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Introduction: Gait analysis is increasingly used to support clinical decision-

making regarding diagnosis and treatment planning for movement disorders. As

a key part of gait analysis, inverse dynamics can be applied to estimate internal

loading conditions during movement, which is essential for understanding

pathological gait patterns. The inverse dynamics calculation uses external kinetic

information, normally collected using force plates. However, collection of

external ground reaction forces (GRFs) and moments (GRMs) can be challenging,

especially in subjects with movement disorders. In recent years, a musculoskeletal

modeling-based approach has been developed to predict external kinetics from

kinematic data, but its performance has not yet been evaluated for altered

locomotor patterns such as toe-walking. Therefore, the goal of this study was

to investigate how well this prediction method performs for gait in children with

cerebral palsy.

Methods: The method was applied to 25 subjects with various forms of

hemiplegic spastic locomotor patterns. Predicted GRFs and GRMs, in addition

to associated joint kinetics derived using inverse dynamics, were statistically

compared against those based on force plate measurements.

Results: The results showed that the performance of the predictive method

was similar for the affected and unaffected limbs, with Pearson correlation

coefficients between predicted and measured GRFs of 0.71–0.96, similar to those

previously reported for healthy adults, despite the motor pathology and the

inclusion of toes-walkers within our cohort. However, errors were amplified when

calculating the resulting joint moments to an extent that could influence clinical

interpretation.

Conclusion: To conclude, the musculoskeletal modeling-based approach for

estimating external kinetics is promising for pathological gait, offering the

possibility of estimating GRFs and GRMs without the need for force plate data.

However, further development is needed before implementation within clinical

settings becomes possible.

KEYWORDS

kinetics, ground reaction forces (GRFs), musculoskeletal modeling, cerebral palsy, gait
analysis
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1. Introduction

Cerebral palsy (CP) is the most common motor disability in
childhood, with a prevalence of 1 per 1,000 live births in Europe
(Arnaud et al., 2018). In spastic CP, which is the most common form
of CP, symptoms such as tremor, hypertonia, and limb weakness
are often reported (Gage et al., 2009; Forni et al., 2018). To
deal with these symptoms, individuals with CP present diverse
compensatory strategies during walking, leading to pathological
gait patterns (Rodda and Graham, 2001). To understand these
compensatory strategies and identify their causes, instrumented
clinical gait analysis (CGA) has become increasingly commonplace,
and is also used for supporting clinical decision making regarding
treatment planning and monitoring (Armand et al., 2016).

During CGA in children with CP, kinematic and kinetic
information is collected by means of optical motion capture, 3D
tracking systems, and ground reaction force (GRF) plates (Armand
et al., 2016). However, to enable a complete understanding of the
patient-specific motor impairment, quantification of the internal
joint kinetics is required (Sloot and van der Krogt, 2018), which
can be estimated using inverse dynamics analysis (Derrick et al.,
2020). Here, the musculoskeletal system is generally modeled as
a rigid body system starting from the acquired kinematic data
(skin-mounted marker trajectories), from which segment and joint
center locations and velocities, as well as linear and angular
accelerations are derived. The inertial forces associated with the
motion are then computed based on assumptions regarding the
inertial characteristics of the body segments (Dumas and Wojtusch,
2018), while additional information on the external forces applied
to the body is required before a complete dynamic characterization
of the motion can be achieved. During CGA, this information
can be obtained through force plates integrated into the floor,
which commonly provide the magnitude, orientation, and point of
application of the GRF vector. These data can also be equivalently
reported in the form of three force and three moment vectorial
components [ground reaction forces and moments (GRF&Ms)] in
a force plate based coordinate system.

Collecting GRF&Ms remains challenging, even in advanced
laboratory settings. Here, targeting clean force plate hits might
change the natural movement pattern and corresponding measured
kinetics (Challis, 2001). Force plates are also subject to error, e.g.,
hysteresis of the sensors, linearity errors, electrical inductance,
and signal interference, which can all affect the estimated external
kinetics (Psycharakis and Miller, 2006; Pamies-Vila et al., 2012).
Finally, force plates are rarely available in external, unconstrained,
environments, which limits measurements in real-life settings
(Dorschky et al., 2019). As a result, a number of techniques
to predict GRF&Ms solely from kinematic input data have
recently emerged (Oh et al., 2013; Fluit et al., 2014; Skals et al.,
2017; Dorschky et al., 2019; Lim et al., 2020). One of the
more promising techniques is based on musculoskeletal modeling
(Smith et al., 2021), in which the external GRF&Ms can be
calculated based on the need for all segment forces to balance
those of the body’s motion (Andersen, 2021; De Pieri et al.,
2022c). Previous investigations using these techniques to predict
GRF&Ms within the AnyBody Modeling System (AMS, AnyBody
Technology, Aalborg, Denmark) have shown promising results
in healthy subjects, with Pearson correlation coefficients of 0.80

