of uncertainty allows our approach to recognize spectra that are out-of-
distributionwith respect to the training data and to signal clinicians that predictions in this realm
are unreliable due to the lack of data coverage. We demonstrate the importance of this property
in detailed comparisons to a logistic regression baseline which shows strong overconfidence on
out-of-distribution data and would thus lead to false predictions with potentially negative down-
stream effects in the clinic.
MALDI-TOF MS data is used in a variety of clinical diagnostics and many hospitals rely on

commercial products to obtain information about what is contained in a sample [59, 252]. Most
machine learning approaches for MALDI-TOFMS data rely on a two-stage approach where fea-
tures are extracted from the preprocessed spectra, (typically via binning) and the vector represen-
tations are used in conventional machine learning models. This has the disadvantage that much
of the fine-scale information of MALDI-TOF MS spectra is lost as peaks get aggregated. While
this can also be beneficial to make features invariant to lab preparation and machine settings, the
locations and sizes of bins are typically chosen arbitrarily with little regard for the data which
dampens potential benefits. Our work shows that the design ofmethods specifically forMALDI-
TOF data can lead to highly-promising results. It indicates that specifically inMALDI-TOF data,
there could still be a large roomfor improvement asmanyproperties of thedata-generatingprocess
can be incorporated into machine learning models. One such direction would be to incorporate
invariances concerning the m/z ratio. After the ionization process, a fragment with massm can
have a charge z that is an arbitrary multiple of the electron mass e. This process is to some de-
gree random such that an ideal machine learning algorithm should be able to exploit invariances
concerning the difference in charge multiples. For example, a fragment in a sample with z1 = 3e

charge should be considered similar to a fragment with the same mass but z2 = 2e charge. The
inclusion of such invariances or inductive biases is a very promising direction for new machine
learning methods that significantly improve performance and robustness to distribution shifts.
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4 ClassificationModels and
Evaluation Strategies forMedical
Time Series

Healthcare is one of the sectors where ML is posed to have the largest impact on improving hu-
man lives and the standard of care and living [55]. One particular domainwheremachine learning
algorithms can support clinicians is themonitoring of clinically ill patients as these cannot be con-
tinuously monitored by doctors due to the diverse set of tasks they are responsible for [70]. This
can lead to information being missed or not reacted upon on time which increases the chances of
mortality for ICU patients [65]. While many studies have indicated links between mortality and
insufficient nurse staffing [72] the statistical significance of these associations is not consistently
deemed significant [173].

Due to the large success of recent machine learning methods in the analysis of complicated sig-
nals ranging from the classification of images to the processing of human language [129], these ap-
proaches represent promising candidates for pushing the frontier of clinical care. Here in particu-
lar clinical decision support andmonitoring systems can support doctors by providing additional
information or by monitoring patient state around the clock to ensure speedy responses [231].
This chapter will focus on monitoring systems and will two aspects of medical time series data
that are especially critical: data compatibility and model transferability. We will start by charac-
terizing the issues present and then dive into potential solutions.

This chapter is partially based on the following published works:

• M. Horn et al. “Set functions for time series”. In: International Conference on Machine
Learning. PMLR. 2020, pp. 4353–4363

• M.Moor∗, N. Bennet∗, D. Plecko∗,M.Horn∗, et al. “Predicting sepsis inmulti-site, multi-
national intensive care cohorts using deep learning”. Preprint. 2021. arXiv: 2107.05230
[cs.LG]
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4 ClassificationModels and Evaluation Strategies forMedical Time Series

4.1 Issues ofMedical Time Series Series forMachine
Learning

In the following, I will present common issues that arise when trying to apply machine learning
to medical time series data. These issues concentrate on the properties of the data and do not
consider for example biases due to sampling, which represents a further important issue regarding
the application of machine learning models to the medical domain [246]. These issues are not
discussed here as they are not generally addressed by the algorithms and methods presented in
this thesis.

4.1.1 Irregular Sampling

Medical time series as they predominantly occur in the Intensive Care Unit (ICU), have many
unique characteristics compared to other time series on which machine learning models are typi-
cally applied. Themost striking difference is that medical time series are irregularly-sampled, such
that not every measurement is available at every time point. This has to do with the way these
time series are acquired. While some measurements of patient vitals are continuously monitored
using bedside machinery (such as heart rate, respiratory rate, and blood pressure), others require
interventions from nurses or doctors. The latter is the case for lab measurements which require
for example sampling of the patient’s blood and are often only done when explicitly requested by
a doctor and responsiveness scores which require nurses to perform a series of check-ups with the
patients.
As it is impossible in the highly dynamic day-to-day work in the clinic to guarantee that mea-

surements are done at perfectly regular intervals and as the acquisition of lab measurements in-
duces additional costs which should not be done without the necessity of the results, the mea-
surements of medical time series do not fall onto a fixed spacing grid. This makes it problematic
for modern machine learning methods to be directly applied to this type of data. While classical
machine learning approaches which include feature engineering pipelines can avoid these issues
by using summary statistics over multiple horizons and imputation of missing values [108, 162],
modern gradient-driven representation learning approaches need to resort to alternative solutions
as they try to derive the appropriate feature representations for the data as part of the learning pro-
cess.

Bridging gradient-based learning and irregular sampling The most straightfor-
ward approach towards applying models in this domain is to simply treat the issue as a missing
value problem. In a Bayesian framework, missing data would be treated as a latent variable over
whichwe can perform inference to derive a posterior distribution over values that the unmeasured
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variable could potentially have. Then predictions aremade bymarginalizing this unobserved vari-
able, i.e. by considering all possible values of the unobserved value and weighting the predictions
according to the probability associated with the value under consideration. A direct application
of this approach is unfortunately not feasible in most cases, as an irregularly sampled time series
also does not attain to any grid which would allow stating that at this particular time point, cer-
tainmeasurements aremissing. It is thus common to rely on binning of observations into discrete
intervals to construct this regular grid representation [12]. Nevertheless, even in this context, the
use of naive Bayesian inference is intractable for deep neural networks and it is necessary to apply
approximation methods such as variational inference [166].

An alternative approach is to impute the data and augment it with indicators that provide the
model with the information if a value was actually measured or if the value that is presented to it
is imputed [141]. This strategy was further extended by allowing the model to decide how impu-
tation should take place. Che et al. [47] suggest allowing a Recurrent Neural Network (RNN)
to learn feature-specific decay rates which model how fast the value in question decays to the em-
pirical mean of the feature if it is not observed. This enables the model to derive a feature-specific
notion of time and thus to represent the fact that some features will probably not change as fast
as others. While these approaches are applicable to irregularly-sampled data, they either rely on
imputation schemes or empirical global estimates of the data distribution, without taking corre-
lations between channels into account.

The previously described approaches give models some flexibility regarding the interpretation
of non-measured values, yet imputation approaches are often highly constrained and rely on very
simple models for the underlying generative process. Despite it certainly being possible to ap-
ply advanced time series imputation methods such as Gaussian Processes to model the structure
present in the data in more detail, these give rise to further problems: The imputation might
actually lead to loss of information needed for the downstream task due to the data processing
inequality. To tackle the loss of informationmany recent approaches have therefore concentrated
on learning the imputation strategywhich generates a fully observed regularly sampled time series
together with a downstream (classification) model in an end-to-end fashion [80, 137, 159, 219].
The motivation behind this is to ensure that the parameters used for imputation are in line with
the downstream objective and thus reduce the amount of information that could be lost due to
the imputation procedure. This is achieved by stacking the imputation approach (typically Gaus-
sian Processes, Multi-Task Gaussian Processes [23], or kernel-based interpolations [219]) with a
downstream classifier and optimizing the parameters of the imputation via back-propagated gra-
dients of the classifier. Typical choices for downstream classifiers include variants of recurrent
neural networks such as LSTMs [80] or temporal convolution networks [159] — due to the im-
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putationmodule any downstream classifier that operates on fully observed regularly sampled time
series can be applied.

Learning Imputations isHard Most of the aforementioned approaches have in common,
that they construct a fully observed time series which is then used in a downstreammodel. Given
that data is only sparsely available, this constitutes a difficult task. Taking the idealized perspective,
the best thing a model could do to solve the imputation problem is to first learn a model of the
underlying dynamics of the systemwhich adequately describes correlations that occur in the time
series features over different time scales. Then the model should derive the specific instantiation
parameters of the time series that is currently being observed, i.e. perform inferencewith respect to
this model. Finally, the model should simulate the evolution of the underlying dynamical system
andprovide estimates of the distribution of values thatwould occur at different time pointswhere
no data is observed. If we knew that we had access to the true underlying model which gave rise
to the data, i.e. the true causal process, inference with respect to this process would be our best
shot at deriving realistic imputations which transfer to different tasks and different settings [208,
248].
Nevertheless, this underlyingmodel is typically not known and cannot be derived reliably from

data. Thus it raises the question if it is desired to work with models which can only approxi-
mate the true imputations solely for the purpose of being able to tackle a discriminative learning
problem. Generally, as we argue in later parts of this section, it may instead be more favorable to
construct models which can directly be applied to medical time series data.

4.1.2 Distribution Shifts BetweenHospitals and Countries

Afurther issuewhen applyingmachine learningmodels in the clinic is the presence of distribution
shifts. Studies have shown that even the admission rates for diseases and accidents vary between
countries after accounting for differences in demographics [175]. These differences are addition-
ally amplified by the variability in clinical practice in the same country as even academic medical
centers do not provide consistent treatments in cases where clear clinical practices exist [255].
Additionally, medicine is a highly complicated field in which the opinions of experts may often
diverge, such that it is not always possible to objectively prefer one treatment approach over the
other. In such cases, patients are given the freedom to decide over the treatment which often
results in themmirroring the opinion of their treating doctor [111].
These differences in admission rates and clinical practices lead to subtle distribution shifts in the

data. For example, if doctors in one hospital always administer vasodilators (medication to reduce
high blood pressure) when the blood pressure reaches a certain level and another hospital defines
this threshold differently or simply does not prescribe vasodilators as frequently, this would lead
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to a distribution shift that could even be recognized in the marginals of the distribution. While
there are some indications that this is an issue for recently developed models [14, 108, 258], no
general large-scale study which examines the transferability of machine learning models between
hospitals has yet been performed. A first step towards improving the current state is the definition
of gold standards for the evaluation and monitoring of deployed algorithms which has recently
been an ongoing topic of discussion in the community [246].

4.1.3 Circularity in Label Definitions

A recent study by Schamoni et al. [207] highlighted the problem of circularity in the context of
sepsis definitions. In the case of the sepsis onset prediction task, it is especially difficult to obtain
time-resolved labels, as hospital billing codes are highlyunreliable for endpoint definitions [28, 77]
and do not contain any information on the exact time at which sepsis occurs. It is thus common
to construct labels using an algorithmic definition of sepsis onset derived from clinical guidelines,
the applicability of which of course implies that these data are available and readily measured. In
many cases, the samedata is thenused to train amachine learning algorithm,whichwill trivially be
able to achieve high performance as it solely needs tomirror a simple algorithmic definition [207].

This gives rise to two main problems. First, as the labels do not represent an independent
ground truth, the approaches are compromised and cannot actually be validated/tested on truly
independent data. Second, the knowledge derived from such approaches will be highly limited
in its scope as a supervised machine learning algorithm will mostly try to learn the structure of
the label definition. This has been observed in some studies that try to bridge the gap between
machine learning and the clinic [108, 162].

4.1.4 Indication Bias

A further issue can arise if models do notmake independent decisions, but decisions based on the
doctors’ actions. Many treatments can give the model information about the doctors’ expecta-
tions regarding the patient. For example, the administration of antibiotics can tell the model that
themedical practitioner suspects that the patient is infected or expects an infection to occur. What
is more, even the fact that a lab test for infection was requested would be sufficient to convey this
information. In randomized trails, this is often referred to as indication bias or confounding by
indication [75] and captures the bias introduced when a treatment is incorrectly associated with
an outcome as both are causally linked to the same underlying indication or cause. For example, if
a patient has a fever and is given an antipyretic, i.e. a medication to reduce fever. An observational
study might show that the patients that where treated with an antipyretic show higher rates of
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mortality, yet the association might be spurious as the true cause for the higher mortality might
as well be the fever measured by the doctor.
In the context of machine learning, this occurs when the model (incorrectly) attributes the

deterioration of the patient’s state to the actions/treatments of the doctor. While this might ac-
tually result in a good predictor the derivedmodels are unlikely to generalize due to differences in
treatment routines as mentioned in Section 4.1.2. Additionally, the deployment of such systems
brings even higher risks such as feedback loops due to the interactions between machine learning
models and medical practitioners [246].
For example, consider the scenario of a diagnostic support system that predicts the deteriora-

tion of patients. A common cause of patient deterioration and death is a systemic infection or
sepsis. If the model has access to lab measurements or treatments of the doctor, it will most likely
rely on the doctor’s treatment variables or the request of the doctor to do lab measurements in
order to predict infection. Issues may arise after the model has been deployed in a hospital for a
prolonged time period and the model’s predictions seem in line with the conclusions the doctors
aremaking independently of themodel. As confidence in the system rises, themodel’s predictions
might start to get included in the decision-making process of medical practitioners such that the
measurements of antibiotics are not made anymore purely based on suspicion by the doctor but
also on the risk score of the model. As the model relies on the confounding signal of antibiotics
measurements from the doctor this would lead to a feedback loop that could deteriorate the state
of clinical care if not adequately monitored.
It is important to note thatmany current studies do not account for this type of circularity and

do not consider it problematic that the model has access to sampling information [108, 124].

4.2 Tackling Irregular Sampling – Encoding Time Series as
Sets

Motivated by the issues of incompatibility betweenmodern neural networks and irregularly sam-
pled time series described in Section 4.1.1, we propose an alternative perspective in order to train
models on irregularly sampled time series without prior imputation. Our method is driven by
the understanding that, while RNNs and similar architectures are well suited for capturing and
modeling the dynamics of a time series and thus excel at tasks such as forecasting, retaining the
order of an input sequence can even be a disadvantage in some scenarios [245]. We show that
by relaxing the condition that a sequence must be processed in order, we can naturally derive an
architecture that directly accounts for (i) irregular sampling, and (ii) unsynchronized measure-
ments. Our method SeFT: Set Functions for Time Series, extends recent advances in set function
learning to irregular sampled time series classification tasks, yields favorable classification perfor-
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Figure 4.1: Overviewof SeFT’s architecture. The first panel shows a potential input, i.e. amultivariate time
serieswith threemodalitiesm1,m2 andm3which are sampled at irregular andunaligned times.
We denote the jth obeservation as a tuple (tj , zj ,mj), comprising of a time tj , a value zj and
a modality indicatormj . All observations are thus jointly summarized as a set of said tuples.
Each set (and thus time series) is summarized using a small permutation-invariant set function
f ′ which is concatenated to the embeddings of the individual set elements. A fixed size vector
representation is computedby aweighted average using an attentionmechanismwith a static set
of learnt query vectors leading to different representations which can focus on different aspects
of the data. The representations are concatenated and passed to a classificationMLP to predict
the label of the time series.

mance, is highly scalable and improves over current approaches by almost an order of magnitude
in terms of runtime. With SeFT, we propose to rephrase the problem of classifying time series as
classifying a set of observations. We show how set functions can be used to create classifiers that
are applicable to unaligned and irregularly-sampled time series, leading to favorable performance
in classification tasks. Next to being highly parallelizable, thus permitting ready extensions to on-
line monitoring setups with thousands of patients, our method also yields importance values for
each observation and each modality. This makes it possible to interpret predictions, providing
much-needed insights into the decision made by the model.

4.2.1 ProposedMethod

Thiswork focuses on theproblemof time series classificationof irregularly sampled andunaligned
time series. We first define the required terms before describing our model.

Problem Statement andNotation

Definition 4.1 (Time series). We describe a time series of an instance i as a set Si ofM := |Si|
observations sj such that Si := {s1, . . . , sM}. We assume that each observation sj is repre-
sented as a tuple (tj , zj ,mj), consisting of a time value tj ∈ R+, an observed value zj ∈ R, and
amodality indicatormj ∈ {1, . . . , D}, whereD represents the dimensionality of the time series.
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We writeΩ ⊆ R+ ×R×N+ to denote the domain of observations. An entireD-dimensional
time series can thus be represented as

Si := {(t1, z1,m1), . . . , (tM , zM ,mM )}, (4.1)

where for notational convenience we omitted the index i from individual measurements.

We leave this definition very general on purpose, in particular allowing the length of each time
series to differ, since our models are inherently capable of handling this. Likewise, we neither
enforce nor expect all time series to be synchronized, i.e. being sampled at the same time, but
rather we are fully agnostic to non-synchronized observations in the sense of not having to observe
all modalities at each time point1. We collect all time series and their associated labels in a dataset
D.

Definition 4.2 (Dataset). We consider a dataset D to consist of n time series. Elements of D
are tuples, i.e. D := {(S1, y1), . . . , (SN , yN )}, where Si denotes the ith time series and yi ∈
{1, . . . , C} its class label.

For an online monitoring scenario, we will slightly modify Definition 4.2 and only consider
subsets of time series that have already been observed.
In the following, we will give a short illustrative example of how an irregularly sampled time

series can be converted into its set representation. Let us assume that instance i represents mea-
surements for an ICU patient, and consists of two channels the heart rate (HR) and the mean
arterial blood pressure (MAP) which we refer to as modalities 1 and 2. Assume that 0.5 h af-
ter admission of the patient, an HR of 60 beats per minute (bpm) was measured, and after 3 h
a value of 65 BPM. Further, let us assume the MAP was measured to be 80, 85, and 87mmHg
after 0.5 h, 1.7 h, and 2.5 h. According to the definition above, we can represent this time series
as Si := {(0.5, 60, 1), (3, 65, 1), (0.5, 80, 2), (1.7, 85, 2), (3, 87, 2)}, where the observations
are ordered to increase readability. It is important to note that in this representation there is no
inherent ordering of the observations as they are elements of a set. Nevertheless, no informa-
tion is lost, as we can construct a bijection between any set representation of a time series and
the conventional time series representation by “scattering” the observation values z according to t
andm. Our model, however, does not assume that all observations are stored or processed in the
sameordering—this assumptionwas already shown [245] to have a strong impact on classification
performance in some scenarios. Therefore, our model does not employ a “sequentialness prior”:
instead of processing a sequence conditional on previously-seen elements (such as in RNNs or
1We make no assumptions about the time values tj and merely require them to be positive real-valued numbers
because our time encoding procedure (see below) is symmetric with respect to zero. In practice, positive time
values can always be achieved by applying a shift transformation.
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other sequence-based models), it processes values of a sequence all at once—through encoding
and aggregation steps—and retains all information about event occurrence times.

In our experiments, we will focus on time series in which certain modalities—channels—are
not always observed, i.e. some measurements might be missing. We call such time series non-
synchronized. Given the above definition, we consider a time series non-synchronized if there
exists at least one time point tj at which at least onemodality is not observed, i.e. if the number of
measurements associated with a time point is less that the number ofmodalities in the time series.
Figure 4.1 gives a high-level overview of our method, including the individual steps required to
perform classification.

Model description In the following, we describe an approach inspired by differentiable
learning of functions that operate on sets [247, 267]. The following paragraphs provide a brief
overviewof this domainwhile describing the building blocks of ourmodel. Specifically, we phrase
the problem of classifying irregularly-sampled time series as learning a function f on a set of
arbitrarily many time series observations following Definition 4.1, i.e. S = {(t1, z1,m1), . . . ,

(tM , zM ,mM )}, such that f : S → RC , where S represents a generic time series of arbitrary
cardinality and RC corresponds to the logits of the C classes in the dataset. As we previously
discussed, we interpret each time series as an unordered set of measurements, where all informa-
tion is conserved because the observation time is included for each set element. Specifically, we
define f to be a set function, i.e. a function that operates on a set and thus has to be invariant to
the ordering of the elements in the set. Multiple architectures are applicable to constructing set
functions such as Transformers [133, 239], or Deep Sets [267]. Given its exceptional scalability
properties, we base this work on the framework of Zaheer et al. [267]. Intuitively, this amounts
to computing multivariate dataset-specific summary statistics, which are optimized to maximize
classification performance. Thus, we sum-decompose the set function f into the form

f(S) = g

 1

|S|
∑
sj∈S

h(sj)

 (4.2)

where h : Ω → Rd and g : Rd → RC are neural networks, d ∈ N+ determines the dimen-
sionality of the latent representation, and sj represents a single observation of the time series S .
We can view the averaged representations 1/|S|

∑
sj∈S h(sj) in general as a dataset-specific sum-

mary statistic learned to best distinguish the class labels. Equation 4.2 also implies the beneficial
scalability properties of our approach: each embedding can be calculated independently of the
others; hence, the constant computational cost of passing a single observation through the func-
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tion h is scaled by the number of observations, resulting in a runtime ofO(M) for a time series
of lengthM .

Recently,Wagstaff et al. [247] derived requirements for a practical universal function represen-
tation of sum-decomposable set functions, i.e the requirements necessary for a sum-decomposable
function to represent an arbitrary set-function given that h and g are arbitrarily expressive. In
particular, they show that a universal function representation can only be guaranteed provided
that d ≥ maxi |Si| is satisfied. During hyperparameter search, we therefore independently sam-
ple the dimensionality of the aggregation space and allow it to be in the order of the number of
observations that are to be expected in the dataset. Further, we explored the utilization of max,
sum, and mean as alternative aggregation functions inspired by Garnelo et al. [83] and Zaheer
et al. [267].

Time Encoding To represent the time point of an observation on a normalized scale, we
employ a variant of positional encodings [239]. Preliminary results indicated that this encoding
scheme reduces the sensitivity towards initialization and training hyperparameters of a model.
This makes intuitive sense, as the ICU stays show a large variability in stay length such that using
a single scalar for this long-tailed distribution could lead to issues during training. Further, the
time encoding can allow the model to reason at different length scales more easily compared to
using a single continuous variable encoding. Specifically, the time encoding we utilize converts
the 1-dimensional time axis into a multi-dimensional input by passing the time t of each obser-
vation through multiple trigonometric functions of varying frequencies. Given a dimensionality
τ ∈ N+ of the time encoding, we refer to the encoded position as x ∈ Rτ , where

x2k(t) := sin
(

t

t2k/τ

)
(4.3)

x2k+1(t) := cos
(

t

t2k/τ

)
(4.4)

with k ∈ {0, . . . , τ/2} and t representing the maximum time scale that is expected in the data.
Intuitively, this presents each time point through the perspective of multiple sine and cosine
functions where each trigonometric function shows a different resolution with respect to the
continuous-time variable. We select the wavelengths using a geometric progression from 2π to
t · 2π, and treat the number of steps and the maximum timescale t as hyperparameters of the
model. We used time encodings for all experiments, such that an observation is represented as
sj = (x(tj), zj ,mj).
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Attention-basedAggregation So far, ourmethodpermits encoding sets of arbitrary sizes
into a fixed-size representation. For increasingly large set sizes, however, many irrelevant observa-
tions could influence the result of the set function. Themean aggregation function is particularly
susceptible to this because the influence of an observation on the embedding shrinks proportion-
ally to the size of the set. We thus suggest using a weighted mean in order to allow the model to
decide which observations are relevant and which should be considered irrelevant. This is equiv-
alent to computing attention over the set input elements, and subsequently, computing the sum
over all elements in the set.

