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Abstract

In Paper A, we introduce a framework for the construction of high-probability lower bounds on

the total variation distance. These bounds are based on a one-dimensional projection, such as a

classification or regression method, and can be interpreted as the minimal fraction of samples

pointing towards a distributional difference. We further derive asymptotic power and detection

rates of two proposed estimators and discuss potential uses through an application to a reanalysis

climate dataset.

In Paper B we develop a framework called “Imputation Scores” (I-Scores) for assessing

missing value imputations. We provide a specific I-Score based on density ratios and projec-

tions, that is applicable to discrete and continuous data. It does not require to mask additional

observations for evaluations and is also applicable if there are no complete observations. The

population version is shown to be proper in the sense that the highest rank is assigned to an im-

putation method that samples from the correct conditional distribution. The propriety is shown

under the missing completely at random (MCAR) assumption but is also shown to be valid under

missing at random (MAR) with slightly more restrictive assumptions. We show empirically on

a range of data sets and imputation methods that our score consistently ranks true data high(est)

and is able to avoid pitfalls usually associated with performance measures such as RMSE.

In Paper C, we develop a fully non-parametric, easy-to-use, and powerful test for the miss-

ing completely at random (MCAR) assumption on the missingness mechanism of a data set.

The test compares distributions of different missing patterns on random projections in the vari-

able space of the data. The distributional differences are measured with the Kullback-Leibler

Divergence, using probability Random Forests [111]. We thus refer to it as “Projected Kullback-

Leibler MCAR” (PKLM) test. The use of random projections makes it applicable even if very

few or no fully observed observations are available or if the number of dimensions is large. An

efficient permutation approach guarantees the level for any finite sample size, resolving a major

shortcoming of most other available tests. Moreover, the test can be used on both discrete and

continuous data. We show empirically on a range of simulated data distributions and real data

sets that our test has consistently high power and is able to avoid inflated type I errors.

In Paper D we propose a novel (random) forest construction for multivariate responses

based on their joint conditional distribution, independent of the estimation target and the data
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model. It uses a new splitting criterion based on the MMD distributional metric, which is

suitable for detecting heterogeneity in multivariate distributions. The induced weights define

an estimate of the full conditional distribution, which in turn can be used for arbitrary and

potentially complicated targets of interest. The method is very versatile and convenient to use,

as we illustrate on a wide range of examples.
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Zusammenfassung

In Paper A entwickeln wir einen Rahmen für die Konstruktion von mit hoher Wahrschein-

lichkeit unteren Schranken für die Total Variation (TV) Distance. Diese Schranken basieren auf

einer eindimensionalen Projektion, z. B. einer Klassifizierungs- oder Regressionsmethode, und

können als der minimale Anteil der Stichproben interpretiert werden, der auf einen Verteilung-

sunterschied hinweist. Wir leiten ferner die asymptotische Macht und Erkennungsraten von

zwei vorgeschlagenen Schätzern her und diskutieren eine Anwendung auf einen Reanalyse-

Klimadatensatz.

In Paper B entwickeln wir die “Imputation Scores” (I-Scores) zur Bewertung fehlender

Werte. Wir stellen einen spezifischen I-Score basierend auf Dichteverhältnissen und Projek-

tionen bereit, der auf diskrete und kontinuierliche Daten anwendbar ist. Es erfordert keine

Maskierung zusätzlicher Beobachtungen für Auswertungen und ist auch anwendbar, wenn keine

vollständigen Beobachtungen vorliegen. Die Populationsversion erweist sich insofern als ko-

rrekt, als der höchste Rang einer Imputationsmethode zugewiesen wird, die Stichproben aus

der korrekten bedingten Verteilung erstellt. Die Korrektheit wird unter der Annahme missing

complete at random (MCAR) gezeigt, ist aber auch unter missing at random (MAR) mit etwas

restriktiveren Annahmen gültig. Wir zeigen empirisch anhand einer Reihe von Datensätzen

und Imputationsmethoden, dass unser Score echte Daten durchweg am höchsten einstuft und in

der Lage ist, Fallstricke zu vermeiden, die normalerweise mit Leistungskennzahlen wie RMSE

verbunden sind.

In Paper C entwickeln wir einen vollständig nicht-parametrischen, benutzerfreundlichen

und leistungsstarken Test für die Annahme von missing completely at random (MCAR) für die

fehlenden Werte eines Datensatzes. Der Test vergleicht Verteilungen verschiedener fehlen-

der Muster auf zufällige Projektionen im Variablenraum der Daten. Die Verteilungsunter-

schiede werden mit der Kullback-Leibler-Divergenz unter Verwendung von Random Forests

[111] gemessen. Wir bezeichnen ihn daher als “Projected Kullback-Leibler MCAR” (PKLM)-

Test. Die Verwendung zufälliger Projektionen macht es anwendbar, selbst wenn sehr wenige

oder keine vollständig beobachteten Beobachtungen verfügbar sind oder wenn die Anzahl der

Dimensionen gross ist. Ein effizienter Permutationsansatz garantiert das Niveau für jede endliche

Stichprobengrösse und löst einen grossen Mangel der meisten anderen verfügbaren Tests. Darüber
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hinaus kann der Test sowohl auf diskrete als auch auf kontinuierliche Daten angewendet wer-

den. Wir zeigen empirisch anhand einer Reihe von simulierten Datenverteilungen und realen

Datensätzen, dass unser Test eine konstant hohe Aussagekraft hat und in der Lage ist, überhöhte

Typ-I-Fehler zu vermeiden.

In Paper D entwickeln wir eine neuartige Random Forest Ansatz für multivariate Ziel-

variablen basierend auf ihrer gemeinsamen bedingten Verteilung, unabhängig vom Schätzziel

und dem Datenmodell. Es verwendet ein neues Aufteilungskriterium basierend auf der MMD-

Verteilungsmetrik, das geeignet ist, Heterogenität in multivariaten Verteilungen zu erkennen.

Die induzierten Gewichte definieren eine Schätzung der vollständigen bedingten Verteilung, die

wiederum für potenziell komplizierte Ziele von Interesse verwendet werden kann. Die Meth-

ode ist sehr vielseitig und komfortabel in der Anwendung, wie wir an zahlreichen Beispielen

verdeutlichen.
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and Simon Hediger, for an exhilarating time discussing projects, brainstorming and writing

papers together. Every aspect of writing papers and doing a PhD was improved through these

collaborations.

I also want to thank all of SfS. In particular, I want to thank my co-advisor Peter Bühlmann

for always providing helpful advice and a good atmosphere. It has been a pleasure to collaborate

with some of the smartest and nicest people I have ever met. I am surely going to miss this time

here at SfS.

Neuhausen, 01.12.2022 Jeffrey Näf
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1 Introduction

Random Forest (RF) [15] is a versatile method that has been getting a lot of attention over the

past two decades. Consider a random variable of interest Y and covariates X “ pX1, . . . , Xpq. We

observe n identically and independently distributed (i.i.d.) draws from their joint distribution

and desire to learn the conditional expectation of Y given X “ x. RFs do this by combining

N independent trees, whereby each tree splits the data and places them into leaves according

to some criterion. Importantly, the splits themselves are a function only of the covariates, for

example, an observation goes in the left leaf if X1 ą 0.5 and in the right otherwise. However to

determine the best splits, a criterion on the dependent variable Y is used. This allows to derive

data adaptive splits from a training set and then predict Y from only seeing a new test point x.

As a general intuition, the splits are chosen such that the Yi’s in the right and left leaf are as

“different” as possible, according to the chosen splitting criterion. Splitting in such a manner

several times, one should end up with a leaf in which the data are as “homogeneous” as possible.

In more mathematical terms, given some assumptions, a leaf should contain an approximation

to an i.i.d. sample from the conditional distribution. An illustration of this approach is given

in Figure 1.1. Despite its generality, and apparent ability to model nonlinear relationships, an

important feature of the method is that it generally doesn’t require tuning. While there are

parameters that could be tuned, especially in generalized versions of RF, such as in GRF of [4],

RFs usually lead to quite good results. This entails a clear advantage over other nonparametric

methods in practice.

This thesis collects several papers, all deeply connected to the RF methodology. Though

most of these papers are ultimately of an applied nature, the thesis will focus on their theoretical

side and present and further discuss results derived in these papers. Throughout some crucial

notation and explanations will be left out to focus on the results and discuss their main message.

A second important idea that permeates the thesis is that two distributions can be compared

using a classifier. That is, if we observe an i.i.d. sample from a distribution P and another i.i.d.

sample from a distribution Q, we can use the following procedure to test whether P “ Q: (1)

Give the observations from P a label of 1, and those from Q a label of 0, (2) train a classifier

to differentiate the two classes and (3) evaluate the classifier using some accuracy measure on

a test-set where the labels are known. Step (3) gives a numerical indication of how well the
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2 CHAPTER 1. INTRODUCTION

classifier can differentiate the classes on independent data. Intuitively, the better the classifier

can differentiate the two classes on a test set, the more evidence there is against P “ Q. Various

ways can be used to make this idea formally correct. For instance, if the misclassification error

on the test set is used as a measure of the accuracy of the classifier, it can be shown that an exact

test can be constructed, see e.g. [68]. Otherwise, one can use a permutation approach; randomly

permute the labels 0/1 B times, estimate a new classifier on the permuted labels and evaluate on

the test set. It can be shown that under weak assumptions, treating the values obtained from the

permuted data set as B independent draws from H0 : P “ Q results in a test with valid p-value.

We now give an overview of the papers considered in this thesis. For more details, the newest

versions of all papers can be found at the end of the thesis.

In Paper A, we take up and extend the idea of using a classifier for two-sample testing.

Instead of just providing a decision to reject or not, we use the classifier testing approach to

provide a number between λ̂ P r0, 1s that indicates how far P and Q are apart. This number

represents a high probability lower bound (HPLB) for the total variation distance between P,Q

in the sense that it will overshoot the true value with probability less than α. Since this in

particular true when the true value is zero, i.e. P “ Q, Itλ̂ ą 0u constitutes a valid test.

Paper B and C discuss new methods in the field of missing values. In paper B we develop

a method that scores different imputation methods, while in Paper C introduce a new kind of

missing completely at random (MCAR) test. Both again use the idea of classifier-based diver-

gence measures for P and Q. This is used in Paper B to develop a method to check how well a

given imputation of the missing values fits the observed data. Though this is not used for formal

testing, the resulting classifier-based value obtained on a test set is used as a score indicating

how well an imputation method performs. Paper C on the other hand, develops a formal clas-

sifier test for multiple classes to differentiate the distribution of different missingness patterns.

The idea is that, under the assumption of missing completely at random (MCAR), whereby

the probability of a value being missing is unrelated to any observed or unobserved values, the

distributions for different patterns of missingness should be the same. This is developed into a

classifier-based test of the MCAR assumption. In both papers, random projections also play a

crucial role, as detailed below,

Paper D develops a new kind of Random Forest algorithm, the Distributional Random

Forest (DRF). It is an outlier in this thesis in two ways; first, it does not use classifier-based

divergence measures, but instead the maximum mean discrepancy (MMD) metric. Second, RF

is not applied here to solve a given problem, but instead the algorithm itself is generalized. In

particular, the usual CART criterion at each split is now performed in the reproducing kernel

Hilbert space (RKHS), using a kernel. This allows to greatly generalize the application of

Random Forest, as estimating a mean in the RKHS is akin to estimating a representation of the

whole conditional distribution. This allows a practitioner to obtain a range of functionals of
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Figure 1.1: Illustration of the workings of a Random Forest, adapted from https://tikz.net/random-forest/

interest, even multivariate ones, from one fit of the Random Forest.
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2 High Probability Lower Bounds for the
Total Variation Distance

2.1 Problem Setup

As mentioned in Chapter 1, one can use a classifier for two-sample testing. That is, for two

distributions P, Q, and two i.i.d. samples from each, we can test H0 : P “ Q, by using the

performance of a classifier as a test statistic. In this paper, we aim to go beyond this and to give

an indication of how strong P and Q are different under the alternative.

An interesting measure to quantify the difference between two distributions P and Q is the

total variation (TV) distance. Assuming P and Q are defined on the measurable space pX,Aq

the TV distance is defined as

TVpP,Qq “ sup
APA

|PpAq ´ QpAq| .

As 0 ⩽ TVpP,Qq ⩽ 1, TVpP,Qq is a simple to interpret indicator of the difference between

P and Q. It also has an interesting intuitive interpretation: TVpP,Qq is the fraction of mass

we need to shift to go from P to Q. Let ρ : X Ñ I be any measurable function mapping to

I “ r0, 1s. The following chain of inequalities for TVpP,Qq will form the starting point of our

approach:

TVpP,Qq ⩾ TVpρ#P, ρ#Qq ⩾ sup
tPI

|ρ#P pp0, tsq ´ ρ#Q pp0, tsq| , (2.1)

where ρ#P is the push-forward measure of P through ρ, that is for all measurable sets A,

ρ#PpAq “ Ppρ´1
pAqq.

Connecting back to the concept of testing through classification, any such ρ, one can define a

binary classifier ρt : X Ñ t0, 1u based on the cutoff t by ρtpzq :“ Itρpzq ą tu. Let X „ P and

Y „ Q and assume we give a label of 0 to samples from P and a label of 1 to samples from Q.

5



6 CHAPTER 2. HIGH-PROBABILITY LOWER BOUNDS FOR TV

Then we can rewrite

sup
tPI

|ρ#P pp0, tsq ´ ρ#Q pp0, tsq| “ sup
tPI

|P pρpXq ⩽ tq ` p1 ´ P pρpYq ⩽ tqq ´ 1|

“ sup
tPI

|P pρtpXq “ 0q ` P pρtpYq “ 1q ´ 1|

“ sup
tPI

|A0ptq ` A1ptq ´ 1| , (2.2)

where A jptq is the accuracy of the classifier on class j, j P t0, 1u. Thus, we can build the best

classifier ρt from ρ to obtain the lower bound. This is what we describe in the following.

Before diving into more details, let us introduce our setup and some necessary notation.

Where not otherwise stated, we assume to observe two independent i.i.d. samples X1, . . . , Xm

from P and Y1, . . . ,Yn from Q. We define

Zi :“

$

&

%

Xi if 1 ⩽ i ⩽ m,

Yi if m ` 1 ⩽ i ⩽ m ` n,

and attach a label ℓi :“ 0 for i “ 1, . . . ,m and ℓi :“ 1, for i “ m ` 1, . . . ,m ` n. Both m and n

are assumed to be non-random with N “ m ` n such that m{N Ñ π P p0, 1q, as N Ñ 8. For

notational convenience, we also assume that m ⩽ n. We denote by f and g the densities of P, Q

respectively. We define F :“ ρ#P and G :“ ρ#Q and introduce the empirical measures

F̂mptq :“
1
m

m
ÿ

i“1

ItρpXiq ⩽ tu, Ĝnptq :“
1
n

n
ÿ

j“1

ItρpY jq ⩽ tu,

of all observations tρiui“1,...,N := tρpZiqui“1,...,N . We can then rewrite (2.2) as

sup
tPI

|ρ#P pp0, tsq ´ ρ#Q pp0, tsq| “ sup
tPI

|Fptq ´ Gptq|. (2.3)

Denote by ρpzq, z P t1, . . . ,Nu, the zth order statistic of pρiqi“1,...,N . Throughout, qαpp,mq

is the α-quantile of a binomial distribution with success probability p and number of trials m

symbolized by Binomialpp,mq. Our analysis centers around the projection ρ˚ : X Ñ r0, 1s

given as

ρ˚
pzq :“

gpzq

f pzq ` gpzq
. (2.4)

As a remark, if we put a prior probability π “ 1{2 on observing a label ℓ of 1, ρ˚ is the posterior

probability of observing a draw from Q, referred to as the Bayes probability.

We now formally state the definition of a high-probability lower bound for the total variation

distance, using the notation λ :“ TVpP,Qq from now on:

Definition 2.1. For a given α P p0, 1q, an estimate λ̂ “ λ̂ ppZ1, ℓ1q, . . . , pZN , ℓNqq satisfying

Ppλ̂ ą λq ⩽ α (2.5)
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will be called high-probability lower bound (HPLB) at level α. If instead only the condition

lim sup
NÑ8

Ppλ̂ ą λq ⩽ α (2.6)

holds, we will refer to λ̂ as asymptotic high-probability lower bound (asymptotic HPLB) at level

α.

Thus we require that the true value λ is not overshot with probability 1 ´ α. Note that an

estimator λ̂ depends on a function ρ. When necessary, this will be emphasized with the notation

λ̂ρ throughout the text. Whenever ρ is not explicitly mentioned it should be understood that we

consider ρ “ ρ˚.

We now give some more details about the proposed method.

2.2 Proposed Method

In light of relation (2.1), we aim to directly account for the randomness of suptpF̂mptq´Ĝnptqq “

supzpF̂mpρpzqq´Ĝnpρpzqqq. We define the counting function Vm,z “ mF̂mpρpzqq for each z P Jm,n :“

t1, . . . ,m ` n ´ 1u. Using mF̂mpρpzqq ` nĜnpρpzqq “ z, it is possible to write:

F̂mpρpzqq ´ Ĝnpρpzqq “
m ` n

mn

ˆ

Vm,z ´
mz

m ` n

˙

. (2.7)

A well-know fact (see e.g., [52]) is that under H0 : F “ G, Vm,z is a hypergeometric ran-

dom variable, obtained by drawing without replacement z times from an urn that contains m

circles and n squares and counting the number of circles drawn. We denote this as Vm,z „

Hypergeometricpz,m ` n,mq and simply refer to the resulting process z ÞÑ Vm,z as the hyper-

geometric process. As the distribution of Vm,z under a general alternative is not known, the

discussion in this chapter focuses on the result that one can nonetheless control its behavior, at

least asymptotically. We start with the following definition, inspired by [119]:

Definition 2.2 (Bounding function). A function Jm,n ˆ r0, 1s Q pz, λ̃q ÞÑ Qm,n,αpz, λ̃q is called a

bounding function at level α if

Pp sup
zPJm,n

rVm,z ´ Qm,n,αpz, λqs ą 0q ⩽ α. (2.8)

It will be called an asymptotic bounding function at level α if instead

lim sup
NÑ8

Pp sup
zPJm,n

rVm,z ´ Qm,n,αpz, λqs ą 0q ⩽ α. (2.9)

In other words, for the true value λ, Qm,n,αpz, λq provides an (asymptotic) type 1 error control

for the process z ÞÑ Vm,z (often the dependence on α will be omitted). For λ “ 0 one can obtain

a closed-form expression of an asymptotic bounding function from the theory in [52].
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Assuming access to an (asymptotic) bounding function Qm,n,α, we can define the following

estimator,

λ̂ρ “ inf

#

λ̃ P r0, 1s : sup
zPJm,n

“

Vm,z ´ Qm,n,αpz, λ̃q
‰

⩽ 0

+

. (2.10)

In words, we are looking for the smallest candidate λ̃ such that the bounding function

Qm,n,αpz, λ̃q is larger than Vm,z for all z. We will see in the next section why this works.

Since we do not know the true λ, the main challenge in the following is to find bounding

functions that would be valid for any potential λ ⩾ 0. We now introduce a particular type of

such a bounding function. With λ̃ P r0, 1s, α P p0, 1q, mpλ̃q “ m ´ q1´ α3
pλ̃,mq, and npλ̃q “

n ´ q1´ α3
pλ̃, nq, we define

Qm,n,αpz, λ̃q “

$

’

’

’

&

’

’

’

%

z, if 1 ⩽ z ⩽ q1´ α3
pλ̃,mq

m, if m ` npλ̃q ⩽ z ⩽ m ` n

q1´ α3
pλ̃,mq ` sqα{3

`

Ṽmpλ̃q,z, z P t1, . . . ,mpλ̃q ` npλ̃q ´ 1u
˘

, otherwise

(2.11)

where Ṽm,z denotes the counting function of a hypergeometric process and sqα
`

Ṽm,z, z P J
˘

is a

simultaneous confidence band, such that

lim sup
NÑ8

P

ˆ

sup
zPJ

“

Ṽm,z ´ sqα
`

Ṽm,z, z P J
˘‰

ą 0
˙

⩽ α. (2.12)

We show below that Qm,n,α in (2.11) is really a bounding function. Note that Equation (2.12)

includes the case P
`

supzPJ

“

Ṽm,z ´ sqα
`

Ṽm,z, z P J
˘‰

ą 0
˘

⩽ α for all N. Depending on which

condition is true, we obtain a bounding function or an asymptotic bounding function.

2.3 Results

There are many results in the paper, but we focus on the fact that the level can be guaranteed in

this complex setting:

Proposition 2.3. The estimator λ̂ρ is an (asymptotic) HPLB of λ (at level α) for any ρ : XÑ I.

The estimator λ̂ρ looks intimidating, but combining the definition of bounding function with

the inf properties, Proposition 2.3 follows actually quite easily. It is instructive to see why. Let,

Gm,n :“

#

λ̃ P r0, 1s : sup
zPJm,n

“

Vm,z ´ Qm,n,αpz, λ̃q
‰

⩽ 0

+

.
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Then by definition of the infimum, λ̂ρ ą λ implies λ P Gc
m,n, or

Ppλ̂ρ ą λq ⩽ Ppλ P Gc
m,nq

“ Pp sup
zPJm,n

rVm,z ´ Qm,n,αpz, λqs ą 0q.

But by the definition of Qm,n,α, this probability is bounded by α. Thus the challenge really lies

in finding a valid bounding function. We now establish that:

Proposition 2.4. Qm,n,α as defined in (2.11) is an (asymptotic) bounding function.

Crucially, the hypergeometric process Ṽm,z has the same distribution, no matter the initial

distributions P and Q. This holds more generally for the bounding function Qm,n,α which does

not depend on P and Q and is thus distribution-free.

We now discuss two interesting concepts that can be used in the proof of Proposition 2.4.

The first concept is that of “Distributional Witnesses”. We assume to observe two i.i.d. samples

of independent random elements X,Y with values in pX,Aq with respective probability mea-

sures P and Q. Similar as in [36], let C be the set of all random elements pX̃, Ỹq with values in

pX2,A2q, and such that X̃ „ P and Ỹ „ Q. Following standard convention, we call pX̃, Ỹq P C

a coupling of P and Q. Then TVpP,Qq may be characterized as

TVpP,Qq “ inf
C
PpX̃ , Ỹq. (2.13)

This is in turn equivalent to saying that we minimize Πpx , yq over all joint distributions Π

on pX2,A2q, that have X#Π “ P and Y#Π “ Q. Equation (2.13) allows for an interesting

interpretation, as detailed (for example) in [36]: The optimal value is attained for a coupling

pX˚,Y˚q that minimizes the probability of X˚ , Y˚. The probability that they are different

is exactly given by TVpP,Qq. It is furthermore not hard to show that the optimal coupling is

given by the following scheme: Let W „ BernoullipTVpP,Qqq and denote by f the density

of P and g the density of Q, both with respect to some measure on pX,Aq, e.g. P ` Q. If

W “ 0, draw a random element Z from a distribution with density minp f , gq{p1 ´ TVpP,Qqq

and set X˚ “ Y˚ “ Z. If W “ 1, draw X˚ and Y˚ independently from p f ´ gq`{TVpP,Qq and

pg ´ f q`{TVpP,Qq respectively.

Obviously, X˚ and Y˚ so constructed are dependent and do not directly relate to the observed

X, Y , which are assumed to be independent. However it holds true that marginally, X D
“ X˚ and

Y D
“ Y˚. In particular, given that W “ 1, it holds that X D

“ X˚ “ Y˚ D
“ Y , or X|tW “ 1u

D
“

Y|tW “ 1u. On the other hand, for W “ 0, the support of X and Y is disjoint. This suggests

that the distribution of X and Y might be split into a part that is common to both and a part

that is unique. Indeed, the probability measures P and Q can be decomposed in terms of three

probability measures HP, HQ, HP,Q such that

P “ λHP ` p1 ´ λqHP,Q and Q “ λHQ ` p1 ´ λqHP,Q, (2.14)
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Figure 2.1: Illustration of the distributional witness concept. Left: Densities of a Np0, 0.5q vs Np1, 0.75q with
densities of witnesses shaded. Right: Actual densities of witnesses.

where the mixing weight is λ “ TVpP,Qq. Figure 2.1 illustrates this concept.

Viewed through the lens of random elements, these decompositions allow us to view the

generating mechanism of sampling from P and Q respectively as equivalent to sampling from

the mixture distributions in (2.14). Indeed we associate to X (equivalently for Y) the latent

binary indicator WP, which takes value 1 if the component specific to P, HP, is ”selected” and

zero otherwise. As before, it holds by construction PpWP “ 1q “ TVpP,Qq. Intuitively, an

observation X with WP “ 1 reveals the distribution difference of P with respect to Q. This fact

leads to the following definition:

Definition 2.5 (Distributional Witness). An observation X from P with latent realization WP “

1 in the representation of P given by (2.14) is called a distributional witness of the distribution

P with respect to Q. We denote by DWmpP; Qq the number of witness observations of P with

respect to Q out of m independent observations from P.

From the above sampling scheme, we actually see that

DWmpP; Qq „ Binomialpm,TVpP,Qqq.

The second concept is that of a bounding operation: Let Λ̄P P N, Λ̄Q P N be numbers

overestimating the true number of distributional witnesses from m i.i.d. samples from P and n

i.i.d. samples from Q, i.e.

Λ̄P ⩾ ΛP :“ DWmpP; Qq, Λ̄Q ⩾ ΛQ :“ DWnpQ; Pq. (2.15)

Thus, it could be that Λ̄P, Λ̄Q denote the true number of witnesses, but more generally, they

need to be larger or equal. If Λ̄P ą ΛP or Λ̄Q ą ΛQ, a precleaning is performed: We randomly

choose a set of Λ̄P ´ ΛP non-witnesses from the sample of F and Λ̄Q ´ ΛQ non-witnesses
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Figure 2.2: Illustration of the bounding operation. The first row from above is the original order statistic shown
as circles (coming from F) and squares (coming from G). Witnesses are indicated by blue crosses. In the second,
randomly chosen non-witnesses are added to the list of witnesses left and right, indicated by red, until the number
of witnesses is Λ̄P and Λ̄Q. In the final two rows, the witnesses of F and G are pushed to the left and right
respectively, such that the original order of the non-witnesses in the second row is kept intact.

from the sample of G and mark them as witnesses. Thus we artificially increase the number

of witnesses left and right to Λ̄P, Λ̄Q. Given this sample of witnesses and non-witnesses and

starting simultaneously from the first and last order statistics Zp1q and ZpNq, for i P t1, . . . ,Nu in

the combined sample, we do:

(1) If i ă Λ̄P and Zpiq is not a witness from F, replace it by a witness from F, randomly

chosen out of all the remaining F-witnesses in tZpi`1q, . . .ZpNqu. Similarly, if i ă Λ̄Q and

ZpN´i`1q is not a witness from G, replace it by a witness from G, randomly chosen out of

all the remaining G-witnesses in tZp1q, . . .ZpN´iqu.

(2) Set i “ i ` 1.