and higher (Fluit et al., 2014; Skals et al., 2017). While such
predictive models have been tested in patients with orthopedic
(Peng et al., 2018; Zhang et al., 2020; Oh et al., 2021) and
neurological (Eltoukhy et al., 2017) disorders, it remains unknown
how they perform for locomotor pathologies that include toe-
walking, such as children with CP who are the primary beneficiaries
of CGA, where the outcome can influence clinical decision-
making. Specifically, capturing GRF&Ms in children with CP can
be extremely challenging as they often use walking aids or take
very small steps, hence, making the collection of clean force plate
hits, where only one whole foot completely contacts the force
plate, difficult. Therefore, the goal of our study was to investigate
if GRF&Ms can be predicted from pathological gait kinematics
to a similar level achieved for asymptomatic gait patterns. In
addition, we aimed to estimate the influence of predicted GRF&Ms
on the resulting ankle, knee, and hip joint moments, toward
understanding the suitability of applying these methods to support
clinical decision making.

2. Materials and methods

In this study, we firstly tested the reproducibility of previous
results from healthy individuals (Fluit et al., 2014; Skals et al.,
2017) in a pathological cohort affected by CP. Next, model
performance was assessed for both the unaffected and affected
limbs in hemiplegic gait patterns. Finally, the effect of predicted
vs. measured GRF&Ms on the calculation of joint moments was
quantified to provide an understanding of the applicability of
this method for determining internal joint contact forces and for
supporting clinical decision-making.

2.1. Participants

For this observational study, CGA data were retrospectively
extracted from the patient database of a local hospital. Participants
were included in the study if they were between 6 and 18 years of
age at time of measurement, diagnosed with unilateral spastic CP,
and underwent routine gait analysis between August 2019 and April
2022. Patients were excluded if they had a gross motor function
classification system (GMFCS) level worse than I (Rosenbaum
et al., 2002), underwent any surgical intervention within the year
prior to CGA, received a botulinum toxin type A injection within
6 months prior to measurement, or had missing clinical files. The
participants were split into five subgroups according to their spastic
hemiplegic gait patterns (Rodda classification; Rodda and Graham,
2001). Patients’ data were screened, starting with the most recent
cases, until five participants were included in each subgroup. The
final dataset therefore consisted of 25 participants (Table 1).

2.2. Experimental procedure

Instrumented gait analysis was performed using an
optoelectronic motion capture system with 12 cameras (MXT20,
Vicon, Oxford Metrics Ltd., UK) at a sampling rate of 150 Hz.
The full-body marker set of the conventional gait model (CGM
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2.2, 9.5 mm diameter markers, Vicon, Oxford Metrics Ltd., UK)
(Leboeuf et al., 2019) was used to collect the kinematic data
(Figure 1). Four force plates (sampling frequency 1,500 Hz, Kistler
Instrumente AG, Winterthur, Switzerland) embedded in the
laboratory floor were used to collect kinetic information.

At the start of the measurement, a clinical examination
was performed by a trained physiotherapist during which each
patient’s anthropometrics such as height, weight, leg length, and
femoral anteversion were measured. Afterward, a static trial in
a standing reference pose with abducted shoulders was acquired.
Each participant was then asked to walk barefoot over the 12 m
instrumented walkway until six valid stride cycles for each leg
were captured, i.e., when only one foot contacted each force
platform, without stepping over its edges. Trials with excessive
soft tissue artifact, poor consistency, or signs of inaccurate marker
placement were excluded.

Markers data were labeled, gap-filled, and filtered (Woltring
filter, mean squared error set to 10 mm2) using Vicon Nexus
(version 2.8.2, Vicon, Oxford Metrics Ltd., UK) (Woltring, 1986).
Initial contact and toe-off events were determined from the GRF
measurements using force thresholds (>20N for initial contact and
<20N for toe-off).