Our approach is basedon scaleddot-product attention [239]withmultiple heads i ∈ {1, . . . ,m}
in order to be able to cover different aspects of the aggregated set2. We define a(S, sj), i.e. the
attention weight function of an individual time series, to depend on the overall set of obser-
vations S and the value of the set element sj . This is achieved by computing an embedding
of the set elements using a smaller set function f ′, and projecting the concatenation of the set
representation and the individual set elements into a d-dimensional space. Specifically, we have
Kj,i = [f ′(S), sj ]TWi whereWi ∈ R(im(f ′)+|sj |)×d andK ∈ R|S|×d. Furthermore, we de-
fine a matrix of query pointsQ ∈ Rm×d, which allow the model to summarize different aspects
of the dataset via

ej,i =
Kj,i ·Qi√

d
and aj,i =

exp(ej,i)∑
j exp(ej,i)

where aj,i represents the amount of attention that head i gives to set element j. The head-specific
rowQi of the querymatrixQ allows a head to focus on individual aspects (such as the distribution
of one or multiple modalities) of a time series. For each head, wemultiply the set element embed-
dings computed via the function h with the attentions derived for the individual instances, i.e.
ri =

∑
j aj,ih(sj). The computed representation is concatenated and passed to the aggregation

network gθ as in a regular set function, i.e. r∗ = [r1 . . . rm]. In our setup, we initializeQ with
zeros, such that at the beginning of training, the attentionmechanism is equivalent to computing
the unweighted mean over the set elements.

Overall, this aggregation function is similar to Transformers [239] but differs from them in
a few key aspects. Commonly, Transformer blocks use the information from all set elements to
compute the embedding of an individual set element, leading to a runtime and space complexity
ofO(n2). By contrast, our approach computes the embeddings of set elements independently,
leading to lower runtime and memory complexity of O(n). This is particularly relevant as set
elements in our case are individual observations so that we obtain set sizes that are oftenmultiples

2Since we are dealing only with a single instance (i.e. time series) in this section, we use i and j to denote a head and
an observation, respectively.
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of the time series length. The scalability of transformer-based architectures is a field of ongo-
ing research and since the composition of this work has progressed significantly [227], such that
modern developments might actually make the application of attention architectures to sets of
observations feasible. In our preliminary experiments, we observed that incorporating interac-
tions into the embedding of individual set elements leads to convergence issues and instabilities
during training rendering the permutation equivariant formulation of set functions by Zaheer
et al. [267] inapplicable in our context.

Online Monitoring Scenario In the context of medical time series, it is often desired to
construct a model which can be applied in an online scenario, i.e. where data is being passed into
the model and it gives a new prediction at each time point. In order to ensure that a model can
handle both the low data regime where only very few data points are available and the regime
wheremultiple hours of data have been recorded, it is important to train themodel on all potential
data availability scenarios. While this could be achieved by simply cropping the whole time series
into increasingly long segments and training the model on each of these sequences individually,
this is highly inefficient as it prevents the reusing of the computations of shorter sequences when
computing longer ones. This is especially critical in our case as part of the sequence embedding can
be computed individually for each time point without being dependent on other computations.

To allow a prediction on a per-time-point basis which enables the application to online moni-
toring scenarios, we can rearrange the computations of the weightedmean in our algorithm. This
allows us to compute these in an online fashion following

f(Si) =
∑
j≤i

exp(ej)∑
k≤i exp(ek)

h(sj)

=

∑
j≤i exp(ej)h(sj)∑

k≤i exp(ek)
,

where we omit the head indices for higher readability. In this case, both the numerator and de-
nominator can be computed in a cumulative fashion which allows us to reuse the computation
of h(sj) from previous time points. In practice, we additionally need to subset these predictions
to select the last set element associated with each time point at which we would want to predict.

Loss function If not mentioned otherwise, we choose h and g in Equation 4.2 to be mul-
tilayer perceptron deep neural networks, parametrized by weights θ and ψ, respectively. We thus
denote these neural networks by hθ and gψ ; their parameters are shared across all instances per
dataset. Our training setup follows Zaheer et al. [267]; we apply the set function to the com-
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plete time series, i.e. to the set of all observations for each time series. Overall, we optimize a loss
function that is defined as

L(θ, ψ) := E
(S,y)∈D

`
y; gψ

∑
sj∈S

a(S, sj)hθ(sj)

,
where `(·) represents a task-specific loss function. In all of our experiments, we utilize the binary
cross-entropy loss in combination with a sigmoid activation function in the last layer of gψ for
binary classification.

4.2.2 Experimental setup

In the followingwewill detail the datasets and experimental setup used to compare the individual
models to each other.

Datasets and Tasks

In order to benchmark the proposed method, we selected three datasets with irregularly-sampled
and non-synchronized measurements. We are focusing on two tasks (1) patient mortality predic-
tion, which represents a whole time series classification task and was evaluated on two datasets
and (2) sepsis3 onset prediction which an online time series classification prediction task where
the model must predict a label for each time point using the information that was available until
then.
For the first task, we utilize the MIMIC-III dataset [113], which is a widely-used and freely-

accessible dataset of distinct ICU stays. The median stay length is 2.1 d and a wide range of phys-
iological measurements are obtained at a resolution of 1 h. Laboratory test results, collected at
irregular time intervals, are also available in the dataset. Instead of applying our own preprocess-
ing pipeline in order to extract and harmonize value from the large MIMIC-III database, we rely
on a set of preprocessed data and tasks defined by Harutyunyan et al. [91]. Here the authors de-
sign a mortality endpoint that should be predicted using data from the first 48 h of the patient
stay. In contrast, as we designmethods specifically for irregularly sampled time series, we omit the
binning step of their preprocessing pipeline and apply additional filtering4. Overall, the dataset
contains 21000 stays with a prevalence of death of approx. 10%. We refer to this dataset and task
combination as M-Mortality.

3an organ dysfunction cause by a dysregulated host response to infection
4This was necessary as some patients had high-resolution recordings which are incompatible with the rest of the
dataset and lead to problems when processing them with the methods presented here. We conjecture that these
were missed in the design of the preprocessing pipeline due to the binning step.
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Additionally, we rely on a further dataset formortality prediction, thePhysionet 2012 challenge
dataset [86], which we refer to as P-Mortality, contains 12000 ICU stays each of which lasts
at least 48 h. Here up to 37 time series variables are measured and some are only collected when
required and thus might not be available for each stay.

Finally, for the online sepsis prediction task, we use the dataset provided byReyna et al. [194] as
part of the Physionet 2019 Sepsis Early Prediction Challenge. It contains observations from over
60000 intensive care unit patients from three different hospitals and up to 40 variables which are
binned into hourly measurements. Each hour is further associated with a binary label that indi-
cates whether sepsis occurred following a recently suggested clinical definition [215]. The labels
are propagated into the past, such that a positive label corresponds to the onset of sepsis within
the next 6 h and is kept positive after the sepsis onset. Reyna et al. [194] additionally provide a
new score to capture the clinical utility of a predictor, which also incorporates if a prediction takes
place early enough for a doctor to potentially intervene. This utility score can be normalized to
give rise to Unorm where a perfect classifier (according to the utility measure) receives a score of 1
and a model which does not predict at all a score of 0. We refer to this task as P-Sepsis.

Comparison Partners, Training andHyperparameter Selection

We compare our method to the following six approaches: 1. GRU-simple [47] 2. GRU-Decay
[47] 3. Phased-LSTM[167] 4. InterpolationPredictionNetworks [219] 5.Transformer [239] and
6. Latent-ODE [200]. All methods besides Latent-ODEwere implemented in the same code base
and underwent an unbiased hyperparameter optimization process. In the case of Latent-ODE,
this was unfortunately not possible as the runtime for this approachwas considerably higher than
any of the other methods considered. We thus note that the performance of Latent-ODE should
rather be interpreted as an overly pessimistic performance estimate.

To mitigate the problem of unbalanced datasets, all models were trained on balanced batches
of the training data rather than utilizing class weights. This was done in order to not penalize
modelswith ahighermemory footprint5. Due tooversampling, thenotionof an epoch is different
from the common understanding. In our experiments, we set the number of optimizer steps per
epoch to be theminimumof the number of steps required for seeing all samples from themajority
class and the number of steps required to see each sample from the minority class three times.
The training was stopped after 30 epochs without improvement of the area under the precision–
recall curve (AUPRC) on the validation data for the mortality prediction tasks, whereas balanced

5These models would only allow training with small batch sizes, which combined with the unbalanced nature of the
datasets would lead to high variance in the gradients.
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accuracy was utilized for the online predictions scenario6. The hyperparameters with the best
overall validation performance were selected for quantifying the performance on the test set. The
train, validation, and test splits were the same for all models and all evaluations.
Hyperparameters were optimized by uniformly sampling 20 parameters according to a prede-

fined hyperparameter grid. Evaluation on the test set was performed after restoring the model to
the statewith the best validationAUPRC/balanced accuracy. The final performancewas derived
by averaging the test performance of 3 independent runs for each model.

4.2.3 Results

Mortality Prediction Task

Table 4.1: Performance comparison of methods on mortality prediction datasets. “AUROC” denotes the
area under theReceiverOperatingCharacteristic (ROC) curve; “AUPRC” denotes the area un-
der the precision–recall curve. Evaluation metrics were scaled to 100 in order to increase read-
ability. † denotes that the performance could be underestimated due to limited hyperparameter
tuning compared to other methods.

Dataset Model Accuracy AUPRC AUROC s/epoch

M3-Mortality

GRU-D 77.0(15) 52.0(8) 85.7(2) 133(8)
GRU-Simple 78.1(13) 43.6(4) 82.8 140(7)
IP-Nets 78.3(7) 48.3(4) 83.2(5) 81.2(85)
Phased-LSTM 73.8(33) 37.1(5) 80.3(4) 166(7)
Transformer 77.4(56) 42.6(10) 82.1(3) 20.1(1)
Latent-ODE † 72.8(17) 39.5(5) 80.9(2) 4622
SeFT-Attn 79.0(22) 46.3(5) 83.9(4) 14.5(5)

P-Mortality

GRU-D 80.0(29) 53.7(9) 86.3(3) 8.67(49)
GRU-Simple 82.2(2) 42.2(6) 80.8(11) 30.0(25)
IP-Nets 79.4(3) 51.0(6) 86.0(2) 25.3(18)
Phased-LSTM 76.8(52) 38.7(15) 79.0(10) 44.6(23)
Transformer 83.7(35) 52.8(22) 86.3(8) 6.06(6)
Latent-ODE † 76.0(1) 50.7(17) 85.7(6) 3500
SeFT-Attn 75.3(35) 52.4(11) 85.1(4) 7.62(10)

Table 4.1 shows the results of all models on the two mortality prediction tasks. We highlight
the best-performing method for each metric in bold and the second-best in italics. SeFT exhibits
competitive performance and in terms of AUPRC the approach ranks among the best methods
for all tested conditions. For M3-Mortality, we outperform the Transformer both in terms
of runtime and in terms of performance measured in AUPRC. Both GRU-D and IP-Nets show
better performance in this case while also exhibiting considerably higher runtime. This favorable
trade-off in terms of runtime and AUPRC is highlighted in Figure 4.2.

6This distinction was made as the utility score of the sepsis prediction task relies on a binary prediction and not on a
continuous probability estimate. In order for hyperparameter selection and evaluation to be more in line we thus
also selected a metric that quantifies the quality of a binary prediction.
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Figure 4.2: Runtime vs. AUPRC trade-offs for all methods on the two mortality prediction tasks. Latent-
ODE is not shown as its runtime is significantly higher compared to the other models.

Online Sepsis Prediction Task

Table 4.2: Results of the online prediction scenario on the P-Sepsis task. The dataset is highly imbalanced,
such that we only report measures that are sensitive to class imbalance. Further, if the results
between the evaluation scenarios differ, we highlight results without masked future information
in gray, and the performance achieved with masking with ∗. † indicates that the results might be
underestimating the true performance due to limited hyperparameter tuning compared to the
other methods.

Model B-Accuracy AUPRC AUROC Unorm s/epoch

GRU-D 57.4(2) 5.33(39) 67.4(12) 12.6(11) 72.3
GRU-Simple 71.0(14) 6.10(75) 78.1(15) 26.9(41) 116
IP-Nets 87.1(9) 29.4(21) 94.1(4) 62.2(13) 253
IP-Nets ∗ 63.8(9) 5.11(80) 74.2(12) −11.9(40) 253
Phased-LSTM 67.5(17) 5.54(91) 75.4(13) 20.2(32) 192
Latent-ODE † 62.4(1) 11.4(21) 64.6(7) 12.3(10) 1872
Transformer 91.2(2) 53.4(56) 97.3(2) 71.3(14) 28.5
Transformer ∗ 53.6(17) 3.63(95) 65.8(37) −43.9(100) 28.5
SeFT-Attn 70.9(8) 4.84(22) 76.8(9) 25.6(19) 77.5

In order to verify if our approach is applicable to online monitoring scenarios in the clinic,
we evaluated performance on the Physionet 2019 Online Sepsis prediction challenge. In this sce-
nario, both the Transformer and IP-Nets yield the highest performance and outperform all other
methods by a large margin. These results are even much better than those submitted to the chal-
lenge in the first place, which reached amaximum score of 0.36 on the test set [194]. As this seems
highly suspicious we extended the evaluation to verify if the models relied on future information
during test time by running themodel on cropped versions of the time series, where for prediction
at a time point only the information up to that point is provided. We included these additional
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results and mark them with ∗. To our surprise, it is clearly evident that the high performance of
these models was due to the leakage of future information during the evaluation
For IP-Nets, information can leak through the non-parametric imputation step prior to the

application of the downstream recurrent neural network. It is infeasible to train the vanilla IP-
Nets approach on slices of the time series up until the time point of prediction, as we cannot
reuse computations from previous imputation steps. While it would be possible to construct an
IP-Nets variant that does not rely on future information during the imputation step, for example
using smoothing techniques, we deem this beyond the scope of this work.
Similar effects occur in the case of the Transformer: While observations from the future are

masked in the attention computation, preventing access to future values results in a detrimental
reduction in performance. Even though the source of dependence on future values is quite prob-
able to reside in the layer normalization applied in the Transformer model, the performance drop
can have multiple explanations, i.e. 1. the absence of future time points leads to high variance es-
timates of mean and variance in the layer norm operation, resulting in bad performance in the
initial time points of the time series, or 2. the model actively exploits future information through
layer normalization. This could for example be possible by the model looking for indicative sig-
nals in future time points and when present returning very high norm outputs. The signature of
these high norm outputs can then, through the layer norm operation, be observed in earlier time
points. While one could construct variants where the Transformer model can by nomeans access
future information, for example by replacing the layer norm layer with an alternative normaliza-
tion scheme [11, 169], we reserve a more thorough investigation of this issue for future work.
By contrast, our model does not contain any means of leaking future information into the

prediction of the current time point and thus exhibits the same performance in both evaluation
scenarios, while remaining competitive with alternative approaches. Surprisingly, the model with
the highest performance in this scenario is GRU-Simple, which could be explained by the very
regular sampling character of the P-Sepsis dataset. Here the measurements were already binned
into hours, such that they cannot be considered completely irregularly sampled. This explains
the high performance of GRU-Simple, as compared to models which were specifically designed
to cope with the irregular sampling problem.

Investigation of Attention Patterns

While recently the usage of attention weights for interpretability and explanation of models has
been criticized [32, 110, 213], the consensus on how valuable attention maps are for these types
of investigations is not clear and seems to depend on the exact definition of explainability/inter-
pretability [257]. While given the current state of research we cannot conclusively say that access
to attention scores helps with the interpretability of models and their explanation we do want to
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Figure 4.3: Visualizations of a single attention head on an instance of the P-Mortality dataset. We dis-
play a set of blood pressure variables that are most relevant for assessing patient stability: non-
invasive diastolic arterial blood pressure (NIDiasABP), non-invasive systolic arterial blood pres-
sure (NISysABP), and invasively measured systolic arterial blood pressure (SysABP). Darker
colors represent higher attention values. In the invasive channel showing high time resolution
(rightmost panel), our model attends foremost to the region after a sudden increase in blood
pressure. In the non-invasive, intermittently observed channels, the model additionally focuses
on regions of high observation density reflecting the clinician’s concern.

highlight a unique property of our model which allows attribution of attention weights to indi-
vidual observations. This is due to the existence of an information bottleneck in the attention
mechanism and the elements of the attention mechanism being individual observations of mea-
surements.

In themedical domain, this is of particular interest as a doctor would typically not only want to
know the set of observations to be of relevance at a certain time for the prediction (as would be the
casewhenwebin observations and apply attentionmechanisms over the timepoints) but rather to
knowwhich individual observations are critical for themodel. We show that ourmodel supports
this type of observation-based attribution using an example of clinically relevant variables from a
patient time series which we overlaid with the attention values of our model in Figure 4.3.

We reviewed these recordswith ourmedical expert and find that for channels showing frequent
and regularly-space observations, the model attends to regions that contain drastic changes in the
values and to those measured when the patient is applied to the ICU. For instance, the invasive
systolic blood pressure channel (SysABP), shows high attention for the first measurement at the
beginning of the ICU stay which is above average and which dropped significantly after the first
hour. In contrast, similarly high values do not trigger similar attention from themodel indicating
that the time point atwhich themeasurementwas obtained is of relevance. This couldmake sense
as patients are often admitted to the ICUwhen they require to be stabilized after having an unsta-
ble state. Thus the time when the patient is admitted to the ICU can give the most information
about the prior unstable state and might be the most informative value when a model tries to as-
sess mortality. Interestingly, we further observe that our model additionally attends to regions of
high observation density whenmanual intervention is required such as in the non-invasive blood
pressure measurements (NISysABP and NIDiasABP). This could be a signal for the model that
the doctor or nurse is paying a higher degree of attention to the patient which could also correlate
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with the patient’s state. This of course could give rise to circularity issues as mentioned in the
introduction of this chapter.

4.2.4 Conclusion andDiscussion

In this section, I presented Set Functions for Time Series (SeFT), an approach that allows the
classification of irregularly-sampled time series by interpreting time series as sets of observations.
This avoids the necessity of binning or imputing time series prior to the application of down-
stream deep learning models. I show that the method yields competitive performance on real-
world datasets and significantly improves runtime compared to other competitors as it is uniquely
parallelizable. It is important to note though that it does not outperform state-of-the-art models,
yet it shows that operating on the level of individual observations may be a promising avenue
for the construction of models on irregularly-sampled data. In particular, making this class of
models more performant could be achieved by understanding how attention-based models can
be scaled to extremely long sequences [227] or how hierarchical aggregation structures could be
implemented to allow multiple resolutions of processing in the model as often present in com-
puter vision [140].
An alternative avenue for improving performance in this realm is the incorporation of addi-

tional priors into the model. While the shift in perspective leads to a model that is naturally ap-
plicable to irregularly-sampled time series, it does remove many of the priors (or in this context
more often referred to as inductive biases) inherent to recurrent neural networks. Some inductive
biases of sequential processing could be beneficial for downstream tasks. For example, one could
imagine it to be easier for a recurrent model to learn how to compute the rate of change between
two measurements compared to a model which does not assume any structure [262]. A further
promising inductive bias for time series could be translational equivariance, which would lead to
models that can only recognize patterns independent of the location in the time series. Recent
research in time convolutional neural networks has indicated that this inductive bias could be
beneficial in onlinemonitoring [159] and time series classification scenarios [13]. While these ap-
proaches do not directly apply to irregularly-sampled time series and require preprocessing steps
such as imputation and binning, some recent work shows how translational equivariance can be
implemented inCNNs applied to irregularly-sampled domains [76]. It is generally possible to im-
plement equivariance in the attention computation using relative position embeddings [216], yet
this can also lead to scalability issues, especially when treating time series as sets of observations.
In follow-up work, I thus further explored how translational equivariance can be implemented
in the attention computation of scalable transformers [103]. Here I showed that it is possible to
implement translational equivariance in scalable transformers by augmenting the feature space in
which the attention is computed.
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Finally, while we showed visualizations of attention patterns in order to highlight a unique
property of our model of attending to individual observations, the interpretation of attention
patterns has recently been criticized [32, 110, 213]. Nevertheless, others have criticized that atten-
tion can be useful for the explanation of predictions if tests are appropriately performed [257].
The interpretability of amodel and its potential to explainwhy certain predictions weremade can
potentially determine a model’s applicability to the clinic. When critical care decisions are made
based on themodel’s predictions, it is important that clinicians have the possibility to understand
why a prediction was made and potentially question it. This is linked to the development of
general machine learning systems that are robust, trustworthy, and explainable and has emerged
to become a subfield of its own [155]. Here many have called for the direct application of in-
terpretable models instead of a post-hock explanation of black-box approaches [201], especially
when a model is used to make high-stake decisions.

4.3 InvestigatingHospital Transfer and Circularity

Asmentioned at the beginning of this chapter, another important issue besides the form of med-
ical time series data is the biases inherent to its generation. Treatment plans between hospitals
and countries vary such that models which are trained on data from a specific origin will with a
high probability not transfer to other locations. Further, the intervention of a doctor contains
important information about what the doctor’s expectations with respect to a patient are. A doc-
tor would typically only give antibiotics if he suspects that the patient has a bacterial infection.
Further, dependent on the type of antibiotics used the model might even be able to infer which
type of infection the patient is suffering or which resistances the strainmight have. This of course
could lead to situations where the doctor and the model are waiting for an action from the other:
Themodel is waiting for a signal from the doctorwhichwould give a clear indication if the patient
is in a critical state, whereas the clinician could expect the model to signal the onset of deteriora-
tion. Of course, this scenario would have a detrimental effect on a patient as potentially neither
of the actors would intervene in the case of deterioration and further outside of the clinical set-
ting evaluating models without these issues in mind would lead to overly optimistic performance
estimates that cannot be met in the real world.
In the following, wewill explore how to tackle these two issueswhen applyingmachine learning

to the problem of sepsis early detection.