We then repeat (1) and (2) until i “ maxtΛ̄P, Λ̄Qu.

This operation is quite intuitive: we move from the left to the right and exchange points that

are not witnesses from F (i.e. either non-witnesses or witnesses from G), with witnesses from

F that are further to the right. This we do, until all the witnesses from F are aligned in the first

Λ̄P positions. We also do the same for the witnesses of G in the other direction of the order

statistic. Implementing the same counting process that produced Vm,z in the original sample

leads to a new counting process z ÞÑ V̄m,z. This is illustrated in Figure 2.2. Lemma 2.6 collects

some properties of this process, which is now much more well-behaved than the original Vm,z.

Lemma 2.6. V̄m,z obtained from the bounding operation above has the following properties:

(i) P p@z P Jm,n : V̄m,z ⩾ Vm,zq “ 1, i.e. it stochastically dominates Vm,z.

(ii) It increases linearly with slope 1 for the first Λ̄P observations and stays constant for the

last Λ̄Q observations.
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(iii) If Λ̄P ă m and Λ̄Q ă n and for z P tΛ̄P ` 1, . . . ,N ´ Λ̄Q ´ 1u, it factors into Λ̄P and a

process Ṽm´Λ̄P,z´Λ̄P , with

Ṽm´Λ̄P,z´Λ̄P „ Hypergeometric
`

z ´ Λ̄P,m ` n ´ Λ̄P ´ Λ̄Q,m ´ Λ̄P
˘

. (2.16)

Using these tools, we end this section by sketching the proof of Proposition 2.4.

We aim to prove

lim sup
NÑ8

Pp sup
zPJm,n

rVm,z ´ Qm,n,αpz, λqs ą 0q ⩽ α. (2.17)

Let ΛP,ΛQ be the distributional Witnesses of P and Q, as in Definition 2.5. Define the

events AP :“ tΛP ⩽ q1´ α3
pλ,mqu, AQ :“ tΛQ ⩽ q1´ α3

pλ, nqu and A “ AP X AQ, such that

PpAcq ⩽ 2α{3. On A, we overestimate the number of witnesses on each side by construction. In

this case we are able to use the bounding operation described above with Λ̄P “ q1´ α3
pλ,mq and

Λ̄Q “ q1´ α3
pλ, nq to obtain V̄m,z from Lemma 2.6. The process V̄m,z has

V̄m,z “

$

’

’

’

&

’

’

’

%

z, if 1 ⩽ z ⩽ q1´ α3
pλ,mq

m, if m ` npλq ⩽ z ⩽ m ` n

Ṽm,z´q1´ α3
pλ,mq ` q1´ α3

pλ,mq, if q1´ α3
pλ,mq ă z ă m ` npλq,

where mpλq “ n´q1´ α3
pλ,mq, npλq “ n´q1´ α3

pλ, nq, and Ṽm,z´q1´ α3
pλ,mq „ Hypergeometricpz´

q1´ α3
pλ,mq,mpλq,mpλq ` npλqq. Then:

Pp sup
zPJm,n

rVm,z ´ Qm,n,αpz, λqs ą 0q ⩽
2α
3

` Pp sup
zPJm,n

rV̄m,z ´ Qm,n,αpz, λqs ą 0 X Aq,

Now, V̄m,z´Qm,n,αpz, λq ą 0 can only happen for z P J̃m,n,λ :“ tq1´ α3
pλ,mq`1, . . . ,m`npλq´1u,

as by construction V̄m,z ´ Qm,n,αpz, λq “ 0, for z < J̃m,n,λ. Thus

lim sup
NÑ8

Pp sup
zPJm,n

rV̄m,z ´ Qm,n,αpz, λqs ą 0 X Aq ⩽
2α
3

`

lim sup
NÑ8

Pp sup
zPJ̃m,n,λ

”

Ṽm,z´q1´ α3
pλ,mq ´ sqα{3

´

Ṽmpλq,z´q1´ α3
pλ,mq, z P J̃m,n,λ

¯ı

ą 0q

⩽ α,

by definition of sqα{3

`

Ṽmpλq,z, z “ 1, . . . ,mpλq ` npλq ´ 1
˘

.

2.4 Discussion

The significance of Proposition 2.4 might not be immediately obvious. The key is that, despite

not knowing how Vm,z behaves in general, the bounding function in (2.11) allows to bound Vm,z
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Figure 2.3: Simulate data with δ “ 0 (top right), δ “ 0.05, (top left), δ “ 0.3 (bottom right) and δ “ 0.8 (bottom
left).

by a quantile that is known (given the candidate λ̃) and a process Ṽm,z that is simply the same

hypergeometric process as under the null. Thus we managed to reduce the problem from the

unknown Vm,z, which in general might depend on P and Q, to a distribution-free hypergeometric

process that arises under the null. The way we got there appears moreover quite intuitive with

the bounding function described above.

We close this chapter with a small example of an implementation of the estimator in (2.10).

We consider P to be a two-dimensional Gaussian distribution with mean zero and identity co-

variance matrix. On the other hand, Q is a mixture of P and a two-dimensional Gaussian with

mean p2, 2q. The mixture parameter δ controls the strength of difference between P and Q, as

δ “ 0 corresponds to P “ Q and for δ “ 1, Q is the the Gaussian distribution with mean p2, 2q.

Figure 2.3 illustrates this setting for δ P t0, 0.05, 0.3, 0.8u. We note that a (strong) two-sample

test would simply reject the null for any δ large enough. Instead, the estimator in (2.10) based

on RF, not only manages to detect the slight difference in P and Q for the case δ “ 0.05, but

also gets successively larger as δ increases. In particular, it is zero for δ “ 0 and thus correctly

recognizes that H0 cannot be rejected, and grows from around 0.0035, for δ “ 0.05, up to

0.6435 for δ “ 0.9.
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3 Scoring Rules for Imputation Methods

3.1 Problem Setup

An important task in actual data applications is dealing with missing values. As such a myr-

iad of ways to impute missing entries with “sensible” values was developed over the last two

decades. The ‘R-miss-tastic’ platform, developed in an effort to collect knowledge and methods

to streamline the task of handling missing data, lists over 150 packages [114]. However, while

there is no shortage of imputation mehtods, there appears to be no principled way to assess the

quality of an imputation for a given dataset. This assessment of quality via “scoring” imputaton

methods is the subject of this paper.

The problem is best illustrated with an example: Consider the two-dimensional spiral ex-

ample, shown in Figure 3.1: We generated 1000 observations of the noisy spiral, each entry

having an independent probability of being missing of pmiss “ 0.3. We imputed the missing

values using 3 methods: The first “imputation” is simply the true data, followed by “mice-cart”,

“sample” and “loess”. For the sake of this example it is not important what these imputations

exactly do, only that (i) by eye, we can identify a seemingly clear ordering of these methods

and (ii) “mice-cart”, “sample” try to draw from the true conditional distribution of missing given

observed, while “loess” simply estimates the mean of X2 given X1 and vice-versa. Since this

way of assessing an imputation is only possible in such toy examples, we would like to have a

general scoring method that reproduces this clear ordering in this example. If the true under-

lying data are available, say in research settings, then the root mean-squared error or RMSE

is often taken, whereby we average the squared difference between any imputed values and its

true value. It turns out that this is a dangerously misleading approach. Indeed, this is nicely

illustrated by this nonlinear spiral example: RMSE heavily favors loess, which simply imputes

conditional means, instead of cart or even true data. This reduces the variance and Figure 3.1

clearly gives an impression that the underlying data distribution is not well-represented with

this imputation. Though loess certainly would not look as bad in a multivariate Gaussian dis-

tribution, the problem remains: conditional mean imputations artificially reduce the variance

and strengthen associations between variables. This can lead to inflated p-values and invalid

inference.

15
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Figure 3.1: Imputations for the spiral example pn “ 1000, p “ 2q. The complete observations are plotted in gray
and the imputed observations in blue.

In contrast, we now present a scoring methodology that avoids these pitfalls, and moreover

does not need access to the true data.

Unfortunately there is a lot of notation we need to introduce, before the main results can be

discussed. This notation will however also be helpful for the next chapter.

We assume an underlying probability space pΩ,A,Pq on which all random elements are

defined. Throughout, we take P to be a collection of probability measures on Rd, dominated

by some σ-finite measure µ. We denote the (unobserved) complete data distribution by P˚ P P

and by P the actually observed distribution with missing values. We assume that P (P˚) has a

density p (p˚). We take X (X˚) to be the random vector with distribution P (P˚) and let xi (x˚
i ),

i “ 1, . . . , n, be realizations of an i.i.d. copy of the random vector X (X˚). Similarly, M is the

random vector in t0, 1ud, encoding the missingness pattern of X, with realization m, whereby

for j “ 1, . . . , d, m j “ 0 means that variable j is observed, while m j “ 1 means it is missing.

For instance, the observation pNA, x2, x3q corresponds to the pattern p1, 0, 0q. We denote the

distribution of M as PM, with supportM, so that PpM “ mq “ PMpmq.

For a subset A Ď t1, . . . , du and for a random vector X or an observation x in Rd, we denote

with XA (xA) its projection onto that subset of indices. For instance if d “ 3 and A “ t1, 2u, then

XA “ pX1, X2q (xA “ px1, x2q). The projection onto A of the observation xi, pxiqA, is denoted as

xi,A. Analogously, for a missingness pattern M „ PM or an observation m in t0, 1ud, we denote

with MA pmAq its projection onto the subset of indices in A. If X has a density p on Rd, we

denote by pA the density of the projection XA.

To denote assumptions on the missingness mechanism, we use a notation along the lines of

[151]. For each realization m of the missingness random vector M we define with opX,mq :“

pX jq jPt1,...,du:m j“0 the observed part of X according to m and with ocpX,mq :“ pX jq jPt1,...,du:m j“1

the corresponding missing part. Note that this operation only filters the corresponding elements

of X according to m, regardless whether or not these elements are actually missing or not. For

instance, we might consider the unobserved part ocpX,mq according to m for the fully observed

X, that is X „ P|M “ 0, where 0 denotes the vector of zeros of length d.
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3.2 Proposed Method

The main idea underlying the proposed approach is that “a desirable property of imputation

methods is that they should preserve the joint and marginal distributions.”[128]. We thus devise

a method that measures the distributional difference between an imputed distribution H and the

observed data distribution P. An imputation distribution H is one which exactly matches the

observed part of P. That is, all H P HP, where

HP :“ tH P P : hpopx,mq|M “ mq “ ppopx,mq|M “ mq for all m PMu. (3.1)

This just encodes the fact that an imputation is not allowed to change the observed values of

a dataset, though here we just ask that the distribution should not be changed. Importantly,

this definition includes “imputation” from the true distribution H “ P˚, which corresponds to

sampling from the true conditional distributions of missing given observed.

Since P includes unobserved elements, or NA’s, care needs to be taken to use any method

in a data-efficient way. We will approach this by using Random Projections onto subsets A Ă

t1, . . . , pu. The reason to do this is that a projection A always contains at least as many fully

observed points, as there are in the overall data set. This is actually true for any pattern m, there

are always at least as many observations with pattern mA on A, then observations with pattern

m on the full data.

Let K be a distribution over random projections, HmAphmAq the distribution (density) of

HA | MA “ mA and pApXA | MA “ 0q the density of the fully observed points on A. We then

define the following score:

Definition 3.1. Density Ratio I-Score
We define the DR I-Score of the imputation distribution H by

S ˚
NApH, Pq “ EA„K ,MA„PM

A ,XA„HMA

„

log
ˆ

pApXA | MA “ 0q

hMApXAq

˙ȷ

, (3.2)

where the integration is over projections A P A, patterns MA „ PM
A and XA „ HMA .

Importantly, this can also be written as

S ˚
NApH, Pq “ ´EA„K ,MA„PM

A
DKLphMA || pAp¨ | MA “ 0qq,

where the Kullback-Leibler divergence (KL divergence) between two distributions P,Q P P on

Rd with densities p, q is defined by

DKLpp || qq :“
ż

ppxq log
ˆ

ppxq

qpxq

˙

dµpxq.
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The score thus measures the difference between the fully observed distribution PA | MA “ 0
and the imputation distribution given pattern mA, HA | MA “ mA. Naturally, the closer H is to

the true distribution P˚ the larger this score should be.

So far the relation to Random Forest might not be clear. The key is that we estimate (3.2) by

training a Random Forest classifier, or more accurately, a probability forest [111] to differentiate

between fully observed cases on A (pA) and imputed cases of the pattern mA. In fact there is

a deeper connection: Note that we are taking expectations over random projections A, among

other things, and using a probability forest to estimate the ratio in the expectation. This approach

can also be seen as an adapted RF, where each tree obtains a potentially different projection of

the data. We refer to Paper B for more details.

3.3 Results

The main question after defining a score, other than how to estimate it in practice, is whether it

is proper. In our context propriety of a score means

S NApH, Pq ⩽ S NApP˚, Pq, (3.3)

for all H P HP. Thus a proper score should rank an imputation from the true distribution

highest. A somewhat surprising result emerged in this context concerning the propriety of the

DR I-Score:

Proposition 3.2. Let H P HP, as defined in (3.1). If for all A P A,

p˚
poc

pxA,mAq | opxA,mAq,M “ m1
Aq “ p˚

poc
pxA,mAq | opxA,mAqq,

for all m1
A,mA PMA, (3.4)

then (3.3) holds for S ˚
NApH, Pq in (3.2).

We thus call S ˚
NApH, Pq a proper I-Score, i.e., a score that gives its highest value to the true

data imputation H “ P˚. To illuminate condition (3.4) and the overall approach, consider the

following data example with three patterns: M “ p0, 0, 0q, M “ p1, 0, 0q, M “ p1, 1, 0q,

13 10 3

NA 13 7

5 16 9

NA NA 4

NA 5 8

-1 15 11

NA 16 18

NA NA 10

9 14 16

NA 14 5

13 10 3

6 13 7

5 16 9

10 8 4

7 5 8

-1 15 11

14 16 18

17 12 10

9 14 16

12 14 5
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such that for A “ t1, 2, 3u and an imputation H, we would have two comparisons:

13 10 3

5 16 9

-1 15 11

9 14 16

to

6 13 7

7 5 8

14 16 18

12 14 5

and

13 10 3

5 16 9

-1 15 11

9 14 16

to 10 8 4

17 12 10

Focussing on the first, we compare,

13 10 3

5 16 9

-1 15 11

9 14 16

to

6 13 7

7 5 8

14 16 18

12 14 5

The left observations have distribution P | M “ p0, 0, 0q, while the right have H | M “ p1, 0, 0q.

These will be different in general. We now require

p˚
poc

px,mq|opx,mq,M “ 0q “ p˚
poc

px,mq|opx,mq,M “ mq.

Thus, while the distribution of opx,mq and opx,mq could be different, the conditional distribu-

tion of missing (with respect to m) given observed (with respect to m) need to be independent of

the actual pattern. If this condition holds more generally over all patterns, as in (3.4), we obtain

propriety.

There is a deep connection between (3.4) and traditional missingness analysis: It is simply

the missing at random (MAR) condition on the projection A: [151] defines MAR as,

PpMA “ mA|XA “ xAq “ PpMA “ mA|XA “ x̃Aq

for all xA, x̃A s.t. opxA,mAq “ opx̃A,mAq. (3.5)

Lemma 3.3. Condition (3.4) and (3.5) are equivalent.

In fact, as we will argue in the next section, (3.5) is a more natural formulation of the MAR

condition, at least in our context.

3.4 Discussion

What makes Proposition 3.2 surprising is that one would expect as a prerequisite for our ap-

proach to work that the compared distributions are the same. After all, we are comparing two

distributions using the KL divergence, and if we compare different distributions even when

H “ P˚, how can we make sure that P˚ is scored highest? The key is that when comparing

pattern m to the fully observed pattern, the KL divergence factors as:

KL(pattern m) “ KL(observed in pattern m)`

EobservedrKL(missing given observed in pattern m)s.
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Since H is not allowed to change the distribution of the observed elements, the first part of this

sum will stay the same for all imputation distributions. As in general it will not be zero (i.e. the

distribution of observed points may change), it is a kind of irreducible error. The second part

compares the conditional distribution of ocpx,mq given the observed opx,mq. Crucially, we have

demanded above that this distribution is not allwed to change, when one goes from M “ m to

M “ 0 and thus this term will be minimized at 0, for H “ P˚. Thus condition (3.4) is a quite

natural condition for this comparison. And indeed, if the conditional distributions of missing

given observed can vary arbitrarily, one is able to construct counter-examples for which H “ P˚

is not scored highest. After all, there is no way in general to say something about P˚, if what

cannot be observed is able to behave without constraints. This is the same principle underlying

the MAR idea. The price we pay for having random projections, is that MAR needs to hold for

all projections A. But again this is a quite natural condition, and holds in particular if the data is

missing completely at random (MCAR). Testing for MCAR is the subject of the next chapter.



4 A useful MCAR Test

4.1 Problem Setup

In the last chapter we introduced a score that allows to evaluate missing data imputations. Tak-

ing a step back, before doing any imputation there is some interest in determining whether the

missingness mechanism is actually missing completely at random (MCAR). Since the concepts

of MCAR and MAR were only discussed briefly in the last chapter, we focus on it more here:

Let again the random vector M encode the missingness, i.e. M j “ 1 means X j is missing and

M j “ 0 means X j is observed. MCAR means that the missigness mechanism is completely

independent from the data, or X˚ is independent of M.1 If X, M are the matrices collecting

n i.i.d. observations from P and PM respectively in their rows, this also means that these two

matrices are independent.

Crucially it turns out that existing MCAR tests either (i) don’t conserve the level in all but

the most favorable examples and/or (ii) display no power or are computationally not usable on

datasets with “reasonable” dimensions.

4.2 Proposed Method

The method shares similarities with the method of Chapter 3, but has its own peculiarities.

Recall that a missingness pattern m is defined by a vector of length p, consisting of ones and

zeros, indicating which of the p variables are missing in the given pattern. We divide the

n observations into g P t1, . . . ,Gu unique groups, such that the observations of each group

share the same missingness pattern. Each group contains ng observations such that n1 ` ¨ ¨ ¨ `

nG “ n. Let Pg denote the joint distribution of the p variables in the missingness pattern group

g, such that the ng observations of group g are i.i.d. draws from Pg. As above, P˚
g is the

corresponding (unobserved) underlying distribution, before the missingness mechanism comes

into play. Testing MCAR can be reformulated, as testing the equality of the distribution of the

1We note that we are not even technically able to test MCAR in general, but instead test for a condition called
OAR, but this is not important for this discussion.
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different missingness patterns:

H0 : P˚
1 “ P˚

2 “ . . . “ P˚
G

v.s. (4.1)

HA : D i , j P t1, . . . ,Gu s.t. P˚
i , P˚

j .

In familiar fashion, we test a weaker version of (4.1), by first drawing a set A, as the projec-

tion X‚,A contains less patterns than the overall data set. A key difference to Chapter 3 is that we

now don’t have the luxury of an imputation and thus can only work with the data at hand. As

such, we consider the fully observed points on A, which we denote as XNA,A. Each observation

of XNA,A, though belonging to the pattern 0 on the projection A, is part of a pattern in the overall

data. In the worst case, each observation of XNA,A could belong to a different pattern. We also

note that the actual pattern each observation in XNA,A belongs to is determined by the patterns

of the variables XNA,Ac , with Ac “ t1, . . . , puzA. Figure 1 illustrates this: On the projection A,

the observations XNA,A are all fully observed. However, looking at the first two columns (Ac),

one sees that they actually belong to different patterns, and this is solely determined by the first

two columns. Thus to have a sensible labeling, we actually draw a subset B Ă Ac, and label

the observations in XNA,A according to the patterns of XNA,B. This is again illustrated in Figure

1, where the second column is chosen, resulting in two labels, one for the first observation in

XNA,A and another one for the second and third.

Thus this is our projection scheme: We first randomly draw A Ă t1, . . . , pu to obtain XNA,A

and then B Ă Ac to determine the labels for each observation in XNA,A. Given XNA,A with labels,

we then train a multiclass classifier that should distinguish the different classes. We thereby

again use the KL divergence, as in Chapter 3 and [24], but extend it to multiclass classification.

We will leave out the exact details, but the crucial point is that the final test statistic Û is build

by averaging over N different projections:

Û :“
1
N

N
ÿ

i“1

ÛpAi,Biq, (4.2)

where ÛpAi,Biq is the classification-based accuracy measure on the ith projection.

To ensure the level of this rather complicated approach is kept for every sample size, we

need a permutation approach. That is, we want to randomly shuffle the labels in each projection

and calculate the statistic on the shuffled data. Unfortunately, this needs to be done in a way

that respects the dependencies inherent in this procedure. For instance, it is not good enough to

simply use B permutations independently for each of the N projections. The key is to instead

permute the rows of the matrix of missingness patterns M. That is, we redo the analysis using

Mσ, M with permuted rows, which results in ÛpAi,Biq
σℓ , i “ 1, . . . ,N. Note that the pAi, Biq

N
i“1

remain exactly as before and indeed in practice, the actual statistic and the permuted ones are

calculated simultaneously for each pAi, Biq.
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Figure 4.1: Illustration of the projections A, B. In a first step, a projection A Ă t1, . . . , pu is drawn, as indicated in
black. The fully observed points on A, then form XNA,A. In a second step, B Ă t1, . . . , puzA is drawn as indicated
in bold blue. The patterns in Projection B then determine which observation in XNA,A have the same label. In
this case, the first observation has a different label, than the second and third observations, which share a common
label.

Finally, we calculate for ℓ “ 1, . . . , L,

Ûσℓ :“
1
N

N
ÿ

j“1

ÛpA j,B jq
σℓ . (4.3)

The p-value of the test is then obtained as usual by

Z :“
řL
ℓ“1 ItÛσℓ ⩾ Ûu ` 1

L ` 1
. (4.4)

4.3 Results

The main result here, is that under the aforementioned permutation scheme, the test actually

provides a valid p-value. A p-value Z say is valid if, under H0,

PpZ ⩽ zq ⩽ z for all z P r0, 1s. (4.5)

That is, a valid p-value is a random variable that, under H0, stochastically dominates the uniform

distribution.

We first discuss a general result for permutation approaches and then use it to show that

the p-value in (11) is valid. Let Y be a n ˆ p random matrix and let G be a finite set of

transformations that forms a group. That is, G contains the identity element, every element of G

has an inverse and for g1 P G and g2 P G, the composition g2 ˝g1 is also in G. If the first column

of Y are 0{1 labels, G is usually the set of permutations of the labels. That is, each g P G,

outputs gpYq, whereby the first column is permuted, while all other columns remain the same.



24 CHAPTER 4. A USEFUL MCAR TEST

We also do not consider all elements in G, but instead choose a random subset of size L. Let in

the following g0 P G be the identity, i.e. g0pYq “ Y. Let for randomly selected g1, . . . , gL P G,

G1 :“ pg0, g1, . . . , gLq .

We also assume to have a statistic T , such that T pYq takes values in R. Then we obtain the

sample pT pg0pYqq,T pg1pYqq, . . . ,T pgLpYqqq. Let T ℓpY,G1q, ℓ ⩾ 1 be the ℓth order statistics of

this sample, such that

T 1
pY,G1

q ⩽ . . . ⩽ T L`1
pY,G1

q.

Then

Theorem 4.1. Assume that under H0,

Y D
“ gpYq for all g P G, (4.6)

that G is a group and G1 defined as above. Then if we define

Z :“
řL`1
ℓ“1 ItT ℓpY,G1q ⩾ T pYqu

B ` 1
, (4.7)

(4.5) holds for Z under H0.

Thus this very general result, a direct consequence of Theorem 2 in [70], guarantees that

Z is a valid p-value! Condition (4.6) is actually stronger than what is needed, but it is enough

general for our purposes. It is also somewhat intuitive: It implies that under H0, T pYq must

come from the same distribution as T ℓpY,G1q, ℓ “ 1, . . . , L ` 1. Thus, we should not expect its

value to be stochastically higher than the values T ℓpY,G1q, ℓ “ 1, . . . , L`1. Care must be taken

however with this intuition, because the values in pT pg0pYqq,T pg1pYqq, . . . ,T pgLpYqqq are not

(unconditionally) independent.

We now use this to proof that Z as defined in (11) is a valid p-value. In this one case, it

might be instructive to include the proof of the paper:

Proposition 4.2. Under H0 in (4.1), and Z as defined in (11), (4.5) holds.

Proof
Let A “ pA1, . . . , ANq, B “ pB1, . . . , BNq. Let G be all possible permutations of the rows of

M, that is for all g P G,

gpX˚,M,A,Bq “ pX˚,Mσℓ ,A,Bq,

ℓ “ 1, . . . , L˚. Note that, since we are only considering fully observed observations for projec-

tions A, Û is actually a function of X˚,M,A,B, while Ûσℓ is a function of GℓpX˚,M,A,Bq. It

also holds that:

pX˚,M,A,Bq
D
“ pX˚,Mσℓ ,A,Bq “ gpX˚,M,A,Bq @g P G. (4.8)
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Indeed, under MCAR, X˚ and M are independent. Since by the i.i.d. assumption also

Mσℓ
D
“ M for all ℓ and since A, B are also independent of M, (18) follows. Thus H0 is such that

(4.6) holds and since G is a group, the result follows by Theorem 4.1.

4.4 Discussion

It is worth emphasizing how important this result is in this context. Despite the complex non-

parametric setting, the p-value obtained through this permutation approach will lead to a valid

MCAR test, for any sample size n. As Paper C shows, this is in contrast to other existing MCAR

tests, which often grossly inflate the level. Given that a valid p-value, at least for large n, is the

basic requirement a statistical test needs to meet, this is a rather significant point. Hence the

provocative choice of title in this chapter. Interestingly, our test also displays very high power

and is widely applicable, as we detail in the paper.
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5 Distributional Random Forests: Hetero-
geneity Adjustment and Multivariate Dis-
tributional Regression

5.1 Problem Setup

So far we discussed ways of applying (versions) of RF to a variety of problems. However, there

has also been substantial work on understand and extending the Random Forest algorithm itself.

Among the research that has been done in the RF literature, two stand out: First, the original RF

presents a nonparametric method of estimating conditional expectations, and thus researchers

looked into whether the same algorithm could be leveraged for different distributional aspects.

This presumably started with [117], who used the weight function that RF implicitly produces

to construct estimates of conditional quantiles. Second, efforts intensified to understand the

behavior of RF on a theoretical level and to use this to provide confidence intervals for its pre-

dictions. In particular, [122] first developed an asymptotic normality result using a generalized

version of U-statistics, which was refined considerably in [181].

GRF of [4] combined these two directions and proposed a framework within which an

adapted Random Forest could be constructed, according to some estimating equations. That

is, for a given target, defined through the estimating equations, a splitting criterion has to be

developed, which then replaces the usual CART splitting criterion in each tree. Given condi-

tions on the data and on the estimating equations, the (univariate) consistency and asymptotic

normality result of [181] then hold for the desired quantity. GRF thus unified various ways of

using RF and provided a theoretical framework together with inferential tools.