2.3. Musculoskeletal modeling

Measured marker trajectories and GRF&Ms were used as input
for an inverse dynamics analysis in the AnyBody Modeling System
(AMS, AnyBody Technology A/S, Aalborg, Denmark) (Damsgaard
et al., 2006), based on the AnyBody Managed Model Repository
(AMMR, v.2.3.3). GRF&Ms were filtered using a second-order
low-pass Butterworth filter with a cut-off frequency of 12 Hz.
Personalized models for each subject were created from a detailed
generic model of the lower limb (De Pieri et al., 2018) based on
a reference cadaveric dataset (Carbone et al., 2015) and scaled
to match the overall anthropometrics and marker data collected
during the static standing reference trial (Lund et al., 2015;
Figure 1). The geometry of the femur was linearly morphed to
include a transversal rotation between the proximal and distal
sections, matching the subject’s femoral anteversion obtained from
the clinical assessment (De Pieri et al., 2021; Alexander et al., 2022).
The hip joints were modeled as 3 degrees-of-freedom (DoFs) ball-
and-socket joints, while the knee, talocrural, and subtalar joints
were modeled as 1-DoF hinges. Additionally, the position of the
patella was defined as a function of the knee flexion angle (Carbone
et al., 2015). The 166 muscle elements in each leg were modeled as
constant strength actuators.

A kinematic analysis based on the marker trajectories was
conducted to compute joint kinematics (Andersen et al., 2009;
Lund et al., 2015). Mean marker tracking error was additionally
computed as the mean distance between each pair of measured and
virtual markers’ positions during the whole gait cycle and averaged
across all full-body markers for each patient. Subsequently, two
different inverse dynamics analyzes were performed. The first
analysis took the GRF&Ms measured from the force plates as input,
while in the second, these quantities were predicted solely from
the 3D full-body motion, based on a dynamic contact model and
optimization techniques (Fluit et al., 2014; Skals et al., 2017). In
both analyzes, the muscle recruitment problem was solved through
static optimization by minimizing the sum of the squared muscle
activations in order to calculate the required muscle activations and
forces, as well as resulting joint moments (Andersen, 2021).

2.4. GRF&M prediction

It is possible to predict GRF&Ms from measured full-body
kinematic data and estimated mass and inertial properties of the
subject within AMS by adding conditional contacts that act as force
actuators connecting the feet to the ground while satisfying the
Newton–Euler equations of motion (Fluit et al., 2014; Skals et al.,
2017). These contact points generate the normal and frictional
forces necessary to kinetically balance the model at each instant
in time. During single support phases, GRF&Ms can be computed
directly by solving the Newton–Euler equations, provided that
the full-body kinetics and kinematics are available. During double
support phase, in which the system defines a closed kinetic chain
with the ground, GRF&Ms can be computed by predicting the
forces generated by the foot-ground actuators as part of the
optimization of the muscle recruitment problem, thus not requiring
any training or empirical data (Fluit et al., 2014; Figure 2).

In each scaled musculoskeletal model, 25 nodes are created
under each foot (Figure 3). Each of these nodes consists of five
unilateral force actuators, allowing reaction forces to push the foot
off the ground, as well as friction components characterized by
a static Coulomb friction model. Four of these force actuators
are organized into pairs such that normal forces fn and their
corresponding friction forces µ fn can be generated in a
positive or negative (antero-posterior or medio-lateral) direction
corresponding to the foot contact planes. The friction coefficient µ

was set to 0.5, which corresponds to the coefficient measured during
walking (Vidal et al., 2021). The last force actuator, aligned with
the vertical axis, can generate only a force normal to the surface
(Figure 3B). The sum of these 5 actuator forces corresponding to

TABLE 1 Participant demographics.

Type 1 Type 2A Type 2B Type 3 Type 4

Age (years) 11.8± 2.3 10.5± 3.8 11.2± 1.9 11.3± 4.6 12.3± 3.3

Gender (m/f) 2/3 4/1 3/2 4/1 3/2

Height (cm) 155.5± 16.4 141.5± 25.9 138.7± 12.3 145.5± 22.1 153.3± 23.4

Weight (kg) 50.3± 21.5 41.9± 22.4 35.8± 10.3 40.4± 13.2 40.8± 19.6

All participants were diagnosed with unilateral spastic cerebral palsy with a gross motor function classification scale (GMFCS) level I. Gait patterns were classified according to Rodda and
Graham (2001), type 1: drop foot, type 2A: true equinus, type 2B: true equinus/recurvatum knee, type 3: true equinus/jump knee, type 4: equinus/jump knee with pelvic rotation and hip flexed,
adducted, and internally rotated. Values represent mean± SD, except for gender which is given in count.
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FIGURE 1

Full-body marker set of the conventional gait model (CGM 2.2) during a static standing reference trial in a patient with CP. The blue spheres
represent the location of the physical markers measured in the motion laboratory, while the red spheres indicate the position of the virtual markers
attached to the skeletal template in AMS. The generic model was scaled for each subject to match the overall anthropometrics and marker data
collected during the static standing reference trial. Medial epicondyle (L/RKNM) and malleolar (L/RMMA) markers were only included in the static
trials, while all other markers were used for the tracking of both static and dynamic trials.