4.3.1 Sepsis Onset Detection

Sepsis is defined as anorgandysfunction causedby adysregulatedhost response to infectionwhich
often threatens a patient’s life [215, 222]. It remains a major threat to public health and is asso-
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ciated with high rates of mortality and morbidity and results in significant health costs [60, 105,
118, 182]. The infection and the associated dysregulated immune response lead to organ damage
which increases for each hour in which sepsis is not recognized and appropriately treated ulti-
mately leading to higher mortality of patients [74, 188, 214]. This makes it extremely important
to treat sepsis in a timely manner in order to stop further harm from occurring and thus increase
the patient’s chance of survival [74]. Typically, sepsis is treated by resuscitation, organ support7,
and giving antibiotics in order to stop the progression of infection. One of themain issues in treat-
ing sepsis is that it is hard to diagnose as it is a complex and heterogeneous syndrome. In order to
understand if a patient is undergoing an infection, doctors rely on the identification of bacterial
species in the blood, which takes up to 48 h after the sample has been collected [179]. Thus in
order to avoid severe organ damage doctors may often already induce treatment with antibiotics
based on a suspicion of infection [74].
In order to provide alternative signals to doctors a series of biomarkers have been examined, yet

until nowwith only limited success [29, 235]. Whilemany promising development candidates ex-
ist [128, 271], there still is no clinical gold standard for accurate and early prediction of sepsis. As
the search for reliable biomarkers continues, alternative data-driven approaches for deriving sig-
nals are becoming increasingly explored [78, 161]. These methods rely on the fact that patients in
the intensive care unit aremonitored continuously using bedside devices and are regularly checked
upon by nurses to ensure their stability.
While the development of machine learning models for medical time series is still in its infancy

and many models have not yet been applied in clinical case-control studies, retrospective studies
are an important first step to assess their potential. They help to determine issues that should be
resolved before transitioning into the clinic, some of which we have discussed at the beginning
of this chapter. In the following, we will be concentrating on how we tried to avoid these issues
and provide a detailed description of the study design where we evaluate the potential of machine
learning methods for the early recognition of sepsis.

Problem Formulation In sepsis the earliness of a prediction is of elemental concern and
thus the problem cannot be treated as a simple time series classification problem. Instead, we
phrase sepsis detection as a time point-wise prediction task and require the model to score how
probable it assumes sepsis is to occur in the next 6 hours after the current time point. We adapted
this formulation from the Physionet 2019 sepsis early detection challenge [86], which provided
labels at an hourly resolution using an endpoint definition similar to Sepsis-3. Formally, we define
the instance xi of the dataset to be composed of two matrices vi ∈ Rl×d which denotes the

7Both terms refer to ensuring that the patient’s physiological processes are maintained despite the critical state. One
example is maintaining the patient breathing using manual ventilation.
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observed values and mi ∈ {0, 1}l×d which represents if there are observations of this variable
at this time point or if the value was imputed or filled. Further, each instance is associated with a
labelyi ∈ {0, 1}lwhich indicates that sepsis occurswithin the next6 h according to our endpoint
definition. The positive label is kept up to 24 h after the onset of sepsis to incentivize themodel to
not miss a sepsis case completely, yet also to avoid spurious signals when the vital measurements
of the patient might already have little to do with his prior sepsis infection due to having been
treated on time.

DatasetsandPreprocessing In order to assess howwell-trainedmodels can be transferred
between hospitals in the case of sepsis early detection, we constructed a harmonizedmulti-center,
multi-country cohort of septic and non-septic ICU patients from five publicly available datasets.
Theutilizeddatasets are (1)AUMC[230], (2)EICU[186], (3)MIMIC-III [113], (4)HIRID[161]
and (5) Emory8 . While the Emory dataset contains hourly resolved sepsis labels, these are not
available for the other datasets and thus were implemented by us using the Sepsis-3 criteria [222].
We will detail the endpoint definition in the following.
In our preprocessing, we exclude patients under 14 yr and patients from hospitals where the

final rate of sepsis is lower than 15%, in order to avoid incorrectly labeled negative cases due to
data missingness. This value represents an approximate lower bound on the number of sepsis
cases reported according to previous studies [203]. Further, we exclude patient stays shorter than
6 h, with less than 4 distinct time points at which measurements where taken, with missing data
for a window longer than 12 h, and patients where the onset of sepsis is outside of the ICU, ear-
lier than 4 h into the ICU stay or after 168 h in the ICU. Due to the heterogeneity of the data,
additional checks were implemented in order to ensure adequate harmonization. These include
variable mapping, unit synchronization, and outlier filtering and were applied using the auto-
mated pipeline provided in the ricu package [19]. We inspected the distributions of biomarkers
manually to ensure that they are similar across the five datasets.
To harmonize the datasets, we resample the data to an hourly resolution similar to the Phys-

ionet 2019 sepsis early detection challenge [194], where the value is determined by the median of
all measurements that occurred during the hour. Further, to make models trained on one dataset
applicable to other datasets we decide on a subset of variables that are plausibly relevant for sep-
sis, measured at regular intervals, and do not include direct information about the treatment of
a patient, as this might lead to circularity issues. We thus excluded therapeutic variables such as
antibiotics, intravenous fluids, or vasopressors from the data provided to the models to do pre-
dictions. This simultaneously addresses the circularity and conflicting treatment standards issues
to some degree. For 4 out of the 5 datasets, we can define a large overlap of 59 variables which

8This dataset is a subset of the Physionet 2019 sepsis early detection challenge [194].
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we refer to as the “core” variable set. In comparison, the Emory dataset only contains 35 of these
variables and also contains predefined sepsis labels. We thus treat this dataset separately in our
analysis.

EndpointDefinition In order to define the sepsis prediction endpoint, we follow the guide-
line of Sepsis-3 as closely as possible [222]. These are based on the co-occurrence of a suspected
infection and an increase of the sequential organ failure assessment (SOFA) score [244] by two
or more points. Hereby suspicion of infection was assumed if the patient was given antibiotics
and fluid sampling was performed, whereby the earlier of the two is declared as the time point
for a suspected infection. If the SOFA score increases by at least two points up to 48 h before or
24 h after suspicion of infection, the time at which the increase occurs is considered the sepsis on-
set. During the computation of the SOFA score, we set patients who were sedated to a Glasgow
Coma Score (GCS) score of 15, which corresponds to no impairment of cognitive functions. Fur-
ther, we do not include urine outputs that were registered 24 h before the admission to the ICU
or within the first 12 h of being admitted to the ICU. This is due to the observation that in many
cases, a large initial urine volume is measured directly at the ICU admission. The urine volume is
involved in the computation of the renal component of the SOFA score, which accounts for any
measurements of urine in the past 24 hours. Due to the initial high volume at ICU admission
compared to all other measurements, this leads to a sudden drop in the total volume measured as
soon as the ICU admission time point is not included in the computation anymore. This triggers
a strong increase in the SOFA score which leads to very many presumably false positive SOFA
increases requiring their exclusion for the determination of accurate sepsis onsets.

Due to differences between the datasets, the criterion of suspicion of infection is hard to im-
plement and we needed to apply dataset-specific rules for its derivation. In the case of the EICU
dataset, fluid sampling only occurs very infrequently and there are no reports on fluid sampling
in the HIRID dataset at all. We instead use a heuristic in order to define the suspicion of infec-
tion criterion based on multiple antibiotics administrations. This approach was verified on the
MIMIC-III and AUMC datasets for which both antibiotics and fluid sampling information are
available. While the heuristic leads to significant overlap between the patients considered septic
on the MIMIC-III dataset with a Jaccard similarity of 0.69, the definitions deviate to a strong
degree on the AUMC dataset where a Jaccard similarity of 0.42 is achieved. We note that this is
due to the fact that the AUMC dataset contains many surgical patients who are often given an-
tibiotics in a prophylactic manner and find that if these are excluded the overlap is much higher
(0.78) confirming the applicability of the devised heuristic.
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Evaluation Strategy As the sepsis prediction task was formulated as an online prediction
task, models are provided with new data and have to provide an estimate for the onset of sepsis
given the additional information. We selected this setup in order to simulate a realistic deploy-
ment scenario duringmodel development and took care that ourmodels are also compatible with
it (see Section 4.3.2 for further details). Additionally, we devise an evaluation strategy that can
give a meaningful perspective of the model’s performance in a clinical setting. For this, we evalu-
ate the models using an encounter-focused strategy in terms of the Area under the Receiver Op-
erator Characteristic (AUROC) curve and by computing median precision and earliness of the
prediction at a fixed recall of 80%. For both metrics, we use the unnormalized prediction scores
and discard the first and last 0.5 percentiles to robustify the analysis to outliers.
The range of all scores is partitioned into 100 evenly spaced thresholds and for each threshold

we consider the first score of each encounter that surpasses the threshold as the prediction for
the whole time series. This part of the evaluation is set up, without considering the actual time at
which the sepsis alarm is triggered, but solely to evaluate the performance in recognizing septic pa-
tients. We count positive predictions on septic patients as true positives and negative predictions
where the scores never cross the currently selected threshold for control patients as true negatives.
For the second part of the evaluation, we determine the threshold at which the model achieves
80% recall in the detection of septic patients and report the precision obtained at this threshold
as well as themedian earliness, i.e. the number of hours before the sepsis onset at which themodel
first predicted a score higher than the previously determined threshold.
We constructed this evaluation scenario to be highly conservative in that it does not allow for

repeated alarms whichwould increase recall but could also lead to alarm fatigue, i.e. the reduction
of the meaningfulness of alarms due to overstimulation. While it is generally more challenging to
reach high performance in this setting, it aligns our evaluation with clinical practice and provides
a meaningful metric of performance for clinicians while ensuring that at most a single false alarm
can be raised in a control stay. To ensure that performance metrics are comparable and the tasks
derived for different datasets have a similar difficulty, we harmonize the prevalence of sepsis to the
across-dataset average of 17%by subsampling control patients in case the prevalence is higher and
subsampling cases otherwise. We repeat this procedure 10 times and denote the final score as the
average over these repetitions. In order to ensurewe donot lose toomany valuable positive cases in
this procedure we verified that 98.3% of the sepsis cases were included in at least one subsample.

4.3.2 Baselines andMachine LearningModels

Over the years a large number of clinical scores have been developed by medical practitioners in
order to capture the patient’s state with regard to certain important vital functions. These scores
contain a lot of domain knowledge and thus represent viable baseline predictors in their own right.
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In this study, we compare our models against the following clinical scores (1) national early warn-
ing score (NEWS) [115], (2)modified early warning score (MEWS) [224], (3) systemic inflamma-
tory response syndrome (SIRS) [22], (4) sequential organ failure assessment (SOFA) [244] and
(5) quick sequential organ failure assessment (qSOFA) [222]. The Sepsis-3 definition subsumes
the SOFA score and thus we expect it to be a competitive baseline as it is a core component of the
label definition. When using the clinical baseline scores, we purposefully allow access to thera-
peutic variables that include treatment information, as these scores are static and cannot “wait”
for doctor responses in order to make a prediction. Nevertheless, it is important to keep in mind
that this does lead to some circularity issues as label definition and score are highly related.
Further, we compare two types of machine learning models in our study, machine learning

approaches based on deep learning which are specifically designed for sequence prediction tasks,
and classical machine learning approaches which require feature engineering prior to their ap-
plication and the conversion of the time series prediction task into many individual timepoint-
wise prediction tasks. For the former, we consider a modified variant of the transformer architec-
ture [239] (attn) which we adapted for online prediction tasks, and an RNN based on the gated
recurrent unit (GRU) architecture [51] (gru). In the latter, case we utilize gradient boosted deci-
sion trees [119] and LASSO/L1 regularized logistic regression (lr).
Due to thedifferent structures and capacities of the twomodel classes, we implement additional

feature engineering steps for the classical models. We construct a total of 1269 features, based
on multi-scale look-back statistics (mean, median, variance, minimum and maximum) over the
last 4, 8 and 16 hours, measurement indicators and also measurement counts. Additionally, we
include domain-knowledge-based scores as features thatmimic those typically used in the clinic in
order to assess the patient’s state. The scores include (1) the shock index [4], (2) the oxygenation
index [178], (3) the SOFA score [244], (4) the SIRS score [22, 135] and (5) theMEWS. In contrast
to the previous baseline clinical scores, we changed the definitions of the scores used as features.
We do not include components depending on laboratory values and vitals which are not part of
our readily measured, non-therapeutic input variables in order to avoid circularity issues between
the feature and label definitions.

Deep LearningModels forOnline Prediction The deep learningmodels in this study
are applied directly to the hourly measurements which are augmented with additional measure-
ment indicators. We do not impute the missing values for the deep learning models, as we argue
that this can directly be learned by the model using a single linear layer in combination with the
measurement indicators9. The GRU architecture can be readily applied to this scenario, as it
9It is easy to show that we can construct a bijection of the weights between both imputed and non-imputed scenarios
whichwould lead to the exact same output over all inputs. Thus all functionalmapping canbe equivalently learned
by both formulations.
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resembles a recurrent neural network and thus its hidden state is updated recursively after each
newly available data point. The hidden state is then used to predict the output of the model at
that time point.
In contrast, Transformer models have not yet to our knowledge been applied to online mon-

itoring scenarios as they lead to a series of issues. One of the core elements in the transformer
architecture is the LayerNorm operation which normalizes the representations of the individ-
ual sequence elements using statistics computed over all elements of the sequence [9]. While the
Transformer architecture typically masks information from future tokens in the decoder layer,
the normalization statistics are still computed over the whole sequence making. While this could
lead to issues when applying the model in the real world, it might also provide the model with a
way of leaking information from the future via computed statistics. Independently, even if these
issues can be ruled out by computing statistics in a cumulative manner this leads to other issues.
Statistics on a small number of values will be of very high variance and could lead to problems
during training and prediction time. In order to avoid complications along these lines, we replace
the LayerNorm operation in the transformer with a previously suggested alternative formulation
ReZero [11]. WithReZero, the layer normalization and residual connectionused in conventional
Transformer architectures are replaced with a residual where the component added to the vector
is scaled using a scalar α. Thus the residual becomes

xi+1 = xi + αiF (xi), (4.5)

where F (x) is the transformation of the layer and xi is the input to the layer. In order to avoid,
the norm of the vectors from increasing with increasing depth, the authors of ReZero suggest ini-
tializingαi with zero, such that the model in its untrained state is simply an identity function. In
our context, ReZero has the benefit, that it completely removes the dependence of the normaliza-
tion and residual step on the other elements of the time series and thus the transformation can be
applied for each time point without knowing anything about the other elements of the sequence.

Experimental Setup

Each dataset is split into a development set composed of 90% of the data and a held-out test set
which comprises the leftover 10%. The development set is further split into 5 randomly sam-
ples training and validation, where the training split comprises 90%of the total available data and
the validation split 10% respectfully. For each split, we stratify according to the per-dataset de-
termined sepsis prevalence. In order to select hyperparameters of the machine learning models,
we train the models for all candidate hyperparameter combinations on the first training split and
estimate generalization performance using the corresponding first validation split. After deriving
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the appropriate hyperparameters, the fit all models on all training portions of the random splits in
order to derive an estimate of the variance of themodels. For each trainedmodel we then quantify
the performance on the test split in order to derive the final generalization estimate.
For the deep learning models, we define an additional online validation split which is tracked

during training in order to prevent overfitting. This split is a 10% subsplit of the training data and
the performance of the model is evaluated after each pass over the dataset (often referred to as an
epoch). If the loss on this online validation split does not improve during the course of 20 epochs
of training or if the number of epochs reaches 100 the training is stopped. The model is then
evaluated based on the state where it achieved the highest performance on this online validation
split. Further, we train the deep learning models using a positive weight dependent on the class
imbalance i.e. the contribution of sepsis cases is scaled such that a single sepsis case would have the
same loss impact as a negative case despite there being fewer sepsis cases in the data.
The hyperparameters of all models were selected based on the binary cross entropy loss of the

prediction and the binary sepsis label evaluated on a time point level.

4.3.3 Results

In our study we examine how clinical scores compare to classical machine learning models and
deep learning models, how well the internal validation performance transfers to other datasets,
and finally which features the trained models find especially relevant. We will address these ques-
tions in the following sections.

Internal Validation of Sepsis Prediction Performance

In order to assess how well the problem of sepsis early prediction can be solved in the absence of
distribution shifts, we evaluate the performance of all models on the test split of the same dataset
theywere trainedon. The results for allmachine learningmethods and clinical baselines are shown
in Table 4.3.
All machine learning approaches show higher performance than the clinical baseline scores

in terms of AUROC and in terms of precision at 80% recall. While in some cases the clinical
scores show higher earliness, these also show significantly lower precision compared to the ma-
chine learning models. Here the SIRS and MEWS scores are especially early in predicting the
sepsis onset on the EICU, HIRID, andMIMIC-III datasets. This seems reasonable for the SIRS
score as it is designed to recognize septic shock and its associated high systemic inflammatory re-
sponse. Further, SIRS is a core part of the Sepsis-2 definition [135] and some studies have shown
its higher efficacy in detecting infection in the emergency department [82]. The results are more
surprising for theMEWS score, where only very few studies have indicated its potential specifically
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Figure 4.4: Predictive performance ofmodels onAUMC evaluated as an internal validation, i.e. on the test
split of theAUMCdataset. Left: Performance in termsof theReceiverOperatorCharacteristic.
Right: Trade-off between earliness and precision at 80% recall.

Table 4.3: Performance of machine learning approaches and clinical baselines when validated on the test
split. Each sub-table contains the performance in terms of differentmetrics. Standard deviations
were omitted for higher readability. The best performance for each dataset is highlighted inbold.
“—” indicates that a value could not be computed due to the absence of necessary data.

Area under ROC curve

attn gru lgbm lr mews news sofa qsofa sirs

AUMC 91.8 85.7 89.4 88.3 71.8 73.0 71.1 64.6 63.4
EICU 80.3 79.3 77.2 77.5 64.6 64.8 70.7 61.6 65.2
HIRID 83.4 82.5 83.9 81.1 56.8 65.0 76.1 54.2 60.9
MIMIC-III 83.2 81.8 83.1 80.0 60.9 65.3 69.3 56.6 60.9
Emory 84.7 82.5 78.7 84.3 — — — — —

Earliness at 80.0 % recall

attn gru lgbm lr mews news sofa qsofa sirs

AUMC 4.06 4.11 6.52 6.05 5.00 1.00 0.0 3.50 5.75
EICU 4.63 4.65 6.03 4.19 10.3 9.25 3.75 8.00 8.00
HIRID 2.77 4.16 3.11 2.43 6.80 6.60 2.45 3.80 6.63
MIMIC-III 3.37 3.77 3.86 3.24 5.43 4.08 0.0 4.25 6.88
Emory 28.2 31.5 26.3 30.2 — — — — —

Precision at 80.0 % recall

attn gru lgbm lr mews news sofa qsofa sirs

AUMC 53.1 38.4 47.0 45.2 27.0 28.6 20.4 25.2 23.8
EICU 32.1 30.8 29.5 29.3 20.0 21.7 24.4 23.2 24.7
HIRID 36.4 35.3 36.0 33.5 18.5 22.5 28.7 18.7 19.2
MIMIC-III 35.7 33.5 35.5 31.8 20.6 22.4 24.7 19.1 20.3
Emory 39.4 32.5 28.5 37.4 — — — — —
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in the context of sepsis [104] and some even indicate that it might not be beneficial in this con-
text at all [94]. Nevertheless, both scores show very low precision compared to all scores besides
the SOFA score, where it is more strongly the case for the MEWS score. The clinical score with
the overall highest average performance in terms of area under the ROC curve is the SOFA score
which reaches anAUROCof 71.8%,which is in linewith its role in the endpoint definition. The
fact that the earliness of the SOFA score is 0 for both AUMC and MIMIC-III and thus directly
marks the onset of sepsis is further to be expected. It shows that at a threshold corresponding to
80% recall a SOFA score alarm is uniquely triggered in sepsis patients at the time point at which it
defined the sepsis onset. This is not a surprise, as the endpoint definition includes a large window
of 96 h in which the first 2 point SOFA score increase is used to define the sepsis onset. Neverthe-
less, the low precision shows that also many non-septic patients exhibit large SOFA scores, which
would lead to 80% of the alarms being triggered incorrectly.

The attention model shows the highest detection performance in terms of AUROC on all
datasets besides HIRID where the lgbm model outperforms. Interestingly, the GRU model of-
ten shows poor detection performancewhen compared to the classicalmodels on theAUMCand
MIMIC-III datasets. Among themachine learningmodels, the classical models lr and lgbm often
show better or competitive early detection performance compared to the deep learning models
(measured in terms of earliness), yet lower precision. The attention model outperforms all meth-
ods in terms of precision on all datasets and on the AUMC dataset even by a large margin of 6%.
Interestingly, the attn and gru models seem to show different trade-offs in terms of earliness and
precision despite being trained using the same loss function. While the attn model is more pre-
cise in its predictions, the gru model typically recognizes sepsis earlier by approx. half an hour. A
different trade-off can also be noticed between the classical and deep learning methods where the
latter seems to put a stronger weight on precision over earliness.

In general, it is evident that there is no single model which clearly performs best in terms of all
evaluation scenarios and datasets. While the attn model shows promising performance in detect-
ing sepsis with high precision the classical models and some of the clinical scores show impressive
early detection performance. The trade-off which of the two should be more beneficial in a clin-
ical context is not clear and would have to be judged by clinical practitioners. It is important to
note though, that earlier but less precise detections are not always desirable as they could induce
alarm fatigue, where an individual alarm is given less attention due to its low precision.

Finally, the results on the Emory dataset strongly differ from the results on other datasets, es-
pecially in terms of earliness. Here it is not totally clear how all models are able to achieve such
high early detection performance while still showing relatively high precision. As we did not de-
vise the endpoint definition it could be that the tasks show different difficulty levels and that this
leads to high earliness on the dataset. Further, due to the reduced size of the variable set (only
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35 variables instead of 59 variables are available for Emory), it could be that the models cannot
uniquely differentiate onsets in a reliable manner and that they thus predict high scores also in
the cases where the onset is much further away and where the model has not been incentivized to
predict a positive label. Due to our evaluation scenario, this is then counted as an early onset while
not contributing to a worse precision in the case of septic patients. Finally, it could also be that
some cases can be recognized as septic already using the static variables. In this case, the models
might predict sepsis onset already at admission.
To further examine the performance of the models and baselines we concentrate on the results

of the dataset with the highest average performance in terms of AUROC, AUMC. A more de-
tailed perspective on the results for this case is thus shown in Figure 4.4. Herewe see howdifferent
models occupy different regions of the earliness vs precision trade-off. In this particular example,
it is also evident that the lr and lgbm models are very similar both in terms of detection perfor-
mance and earliness vs. prediction trade-off. This partially makes sense as they were trained on
the same set of hand-engineered features. In contrast, the attn and gru models show stronger dif-
ferences, which we can attribute to the fact that both try to learn features from the raw data while
having very different architectures. These differences in the architectures lead to differences in
the types of features. While both attn and gru are universal function approximators [206, 266],
the differences in architecture would lead to different functions being easier to learn due to the
inductive biases encoded in the architecture. In additional experiments, we found that the higher
performance on the AUMCdataset can be attributed to the surgical cohort which reaches 93.7%
compared to themedical cohort with 84.0% in terms of AUROC.We could not reproduce these
findings on the MIMIC-III dataset though, indicating that the surgical cohort of AUMCmight
contain distribution shifts in the feature or label distribution thatmake the task of onset detection
easier.