However the GRF framework, while elegant, has its own shortcomings. First and foremost,

while it is never clearly stated in [4], it seems quite clear that the method only works for uni-

variate targets (though they allow for certain “nuisance” parameters). Second, the construction

of a new RF method for each new target weakens one of the great strengths of the RF method:

that it doesn’t need to be adapted or tuned to each new problem or estimator.
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Our new method, the Distributional Random Forest (DRF), addresses both shortcomings

and delivers a general-purpose method that is able to learn a representation of the conditional

distribution PpY | X “ xq in a RF-type adaptive fashion. As an additional benefit, the theoretical

treatment of our new approach, while more limited in a sense, is more elegant. The complexity

of the theory in [4] is greatly increased through the estimating equations. In contrast, our

method is simply estimating a mean, albeit in an infinite-dimensional Hilbert space, making

the theoretical treatment somewhat straightforward.

5.2 Proposed Method

Consider an i.i.d. sample pY1,X1q, . . . , pYn,Xnq, with Y taking values in Rd and X in Rp. We

propose the DRF algorithm which estimates the multivariate conditional distribution PpY | X “

xq. More specifically, the data is repeatedly split in different trees, as in RF, but with the splitting

criterion adapted to a distributional metric: at each step, we split the data points into two groups

based on some feature X j in such a way that the distribution of Y for which X j ⩽ l, for some level

l, differs the most compared to the distribution of Y when X j ą l, according to the distributional

metric. This leads to a partition of Rp, such that a testpoint x ends up in exactly one of the

leaves. Then a weight to each observation Xi in the sample is assigned as follows: if Xi and x
are not in the same leaf, the weight is zero. Otherwise, it is 1{Nx where Nx is the number of

elements in the shared leaf. Repeating this many times with randomization induces a weighting

function wxpxiq as in [104, 105], which quantifies the relevance of each training data point xi for

a given test point x. The conditional distribution is then estimated by an empirical distribution

determined by these weights [117].

We propose a splitting criterion based on the Maximal Mean Discrepancy (MMD) statistic

[62]. Crucially, this statistic measures the distance between two distributions as the (norm)

difference between two expected values in a Hilbert Space. As such, we are able to cast DRF

as a (conditional) mean estimation in this Hilbert space, which has several important theoretical

implications. First, it allows to extend results from the Random Forest literature to this setting,

by generalizing the arguments to Hilbert spaces. While this is not trivial, it is quite natural

and immediately implies consistency of a large range of estimators based on the RF. Second,

the estimate in the Hilbert space can be easily expressed as a weighted sum of kernels and is

of separate interest, as a consistent estimate of the “conditional mean embedding” (CME), see

e.g., [132]. Third, while this is less relevant here, the criterion allows for computationally fast

approximations, which is crucial for the applicability of the algorithm.

For a positive semi-definite kernel k, letH be its associated Hilbert space with inner product

x, yH , see e.g. [75]. This kernel could be tuned in principle, though in typical RF-manner

one particular choice, the Gaussian kernel tends to deliver good results for a wide range of
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examples. It also has a host of favorable properties, as discussed below. We consider the

element µpxq :“ ErkpY, ¨q | X “ xs P H . This is called the embedding of the conditional of

Y | X “ x, since it can be shown that for all f P H ,

x f , µpxqyH “ Erx f , kpY, ¨qyH | X “ xs “ Er f pYq | X “ xs.

Thus µpxq defines the conditional distribution in a certain sense. Indeed it can be shown that

under certain conditions on the kernel, µpxq uniquely defines the distribution Px. As mentioned

above, through the MMD splitting criterion, the DRF estimate µpxq at a point x can be seen as

mean estimate in the RKHSH . That is we obtain the estimate

µ̂npxq “

n
ÿ

i“1

wipxqkpyi, ¨q. (5.1)

As mentioned above, this relates to the literature on the estimation of CMEs, see e.g., [132].

We now study a consistency result in the next section.

5.3 Results

We collect some assumptions on the growing of the forest. For details, the reader is referred to

paper D.

(P1) (Data sampling) The bootstrap sampling with replacement, usually used in forest-based

methods, is replaced by a subsampling step, where for each tree we choose a random

subset of size sn out of n training data points. We consider sn going to infinity with n,

with the rate specified below.

(P2) (Honesty) The data used for constructing each tree is split into two partOn the pitfalls of

Gaussian scoring for causal discoverys; the first is used for determining the splits and the

second for populating the leaves and thus for estimating the response.

(P3) (α-regularity) Each split leaves at least a fraction 0 ă α ⩽ 0.2 of the available training

sample on each side. Moreover, the trees are grown until every leaf contains between κ

and 2κ ´ 1 observations, for some fixed tuning parameter κ P N.

(P4) (Symmetry) The (randomized) output of a tree does not depend on the ordering of the

training samples.

(P5) (Random-split) At every split point, the probability that the split occurs along the feature

X j is bounded below by π{p, for some π ą 0 and for all j “ 1, . . . , p.

This can then be used to show consistency of the method in the Hilbert space norm } ¨ }H :
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Theorem 5.1. Suppose that our forest construction satisfies properties (P1)–(P5). Assume

additionally that k is a bounded and continuous kernel and that we have a random design with

X1, . . . ,Xn independent and identically distributed on r0, 1sp with a density bounded away from

0 and infinity. If the subsample size sn is of order nβ for some 0 ă β ă 1, the mapping

x ÞÑ µpxq “ ErµpδYq | X “ xs P H ,

is Lipschitz and supxPr0,1sp Er}µpδYq}2
H

| X “ xs ă 8, we obtain the consistency w.r.t. the RKHS

norm:

}µ̂npxq ´ µpxq}H “ Op
`

n´γ
˘

, (5.2)

for γ “ 1
2 min

´

1 ´ β,
logpp1´αq´1q

logpα´1q

π
p ¨ β

¯

.

5.4 Discussion

The result shows consistency of the DRF prediction, under quite natural assumptions, with a

given rate that depends on the number of dimension of X. The implications of the result strongly

depend on the kernel k. Under a Gaussian kernel, and some additional assumptions on Y, it can

be shown that (5.2) is equivalent to the weak convergence of the corresponding distributional

estimate P̂x,n to Px in probability. This is an interesting concept that we will discuss in more

detail: On the set of all probability measures on Rd weak convergence of Pn to P is defined as
ż

Rd
f pyqdPnpyq Ñ

ż

Rd
f pyqdPpyq,

for all f : Rd Ñ R continuous and bounded. We will denote this as Pn
w

Ñ P. A simple

transformation of µ̂n gives

P̂x,n “

n
ÿ

i“1

wipxqδyi ,

where for all measurable sets A,

δypAq :“

$

&

%

1, if y P A

0, else .

P̂x,n is a valid probability measure on Rd and one can define the (semi-metric),

dkpP̂x,n,Pxq :“ sup
f PH

}P̂x,n f ´ Px f }H “ }µ̂npxq ´ µpxq}H ,

see e.g., [165]. As mentioned under a Gaussian kernel and some mild assumptions,

dkpPn, Pq Ñ 0 ðñ Pn
w

Ñ P.
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Thus the result above implies that dkpP̂x,n,Pxq Ñ 0 in probability and thus, in this sense P̂x,n
w

Ñ

Px in probability. This has in particular the consequence that for all f : Rd Ñ R bounded and

continuous,
ż

Rd
f pyqdP̂x,npyq Ñ Er f pYq | X “ xs,

in probability, guaranteeing consistency of a range of univariate targets. Other results using

“weak convergence in distribution” have been used in the Bootstrap literature, see e.g., [94,

Chapter 10].

We note that while the estimating guarantees are relatively weak, so are the assumptions on

the data generating process. While this might not seem obvious given the list of assumptions,

[117] for example assumes x ÞÑ Fpy | X “ xq to be Lipschitz with respect to the Kolmogorov

metric, i.e. for some L ą 0,

sup
y

|Fpy | X “ xq ´ Fpy | X “ x1
q| ⩽ L}x ´ x1

},

and achieves convergence in probability in the Kolmogorov metric. In contrast, weak conver-

gence amounts to pointwise convergence of the cdf (in probability). However, we only assume

Lipschitz continuity in a much weaker norm (namely in } ¨ }H of the RKHSH) in Theorem 5.1.

As mentioned beforehand, the fact that we still only estimate a mean renders the theory

comparatively simple. What is missing from this discussion, compared to [4] are inferential

tools. This important discussion is part of current work.
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6 Concluding remarks

In this thesis we examined a range of papers based on the Random Forest algorithm. The first

used RF to develop a new two-sample test that simultaneously delivers a rejection decision as

well as a measure quantifying the strength of difference between P and Q. The second made

use of RF in constructing a score indicating how well an imputation of missing values holds

up when compared to the observed data. Using similar tools, together with a permutation test,

the third project developed an MCAR test with strong level guarantees. Finally, the last project

developed a powerful new method to estimate multivariate conditional distributions based on

the RF methodology.

We hope that the methods developed in these papers will be of use in the statistical and data

science communities, both applied and in research.
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Abstract

The statistics and machine learning communities have recently seen a growing interest in

classification-based approaches to two-sample testing. The outcome of a classification-

based two-sample test remains a rejection decision, which is not always informative

since the null hypothesis is seldom strictly true. Therefore, when a test rejects, it would

be beneficial to provide an additional quantity serving as a refined measure of distribu-

tional difference. In this work, we introduce a framework for the construction of high-

probability lower bounds on the total variation distance. These bounds are based on a

one-dimensional projection, such as a classification or regression method, and can be in-

terpreted as the minimal fraction of samples pointing towards a distributional difference.

We further derive asymptotic power and detection rates of two proposed estimators and

discuss potential uses through an application to a reanalysis climate dataset.

Keywords. two-sample testing, distributional difference, classification, higher-criticism

1 Introduction

Two-sample testing is a classical statistical task recurring in various scientific fields. Based

on two samples Xi, i “ 1, . . . ,m and Y j, j “ 1, . . . , n drawn respectively from probability

measures P and Q, the goal is to test the hypothesis H0 : P “ Q, against potentially any

alternative. The trend in the last two decades towards the analysis of more complex and large-

scale data has seen the emergence of classification-based approaches to testing. Indeed, the

idea of using classification for two-sample testing traces back to the work of [53]. Recently this

use of classification has seen a resurgence of interest from the statistics and machine learning

37



38 Paper A

communities with empirical and theoretical work ([88]; [145]; [109]; [68]; [14]; [56]; [87];

[24]) motivated by broader applied scientific work as well-explained in [88].

However, as already pointed out in [53], it is practically very unlikely that two samples come

from the exact same distribution. It means that with enough data and using a “universal learning

machine” for classification, as Friedman called it, the null will be rejected no matter how small

the difference between P and Q is. Therefore, in many situations when a classification-based

two-sample test rejects, it would be beneficial to have an additional measure quantifying the

actual distributional difference supported by the data.

Practically, one can observe that with two finite samples some fraction of observations will

tend to illuminate a distributional difference more than others. At a population level, this trans-

lates to the fraction of probability mass one would need to change from P to see no difference

with Q. It is well known that this is an equivalent characterization of the total variation distance

between P and Q, see e.g. [36]. We recall that for two probability distributions P and Q on

measurable space pX,Aq the total variation (TV) distance is defined as

TVpP,Qq “ sup
APA

|PpAq ´ QpAq| .

Therefore, based on finite samples of P and Q, a finer question than “is P different from Q ?”

could be stated as “What is a probabilistic lower bound on the fraction of observations actually

supporting a difference in distribution between P and Q ?”. This would formally translate into

the construction of an estimate λ̂ satisfying

Ppλ̂ ą TVpP,Qqq ⩽ α,

for α P p0, 1q. We call such an estimate λ̂ a high-probability lower bound (HPLB) for TVpP,Qq.

An observation underlying our methodology is that uni-dimensional projections of distributions

act monotonically on the total variation distance. Namely for a given (measurable) projection

ρ : XÑ I Ď R,

TV pρ#P, ρ#Qq ⩽ TV pP,Qq , (1)

where ρ#P is the push-forward measure of P, defined as ρ#PpAq :“ Ppρ´1pAqq for a measurable

set A. The construction of an HPLB for a given projection ρ is the focus of our work. They

are used as a proxies for TV pP,Qq through (1). The gap depends on the informativeness of the

selected projection ρ about the distributional difference between P and Q. This naturally estab-

lished a link with classification and provides insights on how to look for “good projections”.

Nevertheless, the focus of the present paper is not to derive conditions on how to construct op-

timal projections ρ, but rather an analysis of the construction and properties of HPLBs for fixed

projections. As a by-product, we address an issue that seems to have gone largely unnoticed in
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True Class

0 1

0 5121 5150

1 4879 4850

True Class

0 1

0 9987 9925

1 13 75

Table 1: Confusion matrices for 2 different thresholds, t “ 0.5 (left) and t “ 0.7 (right). P-values are given as 0.65
and 9 ˆ 10´4 respectively.

the literature on classification and two-sample testing. Namely, given a function ρ : XÑ r0, 1s

estimating the probability of belonging to the first sample say, what is the “cutoff” t˚ allowing

for the best possible detection of distributional difference for the binary classifier

ρtpZq :“ ItρpZq ą tu. (2)

In line with the Bayes classifier, t˚ “ 1{2 is often used in classification tasks. However, we

show that for the detection of distributional difference, this is not always the best choice. The

next section illustrates this issue through a toy example.

1.1 Toy motivating example

As an illustrative example highlighting the importance of the choice of cutoff for a binary clas-

sifier, let us consider two probability distributions P and Q on R12 with mutually independent

margins defined as follows: P “ N12pµ,Σq where Σ “ I is the 12 ˆ 12 identity matrix and

µ “ p0, . . . , 0q and Q “ p1 ´ εqP ` εC, where C “ N12pµC,Σq, with µC “ p3, 3, 0, . . . , 0q and

ε “ 10´2. We assume to observe an iid sample X1, . . . , Xn from P and Y1, . . . ,Yn from Q. Figure

1 shows the projection of samples from P and Q on the first two components.

Consider ρ : R12 Ñ r0, 1s to be a function returning an estimate of the probability that

an observation Z belongs to the sample of Q, obtained for instance from a learning algorithm

trained on independent data. Assume we would like to test whether there is a significant differ-

ence between a sample of P and a sample from Q based on the binary classifier ρt as defined in

(2).

Table 1 (left) presents the confusion matrix obtained from a Random Forest classifier ρt

trained on n “ 101000 samples of P and Q (as defined above) with the usual cutoff of t “

0.5. Based on this matrix, one can use a permutation approach to test H0 : P “ Q. The

corresponding p-value is 0.65, showing that, despite the high sample size, the classifier is not

able to differentiate the two distributions.

However this changes if we instead use a cutoff of t “ 0.7. Using the same permutation

approach, we obtain a p-value of 9 ˆ 10´4. The corresponding confusion matrix is displayed on

Table 1 (right).
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Figure 1: Projections on first two margins of 101000 samples from P (blue) and Q (grey).

This observation supports that even though t “ 0.5 links to the optimal Bayes rate, depend-

ing on the choice of alternative (how P and Q differ), different cutoffs induce vastly different

detection powers. Put differently, t “ 0.5 is not always optimal for detecting a change in distri-

bution. In this work, we will explore why this is the case and how this impacts the construction

of HPLBs for TVpP,Qq and their (asymptotic) statistical performances. As an empirical illus-

tration, we show at the end of Section 2.3 that, for the same simulation setting, the HPLB based

on a cutoff of 0.5 will be zero, while the one that adaptively chooses the “optimal” cutoff will

be positive.

1.2 Contribution and relation to other work

Direct estimators or bounds for the total variation distance have been studied in previous work

when the distributions are assumed to be discrete or to belong to a known given class (e.g.

[174]; [149]; [80]; [41]; [95]; [130]). Our work aims at constructing lower bounds on the total

variation distance based on samples from two unknown distributions. The goal is to provide

additional information over the rejection status of classification-based two-sample tests. We

summarize our contributions as follows:

Construction of HPLBs: We provide a framework for the construction of high prob-

ability lower bounds for the total variation distance based on (potentially unbalanced)

samples and propose two estimators derived from binary classification. The first estima-

tor λ̂bayes, assumes the fixed cutoff 1{2, whereas the second one λ̂adapt, is cutoff-agnostic.

Despite the somewhat complicated nature of the latter estimator, we show that is a valid

HPLB.



Michel et al. (2020) 41

Asymptotic detection and power boundaries: We characterize power and detection

rates for the proposed estimators for local alternatives with decaying power rate

TVpρ#PN , ρ#QNq9N´γ

, ´1 ă γ ă 0, for N “ m ` n. We summarize the main result as follows: Consider the

minimal rate ´1 ă γ ă 0 for which a difference in P and Q could still be detected, if the

optimal cutoff t˚ in (2) for a given P, Q was known – this will be referred as the “oracle

rate”. The estimator λ̂adapt always attains the oracle rate, whereas λ̂bayes only attains the

oracle rate if the optimal cutoff is actually t˚ “ 1{2. We also obtain the same favorable

results for λ̂adapt when considering a sequence ρ̂N , estimated on independent data.

Application: We show the potentially use and efficacy of HPLBs on the total variation

distance in two different types of applications based on a climate reanalysis dataset.

Software: We provide implementations of the proposed estimators in the R-package

HPLB available on CRAN.

From a technical point of view, the construction of our lower bound estimators relate to the

higher-criticism literature ([43]; [44]) and is inspired by similar methodological constructions

of high-probability lower bounds in different setups (e.g. [119]; [116]; [120]). It has also some

similarities with the problem of semi-supervised learning in novelty detection ([13]).

The paper is structured as follows. Section 2 introduces the classification framework for con-

structing lower bounds on total variation distance and describes our proposed estimators. Power

and detection rates guarantees of our proposed estimators are presented in Section 3. In Section

4 we generalize our framework beyond binary classification and in Section 5 we present three

different applications of our estimators in the context of a climate dataset.

2 Theory and methodology

Let P and Q be two probability measures on X and ρ : X Ñ I be any measurable function

mapping to some subset I Ă R. If not otherwise stated, we consider I “ r0, 1s. The following

chain of inequalities for TVpP,Qq will form the starting point of our approach:

TVpP,Qq ⩾ TVpρ#P, ρ#Qq ⩾ sup
tPI

|ρ#P pp0, tsq ´ ρ#Q pp0, tsq| . (3)

For any such ρ, one can define a binary classifier ρt : X Ñ t0, 1u based on the cutoff t by

ρtpzq :“ Itρpzq ą tu. Before diving into more details, let us introduce our setup and some

necessary notation.
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Setup and notation: Where not otherwise stated, we assume to observe two independent

iid samples X1, . . . , Xm from P and Y1, . . . ,Yn from Q. We define

Zi :“

$

&

%

Xi if 1 ⩽ i ⩽ m,

Yi if m ` 1 ⩽ i ⩽ m ` n,

and attach a label ℓi :“ 0 for i “ 1, . . . ,m and ℓi :“ 1, for i “ m ` 1, . . . ,m ` n. Both m and n

are assumed to be non-random with N “ m ` n such that m{N Ñ π P p0, 1q, as N Ñ 8. For

notational convenience, we also assume that m ⩽ n. We denote by f and g the densities of P, Q

respectively.1 We define F :“ ρ#P and G :“ ρ#Q and introduce the empirical measures

F̂mptq :“
1
m

m
ÿ

i“1

ItρpXiq ⩽ tu, Ĝnptq :“
1
n

n
ÿ

j“1

ItρpY jq ⩽ tu,

of all observations tρiui“1,...,N := tρpZiqui“1,...,N . Denote by ρpzq, z P t1, . . . ,Nu, the zth order

statistic of pρiqi“1,...,N . Throughout the text, qαpp,mq is the α-quantile of a binomial distribution

with success probability p and number of trials m symbolized by Binomialpp,mq. Similarly, qα
is the α-quantile of a standard normal distribution, denoted Np0, 1q. Finally, for two functions

h1, h2 : NÑ r0,8q, the notation h1pNq — h2pNq, as N Ñ 8 means lim supNÑ8 h1pNq{h2pNq ⩽

a1 P p0,`8q and lim supNÑ8 h2pNq{h1pNq ⩽ a2 P p0,`8q. The first part of our theoretical

analysis centers around the projection ρ˚ : XÑ r0, 1s given as

ρ˚
pzq :“

gpzq

f pzq ` gpzq
. (4)

As a remark, if we put a prior probability π “ 1{2 on observing a label ℓ of 1, ρ˚ is the posterior

probability of observing a draw from Q, referred to as the Bayes probability.

We now formally state the definition of a high-probability lower bound for the total variation

distance, using the notation λ :“ TVpP,Qq from now on:

Definition 1. For a given α P p0, 1q, an estimate λ̂ “ λ̂ ppZ1, ℓ1q, . . . , pZN , ℓNqq satisfying

Ppλ̂ ą λq ⩽ α (5)

will be called high-probability lower bound (HPLB) at level α. If instead only the condition

lim sup
NÑ8

Ppλ̂ ą λq ⩽ α (6)

holds, we will refer to λ̂ as asymptotic high-probability lower bound (asymptotic HPLB) at level

α.
1Wlog, we assume that the densities exist with respect to some common dominating measure.
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Note that an estimator λ̂ depends on a function ρ. When necessary, this will be emphasized

with the notation λ̂ρ throughout the text. Whenever ρ is not explicitly mentioned it should be

understood that we consider ρ “ ρ˚.

The above definition is very broad and does not entail any informativeness of the (asymp-

totic) HPLB. For instance, λ̂ “ 0 is a valid HPLB, according to Definition 1. Consequently, for

ε P p0, 1s, we study whether for a given (asymptotic) HPLB λ̂,

Ppλ̂ ą p1 ´ εqλq Ñ 1, (Cε)

as N Ñ 8. This entails several cases: if ε “ 1, then (Cε) means the (detection) power goes to 1.

If (Cε) is true for all ε P p0, 1s, it corresponds to consistency of λ̂. One could also be interested

in a non-trivial fixed ε, i.e. in detecting a fixed proportion of λ. In order to quantify the strength

of a given (asymptotic) HPLB, we examine how fast λ may decay to zero with N, such that λ̂

still exceeds a fraction of the the true λ with high probability. More precisely, we assume that

the signal vanishes at a rate Nγ, for some ´1 ă γ ă 0, i.e. 1 ą λ :“ λN — Nγ, as N Ñ 8. If

for a given estimator λ̂, ε P p0, 1s and ´1 ⩽ γpεq ă 0, (Cε) is true for all γ ą γpεq, we write λ̂

attains the rate γpεq. To quantify the strength of an estimator λ̂, we will study the smallest such

rate γpεq it can attain for a given ε, denoted as γλ̂pεq. Formally,

Definition 2. For a given (asymptotic) HPLB λ̂ and for ε P p0, 1s, we define γλ̂pεq :“ inftγ0 P

r´1, 0q : for all γ ą γ0 and λ — Nγ, Ppλ̂ ą p1 ´ εqλq Ñ 1u.

Of course, attaining the true λ, might be unrealistic in general. In such cases it is also possi-

ble to regard λ as the total variation distance between the two distributions after the projection

through ρ, TVpρ#P, ρ#Qq, as described in more detail in Section 3.

In the following, we aim to construct informative (asymptotic) HPLBs for TVpP,Qq. To

put the previously introduced rates into perspective, we first introduce an “optimal” or oracle

rate. In Section 2.2 we introduce binary classification asymptotic HPLBs focusing on the fixed

cutoff 1{2. Section 2.3 will then introduce a more data adaptive asymptotic HPLB that indeed

considers the supremum over all available cutoffs in the sample.

2.1 Oracle rate

In light of (3) and the notation introduced in the last section, for ptNqN⩾1 Ă I a (nonrandom)

sequence of cutoffs, we define the estimator

λ̂ρptNq “ F̂mptNq ´ ĜnptNq ´ q1´ασptNq, (7)

where σptq is the theoretical standard deviation of F̂mptq ´ Ĝnptq,

σptq “

c

Fptqp1 ´ Fptqq

m
`

Gptqp1 ´ Gptqq

n
. (8)

Using (3), it can be shown that:
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Proposition 3. Let λ ą 0. For any sequence ptNqN⩾1 Ă I of cutoffs, λ̂ρptNq defined in (7) is an

asymptotic HPLB of λ (at level α) for any ρ : XÑ I.

The condition λ ą 0 arises from a technicality – for λ “ 0, one can construct a sequence ptNqN⩾1

such that the level cannot be conserved. Since λ̂ρptNq only serves as a theoretical tool, this is not

an issue. However the same problem will arise later in Section 3.2.

Naturally, the performance of λ̂ρptNq will differ depending on the choice of the sequence

ptNqN⩾1 and the choice of ρ. Ideally we would like to choose the “optimal sequence” pt˚
NqN⩾1 to

reach the lowest rate γ possible. We might even want to attain the smallest possible rate γ if we

are able to freely choose ptNqN for each given γ ą γ. This rate is technically the rate obtained

by a collection of estimators, whereby for each γ ą γ a potentially different estimator λ̂ptNpγqq

may be used. More formally, given ε P p0, 1s, let for the following the oracle rate γoraclepεq be

the smallest rate such that for all γ ą γoraclepεq there exists a sequence ptNqN⩾1 Ă I such that

(Cε) is true for λ̂ “ λ̂ρptNq. If there exists a sequence pt˚
NqN⩾1 Ă I independent of γ ą γoraclepεq,

we may define the oracle estimator

λ̂
ρ

oracle “ F̂mpt˚
Nq ´ Ĝnpt˚

Nq ´ q1´ασpt˚
Nq. (9)

In this case γoraclepεq is the smallest rate attained by λ̂ρ
˚

oracle for a given ε. Clearly, γoraclepεq

depends on ρ as well, whenever ρ “ ρ˚ in (4), the dependence on ρ is omitted.

Since pt˚
NqN⩾1 corresponds to a specific nonrandom sequence, Proposition 3 ensures that

λ̂
ρ
oracle is an asymptotic HPLB. Clearly, even if λ̂ρoracle is defined, it will not be available in

practice, as pt˚
NqN⩾1 is unknown. However, the oracle rate it attains should serve as a point of

comparison for other asymptotic HPLBs. We close this section by considering an example:

Example 1. Let P,Q be defined by P “ pN P0 ` p1 ´ pNqQ0 and Q “ p1 ´ pNqP0 ` pN Q0,

where pN P r0, 1s and P0, Q0 have a uniform distribution on r´1, 0s and r0, 1s respectively. In

this example, only pN is allowed to vary with N, while P0, Q0 stay fixed. If we assume pN ą 0.5,

λN “ 2pN ´ 1 and λ — Nγ iff pN ´ 1{2 — Nγ. Thus

Proposition 4. For the setting of Example 1, assume pN ą 0.5 for all N, and pN ´ 1{2 — Nγ.

Then γoraclepεq “ ´1{2 for all ε P p0, 1s. This rate is attained by the oracle estimator in (9)

with t˚
N “ 1{2 for all N.