FIGURE 2

Diagram of the method for predicting ground reaction forces and moments (GRF&Ms) in the different phases of the gait cycle. In single stance, the
equations of motion allow the direct calculation of GRF&Ms from kinematics. During double stance, the problem is underdetermined and does not
allow the direct calculation of load distribution between the two limbs. The estimation of GRF&Ms is therefore included in the muscle recruitment
algorithm via contact nodes under the foot acting as muscles to balance the body model during motion. The combination of these nodes with
kinematic data allows the calculation of GRF&Ms.

each node are then calculated as part of the muscle recruitment
problem (Rasmussen et al., 2001; Forster et al., 2004; Damsgaard
et al., 2006; Fluit et al., 2014), in other words, contact nodes are
recruited in the same manner as muscles.

The strength profile of the force actuators at each node is
defined as a function of the distance and velocity between the node
and the ground. This strength profile reflects the fact that the force

actuators can only be recruited, and therefore generate forces, when
in stationary contact with the ground, i.e., when static equilibrium
can be assumed. The contact of a node with the ground is therefore
considered when the node is located under a certain height zlim,
and moves below a certain speed vlim. If these conditions are not
met, the available strength for the corresponding node is zero.
When a contact is detected, the available strength then changes
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FIGURE 3

Properties of the nodes under the foot to predict GRF&Ms. (A) Organization of the contact nodes under the foot, (B) actuator organization for each
contact node, p, where fn is the shear force normal to the contact plane, and µ is the coefficient of friction. (C) Proportion of the maximum strength
available for a node at different heights and velocity ratios.

from zero to maximum, hence, creating a discontinuity in the
force profile of the node. In order to avoid such discontinuities,
a sinusoidal smoothing function was added to the force actuator
strength function, depending on the ratios of node position divided
by maximum height and of node velocity divided by maximum
speed of contact detection:

cp,i =


Nmax if zratio ≤ 0.8 and vratio ≤ 0.15

Nsmooth if 0.8 ≤ zratio ≤ 1 and 0.15 ≤ vratio ≤ 1
0 otherwise

(1)

zratio =
pz

zlim

vratio =
pvel

vlim

where cp,i is the strength profile of the ith node at position p, Nmax
is the maximal strength a node can generate and was set to 40%
of body weight, Nsmooth is the smoothed profile of the strength
function, zratio is the vertical position of the node divided by the
maximal height for contact detection, vratio is the velocity of the
node divided by the maximal speed for contact detection, with zlim
set to 0.03 m and vlim set to 0.8 m/s. The smoothed profile of the
strength function (Nsmooth) was defined as follows:

Nsmooth = Nmaxzsmoothvsmooth (2)

zsmooth =
1
2

(
1+ cos

(
(zratio − 0.8) π

1− 0.8

))

vsmooth =
1
2

(
1+ cos

(
(vratio − 0.15) π

1− 0.15

))
The strength profile thus describes the progressive level of

node strength as a function of the node’s height and speed ratios
(Figure 3C). The non-linear formulation of the strength profile,
the sinusoidal smoothing function, as well as the contact thresholds
for distance and velocity were adapted from the work of Fluit et al.
(2014) and Skals et al. (2017).

To account for dynamic inconsistencies between the
GRF&M measurement data, the marker data, and the predicted
internal forces within the musculoskeletal system, conventional
musculoskeletal modeling workflows usually apply balancing

residual forces at the pelvis (known as the “Hand of God” in AMS).
In order to predict the GRF&Ms from full-body kinematic data and
conditional foot-ground contacts, these residual forces need to be
deactivated. Instead, weak muscle-like actuators are added to the
pelvis to ensure dynamic consistency of the modeled motion and
prevent the simulation from failing due to out-of-balance forces in
the system. These muscle-like actuators are also recruited as part
of the muscle recruitment optimization problem; however, their
low strength ensures that their contribution remains minimal,
therefore only contributing to the numerical stability of the
analysis (Fluit et al., 2014). Finally, mean magnitude of the residual
force and moment vectors at the pelvis during the gait cycle were
computed, using GRF&M measurement data as input.

2.5. Data analysis

Gait trials were processed and analyzed through the toolkit
AnyPyTools (Lund et al., 2019). For each investigated stride cycle,
all GRF&M vectors were transformed into a consistent global
reference frame, aligned with the direction of gait, to ensure
comparability between the measured and predicted results. Internal
joint moments for the hip, knee, and ankle were calculated in their
respective proximal segment coordinate systems according to ISB
recommendations (Derrick et al., 2020), with variables of clinical
interest reported.