External Validation of Sepsis Prediction Performance

Due to the harmonization of the class imbalance across datasets, we can directly compare the per-
formance of models trained on one dataset to their evaluation performance on other datasets de-
spite the presence of prior shifts, i.e. different class prevalences across datasets. Further, as the
models are also incentivized to predict according to the same prior class probabilities due to the
positive weight in the loss term, training on different prevalences should not lead to any perfor-
mance impacts when transferring between different datasets. A comparison of the detection per-
formances in terms of AUROC is provided in Figure 4.5. It is clearly evident that all models
perform worse when transferring to a dataset on which they were not trained. The degree to
which the performance degrades is dependent on the model. Interestingly, the expectation that
the very flexible models would perform worse on in the transfer task cannot be confirmed. There
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Figure 4.5: Pairwise comparison of transfer performance for machine learning models in terms of AU-
ROC. The y-axis denotes the dataset on which the model was trained and the x-axis the dataset
on which it was evaluated. Additionally, we incorporate a pooled model, which aggregated the
scores from models trained on all datasets besides the one being evaluated. The pooling is im-
plemented by taking the maximum of all predictions for a given time point.
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Figure 4.6: Average transfer performance of machine learning models compared to in-distribution perfor-
mance in terms of AUROC, earliness, and precision. The x-axis shows the performance of the
model on the training distribution, where the marked highlights which dataset was used for
training. The y-axis shows the average performance on all other datasets (i.e. the datasets on
which no training took place). The y-axis thus shows the average transfer performance to other
datasets. Emory was excluded from this analysis as its performance metrics (especially earli-
ness) were found to be not comparable to the other datasets.

is not a single transfer scenario where the classical models show higher performance in terms of
detection than the deep learning based models. Besides evaluating the individual models, we also
construct an ensemble model, which pools the predictions of the samemodel trained on all other
datasets. We can see that the ensemble approach performs favorably for all models and in the case
of the deep learning models at least as well as applying a transferred model from any other dataset
in most cases (the exception being transfer fromMIMIC-III to EICU for the gru model). This is
not the case for the conventionalmodels, where for both lgbmand lr EICUtoMIMIC-III transfer
leads to better performance than the ensemble approach and there are many further cases where
individual transfer combinations perform favorably. Nevertheless, while this highlights that en-
sembling predictions from multiple datasets can be beneficial, it only resembles a very first step
and it should be further investigated which types of ensembling would be most beneficial. In a
subsequent analysis, we further compare if detection performance is significantly different to the
simple ensembling approach when training on all but one dataset and evaluating on the held-out
data. The results are shown in Figure 4.8a and we did not observe a strong performance gap be-
tween the approaches.
In order to evaluate if any single model performs favorably in terms of generalization perfor-

mance to other datasets, we compare the performance on the same datasets to the average perfor-
mance obtained on all other datasets and show the results in Figure 4.6. In terms of AUROC the
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attn, gru and lgbm models show good transfer performance when being trained on the EICU,
HIRID, and MIMIC-III datasets whereas in many cases the logistic regression model performs
significantly worse for these datasets. When examining the trade-off between in-distribution vs.
transfer performance, theAUMCdatasets represent a striking outlier. Interestingly, the picture of
the generalization performance of the models is flipped in this case, while attn, gru and lr models
reach acceptable performance, the performance of the lgbmmodel is much lower. This could be
related to our previous observation that the high performance on AUMC is linked to the surgical
cohort and that there might be a distribution shift in the label or the features. While the lr model
cannot pick up this distribution shift as it does not account for interactions between features and
thus still achieves acceptable performance in the transfer setting, the lgbmmodel can account for
more complex feature interactions and thus shows a significant drop in performance. The high
performance of the deep learning models might be due to the preference for simpler functional
mappings [237], yet finding the exact cause for this resilience to the distribution shift is beyond
the scope of this study.
When examining the performance in terms of earliness andprecision at80%recall somedataset

model combinations lead to very similar earliness between the training dataset and the transfer
scenario. These are always connected with a significant drop in precision, thus while the models
detect sepsis onset for patients at comparable times they do raise more false positive alarms. De-
pendent on the transfer scenario the drop in precision is more or less pronounced for different
models. Overall, the combination of the deep learning models and the AUMC dataset seems to
lead to favorable transfer performance in the considered scenarios. It achieves both, an acceptable
earliness of 3.5 h to 7 h and acceptable precision and detection performance. While training the
deep learning models on the MIMIC-III dataset leads to higher precision of detections, the pre-
dictions aremuch laterwhich canbe detrimental in the clinical context. While the performance of
AUMC is considerably lower than the performance on the training dataset when transferring to
other datasets the deep learning models still reach highly competitive performance in the transfer
setup.

Analysis of Feature Importance

In order to elucidate the role of individual variables and their predictability for sepsis we ana-
lyzed the attn model using Shapley values [147] which estimate the contribution of individual
features to a model’s prediction. We concentrate the analysis on the measurement values and dis-
card count variables, missingness indicators, and derived features and provide the results of the
analysis in Figure 4.7. According to the Shapley feature importance values, “Mean arterial pres-
sure” and “Heart rate” contribute to the model’s prediction most and suggest that the model has
learned to incorporate values characterizing hemodynamic stability in its predictions. According

105



4 ClassificationModels and Evaluation Strategies forMedical Time Series

0.000 0.002 0.004 0.006
Mean absolute Shapley value

Mean arterial pressure
Heart rate

Diastolic blood pressure
Urine output

Oxygen saturation
Fraction of inspired oxygen

Systolic blood pressure
C-reactive protein

Respiratory rate
O2 partial pressure

Temperature
Hemoglobin

Sodium
Glucose

Bicarbonate
Lactate

Chloride
Calcium ionized

Potassium
Mean cell hemoglobin

(a)

50 100 150 200

Mean arterial pressure

−0.2

0.0

SH
AP

va
lu

e
fo

r
M

AP

(c)

−0.4 −0.2 0.0 0.2 0.4 0.6

SHAP value (impact on model output)

Mean corpuscular volume

Blood urea nitrogen

Systolic blood pressure

Platelet count

Albumin

Hemoglobin

White blood cell count

Lymphocytes

Hematocrit

Sodium

Creatinine

Mean cell hemoglobin

Chloride

Calcium

Oxygen saturation

Mean corpuscular hemoglobin concentration

Urine output

Heart rate

Fraction of inspired oxygen

Mean arterial pressure

Low

High

Fe
at

ur
e

va
lu

e

(b)

Figure 4.7: Exploration of feature importance via Shapley analysis of attn model. (a): Average absolute
Shapley values over all datasets. The error bars represent the standard deviation across the
datasets. The top 20most important variables according to the Shapley score are shown where
large values indicate a large contributionof the variable to themodel’s prediction and thus could
be considered important for sepsis onset prediction. (b): Distribution of Shapley values for the
EICU dataset. Positive values are associated with the model deeming sepsis onset in the next
6 h more probable, whereas negative values indicate the opposite. (c): Scatter plot of the most
important variable “Mean arterial pressure” and its Shapley value on the EICU dataset.
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Figure 4.8: Detailed explorations of model predictions. (a) The sepsis detection performance of the attn
model when evaluated on a single dataset and trained on a pooled version of all other datasets.
(b) The distribution of Shapeley values the attn model trained on EICU while also including
count and derived features. (c) Ablation study of the attn model trained on feature subset of
the MIMIC-III datasets.

to the attributions in Figure 4.7b, high heart rate, and low blood pressure are considered indica-
tive of sepsis onset. This is in line with the definition of the SOFA score, where hypotension is
a criterion for a higher score in the cardiovascular component and with the clinical definition of
septic shock, which associates low mean arterial pressure with adverse outcomes [134]. Similar
observations can be made for the variables “Platelet count” and “Creatinine” + “Urine output”
which are included in the SOFA scores for the coagulation and renal components. Finally, it is
important to note, that features do not always give high-magnitude Shapley values but are often
only relevant in combination with other features. This is illustrated in Figure 4.7c where we can
see that despite the trend of smaller Shapeley values for higherMAP the Shapley value remains at
0 for a majority of instances independent of the MAP value.
In further analysis, we noticed that count features were considered to be contributing strongly

to the model predictions (see Figure 4.8b), which lead us to perform an ablation study to analyze
their effect in more detail. For the ablation, we the attn model from scratch on the MIMIC-III
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dataset while only providing the raw measurements or the counts of either lab measurements or
vitals and present the sepsis detection performance in terms of AUROC in Figure 4.8c. Interest-
ingly, the model already achieves very high performance when trained only on the counts of lab
measurements, whereas the performance suffers significantly when trained only on counts of vital
signs. Further, training on the rawmeasurements of lab values leads to amore than 2%decrease in
performance compared to the counts alone. This indicates that despite removing all therapeutic
variables and measurements with significant impact on the label definition much of the perfor-
mance of the model is still determined by observing the clinician. Most of the lab measurements
are non-automatic and are requested explicitly by doctors when they suspect a patient to be under
elevated risk and would like additional information in order to decide on an appropriate strategy
to combat a potential deterioration. This is in line with other publications which have found the
measurement of lactate to be predictive of patient deterioration [108]. Generally, this shows how
easy it is to design predictors which might not actually help in clinical practice due to their re-
liance on indirect doctor signals and further reinforces the issues of circularity mentioned at the
beginning of this chapter.

4.3.4 Conclusion andDiscussion

In this section I presented joint work on the first harmonized multi-center and multi-national
ICUdataset for sepsis early prediction, which includes 5 databases from three different countries.
We used this data to develop a large-scale set of sepsis label annotations and showed how these can
be utilized to develop early warning systems based both on deep learning and hand-engineered
features combined with classical machine learning approaches. In our large-scale evaluation, we
highlight that a deep learning model based on the transformer architecture can achieve very high
performance in terms of detecting sepsis on a patient level and in terms of precision when requir-
ing a recall of 80%. Nevertheless, the classical approaches with hand-crafted features achieve on
average earlier detection of sepsis although arguably with lower precision, which could lead to
problems like alarm fatigue when applied in a clinical context. Overall, our analysis showed that
classical models and deep learning models occupy different regions in the earliness vs. precision
trade-off space and that the decision of which approach is more suitable for the clinic boils down
to a decision if earliness of onset detection or precision of sounded alarms is of higher importance.
This large-scale study further allowed us to examine how well models trained on one dataset

transfer to other datasets. Our results highlight that a deterioration of performance is always to
be expectedwhen transferring in such a context and that the deep learningmethods seem to show
favorable transfer performance despite the expectation that these would over-fit to features of a
particular dataset. In contrast to common intuition, we found that the most simple model, lo-
gistic regression, actually degrades in performance more severely that its more complicated coun-
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terparts. In order to boost the performance of the models in the transfer setting we suggest the
utilization of ensembles over models trained on the held-out datasets and to aggregate the pre-
dictions at each time point to the maximum of all models. We find that this approach improves
sepsis detection performance and allows the pooling of information from multiple sites without
requiring costly retraining on a pooled version of the data.

When examining the models with regard to feature importance, we find that our models deem
variables to be important which have not yet been associated with predicting sepsis [161]. In
particular, the fractionof inspiredoxygen could represent apotentially valuablepredictive variable
that might warrant further investigation. Nevertheless, these associations should be taken with
caution. As our ablations showed, the model might despite all effort put into harmonization and
reducing circularity still be able to indirectly infer the clinician’s state ofmind by paying attention
to how many lab measurements are requested. This could also be the case for the fraction of
inspired oxygenwhich could represent a proxy variable for the patient’s intubation ormechanical
ventilation state. Our study highlights how difficult it is to design approaches that would result in
clear clinical impact where algorithms support clinicians in their decision instead ofmerely trying
to distill clinicians’ actions into predictive scores.

Initial retrospective studies that investigate sepsis prediction have shown promising potential
to impact clinical care and improve the current state by providing early warning systems that help
identify patients in urgent need of attention [80, 159]. Yet the recent literature shows a more
nuanced picture: While models designed for the application in the clinic are being developed
rapidly [36, 218] criticism of the applicability of these approaches in the clinical context and the
lack of validation to other hospitals has been growing [161, 258]. The definition of the label often
prevents the applicability of models to the clinic as many utilize billing codes that can represent
an unreliable proxy [28, 77] and do not provide information aboutwhen sepsis actually occurred.
Issues in the performance of widely applied models in external validation scenarios have further
highlighted that transferability of models between hospitals is an issue [258]. This is due to the
fact that external validation data is scarce and often requires significant additional manual work
to ensure that the data are compatible and appropriately homogenized.

Ourpublicly available pooled ICUcohort promises toplay an important role in assessing the ex-
ternal validationperformance of newly developedmodels. Ifmodels are developedonourhomog-
enized set of variables, these can be directly tested on 4 additional datasets besides the dataset on
which amodel was trained. Further, the combined dataset opens the door formore advancedma-
chine learning approaches to ensure consistent performance across cohorts by for example lever-
aging recent developments in domain adaptation [73]. While most research at this intersection
has focused onmedical text [127] andmedical imaging data [89], we conjecture that the transfer-
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ability of models to multiple hospitals can also be improved by making the models more robust
to individual treatment differences.
Finally, our study faces many limitations. While the overall size of the dataset is large, many

patients and also sites were excluded in favor of a more homogeneous dataset with overall high
data quality. These exclusions could have resulted in selection effects, which might be amplified
by the fact that most of the patients in the cohort are Caucasian, such that the overall dataset
might not well represent the variability that can be observed in an average hospital. Additionally,
due to differences in data availability, we were required to construct two different definitions for
suspected infection when implementing the Sepsis-3 criteria.
While our study strives to be as close as possible to an online monitoring scenario and to avoid

any means of leaking therapeutic information in order to avoid circularity, we find that this can
be an extremely difficult task. As the patient is already being continuouslymonitored by a doctor,
it is almost impossible to out rule that the model does not simply try to reflect what the clinician
might be suspecting. This leads to a large number of open issues that still need to be addressed.
While intuitively, we would not want the model to have to operate on an imputed version of the
medical times series data, it does seem the most straightforward approach in order to ensure that
model does not account for additional sampling information and assumes a “missing at random”
scenario.

110



Part III

Graphs

The final part of the thesis examines how to extend the learning of representations on graphs to
incorporate a notions frommulti-scale topology and how we can evaluate generated graphs.
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5 Multi-Scale Topology forMachine
Learning on Graphs

Graphs are a particular data structure and require specialized methods to be developed for ma-
chine learning. This is due to some of the inherent properties of graphs: they are unordered,
relational structures, such that an individual node is best interpreted in the context of its neigh-
borhood, i.e. thenodes it is connected to. They are of great importance for the analysis of networks
such as social networks and relational databases of movies and for the pharmaceutical industry as
small molecules can be represented as graphs [256]. Nevertheless, many models for predicting
on graphs show limited expressivity and are unable to incorporate global information about the
graph [34]. In the following chapter, I will introduce a new graph neural network for machine
learning on graphs which takes inspiration from persistent homology. This allows our approach
to harnessing multi-scale information present in the graph structure. In the first sections, I will
give a brief introduction to graph-structured data, describe machine learning tasks on graphs and
describe how graph neural networks are upper bound in expressivity by the Weisfeiler–Leman
test. Afterward, I will introduce the proposed method.
This section is partially based on the following published work:

M.Horn∗, E. D. Brouwer∗, et al. “Topological GraphNeural Networks”. In: International Con-
ference on Learning Representations. 2022

5.1 Graph Structured Data

Graph structures are present in many real-world problems and allow the systematic inclusion of
relational information into models. A graph is a set of objects (nodes/vertices) with some asso-
ciated (potentially directional) relationship information between these objects (edges), a more
formal definition can be found below.

Definition 5.1 (Graph). A graph consists of a set of vertices V and a set of edgesE ⊆ V × V
in the case of directed graphs or E ⊆ {{v1, v2} : v1 ∈ V, v2 ∈ V } in the case of undirected
graphs. The combination of both is denoted asG = (V,E).
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Figure 5.1: Visualization of two graphs from different datasets. The left represents an example from the
DD dataset [26] and the right from the REDDIT dataset [263].

Graphs can be used to represent a variety of different structures thatmay ormay not have phys-
ical resemblances in the real world. To give some examples, graphs can be constructed to repre-
sent proteins where the nodes represent the domains of the protein and the edges their physical
proximity [26]. Further, two users on a social media platform can be represented as nodes and
relationships among the users (for example commented on) as edges [263]. Visualizations of these
examples can be found in Figure 5.1. As is evident from the visualizations, graphs can have very
different structures, such that the existence of a “one size fits all” method remains questionable.
Often there is more information available about the nodes or edges of a graph. In this case, we

call the graph an attributed graph. An attributed graph has the same properties as a graph, yet
additionally defines attribution functions that map vertices and/or edges to attributes.

Definition 5.2 (AttributedGraph). An attributed graph is a graphG equippedwith at least one
attribution function for either vertices fV : V → Vattr or for edges fE : E → Eattr.

Most graph learning problems inmachine learning deal with attributed graphs, where the pres-
ence of node attributes (often also referred to as node features) is predominant [164]. In practice,
bothVattr and Eattr are required to be vector spaces, most prominently the space of d-dimensional
real values is selectedRd. If no node features are available it is common practice to use the degree
of each node instead. When denoting algorithms on graphs, this text will refer to n = |V | as the
number of vertices in the graph and tom = |E| as the number of edges in a graph.

5.1.1 Machine Learning Problems on Graphs

There are 4 main problem types or tasks that are tackled in the graphmachine learning literature:

Graph classification/regression Prediction of a property of the overall graph. If for example,
the graph represents the atoms of a small molecule, a typical task would be the prediction
of molecular properties [256].
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Node classification/regression Prediction of a property of a node. This task is often phrased
as a semi-supervised learning task, where some node labels of a graph are given and the goal
is to infer the missing ones.

Edge classification/regression Prediction of edge properties. This task has not been studied as
extensively as the two above tasks. A common example of an edge classification problem is
to characterize the nature of an interaction. For example, while peoplemight be connected
in a social graph the nature of this connection (friendship or rivalry) might not be evident.
A further edge classification task can be the inference of missing edges in the graph [1].

Graph generation Generation of graphs that follow a defined distribution. Here a model is
trained tomimic a distribution of graphs in order to generate new examples that are similar
to the graphs provided. The most prominent application of this is the generation of small
molecule graphs which should have certain properties.

In the following, we will be concentrating on graph and node classification, whereas later parts
of this thesis examine the problem of graph generation in more detail.

5.2 GraphNeural Networks

Graph neural networks (GNNs)were first introduced in thework of Scarselli et al. [205] and have
shown great success in graph applications. They have since been further extended methodologi-
cally leading to a whole zoo of GNNmodels [259, 273].
As the name indicates, a GNN is a neural network that operates on graphs, in contrast to the

tensor inputs as common DNNs do. Further, instead of layers creating intermediate tensor rep-
resentations, GNNs output graphs as intermediate representations. Typically, the connectivity of
the graph (i.e. V andE) remains the same, yet the attributes associated with a node or edge may
change.

Definition 5.3 (GraphNeuralNetwork). Agraph neural network is an endomorphism g on the
space of attributed Graphs. I.e. it maps between the space of attributed graphs, i.e. g : G → G.

Usually, a GNN is comprised of multiple such transformations that are stacked and referred to
as layers. The exact implementation of f varies greatly among different GNN architectures [259,
273]. Dependingon thedownstream task the attributed graphoutput of theGNNis transformed
into a vectorial representation of the vertices (in the case of vertex / node classification and regres-
sion), of the edges (in the case of edge classification), or of the whole graph (in the case of graph
classification). This final transformation is often referred to as a readout function.
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5.2.1 Graph Convolutional Neural Networks

The simplest type of GNN is arguably the graph convolutional neural network, which will be
used as an example of a GNN. In a graph convolutional neural network, the node features for
each node are computed as a function of the node features of the neighboring nodes [122]. In
particular, the node features of the l + 1 layer are defined as

f
(l+1)
V (v) = σ

g
 ∑
v′∈N (v)∪{v}

1√
(d(v) + 1)(d(v′) + 1)

f
(l)
V (v′)

 (5.1)

whereN (v) and d(v) represent the neighborhood and degree of vertex v, g represents an linear
map and σ a non-linearity, such as the sigmoid or ReLU function.
This relation is typically expressed using matrix notation, which leads to significant simplifi-

cations. Assuming the vertex attribution function of layer lmaps to the space of dl-dimensional
real values f (l)V : V → Rdl , defineH(0) ∈ Rn×d,H(0) = [f

(0)
V (v1), f

(0)
V (v2), ..., f

(0)
V (vn)]

T

to represent the matrix of node features / attributes and A ∈ {0, 1}n×n, with Ai,j = 1 if
{vi, vj} ∈ E as the adjacency matrix of the graph. Then the above relation for the feature repre-
sentation of the next layer can be written as

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
where Ã = A + I represents the adjacency matrix with augmented self connections, as D̃i,i =∑

j Ãi,j andW
(l) ∈ Rdl×dl+1 is a layer specific trainable weight matrix.

Other GraphNeural Network Architectures There exist a plethora of GNN archi-
tectures developed for different use cases. Most of these architectures are not important for the
general understanding of this thesis and thus will not be explicitly introduced. I kindly refer the
reader to overviews by Battaglia et al. [15] andWu et al. [259] for a more detailed introduction to
the topic.

5.3 TheWeisfeiler–Leman Test

In the following I will briefly introduce the Weisfeiler–Leman (WL) test [254] as it is necessary
for understanding the limitations of graph neural networks. The WL test or algorithm is a test
for graph isomorphism which is necessary but not sufficient in determining if two graphs are iso-
morphic. Thus, if two graphs are isomorphic the test will be positive, but a positive test outcome
does not imply that the graphs are isomorphic. Testing graph isomorphism is a hard problem,
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rooted primarily in a graph’s invariance to the reordering of nodes and the associated necessity
for computing a canonical representation for graphs [107]. Interestingly, it has been shown that
while the WL test is not sufficient, it does successfully test for isomorphism in a very broad class
of graphs [10].
The algorithm operates based on an iterative node label refinement scheme (also referred to

as “graph-recoloring”, where node labels are considered the colors of nodes) which operates on
undirected graphs [254]. The original version of the algorithm requires discrete node labels, al-
though extensions of its kernel formulation to continuous node labels and weighted graphs have
been proposed recently [232].
We will be concentrating on the 1-dimensional version of the WL-test [261], where we collect

the neighborhood of a node and relabel the node using a hash function to provide it with a new
label. First, every node in a graph is associated with a label or color. This is typically done using
node attributes present in the data, yet it is also common to label each node with its degree if no
node labels are available [24]. In each iteration of the algorithm, the labels of each node are col-
lected and sorted to produce a consistent ordering. Finally, the label of the node itself is appended
to the neighbor labels and the list is hashed using perfect hashing to produce a new label for the
node as shown in Algorithm 2. The process is repeated for a predefined number of iterations or
until the sorted label sequences of the two graphs diverge. If the label sequences never diverge, the
graphs are possibly isomorphic, if the label sequences diverge the graphs are not isomorphic.