2.2 Binary classification bound

Let us fix a cutoff t P r0, 1s. From the binary classifier ρtpZq “ ItρpZq ą tu we can define the

in-class accuracies as Aρ0ptq :“ PpρtpXq “ 0q and Aρ1ptq :“ QpρtpYq “ 1q. From there, relation

(3) can be written in a more intuitive form:

TVpP,Qq ⩾ sup
tPr0,1s

“

Aρ0ptq ` Aρ1ptq
‰

´ 1. (10)
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Thus, the (adjusted) maximal sum of in-class accuracies for a given classifier is still a lower

bound on λ “ TVpP,Qq. As it can be shown that the inequality in (10) is an equality for ρ “ ρ˚

and t “ 1{2, it seems sensible to build an estimator based on Aρ0p1{2q ` Aρ1p1{2q ´ 1. Define the

in-class accuracy estimators Âρ0p1{2q “ 1
m

řm
i“1p1 ´ ρ1{2pXiqq and Âρ1p1{2q “ 1

n

řn
j“1 ρ1{2pY jq. It

follows as in Proposition 3, that:

Proposition 5. λ̂ρbayes :“ Âρ0p1{2q ` Âρ1p1{2q ´ 1 ´ q1´ασ̂p1{2q with

σ̂p1{2q “

d

Âρ0p1{2qp1 ´ Âρ0p1{2qq

m
`

Âρ1p1{2qp1 ´ Âρ1p1{2qq

n
(11)

is an asymptotic HPLB of λ (at level α) for any ρ : XÑ r0, 1s.

It should be noted that if σ̂p1{2q in λ̂ρbayes is replaced by σp1{2q in (8), we obtain λ̂ρp1{2q.

Consequently, it should be the case that if t˚
N “ 1{2, the rate attained by λ̂ρbayes is the oracle rate.

We now demonstrate this in an example:

Example 2. Compare a given distribution Q with the mixture P “ p1 ´ δNqQ ` δNC, where

C serves as a “contamination” distribution and δN P p0, 1q. Then, TVpP,Qq “ δNTVpC,Qq. If

we furthermore assume that Q and C are disjoint, then TVpC,Qq “ 1 and λN “ δN . Then the

oracle rate γoraclepεq and γλ̂bayespεq coincide:

Proposition 6. For the setting of Example 2, γλ̂bayespεq “ γoraclepεq “ ´1, for all ε P p0, 1s.

Indeed, it can be shown that here λ̂ρ
˚

p1{2q gives rise to the oracle estimator in (9). It may there-

fore not be surprising that λ̂ρ
˚

bayes attains the rate γoraclepεq. A small simulation study illustrating

Proposition 6 is given in Figure 6 in 1.1.

While λ̂ρbayes is able to achieve the oracle rate in some situations, it may be improved: Taking a

cutoff of 1/2, while sensible if no prior knowledge is available, is sometimes suboptimal. This

is true, even if ρ˚ is used, as we demonstrate with the following example:

Example 3. Define P and Q by P “ p1C1 ` p1 ´ p1qp2P0 ` p1 ´ p1qp1 ´ p2qQ0 and Q “

p1C2 ` p1 ´ p1qp2Q0 ` p1 ´ p1qp1 ´ p2qP0, where C1,C2, P0,Q0 are probability measures with

disjoint support and p1, p2 P p0, 1q.

Proposition 7. For the setting of Example 3, let p2 ą 0.5, p2 “ 0.5 ` opN´1q. Then the oracle

rate is γoraclepεq “ ´1, while λ̂ρ
˚

bayes attains the rate γλ̂bayespεq “ ´1{2, for all ε P p0, 1s.

It can be shown that choosing tN “ 0 for all N, leads to the oracle rate of ´1 in this example.

This is entirely missed by λ̂ρ
˚

bayes.
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Figure 2: Illustration of Examples 1 and 3. Left: Illustration of Example 1 using pN “ 0.55. Right: Illustration of
Example 3 using p1 “ 0.1, p2 “ 0.55 and uniform distributions for C1, C2, P0 and Q0.

Importantly, λ̂ρ
˚

bayes could still attain the oracle rate in Example 3, if the cutoff of 1{2 was

adapted. In particular, using λ̂ρ
˚

bayes with the decision rule ρ˚
0 pzq “ Itρ˚pzq ą 0u would identify

only the examples drawn from C1 as belonging to class 0. This in turn, would lead to the desired

detection rate. Naturally, this cutoff requires prior knowledge about the problem at hand, which

is usually not available. In general, if ρ is any measurable function, potentially obtained by

training a classifier or regression function on independent data, a cutoff of 1/2 might be strongly

suboptimal. We thus turn our attention to an HPLB of the supremum in (3) directly.

2.3 Adaptive binary classification bound

In light of relation (3), we aim to directly account for the randomness of suptpF̂mptq ´ Ĝnptqq “

supzpF̂mpρpzqq ´ Ĝnpρpzqqq. We follow [52] and define the counting function Vm,z “ mF̂mpρpzqq

for each z P Jm,n :“ t1, . . . ,m ` n ´ 1u. Using mF̂mpρpzqq ` nĜnpρpzqq “ z, it is possible to write:

F̂mpρpzqq ´ Ĝnpρpzqq “
m ` n

mn

ˆ

Vm,z ´
mz

m ` n

˙

. (12)

A well-know fact (see e.g., [52]) is that under H0 : F “ G, Vm,z is a hypergeometric ran-

dom variable, obtained by drawing without replacement z times from an urn that contains m

circles and n squares and counting the number of circles drawn. We denote this as Vm,z „

Hypergeometricpz,m ` n,mq and simply refer to the resulting process z ÞÑ Vm,z as the hyperge-

ometric process. Though the distribution of Vm,z under a general alternative is not known, we

will now demonstrate that one can nonetheless control its behavior, at least asymptotically. We

start with the following definition, inspired by [119]:

Definition 8 (Bounding function). A function Jm,n ˆ r0, 1s Q pz, λ̃q ÞÑ Qm,n,αpz, λ̃q is called a

bounding function at level α if

Pp sup
zPJm,n

rVm,z ´ Qm,n,αpz, λqs ą 0q ⩽ α. (13)
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It will be called an asymptotic bounding function at level α if instead

lim sup
NÑ8

Pp sup
zPJm,n

rVm,z ´ Qm,n,αpz, λqs ą 0q ⩽ α. (14)

In other words, for the true value λ, Qm,n,αpz, λq provides an (asymptotic) type 1 error control

for the process z ÞÑ Vm,z (often the dependence on α will be ommited). For λ “ 0 the theory in

[52] shows that such an asymptotic bounding function is given by

Qm,n,αpz, λ̃q “ Qm,n,αpz, 0q “
zm

m ` n
` βα,mw pz,m, nq ,

with

w pz,m, nq “

c

m
N

n
N

N ´ z
N ´ 1

z. (15)

Assuming access to a bounding function, we can define the estimator presented in Proposi-

tion 9.

Proposition 9. Let Qm,n,α be an (asymptotic) bounding function and define,

λ̂ρ “ inf

#

λ̃ P r0, 1s : sup
zPJm,n

“

Vm,z ´ Qm,n,αpz, λ̃q
‰

⩽ 0

+

. (16)

Then λ̂ρ is an (asymptotic) HPLB of λ (at level α) for any ρ : XÑ I.

The proof of Proposition 9 is given in 3.1.

Since we do not know the true λ, the main challenge in the following is to find bounding

functions that would be valid for any potential λ ⩾ 0. We now introduce a particular type of

such a bounding function. With λ̃ P r0, 1s, α P p0, 1q, mpλ̃q “ m ´ q1´ α3
pλ̃,mq, and npλ̃q “

n ´ q1´ α3
pλ̃, nq, we define

Qm,n,αpz, λ̃q “

$

’

’

’

&

’

’

’

%

z, if 1 ⩽ z ⩽ q1´ α3
pλ̃,mq

m, if m ` npλ̃q ⩽ z ⩽ m ` n

q1´ α3
pλ̃,mq ` sqα{3

`

Ṽmpλ̃q,z, z P t1, . . . ,mpλ̃q ` npλ̃q ´ 1u
˘

, otherwise

(17)

where Ṽm,z denotes the counting function of a hypergeometric process and sqα
`

Ṽm,z, z P J
˘

is a

simultaneous confidence band, such that

lim sup
NÑ8

P

ˆ

sup
zPJ

“

Ṽm,z ´ sqα
`

Ṽm,z, z P J
˘‰

ą 0
˙

⩽ α. (18)

Note that Equation (18) includes the case P
`

supzPJ

“

Ṽm,z ´ sqα
`

Ṽm,z, z P J
˘‰

ą 0
˘

⩽ α for all

N. Depending on which condition is true, we obtain a bounding function or an asymptotic

bounding function:



48 Paper A

Proposition 10. Qm,n,α as defined in (17) is an (asymptotic) bounding function.

The proof of Proposition 10 is given in 3.1.

A valid analytical expression for sqα{3

`

Ṽmpλ̃q,z, z P t1, . . . ,mpλ̃q ` npλ̃q ´ 1u
˘

in (17) based

on the theory in [52] is given in Equation (28) of 2. We will denote the asymptotic bounding

function when combining (17) with (28) by QA. The asymptotic HPLB that arises from (16)

with projection ρ and bounding function QA will be referred to as λ̂ρadapt. Alternatively, we

may choose sqα{3

`

Ṽmpλ̃q,z, z P t1, . . . ,mpλ̃q ` npλ̃q ´ 1u
˘

by simply simulating S times from

the process Ṽmpλ̃q,z, z “ 1, . . . ,mpλ̃q ` npλ̃q. For S Ñ 8, condition (18) then clearly holds true.

This is especially important, for smaller sample sizes, where the (asymptotic) QA could be a

potentially bad approximation.

We close this section by considering once again the introductory example in Section 1.1.

Our two proposed estimators applied to this example give λ̂ρbayes “ 0 and λ̂ρadapt “ 0.0022.

Thus, as one would expect from the permutation test results, λ̂ρadapt is able to detect a difference,

whereas λ̂ρbayes is not. While it is difficult in this case to determine the true λ, we can show for

another example, that λ̂ρ
˚

adapt attains the rate λ̂ρ
˚

bayes could not:

Proposition 11. Let P,Q be defined as in Example 3 with p2 ą 0.5, p2 “ 0.5 ` opN´1q. Then

γλ̂adaptpεq “ γoraclepεq “ ´1, independent of ε.

A small simulation study illustrating Propositions 7 and 11 is given in Figure 6 in 1.1. In the

next section, we generalize the results in Examples 2 and 3 and show that λ̂ρadapt always attains

the oracle rate.

3 Theoretical guarantees

This section studies some of the theoretical properties of our proposed lower-bounds. We start

in Section 3.1 by assuming access to the “ideal” classifier ρ˚ and show that in this case, the λ̂ρ
˚

adapt

can asymptotically detect a nonzero TV with a better rate than λ̂ρ
˚

bayes. More generally, our main

results in Proposition 12 and 14 show that λ̂ρ
˚

adapt achieves the same asymptotic performance as

λ̂ρ
˚

, which is free to “choose” a sequence of cutoffs ptNqN . Though we use ρ˚ for simplicity, all

of the results in this section also hold true for any arbitrary (fixed) ρ : X Ñ r0, 1s, and also if

we replace λ by the TV distance on the projection,

λpρq “ sup
tPr0,1s

“

Aρ0ptq ` Aρ1ptq
‰

´ 1 :“ sup
tPr0,1s

rPpρpXq ⩽ tq ´ QpρpYq ⩽ tqs (19)

such that λ :“ λpρ˚q “ TVpP,Qq.

Section 3.2 then extends the main result of Section 3.1 from ρ˚ to a sequence ρ̂ “ ρ̂N ,

estimated on independent training data, showing that λ̂ρ̂adapt and λ̂ρ̂ have the same asymptotic
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detection power. Finally, we discuss sufficient conditions for the consistency of λ̂ρ̂adapt. We

restrict to I “ r0, 1s throughout this section.

3.1 Using ρ˚

We start by studying the asymptotic properties of the proposed asymptotic HPLB estimators,

assuming access to ρ˚ in (4). Recall that for a fixed ε P p0, 1s, γoraclepεq was defined as the

minimal rate such that for all γ ą γoraclepεq there exists a sequence ptNqN⩾1 Ă I such that (Cε),

i.e.

Ppλ̂ ą p1 ´ εqλq Ñ 1,

is true for λ̂ “ λ̂ρ
˚

ptNq. Consider for ε P p0, 1s the following conditions on ptNqN⩾1:

lim inf
NÑ8

λptNq

λN
⩾ 1 ´ ε, (20)

and

lim
N

λN

σptNq
“ 8, if lim inf

NÑ8

λptNq

λN
ą 1 ´ ε, (21a)

lim
N

λN

σptNq

ˆ

λptNq

λN
´ p1 ´ εq

˙

“ 8, if lim inf
NÑ8

λptNq

λN
“ 1 ´ ε, (21b)

where λptNq :“ FptNq ´ GptNq and σptq is defined as in (8). We then refer to Condition (21), iff

(21a) and (21b) are true:

(21a) and (21b) hold. (21)

We now redefine γoraclepεq as the smallest element of r0, 1s with the property that for all γ ą

γoraclepεq there exists a sequence ptNqN⩾1 Ă I such that (20) and (21) are true. Intuitively,

this means that a given rate is achieved for ptNqN⩾1 if either FptNq ´ GptNq is strictly larger

than p1 ´ εqλN and the variance decreases fast relative to λN (Condition (20) and (21a)), or

FptNq ´ GptNq is exactly equal to p1 ´ εqλN in the limit, which needs to be balanced by an even

faster decrease in the variance σptNq (Condition (20) and (21b)). As a side remark, (21b) is

problematic for ε “ 1, if σptNq “ 0 for infinitely many N. In this case, it should be understood

that (21b) is taken to be false.

The following proposition confirms that the two definitions of γoraclepεq coincide:

Proposition 12. Let ´1 ă γ ă 0 and ε P p0, 1s fixed. Then there exists a ptNqN⩾1 such that (Cε)

is true for λ̂ρ
˚

ptNq iff there exists a ptNqN⩾1 such that (20) and (21) are true.

If we consider a classifier with cutoff t P I, ρtpzq “ Itρpzq ą tu and, as in Section 2.2, define

in-class accuracies A0ptq :“ Aρ
˚

0 ptq, A1ptq :“ Aρ
˚

1 ptq, we may rewrite σptq in a convenient form

σptq “

c

A0ptqp1 ´ A0ptqq

m
`

A1ptqp1 ´ A1ptqq

n
. (22)
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Since
?

NλN does not go to infinity for γ ⩽ ´1{2, the divergence of the ratio in (21) is only

achieved, if both A0ptNqp1 ´ A0ptNqq and A1ptNqp1 ´ A1ptNqq go to zero sufficiently fast. In our

context, this is often more convenient to verify directly.

The binary classification estimator λ̂ρ
˚

bayes takes tN “ 1{2 and, since Fp1{2q ´ Gtp1{2q “ λN ,

(20) is true for any ε. Thus a given rate γ is achieved iff (21) is true for tN “ 1{2. This is stated

formally in the following corollary:

Corollary 13. λ̂ρ
˚

bayes attains the rate γλ̂bayespεq “ γ for all ε P p0, 1s, iff (21) is true for tN “ 1{2

and all γ ą γ.

The proof is a direct consequence of Proposition 12 and is given in 3. We thus write γλ̂bayes

instead of γλ̂bayespεq. It should be noted (21) is always true for γ ą ´1{2. As such, γλ̂bayes ⩾ ´1{2

and only the case of γ ă ´1{2 is interesting in Corollary 13.

Finally, the adaptive binary classification estimator λ̂ρ
˚

adapt always reaches at least the rate

γ “ ´1{2. In fact, it turns out that it attains the oracle rate:

Proposition 14. Let ´1 ă γ ă 0 and ε P p0, 1s fixed. Then (Cε) is true for λ̂ρ
˚

adapt iff there exists

a ptNqN⩾1 such that (20) and (21) are true.

This immediately implies:

Corollary 15. For all ε P p0, 1s, γoraclepεq “ γλ̂adaptpεq.

The next section shows that this result can be generalized to ρ̂ estimated from independent

data.

3.2 Estimated ρ

In this section we assume that ρ̂ is a “probability function” in r0, 1s, estimated from data. In

that case sample-splitting should be used, i.e. the function ρ̂ is estimated independently on a

training set using a learning algorithm which is then used to compute an (asymptotic) HPLB

based on an independent test set. Sample-splitting is important to avoid spurious correlation

between ρ and the (asymptotic) HPLB, not supported by our theory. Formally we assume,

(E1) ρ̂ “ ρ̂Ntr is trained on a sample of size Ntr, pZ1, ℓ1q, . . . , pZNtr , ℓNtr q, and evaluated on an

independent sample pZ1, ℓ1q, . . . , pZNte , ℓNteq, with Ntr ` Nte “ N,

(E2) Nte,Ntr Ñ 8, as N Ñ 8, with mte{Nte Ñ π P p0, 1q,

where as before m j denotes the number of draws from P (with label 0) and n j the number of

draws from Q (with label 1), for j P tte, tru.
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In practice, most probability estimates try to approximate the Bayes probability (see e.g.,

[40]):

ρB
pzq “

p1 ´ πqgpzq

π f pzq ` p1 ´ πqgpzq
, (23)

with Bayes classifier ρB
1{2pzq “ ItρBpzq ą 1{2u. It is the classifier resulting in the maximal

overall accuracy, denoted the Bayes accuracy: πAρ
B

0 p1{2q ` p1 ´ πqAρ
B

1 p1{2q. Clearly, ρB “ ρ˚

for π “ 1{2. More generally, it can be shown that ρB
1´πpzq “ ρ˚

1{2pzq.

Let as before, λ̂ρ̂adapt be the estimator obtained when using ρ̂ and λpρ̂q be defined as in (19) for

ρ “ ρ̂. Similarly, for a sequence ptNqN⩾1 Ă I, we define λ̂ρ̂ptNq to be the theoretical estimator (7)

using ρ̂. Conditioning on the training data through ρ̂, allows for a generalization of the theory

in Section 3.1 to estimated ρ.

The first step, is to extend the theory in Section 3.1 to the case of arbitrary (nonrandom)

sequences pρNqN⩾1. While the proofs of the results in Section 3.1 are applicable almost one-to-

one in this case, there is one issue arising from the estimator λ̂ρbayes. We exemplify this in the

following:

Example 4. Assume both X1, . . . , Xn, Y1, . . . ,Yn uniform on r0, 1s and ρN such that for some

C ą 0,

ρN,1{2pZq “

$

&

%

0, if Z P r0,C{ns

1, else

Then:

Proposition 16. For the setting of Example 4, let ξ1, ξ2 be independently Poisson distributed,

with mean C. Then

Ppλ̂ρN p1{2q ą 0q Ñ Ppξ1 ´ ξ2 ą q1´α

?
2Cq.

It can be shown numerically that Ppξ1 ´ ξ2 ą q1´α

?
2Cq ą 1 ´ α, for some C. Thus,

λ̂ρN p1{2q is not a valid asymptotic HPLB.

The case above appears rather exotic, and might not be realistic. What is more, we used

λ̂ρN p1{2q in the above example, with the true variance included, instead of λ̂ρN
bayes. In this case,

the accuracies AρN
0 p1{2q, AρN

1 p1{2q cannot even be estimated reliably, so it is not clear what

exactly will happen if σp1{2q is estimated. However none of these problems are of concern for

λ̂
ρ̂
adapt, which conserves the level in any case:

Proposition 17. Assume (E1) and (E2). Then λ̂ρ̂adapt is an (asymptotic) HPLB of λ (at level α).

Thus, we will focus in this section only on the adaptive estimator. We first generalize Propo-

sitions 12 and 14 to this case.
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Proposition 18. Let ´1 ă γ ⩽ 0 and ε1 P p0, 1s fixed. Assume that λN “ Nγte and that (E1) and

(E2) hold. Then the following is equivalent

(i) there exists a sequence ptNteqNte⩾1 such that (Cε) is true for λ̂ρ̂ptNteq,

(ii) (Cε) is true for λ̂ρ̂adapt.

The main message of Proposition 18 is that for ρ̂ estimated on independent training data,

λ̂
ρ̂
adapt still has the same asymptotic performance as an estimator that is free to choose its cutoff

for any given sample size. And this holds despite the fact that even for λ “ 0, λ̂ρ̂adapt is a valid

HPLB, which is not clear for λ̂ρ̂ptNq, as seen in Example 4.

In practice, one might be more interested under what conditions λ̂ρ̂adapt is consistent for

a fixed λ. To answer this question, we first restate consistency for a sequence of classifiers,

assuming λ does not change:

Definition 19. A sequence of classifiers ρ̂N,tN “ ρ̂tN , N P N, is consistent, if

Aρ̂N
0 ptNq ` Aρ̂N

1 ptNq
p

Ñ Aρ
˚

0 p1{2q ` Aρ
˚

1 p1{2q.

This is the standard definition of consistency, see e.g., [40, Definition 6.1], with two small

modifications: We consider accuracies instead of classification errors and instead of the Bayes

accuracy in the limit, we consider the equally weighted accuracy of ρ˚. As such the definition

is a special case of the Ψ-consistency of [129].

A simple consequence of Proposition 18 is that a classifier that is consistent for the equally

weighted sum of in-class errors, also leads to a consistent estimate of λ.

Corollary 20. Assume that λ is fixed and that there exists a sequence ptNtr q, such that the se-

quence of classifiers ρ̂Ntr ,tNtr
is consistent. Then (Cε) is true for λ̂ρ̂adapt, for all ε ą 0.

In essence, for a given sequence of estimated ρ̂, it is enough that there exists a sequence of

cutoffs leading to a consistent classifier, for λ̂adapt to be consistent. As is well-known (see e.g.,

[40] and [129]),

Lemma 7.1. Assume that mtr{Ntr Ñ π P p0, 1q and that

Er|ρ̂Ntr ´ ρB
| | ρ̂Ntr s

p
Ñ 0. (24)

Then ρ̂Ntr ,tNtr
is consistent for tNtr “ mtr{Ntr.

This is a relatively straightforward sufficient condition for the consistency of λ̂ρ̂adapt. We

would like to note however that, as shown in [40] for the Bayes classifier, (24) usually is much

stronger than consistency of the classifier in Definition 19.

We close this section with two examples:
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Example 5. Assume access to the Bayes classifier ρB and π , 1{2. In this case, [68] showed

that no test based on ρB
1{2 has power higher than its level. In our case, this translate to an

inconsistent estimate of λρ
B

bayes. On the other hand, it is well-known that

Aρ
B

0 p1 ´ πq ` Aρ
B

1 p1 ´ πq “ Aρ
˚

0 p1{2q ` Aρ
˚

1 p1{2q,

so the cutoff of 1 ´ π fixes the issue and indeed leads to both a consistent estimate and a

consistent test.

Example 6. Combining the arguments in [11, Theorem 3.1] and [40], if X, Y are supported

on r0, 1sd and ρ̂ is a Random Forest using random splitting, then (24) holds. For an adapted

version of this Random Forest, the result can also be extended to distributions of X, Y on Rd,

see [11, Theorem 3.2].

Of course, as before, even if ρ̂ is not consistent, we might still be able to detect a signal,

giving us an indication of the strength of difference between two distributions. That is, the

result of Proposition 18 and Corollary 20 hold more generally, as long as λpρ̂q converges in

probability to some λpρq ⩽ λ, which may again be seen as the total variation distance on the

projected space. In the next section, we move on from the question of consistency and study

how one might find a ρ in practice in a more general framework.

4 Practical considerations

In this section we put the methodology introduced in Section 2 in practical perspectives. We first

generalize our setting to allow for more flexible projections: Let P “ tPt , t P Iu be a family

of probability measures defined on a measurable space pX,Aq indexed by a totally ordered set
pI,ĺq. We further assume to have a probability measure µ on I and independent observations

T “ tpzi, tiqu
N
i“1 such that zi „ Pti conditionally on ti P I drawn from µ, for 1 ⩽ i ⩽ N. Given

s P I, and a function ρ : X Ñ I, we define two empirical distributions denoted F̂m,s and Ĝn,s

obtained from “cutting” the set of observations T at s. Namely if we assume that out of the

N “ m ` n observations, m of them have their index ti smaller or equal to s and n strictly above,

we have for y P I

F̂m,spyq “
1
m

N
ÿ

i“1

1tρpziq ⩽ y, ti ⩽ su, and Ĝn,spyq “
1
n

N
ÿ

i“1

1tρpziq ⩽ y, ti ą su.

These empirical distributions correspond to the population mixtures Fs9
ş

t⩽s ρ#Pt dµptq and

Gs9
ş

tąs ρ#Pt dµptq. We will similarly denote the measures associated to Fs and Gs as Ps

and Qs respectively and will use the two notations interchangeably. Note that we assumed

m, n deterministic so far, which changes in the above framework, where m „ Binpπ,Nq, with
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π :“ PpT ⩽ sq. Still, with a conditioning argument, one can show that, whenever the level is

guaranteed for nonrandom m, n, it will also be once m, n are random.

The question remains how to find a good ρ in practice. As our problems are framed as a

split in the ordered elements of I, it always holds that one sample is associated with higher t P I

than the other. Consequently, we have power as soon as we find a ρ : X Ñ I that mirrors the

relationship between T and ZT . It therefore makes sense to frame the problem of finding ρ as

a loss minimization, where we try to minimize the loss of predicting T P I from Z P X: For a

given split point s, consider ρs that solves

ρs :“ arg min
hPF

ErLsphpZq,T qs, (25)

where F is a collection of functions h : X Ñ I and Ls : I ˆ I Ñ R` is some loss function.

As before, we assume to have densities fs, gs, for Ps, Qs respectively. For simplicity, we also

assume that time is uniform on I “ r0, 1s. As it is well-known, taking F to be all measurable

functions h : XÑ I and Lp f pzq, tq “
`

f pzq ´ Ips,1sptq
˘2, we obtain the supremum as

ρ1,spzq :“ ErIps,1spT q|zs “
p1 ´ sqgspzq

s fspzq ` p1 ´ sqgspzq
, (26)

which is simply the Bayes probability in (4). Taking instead Lp f pzq, tq “ p f pzq ´ tq2, yields

ErT |Zs. Some simple algebra shows that if there is only one point of change s˚, i.e. T is

independent of Z conditional on the event T ⩽ s˚ or T ą s˚, ErT | zs can be expressed as:

ρ2,s˚pzq “
1
2

ps˚
` ρ1,s˚pzqq , (27)

which is a shifted version of ρ1,s˚pzq. Contrary to ρ1,s, the regression version ρ2,s˚ does not

depend on the actual split point s we are considering.

In Section 5 we try to approximate (26) and (27) by using the Random Forest of [15]. That

is, the function ρ is fitted on a training set using a learning algorithm which is then used to

compute an (asymptotic) HPLB based on an independent test set, as in Section 3.2.