One representative trial per subject was then selected by
calculating the average curve for each plane of all trials that
captured a complete gait cycle on both limbs. The average root-
mean-square deviation (RMSD) of each trial was compared to the
averaged curve, where the trial with the smallest RMSD was chosen
as the most representative. GRF&Ms and joint moment trajectories
were then time-normalized to the gait cycle (GC) from foot-strike
(0%) to foot-strike (100%) of the leg of interest, and additionally
normalized to the body mass of each subject.

2.6. Statistical analysis

To evaluate quality of the prediction algorithm, predicted
GRF&Ms were compared to those measured using force plates
for both the affected and unaffected limbs. Differences were
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FIGURE 4

Measured against predicted GRF&Ms over the course of a gait cycle for affected (red) and unaffected (black) limbs in children with spastic unilateral
cerebral palsy. The outcomes for GRFs (top), GRMs (middle), and planes from left to right antero-posterior/frontal, vertical/sagittal, and
medio-lateral/transverse (bottom) are shown. Gray shading highlights significant differences (p < 0.05) detected using statistical parametric
mapping paired t-test. The vertical dashed lines indicate average transitions between single and double stance phases.

TABLE 2 Root-mean-square deviation of the measured and predicted GRF&Ms in the three gait axes and planes for affected and unaffected limbs of
children with spastic unilateral CP.

Unaffected Affected

Antero-
posterior

Vertical Medio-lateral Antero-posterior Vertical Medio-
lateral

GRFs RMSD (N/kg) 0.40± 0.09 1.04± 0.27 0.20± 0.06 0.46± 0.10 1.13± 0.25 0.18± 0.05

RMSD (% of max
magnitude)

10± 3% 9± 2% 18± 4% 12± 3% 10± 2% 20± 6%

Frontal Transverse Sagittal Frontal Transverse Sagittal

GRMs RMSD (Nm/kg) 0.12± 0.06 0.03± 0.01 0.30± 0.09 0.12± 0.02 0.03± 0.01 0.28± 0.06

RMSD (% of max
magnitude)

66± 39% 24± 13% 20± 4% 64± 46% 33± 14% 21± 3%

Values are given in the standard unit (N/kg or Nm/kg) and as the percentage of the maximum amplitude. GRFs are predicted with a low error (8–20%), but GRM errors are considerably higher
(up to 63%). Values represent mean± SD. RMSD, root-mean-square deviation.
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TABLE 3 Rootmean-square deviations (RMSDs) of joint moments in the sagittal and frontal planes derived from predicted vs. measured GRF&Ms for
unaffected and affected limbs of children with spastic unilateral CP.

Unaffected Affected

Hip Knee Ankle Hip Knee Ankle

Sagittal RMSD (Nm/kg) 0.19± 0.05 0.17± 0.04 0.26± 0.12 0.21± 0.04 0.19± 0.05 0.24± 0.09

RMSD (% of max
magnitude)

15%± 6% 17%± 9% 17%± 9% 17%± 5% 25%± 11% 24%± 10%

Frontal RMSD (Nm/kg) 0.14± 0.06 0.10± 0.05 0.13± 0.05 0.11± 0.03

RMSD (% of max
magnitude)

13%± 7% 19%± 11% 17%± 8% 26%± 12%

Values are given in the standard unit (N/kg or Nm/kg) and as the percentage of the maximum amplitude. The propagation of predicted GRF&Ms errors to the ankle, knee, and hip might still
influence clinical decisions. RMSD, Root mean square deviation. Values represent mean± standard deviation.

FIGURE 5

Joint moments calculated with predicted or measured GRF&Ms over the course of a gait cycle for affected (red) and unaffected (black) limbs in
children with spastic unilateral CP. Hip and knee moments in the sagittal (flexion-extension, top) and frontal (abduction-adduction, bottom) planes,
while ankle moments in the sagittal plane (dorsiflexion-plantarflexion, top) are shown. Gray shading highlights significant differences (p < 0.05)
detected using statistical parametric mapping paired t-test. The vertical dashed lines indicate average transitions between single and double stance
phases.

quantified through RMSD, cross-correlation coefficient, and
Pearson correlation coefficient (PCC) to allow comparison to
previous studies in healthy individuals (Fluit et al., 2014; Skals
et al., 2017), where PCC values were categorized as weak (≤0.35),
moderate (0.36–0.67), strong (0.68–0.9), or excellent (>0.9)
(Taylor, 1990). In addition, Statistical Parametric Mapping (SPM,
v.0.4.8, spm1d-package1) paired t-tests were used to test if there
were significant differences between predicted and measured GRFs
across the gait cycle, with significance set at α < 0.05 (Pataky, 2010).
To compare performance between spastic hemiplegic gait patterns,
RMSD and PCC values for the affected legs were calculated per
sub-group.