Algorithm 2 Iteration h of the 1-dimensional Weisfeiler–Leman graph recolouring scheme.

Require: G = (V,E), fh−1 : V → C
Returns: fh : V → C′
// Assign multiset label to each vertex based on neighbors
Mh(v)← {fh−1(u) |u ∈ N (v)} ∀ v ∈ V
// Sort multiset elements, prepend current label and store as string
sh(v)← (fh−1(v),Mh(v)1, . . . ,Mh(v)n)
// Map each string to a new compressed label using perfect hashing
fh(v)← HASH(sh(v))∀ v ∈ V

Higher-dimensional variants of this algorithm exist where instead of operating on the individ-
ual nodes, operations are performed on tuples of nodes and the neighborhood of both nodes is
used to compute the new label of the tuple [165]. While higher-orderWL tests can produce fewer
false positive isomorphismpredictions and retain the property necessity, they are computationally
considerably more demanding. This is due to the necessity of enumerating all pairs, triplets, etc.
on the graph, such that complexity grows exponentially with the number of nodes in the graph.
The properties of theWeisfeiler–Leman test have inspired the utilization of its underlying fea-

ture representation for the construction of Weisfeiler–Leman graph kernels [217]. While graph
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Figure 5.2: Examples of graphs that cannot be differentiated by the WL–test after 3 iterations when using
node degrees as labels. Top row: Cycle graphs. Bottom row: Necklaces graphs. From left to
right: 0, 1, 2, and 3WL-iterations. Nodes are colored according to their newnode labels derived
by theWL relabeling scheme. The histograms correspond to the occurrence frequencies of the
node labels. If label histograms coincide, the representative graphs cannot be differentiated
using the WL test.

kernels have been an important step towards applying machine learning methods to graphs, they
are not of importance for the understanding of this thesis and I thus refer the interested reader to
Borgwardt et al. [24] for further information.
TheWeisfeiler–Leman test provides a good basis for reasoning about the expressivity of graph

algorithms. It has thus recently been used to characterize the shortcomings of graph neural net-
works and suggest paths to increase their expressivity [165, 261].

5.4 Limitations of GraphNeural Networks

Graph neural networks typically rely on iterative message-passing schemes and collapse informa-
tion of each node’s neighborhood into a new representation of the node. This is very similar to
the Weisfeiler–Leman test [254], where a hash using the labels of the neighbors is computed to
give rise to a new node label (for further information please refer to Section 5.3). A theoretical
investigation of these similarities has shown that the expressivity of GNNs is upper bounded by
theWL test [165, 261]. While it was initially hypothesized that Deep GNNswould be capable of
detecting substructures in networks despite these shortcomings by leveraging high-order correla-
tions in increasingly deep layers of the network, both theoretical and empirical evidence indicate
that this is not the case [49].
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A particular example of where the expressivity of the WL test falls short can be found in Fig-
ure 5.2. This is especially surprising as the graphs can be trivially differentiated by the human eye.
Many such structures and graphs exist and have been characterized [7]. While this is not prob-
lematic in itself it can become crucial in cases where these properties are of high relevance for the
prediction task [27]. This was highlighted in recent work by Dwivedi et al. [66], which showed
that provably more powerful architectures do not necessarily lead to performance improvements
on the datasets considered. It is unclear whether this is due to issues during the training of these
more advanced models or if the invariances induced by GNNs are beneficial for many classifica-
tion tasks.

5.4.1 Limitations of Graph Benchmarks

A further issue in researching GNNs is that it is not clear whether higher performance can be
attributed to the exploitation of graph structure or simply to significantly more powerful models
being applied to the vertex features. A recent study on graph kernels has shown, that inmany cases
a vertex histogram kernel can already achieve high predictive accuracy [24]. A vertex histogram
kernel is the most simple way of including vertex features which raises the question of whether
modern set function learning approaches (which do not include graph information) can compete
with GNN architectures.
One alternative way of studying this issue is to ignore the vertex features altogether and thus

evaluate how much information a model can extract from the graph structure alone. Recent
benchmarking studies on GNNs have introduced node classification datasets based on stochas-
tic block models (SBMs) where the node features are set to random values [66]. While this is a
first step into elucidating individual performance contributions, more detailed investigations into
these issues have not yet been conducted.

5.5 Extensions of Conventional GraphNeural Networks

As the limitations ofGNNshave been known for a long time, there exist various extensionswhich
aim at increasing the expressivity of neural networks that follow the message-passing scheme.
In their workXu et al. [261] show thatGNNsneed to satisfy injectivity requirements to be able

to reach 1-WL expressivity. Many approaches to go beyond the expressivity of the 1-WL–test
build upon the fact that WL-iterations of order k + 1 are strictly more expressive than WL-
iterations of order k for k ≥ 2 [165]. Unfortunately, such k-order GNNs are computationally
very expensive as they require the enumeration of all possible subsets of nodes. This has fur-
ther been addressed byMaron et al. [151] which propose an alternative architecture that achieves
3-WL expressivity without requiring the enumeration of subsets, leading to improved runtime
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and space complexity. Further, Bouritsas et al. [27] propose an alternative approach to increase
expressivity by including graphlet features that cannot easily be detected by GNNs [49]. Zhao
et al. [272] follow a similar approach, yet harness local topological information using methods
from the emerging field of topological data analysis (TDA) and use these features to reweigh the
message-passing iterations of a graph neural network. Alternatively, Hofer et al. [97] suggest inte-
grating the topological information of the graph at the level of the readout function, while show-
ing that the filtration used to extract topological information from the graph can also be learned
while training the GNN.

5.6 PersistentHomology on Graphs

While simplicial homology typically operates on simplices, these represent generalizationsof graphs
such that graphs can be interpreted as simplices and used in homology computations. More pre-
cisely, we can view a graph G = (V,E) as a 1-dimensional simplicial complex [97], with the
vertices V representing the 0-simplices and the edges E corresponding to the 1-simplices of the
simplicial complex. In this context, the first boundary operator maps an edge to the formal sum
of its two connected vertices and a cycle to the formal sum of its involved edges. In contrast to 0-
dimensional topological features i.e. connected components, 1-dimensional topological features
i.e. cycles cannot be destroyed when working purely on graphs as there are no higher dimensional
features that could destroy them. Nevertheless, while it is possible to compute persistent ho-
mology of higher order by performing computations on simplicial complexes instead of regular
graphs, this is typically not considered due to the significantly higher computational complexity
associated with these computations.

Graph Filtrations A common approach to the construction of a filtration on a graphG =

(V,E) is to select a function f that associates each vertex of the graph with a value f : V → R

and to ensure that the filtration is compatible with the graph my defining edge filtration values as
f(v1, v2) = max{f(v1), f(v2)}. Thus an edge can only be createdwhenboth of its vertices have
already been created before or are created at the same time. Common vertex filtration functions
are the degree filtration [99] or the vertices’ contribution to the heat kernel [42].

As an example let us consider the degree filtration on a simple graph, where we visualize the
new nodes and edges added to the graph highlighted, whereas black elements belong to structures
that already exist prior to the step.
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In this particular case, all edges are inserted at a filtration value of f(v) = 3 and we obtain the
following 0-dimensional persistence diagramD0 = {(1,∞), (1, 3), (2, 3), (3, 3), (3, 3)}. The
essential persistence tuple (1,∞) indicates that this example contains only a single connected
component and thus β0 = 1. The one-dimensional persistence diagram only contains a single
tupleD1 = {(3,∞)}, and thus indicates that the graph contains a single cycle which is created
at the filtration value of f(v) = 3 and that the Betti number for the graph is β1 = 1. In this par-
ticular case, all edges are created at once and most are directly destroyed again due to the creation
of the cycle.

5.7 Topological Graph Layer – TOGL
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Figure 5.3: We show the performance of (i) a GCN with k layers, (ii) our layer TOGL (integrated into a
GCNwith k−1 layers), (iii) theWeisfeiler–Leman (WL) graph kernel, and (iv) amethod based
on static topological features (PH). while TOGL can detect the difference in the graphs with
only a single layer, other are only able to capture these structures at increasing depth.

In the following section, I will present and discuss Topological Graph Layer (TOGL), a drop-
in replacement layer for GNNs. TOGL is motivated by the expressivity issues present in conven-
tional GNNs of the Message Passing Neural Network type (see Section 5.4 for further elabora-
tion). In contrast to many previous approaches, TOGL does not try to improve expressivity by
climbing up the WL–test hierarchy but instead allows leveraging multi-scale topological infor-
mation in the graph using persistent homology. We can show that our construction of TOGL
retrains the expressivity of MPNNs while being able to differentiate additional graphs which can
otherwise not be differentiated due to the upper bound of WL–expressivity.
Figure 5.3 provides us with a motivational example. Graphs that can be trivially classified by

humans seem to represent extremely challenging examples for both the WL-kernel and common
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5 Multi-Scale Topology forMachine Learning on Graphs

GNNs. In contrast, the method presented in the following section is able to classify these graphs
without having to rely on increasing depth. This is especially relevant as GNNs with large depth
have often shown strong degradation in performance due to over-smoothing effects [48, 176].
An overview of the approach is depicted in Figure 5.4. TOGL is based on recent developments
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1
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(e) Persistence diagrams
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x(v)

x̃(v)

(f) aggregation

x̃(v) ∈ Rd

(g) output x̃(v)

Figure 5.4: Overview of the Topological Graph Layer (TOGL) method. (a) the node features xv ∈ Rd

and the graph structure are used as input, (b) a neural network Φmaps the node features to k
filtration values, (c) each filtration can be interpreted as a different view on the graph, (d) the
filtrations are computedbased on the filtration values, (e) and give rise tok persistence diagrams.
(f) The persistence diagrams are mapped into node level features using an embedding function
Ψ and are combined with the input features in a residual manner giving rise to (g) the final
output of the layer x̃v .

for learning differentiable filtrations and propagating gradients through the persistent homology
computation. The goal of the method is to allow the layer to (1) harness multi-scale topologi-
cal information from computed persistence diagrams while (2) treating the filtrations as learnable
mappings instead of statically engineered features and (3) incorporate this information into a hi-
erarchy of arbitrary GNN layers.

We tackle points (1) and (2) by relying on recent developments in learning filtrations andmulti-
dimensional filtrations [39, 41, 97]. In order to address (3), it is necessary to ensure that the input
and output of our method are compatible with existing architectures. In particular, we ensure
compatibility with most GNNs by constructing a layer that takes an attributed Graph G with
vertex features as input and returns an attributed Graph G where the new vertex features con-
tain additional topological information. In the following, we clarify some notation to ensure the
description of the method is unambiguous.

Notation Weassume computations on an augmented graphG = (V,E, fV ), wherewe refer
to the vertices as V = {v1, . . . , vn} and the vertex features as X = [fV (v1), . . . , fV (vn)]

>.
The vertex features of an individual node v are referred to as xv := fV (v). Further, we denote
the calculation of persistence diagrams of a graphG under some filtration f by ph(G, f). This
will result in twopersistence diagramsD0,D1, containing information about topological features
in dimension 0 (connected components) and dimension 1 (cycles). While the computation of

122



5.7 Topological Graph Layer – TOGL

higher-order topological features is possible, this is computationally much more demanding and
will not be covered in this text.

Methoddescription Wedefine k vertex filtration functions onGNN-computed vertex fea-
tures and denote the ith filtration as fi : Rd → R for i = 1 . . . k, where d is the output dimen-
sionality of the previousGNN layer. Similar to [97], we consider theGNNprior toTOGLas part
of the filtration function. As thenumber of nodes in the graph is finite, the image offi is also finite
and results in a set of node filtration values which we denote as a(0)i < · · · < a

(n)
i where the su-

perscript corresponds to the sorted position of each filtration value. The filtration values are used
to construct a filtration on the graph ∅ ⊆ G(0)

i ⊆ · · · ⊆ G
(n)
i , whereG(j)

i =
(
V

(j)
i , E

(j)
i

)
with

V
(j)
i :=

{
v ∈ V | fi(xv) ≤ a(j)i

}
, andE(j)

i :=
{
v, w ∈ E | max{fi(xv), fi(xw)} ≤ a(j)i

}
.

Using these filtrationswe compute sets of persistence diagrams pers(G, fi) = {Dl,i,Dl,i}, where
Dl,i corresponds to the l-dimensional persistence diagram of filtration fi. While it is possible to
computehigher dimensional topological features, inourworkwe concentrate0 and1-dimensional
topological features. In order to fulfill requirement 3 it is necessary to map the persistence di-
agrams back to node representations, such that the topological information can be utilized by
conventional GNN layers. We implement this by defining embedding functions for the set of per-
sistence diagrams associated with each dimension Ψl : {Dl,1, . . .Dl,k} → Rn

′×d, where n′ is
the number of vertices for l = 0 and the number of edges for l = 1. For a more detailed descrip-
tion on howwemap persistence diagrams back to vertices and edges, please refer to the following
section. The whole process is visualized in Figure 5.4.

Mapping PersistenceDiagrams toNodes The cardinality ofD0 is equal to the number
of nodes n in the graphs and each tuple in the 0-dimensional diagram is naturally associated with
the vertex that created it. We thus exploit this naturally arising bijective mapping in order to map
the embedded representation of persistence tuples in D0 back to the paired vertices, similar to
previous work in topological representation learning [163]. In contrast, the cardinality of D1 is
thenumber of cycles. Asweonly computepersistent homologyuntil dimension1, cycles never get
destroyed. Following previous work by Hofer et al. [99], we thus pair them with the maximum
value of the filtration. Conventionally, we would consider a cycle associated with the edge that
lead to its creation yet, as we are not incorporating models which run message passing on edges
in our study, we cannot directly include the cycle information of this form into the hierarchy of
GNN layers. Further, the mapping of cycles to their creation edges has generally been deemed
unstable [17]. Thus in order to inject information about cycles into the computation, we need to
aggregate the cycle representations to a representation of fixed dimension, which can then either
be included in the representation of all nodes or be used as an additional output of the GNN
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5 Multi-Scale Topology forMachine Learning on Graphs

besides the readout function prior to classification. This is necessary as the number of cycles can
vary between graphs making it difficult to incorporate without prior aggregation. We follow the
first strategy in the case of node classification and the second strategy for graph classification tasks.

Filtration computation and embedding functions We compute the k vertex filtra-
tions using a single MLP Φ : Rd → Rk. This allows to share information across filtrations,
reduce the complexity of the computation by requiring a lower number of operations and speed
up computations due to increased parallelism. The filtration fi is then defined by the projection
ofΦ to the ith dimension, i.e. fi := πi ◦ Φ.
In order to embed the persistence diagrams generated by the filtration into a representation

which canbeused in downstream layers, we follow two strategies: 1. utilizationofDeepSets [267],
which allows the computationof differentiable set2setmappings, and 2. summary functions from
the persistent homology literature, in particular the rational hat function [100], the triangle point
transform, the Gaussian point transform and the line point transform [42] . The latter group of
approaches creates a purely local representation of each tuple, often representing the distance of
the persistence tuple to a point or line in some transformed space. In this case, the embedding
of each tuple can be considered independent of the embedding of the other tuples and indepen-
dent of the other filtrations thusΨl(Dl,0, . . . ,Dl,k)

[
v
]
= (Ψl,0(Dl,0[v]), . . . ,Ψl,k(Dl,k[v])),

whereDl,k[v] refers to the tuple of the persistence diagram of dimension l and filtration k which
is mapped to vertex v. In contrast DeepSets, embed each tuple in the persistence diagram con-
ditional on the other tuples and filtrations, giving them higher expressive power. Nevertheless as
indicated by Hofer, Kwitt, and Niethammer [100], there is no guarantee that the learned func-
tions are continuous and stable with regard to typical metrics on persistence diagrams1. Further,
they argue that the universal approximation properties of DeepSets require fixed size sets if the
set elements to come from an uncountable domain as is the case for tuples in persistence diagrams
which are defined onR2. Nevertheless, in our context, we can assume that the number of vertices
and edges of graphs on which our method is applied is upper bounded.

Finally, in order to avoid the creation of noisy bottlenecks due to the discrete persistent homol-
ogy computation,we incorporate the information in a residual fashion, such that x̃v = xv+Ψ[v],
where we denote Ψ[v] as the slice in the embedding function output corresponding to vertex v
while accounting for the vertexmatching strategy outlined above. This is further compatible with
the experimental setup of Dwivedi et al. [66] where all graph neural network where extended to
utilize residual connections in the computation in order to reduce over-smoothing effects.

1For example it is commonly agreed upon that points close to the diagonal of the persistence diagram should be given
less weight as they are typically topological noise. This of course cannot easily be implemented in a learned set
function setup.
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5.8 Theoretical Considerations

In this sectionwewill consider the theoretical properties of TOGL. In particular, wewill examine
how it is possible to compute gradients through the persistent homology computation and how
TOGLcompares to otherGNNs in terms of expressive power. Finally, wewill discuss the runtime
properties of TOGL.

5.8.1 Differentiability

The computation of persistent homology is inherently discrete due to the discrete creation and
destruction of topological features and the fact that this discrete matching might change when
perturbing the inputs. Nevertheless, it is possible to show that the computation of gradient is
at least locally possible. The argument is that there always exists an infinitesimal change to the
filtration values ε that would not lead to changes. This can be ensured if we assume the filtration
values to be unique and indirectly follows from the definition of filtrations where the codomain
is the real numbers f : V → R. In the real domain, we can always perturb a sequence of unique
valuesu1, . . . , un, such that their ordering after sortingu1 < · · · < un remains the same2. If the
ordering remains the same, thismeans the filtration on the induced structurewill remain the same
and thus the computation of persistent homology should lead to the same selection of features.
On a filtration level, this requires injectivity of the filtration function and uniqueness of the vertex
features. We will formalize the intuition about this below.
Previous work has shown that the map ph(·) is (locally) differentiable [81, 97, 163, 187] when

the filtration function is injective. We will include the formal proof based onHofer et al. [97] for
completeness.

Theorem 5.1 (Differentiability of ph compuation). Let f be a differentiable vertex filtration
function f : V → R with continuous parameters θ, and let Ψ be a differentiable embedding
function of unspecified dimensions. If the function f is injective for a specific set of parameters θ′

i.e. f(v) 6= f(w) for v 6= w and the set of vertices is composed of distinct elements then themap

θ 7→ Ψ(ph(G, f)) (5.2)

is differentiable at θ′.

Proof. For notational convenience let yi = f(θ′, vi) represent the filtration value for vertex
vi. Further, let π denote the sorting permutation of the filtration values (yi(θ′))ni=1 such that
yπ(1)(θ

′) < yπ(2)(θ
′) < · · · < yπ(n)(θ

′). By the assumption of unique elements in V and

2This is because the real numbers with the standard euclidean metric are a (separable) Hausdorff space.

125



5 Multi-Scale Topology forMachine Learning on Graphs

injectivity of the filtration, the filtration values also have to be distinct. Thus, there exists a neigh-
bourhood around θ′ such that the ordering of the filtration values is not impacted by changes of
θ within this neighbourhood. Thus,

∃ε > 0∀h : |h| < ε =⇒ yi(θ
′ + h) 6= yj(θ

′ + h)

and
yπ(1)(θ

′ + h) < yπ(2)(θ
′ + h) < · · · < yπ(n)(θ

′ + h).

This further implies that for a sufficiently small change of θ′ the induced filtrations remain un-
changed, i.e. (

K(i)(θ′)
)n
i=0

=
(
K(i)(θ′ + h)

)n
i=0

Importantly, this means that the selection of persistence pairs (f (i), f (j)) ∈ D will also remain
the same (yet the filtration values associated with the tuple might differ). By applying the chain
rule we can decompose the derivative

dΨ(ph(G, fθ′))
dθ

=
dΨ(D)
dD

d ph(G, fθ′)
dθ

asΨ is assumed to be differentiable, we solely need to show that the derivative ofph(G, fθ′) exists:

lim
|h|→0

ph(G, fθ′)− ph(G, fθ′+h)
h

= lim
|h|→0

{(f(θ′, vπ(i)), f(θ′, vπ(j)))}i<j − {(f(θ′ + h, vπ(i)), f(θ + h, vπ(j)))}i<j

h

= lim
|h|→0

{(f(θ′, vπ(i))− f(θ′ + h, vπ(i)), f(θ
′, vπ(j))− f(θ + h, vπ(j)))}i<j

h

=

{(
lim

|h|→0

f(θ′, vπ(i))− f(θ′ + h, vπ(i))

h
, lim
|h|→0

f(θ′, vπ(j))− f(θ′ + h, vπ(j))

h

)}i<j
=

{(
f(θ′, vπ(i))

dθ′
,
f(θ′, vπ(j))

dθ′

)}i<j
,

where steps 2 and 3 are only possible because the matching remains consistent.

We were thus able to show that we can propagate gradients through the persistent homology
computationwhile only relying on the assumption that the filtration values are distinct. It should
be noted here, that while this does allow the computation of a gradient, this gradient disregards
any potential changes that could be induced by a change in the ordering and pairing of the filtra-
tion values. Recently, there has been a lot of development ondifferentiable sorting [21, 56], i.e. the
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inclusion of the sorting operation and its effects into the gradient computation. This represents a
first step into the direction of differentiating through the persistent homology computation, yet
further work on making the selection process differentiable is needed.

5.8.2 Expressive Power

As shown in the Section 5.4 the expressivity of GNNs has been extensively studied and most
GNNswere found to be limited by the expressivity of the 1-WL test. In order to show thatTOGL
has higher expressivity than the 1-WL test, we will (1) that TOGL can differentiate all graphs that
the 1-WL test can differentiate and (2) show how TOGL can trivially differentiate graphs that
are indistinguishable by the 1-WL test . It is important to note, that the higher expressivity of
TOGL does not imply that the model will generally show better performance, as in some cases
being unable to distinguish different inputs can be an advantage. When CNNs are trained for
image classification, the features are typically polled using average pooling such that the final rep-
resentation does contain spatial information. This is beneficial in the case of image classification
as the exact location of features is often irrelevant. Thus while the CNN shows lower expressivity
in image classification this is actually beneficial as it creates an inductive bias compatible with the
task. If we would train the same network to perform object discovery, this invariance and lower
expressivity would on the other hand become a disadvantage. This is related to the well-known
bias-variance trade-off in machine learning.
The computations of persistent homology are invariant to isomorphisms, thus in order to show

the same expressivity as 1-WL it is sufficient for us to show that we can differentiate all graphs
that the WL-test can differentiate. In particular, we show that there exists an injective filtration
(in order to remain in line with Theorem 5.1), which when the label histograms of WL diverge
would also lead to different persistent diagrams. We split the proof into multiple parts: (1) we
show that persistent homology given an arbitrarily flexible filtration function can differentiate all
graphs that the 1-WL test can differentiate, (2) we show that this filtration can be approximated to
arbitrary precision using an injective function in order to ensure differentiability and (3) we show
that utilizing this approximated function would still be able to differentiate graphs that a 1-WL
test can differentiate.