5 Numerical examples

Distributional change detection in climate is a topic of active research (see e.g. [158] and

the references therein). We will demonstrate the estimator λ̂adapt in three applications using

the NCEP Reanalysis 2 data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado,

USA, from their website at https://www.esrl.noaa.gov/psd/. The analyses were run us-

ing the R-package HPLB (see https://github.com/lorismichel/HPLB). We mention that

the estimator λ̂bayes gives comparable results and is ommited here. This dataset is a worldwide

reanalysis containing daily observations of the 4 variables:

https://www.esrl.noaa.gov/psd/
https://github.com/lorismichel/HPLB
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Figure 3: Temperature, pressure, precipitation and humidity at geo-coordinates (-45,-8) (Brazil) over the time
period ranging from 1979 to 2019 (on the left). Corresponding differenced series (on the right). The vertical
dashed blue lines are the breaks used in analysis (B).

- air temperature (air): daily average of temperature at 2 meters above ground, measured

in degree Kelvin;

- pressure (press): daily average of pressure above sea level, measured in Pascal;

- precipitation (prec): daily average of precipitation at surface, measured in kg per m2 per

second;

- humidity (hum): daily average of specific humidity, measured in proportion by kg of air;

over a time span from 1st of January 1979 to 31th January 2019. Each variable is ranging not

only over time, but also over 21592 locations worldwide, indexed by longitude and latitude co-

ordinates, as (longitude, latitude). All variables are first-differenced to reduce dependency and

seasonal effects before running the analyses. Figure 3 displayed the 4 time series corresponding

to the geo-coordinates (-45,-8) (Brazil).

The potential changes in distribution present in this dataset could require a refined analysis

and simple investigation for mean and/or variance shift might not be enough. Moreover, detect-

ing “small” changes, as λ̂adapt is designed to do, could be of interest. In addition, thanks to the

equivalent characterization of TV explained in Section 1, λ̂adapt represents the minimal percent-

age of days on which the distribution of the considered variables has changed. We present 2

types of analyses to illustrate the use of the (asymptotic) HPLBs introduced in this paper:

(A) temporal climatic change-map: a study of the change of climatic signals between two

periods of time (1st of January 1979 to 15th of January 1999 against 16th of January 1999

to 31th January 2019) across all 21592 locations.
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(B) fixed-location change detection: a study of the change of climatic signals over several

time points for a fixed location.

For analysis (A), compare the first half (years 1979-1999) of the data with the second half

(years 1999-2019) over all available locations. That is Ps corresponds to the distribution of

the first half of the (differenced) data, while Qs corresponds to the second. The projection ρ is

chosen to be a Random Forest classification. To this end, sample-splitting is applied and the

available time-span is equally divided into 4 consecutive time blocks, of which the middle two

are used as a training set, while the remaining two are used as a test set. The goal is thereby,

as with differencing, to reduce the dependence between observations due to the time-structure

of the series. Figure 4 shows the results as a world heatmap. Interestingly, there is an area of

very-high estimated TV values in the pacific ocean off the cost of South America. The water

temperature in this area is indicative of El Niño.

Analysis (B) illustrates the mixture framework introduced in Section 4 in a time series con-

text where the ordering is given by time. We analyse the change in distribution for the four

climatic variables for 3 split points chosen uniformly over the time span. The location is thereby

fixed to the coordinates (-45,-8) chosen from the analysis in (A). At each split point s, the dis-

tribution of the observations with time points below s is compared to the future observations.

In the context of Section 4, a regression model predicting time is an option to quickly evaluate

λ̂
ρ
adapt for several different splits. This corresponds to taking the squared error loss in Section

4. Here a Random Forest regression is used to predict time from the four variables. Each data

point within a period defined by two splits is allocated into two sets (train and test) as follows:

the first and last quartiles of the period are allocated to the training set, the rest (i.e. the mid-

dle part) is allocated to the testing set. Single splits through time can be then readily analyzed

using λ̂adapt on the test data. In addition to the analysis with real data here, 1.2 shows some

simulations results.

Figure 5 summarizes the result of the analysis with split points s considered marked in

Figure 3 by blue breaks: While Figure 3 indicates that some change might be expected even after

differencing, this impression is only confirmed for precipitation in Figure 5. This hints at the fact

that a shift is appearing in precipitation while for the other variables no change can marginally

be detected. More interesting change is detectable once all 4 variables are considered jointly.

This is illustrated on the right in Figure 5, where the estimated TV climbs to a (relatively) high

value of around 0.14 between 1995 and and 2000. This corresponds to the high signal observed

in Figure 4 for these coordinates, only that here, the regression approach leads to a slightly

lower λ̂adapt.
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Figure 5: Top rows: High-probability lower bounds on total variation corresponding to 8 breaks for differenced
temperature, pressure, precipitation and humidity. On the left the marginal analysis, on the right the joint analysis.
Bottom row: Corresponding analysis of marginal density estimates and pair plots.

6 Discussion

We proposed in this paper two probabilistic lower bounds on the total variation distance between

two distributions based on a one-dimensional projection. We theoretically characterized power

rates given a sequence of (potentially random) projections ρN and showed that the adaptive

estimator always reaches the best possible rate. Application to a climate reanalysis dataset

showcased potential use of these estimators in practice.
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1 Simulations

1.1 Illustration of Results in Examples 2 and 3

1.2 Change Detection

We illustrate the change detection described in Section 5 in some simple simulation settings.

As in Section 4 we study independent random variables Xt, t P I, with each Xt „ Pt and µ being

the distribution of T on I. In all examples, we take µ to be the uniform distribution on p0, 1q and

1) simulate independently first t from µ and then Xt from Pt to obtain a training and test set,

each of size n “ 101000,

2) train a Random Forest Regression predicting t from Xt on the training data, resulting in

the projection ρ,

3) given ρ, evaluate λ̂adapt on the test data for 19 s ranging from 0.05 to 0.95 in steps of 0.05.

The first simulation considers 3 settings with univariate random variables Xt:

(a) A mean-shift, with Xt „ Np0, 1q for 0 ⩽ t ⩽ 1{2, Xt „ Np1, 1q for 1{3 ă t ⩽ 2{3 and

Xt „ Np2, 1q for 2{3 ă t ⩽ 1.

(b) A variance shift, with Xt „ Np0, 1q for 0 ⩽ t ⩽ 1{2, Xt „ Np0, 2q for 1{3 ă t ⩽ 2{3 and

Xt „ Np0, 3q for 2{3 ă t ⩽ 1.

(c) A continuous mean-shift, with Xt „ Np2t, 1q.

Results are given in Figure 8.

The second simulation illustrates a covariance change in a bivariate example: For t ⩽ 0.5,

Xt “ pXt,1, Xt,2q „ Np0,Σ0q, while for t ą 0.5, Xt “ pXt,1, Xt,2q „ Np0,Σ1q, with

Σ0 “

˜

1 0.5

0.5 1

¸

and Σ1 “

˜

1 ´0.5

´0.5 1

¸

.

The upper and middle part of Figure 9 plots the marginal distributions Xt,i against t. In all

T “ 1000 cases, λρadapt (correctly) does not identify any changes in the two marginals. The

change is however visible when considering the two variables jointly.
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Figure 6: Illustration of Proposition 6 in Example 2. For a range of different γ, ´γ ¨ logpNq is plotted against
N. For each pγ,Nq combination and for 100 repetitions, data was generated from the distribution in Example
2. The dots indicate the number of times the estimator was strictly larger than zero, with points ranging from
white (constituting values smaller 0.05) to black (constituting a value of 1). The red line shows a slope of -1 for
comparison.
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Figure 7: Illustration of Propositions 7 and 11 of Example 3. For a range of different γ, ´γ¨logpNq is plotted against
N. For each pγ,Nq combination and for 100 repetitions, data was generated from the distribution in Example 3.
The dots indicate the number of times the estimator was strictly larger than zero, with points ranging from white
(constituting values smaller 0.05) to black (constituting a value of 1). The red and blue lines show slopes of -1 and
-1/2 for comparison.

Figure 8: Top row: 3 regimes of mean-shifts. Middle row: 3 regimes of increasing variance, Bottom row: contin-
uous mean-shift
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Figure 9: Top and middle row: marginal distributions; Bottom row: joint distribution.

2 Analytical bounding function

Here we give an analytical expression for sqα{3

`

Ṽmpλ̃q,z, z “ 1, . . . ,mpλ̃q ` npλ̃q ´ 1
˘

in (17)

based on the theory in [52]:

Corollary 21. The following is a valid simultaneous confidence band in (17):

sqα{3

`

Ṽmpλ̃q,z, z “ 1, . . . ,mpλ̃q ` npλ̃q ´ 1
˘

“ pz ´ q1´ α3
pλ̃,mqq

mpλ̃q

mpλ̃q ` npλ̃q
`

βα{3,mpλ̃qw
`

z ´ q1´ α3
pλ̃,mq,mpλ̃q,mpλ̃q

˘

, (28)

with

βα,mpλ̃q “

b

2 logplogpmpλ̃qqq `
logplogplogpmpλ̃qqqq ´ logpπq ` 2xα{3

2
b

2 logplogpmpλ̃qqq

,

and wpz,m, nq defined as in (15).

Proof Applying Lemma .2 with p “ 1 and pε :“ λ, mpλq, npλq go to infinity as m, n Ñ 8.

Moreover, since we assume m{N Ñ π ⩽ 1{2, it holds that

lim
NÑ8

mpλq

npλq
“
π

1 ´ π
⩽ 1.

Thus for all but finitely many N, it holds that mpλq ⩽ npλq. Combining this together with the

fact that Ṽm,z´q1´ α3
pλ,mq ´ Qm,n,αpz, λq, z P J̃m,n,λ, is just a hypergeometric process adjusted by the
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correct mean and variance, it follows from the arguments in [52]:

lim sup
NÑ8

P
´

sup
zPJ̃m,n,λ

”

Ṽm,z´pq1´ α3
pλ,mqq ´ pz ´ q1´ α3

pλ,mqq
mpλq

mpλq ` npλq

´ βα{3,mpλqw
`

z ´ q1´ α3
pλ,mq,mpλq, npλq

˘

ı

ą 0
¯

⩽
α

3
.

Thus (33) indeed holds.

3 Proofs

Here we present the proofs of our main results. We start with a few preliminaries: In Section 2,

we defined for two functions h1, h2 : N Ñ r0,`8q, the notation h1pNq — h2pNq to mean that

both (1) lim supNÑ8 h1pNq{h2pNq ⩽ a1, for some a1 P R` and (2) lim supNÑ8 h2pNq{h1pNq ⩽

a2, for some a2 P R`. If instead only (1) is known, we write h1pNq “ Oph2pNqq (translated as

“asymptotically larger equal”). If (1) is known to hold for a1 “ 0, we write h1pNq “ oph2pNqq

(translated as “asymptotically strictly smaller”).

The technical lemmas of Section 3.3 should serve as a basis for the results in Section 3.1

to 3.2. They ensure that we may focus on the most convenient case, when ptNqN⩾1 is such that

NσptNq Ñ 8 (Lemma .4) or mσF Ñ 8 (Lemma .6) holds. For these sequences, Lemma .3

shows that,
F̂mptNq ´ ĜnptNq ´ pFptNq ´ GptNqq

σptNq

D
Ñ Np0, 1q, for N Ñ 8. (29)

We will now summarize the main proof ideas for the most important results. For Proposi-

tions 3 and 12, providing the level and power of λ̂ptNq respectively, we use Lemma .3 and .4 to

obtain (29). From this, Proposition 3 directly follows. It moreover implies that Proposition 12

holds iff
λNrp1 ´ εq ´ λptNq{λNs

σptNq
Ñ ´8 ðñ (20) and (21).

This is simple, as both (20) and (21) were designed such that this equivalence holds.

We start in a similar manner to obtain the power result for λ̂adapt in Proposition 14. We first

restate the bounding function QA, for zptq P tq1´αpλ̃,mq, . . . ,m ` npλ̃qu,

Qm,n,αpzptq, λ̃q “ q1´ α3
pλ̃,mq

npλ̃q

Npλ̃q
` zptq

mpλ̃q

Npλ̃q
` β α

3 ,mpλ̃q

d

mpλ̃q

Npλ̃q

npλ̃q

Npλ̃q

Npλ̃q ´ zptq
Npλ̃q ´ 1

pzptq ´ q1´ α3
pλ̃,mqq,

(30)

with Npλ̃q “ mpλ̃q ` npλ̃q. Lemma .6 ensures that we may focus on the case mσF Ñ 8. This

immediately implies pVm,tN ´ mA0ptNqq{σF
D

Ñ Np0, 1q due to the Lindeberg-Feller CLT (see
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e.g., [177, Chapter 2]). Using Lemma .5 we show that what we would like to prove,

PpVm,tN ą Qm,n,αpzptNq, λ̃q @λ̃ P r0, λεsq Ñ 1 ðñ (20) and (21),

can be replaced by the much simpler

PpVm,tN ą Q̃pεqq Ñ 1 ðñ (20) and (21),

where

Q̃pλ̃q “ mλ̃p1 ´ πq ` mrπA0ptNq ´ p1 ´ πqA1ptNq ` p1 ´ πqs,

can be seen as the “limit” of an appropriately scaled Qm,n,αpzptNq, λ̃q. Using the structure of

the problem and the asymptotic normality of pVm,tN ´ mA0ptNqq{σF , we show that the result

simplifies to showing that

λNrp1 ´ εq ´ λptNq{λNs

σptNq
Ñ ´8 ðñ (20) and (21), (31)

which was already done in Proposition 12.

On the other hand, to prove that λ̂adapt is an asymptotic HPLB, we need to prove Propositions

9 and 10. The former is immediate with an infimum argument, whereas the latter requires some

additional concepts. In particular, we use the bounding operation described in Lemma .7 to

bound the original Vm,z process pointwise for each z by the well behaved V̄m,z. The randomness

of this process is essentially the one of the hypergeometric process Ṽmpλ̃q,z, z “ 1, . . . ,mpλ̃q `

npλ̃q ´ 1, as introduced in Section 2.3. The assumptions put on the bounding function Q, then

ensure that we conserve the level.

The next three Section will provide the proofs of the main results, while Section 3.3 collects

the aforementioned technical lemmas.

3.1 Proofs for Section 2

In this section, we prove the main results of Section 2, except for Propositions 4, 6, 7 and 11

connected to Examples 2 and 3. Their proofs will be given in Section 3.2.

Proposition 3. Let λ ą 0. For any sequence ptNqN⩾1 Ă I of cutoffs, λ̂ρptNq defined in (7) is an

asymptotic HPLB of λ (at level α) for any ρ : XÑ I.

Proof From Lemma .4 (III) in Section 3.3, we may assume that for the given pP,Q, ptNqN⩾1, ρq,

NσptNq Ñ `8, as N Ñ 8. In this case, we know from Lemma .3 that,

F̂mptNq ´ ĜnptNq ´ pFptNq ´ GptNqq

σptNq

D
Ñ Np0, 1q. (32)
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Consequently,

lim sup
NÑ8

P
`

λ̂ρptNq ą FptNq ´ GptNq
˘

“ lim
N
P

ˆ

F̂mptNq ´ ĜnptNq ´ pFptNq ´ GptNqq

σptNq
ą q1´α

˙

“ α.

Since λ ⩾ FptNq ´ GptNq, the result then follows.

The exact same proof can also be used to show that Proposition 3 holds true, for λ “ Nγ,

´1 ă γ ⩽ 0, as long as λ ą 0 for all finite N.

Proposition 5 follows directly from Proposition 3 by exchanging σptNq with the consistent

estimator used in λ̂ρbayes and after checking that the case (NC) cannot happen, for a fixed ρ.

Proposition 9. Let Qm,n,α be an (asymptotic) bounding function and define,

λ̂ρ “ inf

#

λ̃ P r0, 1s : sup
zPJm,n

“

Vm,z ´ Qm,n,αpz, λ̃q
‰

⩽ 0

+

. (16)

Then λ̂ρ is an (asymptotic) HPLB of λ (at level α) for any ρ : XÑ I.

Proof
Let,

Gm,n :“

#

λ̃ P r0, 1s : sup
zPJm,n

“

Vm,z ´ Qm,n,αpz, λ̃q
‰

⩽ 0

+

.

Then by definition of the infimum,

Ppλ̂ρ ą λq ⩽ Ppλ P Gc
m,nq

“ Pp sup
zPJm,n

rVm,z ´ Qm,n,αpz, λqs ą 0q.

The result follows by definition of Qm,n,α.

To prove Proposition 10, we need two technical concepts introduced in Section 3.3. In

particular we utilize the concept of Distributional Witnesses in Definition 24 and the bounding

operation in Lemma .7.

Proposition 10. Qm,n,α as defined in (17) is an (asymptotic) bounding function.

Proof We aim to prove

lim sup
NÑ8

Pp sup
zPJm,n

rVm,z ´ Qm,n,αpz, λqs ą 0q ⩽ α. (33)
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LetΛP,ΛQ be the distributional Witnesses of P and Q, as in Definition 24. Define the events

AP :“ tΛP ⩽ q1´ α3
pλ,mqu, AQ :“ tΛQ ⩽ q1´ α3

pλ, nqu and A “ AP XAQ, such that PpAcq ⩽ 2α{3.

On A, we overestimate the number of witnesses on each side by construction. In this case we are

able to use the bounding operation described above with Λ̄P “ q1´ α3
pλ,mq and Λ̄Q “ q1´ α3

pλ, nq

to obtain V̄m,z from Lemma .7. The process V̄m,z has

V̄m,z “

$

’

’

’

&

’

’

’

%

z, if 1 ⩽ z ⩽ q1´ α3
pλ,mq

m, if m ` npλq ⩽ z ⩽ m ` n

Ṽm,z´q1´ α3
pλ,mq ` q1´ α3

pλ,mq, if q1´ α3
pλ,mq ă z ă m ` npλq,

where mpλq “ n´q1´ α3
pλ,mq, npλq “ n´q1´ α3

pλ, nq, and Ṽm,z´q1´ α3
pλ,mq „ Hypergeometricpz´

q1´ α3
pλ,mq,mpλq,mpλq ` npλqq. Then:

Pp sup
zPJm,n

rVm,z ´ Qm,n,αpz, λqs ą 0q ⩽
2α
3

` Pp sup
zPJm,n

rV̄m,z ´ Qm,n,αpz, λqs ą 0 X Aq,

Now, V̄m,z´Qm,n,αpz, λq ą 0 can only happen for z P J̃m,n,λ :“ tq1´ α3
pλ,mq`1, . . . ,m`npλq´1u,

as by construction V̄m,z ´ Qm,n,αpz, λq “ 0, for z < J̃m,n,λ. Thus

lim sup
NÑ8

Pp sup
zPJm,n

rV̄m,z ´ Qm,n,αpz, λqs ą 0 X Aq ⩽
2α
3

`

lim sup
NÑ8

Pp sup
zPJ̃m,n,λ

”

Ṽm,z´q1´ α3
pλ,mq ´ sqα{3

´

Ṽmpλq,z´q1´ α3
pλ,mq, z P J̃m,n,λ

¯ı

ą 0q

⩽ α,

by definition of sqα{3

`

Ṽmpλq,z, z “ 1, . . . ,mpλq ` npλq ´ 1
˘

.

3.2 Proofs for Section 3

Proposition 12. Let ´1 ă γ ă 0 and ε P p0, 1s fixed. Then there exists a ptNqN⩾1 such that (Cε)

is true for λ̂ρ
˚

ptNq iff there exists a ptNqN⩾1 such that (20) and (21) are true.

Proof According to Lemma .4 we are allowed to focus on sequences ptNqN⩾1 such that NσptNq Ñ

8. For ptNqN⩾1 Ă I such a sequence, it holds that

Ppλ̂ρ
˚

ptNq ą p1 ´ εqλNq “ PpF̂mptNq ´ ĜnptNq ´ q1´ασptNq ą p1 ´ εqλNq

“ P

ˆ

pF̂mptNq ´ ĜnptNq ´ λptNqq

σptNq
ą q1´α ´

λNrp1 ´ εq ´ λptNq{λNs

σptNq

˙

,
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where as in Section 3, λptNq “ FptNq ´ GptNq. With the same arguments as in Proposition 3,

pF̂mptNq ´ ĜnptNq ´ λptNqq{σptNq
D

Ñ Np0, 1q. Thus, P
`

λ̂ρ
˚

ptNq ą p1 ´ εqλN
˘

Ñ 1, iff

λNrp1 ´ εq ´ λptNq{λNs

σptNq
Ñ ´8. (34)

For γ ą ´1{2, (21), (20) and (34) are all true for tN “ 1{2, so there is nothing to prove in

this case.

For γ ⩽ ´1{2, assume (20) and (21) are true for ptNqN⩾1. Then if lim infNÑ8 λptNq{λN ą

1 ´ ε,

λNrp1 ´ εq ´ λptNq{λNs

σptNq
⩽
λN rp1 ´ εq ´ infM⩾N λptMq{λMs

σptNq
Ñ ´8,

as rp1 ´ εq ´ infM⩾N λptMq{λMs ă 0 for all but finitely many N and λN{σptNq Ñ `8, by (21a).

If instead lim infNÑ8 λptNq{λN “ 1 ´ ε, the statement follows immediately from (21b). This

shows one direction.

On the other hand, assume for all ptNqN⩾1 (20) or (21) is false. We start by assuming the

negation of (20), i.e., lim infNÑ8 λptNq{λN ă 1 ´ ε. Then there exists for all N an M ⩾ N such

that λptMq{λM ⩽ 1 ´ ε, or
λMrp1 ´ εq ´ λptMq{λMs

σptMq
⩾ 0.

This is a direct contradiction of (34), which by definition means that for large enough N all ele-

ments of the above sequence are below zero. Now assume (21a) is wrong, i.e. lim infNÑ8 λptNq{λN ą

1 ´ ε, but lim infNÑ8 λN{σptNq ă 8. Since λptNq{λN P r0, 1s for all N, the lower bound will

stay bounded away from ´8 in this case. More specifically,

lim inf
NÑ8

λN

σptNq
rp1 ´ εq ´ λptNq{λNs ⩾ lim inf

NÑ8

λN

σptNq
lim inf

N
rp1 ´ εq ´ λptNq{λNs ą ´8.

The negation of (21b) on the other hand, leads directly to a contradiction with (34). Conse-

quently, by contraposition, the existence of a sequence ptNqN⩾1 such that (21) and (20) are true

is necessary.

Corollary 13. λ̂ρ
˚

bayes attains the rate γλ̂bayespεq “ γ for all ε P p0, 1s, iff (21) is true for tN “ 1{2

and all γ ą γ.

Proof Since Fptq “ A0ptq and 1´Gptq “ A1ptq, it holds that σp1{2q{σ̂p1{2q Ñ 1 almost surely.

Thus, the same arguments as in the proof of Proposition 12 with tN “ 1{2 give the result.
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Proposition 14. Let ´1 ă γ ă 0 and ε P p0, 1s fixed. Then (Cε) is true for λ̂ρ
˚

adapt iff there exists

a ptNqN⩾1 such that (20) and (21) are true.

Proof
Let for the following ε P p0, 1s be arbitrary. The proof will be done by reducing to the case

of λ̂ptNq. For a sequence ptNqN⩾1 and a given sample of size N we then define the (random)

zptNq, with

zptNq “

m
ÿ

j“1

Itρ˚
pX jq ⩽ tNu `

n
ÿ

i“1

Itρ˚
pXiq ⩽ tNu “ mF̂ptNq ` nĜptNq. (35)

Since by definition the observations ρ˚

p1q
, . . . ρ˚

pzptNqq
are smaller tN , the classifier ρ̃tN pzq :“ Itρ˚pzq ą

tNu will label all corresponding observations as zero. As such the number of actual observations

coming from P in ρ˚

p1q
, . . . ρ˚

pzptNqq
, Vm,tN , will have Vm,tN „ BinpA0ptNq,mq. Recall that

A0ptNq “ Aρ
˚

0 ptNq “ Ppρ̃tN pXq “ 0q, A1ptNq “ Aρ
˚

1 ptNq “ Qpρ̃tN pYq “ 1q,

i.e. the true accuracies of the classifier ρ̃tN .

The goal is to show that we overshoot the quantile Qm,n,α:

PpVm,tN ą Qm,n,αpzptNq, λ̃q @λ̃ P r0, λεsq Ñ 1, (36)

if and only if there exists a ptNq such that (21) and (20) hold. For this purpose, Lemma .6

emulates Lemma .4 to allow us to focus on ptNqN⩾1 such that mA0ptNqp1 ´ A0ptNqq Ñ 8.

A sufficient condition for (36) is

P

˜

Vm,tN ´ mA0ptNq
a

mA0ptNqp1 ´ A0ptNqq
ą

supλ̃ Qm,n,αpzptNq, λ̃q ´ mA0ptNq
a

mA0ptNqp1 ´ A0ptNqq

¸

Ñ 1, (37)

while a necessary condition is given by

P

˜

Vm,tN ´ mA0ptNq
a

mA0ptNqp1 ´ A0ptNqq
ą

Qm,n,αpzptNq, λεq ´ mA0ptNq
a

mA0ptNqp1 ´ A0ptNqq

¸

Ñ 1. (38)

We instead work with a simpler bound:

Q̃pλ̃q “ mλ̃p1 ´ πq ` mrπA0ptNq ´ p1 ´ πqA1ptNq ` p1 ´ πqs. (39)

Note that

sup
λ̃Pr0,λεs

Q̃pλ̃q “ Q̃pλεq. (40)

and

Q̃pλεq ´ mA0ptNq “ mp1 ´ πqrλε ´ pA0ptNqptNq ` A1ptNq ´ 1qs

“ mp1 ´ πqrλε ´ λptNqs.
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We first show that

P

˜

Vm,tN ´ mA0ptNq
a

mA0ptNqp1 ´ A0ptNqq
ą

Q̃pλεq ´ mA0ptNq
a

mA0ptNqp1 ´ A0ptNqq

¸

Ñ 1, (41)

if and only if there exists a ptNq such that (21) and (20) hold.

Since again Vm,tN ´mA0ptNq
?

mA0ptNqp1´A0ptNqq

D
Ñ Np0, 1q, due to the Lindeberg-Feller CLT ([177]), (41)

holds iff
Q̃pλεq ´ mA0ptNq

a

mA0ptNqp1 ´ A0ptNqq
Ñ ´8. (42)

To prove this claim, we write

Q̃pλεq ´ mA0ptNq
a

mA0ptNqp1 ´ A0ptNqq
“ p1 ´ πq

λNrp1 ´ εq ´ λptNq{λNs
b

A0ptNqp1´A0ptNqq

m

(43)

and show that
λN

b

A0ptNqp1´A0ptNqq

m

Ñ `8 ðñ
λN

σptNq
Ñ `8. (44)

In this case, (42) is equivalent to (34) and it follows from exactly the same arguments as in the

proof of Proposition 12 that (42) is true iff there exists a ptNq such that (21) and (20) hold.

To prove (44), first assume that

λN
b

A0ptNqp1´A0ptNqq

m

Ñ `8.