1 http://www.spm1d.org/

To investigate the influence of GRF&M predictions on
estimates of joint moments, joint moments were calculated using
the predicted GRF&Ms and compared to those determined based
on force platform data (SPM paired t-tests).

3. Results

3.1. Ground reaction forces and
moments

The predicted and measured GRFs presented comparable
trends throughout the gait cycle in the antero-posterior and vertical
planes (Figure 4 and Supplementary Figure 1), with excellent PCC
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values of 0.94–0.96 (Supplementary Figure 1). In the mediolateral
axis, where the GRF component was smallest, the predicted signal
exhibited a lower PCC (average 0.71–0.80) and the greatest relative
RMSD (average 18–20 vs. 9–12% for the antero-posterior and
vertical planes, Table 2 and Supplementary Figure 1). Compared
to these GRFs, higher deviations were determined for the GRMs,
with higher RMSDs (20–66%, Table 3), especially in the antero-
posterior direction (64–66 vs. 10–12%), and lower PCC values
(0.32–0.76, Supplementary Figure 1).

SPM analysis revealed that, in the antero-posterior direction,
significant differences between measured and predicted GRFs
were observed at initial contact and during terminal stance, for
both unaffected and affected limbs (Figure 4). In both cases, the
magnitude of the predicted GRF was greater than that of the
measured GRF. In the vertical direction, significant differences
were observed at the pre-swing phase, for the unaffected limb,
and at initial contact for the affected limb. While forces were
generally underestimated for the unaffected limb, they were mostly
overestimated for the affected side. In the medio-lateral direction,
a significant overestimation was identified at initial contact for
both limbs. No phase shifts were present between measured and
predicted GRF&Ms for any of the planes or limbs (Supplementary
Figure 1). For the GRMs, significant differences were observed
in the frontal plane during midstance to terminal stance in both
limbs, while in the transverse plane, this significant difference
was only present in the unaffected limb. For the sagittal plane,
significant differences were present at terminal stance in both limbs.
Additionally, differences between measured and predicted GRMs
were present at initial contact, midstance, and pre-swing for the
unaffected limb in the vertical direction.

When specifically examining differences within spastic
hemiplegic gait patterns, both measured and predicted GRF&Ms
were very similar (Supplementary Figure 2 and Supplementary
Tables 1, 2), with average relative RMSDs for GRFs variating
between 10 and 15% in the antero-posterior direction, 9–10% in
the vertical direction, and 18–22% in the medio-lateral direction.
For GRMs, differences between the spastic hemiplegic groups
ranged from 55 to 71% in the frontal plane, 17 to 29% in the
transverse plane, and from 18 to 22% in the sagittal plane.

3.2. Joint moments

The RMSDs for the ankle, knee, and hip joint moments
calculated between the predicted and measured GRF&Ms were
all similar, with averages between 13 and 26% and average PCCs
between 0.70 and 0.92 (Table 3 and Supplementary Figure 3).
Deviations between measured and predicted joint moments were
highest at terminal stance and pre-swing for the knee and ankle
joints in the sagittal plane (Figure 5 and Supplementary Figure 3).
On the unaffected side, significant differences are also detected
during initial contact for the ankle joint in the sagittal, and for the
hip joint, in the frontal plane.

4. Discussion

Ground reaction forces and moments has been successfully
predicted in research settings for assessing human kinetics during

various activities of daily living (Fluit et al., 2014; Jung et al.,
2017; Skals et al., 2017). This prediction of GRF&Ms is able to
support our understanding of muscle requirements during different
complex motions, or to estimate joint loading conditions in real
life scenarios. However, the applicability of such approaches for
supporting clinical decision-making in subjects with pathological
gait patterns, and specifically toe-walkers, has not yet been
investigated. In the current study, we evaluated the performance of
an available GRF&Ms prediction algorithm on spastic hemiplegic
gait patterns in children with CP. For both the affected and
unaffected legs, differences between predicted and measured
GRF&Ms were comparable to those observed in healthy individuals
(Fluit et al., 2014). The performance of the prediction algorithm was
also similar across different spastic hemiplegic gait patterns. The
levels of error found in the determination of joint moments derived
from the predicted GRF&Ms, however, suggest that caution should
still be taken when using such approaches in clinical decision-
making.