Lemma 5.2 (Expressivity of Persistent Homology). Persistent homology is at least as expressive
at 1-WL, i.e. if the 1-WL label sequences of two graphs G and G′ diverge, there is a filtration f
such that the corresponding 0-dimensional persistence diagramsD0 andD′

0 differ.

Proof. Assume that the label sequences ofG andG′ diverge at iterationh. Thus,φ(h)G 6= φ
(h)
G′ and

there exists at least one labelwhose count is different. LetL(h) := {l1, l2, . . . }be an enumeration
of the finitely many hashed labels at iteration h. We can build a filtration function f by assigning
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a vertex v with label li to its index, i.e. f(v) := i, and setting f(v, w) := max{f(v), f(w)} for
an edge (v, w). The resulting 0-dimensional persistence diagramD0 (andD′

0 forG′) will contain
tuples of the form (i, j), and each vertex is guaranteed to give rise to exactly one such pair. Letting
µ
(i,j)
0 (D0) refer to themultiplicity of a tuple inD0, we knowthat, since the label count is different,

there is at least one tuple (k, l)with µ(k,l)0 (D0) 6= µ
(k,l)
0 (D′

0). Hence,D0 6= D′
0.

We can understand this proof on a more intuitive level: Given that the label histograms of the
1-WL iterations differ, there will be a different number of vertices associated with a particular
index i in two filtrations. As vertices with the same filtration value are created at the same step in
the filtration, more or fewer points associated with a particular label would also lead to a different
number of features to be created at a filtration step and thus lead to different multiplicities.
While Theorem 5.5 shows the existence of a filtration, it represents a constructive proof and

relies on the existence of 1-WL labels. Further, the resulting filtration is not typically injective as
the WL iterations might result in vertices being associated with the same label. We continue by
showing that an injective filtration as applied in TOGL can approximate the above construction
to arbitrary precision.

Lemma 5.3 (Approximation with Injective Function). For all ε > 0 and f : V → Rd there
exists and injective function f̃ such that ||f − f̃ ||∞ < ε.

Proof. Let V = {v1, . . . , vn} the vertices of a graph and im f = {u1, . . . , um} ⊂ Rd their
images under f . Since f is not injective, we havem < n. We resolve non-injective vertex pairs
iteratively. For u ∈ im f , let V ′ := {v ∈ V | f(v) = u}. If V ′ only contains a single
element, we do not have to do anything. Otherwise, for each v′ ∈ V ′, pick a new value from
Bε(u) \ im f , where Br(x) ⊂ Rd refers to the open ball of radius r around a point x. Since we
only ever remove a finite number of points, such a newvalue always exists, andwe canmodify im f

accordingly. The number of vertex pairs for which f is non-injective decreases by at least one
in every iteration, hence after a finite number of iterations, we have modified f to obtain f̃ , an
injective approximation to f . By always picking new values from balls of radius ε, we ensure that
‖f − f̃‖∞ < ε, as required.

Thus we can construct an injective function from a non-injective function by replacing non-
injective input-output pairs with pairs where the output was perturbed within an ε-ball of the
previous output value. By ensuring that the perturbed value is not already part of the function’s
image we can create an injective function. OnR this is always possible as there are infinitelymany
points within an ε-neighbourhood of each point.
Finally, we need to show that Lemma 5.2 still holds despite f̃ being from the more restricted

class of injective functions. For this, we show that the difference of the persistence diagrams for
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the filtration function f propagates into a difference in persistence diagrams for the approximated
filtration function f̃ .

Lemma 5.4. LetG andG′ be two graphs whose 0-dimensional persistence diagramsD0 andD′
0

are calculated using a filtration function f as described in Lemma 5.2. Moreover, given ε > 0, let
f̃ be an injective filtration functionwith ‖f− f̃‖∞ and corresponding 0-dimensional persistence
diagrams D̃0 and D̃′

0. IfD0 6= D′
0, we also have D̃0 6= D̃′

0.

Proof. Since f̃ is injective, each tuple in D̃0 and D̃′
0 has multiplicity 1. But under f , there were

differences in multiplicity for at least one tuple (k, l). Hence, given f̃ , there exists at least one
tuple (k, l) ∈ D̃0 ∪ D̃′

0 with (k, l) /∈ D̃0 ∩ D̃′
0. As a consequence, D̃0 6= D̃′

0.

Thus, given the previous steps we can now show that TOGL exhibits at least the expressivity
of the 1-WL test:

Theorem 5.5 (Expressivity of TOGL). Given a flexible class of injective filtration functions F ,
persistent homology is at least as expressive as 1-WL, i.e. if the 1-WL label sequences for two graphs
G and G′ diverge, there exists a filtration f ∈ F such that the corresponding 0-dimensional
persistence diagramsD0 andD′

0 are not equal.

Proof. Take anon-injective filtration functionf defined inLemma5.2which results inD0 6= D′
0.

According toLemma5.3, for every ε > 0we canfind an injective function f̃ with ||f−f̃ ||∞ < ε.
Following Lemma 5.4, the persistence diagrams calculated by using this function as a filtration
function are distinct, i.e. D̃0 6= D̃′

0. Thus f̃ is a filtration function which differentiates two
graphs when their 1-WL labels are distinct and is differentiable according to Theorem 5.1

The preceding theorem proves the existence of such a filtration function. Due to the capability
of GNNs to approximate the Weisfeiler–Leman test [261] and the link between graph isomor-
phism testing and universal function approximation capabilities [50, Theorem 4], we can deduce
that they are also able to approximate f and f̃ , respectively. Yet, this does notmean that we always
end up learning f or f̃ . This result merely demonstrates that our layer can theoretically perform
at least as well as WL[1]. In practice, TOGL may learn other filtration functions and injective
filtrations based on 1-WL are not necessarily optimal for a specific task.
To prove that our layer is more expressive than a GCN, it is sufficient to show that there are

pairs of graphs G,G′ that 1WL cannot differentiate but that can be distinguished by persistent
homology computations and thus by TOGL. Let G be a graph consisting of two triangles, i.e.

, and let G′ be a graph consisting of a hexagon, i.e. . 1-WL will be unable to distinguish
these two graphs using degree-valued labels because all generated labels in all iterations will always
be the same (see Figure 5.2 for a visualization of the WL label histograms on similar graphs). In
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contrast, persistent homology can simply distinguish the two graphs via their Betti numbers. For
Gwe haveβ0(G) = β1(G) = 2 asG is composed of two connected components and two cycles,
whereas G′ has the Betti numbers β0(G′) = β1(G

′) = 1 as it only contains a single cycle and
a single connected component. Thus, the characteristics captured by persistent homology are
elementary different from the ones captured by the 1-WL test. Combined with Theorem 5.5 this
shows that persistent homology is strictly more powerful than the 1-WL when combined with
sufficiently expressive filtrations. This further highlights the importance on being able to learn
the filtrations such that this level of expressivity is (at least in theory) achievable.

5.8.3 Runtime

As shown in the introduction of this thesis, 0-dimensional persistent homology can be computed
using a Union-Find data structure, which results in a runtime complexity of O(mα(m) + m)

where α denotes the slowly growing inverse Ackermann function and m the number of edges
present in the graph. This process is repeated for each filtration f . Thus, compared to conven-
tional GNNsTOGL addsO(nfmα(m)+nfm) runtime complexity per includedTOGL layer,
where nf corresponds to the number of filtrations used.

5.9 Empirical evaluation

We evaluate TOGL on a set of synthetic and real-world data sets, where our primary interest lies
in understanding which scenarios benefit from the inclusion of topological features. For this cre-
ate a set of purely structure-based data sets, where the vertex features are replaced with random
values. Besides these artificially generated scenarios, we also evaluate TOGL on real-world graph
benchmarks where it performs competitively to previous approaches.

5.9.1 Experimental Setup

We follow the setup of Dwivedi et al. [66] which proposes a consistent training setup across dif-
ferent datasets and models and ensures a fair comparison due to a limited parameter budget. In
all figures and tables, we denote themean test accuracy and standard deviation over different folds
of the datasets. For datasets that don’t have multiple folds defined we instead compute the per-
formance over multiple training runs.

Comparisonpartners We compare to severalGNNarchitectures, namely (1)Graph convo-
lutional networks (GCN) [122], (2)GraphAttentionNetworks (GAT) [240], (3)Gated-GCN[30],
(4) Graph Isomorphism Network (GIN) [261], (5) the Weisfeiler–Leman kernel (WL) [217]
(6) andWL-OA [125] . These methods have been assessed in benchmarking papers [24, 66] and
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their setup is comparable to ours. In particular, we used the same folds and hyperparameters. It is
worth noting though, that we assume the conventional stacking architecture commonly used in
DNNs instead of the approach of concatenating the representations of all layers in order to derive
a representation for the final graph or node classification layer (which for example is utilized in
the original work of [261]). We ran most experiments ourselves to ensure a maximal degree of
consistency and reproducibility.

TOGLmodels In order to highlightTOGL smodularity and to compare howTOGLbehaves
when combined with different GNN architectures, we replace the second layer of all examined
GNNmodels with a TOGL layer. This ensures, that the TOGL models contain approximately
the same number of parameters and the same depth as their paired comparison partners. We insert
TOGL specifically in the second position, as it allows harnessing the first GNN layer as a filtration
function and still gives the later layers the opportunity to incorporate the topological information
injected by TOGL.

5.9.2 Runtime

We empirically compared the runtime of TOGL with conventional graph neural networks by
training both on the DD dataset. We found that the per epoch runtime of TOGL is 4.10± 0.17

seconds, whereas a same sizeGNNonly requires2.00±0.12 seconds. Thus the empirical runtime
of TOGL is almost factor 2 slower than a conventional GNN.While the theoretical overhead of
computingpersistent homology is almost negligible in the context of trainingneural networks, the
practical implications of including TOGL are significant. This is mainly due to the lack of GPU-
optimized implementations for the calculation of persistent homology that work well with deep
learning frameworks. In our experiments, we implemented a CPU-based C++ implementation
of theUnion-Find algorithm in order to compute 0 and 1-dimensional persistent homology. This
unfortunately leads to additional copy overhead betweenCPU andGPUwhich slow down train-
ing. Nevertheless, with the development of further optimizations and GPU-based algorithms,
this gap is expected close to the negligible theoretical runtime difference.

5.9.3 Synthetic Data Sets

To first elucidate if ourmodel can pick up the type of patterns we expect it to, we applied it to two
datasets that cannot be differentiatedusing the 1-WL test but canbe trivially differentiated via per-
sistent homology and by the human eye. As an example, we replace the second layer of an n-layer
GCN with TOGL (denoted as GCN-TOGL). The results of these experiments were presented
in Figure 5.3 at the beginning of this section as a motivational example. Both binary classification
datasets were generated with 1000 examples per class. In the Cycles dataset (Figure 5.3, left),
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Table 5.1: Results for the structure-based experiments. We depict the test accuracy obtained on various
benchmark data sets when only considering structural information (i.e. the network has access
to uninformative node features). Graph classification results are shown on the left, while node
classification results are shown on the right. We compare three architectures (GCN-4, GIN-4,
GAT-4) with corresponding models where one layer is replaced with a nd highlight the winner
of each comparison in bold.

Graph classification

Method DD ENZYMES MNIST PROTEINS

GCN-4 68.0±3.6 22.0± 3.3 76.2± 0.5 68.8± 2.8
GCN-3-TOGL-1 75.1±2.1 30.3± 6.5 84.8± 0.4 73.8± 4.3

GIN-4 75.6±2.8 21.3± 6.5 83.4± 0.9 74.6± 3.1
GIN-3-TOGL-1 76.2±2.4 23.7± 6.9 84.4± 1.1 73.9± 4.9

GAT-4 63.3±3.7 21.7± 2.9 63.2±10.4 67.5± 2.6
GAT-3-TOGL-1 75.7±2.1 23.5± 6.1 77.2±10.5 72.4± 4.6

Node classification

PATTERN

85.5 ± 0.4
86.6 ± 0.1

84.8 ± 0.0
86.7 ± 0.1

73.1 ± 1.9
59.6 ± 3.3

examples from one class are generated to be composed of a single large cycle, whereas the other
class is composed of multiple small cycles with the same number of nodes in total. They can thus
be easily differentiated by any approachwhich incorporates notions of topology as both the num-
ber of connected components (i.e. 0-dimensional topological features) and the number of cycles
(i.e. 1-dimensional topological features) are different between the two classes. In theNecklaces
dataset, we generate graphs of chains that either contain two separate cycles or a singlemerged one.
Both classes have the same number of cycles, yet the incorporation of connectivity information
along their neighborhoodsmakes them easily distinguishable for TOGL as filtrations to highlight
this property can be learned easily.
As shown in Figure 5.2 the labeling scheme of the 1-WL test cannot differentiate these two

structures easily and thus the WL graph kernel performs poorly in both tasks given a finite num-
ber of iterations. Interestingly, while the GCN performs poorly with a low number of layers
its performance increases with increasing depth. The approaches which incorporate topology
both perform better than their non-topological counterparts. While the approach based on static
persistent homology with node degree filtration (PH) successfully differentiates the classes of the
Cycles dataset due to their simple structure and the Betti numbers being discriminative in them-
selves, the performance is much lower on the Necklaces dataset. Further, the GCN performs
significantly worse than GCN-TOGL in both scenarios, especially when composed of only a few
layers.

5.9.4 Structure-Based Graph andNode Classification

As previously indicated (see Section 5.4.1), node features of graphs often already result in a very
good performance [24]. Thus an evaluation with node features alone would not be sufficient to
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characterize the contribution of the graph structure to amodel’s performance. Motivated by these
insights and the goal to highlight that TOGL allows a GNN to exploit topological information
in the graph structure that would otherwise not be easily captured, we constructed graph datasets
where the original node labels are replaced by random labels. This leaves only structural / topo-
logical information for the classification task. Solely in the case of the PATTERN dataset, we
directly run evaluations on the original dataset as it is created by SBMs and the node features are
random by design [66]. We do not include the Cluster dataset in this scenario as it represents a
semi-supervised node classification task which is incompatible with randomizing the node labels.
Table 5.1 shows the results for both graph and node classification on such graphs. We can rec-

ognize that there is a clear advantage in using TOGL in most of the cases compared to the paired
comparison partners. TOGL improves performance in almost all cases, in some cases, the perfor-
mance increase is over 8% (see the comparison of GCN-4 and GCN-3-TOGL-1 on the MNIST
dataset). Solely for the GINmodel on Proteins and the GATmodel on PATTERNwe can ob-
serve a decrease in performance when including TOGL. It is important to note that the maximal
performance a model can achieve on the structural MNIST dataset is at least 20% lower than for
the non-structural case. This is due to the fact, that the node attributes contain the positional
information of the superpixels. Without this information, it is impossible to for example differ-
entiate a 9 from a 6 as the resulting graphs would be considered isomorphic.
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Figure 5.5: Classification performance when
analysing the structural variant of
MNIST.

To further show thatTOGLallowsGNNs to ex-
ploit topological information from the graphmore
easily and also at lower depth, we compared the per-
formance of the considered models on the struc-
tural MNIST variant while changing the number
of layers of the models. We present the results in
Figure 5.5. From this experiment, it is evident that
TOGL allows the model to access topological and
structural features of the graph more easily and at
a lower depth.

5.9.5 Benchmarking Data Sets

After showing the utility of TOGL for tasks where topological and structural information is of
crucial importance, we nowmove to the examination of TOGL’s performance on standard graph
and node classification tasks. We show the results of the evaluation in Table 5.2. We can recog-
nize that the TOGL augmented models perform better than their paired comparison partners in
most cases, which highlights the beneficial effect of substituting a conventional GNN layer with
TOGL. Nevertheless, we observed strong performance degradation on the ENZYMES dataset

133



5 Multi-Scale Topology forMachine Learning on Graphs

Table 5.2: Test accuracy on benchmark data sets (following standard practice, we report weighted accuracy
on CLUSTER and PATTERN). Methods printed in black have been run in our setup, while
methods printed in grey are cited from the literature, i.e. Dwivedi et al. [66], Morris et al. [164]
for IMDB-B and REDDIT-B, and Borgwardt et al. [24] for WL/WL-OA results. Graph clas-
sification results are shown on the left, while node classification results are shown on the right.
Following Table 5.1, we take existing architectures and replace their second layer with ; we use
italics to denote the winner of each comparison. A bold value indicates the overall winner of a
column, i.e. a data set.

Graph classification

Method CIFAR-10 DD ENZYMES MNIST PROTEINS-full IMDB-B REDDIT-B

GATED-GCN-4 67.3± 0.3 72.9± 2.1 65.7± 4.9 97.3± 0.1 76.4± 2.9 — —
WL — 77.7± 2.0 54.3± 0.9 — 73.1± 0.5 71.2± 0.5 78.0± 0.6
WL-OA — 77.8± 1.2 58.9± 0.9 — 73.5± 0.9 74.0± 0.7 87.6± 0.3

GCN-4 54.2± 1.5 72.8± 4.1 65.8± 4.6 90.0± 0.3 76 .1± 2.4 68.6± 4.9 92.8± 1.7
GCN-3– 1 61.7 ± 1.0 73.2 ± 4.7 53.0± 9.2 95.5± 0.2 76.0± 3.9 72.0 ± 2.3 89.4± 2.2

GIN-4 54.8± 1.4 70.8± 3.8 50.0 ± 12.3 96 .1± 0.3 72.3± 3.3 72.8± 2.5 81.7± 6.9
GIN-3– 1 61.3 ± 0.4 75.2 ± 4.2 43.8± 7.9 96.1± 0.1 73.6 ± 4.8 74.2± 4.2 89.7± 2.5

GAT-4 57.4± 0.6 71.1± 3.1 26.8± 4.1 94.1± 0.3 71.3± 5.4 73.2 ± 4.1 44.2± 6.6
GAT-3-TOGL-1 63.9 ± 1.2 73.7 ± 2.9 51.5 ± 7 .3 95.9 ± 0.3 75.2 ± 3.9 70.8± 8.0 89.5 ± 8.7

Node classification

CLUSTER

60.4± 0.4
—
—

57.0± 0.9
60.4 ± 0.2

58.5± 0.1
60.4 ± 0.2

56.6± 0.4
58.4 ± 3.7

Table 5.3: Test accuracy when comparing TOGL (integrated into a simplified architecture) with existing
topology-based embedding functions or readout functions. Results shown in grey are cited
from the respective papers [42, 97]. ForGFL,we cite degree-based results so that its performance
values pertain to the same scenario.

Method REDDIT-5K IMDB-MULTI NCI1 REDDIT-B IMDB-B

GFL 55.7±2.1 49.7±2.9 71.2±2.1 90.2±2.8 74.5±4.6
PersLay 55.6 48.8 73.5 — 71.2

GCN-1-TOGL-1 56.1±1.8 52.0±4.0 75.8±1.8 90.1±0.8 74.3±3.6

which we attributed to overfitting. ENZYMES is the smallest dataset considered in this work
and thus requires careful tuning of regularization hyperparameters in order to reach good perfor-
mance. Yet, we did not explicitly tune the hyperparameters of our model to maintain compara-
bility with previous large-scale GNN benchmarking studies [66]. Further, for GAT we observed
a high degree of variance on the smaller scale datasets, yet note that this is in line with previous
studies [66].

5.9.6 Comparison toOther Topology-Based Approaches

As TOGL relies on ideas such as differentiable filtrations and embedding functions which have
been proposed by other approaches we take the time to explicitly compare these approaches to
our proposed model. In particular, we compare to the approaches Graph Filtration Learning
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(GFL) [97] and Persistence Layer (PersLay) [42]. The results of these comparisons can be found
in Table 5.3 In many cases TOGL yields higher performance compared to the other topology-
based approaches, the difference is most pronounced on the largest dataset NCI1 where TOGL
shows higher performance by a margin of approx. 2.5%. Our approach thus performs better
than using fixed filtrations as was suggested by Carrière et al. [42] and than incorporating the
topological information only on the level of the readout function as suggested by Hofer et al.
[97]. While the large standard deviations due to the rather small dataset sizes do not allow us to
speak of significant differences, we hypothesize that the utilization ofmultiple learned filtrations
(as done in our method) will yield more pronounced benefits on larger datasets.

5.10 Discussion and Conclusion

This chapter highlighted the problem of limited expressivity in GNNs and showed that these are
often not able to differentiate graphs that can be trivially differentiated by humans when visual-
ized in 2D. Further, it showed that in the evaluation of Graph Neural Networks the source of
higher performance is often insufficiently investigated. Formany approaches, it is not clear if they
yield higher performance solely due to their reliance on more expressive models that can export
hidden patterns in the node labels or if themodels performbetter as they can harness the informa-
tion present in the graph in a better or more effective manner. In our work “Topological Graph
NeuralNetworks”, we strived to address these issues by (1) constructing amodular GraphNeural
Network layer that candirectly incorporate topological properties and structures of the graph into
the computation of node representations and (2) evaluating our model in a manner that allows
us to attribute the performance gains to the exploitation of the graph structure .
We showed that our method, TOGL, has higher theoretical expressivity than the 1-WL test

for graph isomorphism, and therefore can increase the expressivity of GNNs by using persistent
homology instead of by trying to climb the hierarchy of WL test expressiveness. We showed that
on datasets with pronounced topological features, our method helps GNNs obtain substantial
gains in performance. Further, we highlight that in the absence of node features our method
makes it significantly easier for GNNs to exploit topological structures from input graphs leading
to higher performance while requiring fewer GNN layers.
Our work also shows some limitations when examining the performance of models on graphs

without node labels. Most approaches are not designed to work without node labels and thus
should not be expected to performwell in this scenario. Further, ourwork showed that despite the
higher theoretical expressiveness of TOGL, the model performs worse in some scenarios. There
are multiple reasons why this could be the case. First, the discreteness of the persistent homology
calculation and the lack of gradients with regard to the PH computation itself could lead to a
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higher degree of noise in the optimization process and could reduce performance. Moreover, for
someproblems, itmight actually be beneficial if two types of graphs cannot be distinguished. Due
to the potential false positives of the WL test for isomorphism, two graphs would be considered
the same despite being different. This would introduce an invariance of the GNN to differences
in graph structure that cannot be detected by the WL test. Similar to how convolutional neural
networks are invariant to the positions of objects in images, this could actually represent a useful
inductive bias. Nevertheless, it is worth noting that the WL test can differentiate most graphs
such that such an invariance could only be of limited impact.
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6 Evaluation of Graph Generative
Models

While most of this thesis has concentrated on machine learning tasks, i.e. dimensionality reduc-
tion and classification, the following section will handle how to evaluate generative models, i.e.
models which generate samples from a distribution that they were trained on. In some cases— in
particular, when we are very familiar with the target structures— the evaluation and comparison
of generative approaches can easily be done by eye. This, of course, impairs objective comparisons
and the necessity of manual human evaluation prevents large-scale studies and makes results in-
comparable. Themost prominent data falling into this category are generated natural images and
faces. We humans can recognize mistakes in these data fairly well, although modern approaches
are already partially capable of fooling us [170, 185, 226]. The recent development of machine
learning methods has been driven by the iterative refinement on large benchmarking tasks with
clearly defined evaluation criteria, such as the “ImageNet Large Scale Visual Recognition Chal-
lenge” (ILSVRC) [92, 126, 202]. Motivated by the progress that the ILSVRC challenge brought
to the field, we want to accelerate the development of graph generative models by providing clear
guidelines on how they should be evaluated in order to ensure the field moves in the right direc-
tion.