This implies that A0ptNqp1´ A0ptNqq “ opN2γ`1q, which means that either A0ptNq “ opN2γ`1q or

p1´A0ptNqq “ opN2γ`1q. Assume A0ptNq “ opN2γ`1q. Since by definition A0ptNq`A1ptNq´1 “

λptNq “ OpλNq, this means that 1 ´ A1ptNq “ OpNγq ` opN2γ`1q “ opN2γ`1q and thus also

A1ptNqp1 ´ A1ptNqq “ opN2γ`1q. The same applies for 1 ´ A0ptNq “ opN2γ`1q. Writing σptq as

in (22) this immediately implies λN
σptNq

Ñ `8. On the other hand, assume λN
σptNq

Ñ `8. This in

turn means

A0ptNqp1 ´ A0ptNqq ` A1ptNqp1 ´ A1ptNqq “ opN2γ`1
q (45)

and thus A0ptNqp1 ´ A0ptNqq “ opN2γ`1q and λN{

b

A0ptNqp1´A0ptNqq

m Ñ `8. This proves (44).

Using the arguments of the proof of Proposition 12 this demonstrates that (42) is true iff there

exists a ptNq such that (20) and (21) hold.

It remains to show that (41) implies (37) and is implied by (38). More specifically, as (21)

demands that

A0ptNqp1 ´ A0ptNqq “ opN2γ`1
q and A1ptNqp1 ´ A1ptNqq “ opN2γ`1

q,
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we may use Lemma .5 below to see that for c P p0,`8q,

c ` oPp1q ⩽
Qm,n,αpzptNq, λεq ´ mA0

Q̃pλεq ´ mA0
⩽

supλ̃ Qm,n,αpzptNq, λ̃q ´ mA0

Q̃pλεq ´ mA0
⩽

1
c

` oPp1q.

For ZN
D

Ñ Np0, 1q, Q1,N Ñ ´8 and c ` ON ⩽ Q2,N{Q1,N , with c ą 0 and ON
p

Ñ 0, it holds

that

PpZN ą Q2,Nq “ P

ˆ

ZN ą
Q2,N

Q1,N
Q1,N

˙

⩾ P pZN ą pc ` ONqQ1,Nq

“ P
´

ZN ą pc ` ONqQ1,N X |ON | ⩽
c
2

¯

` P
´

ZN ą pc ` ONqQ1,N X |ON | ą
c
2

¯

Ñ 1,

as Q1,N ă 0 for all but finitely many N and pc ` ONq ą 0 on the set |ON | ⩽ c
2 . Using this

argument first with Q1,N “ Q̃pλεq ´ mA0ptNq and Q2,N “ Qm,n,αpzptNq, λεq ´ mA0ptNq, and

repeating it with Q1,N “ Qm,n,αpzptNq, λεq ´ mA0ptNq and Q2,N “ Q̃pλεq ´ mA0ptNq, (58) shows

that (41) implies (37) and is implied by (38).

We are now able to prove the results in Examples 2 and 3:

Proposition 4. For the setting of Example 1, assume pN ą 0.5 for all N, and pN ´ 1{2 — Nγ.

Then γoraclepεq “ ´1{2 for all ε P p0, 1s. This rate is attained by the oracle estimator in (9)

with t˚
N “ 1{2 for all N.

Proof
First note that ρpzq “ p1 ´ pqIt´1 ⩽ z ⩽ 0u ` pIt0 ⩽ z ⩽ 1u and thus

A0ptNq “ pIt1´ p ⩽ tN ⩽ pu` IttN ą pu, A1ptNq “ pIt1´ p ⩽ tN ⩽ pu` IttN ă 1´ pu (46)

Take any γ ⩽ ´1{2. Then for λN{σptNq Ñ 8 to be true it is necessary that A0ptNqp1 ´ A0ptNqq

and A1ptNqp1 ´ A1ptNqq go to zero. But from (46) and the fact that p Ñ 0.5, it is clear that

this is only possible for tN P r1 ´ p, psc for all but finitely many N. However for such tN ,

λptNq “ A0ptNq ` A1ptNq ´ 1 “ 0. Similarly, a sequence ptNqN⩾1 that satisfies (21), cannot sat-

isfy condition (20). Thus for γ ⩽ ´1{2 for any sequence ptNqN⩾1 most one of the two conditions

(20) and (21) can be true and thus ´1{2 ⩽ γoraclepεq. On the other hand, for γ ą ´1{2, taking

tN “ 1{2 independently of γ, satisfies conditions (20) and (21).

Proposition 6. For the setting of Example 2, γλ̂bayespεq “ γoraclepεq “ ´1, for all ε P p0, 1s.
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Proof
We show that γλ̂bayes “ ´1, from which it immediately follows that γoracle “ ´1. Since

Aρ
˚

0 p1{2q “ λN and Aρ
˚

1 p1{2q “ 1, it follows for any γ ą ´1,

λN

σp1{2q
“

?
mλN

?
λN

Ñ 8, for N Ñ 8.

By Proposition (13) this implies γλ̂bayes “ ´1.

Proposition 22. For the setting of Example 3, let ε P p0, 1s be arbitrary and p2 ą 0.5, p2 “

0.5 ` opN´1q. Then λ̂ρ
˚

adapt attains the oracle rate γλ̂adapt “ γoracle “ ´1, while λ̂ρ
˚

bayes attains the

rate γλ̂bayes “ ´1{2.

Proof We first find the expression for λN . Since p2 ą 0.5

λN “

ż

p f ´ gqdx “ p1 ` rp1 ´ p1qp2 ´ p1 ´ p1qp1 ´ p2qs

ż

f0dx

“ p1 ` p1 ´ p1q r2p2 ´ 1s

and, since p2 ´ 1{2 “ opN´1q, it immediately holds that p1 — λN . Let γ ą ´1 be arbitrary and

take tN “ 0 for all N. Then λptNq “ p1 and it holds that

λN

λptNq
“

p1 ` p1 ´ p1q r2p2 ´ 1s

p1
“ 1 `

p1 ´ p1q r2p2 ´ 1s

p1
Ñ 1,

as 2p2 ´ 1 “ opN´1q by assumption. Combining this with the fact that Aρ
˚

0 p0q “ p1 — λN , and

Aρ
˚

1 p0q “ 1 thus
λN

σptq
“

?
mλN

b

Aρ
˚

0 p0qp1 ´ Aρ
˚

0 p0qq

—
a

mλN Ñ 8,

it follows that γoracle “ ´1 and therefore also γλ̂adapt “ ´1. On the other hand

Aρ
˚

0 p1{2q “ Aρ
˚

1 p1{2q “ p1 ` p1 ´ p1qp2 Ñ 0.5,

so (21) cannot be true for any γ ⩽ ´1{2. From Corollary 13 it follows that λ̂bayes only attains a

rate γλ̂bayes “ ´1{2.

Proposition 7 and 11 then immediately follow from Proposition 22.

We continue with the proofs for Section 3.2, by quickly restating assumptions (E1) and (E2):
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(E1) ρ̂ “ ρ̂Ntr is trained on a sample of size Ntr, pZ1, ℓ1q, . . . , pZNtr , ℓNtr q, and evaluated on an

independent sample pZ1, ℓ1q, . . . , pZNte , ℓNteq, with Ntr ` Nte “ N

(E2) Nte,Ntr Ñ 8, as N Ñ 8, with mte{Nte Ñ π P p0, 1q.

Let λpρ̂q be defined as in (19):

λpρ̂q “ sup
tPr0,1s

”

Aρ̂0ptq ` Aρ̂1ptq
ı

´ 1 :“ sup
tPr0,1s

rPpρ̂pXq ⩽ t|ρ̂q ´ Qpρ̂pYq ⩽ t|ρ̂qs .

We first establish that λ̂ρ̂adapt is still an asymptotic HPLB.

Proposition 17. Assume (E1) and (E2). Then λ̂ρ̂adapt is an (asymptotic) HPLB of λ (at level α).

Proof We first note that Propositions 9 and 10 hold true also for a sequence pρNqNPN, instead

of just a single arbitrary ρ. Thus conditioning on ρ̂ trained on independent data, we have in

particular that pointwise,

lim sup
NÑ8

Ppλ̂ρ̂ ą λ|ρ̂q ⩽ α.

Using Fatou’s Lemma [46], it holds that

lim sup
NÑ8

Ppλ̂ρ̂ ą λq “ lim sup
NÑ8

ErPpλ̂ρ̂ ą λ|ρ̂qs

⩽ Erlim sup
NÑ8

Ppλ̂ρ̂ ą λ|ρ̂qs

⩽ α,

proving the result.

However, for λ̂ρ̂bayes (or λ̂ρN p1{2q), we encounter a difficulty when λ “ 0.

Proposition 16. For the setting of Example 4, let ξ1, ξ2 be independently Poisson distributed,

with mean C. Then

Ppλ̂ρN p1{2q ą 0q Ñ Ppξ1 ´ ξ2 ą q1´α

?
2Cq.

Proof It holds that AρN
0 p1{2q “ C{n and 1 ´ AρN

1 p1{2q “ C{n and,

Ppλ̂ρN p1{2q ą 0q “ PpnF̂ρN
n p1{2q ´ nĜρN

n p1{2q ą q1´αnσp1{2qq.

Define ξ01 “ nF̂ρN
n p1{2q „ BinomialpC{n, nq and ξ02 “ nĜρN

n p1{2q „ BinomialpC{n, nq. Then

by the Poisson convergence theorem and due to independence, ξ01´ξ02 converges in distribution

to ξ1 ´ ξ2. Additionally,

nσp1{2q “

b

nAρN
0 p1{2qp1 ´ AρN

0 p1{2qq ` nAρN
1 p1{2qp1 ´ AρN

1 p1{2qq Ñ
?

2C,
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proving the result.

For ε P p0, 1s the goal in the following is to establish that for all subsequences, there exists

a further subsequence Npℓpkqqq such that

lim inf
kÑ8

Ppλ̂ ą p1 ´ εqλNpℓpkqq|ρ̂Ntrpℓpkqqq “ 1, a.s. (47)

This suggests that for a given ε we need to check the following adapted conditions on ptNteqNte⩾1:

For any subsequence Npℓq, we find a further subsequence Npℓpkqq, such that

lim inf
kÑ8

TNpℓpkqq :“ lim inf
kÑ8

λρ̂NtrpℓpkqqptNtepℓpkqqq

λNpℓpkqq

⩾ 1 ´ ε a.s., (48)

and

lim
kÑ8

λNpℓpkqq

σρ̂NtrpℓpkqqptNtepℓpkqqqq
“ 8 a.s., if lim inf

kÑ8
TNpℓpkqq ą 1 ´ ε a.s., (49a)

lim
kÑ8

λNpℓpkqq

σρ̂NtrpℓpkqqptNtepℓpkqqqq

`

TNpℓpkqq ´ p1 ´ εq
˘

“ 8 a.s., if lim inf
kÑ8

TNpℓpkqq “ 1 ´ ε a.s., (49b)

where for F ρ̂ptq :“ Ppρ̂pXq ⩽ t|ρ̂q and Gρ̂ptq :“ Ppρ̂pYq ⩽ t|ρ̂q

λρ̂ptq “ F ρ̂ptq ´ Gρ̂ptq

λpρ̂q “ sup
tPr0,1s

λρ̂ptq

σρ̂ptq “

ˆ

F ρ̂ptqp1 ´ F ρ̂ptqq

mte
`

Gρ̂ptqp1 ´ Gρ̂ptqq

nte

˙1{2

.

We now generalize Propositions 12 and 14 to this case:

Proposition 23. Let ´1 ă γ ⩽ 0 and ε1 P p0, 1s fixed. Assume that λN “ Nγte and that (E1) and

(E2) hold. Then the following is equivalent

(i) there exists a ptNteqNte⩾1 such that (48) and (49) are true for ε,

(ii) (Cε) is true for λ̂ρ̂ptNq,

(iii) (Cε) is true for λ̂ρ̂adapt.

Proof The same arguments as in Proposition 12 and 14 show that for a (nonrandom) sequence

ρN and ptNqN⩾1:

lim inf
NÑ8

λρN ptNq

λN
⩾ 1 ´ ε, (50)
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and

lim
N

λN

σρN ptNq
“ 8, if lim inf

NÑ8

λρN ptNq

λN
ą 1 ´ ε, (51a)

lim
N

λN

σρN ptNq

ˆ

λρN ptNq

λ
´ p1 ´ εq

˙

“ 8, if lim inf
NÑ8

λρN ptNq

λN
“ 1 ´ ε, (51b)

if and only if

lim inf
kÑ8

Ppλ̂ρN ptNq ą p1 ´ εqλq “ 1,

and

lim inf
kÑ8

Ppλ̂ρN
adapt ą p1 ´ εqλq “ 1.

Through conditioning, we now extend this to ρ̂. The arguments are the same for λ̂ρN
adapt and

λ̂ρN ptNq and thus we will write λ̂ to mean either of them.

First assume (48) and (49) are true for an ε P p0, 1s, ρ̂ and sequence ptNqN . Considering

only the chosen subsequence Npℓpkqq and conditioning on pρ̂Npℓpkqqqk, this gives a sequence

ρk “ ρ̂Npℓpkqq such that (50) and (51) are true and by the above this means (47) holds. Since

Ppλ̂ ą p1 ´ εqλN |ρ̂Ntr q is bounded, we can use Fatous lemma to obtain, that every subsequence

has a further subsequence with

lim inf
kÑ8

Ppλ̂ ą p1 ´ εqλNpℓpkqqq “ 1.

An argument by contradiction shows that then the liminf of the overall sequence must be 1 as

well. Indeed assume that this is not true. Then we can find a subsequence Npℓq such that

lim
ℓÑ8
Ppλ̂ ą p1 ´ εqλNpℓqq “ c ă 1.

But then any further subsequence will have limsup strictly below 1, contradicting the above.

Now assume (Cε) is true. Then, by definition, P
`

λ̂ ą p1 ´ εqλN
˘

Ñ 1. But this is also true

for any subsequence and thus (47) must also hold. Indeed this simply follows from the fact that

lim
kÑ8

ż

| fk|dP “ 0 ùñ lim
kÑ8

| fk| “ 0 a.s., (52)

applied to fk “ 1´Ppλ̂ ą p1´εqλNpℓpkqq|ρ̂Ntrpℓpkqqq ⩾ 0. We quickly prove (52) for completeness

below. But with that, by the same arguments as above (connecting to a nonrandom sequence

ρk), (47) implies (48) and (49).

It remains to prove (52). To do so, assume there exists a set B, with PpBq ą 0, such that

lim infkÑ8 | fk| ą 0 on B. Then again using Fatou’s lemma,

lim inf
kÑ8

ż

| fk|dP ⩾
ż

lim inf
kÑ8

| fk|dP

⩾

ż

B
lim inf

kÑ8
| fk|dP`

ż

Bc
lim inf

kÑ8
| fk|dP

ą 0,
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since g ą 0 implies that
ş

gdP ą 0. Thus lim infkÑ8

ş

| fk|dP ą 0, proving (52) by contraposi-

tion.

Again, Proposition 23 would be still valid, if λ was replaced everywhere by λpρ̂q, assuming

that λpρ̂q converges to a limit λpρq P r0, 1s in probability. For instance, if λpρ̂q p
Ñ 0, at a rate

Nγ, ´1 ă γ ă 0.

Proposition 18 then follows directly from Proposition 23.

Corollary 20. Assume that λ is fixed and that there exists a sequence ptNtr q, such that the se-

quence of classifiers ρ̂Ntr ,tNtr
is consistent. Then (Cε) is true for λ̂ρ̂adapt, for all ε ą 0.

Proof Due to consistency, it holds for all ε P p0, 1s that there exists for each subsequence a

further subsequence, such that

lim inf
kÑ8

λρ̂NtrpℓpkqqptNtepℓpkqqq

λ
⩾ 1 ´ ε a.s.,

for tNtepℓpkqq :“ tNtrpℓpkqq. Thus for the sequence tNtr and all ε P p0, 1s, (48) is true. Moreover, since

λ is fixed here, (49) is clearly also true, proving the result.

3.3 Technical Results

Lemma .2. Let p P r0, 1s, α P p0, 1q with 1 ´ α ą 0.5 and pε :“ p1 ´ εqp. Then mp ´

q1´αppε,mq — mpε. More generally, if p “ pm — mγ, ´1 ă γ ă 0, and pε :“ p1 ´ εqpm, then

mpm ´ q1´αppε,mq — mpmε.

Proof Let p “ δm — mγ, for ´1 ă γ ⩽ 0, where γ “ 0 indicates the fixed p case. Writing

q1´αppε,mq “ q1´αpΛq, where Λ „ Binomialppε,mq, it holds that

q1´αpΛq ´ mpε
a

mpεp1 ´ pεq
“ q1´αpZmq,

where Zm :“ pΛ ´ mpεq{
a

mpεp1 ´ pεq and q1´αpZmq is the 1 ´ α quantile of the distribution

of Zm. By the Lindenberg-Feller central limit theorem, Zm converges in distribution to Np0, 1q

and is thus uniformly tight, i.e. Zm “ OPp1q. Consequently, it must hold that

0 ă
q1´αpΛq ´ mpε
a

mpεp1 ´ pεq
“ q1´αpZmq — 1,

which means q1´αpΛq ´ mpε —
a

mpεp1 ´ pεq. Writing

∆m :“ mpm ´ q1´αppε,mq “ mpm ´ mpε ´ pq1´αppε,mq ´ mpεq “ mpmε´ pq1´αpΛq ´ mpεq,
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we see that ∆m — mpmε.

As we do not constrain the possible alternatives P,Q and sequences ptNqN⩾1, some proofs

have several cases to consider. In an effort to increase readability we will summarize these

different cases here for reference: We first introduce a “nuisance condition”. This condition

arises when ptNqN⩽1 or the sequence of alternatives is such that the variance σptNq converges to

zero fast, namely if

lim inf
NÑ8

NσptNq ă `8. (NC)

The case in which we are mainly interested is however is the negation of (NC),

lim
NÑ8

NσptNq “ `8 (MC)

A special case of that is the following

either FptNqp1 ´ FptNqq “ 0 or GptNqp1 ´ GptNqq “ 0 for infinitely many N. (MCE)

We first show an important limiting result, in the case (MC), on which much of our results

are based:

Lemma .3. Let ´1 ă γ ⩽ 0, where γ “ 0 constitutes the constant case λN “ λ. Then for any

ρ : XÑ I and any sequence ptNqN⩾1 Ă I such that (MC) holds,

ZN :“
F̂mptNq ´ ĜnptNq ´ pFptNq ´ GptNqq

σptNq

D
Ñ Np0, 1q. (53)

Proof Let

σF :“

c

FptNqp1 ´ FptNqq

m
and σG :“

c

GptNqp1 ´ GptNqq

m
,

so that we may write σptNq “

b

σ2
F ` σ2

G. From (MC) we require mσF Ñ 8 or nσG Ñ 8.

By the Lindenberg-Feller CLT (see e.g., [177]), it holds for N Ñ 8 (and thus m, n Ñ 8),

1
σF

pF̂mptNq ´ FptNqq
D

Ñ Np0, 1q, if mσF Ñ 8

1
σG

pĜmptNq ´ GptNqq
D

Ñ Np0, 1q, if nσG Ñ 8

We write

ZN “
F̂mptNq ´ FptNq ´ pĜnptNq ´ GptNqq

σptNq

“
F̂mptNq ´ FptNq

σptNq
´

pĜnptNq ´ GptNqq

σptNq

“
F̂mptNq ´ FptNq

σF

σF

σptNq
´

pĜnptNq ´ GptNqq

σG

σG

σptNq
.
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Now as,

σF

σptNq
“

d

σ2
F

σ2
F ` σ2

G

, and
σG

σptNq
“

d

σ2
G

σ2
F ` σ2

G

,

we can define ωN :“ σF{σptNq, so that

ZN “
F̂mptNq ´ FptNq

σF
ωN ´

pĜnptNq ´ GptNqq

σG

b

1 ´ ω2
N .

Had ωN a limit, say limN ωN :“ a P r0, 1s and if both mσF Ñ 8 and mσG Ñ 8 were true, it

would immediately follow from classical results (see e.g., [177, Chapter 2]) thatZN
D

Ñ Np0, 1q.

This is not the case as the limit of ωN might not exist and either lim supNÑ8 mσF ă 8 or

lim supNÑ8 nσG ă 8. However since ωN P r0, 1s for all N, it possesses a subsequence with

a limit in r0, 1s. More generally, every subsequence pωNpkqqk possesses a further subsequence

pωNpkpℓqqqℓ that converges to a limit a P r0, 1s. This limit depends on the specific subsequence,

but for any such converging subsequence it still holds as above that ZNpkpℓqq
D

Ñ Np0, 1q. In-

deed, if both mσF Ñ 8 and nσG Ñ 8 this is immediate from the above. If, on the other

hand, lim infNÑ8 mσF ă 8, then rF̂mptNpkpℓqqq ´ FptNpkpℓqqqs{σF
D

Ñ Np0, 1q might not be true.

However, if we assume that (MCE) does not hold, for the chosen subsequence

σ2
F

σptNpkpℓqqq
2 “ ω2

Npkpℓqq
Ñ a2

P r0, 1s,

and it either holds that a “ 0 in which case the first part of ZNpkpℓqq
is negligible or a ą 0,

in which case it must hold that σF — σptNpkpℓqqq and thus NpkpℓqqσF Ñ 8, allowing for

rF̂mptNpkpℓqqq´FptNpkpℓqqqs{σF
D

Ñ Np0, 1q. The symmetric argument applies if lim infNÑ8 mσG ă

8. Now assume (MCE) holds and for a given subsequence ptkqk, it is not possible to find a

subsequence, such that Fptkpℓqqp1 ´ Fptkpℓqqq ą 0 for all but finitely many ℓ. Since for all subse-

quences kpℓqσptkpℓqq Ñ 8, it must hold that npkpℓqqσG Ñ 8. In particular, we may choose the

subsequence such that Fptkpℓqqp1 ´ Fptkpℓqqq “ 0 for all but finitely many N and in this case:

F̂mptkpℓqq ´ Fptkpℓqq “ 0 a.s. and
Ĝptkpℓqq ´ Gptkpℓqq

σG

D
Ñ Np0, 1q

both are true, implying (53). The symmetric argument holds if instead GptNqp1 ´ GptNqq “ 0

for infinitely many N, but NFptNqp1 ´ FptNqq Ñ 8.

Thus we have shown that for any subsequence of ZN , there exists a further subsequence

converging in distribution to Np0, 1q. Assume that despite this, (53) is not true. Then, negating

convergence in distribution in this particular instance, means there exists z P R such that the

cumulative distribution function ofZN , FZN , has lim supNÑ8 FZN pzq , Φpzq. By the properties

of the limsup, there exists a subsequence limkÑ8 FZNpkq
pzq “ lim supNÑ8 FZN pzq , Φpzq. But

then no further subsequence of FZNpkq
pzq converges to Φpzq, a contradiction.
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The next lemma ensures that we can for all intents and purposes ignore sequences ptNqN⩾1

for which (NC) is true.

Lemma .4. Let ´1 ă γ ă 0 and ε P p0, 1s arbitrary. If for a sequence ptNqN⩾1 and ρ “ ρ˚,

(NC) holds, then

(I) (20) or (21) is not true,

(II) (Cε) is not true for λ “ λ̂ρ
˚

ptNq.

Furthermore, if for ´1 ă γ ă 0, a sequence ptNqN⩾1 and ρ : XÑ I, (NC) holds then,

(III) lim supNÑ8 P
`

λ̂ρptNq ą λ
˘

“ 0.

(III) is also true for the constant case, γ “ 0, as long as λ ą 0.

Proof (I): If (NC) is true, then NβσptNq Ñ 0, for any β P r0, 1q. Indeed, assume there exists

β P r0, 1q such that lim infNÑ8 NβσptNq ą 0. Then

lim inf
NÑ8

NσptNq ⩾ `8,

In particular, it must hold that

FptNqp1 ´ FptNqq “ opNζq and GptNqp1 ´ GptNqq “ opNζq,

for all ζ P r´1, 0q. There are four possibilities for this to be true:

(1) FptNq “ opNζq, GptNq “ opNζq.

(2) FptNq “ opNζq, 1 ´ GptNq “ opNζq.

(3) p1 ´ FptNqq “ opNζq, p1 ´ GptNqq “ opNζq.

(4) p1 ´ FptNqq “ opNζq, GptNq “ opNζq.

As (2) and (4) imply that λptNq Ñ ´1 and λN ⩾ λptNq Ñ 1 respectively, they are not

relevant in our framework. Thus (NC) directly implies that either (1) or (3) is true and both of

them imply λptNq “ opNζq for all ζ P p´1, 0q. Consequently, (20) cannot be true for ε ă 1.

For ε “ 1 we slightly strengthen the relevant cases (1) and (3):

(1’) lim infNÑ8 NA0ptNq ă 8, lim infNÑ8 Np1 ´ A1ptNqq ă 8,

(3’) lim infNÑ8 Np1 ´ A0ptNqq ă 8, lim infNÑ8 NA1ptNq ă 8.
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It’s clear from the above, that if (NC) holds, then one of the two has to hold. We will now show

that, even though (20) is true in this case, (21b) is not. Indeed, it was mentioned in Section 3

that in case of (MCE), (21b) is defined to be false. Thus, we may assume σptNq is bounded

away from zero for all finite N. Assume that (21b) is true, i.e.

λptNq

σptNq
Ñ 8.

This must then also hold for any subsequence. Now assume (1’) is true, and choose a subse-

quence ptkqkPN :“ ptNpkqqkPN with limkÑ8 kA0ptkq “ lim infNÑ8 NA0ptNq :“ a P r0,8q. Then

λptkq

σptkq
⩽

A0ptkq

σptkq
⩽

a

mpkqA0ptkq
a

A0ptkqp1 ´ A0ptkqq
—

b

kA0ptkq Ñ
?

a ă 8,

a contradiction. Similarly, if (2’) is true, we find a subsequence such that limkÑ8 kA1ptkq :“ a P

r0,8q and bound

λptkq

σptkq
⩽

A1ptkq

σptkq
⩽

a

npkqA1ptkq
a

A1ptkqp1 ´ A1ptkqq
—

b

kA1ptkq Ñ
?

a ă 8.

Thus (21b) cannot be true.

(II) and (III): Consider first ε P r0, 1q and ´1 ă γ ⩽ 0. (NC) implies for any ρ:

λ´1
N pF̂ptNq ´ ĜptNq ´ λptNqq

p
Ñ 0. (54)

Indeed by a simple Markov inequality argument for all δ ą 0:

P
`

λ´1
N pF̂ptNq ´ ĜptNq ´ λptNqq ą δ

˘

⩽
λ´2

N σptNq2

δ
—

pN´γσptNqq2

δ
Ñ 0,

since ´γ P r0, 1q. Additionally, from the argument in (I), λ´1
N σptNq Ñ 0 and λptNq

λN
Ñ 0.

Consequently, for any ε P r0, 1q

PpF̂ptNq ´ ĜptNq ´ q1´ασptNq ą p1 ´ εqλNq

“ PpF̂ptNq ´ ĜptNq ´ λptNq ´ q1´ασptNq ą p1 ´ εqλN ´ λptNqq

“ Ppλ´1
N pF̂ptNq ´ ĜptNq ´ λptNqq ´ q1´αλ

´1
N σptNq `

λptNq

λN
ą p1 ´ εqq

Ñ 0.