In general, the vertical component of the GRF and sagittal plane
GRM were best predicted by the algorithm, with strong to excellent
PCC, which is in-line with previous findings (Fluit et al., 2014; Skals
et al., 2017). While PCC for antero-posterior and medio-lateral
components of the GRFs were also strong to excellent (0.71–0.95,
Table 2 and Supplementary Figure 1), the corresponding GRM
correlations in the frontal and transverse planes were only weak
to moderate (0.31–0.43, Table 2 and Supplementary Figure 1).
The largest deviations between predicted and measured GRMs were
found in the transverse plane, which also agrees with previous
reports (Fluit et al., 2014). The relatively higher error observed
for the GRF&M components with lower magnitudes is plausibly
due to the increased signal-to-noise ratio resulting from soft-
tissue artifact (Leardini et al., 2005). The absolute errors found in
this study were, however, slightly higher than values reported in
literature (GRFs our study vertical: 1.09± 0.22 vs. 0.74± 0.13 N/kg,
antero-posterior: 0.45 ± 0.09 vs. 0.38 ± 0.07 N/kg, medio-lateral:
0.18 ± 0.05 vs. 0.17 ± 0.04 N/kg, GRMs sagittal: 0.27 ± 0.06 vs.
0.18 ± 0.05 Nm/kg), which is not entirely surprising as previous
investigations mainly comprised of healthy individuals (Fluit et al.,
2014).

Sharp peaks were observed within the predicted GRF&M
components during the transition from double to single stance and
vice-versa, hence, resulting in a more discontinuous appearance
than actual measured forces and moments. This discontinuity
of the predicted signals was more prominent than in previous
reports, probably because previous investigations have presented
the average of multiple activity trials instead of reporting only
single trials, thereby artificially “smoothing” the predicted signals.
Interestingly, these discontinuities were observed equally for both
the unaffected and affected limbs, as well as across different
spastic hemiplegic gait patterns, likely due to the approach
used to distribute GRF&Ms across two limbs in such closed-
chain scenarios. During these phases of double support, the
predicted GRF&Ms are computed as part of the muscle recruitment
problem, hence, finding the most optimal solution. The optimality
of this solution, however, might not hold true for individuals
with pathological gait patterns, who could have impairments in
controlling their motion optimally, or could choose to move
with different motor control strategies. For example, CP subjects
commonly present sub-optimal muscle activation patterns, due
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to e.g., contractures or spasticity (Kim et al., 2018a), or might
move with the goal of avoiding pain rather than maintaining
efficient motion (Veerkamp et al., 2019). Different control
strategies could also lead to an imbalance in the relative loading
patterns between limbs. Here, no large differences were observed
in performance of the GRF&M prediction algorithm between
the sides of the hemiplegic spastic gait patterns (Figure 4).
However, the vertical component of the GRF on the affected
limb was overestimated during initial contact, but underestimated
contralaterally during pre-swing. No such difference between
sides was reported when applying the prediction algorithm on
healthy walking patterns (Fluit et al., 2014). It is possible that
this side-to-side difference results from the non-optimality of the
pathological locomotor patterns, as children with unilateral CP
rely more on their unaffected limb than on their affected one,
especially during double support phases, potentially due to a lack
of strength and confidence in their affected limb (Kim et al.,
2015).

To estimate GRF&Ms during movement, a full-body marker
protocol, including upper extremities, trunk, and head, with a
sufficient number of markers to characterize all segment motions,
is required. From this kinematic data, a musculoskeletal model
reproducing the captured motion is created. Typical modeling
assumptions and simplifications, such as a rigid foot segment,
a 1-DOF hinge joint at the knee, and a rigid trunk segment,
might limit the capacity of the model to represent the real
kinematics, thus leading to errors in the prediction of the internal
kinetics of the musculoskeletal system. In this study, we observed
a mean marker tracking error of 1.4 cm across all subjects
(range: 1.1–1.9 cm). Similarly, segments’ dimensions and inertial
properties are linearly scaled within the AMS musculoskeletal
models, using an adult cadaver as a reference (Carbone et al.,
2015). The assumption that such an adult healthy subject is
representative of the anatomy and segmental inertial properties
of pathological children could introduce considerable errors in
the computation of internal forces during the reproduced motion
(Camomilla et al., 2017; Hainisch et al., 2021). During a typical
AMS inverse dynamics analysis based on force plate data, all
kinetic mismatches between the reproduced motion of the scaled
human model and the measured GRF&Ms are compensated
by artificial actuators located at the pelvis, which balance the
kinetics of the modeled motion. When using force plate data as
input, we found the mean magnitude of the residual force and
moment vectors at the pelvis across all patients to be 0.81 N/kg
(range: 0.44–1.61) and 0.25 Nm/kg (range: 0.17–0.30), respectively.
Within the workflow to predict GRF&Ms, these actuators are
necessarily deactivated, and therefore any kinetic mismatch (error
in internal forces) is propagated to the predicted GRF&Ms. This
could partially explain some of the observed differences between
measured and predicted signals. Future studies should devise
segment-specific and gait-phase-specific marker-tracking and force
residual metrics to assess potential improvements in experimental
marker protocols and modeling assumptions, such as joint DoFs
and segmental inertial properties. In particular, the simplified foot
model, which cannot account for foot bending (e.g., mid-foot
break) that is a key characteristic of pathological gait patterns
(Stebbins et al., 2010), could also potentially influence the predicted
position of the contact nodes with respect to the ground. A more