In the following, I will discuss how to evaluate generated structures that humans are not well
able to differentiate due to our lack of experience with these structures. The chapter will be focus-
ing on the evaluationof generated graphs andhighlight issueswith the current standard evaluation
procedure in the domain. Nevertheless, many of the discussions in this section are not exclusively
limited to graph generation but can also be applied to other types of data.

This section is partially based on the following work:
L. O’Bray∗, M. Horn∗, B. Rieck, et al. “EvaluationMetrics for Graph Generative Models: Prob-
lems, Pitfalls, and Practical Solutions”. In: International Conference onLearningRepresentations.
2022
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6.1 Graph GenerativeModels

Graph generative models are models that can generate graphs that follow the same distribution as
graphs they have been trained on. The most prominent application of graph generative models
is the generation and optimization of small molecules which can be represented as graphs, where
nodes represent atoms and edges represent the connections between them. While graphs are dis-
crete structures and thus cannot directly be optimized without requiring computationally costly
discrete optimization, the latent representations of generative models are continuous and thus al-
low for optimization to take place. Thus an optimization algorithm can be used to traverse the
space of graphs by traversing the latent space of a generative model trained on valid graphs [90].
A large variety of approaches have been developed to tackle this task relying on different ap-

proaches to generate graphs such as Variational Autoencoders [143, 221], Diffusion-based Gen-
erativeModelling [171], Generative Adversarial Networks [249], AutoregressiveModelling [139,
265] and Reinforcement Learning [264].
Compared to the generation of images, graphs are highly discrete structures (nodes or edges ei-

ther exist or do not, there is no such thing as a partial edge), making the propagation of gradients
difficult. This has been overcome in some of the above works by applying continuous relaxations
to generated adjacencymatrices and later applying a threshold to binarize the outcome [171, 221].
Others overcame this limitation by decomposing the generation process into a series of condi-
tionally dependent steps where each step contains sampling from a discrete Bernoulli distribu-
tion [139, 265].

6.1.1 Challenges Evaluating Graph GenerativeModels

One of the core difficulties of evaluating graph generative models is that it essentially requires
the comparison of two distributions in graph space. While approaches such as maximum mean
discrepancy (MMD) allow for the comparison of two distributions using a kernel, the choice of
this kernel for graphs is not trivial [25, 225].
In contrast, the progress of generative models in the image domain was initially based on visual

inspection and later driven by metrics computed on the feature representation of trained deep
neural network classifiers such as the Frèchet inception distance [95]. This style of evaluation
is not available when working with graphs due to two reasons: First, humans don’t have a good
visual understanding of graphs as they are invariant to the reordering of nodes and thus their visu-
alizations are invariant to any type of geometrical transformation. This lack of visual understand-
ing is also due to insufficient experience with graphs: Graphs are not structures that we would be
exposed to in the real world. While our brains have developed specialized circuitry to understand
human faces, and natural scenes, this is not the case for graphs. Second, using a trained model to
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extract graph features for comparison is not possible due to the lack of a standardized dataset on
which such amodel would be trained. In the case of images, this was possible due to the existence
of the ImageNet dataset [202] and the focus on real world images. Yet for graphs neither such a
dataset nor the concept of ”real world” is available.

Graphs are highly variable and complicated data structures, which require special care to be
compared appropriately, this motivated our work to investigate how graphs can be compared in
an unbiased manner and to see how the current standard of evaluating these models performs.

6.2 Comparing GraphDistributions

Graphs

Clustering coefficient

Degree distribution

Laplacian spectrum

Descriptor functions

Rd

Representations

MMD

Evaluator function

Figure 6.1: Overview of typical graph generative model evaluation workflow. Given a graph distribution,
a set of graph descriptors is applied to each graph in order to map it to a high-dimensional rep-
resentation inRd. These real-valued representations are used as a basis for the computation of
an evaluator function, typically maximum mean discrepancy (MMD). While MMD does not
rely on vectorial representations and can also directly operate on graphs using appropriate ker-
nels [24], we find that its application to graph descriptors is much more common.

The following work concentrates on undirected graphs, which we denote using their vertices
and edges asG := (V,E). Further, we denote the original distribution of graphs (and thus the
distribution that a generative model should try to mimic) as a multiset G∗. When examining a
set of models {M1,M2, . . . } we examine the multisets of graphs generated by those models
[G1,G2, . . . ]. The goal of evaluating generative models on graphs in this context is to rank mod-
els based on their ability to mimic the data best, i.e. which distribution of generated data G is
closest to the distribution of the testing data G∗. To achieve this we require the definition of a
(pseudo-)metric d(·,G∗) to quantify the dissimilarity between any multiset of generated graphs
and the original distribution. We argue that any such metric should be in line with the following
desiderata:
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1. Expressivity: When G∗ and G do not originate from the same distribution, the metric
should be able to detect this. In particular, d(G,G∗) should monotonically increase with
increasing as G and G∗ become increasingly dissimilar.

2. Robustness: A suitablemetric should be robust to small perturbations of the distribution
G. Ideally, the changes in the metric should be upper bound as a function of the degree of
the perturbation. We prefer robust metrics as they are suited for handling the intrinsic
randomness arising due to the training of deep neural networks.

3. Efficiency: The evaluation of the metric should be reasonably fast, to calculate. Despite
evaluation being a posthoc analysis step, a suitable metric should scale well with increasing
cardinality of the datasets and also with increasing size of the graphs themselves.

Computing distances on graph distributions is particularly difficult, as graphs have a varying
number of nodes and edges and are only defined up to permutation. In fact, the task of simply
determining whether two graphs are isomorphic, i.e. whether they represent the same graph in
different permutations, is known to be of complexity NP, and the assignment of the graph edit
distance, i.e. the number of editing operations needed to transform one graph into another graph
is even NP-hard in general [268]. Thus while metrics like the graph edit distance might be the
most appealing in terms of theory and correctness, they are precluded from our investigation as
they contradict the efficiency requirement of our study as they do not allow efficient computation
on arbitrary graph structures.

Graphdescriptors Instead, it is common practice to examine graph descriptors, which rep-
resent summary statistics of graphs that are invariant to permutations of the graph, i.e. isomorphic
graphs would show the same graph descriptors. A graph descriptor f maps a graph G to some
description of the graph in a descriptor space Z and reduces the problem of comparing graph
distributions to the problem of comparing images of graph descriptor functions. Thus instead
of computing the distance between the graph distributions G and G∗ directly, we compare the
distributions of graph descriptor functions, where f(G) = {f(G1), f(G2), . . . , f(gn)} and
f(G) ⊆ Z . This allows the application of any statistical distance valid for data defined onZ and
sidesteps the issue of defining these metrics directly on graphs. A visualization of this process is
provided in Figure 6.1, here f can be any mapping that in some way characterizes the graph such
as mapping the graph to a histogram of its degrees as a simple example.
It is important to note though, that the utilization of graph descriptor functions also leads to

some disadvantages. In particular, the equality of graph descriptors between two graphs is a neces-
sary but not sufficient condition for these to be isomorphic. While two isomorphic graphs would
give rise to the same graph descriptor value, graphs might show the same graph descriptor value
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but not be isomorphic. Each graph descriptor value thus represents a perspective or projection
of graphs into a space, where some information about the graph structure is lost. It follows that
when using graph descriptors, it is important to considermultiple descriptors, as somemight rep-
resent an overly simplistic view of the graph. A particularly strong example of such a simplistic
descriptor function would be to use the number of nodes or edges in a graph, where all informa-
tion about the connectivity structure is lost.

6.3 Current State of the Art for Graph GenerativeModel
Comparison

Previous literature on the evaluation of Graph Generative Models has focused on one particular
distancemeasure between graph descriptors inRd, themaximummean discrepancy (MMD) [25,
88]. MMD enables the statistical comparison of two distributions using their means in a high-
dimensional feature space implied by a kernel, without ever explicitly requiring to access the fea-
ture representation. This allows to compute the distance of two distributions using an infinite
dimensional feature space representation (for example when using the RBF kernel) and further
enables the computation of distances on structured objects if an appropriate kernels are defined.
In the following, I will introduce MMD and showcase the descriptor functions typically used.
The following introduction to MMD is inspired by a talk from Arthur Gretton at the Machine
Learning Summer School 2020.

6.3.1 MaximumMeanDiscrepancy

Maximum mean discrepancy is based on the idea that one can discriminate two distributions p
and q by evaluating if their expectations with respect to all continuous bounded functionsC(X )
always coincide [64, 88], i.e. p = q if and only ifEx∼p[f(x)] = Ey∼q[f(y)] for all f ∈ C(X ).
Unfortunately, this is an extremely hard to compute condition such that in practice it is only
evaluated with respect to a more limited class of functionsF . By instead phrasing the condition
as a discrepancy thatmaximizes the difference of the expectationswith respect to the function class
F , we can define a whole class of metrics1 on probabilities, so-called integral probability metrics
(IPM) which follow the form

D[p, q,F ] := sup
f∈F

(
E
x∼p

[f(x)]− E
y∼q

[f(y)]

)
, (6.1)

where the function f that attains the supremum is often referred to as the witness function.

1Strictly speaking, these are not always metrics in a mathematical sense.
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Maximummean discrepancy is one particular IPMwhere the function classF is defined as the
unit ball in a Reproducing Kernel Hilbert Space (RKHS) H. This norm is with respect to the
RKHS norm of the function f ∈ H and thus represents a smoothness constraint [210], where
the notion of smoothness is dependent on the kernel at hand and thus on RKHS induced by it.
For a brief introduction to kernels and Hilbert spaces, we refer the reader to Section 3.1. The
exact notion of smoothness relates to how kernels can be rewritten in terms of eigenvalues and
eigenfunctions, which under certain constraints is possible for any positive semi-definite kernel
according toMercer’s Theorem. Formally, the MMD is thus defined as

MMD[p, q,F ] := sup
f∈H,||f ||H≤1

(
E
x∼p

[f(x)]− E
y∼q

[f(y)]

)
. (6.2)

Interestingly, this notion of MMD can be significantly simplified by utilizing some properties
of the RKHS which will lead us to the practical definition of MMD on samples. In particular,
for bounded reproducing kernels the expectation of a function applied to a random variable in
the RKHS can be written as the inner product of the function’s coefficients, with the expected
features of the random variable, i.e. Ex∼p[f(x)] = 〈µx, f〉H, where µx := Ex∼p[φ(x)] rep-
resents the mean of the feature embedding φ of the random variable x inH [88]. While such a
feature representation exists for anyHilbert Space, being able to rewrite expectations of functions
as the inner product of their coefficients with mean embeddings is possible due to the reproduc-
ing property of the RKHS. It thus follows that the above statement can be written in terms of the
differences in the expected feature vectors as

MMD[p, q,F ] := sup
f∈H,‖f‖H≤1

(
E
x∼p

[f(x)]− E
y∼q

[f(y)]

)
= sup

f∈H,‖f‖H≤1

(
〈µx, f〉H − 〈µy, f〉H

)
= sup

f∈H,‖f‖H≤1

〈f, µx − µy〉H

=

〈
µx − µy
||µx − µy||

, µx − µy
〉

H

= ‖µx − µy‖,

(6.3)

where in line three we utilize the fact that the inner product is maximal for vectors in the same
orientation.
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Finally, based on the previous definition of a kernel k (seeDefinition 3.1) for theRKHSH, the
squaredMMD can then be written as

MMD[p, q,H]2 := ‖µx − µy‖2

= 〈µx − µy〉H〈µx − µy〉H
= 〈µx, µx〉H − 2〈µx, µy〉H + 〈µy, µy〉H
= E

x∼p,x′∼p
k(x, x′)− 2 E

x∼p,y∼q
k(x, y) + E

y∼q,y′∼q
k(y, y′).

(6.4)

A unbiased empirical estimate to Equation 6.4 is given as

MMD2[X,Y,F ] = 1

m(m− 1)

m∑
i=1

m∑
j 6=i

k(xi, xj) +
1

n(n− 1)

n∑
i=1

n∑
j 6=i

k(yi, yj)

− 2

mn

m∑
i=1

n∑
j=1

k(xi, yj).

(6.5)

6.3.2 Kernels and GraphDescriptor Functions

Table 6.1: The kernels & parameters chosen by three graph generative models for the MMD calculation.
Model Kernel Parameter choice σ and nbin

Degree Clustering Laplacian

Model A EMD exp (W (x,y)/2σ2) σ = 1, nbin = dmax σ = 0.1, nbin = 100 N/A
Model B TV exp

(
−dTV(x,y)2

2σ2

)
σ = 1, nbin = dmax σ = 0.1, nbin = 100 σ = 1, nbin = 200

Model C RBF exp(−‖x−y‖2/2σ2) σ = 1, nbin = dmax σ = 0.1, nbin = 100 σ = 1, nbin = 200

In the context of graph generative models, three kernels have been prominently used in com-
bination with MMD to evaluate model performance. These include kernels based on the first
Wasserstein distance (also referred to as earth mover’s distance), based on the total variation (TV)
distance, and the radial basis function kernel (RBF-kernel). Each of these kernels was used in a
recent publication, which proposes its own generativemodel, making themetrics presented in the
different publications incomparable. A summary of the kernels and the selected hyperparameters
for different datasets is provided in Table 6.1.
In order to be able to use MMD with one of the above kernels, a featurization of the graphs

into vectors in Rd is necessary as the above kernels are only defined for this case. We find that
there are two types of descriptor functions used in literature, those relying on summary statistics
of the graph such as the degree distribution histogram and the histogram of clustering coefficients
and those relying on spectral properties such as the histogram of the Laplacian spectrum. Several
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works also rely on the orbit histogram as an additional graph descriptor. We refrain from its usage
due to conflict with desideratum 3, which requires high scalability of the approach. We introduce
some of the main descriptor functions below for ease of reference.

Degree distribution histogram Given a graph G = (V,E) we can derive the degree
histogram by computing the degree of each node, i.e by counting the number of neighbors each
node has. A histogram with bin size 1 is then constructed using degrees by simply counting the
number of timeswe observe each degree value. Thus the bin at index i corresponds to the number
of verticeswith degree i. By assuming amaximumdegreed and setting the histogrambins onnon-
occurring degrees to zerowe can thus construct a real-valued vector of fixed dimensionality, which
is suitable for anMMD-based pipeline.

Clustering coefficient The (local) clustering coefficient can be computed on a per-vertex
basis and is defined as the fraction of edges that exist among the neighbors of the node divided by
the maximum possible number. The clustering coefficient C(v) ∈ [0, 1] thus determines how
close the neighbors of a node are to a clique, i.e. a fully connected graph [250]. Formally, the
clustering coefficient is defined as

C(v) :=
2|{(vi, vj) ∈ E | vi or vj ∈ N (v)}|

deg(v)(deg(v)− 1)
, (6.6)

where N (v) refers to the neighborhood and deg(v) to the degree of vertex v. We can convert
the per-vertex clustering coefficients into a histogram and thus a vector of fixed dimensionality
by deciding on the number of bins that should be used to split the range between 0 and 1 and
thus converting the per-vertex values into a graph-level descriptor. It is worth noting though, that
similar to the degree histogram this descriptor is inherently local and does not account for any
global structure.

Laplacian Spectrum Histogram Spectral methods rely on the computation of spectra,
i.e. of eigenvectors and eigenvalues associated with a matrix representation of the graph. LetA be
the adjacency matrix of the graph, whereAi,j = 1 if there is an edge between the vertices vi and
vj , i.e. (vi, vj) ∈ E. The normalized graph Laplacian is then defined as L := I − D− 1

2AD− 1
2 ,

where I is the identity matrix and D represents the degree matrix, a diagonal matrix where the
entries correspond to the degrees of the individual vertices, i.e.Di,i = deg(vi). As the matrix L
is real-valued and symmetric, it can be diagonalized and give rise to a full set of eigenvalues and
orthogonal eigenvectors. The eigenvalues of L are positive and bounded, i.e. 0 ≤ λi ≤ 2 [52],
such that they can easily be summarized using a histogramwith a fixed number of bins. While it is
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not totally clear how expressive this representation is as it is unknown whether the spectrum can
fully determine the graph it was computed on [57], the Laplacian spectrum remains a prominent
approach for deriving graph representations.

6.4 Issues with Current Practice

The common approach for evaluating graph generative models is to select hyperparameters for
the kernels and descriptor functions and utilize them in combination with MMD in order to
rank models according to their discrepancy to the true distribution. Here authors select different
hyperparameters for kernel and descriptor functions, and to the best of our knowledge these val-
ues are predetermined, i.e. no selection is done to determine the adequate hyperparameters. While
this is not a problem if the resulting rankings of models provided byMMD are stable with regard
to the afore mention parameters, we find that in practice this is not the case and that the resulting
rankings are highly sensitive. It goes so far that with a targeted selection of the hyperparameters,
the rankings of models can be changed almost arbitrarily!
In the following sections, we highlight this problem using three recently developed graph gen-

erative models, GraphRNN [265] which constructs graphs using a deep autoregressive model in
the form of a recurrent neural network, Graph Attention Network (GRAN) [139] which uses
an attention-based hierarchical generation procedure, and Graph Score Matching [171] which
utilizes score matching approaches to transform noise into graph structures. We trained each
model on a series of synthetically generated graphs following the Community, Barabási-Albert,
Erdös-Rényi, and Watts-Strogratz graph distributions and used the trained models to generate
novel graphs from the datasets. We then calculated the MMD distance between the test graphs
and the generated graphs of the models while varying (1) the kernel used (EMD, TV, and RBF),
(2) the kernel hyperparameters σ, λ ∈ {10−5, . . . , 105} and (3) the descriptor function (degree
histogram, clustering coefficient histogram and Laplacian spectrum histogram). In order to sim-
plify matters, we solely refer to the hyperparameter of the kernel as σ independent of the kernel
used. Further, as we solely want to highlight the presence of a problem and not to comment on
the performance of individual approaches, we refer to the models as “A”, “B”, and “C”.

6.4.1 UsingMMD for the Evaluation of Graph Graph Generative
Models

WhileMMD represents the current state of evaluating Graph GenerativeModels, it is important
to note that its original application domain is the construction of two-sample tests. It was thus
not directly designed for the comparison of graph generativemodels and has not been thoroughly
benchmarked in this context. Nevertheless, MMD has now been utilized in a variety of different
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6 Evaluation of Graph GenerativeModels

contexts such as the training of generative models [67, 138], and has recently also been shown
to be beneficial in the context of evaluating generative models when components of MMD are
optimized to maximize the power of a two-sample test [225].
The main issue at hand in the context of evaluating graph generative models is the reliance on

graph descriptor functions prior to the application of MMD. While MMD represents a metric
when a characteristic kernel2 is used and thusMMD[p, q] = 0 if and only if p = q, we must keep
inmind that theMMD is actually evaluated on the graph descriptors. When using a characteristic
kernel we can thus only make statements about the distribution of the graph descriptors and not
about the graphs themselves. We highlight these issues in more detail subsequently.
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Figure 6.2: MMD-based evaluationwith graphdescriptors (b) is not in linewith the expected ideal behavior
(a) and leads to arbitrary rankings ofmodels (c). a) A depiction of howwewouldwant an evalu-
ationmetric to ideally behavewhen evaluated on a perturbed dataset. b)The behavior orMMD
applied to the clustering coefficient graph descriptor as the degree of perturbation is increased.
Each line corresponds to a unique kernel and hyperparameter combination. The perturbation
randomly introduces edges into the graph. c)Model with the lowestMMDevaluated for differ-
ent hyperparameters on the clustering coefficient graph descriptor using an RBF-kernel. Each
square in the plot shows which of the models considered is ranked best given selections of the
two possible hyperparameters of length scale and the number of bins used in the featurization.

Creatinganexternalsenseofdissimilarityviagraphperturbations As twodis-
tributions become increasingly dissimilar we assume that their distance shouldmonotonically in-
crease as a function of their dissimilarity. An example of this behavior is shown in Figure 6.2a. As
we are trying to estimate dissimilarity between distributions in the first place it is hard to evaluate
if this is generally the case without relying on an external notion of dissimilarity. In our exper-
iments, we introduce this external notion by applying perturbations to the originally generated
data sets and utilizing the degree of perturbation as a proxy for how dissimilar we expect the two
distributions to be.
2A kernel for which the mean feature map is injective.
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We describe all graph perturbations used based on an example of a single graphG := (V,E)

where V refers to the vertices of the graph andE to the edges.

Add Edges
For each vi, vj ∈ V with vi 6= vj a sample from a Bernoulli distribution xij ∼ Ber(padd)
is drawn. Samples for which xij = 1, are added to the list of edges such that E′ = E ∪
{(vi, vj) | xij = 1}.

Remove Edges
For each ei ∈ E a sample from a Bernoulli distributionxi ∼ Ber(premove) is draw, samples
with xi = 1 are removed from the edge list, such thatE′ = E ∩ {ei | xi 6= 1}.

Rewire Edges
For each ei ∈ E a sample fromaBernoulli distributionxi ∼ Ber(prewire) is drawn, samples
with xi = 1 are rewired. For rewiring a further random variable yi ∼ Ber(0.5) is drawn
which determines which node ei[yi] of the edge ei is kept. The node to which the edge is
connected is chosen uniformly from the set of vertices v ∈ V , where v /∈ ei, i.e. avoiding
self-loops and reconnecting the original edge. Finally the original edge is removed and the
new edge e′i = (ei[yi], v) is added to the graphE′ = E ∩{ei | xi 6= 1}∪ {e′i | xi = 1}.

Add Connected Nodes
We define a set of vertices to be added V ∗ = {vi | |V | < i ≤ |V | + n}, where n
represents the number of nodes to add. For each vi ∈ V and vj ∈ V ∗ we draw a sample
from a Bernoulli distribution xij ∼ Ber(pconnect_node) and add an edge between vi and vj
to the graph if xij = 1. ThusE′ = E ∪ {(vi, vj) | vi ∈ V, vj ∈ V ∗, xij = 1}.

For each of the above perturbations, we can vary the degree of the perturbation by changing the
parameters of the perturbation. All perturbations contain a set of parameters at which the distri-
bution of graphs remains unchanged, which we set as the lowest perturbation value.