Consequently, (Cε) is false for any ε P r0, 1q and (II) and (III) hold. The case ε “ 1 needs

special care: Assume that despite (NC), Ppλ̂ptNq ą 0q Ñ 1 holds true. We consider the two

possible cases (1’) and (3’) in turn: If (1’) is true, we write:

Ppλ̂ptNq ą 0q ⩽ PpF̂ptNq ą 0q “ PpmF̂ptNq ą 0q “ PpVm,tN ą 0q, (55)
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where Vm,tN :“ mF̂ptNq „ BinomialpA0ptNq,mq. Since Ppλ̂ptNq ą 0q Ñ 1, this is true for

any subsequence λ̂ptNpkqq as well. In particular, we may choose the subsequence ptNpkqqk⩾1

with limk NpkqA0ptNpkqq “ lim infNÑ8 NA0ptNq :“ a P r0,8q. Renaming the subsequence

pkA0ptkqqk⩾1 for simplicity, we find lim supkÑ8 kA0ptkq ⩽ a, or A0ptkq “ Opk´1q “ Opmpkq´1q,

since by assumption mpkq{k Ñ π P p0, 1q. But then

Ppλ̂ptkq ą 0q ⩽ PpVmpkq,tk ą 0q “ 1 ´ p1 ´ A0ptkqq
mpkq

and

lim inf
kÑ8

p1 ´ A0ptkqq
mpkq ⩾ lim inf

kÑ8
p1 ´

a
mpkq

q
mpkq

“ expp´aq ą 0.

Thus, lim supkÑ8 Ppλ̂ptkq ą 0q ă 1, a contradiction.

If (3’) is true, then lim infNÑ8 NA1ptNq ă `8 and similar arguments applied to

Ppλ̂ptNq ą 0q ⩽ Pp1 ´ ĜptNq ą 0q “ Ppn ´ nĜptNq ą 0q “ PpVn,tN ą 0q, (56)

where now Vn,tN :“
řn

i“1 ItρpYiq ą tNu „ BinomialpA1ptNq, nq, give

lim sup
kÑ8

Ppλ̂ptkq ą 0q ⩽ lim sup
kÑ8

PpVnpkq,tk ą 0q “ 1 ´ expp´aq ă 1.

This again contradicts Ppλ̂ptNq ą 0q Ñ 1.

Lemma .4 also immediately implies for λ̂ptNq that if (Cε) or (20) are true, then limN NσptNq “

`8 must hold.

Lemma .5. Let ´1 ă γ ă 0 be fixed and as above λN — Nγ. Define for ptNqN⩾1, zptNq as in

(35) and Qm,n,α, Q̃ as in (30) and (39). Assume that for the given γ,

A0ptNqp1 ´ A0ptNqq “ opN2γ`1
q and A1ptNqp1 ´ A1ptNqq “ opN2γ`1

q, (57)

then for c P p0,`8q,

c ` oPp1q ⩽
Qm,n,αpzptNq, λεq ´ mA0

Q̃pλεq ´ mA0
⩽

supλ̃ Qm,n,αpzptNq, λ̃q ´ mA0

Q̃pλεq ´ mA0
⩽

1
c

` oPp1q. (58)

Proof Note that zptNq is random, while everything else is deterministic. First,

q1´ α3
pλε,mq

npλεq

Npλεq
`

zptNq

Npλεq
mpλεq ` β α

3 ,mpλεq

d

mpλεq

Npλεq

npλεq

Npλεq

Npλεq ´ zptNq

Npλεq ´ 1
pzptNq ´ q1´ α3

pλε,mqq

⩽ sup
λ̃Pr0,λεs

Qm,n,αpzptNq, λ̃q ⩽

q1´ α3
pλε,mq

n
Npλεq

`
zptNq

Npλεq
m ` β α

3 ,m

d

m
Npλεq

n
Npλεq

N ´ zptNq

Npλεq ´ 1
zptNq.
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Additionally for all λ̃ P r0, λεs, with pN “ rπA0ptNq ´ p1 ´ πqA1ptNq ` p1 ´ πqs,

mpλ̃q

Npλ̃q
Ñ π, (59)

npλ̃q

Npλ̃q
Ñ 1 ´ π, (60)

q1´ α3
pλ̃,mq

mλ̃
Ñ 1 (61)

zptNq

Npλεq
´ A0ptNq

pN ´ A0ptNq

p
Ñ 1. (62)

The first three assertions follow from Lemma .2 and the assumption that m{N Ñ π, as

N Ñ 8. We quickly verify (62). Define

S N “

zptNq

Npλεq
´ A0ptNq

pN ´ A0ptNq
.

By Chebyshev’s inequality,

P p|S N ´ ErS Ns| ą δq ⩽
VarpS Nq

δ
, (63)

for all δ ą 0. Now, zptNq may be written as a sum of independent Bernoulli random variables:

zptNq “

N
ÿ

i“1

Itρ˚
pZiq ⩽ tNu “

m
ÿ

i“1

Itρ˚
pXiq ⩽ tNu `

n
ÿ

j“1

Itρ˚
pYiq ⩽ tNu,

with Itρ˚pXiq ⩽ tNu „ BernoullipA0ptNqq and Itρ˚pYiq ⩽ tNu „ Bernoullip1 ´ A1ptNqq. Then

VarpS Nq “
1

ppN ´ A0ptNqq
2 Var

ˆ

zptNq

Npλεq

˙

“
1

ppN ´ A0ptNqq
2 Npλεq2

rmA0ptNqp1 ´ A0ptNqq ` nA1ptNqp1 ´ A1ptNqqs

—
1

ppN ´ A0ptNqq
2 N

rA0ptNqp1 ´ A0ptNqq ` A1ptNqp1 ´ A1ptNqqs .

Now, since (i) pN ´ A0ptNq “ ´p1 ´ πqrA0ptNq ` A1ptNq ´ 1s “ ´p1 ´ πqλptNq and λptNq ⩽

λN — Nγ and (ii) (57) holds, it follows that

VarpS Nq —
1

N2γ`1 opN2γ`1
q Ñ 0, for N Ñ 8.
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Thus |S N ´ ErS Ns|
p

Ñ 0. Moreover, it holds that,

ErS Ns ´ 1 “
m{NpλεqA0ptNq ´ n{NpλεqA1ptNq ` n{Npλεq ´ A0ptNq

πA0ptNq ´ p1 ´ πqA1ptNq ` p1 ´ πq ´ A0ptNq
´ 1

“
rp1 ´ πq ´ p1 ´ m{NpλεqqsA0ptNq ´ rp1 ´ πq ´ n{Npλεqsp1 ´ A1ptNqq

pπ´ 1qrA0ptNq ´ p1 ´ A1ptNqqs

“
op1qA0ptNq ´ op1qp1 ´ A1ptNqq

pπ´ 1qrA0ptNq ´ p1 ´ A1ptNqqs

“
op1qrA0ptNq ´ p1 ´ A1ptNqqs

pπ´ 1qrA0ptNq ´ p1 ´ A1ptNqqs
Ñ 0, for N Ñ 8.

Thus, finally |S N ´ 1| ⩽ |S N ´ ErS Ns| ` |ErS Ns ´ 1|
p

Ñ 0.

Continuing, let for the following for two random variables index by N XN ĺ YN mean that

PpXN ⩽ YNq Ñ 1, as N Ñ 8. Then,

N´γm´1

ˆ

sup
λ̃

Qm,n,αpzptNq, λ̃q ´ mA0

˙

⩽

N´γq1´ α3
pλε,mq{m

n
Npλεq

` N´γ zptNq

Npλεq
` N´γ

β α
3 ,m

m

d

m
Npλεq

n
Npλεq

N ´ zptNq

Npλεq ´ 1
zptNq

m
´ N´γA0ptNq

“ N´γ

«

q1´ α3
pλε,mq{m

λε

n
Npλεq

λε `
zptNq

Npλεq
´ A0ptNq

ff

` N´γ
β α

3 ,m

m

d

m
Npλεq

n
Npλεq

N ´ zptNq

Npλεq ´ 1
zptNq

m

“ N´γ

«

q1´ α3
pλε,mq{m

λε

n
Npλεq

λε `
zptNq{Npλεq ´ A0ptNq

pN ´ A0ptNq
rpN ´ A0ptNqs

ff

`

N´γ
β α

3 ,m

m

d

m
Npλεq

n
Npλεq

N ´ zptNq

Npλεq ´ 1
zptNq

m

ĺ

”q1´ α3
pλε,mq{m

λε

n
Npλεq

p1 ´ εqλN

λN
´ p1 ´ πq

zptNq{Npλεq ´ A0ptNq

pN ´ A0ptNq
inf
M⩾N

λptMq

λM

ı

sup
M⩾N

pM´γλMq

` N´γ
β α

3 ,m

m

d

m
Npλεq

n
Npλεq

N ´ zptNq

Npλεq ´ 1
zptNq

m
p

Ñ d1p1 ´ πq rp1 ´ εq ´ d2s ,

where d1 “ lim supNÑ8 N´γλN P p0,8q, d2 “ lim infNÑ8
λptNq

λN
P pp1 ´ εqλN , 1s.
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Similarly,

N´γm´1

ˆ

sup
λ̃

Qm,n,αpzptNq, λ̃q ´ mA0

˙

⩾

N´γ
´q1´ α3

pλε,mq{m

λε

npλεq

Npλεq
λε `

zptNq

Npλεq

mpλεq

m
`

β α
3 ,mpλεq

m

d

mpλεq

Npλεq

npλεq

Npλεq

Npλεq ´ zptNq

Npλεq ´ 1

zptNq ´ q1´ α3
pλε,mq

m
´ A0

¯

“ N´γλN

”q1´ α3
pλε,mq{m

λε

npλεq

Npλεq

λε
λN

`
zptNq{Npλεqpmpλεq{mq ´ A0ptNq

pN ´ A0ptNq

rpN ´ A0s

λN

ı

` N´γ
β α

3 ,mpλεq

m

d

mpλεq

Npλεq

npλεq

Npλεq

Npλεq ´ zptNq

Npλεq ´ 1

zptNq ´ q1´ α3
pλε,mq

m

ľ

”q1´ α3
pλε,mq{m

λε

npλεq

Npλεq

λε
λN

´
zptNq{Npλεqpmpλεq{mq ´ A0ptNq

pN ´ A0ptNq
p1 ´ πq sup

M⩾N

λptMq

λM

ı

inf
M⩾N

M´γλM

` N´γ
β α

3 ,mpλεq

m

d

mpλεq

Npλεq

npλεq

Npλεq

Npλεq ´ zptNq

Npλεq ´ 1

zptNq ´ q1´ α3
pλε,mq

m
p

Ñ d3p1 ´ πq rp1 ´ εq ´ d4s ,

where d3 “ lim infNÑ8 N´γλN P p0,8q, d4 “ lim infNÑ8
λptNq

λN
P pp1 ´ εqλN , 1s. The conver-

gence in probability follows because mpλεq{m — 1 ´ λε Ñ 1 and thus using the same proof as

for (62), it holds that

zptNq{Npλεqpmpλεq{mq ´ A0ptNq

pN ´ A0ptNq

p
Ñ 1, for N Ñ 8.

Additionally,

N´γm´1
pQ̃pλεq ´ mA0q ⩽ p1 ´ πq

„

p1 ´ εq ´ inf
M⩾N

λptMq

λM

ȷ

sup
M⩾N

pM´γλMq

Ñ d1p1 ´ πq rp1 ´ εq ´ d2s , for N Ñ 8

and

N´γm´1
pQ̃pλεq ´ mA0q ⩾ p1 ´ πq

„

p1 ´ εq ´ sup
M⩾N

λptMq

λM

ȷ

inf
M⩾N

pM´γλMq

Ñ d3p1 ´ πq rp1 ´ εq ´ d4s , for N Ñ 8.

Thus taking,

c “
d3p1 ´ πq rp1 ´ εq ´ d4s

d1p1 ´ πq rp1 ´ εq ´ d2s

we obtain (58).
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Lemma .6. Let ´1 ă γ ă 0 and ε P p0, 1s arbitrary and defineσ2
FptNq “ A0ptNqp1´A0ptNqq{m.

If for a sequence ptNqN⩾1 and ρ “ ρ˚,

lim inf
NÑ8

mσF ă `8 (NC’)

then

(I) (20) or (21) is not true,

(II) (Cε) is not true for λ “ λ̂
ρ˚

adapt.

Proof First note that (NC’) implies

σF “ opNζq, (64)

for all ζ P p´1, 0s, as in Lemma .4.

(I): With the same arguments as in Lemma .4, (NC’) implies two possible cases

(1’) lim infNÑ8 NA0ptNq ă 8, lim infNÑ8 Np1 ´ A1ptNqq ă 8

(2’) lim infNÑ8 Np1 ´ A0ptNqq ă 8, lim infNÑ8 NA1ptNq ă 8

and these in turn imply

(1) A0ptNq “ opNζq, 1 ´ A1ptNq “ opNζq

(2) 1 ´ A0ptNq “ opNζq, A1ptNq “ opNζq,

for all ζ P p´1, 0s. But then (1) and (2) imply, λptNq “ opNζq, for all ζ P p´1, 0s,

contradicting (20) for ε ă 1. For ε “ 1 assuming (21b) to be true and following the

exact same subsequence argument for (1’) and (2’) in turn as in Lemma .4 (I) results in a

contradiction and thus (21b) cannot be true.

(II): Let Vm,tN be defined as in Proposition 14. (1), (2) make it clear that in our setting, (NC’)
and (45) are equivalent. Moreover, in the same way as in Lemma .4, for all δ ą 0

Ppλ´1
N pF̂mptNq ´ A0ptNqq ą δq ⩽

λ´2
N σ

2
F

δ
—

rNγσFs2

δ
Ñ 0, for N Ñ 8.

Now assume that despite (NC’),

PpVm,tN ą Qm,n,αpzptNq, λ̃q @λ̃ P r0, λεsq Ñ 1, for N Ñ 8, (65)

holds true. Then, using Lemma .5 and the arguments in Proposition 14, also

PpVm,tN ą Q̃pλεqq Ñ 1, for N Ñ 8, (66)
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must hold. However, for ε ă 1,

PpVm,tN ą Q̃pλεqq “ PpVm,tN ´ mA0ptNq ą mλNrp1 ´ εqp1 ´ πq ´
λptNq

λN
sq

“ Ppλ´1
N pF̂mptNq ´ A0ptNqq ą rp1 ´ εqp1 ´ πq ´

λptNq

λN
sq

and as from (I), λptNq

λN
Ñ 0 and λ´1

N pF̂mptNq ´ A0ptNqq
p

Ñ 0, this probability will converge

to zero, contradicting (65) for ε P r0, 1q. For ε “ 1, note that (65) also implies that

PpVm,tN ą Qm,n,αpzptNq, 0qq Ñ 1, for N Ñ 8. (67)

Now by definition of Qm,n,αpzptNq, 0q,

PpVm,tN ą Qm,n,αpzptNq, 0qq ⩽ PpVm,tN ´
m
N

zptNq ą 0q,

and since Vm,tN “ mF̂mptNq and zptNq “ mF̂mptNq ` nĜmptNq,

PpVm,tN ą Qm,n,αpzptNq, 0qq ⩽ P
´ n

N
mF̂mptNq ´

m
N

nĜmptNq ą 0
¯

“ PpF̂mptNq ´ ĜmptNq ą 0q.

We now can use exactly the same argument as in Lemma .4, (II), to obtain that for a

correctly chosen subsequences,

lim sup
kÑ8

PpF̂mpkqptNpkqq ´ ĜnpkqptNpkqq ą 0q ă 1,

contradicting (65). Thus finally, (Cε) cannot be true if (NC’) is true.

Technical tools for Proposition 10: We now introduce two concepts that will help greatly in

the proof of Proposition 10. The first concept is that of “Distributional Witnesses”. We assume

to observe two iid samples of independent random elements X,Y with values in pX,Aq with

respective probability measures P and Q. Similar as in [36], let C be the set of all random

elements pX̃, Ỹq with values in pX2,A2q, and such that X̃ „ P and Ỹ „ Q. Following standard

convention, we call pX̃, Ỹq P C a coupling of P and Q. Then TVpP,Qq may be characterized as

TVpP,Qq “ inf
C
PpX̃ , Ỹq. (68)

This is in turn equivalent to saying that we minimize Πpx , yq over all joint distributions

Π on pX2,A2q, that have X#Π “ P and Y#Π “ Q. Equation (68) allows for an interesting

interpretation, as detailed (for example) in [36]: The optimal value is attained for a coupling
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pX˚,Y˚q that minimizes the probability of X˚ , Y˚. The probability that they are different

is exactly given by TVpP,Qq. It is furthermore not hard to show that the optimal coupling is

given by the following scheme: Let W „ BernoullipTVpP,Qqq and denote by f the density

of P and g the density of Q, both with respect to some measure on pX,Aq, e.g. P ` Q. If

W “ 0, draw a random element Z from a distribution with density minp f , gq{p1 ´ TVpP,Qqq

and set X˚ “ Y˚ “ Z. If W “ 1, draw X˚ and Y˚ independently from p f ´ gq`{TVpP,Qq and

pg ´ f q`{TVpP,Qq respectively.

Obviously, X˚ and Y˚ so constructed are dependent and do not directly relate to the observed

X, Y , which are assumed to be independent. However it holds true that marginally, X D
“ X˚ and

Y D
“ Y˚. In particular, given that W “ 1, it holds that X D

“ X˚ “ Y˚ D
“ Y , or X|tW “ 1u

D
“

Y|tW “ 1u. On the other hand, for W “ 0, the support of X and Y is disjoint. This suggests

that the distribution of X and Y might be split into a part that is common to both and a part

that is unique. Indeed, the probability measures P and Q can be decomposed in terms of three

probability measures HP, HQ, HP,Q such that

P “ λHP ` p1 ´ λqHP,Q and Q “ λHQ ` p1 ´ λqHP,Q, (69)

where the mixing weight is λ “ TVpP,Qq.

Viewed through the lens of random elements, these decompositions allow us to view the

generating mechanism of sampling from P and Q respectively as equivalent to sampling from

the mixture distributions in (69). Indeed we associate to X (equivalently for Y) the latent binary

indicator WP, which takes value 1 if the component specific to P, HP, is ”selected” and zero

otherwise. As before, it holds by construction PpWP “ 1q “ TVpP,Qq. Intuitively an observa-

tion X with WP “ 1 reveals the distribution difference of P with respect to Q. This fact leads to

the following definition:

Definition 24 (Distributional Witness). An observation X from P with latent realization WP “ 1

in the representation of P given by (69) is called a distributional witness of the distribution P

with respect to Q. We denote by DWmpP; Qq The number of witness observations of P with

respect to Q out of m independent observations from P.

The second concept is that of a bounding operation: Let Λ̄P P N, Λ̄Q P N be numbers

overestimating the true number of distributional witnesses from m iid samples from P and n iid

samples from Q, i.e.

Λ̄P ⩾ ΛP :“ DWmpP; Qq, Λ̄Q ⩾ ΛQ :“ DWnpQ; Pq. (70)

Thus, it could be that Λ̄P, Λ̄Q denote the true number of witnesses, but more generally, they

need to be larger or equal. If Λ̄P ą ΛP or Λ̄Q ą ΛQ, a precleaning is performed: We randomly

choose a set of Λ̄P ´ ΛP non-witnesses from the sample of F and Λ̄Q ´ ΛQ non-witnesses
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Figure 10: Illustration of the bounding operation. The first row from above is the original order statistics shown
as circles (coming from F) and squares (coming from G). Witnesses are indicated by blue crosses. In the second,
randomly chosen non-witnesses are added to the list of witnesses left and right, indicated by red, until the number
of witnesses is Λ̄P and Λ̄Q. In the final two rows, the witnesses of F and G are pushed to the left and right
respectively, such that the original order of the non-witnesses in the second row is kept intact.

from the sample of G and mark them as witnesses. Thus we artificially increase the number

of witnesses left and right to Λ̄P, Λ̄Q. Given this sample of witnesses and non-witnesses and

starting simultaneously from the first and last order statistics Zp1q and ZpNq, for i P t1, . . . ,Nu in

the combined sample, we do:

(1) If i ă Λ̄P and Zpiq is not a witness from F, replace it by a witness from F, randomly

chosen out of all the remaining F-witnesses in tZpi`1q, . . .ZpNqu. Similarly, if i ă Λ̄Q and

ZpN´i`1q is not a witness from G, replace it by a witness from G, randomly chosen out of

all the remaining G-witnesses in tZp1q, . . .ZpN´iqu.

(2) Set i “ i ` 1.

We then repeat (1) and (2) until i “ maxtΛ̄P, Λ̄Qu.

This operation is quite intuitive: we move from the left to the right and exchange points

that are not witnesses from F (i.e. either non-witnesses or witnesses from G), with witnesses

from F that are further to the right. This we do, until all the witnesses from F are aligned in

the first Λ̄P positions. We also do the same for the witnesses of G in the other direction of the

order statistics. Figure 10 illustrates this operation. Implementing the same counting process

that produced Vm,z in the original sample leads to a new counting process z ÞÑ V̄m,z. Lemma

.7 collects some properties of this process, which is now much more well-behaved than the

original Vm,z.

Lemma .7. V̄m,z obtained from the bounding operation above has the following properties:

(i) P p@z P Jm,n : V̄m,z ⩾ Vm,zq “ 1, i.e. it stochastically dominates Vm,z.
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(ii) It increases linearly with slope 1 for the first Λ̄P observations and stays constant for the

last Λ̄Q observations.

(iii) If Λ̄P ă m and Λ̄Q ă n and for z P tΛ̄P ` 1, . . . ,N ´ Λ̄Q ´ 1u, it factors into Λ̄P and a

process Ṽm´Λ̄P,z´Λ̄P , with

Ṽm´Λ̄P,z´Λ̄P „ Hypergeometric
`

z ´ Λ̄P,m ` n ´ Λ̄P ´ Λ̄Q,m ´ Λ̄P
˘

. (71)

Proof (i) follows, as V̄m,z only counts observations from F and these counts can only in-

crease when moving the witnesses to the left. (ii) follows directly from the bounding operation,

through (70).

(iii) According to our assumptions, we deal with the order statistics of two independent

iid samples pX1,WX
1 q, . . . pXm,WX

mq and pY1,WY
1 q, . . . pYn,WY

n q, with X|WX “ 1 being equal in

distribution to Y|WY “ 1. We consider their order statistics pZp1q,WZ
1 q, . . . pZpNq,WZ

Nq. In the

precleaning step, we randomly choose Λ̄P ´ ΛP i such that WP
i “ 0 and Λ̄Q ´ ΛQ j such that

WP
j “ 0 and flip their values such that WP

i “ 1 and WY
j “ 1. Let IpΛ̄P, Λ̄Qq denote the index

set ti : WP
i “ 1 or WY

i “ 1u and let Ic :“ IpΛ̄P, Λ̄Qqc “ t1, . . . ,NuzIpΛ̄P, Λ̄Qq. “Deleting” all

observations, we remain with the order statistics pZpiqqiPIc . By construction, up to renaming the

indices, we obtain an order statistics Zp1q, . . . ,ZpN´Λ̄P´Λ̄Qq drawn from the common distribution

HP,Q. Therefore the counting process VI,z “ pm ´ Λ̄PqF̂pZpzqq is a hypergeometric process.
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Abstract

Given the prevalence of missing data in modern statistical research, a broad range of

methods is available for any given imputation task. How does one choose the ‘best’

imputation method in a given application? The standard approach is to select some

observations, set their status to missing, and compare prediction accuracy of the methods

under consideration of these observations. Besides having to somewhat artificially mask

observations, a shortcoming of this approach is that imputations based on the conditional

mean will rank highest if predictive accuracy is measured with quadratic loss. In

contrast, we want to rank highest an imputation that can sample from the true conditional

distributions. In this paper, we develop a framework called “Imputation Scores”

(I-Scores) for assessing missing value imputations. We provide a specific I-Score based

on density ratios and projections, that is applicable to discrete and continuous data. It

does not require to mask additional observations for evaluations and is also applicable if

there are no complete observations. The population version is shown to be proper in the

sense that the highest rank is assigned to an imputation method that samples from the

correct conditional distribution. The propriety is shown under the missing completely

at random (MCAR) assumption but is also shown to be valid under missing at random

(MAR) with slightly more restrictive assumptions. We show empirically on a range of

data sets and imputation methods that our score consistently ranks true data high(est) and

is able to avoid pitfalls usually associated with performance measures such as RMSE.

Finally, we provide the R-package Iscores available on CRAN with an implementation

of our method.

Keywords. Ranking, Random Projections, Tree Ensembles, Random Forest, KL-

Divergence.
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1 Introduction

Missing data is a widespread problem in both research and practice. In the words of [121], “im-

puting incomplete observations is becoming an indispensable intermediate phase between the

two traditional phases [...] of collecting data and analyzing data.” With the increasing dimen-

sionality and size of modern data sets, the problem of missing data only gets more pronounced.

One reason for this is that even for moderate dimensionality and overall fraction of missing

entries, the set of complete observations tends to be small if not zero. As such, one would of-

ten have to discard a substantial part of the data when keeping only complete observations. In

addition, depending on the missingness mechanism, working with complete cases is invalid in

many situations.

Consequently, there is a large body of literature on imputation methods, filling in the missing

entries in a given data set, see e.g., [108]. Such methods include the very general Multivariate

Imputation by Chained Equations (mice) approach [176, 38], missForest [167], and multiple

imputation in principal component analysis (mipca) [84]. In more recent work, methods based

on non-parametric Bayesian strategies [127], generative adversarial networks [189] and optimal

transport [128] were developed. These are just a few examples. The ‘R-miss-tastic’ platform,

developed in an effort to collect knowledge and methods to streamline the task of handling

missing data, lists over 150 packages [114].

Despite the broad range of imputation methods, not a lot of attention has been paid in the

literature to the question of how to evaluate and choose an imputation method for a given data

set. If the true data underlying the missing entries are available (achievable if observations are

artificially masked), the imputed values are often simply compared to the true ones through the

root mean-squared error (RMSE) or mean absolute error (MAE) (see e.g., [167], [182], [189],

[128] and many others). For categorical variables, the percentage of correct predictions (PCP)

can be used [103]. To select an imputation method, the one with the lowest overall error value

is chosen. This simple method is common, despite having major drawbacks. For example,

RMSE (respectively, MAE and PCP) favors methods that impute with the conditional means

(respectively, conditional medians and conditional modes), versus samples from the true con-

ditional distributions [57]. As outlined in [175, Chapter 2.5.1], this may lead to a choice of

“nonsensical” imputation methods. In particular, they tend to artificially strengthen the associ-

ation between variables, which can lead to invalid inference. A motivating example of such a

case is given in Section 3.