detailed foot model would likely go a long way toward mitigating
these limitations (Kim et al., 2018b). Similarly, more realistic
knee and thoracic models could improve the accuracy of the
predictions (Fluit et al., 2014; Ignasiak et al., 2016; Dejtiar et al.,
2020).

The current results did not indicate a difference in performance
of the GRF&M prediction algorithm across different spastic
hemiplegic gait patterns, which presented rather consistent RMSD
values. This might be due to the fact that only high functioning
children with CP (GMFCS level I) were included in this
investigation. Although toe-walking was predominant in our
population, their gross motor function impairments were only low,
and not as severe as can be expected in children with GMFCS level
II. It should be noted, however, that the rather small sample size
(n = 5 unilateral CP subjects per category) limits the possibility
to perform sub-group statistical analysis. It would therefore be
interesting to further assess the impact of specific locomotor
impairment patterns on prediction performance, including varying
degrees of severity, with larger sample sizes.

While the GRFs were relatively well predicted, errors between
measured and predicted GRMs were relatively high, indicating
that the algorithm had difficulties identifying the location at
which the force vector acted. These errors in GRMs propagated
toward the moments at the ankle, knee, and hip joints, to an
extent that could influence clinical decisions. Pathological gait
patterns in CP are identified through a number of kinematic
and kinetic features (Brunner and Rutz, 2013; Sloot and van
der Krogt, 2018). For instance, toe-walking gait patterns are
often characterized by a double-peak profile of the ankle plantar
flexion moment, and an erroneous prediction of these profiles
(Figure 5, unaffected ankle sagittal moment) could misinform
clinical decisions. Furthermore, the peak ankle plantar flexion
moment during push-off provides information on the severity
of toe-walking and serves as an indicator of the effectiveness of
certain treatments (Sloot and van der Krogt, 2018). Predicting
GRF&Ms led to an underestimation of the peak moment, which
could translate into erroneous clinical conclusions. Deviations in
sagittal knee moments in patients compared to controls can be
used in CGA to infer quadriceps weaknesses, patellar pain, or
quadriceps overload (Armand et al., 2016; De Pieri et al., 2022c).
Furthermore, the knee adduction moment is often used as a
surrogate measure for the load distribution between the medial
and lateral compartments of the knee (Holder et al., 2020; De Pieri
et al., 2022b), while reduced hip abduction moment in patients
can be associated with a functional deficit of the hip abductors in
the presence of altered femeral morphologies (Thielen et al., 2019;
Alexander et al., 2022; De Pieri et al., 2022a). However, significant
differences between the two methods in the computed sagittal and
frontal moments for both knee and hip between the two methods
suggest that this these metrics should be interpreted carefully while
predicting GRF&Ms. Overall, a more accurate prediction of the
joint moment profiles, as well as their peak values, is warranted
to translate these predictive algorithms into trustworthy diagnostic
tools and to expand the applicability of musculoskeletal modeling
in clinical settings (Smith et al., 2021), particularly for subjects
with CP.
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5. Conclusion

In conclusion, our study demonstrates that musculoskeletal
modeling-based approaches to predict GRF&Ms are able to
estimate external kinetics for affected and unaffected limbs in
different spastic hemiplegic gait patterns, with error levels similar
to those previously reported for gait in healthy individuals. By
estimating GRF&Ms solely based on kinematics, without the need
for measured force plate data, this approach therefore presents
potential to expand biomechanical investigations beyond confined
motion laboratories into real-life scenarios (Larsen et al., 2020;
Skals et al., 2021). Moreover, the approach can be combined with
novel motion-tracking technologies such as inertial measurement
units (IMUs), depth-sensor cameras, and markerless techniques
(Karatsidis et al., 2017; Ripic et al., 2022), to offer less-constrained
application possibilities. Although promising, the error levels for
the derived joint moments might still influence clinical decisions,
and further improvements are required before the approach can be
reliably translated into clinical settings.
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