MMD does not always capture differences in distribution While it is possible to
explicitly construct cases where the degree of perturbation will not relate to the dissimilarity , it
highlights that the choice of descriptor function is themain determinant forwhich types of distri-
butional changes can be detected or not. Generally, MMDwill not increase monotonically as the
two graph distributions become increasingly dissimilar as shown in Figure 6.2b while relying on
the same descriptor function. This highlights that even when the graph descriptor is assumed to
be predetermined, the selection of the MMD kernel and the kernel hyperparameters has a strong
impact on the results and can lead to different conclusions. We apply perturbations to the initially
generated graphs and compute theMMDwhile increasing the degree of perturbation and thus the
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(a) EMD, degree (b) RBF, degree (c) EMD, clustering coef. (d) RBF, clustering coef.

Figure 6.3: MMD distance of generated graphs by three recent graph generative models to the test set of
community graphs dataset. Each subfigure shows the values of MMD while varying the value
of σ, the bar under the graph shows the best-ranked model according to the MMD distance.
The grey line indicates the value of σ chosen by the authors. Subfigures 6.3a and 6.3b highlight
the impact of switching between the EMD and the RBF kernel and show that this can lead to
different conclusions when σ is selected to remain the same. Subfigures 6.3c and 6.3d show
how the selected hyperparameter choices of previous publications miss the area of highest dis-
criminative ability of MMD.

distance of the perturbed distribution to the original data distribution. Despite the distributions
becoming increasingly dissimilar by design, a large number of kernel and hyperparameter combi-
nations fail to capture this difference as is shown in Figure 6.2b. Often the distance remains close
to constant even though the degree of perturbation is increased significantly or the distancemight
even decrease as the perturbation is increased. Finally, MMD values as a function of the degree of
perturbation seem extremely sensitive to the choice of hyperparameters, leading to a large variety
of different curve shapes.

MMDhasno inherent scale A further issue, especially regarding the comparability of dif-
ferent studies, is the fact that there is no inherent scale for MMD and the scale of values is highly
specific to the kernel. It is thus difficult to assess if differences in the MMD value reflect sub-
stantial differences in the ability of models to mimic the distribution they were trained on. For
example, it is not clear if a difference of 10−7 should be considered meaningful. Generally, many
hyperparameters selected for evaluating models using MMD should be considered suboptimal
with respect to the discriminative ability of MMD [225], such that studies might be able to ob-
tain arbitrarily low MMD values. A visualization of this issue is provided in Figure 6.3. Here
we see that depending on the kernel and the selected lengthscale of the kernel, MMD values live
on extremely different scales and thus are not always comparable. This makes sense if we revisit
the notion ofMMDdefined as the difference betweenmean embeddings in theRKHS (see Equa-
tion 6.3). These embeddings are highly dependent on the kernel and its hyperparameters and thus
the differences between the embeddingswould also vary greatly. Overall, this problem is especially
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critical asMMD results are typically simply reported in a table, such that the lack of inherent scale
makes them extremely difficult for the reader to interpret. This is somewhat similar to presenting
the accuracy of a model on a dataset where the class imbalance is not known. If the reader cannot
estimate what the performance of a random classifier using only the class distribution would be,
it is impossible for him to put the reported performance into context.

6.4.2 Implications of Kernel Selection

The selection of the kernel function has many implications for rendering specific evaluation pro-
cedures feasible or interpretable. For example, the kernel can impact the scalability of the approach
if its runtime is superlinear, i.e. if the runtime of the kernel evaluated on a single pair of examples
scales more than linearly as this effect compounds with the scaling of MMD which requires an
evaluation on all pairwise examples3. This is for example the case with the earth mover’s distance
kernel, which requires solving an optimal transport problem for each pair of graphs and thus suf-
fers from poor scalability [139].
A further issue is the fact that previous work partially relied on kernel functions which are

not actually positive semi-definite. The most prominent example is the computation of the total
variation distance on histograms, which leads to an indefinite kernel [174]. In this case, it is not
clear if MMD applied to datasets using this kernel is actually meaningful as the behavior has not
yet been studied and the derivation of MMD would also be partially invalid as it relies on the
properties of the RKHS which are induced by positive definite kernels.
Finally, the most striking issue arises in the ranking of models, where a change of the kernel

can result in a different ranking of the models being evaluated. An example of this occurring is
given in Figure 6.3a and Figure 6.3b, where changing the kernel results in a different ranking of
the methods, while keeping the lengthscale parameter of the kernel constant. This behavior is
highly undesirable and problematic as it allows depicting results from very different perspectives
by selecting the kernel appropriately and thus can lead to unfair comparisons where the reader
might be misguided to believe that a method consistently outperforms another approach.

6.4.3 Implications of Hyperparameter Selection

While the selection of a kernel can be considered an a priori choice in the experimental design, of-
ten no clear process is followed to select the hyperparameters of the kernel to ensure high discrim-
inative ability ofMMD. This is especially problematic as similar issues can arise with the selection
of the kernel itself because both have implications on the feature representation in the Hilbert
space and thus can lead to the MMD values being on different scales and the rankings of models

3While there are more scalable approximation toMMD, we do not consider them in this work
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to potentially change. Nevertheless, it is surprising to what extent the selection of hyperparameters
already has a detrimental effect on the comparability of MMD results and their interpretability.
As shown in Figure 6.3c, the hyperparameters of the kernel have a strong impact on the scale

of theMMD values, and selecting larger or smaller values for the lengthscale can influence which
of the models is considered best. Further, it is important to note, that the parameters used in
previous literature (dotted line in the figure) do not coincide with the range in which MMD has
its largest discriminative ability (which would be at the point where the estimated values from
MMD become maximal, thus in the range of 101 to 103). Regions of little change in MMD
value, are generally considered suboptimal choices for high discriminative ability ofMMD [225],
and selecting hyperparameters in the range of maximal MMD values is recommended by recent
literature [79]. Finally, this of course highlights that the hyperparameters of the kernel should
be decided on a per-kernel basis as the areas of maximal MMD values are not consistent across
different kernel choices contrary to commonpracticewhere a single value is decidedupon a priori.
Similar to the selection of kernels, the selection of kernel hyperparameters can also influence

the ranking of models. In Figure 6.2c we can see that this effect occurs both for the kernel hyper-
parameters aswell as for parameters that could be considered part of the graph descriptor function
(in this case the number of bins used in the histogram). Here we can see that while in many cases
there seems to be a trend of which model shows lowerMMD values (most evident in Figure 6.3),
the actual ranking changes dependent on the hyperparameter selection. This goes so far that in
Figure 6.2c we could rank anymodel as the best dependent solely on the selection of hyperparam-
eters.

6.5 Guidance on UsingMMD for the Evaluation of Graph
GenerativeModels

Inorder to sidestep thepotential pitfalls detailed abovewenowprovide a set of suggestions onhow
to better leverageMMD in the evaluation of graph generative models. These include suggestions
that allow readers of papers to better estimate the performance of models and hopefully will give
some guidance to the field in general with regard to moving forward.
Provide a sense of scale The easiest and probably most powerful step to enhance the inter-

pretability of results based on MMD is to provide a sense of scale. This allows readers to under-
stand which MMD values should be considered “good”. A simple way this can be accomplished
is by additionally reporting the values of MMD between the training and testing data. This will
give additional information and allow to understand what the performance of two indistinguish-
able datasets would look like. Further, negative examples of dissimilar datasets can be provided by
using graph perturbations.
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Use valid and efficient kernels We recommend the usage of efficient kernels, which allow
results to be reproduced with relatively little effort and encourage the usage of kernels that are
positive semi-definite. In particular, we discourage the use of the total variation kernel as its effect
on the applicability ofMMDfor the comparison of distributions is not fully understood. Instead,
we recommend relying on either the RBF/Gaussian-kernel or the exponential/Laplace-kernel as
they both are well characterized in the context of MMD and represent universal kernels which
ensure that MMD[p, q] = 0 only when p = q and thus define valid metrics on the distribution
of graph descriptors.

Use meaningful descriptor functions Different descriptor functions measure different as-
pects of graphs and can thus be highly dependent on the task at hand. We generally recom-
mend the utilization of previously suggested graph descriptor functions in the form of the degree
histogram, the clustering coefficient histogram, and the Laplacian spectrum histogram and rec-
ommend making further adaptions if necessary for the application domain. A further recently
developed alternative is the utilization of random features based on untrained graph neural net-
works [229]. While this line of research is still in its early steps itmight provide a promising avenue
to avoid handcrafted graph descriptor functions in the future.

6.5.1 Strategies for Selecting Kernels andHyperparameters

In order to ensure thatMMD is set up to recognize differences in the graph distribution appropri-
atelywe recommend starting froma controlled scenario. This is necessary as, in contrast to images,
graphs cannot be easily compared by eye and thus we cannot rely on literal eye measurements for
guidance. By starting with a controlled scenario where the practitioner knows that the graphs fol-
low different distributions, he can ensure that the values of MMD are selected adequately to at
least cover the known differences. We recommend doing this by applying random perturbations
to the graphs of the dataset of interest, as these can be applied to any dataset and thus this routine
can be done also in scenarios where there is no way to influence the true data-generating process
as is the case for real-world graph datasets.

In the ideal case, we would want an evaluation metric where the degree of perturbation of a
graph is adequately reflected, i.e. that the distancemetric increases monotonically as a function of
the perturbation intensity. By using perturbations, we can simultaneously assess the expressivity
and sensitivity of a set of kernel and hyperparameters (or of any evaluation metric for generated
graphs general) as we would want the metric to increase as the degree of perturbation increases
(capturing its expressivity), but also that small changes in the degree of perturbation should only
lead to small changes in the metric (capturing its robustness). In the following, we present an
example of how such an analysis could be performed.

151



6 Evaluation of Graph GenerativeModels

BA

Community

ER

WS

CC
Deg

ree

Lap
lac

ian

BA

Community

ER

WS

(a) AddEdges

BA

Community

ER

WS

CC
Deg

ree

Lap
lac

ian

BA

Community

ER

WS

(b) RemoveEdges

BA

Community

ER

WS

CC
Deg

ree

Lap
lac

ian

BA

Community

ER

WS

(c) RewireEdges

BA

Community

ER

WS

CC
Deg

ree

Lap
lac

ian

BA

Community

ER

WS

(d) AddConnectedNodes

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.4: Correlations of MMD with the degree of perturbation of graphs compared for different de-
scriptor functions and datasets (BA: Barabási-Albert Graphs, ER: Erdös-Rényi Graphs, WS:
Watts-Strogatz Graphs). Given our expectations of an ideal metric, we would expect a corre-
lation close to 1. The upper row shows the best combination of kernel and hyperparameters,
i.e. with the highest correlation to the perturbation degree. The lower row shows the worst
combination of kernel and hyperparameters measured in the same terms. It is evident that the
selection of appropriate kernel and hyperparameters leads to a strong correlation with the per-
turbation whereas the converse is also possible for inappropriate kernel and hyperparameter
combinations.

Correlation analysis to choose kernel and hyperparameters Given our previ-
ous requirements for a good metric, we now explore how to select a set of parameters that best
align with these requirements. For this, we perturb graphs to varying degrees and measure the
Pearson correlation between the degree of perturbation and theMMD computed using a specific
combination of kernel and hyperparameters. While the Pearson correlation is a measure of linear
correlation, and the relation between a perturbation and its effect on the metric might not be lin-
ear and still fulfill our requirements, we selected it due to its straightforward interpretability. We
find that we can always find combinations of kernels and hyperparameters which lead to strong
correlations of the MMD-derived metric with the degree of perturbation of the graphs. Besides
reporting the best correlations achievable for each dataset and perturbation, we also report the
worst possible combinations as this highlights the worst-case scenario of inappropriate selection
of kernel and hyperparameters due to the lack of agreed-upon selection procedures. The results
of the correlation analysis are shown in Figure 6.4. While in the top row we can see that robust
combinations of kernel and hyperparameters exist which well reflect the degree of perturbation,
the bottom row shows that in many cases the MMD does not show any correlation with the per-
turbation and might even show a negative correlation if the parameters are selected incorrectly.
To choose a kernel and hyperparameter combination we suggest picking the setting which

shows the largest correlation with a perturbation that is meaningful in the application domain
or if no such perturbation is known to select the hyperparameters base on the average correlation
across different perturbations.
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6.6 Conclusion andDiscussion

In this chapter, I presented a detailed exploration of the pitfalls that occur when evaluating graph
generative models usingMMD.Our work shows that the selection of kernel, kernel hyperparam-
eters, and graph descriptor functions are all of great importance for a representative evaluation
of graph generative models. We highlight that if these parameters are not adequately selected,
the evaluation via MMD becomes essentially meaningless and allows the generation of arbitrary
ranking ofmodels. Tomitigate these problemswe propose to practitioners the examination of the
discriminative performance of MMD on perturbed versions of the datasets they are working on.
This allows us to understand which parameters would represent distances in the space of graph
distributions realistically and thus provide important guidance in their selection. Further, we
recommend practitioners to provide MMD metrics with additional information to understand
which values would correspond to very close and very distant distributions.

Our exploration has some limitations though. In particular, we rely on graph perturbations
in order to create a continuum of increasingly distinct graphs. While this makes us invariant to
the actual graph generative process and allows an application to real-world datasets, it assumes
that graphs become increasingly dissimilar with increasing perturbation strength. For example,
if the training dataset contains Erdős–Rényi graphs, the randomly rewiring edges (independent
of how frequently) should not have a significant impact on the distribution of graphs. Further,
the graph perturbations only represent axes along which we can characterize the behavior of eval-
uation metrics, but do not sample the complete space of negative samples. This could to some
degree be avoided by not only applying one perturbation but combining different perturbations
of different strengths. Additionally, ourwork is purely empirical and amore theoretical treatment
of the pitfalls of current evaluation strategies would be warranted. One approach might be the
examination of other graph generative procedures (i.e. configuration models) that are guaranteed
to give rise to certain properties in the overall graph distribution. This might allow relating the
ability of current evaluation strategies to quantify differences in the graph distribution with the
differences in the underlying properties of the generative process or the derivation of bounds that
relate the degree of perturbation with the amount of data needed for its detection.

A further issue resides in the fact that our work does not provide a direct solution to the se-
lection of graph descriptors and MMD hyperparameters but solely provides guidance. If for in-
stance, the graph descriptor functions are not appropriately selected, our advice on MMD hy-
perparameter selection will also not be beneficial. The reliance on a graph descriptor function is
generally, problematic as it determines the perspective that MMD has on the graph. Here the ex-
ploration of graph kernels [24] for the evaluation of graph generative models could be a valuable
line of future research. Concurrent work has suggested ways to avoid the requirement of a graph
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descriptor function, by relying on random features extracted from a graph neural network and
comparing those using an RBF kernel [229]. We think this represents a promising perspective
for future work and assume that the utilization of random features could be synergistic with the
advice we present in our work.
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7 Summary andOutlook

This chapter briefly summarizes the contributions of this thesis, discusses implications, and pro-
vides an outlook over potential future work. It is intended to provide a more holistic perspective
compared to the discussions of the individual chapters and point to new research opportunities
that arise from the work presented in this thesis.

∗ ∗ ∗

The first part of the thesis focused on the problem of dimensionality reduction and how the
powerofnon-linear deepneural networks canbeharnessed toderivemeaningful lower-dimensional
representations. In Chapter 2, I present such a method by combining autoencoders with topo-
logical signatures computed via persistent homology. It represents the first method to leverage
persistent homology in order to preserve topological structure across spaces. In contrast to ex-
isting dimensionality reduction approaches, our method handles multi-scale relationships in the
data uniquely well. It thus represents a promising candidate for applications in the life sciences
such as the exploratory analysis of high-dimensional single-cell sequencing data. The approach
relies on the propagation of gradients through the persistent homology computation and thus
shows similar limitations to Chapter 5 with respect to the discrete persistent homology computa-
tion. A future research direction is thus the exploration of soft persistent homology, where birth
and death times could be extended to carry probability weights. The resulting distributions over
persistence diagrams could lead to potentiallymore informative gradients in the downstreampro-
cessing. It could thus improve all methods in this thesis that rely on the computation of gradients
through the persistent homology computation. While evolutionary strategies represent a promis-
ing direction in that regard (for a discussion see Chapter 2), the exploration of point processes for
the description of persistence diagrams also represents an interesting avenue.

∗ ∗ ∗

The second part of my thesis presented methods tackling irregular sampling of medical data
and discussed problems related to their evaluation. In Chapter 3, I showcased a new preprocess-
ing approach forMALDI-TOF spectra and a kernel for machine learning onMALDI-TOF spec-
trum peaks. Our work represents the first kernel designed for machine learning onMALDI-TOF
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spectra and shows much higher performance than commonly applied machine learning methods
in a microbial resistance prediction task. The presented kernel accounts for the fact that minor
shifts in peak positions ofMALDI-TOF spectra can be due to technical variability. By combining
the kernel with a Gaussian process classifier we additionally showcase the ability to reject out-of-
distribution samples, which makes our approach especially well-suited for clinical applications.
Future research directions include the incorporation of additional inductive biases in the form of
charge-multiple invariance and the exploration of domain adaptation approaches to counteract
hospital-specific device settings and lab preparations that introduce distribution shifts.

In Section 4.2 I present an alternative approach for classifying irregularly-sampled data based
on learning set functions with deep neural networks. I demonstrate the viability of this approach
on medical time series data, where it can be uniquely applied without prior binning or impu-
tation. The work shows that while the model performs competitively with recent approaches,
it does not lead to state-of-the-art performance in medical times series tasks. Here the incorpo-
ration of translation equivariance represents a promising direction to improve performance and
increase robustness in futurework. A further avenue of future research represents the exploration
of similar set-function-based approaches toMALDI-TOFdatawhile incorporating asmuch data-
specific inductive biases as possible. While this might be successful on larger quantities of data,
until recently [251], large-scale MALDI-TOF data has only scarcely been publicly available.

In Section 4.3, I presented an evaluation of medical time series models with a focus on their ca-
pability to transfer to other datasets in the context of a sepsis early prediction task. Here, I showed
that deep learning approaches can achieve very high sepsis detection performance at a high recall
level. Further, I showed that contrary to intuition, deep learning models showed higher perfor-
mance compared to less expressive models when being transferred to other datasets. The study
presents the first homogenizedmulti-center ICUcohort for sepsis early prediction and thus a solid
foundation for future work. Potential follow-up research includes the exploration of domain-
adaptation approaches to leverage the multiple data sources and increase generalization to new
unseen data and trying to avoid indication bias by imputing the data prior to model application.

Taking a holistic perspective on the issues discussed inChapter 4, there are synergies that can be
exploited between different solution approaches. In particular, the irregularly-sampled nature of
medical times series and indicationbiases are very related. Generally, being able to exploit sampling
information is important formodel performance in a naive evaluation scenario (such asmeasuring
the predictive accuracy on i.i.d. data). Nevertheless, it can actually reduce generalization perfor-
mance due to distribution shifts when treatment procedures differ as even the patterns in which
variables are measured might have an impact on model performance. These issues can be further
amplified by feedback loops due to the interaction of the model and clinician due to increased
reliance on model predictions. When the models’ predictions start to influence the clinician, this
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can introduce a distribution shift relative to what the model was trained on. One approach to
avoid this collapse could be the construction of counterfactual patient models, which could be
used to obtain deconfounded data [189, 212]. A clinical support system could then be trained on
both the real and the deconfounded data to ensure that it does not overly rely on the interventions
from clinicians to predict patient outcomes.

∗ ∗ ∗

In the third part of my thesis, I presented a method for more expressive machine learning on
graphs and which problems arise when evaluating generated graphs. In Chapter 5, I showed how
to improve supervised learning on graphs by extending graph neural networks to have access to
multi-scale topological information of the graph. The presented approach outperforms baselines
in particular in the absence of node features. In contrast to previous topologically inspired ap-
proaches, our method is highly modular, does not require the pre-computation of features to
augment the graph, and can be combined with any standard graph neural network architecture.
Future research directions are similar to those presented inChapter 2 and focus on improving gra-
dients through the discrete persistent homology computation. Further, a detailed investigation
of the trade-offs between expressivity and invariances in graphs represents a promising avenue for
future research and would be of great utility to the community.
In Chapter 6, I showed that the most common approach for evaluating generated graphs can

lead to incorrect results when not applied carefully. I highlighted that the adversarial selection of
hyperparameters of kernels and graph descriptors can lead to arbitrary rankings of model perfor-
mances. Further, I show which combinations are more robust by comparing different settings
under graph perturbations. Graph generative modeling is still a nascent field and due to our in-
ability to differentiate graphs visually appropriate evaluation is of crucial importance. Future re-
search directions include benchmarking of graph kernels in combination with MMD and the
development of procedures that can automatically derive the appropriate hyperparameters in a
data-driven fashion.
A further similar direction of research is to reduce the reliance on graph descriptors. Using

graphdescriptor functions is similar to engineering a set of features for differentiating graphs. This
selection necessitates some assumptions on the graph distribution and for every graph descriptor
function, we can construct examples where the similarity of graph descriptors would mislead us
into assuming graphs would be similar. The problem is thus highly related to determining graph
isomorphism and graph neural network expressivity. If we had a graph descriptor that is the same
only if two graphs are the same, we would have a perfect isomorphism test. As the graph isomor-
phism problem is of complexity NP, it is impossible that such a function would exist and run in
polynomial time (assuming that P 6=NP). Thus, it will be necessary to rely on heuristics to eval-
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uate graph similarity. One such heuristic could be training models on a proxy task of predicting
the graph edit distance between two graphs [180]. If a model is trained on a sufficiently diverse
set of graphs, one could hope that it transfers to new distributions and could be used to evaluate
generated graphs.

∗ ∗ ∗

This thesis wasmotivated by the potential of bridging the gap betweenmachine learningmeth-
ods and applications in the life sciences and clinic. The goalwas to showhow representation learn-
ing models can be adapted and extended to better tackle problems and data types present in these
domains. Throughout the thesis, it became clear that while representation learning can be a pow-
erful tool for medicine and biology, it might miss the mark in the real world if not appropriately
evaluated at the development stage. In order to develop models that truly have an impact, ma-
chine learning researchers must tightly work together with practitioners and combine knowledge
from both worlds. I believe that this is the elemental challenge that, when addressed, can improve
the state of care, accelerate science, and ultimately improve human lives.
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Acronyms

CDF Cummulative Distribution Function
CNN Convolutional Neural Network
DNN Deep Neural Network
GCS Glasgow Coma Score
GNN Graph Neural Network
GRU Gated Recurrent Unit
MEWS Modified Early Warning Score
MLP Multi Layer Perceptron
MPNN Message Passing Neural Network
NEWS National Early Warning Score
PCA Principal Component Analysis
PDE Partial Differential Equation
qSOFA Quick Sequential Organ Failure Assessment
RNN Recurrent Neural Network
SBM Stochastic BlockModel
SGD Stochastic Gradient Descent
SIRS Systemic Inflammatory Response Syndrome
SOFA Sequential Organ Failure Assessment
TDA Topological Data Analysis
TOGL Topological Graph Layer
TopoAE Topological AutoEncoders
WL Weisfeiler–Leman
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