Another approach is to fix a target quantity, calculated once on the full data and once on the

imputed data and use suitable distances between them for a quality assessment of the imputa-

tion. The target quantity can be an expectation, a regression or correlation coefficient, a variance

[72, 45, 5, 55, 188] or more involved estimands such as treatment effects using propensity scores



Näf et al. (2022) 93

[31]. While this approach is sensible if (one) target quantity can clearly be defined, this may not

be ideal in many applications. Often it is not even clear beforehand what the target of interest

is, or one deals with several targets of interests, each of which might lead to a different choice

of imputation methods [175, Chapter 2.3.4].

As such, there are situations where one might prefer to have a tool that is able to identify

a good imputation method for a wide range of targets. A way to achieve this is to simply

define the notion of target measure more broadly. As noted in [128]: “A desirable property

of imputation methods is that they should preserve the joint and marginal distributions.” That

is, if x˚ is a complete observation and z an observation with imputed values, we want them to

be realizations of the same distribution. This can be seen as a special case of the above target

quantity approach, with the target being the underlying joint distribution from which the data

were generated.

With this goal in mind, more elaborate distributional metrics, such as ϕ-divergences [35]

or integral probability metrics (see e.g., [164]) are necessary, even when simply comparing an

imputed data set to the true one. This was utilized in [128] with the Wasserstein Distance (WD),

but seems otherwise uncommon, despite the drawbacks of measures like RMSE and MAE.

In applications, the true data for the missing values are rarely available. Ad-hoc methods

have been proposed to assess the success of the imputation; one such approach is to mask some

observed values, impute them, and then compare (via, say, RMSE) the imputations with the

observed values. In this paper, we aim to assess more directly the quality of an imputation

method. We propose the flexible framework of proper Imputation Scores (I-Scores) to evalu-

ate imputation methods when (i) the target measure is the true data distribution, (ii) the true

data underlying the missing values are not available, and (iii) we do not want to artificially

mask observations for the evaluation. To overcome the difficulty of observing only incom-

plete data, we use random projections in the variable space. We propose a specific estimator

of an I-Score based on density ratios (DR I-Score). The density ratio is estimated through

classification, where the classifier acts as a discriminator between observed and imputed dis-

tribution. The result is an easy-to-use imputation scoring method. Under suitable assumptions

on the missingness mechanism, we prove propriety of our DR I-Score, meaning that the true

underlying data distribution is ranked highest in expectation. The propriety is shown under a

missing completely at random (MCAR) assumption on the missingness mechanism. It is also

shown to be valid under missing at random (MAR) if we restrict the random projections in the

variable space to always include all variables, which in turn requires access to some complete

observations. Empirical results show that indeed true data samples are generally ranked high-

est by the proposed I-Score if compared with widely used imputation methods. We provide

an implementation of the method in the R-package Iscores, available on CRAN and GitHub

(https://github.com/missValTeam/Iscores).

https://github.com/missValTeam/Iscores
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Section 2 introduces the notation and Section 3 showcases a motivating example. Section 3

defines the framework of Imputation Scores (I-Scores) along with a specific I-Score, presenting

a way of evaluating imputation methods in the presence of missing values. Section 4 then details

the estimation of the I-Score and describes the algorithm. Section 1.2 presents further related

work. Section 5 empirically validates the estimated I-Score on a range of data sets and on a real

data set with missing values, and Section 8 concludes with a discussion.

2 Notation

We assume an underlying probability space pΩ,A,Pq on which all random elements are defined.

Throughout, we take P to be a collection of probability measures on Rd, dominated by some σ-

finite measure µ. We denote the (unobserved) complete data distribution by P˚ P P and by P the

actually observed distribution with missing values. We assume that P (P˚) has a density p (p˚).

We take X (X˚) to be the random vector with distribution P (P˚) and let xi (x˚
i ), i “ 1, . . . , n,

be realizations of an i.i.d. copy of the random vector X (X˚). Similarly, M is the random vector

in t0, 1ud, encoding the missingness pattern of X, with realization m, whereby for j “ 1, . . . , d,

m j “ 0 means that variable j is observed, while m j “ 1 means it is missing. For instance, the

observation pNA, x2, x3q corresponds to the pattern p1, 0, 0q. We denote the distribution of M as

PM, with supportM, so that PpM “ mq “ PMpmq.

For a subset A Ď t1, . . . , du and for a random vector X or an observation x in Rd, we denote

with XA (xA) its projection onto that subset of indices. For instance if d “ 3 and A “ t1, 2u, then

XA “ pX1, X2q (xA “ px1, x2q). The projection onto A of the observation xi, pxiqA, is denoted as

xi,A. Analogously, for a missingness pattern M „ PM or an observation m in t0, 1ud, we denote

with MA pmAq its projection onto the subset of indices in A. If X has a density p on Rd, we

denote by pA the density of the projection XA.

To denote assumptions on the missingness mechanism, we use a notation along the lines of

[151]. For each realization m of the missingness random vector M we define with opX,mq :“

pX jq jPt1,...,du:m j“0 the observed part of X according to m and with ocpX,mq :“ pX jq jPt1,...,du:m j“1

the corresponding missing part. Note that this operation only filters the corresponding elements

of X according to m, regardless whether or not these elements are actually missing or not. For

instance, we might consider the unobserved part ocpX,mq according to m for the fully observed

X, that is X „ P|M “ 0, where 0 denotes the vector of zeros of length d.

3 Motivating Example

As a toy motivating example we consider a noisy version of the spiral in two dimensions from

the R-package mlbench [100]. The concepts and tools introduced here will be detailed and used
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(a) MAR

(b) MCAR

Figure 1: Imputations for the spiral example pn “ 1000, p “ 2q. The complete observations are plotted in light
gray with dots and the imputed observations in dark gray with squares. From left to right, true data, mice-cart,
sample and loess are shown. The top row shows the MAR case, the bottom row the MCAR case.

in the remainder of the paper. We generated 1000 observations of the noisy spiral, each entry

having a probability of being missing of pmiss “ 0.3 with missingness mechanisms MAR and

MCAR. In the case of MAR, the variable X2 is missing with probability pmiss if the correspond-

ing X1 is ą 0.3 or ă ´0.3 and observed otherwise. The variable X1 is missing with probability

pmiss, if X2 P r´0.3, 0.3s. In the case of MCAR, we set every value in the data matrix to NA with

probability pmiss. For MCAR we face already in this low dimensional example an average of

around p1 ´ p1 ´ 0.3q2q ˚ 1000 « 500 observations with at least one missing value, which is

half the sample size.

We might decide to impute the missing values and do so with three methods: i) simply

estimating the conditional expectation ErX1|X2s and ErX2|X1s on the complete cases using a

local regression approach (“loess”), and filling in the missing values by predicting from X1 (if

X2 is missing) or from X2 (if X1 is missing), ii) random sampling an observed value for each

missing entry (“sample”), and iii) mice [176] combined with a single tree in each iteration

(“mice-cart”). See Appendix 1 for more explanation on sample and mice-cart.
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Though a very artificial example, it highlights some interesting features of different evalu-

ation methods of the imputations. As mentioned in the introduction, our target is P˚, the full

distribution of the data. In this two dimensional example, a visual evaluation is possible. Fig-

ure 1 shows the resulting imputations. While mice-cart and the true underlying data are hard to

distinguish, it is apparent that sample is worse than either and loess in turn is much worse than

sample.

We may now try to quantify this visually obtained ordering. For the three imputations as

well as the true underlying data we compute our DR I-Score (defined later). This score is

positively oriented: A higher value indicates a better performance. We additionally compute

the negative of RMSE (“negRMSE”), where the negative sign assures the same orientation of

higher values indicating better performance. We emphasize that negRMSE is computed using

the unobserved full data set, as commonly done in research papers introducing new methods of

imputation. We also computed approximated two-sided 95%-confidence intervals (CI) of the

DR I-Score and negRMSE, as detailed in Section 4. The results are shown in Figure 3. In the

left plot (a), the score of the true data was subtracted from the scores to visualize the comparison

to the true data imputation. In the right plot (b), normalizing negRMSE scores, using the true

data imputation, is unnecessary, since negRMSE is 0 by definition for the true data imputation.

Maybe unsurprisingly, negRMSE appears to poorly measure the distributional difference

between imputed and real data set. In particular, for MCAR and MAR its value is highest for

the loess imputation, and significantly so, based on the approximated CI. This is despite the fact

that negRMSE is allowed to use the unobserved data. In contrast, our proposed DR I-Score has

no access to the unobserved data, and nonetheless ranks true data clearly highest, with mice-cart

as a close second, followed by sample and loess. Thus, without using the unobserved samples,

our score manages to give a sensible ranking in this example that is in line with the visual

impression, for both a MCAR and MAR missingness mechanisms.

4 Scores for Imputations

Our notion of proper Imputation Score (I-Score) is inspired by the classical notion of proper

scores (or proper scoring rules) and proper divergence functions (see e.g. [58, 57, 170]). A

score assesses whether a probabilistic forecast is close to the true distribution. In a traditional

sense, a score S takes a predictive distribution Q1 P P as a first argument, as well as X „ Q2 P P

as a second: S pQ1, Xq. The corresponding expectation over the distribution Q2 is denoted by

S pQ1,Q2q :“ EX„Q2rS pQ1, Xqs. Thus, a score value is assigned to Q1 over the comparison

with Q2. A desirable natural property is that S pQ1,Q2q ⩽ S pQ2,Q2q, for all Q1,Q2 P P. This

ensures that the true distribution Q2 of X is scored highest in expectation. A score that meets

this requirement is referred to as proper.
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(a) Estimated DR I-Score with CIs. (b) Negative RMSE with CIs.

Figure 2: Spiral example (n “ 1000, p “ 2): Estimation of the proposed DR I-Score (a) and the negRMSE (b)
with corresponding CIs for the methods mice-cart, sample and loess under the missingness mechanisms MCAR
(black) and MAR (grey). We obtained the CIs by subsampling as described in Section 5.3. In (a) we subtracted
the score of the true data from the scores of the methods, thus the line at 0 represents the true data score. We used
pmiss “ 0.3 to generate missing values.

4.1 Imputation Score (I-Score)

We now define the notion of a proper I-Score. Despite the analogy to the classical notion of

scores, we will need some deviations for the setting of imputation scores as applied to partially

observed samples. Recall that P refers to the distribution of X with missing values and corre-

spondingly, P˚ P P refers to the distribution of X˚ without missing values. We denote with PM

the distribution of M with domain M. Naturally, pP˚, Pq form a tuple, whereby P is derived

from P˚ and PM. We define HP Ă P to be the set of imputation distributions compatible with

P, that is

HP :“ tH P P : hpopx,mq|M “ mq “ ppopx,mq|M “ mq for all m PMu, (1)

where as above for a pattern m, opx,mq “ px jq jPt1,...,du:m j“0 subsets the observed elements of

x according to m, while ocpx,mq “ px jq jPt1,...,du:m j“1, subsets the missing elements1. Clearly,

P˚ P HP, so that the true distribution P˚ can be seen as an imputation.

Definition 25. Imputation Score (I-Score)
Let pP˚, Pq be the tuple of distributions as described above and H P HP, as given in (1). A

real-valued function S NApH, Pq is a proper I-Score iff

S NApH, Pq ⩽ S NApP˚, Pq,

1Note that while h and p are densities on Rd, notation is slightly abused by using expressions such as
hpopx,mq|M “ mq and ppopx,mq|M “ mq, which are densities on R|t j:m j“0u|.
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for any imputation distribution H P HP. It is strictly proper iff the inequality is strict for

H , P˚.

In practice, we do not have access to H and P but can only draw samples from pH, Pq

by drawing a sample x from P (with missingness pattern m) and the corresponding coupled

imputation z from H that matches x on all observed variables, so that opz,mq “ opx,mq. In the

ideal case where pZ, Xq are drawn from pP˚, Pq, the conditional distribution of ocpZ,Mq given

opZ,Mq is identical to the conditional distribution of ocpX˚,Mq given opX˚,Mq. In principle,

we could also score the full conditional distribution of imputation algorithms instead of just

supposing that we can draw samples from the conditional distribution. However, most popular

imputation algorithms do not specify the conditional distribution explicitly and we thus focus

on the latter case. We discuss the sample-based implementation in Section 4.

A key difference to the classical notion of scores [58, 57] is that we do not observe a sample

from the ‘true’ distribution of the missing values of x, given missingness pattern m and observed

values opx,mq. We can hence not compare the predictions of the missing values (whether they

are explicit distributional predictions or samples from the imputation) to the realization of a

sample from the underlying ‘true’ conditional distribution. It seems perhaps surprising that we

can still obtain proper I-Scores in this setting. A central assumption is that the missingness

mechanism is such that any subset of variables has a positive probability of being observed (in

contrast to a classical regression setting where the target variable is always unobserved before

the prediction is made). The variability of the missingness patterns hence allows to construct

proper I-Scores. An alternative approach would be to mask observed values as unobserved and

score the imputation on these held-out data. This would require to change the distribution of the

missingness patterns, however, which would be especially problematic in absence of a MCAR

assumption.

We immediately see that negRMSE used in the motivating example of Section 3 does not fit

into the framework of proper I-Scores, simply because it requires access to the true underlying

values according to P˚.

We now define a specific I-Score that satisfies Definition 25, the density ratio (DR) I-Score.

4.2 Density Ratio I-Score

The goal is to provide a methodological framework to construct an I-Score based on density ra-

tios, the DR I-Score. In addition, we try to circumvent the problem of not observing P˚ in a data

efficient way, employing random projections in the variable space. Considering observations

that are projected into a lower-dimensional space allows us to recover more complete cases of

the true underlying distribution. As an example, x “ pNA, 1, NA, 2q is not complete, however if

we project it to the dimensions A “ t2, 4u, xA “ p1, 2q is complete in this lower-dimensional
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space. In what follows, we average distributional differences between imputed and complete

cases over different projections. In fact, these projections constitute an additional source of

randomness over which we integrate to obtain the DR I-score, as we detail now.

Let A be a subset of the power set 2t1,...,du, that denotes the set of all possible projections,

such that each A P A describes a set of variables we project onto. Assume the projections

are chosen randomly according to a distribution K with support A (see Section 5.2 for more

details on K). Similarly, we define for each A a distribution PM
A over the missingness patterns

in PA with support MA. That is, mA P MA is a given missingness pattern on the projection

with associated probability PpMA “ mAq “ PM
A pmAq. For any distribution H P HP we can then

consider the conditional distribution HA|MA “ mA, i.e. the distribution of an imputation H,

given the missingness pattern mA on the projection A. We will abbreviate this distribution with

HmA , so that the density of HmA is given as hmApxAq :“ hApxA|MA “ mAq. Denoting with 0 the

vector of zeros, we similarly write pApxA|MA “ 0q for the density of the fully observed points

on the projection A.

The following definition specifies the density ratio I-Score as an expected value of the log-

ratio of the two densities, where the expectation is also taken over A and MA.

Definition 26. Density Ratio I-Score
We define the DR I-Score of the imputation distribution H by

S ˚
NApH, Pq “ EA„K ,MA„PM

A ,XA„HMA

„

log
ˆ

pApXA | MA “ 0q

hMApXAq

˙ȷ

. (2)

If pApXA | MA “ 0q “ 0 for a set of XA „ HMA with nonzero probability, we take

S ˚
NApH, Pq “ ´8 as a convention. As an intuition, the DR I-Score given by (2) can be rewritten

as

S ˚
NApH, Pq “ ´EA„K ,MA„PM

A
DKLphMA || pAp¨ | MA “ 0qq,

where the Kullback-Leibler divergence (KL divergence) between two distributions P,Q P P on

Rd with densities p, q is defined by

DKLpp || qq :“
ż

ppxq log
ˆ

ppxq

qpxq

˙

dµpxq.

To prove that the DR I-Score is indeed a proper I-Score we need an assumption on the

missingness mechanism. This is shown in the following result:

Proposition 27. Let H P HP, as defined in (1). If for all A P A,

p˚
poc

pxA,mAq|opxA,mAq,M “ m1
Aq “ p˚

poc
pxA,mAq|opxA,mAqq,

for all m1
A,mA PMA, (3)

then S ˚
NApH, Pq in (2) is a proper I-Score.
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The proof is given in in Appendix 4.

Condition (3) is simply the MAR condition on the projection A, see e.g., [151].2 The key

insight is that for any imputation distribution H P HP and m PM it holds that

hmpxq “ hpoc
px,mq|opx,mq,M “ mqp˚

popx,mq|M “ mq, (4)

by the definition of HP in (1). This can be used to show that the score in (2) factors into (i) an

irreducible part, stemming from the difference in the observed parts p˚popx,mq|M “ mq and

ppopx,mq|M “ 0q, and (ii) a score for the distance of the conditional distributions. The latter is

minimized for H “ P˚.

Thus Proposition 27 shows that the proposed I-Score is proper as long as the missingness

mechanism is MAR on each projection A P A. In particular, this holds if

(i) the missingness mechanism is MCAR3,

(ii) the missingness mechanism is MAR andA “ t1, . . . , pu,

(iii) it is known that blocks of data are jointly MAR, and the set of projections A is chosen

such that the blocks are contained as a whole in the projections.

As will be discussed in Section 4, we face a trade-off in practice: The method tends to have

more power when allowing for smaller projections while this increases the chance of having a

lot of projections violating (3), which may hurt the propriety of the score. Nonetheless, in the

empirical validation (Section 7) we do not find evidence that our score violates propriety, even

when using random projections without any verification of MAR in the projections.

While our DR I-Score uses a KL-based measurement of the difference between the true

distribution and imputation distributions, it would be interesting to look into alternatives such

as the multivariate generalization of the integrated quadratic distance of [170], based on the

energy score of [59], as suggested by a referee.

4.3 Assessing a Density Ratio through Classification

We assess the density ratio of the proposed DR I-Score (2) by classification, as e.g. in [17] or

[24]. Given a projection A and a pattern mA, we define for xA in the support of HmA ,

πmApxAq :“
pApxA | MA “ 0q

pApxA | MA “ 0q ` hmApxAq
. (5)

It then follows that we can rewrite the density ratio in (2) as

pApxA | MA “ 0q

hmApxAq
“
πmApxAq

1 ´ πmApxAq
, (6)

2Lemma 3 in Appendix 4 shows that condition (3) is indeed equivalent to the MAR condition in [151].
3Flexible nonparametric methods to test MCAR were developed recently, see e.g., [101, 123].
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leaving us with the problem of how to obtain πmApxAq. Crucially, this term can be assessed

through a classifier. To see the link between the definition (5) and classification we introduce

further notation. Let SP be an i.i.d. sample from P. We denote by SP
A the subset of observations

in SP that is complete on A. Thus, SP
A may be seen as an i.i.d. draw from the density pp¨|MA “

0q. Similarly, we denote by SH
mA

all observations that originally had missingness pattern mA,

but were imputed with H. We introduce the binary class label YmA indicating membership of an

observation to the sample SP
A by YmA “ 1 and membership to the sample SH

mA
by YmA “ 0. We

then define

πYmA pxAq :“ PpYmA “ 1 | XA “ xAq, (7)

πmA :“ PpYmA “ 1q,

where πmA simply denotes the probability of class 1 in a given projection and pattern.

Lemma .8. Let πmApxAq, πYmA pxAq and πmA be defined as in (5) and (7) respectively. If πmA “ 0.5,

then

πmApxAq “ πYmA pxAq.

The proof is given in Appendix 4 and simply uses Bayes Formula.

Lemma .8 shows that one can access the density ratio (6) through an estimate of the posterior

probability πYmA pxAq. This has a direct connection to classification, as for πmA “ 0.5, the Bayes

classifier with minimal error for this problem is given by ItπYmA pxAq ą 1{2u [40]. In practice,

we ensure πmA “ 0.5 in each projection A and pattern mA by upsampling the smaller class to the

size of the larger class, as detailed in Appendix 2.

5 Practical Aspects

In practice, we take several steps to estimate S ˚
NApH, Pq based on samples only. For a miss-

ingness pattern m P M, let rAm be a set of random projections sampled from A. Note that we

sample the set of random projections dependent on the missingness pattern m, as specified in

Section 5.2. Let furthermore NmA be the set of indices i such that xi,A has missingness pattern

mA whose posterior probability πmApxAq in (5) is estimated by π̂mApxAq. Given an imputation

method with N ⩾ 1 imputed values x1
i , . . . , x

N
i of the incomplete observations, the estimator of

S ˚
NApH, Pq is given by

pS ˚
NApH, Pq :“

1
N

N
ÿ

j“1

1
|M|

ÿ

mPM

1

| rAm|

ÿ

AP rAm

1
|NmA |

ÿ

iPNmA

«

log

˜

π̂mApx j
i,Aq

1 ´ π̂mApx j
i,Aq

¸ff

, (8)

yielding a score of the imputation performance of H, averaged over N ⩾ 1 imputations.



102 Paper B

For each projection A and pattern mA, we first split the data into a training and test set. We

make sure to have observations with pattern mA in both the training and test set. We then fit

π̂mA on the training set and evaluate it on the test set. We use both halfs of the sample once for

training and once for evaluation, to ensure that every observation contributes to the final score

(8).

Algorithm 1 in Appendix 2 summarizes the practical estimation of the DR I-Score and gives

more details. We now highlight a few more key concepts for the estimator.

5.1 Random Forest Classifier

To estimate πmApx j
i,Aq we use a classifier, as detailed in Section 4.3. Our classifier of choice is

Random Forest and more specifically, the probability forest of [111]. That is, for each of the

num.proj projections in Ãm, we fit a Random Forest with a small number of trees (say between

5 and 20), a parameter called num.trees.per.proj. As such, the overall approach might be

seen as one aggregated Random Forest, which restricts the variables in each tree or group of

trees to a random subset of variables. This seems natural considering the construction of the

RF. In each tree we set mtry to the full dimension of the projection to avoid an additional sub-

sampling effect. Despite the natural fit of our framework into the Random Forest construction,

any other classifier may be chosen to obtain an estimate of πmA .4

5.2 Distribution over Projections and Patterns

The question remains how to choose the set of projections A „ K from which we sample the

subset Ã at random. We group the samples according to their missingness pattern and for each

of the groups we sample num.projmany projections fromA, that we adapt to the given pattern.

Let Oc
m Ď t1, . . . , du be the index set of variables with a missing value, such that ocpxi,mq “

xi,Oc
m and similarly Om “ t1, . . . , duzOc

m the index set of variables without a missing value.

Given a missingness pattern m of a group of samples, we chooseA “ Am as the set of subsets

A that satisfy A X Oc
m , H and AzOc

m , H, i.e., a subset of missing indices has to be part of

the projection but there must be at least one element in A that is not part of Oc
m. The intuition

behind this choice is the following: Since we want to compare a sample of projected imputed

observations of a pattern to a sample of projected complete observations, we need to ensure that

these samples are not the same. This is the reason for including in each projection at least one

index j such that m j “ 1, i.e. x j was missing in the given pattern.

In practice, we select at random a subset Ãm ofAm. To obtain each A P Ãm we first sample

a number r1 in t1, . . . , |Oc
m|u and a number r2 in t1, . . . , d ´ r1u. Then A is obtained as the union

4We also experimented with other classifiers such as generalized linear model (glm), but in practice the resulting
score did not have a lot of power discriminating different imputations.
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of a random subset of size r1 from Oc
m and a random subset of size r2 from Om.

Having obtained A P Ãm, we choose the support of the projected pattern to be a singleton,

MA “ tmAu, with

pmAq j “

$

&

%

1, if j P A X Oc
m

0, else.

That is the pattern mA is simply the pattern m projected to A. We thereby ensure that on the

projection A the training set on which the classifier is trained contains the same pattern as the

test points.

5.3 Approximate Confidence Intervals

We estimate the variance of our score, if the data would vary, by a jackknife approach as in

[153]. We divide X randomly into two parts and compute the DR I-Score for a given imputa-

tion method for each part, obtaining S p1q and S p2q. This is repeated B times to obtain scores

S p1q

1 , . . . , S
p1q

B and S p2q

1 , . . . , S
p2q

B . Let S̄ j “ 1{2pS p1q

j ` S p2q

j q and let pS be the score of the original

data set for a given imputation method. We estimate the variance according to the formula of

[153], as

xVarppS q “
1
B

¨

˝

B
ÿ

j“1

˜

S̄ j ´
1
B

B
ÿ

j“1

S̄ j

¸2
˛

‚. (9)

The approximate p1 ´ αq-Confidence Interval for our score is then given as

Ŝ ˘ q1´α{2 ¨

b

xVarppS q,

where q1´α{2 is the p1 ´ α{2q-quantile of a standard normal distribution. We choose α “ 0.05

as default level. As the normality of the score is not guaranteed, a more careful approach would

instead try to estimate the quantiles directly in this manner, e.g., using subagging [22]. While

this is possible, it is computationally intense as the number of repetitions has to be high to obtain

an accurate estimate of the quantiles. In contrast, the variance appears easier to approximate

and simulations indicate that the estimate of the variance is reasonable.

6 Further Related Work

There are essentially two strands of literature related to our paper. The first concerns efforts to

score imputation methods, as we do in this work. To the best of our knowledge, the research

area of scoring and selecting imputation methods has not gained a lot of attention, especially

under the more realistic assumption that the true data, or even a simulated ground truth, are not
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available for comparison. In [42] the authors state that the performance of an imputation should

“preserve the natural relationship between variables in a multivariate data set (...)”. The methods

they use to assess these properties include comparing densities before and after imputation and

in the classification case comparing ROC curves. The authors of [110] consider the scoring of

imputation methods with respect to classification tasks. They build a score based on pairwise

comparisons of classification performances of two imputation methods using Wilcoxon Tests.

Again, this procedure requires the knowledge of the underlying true values.

The second line of literature concerns methods that have very different goals, but are method-

ologically similar to what we propose: we make use of a classifier able to handle missing values

to discriminate between imputed and real data. The key idea is to use projections in the variable

space together with a Random Forest (RF) [15] classifier. As such, our method is probably

most closely related to the unsupervised Random Forest approach originally proposed in [17]

and further developed in [154]. The latter uses an adversarial distribution and a RF classification

to achieve a clustering in an unsupervised learning setting. We take the same approach in a dif-

ferent context, whereby our adversarial distribution is the imputation distribution. The classifier

approach also has some connections to the famous General Adversarial Network (GAN) [61]

and the GAIN imputation method [189] that extends the GAN approach to obtain an imputa-

tion method. Aside from the fact that instead of imputation we are concerned about evaluation,

there are further differences: First, their discriminator is trained to predict the missingness pat-

tern, while we directly compare imputed and real data. Second, compared to a fully-fledged

optimized GAN, our approach based on Random Forest is simple and does not require any

backpropagation or tuning. Finally, our approach of obtaining an estimate of the KL diver-

gence as a ratio of estimated class probabilities was introduced in [24], who used it to construct

hypothesis tests.

As we use projections in the variable space as a way of adapting a Random Forest to work

with missing values, our approach is also connected to the literature of CART and Random

Forest algorithms that can handle missing values. We cite and briefly summarize some of the

different approaches in the literature. [8] propose an adapted CART algorithm, called Branch

Exclusive Splits Trees (BEST), where some predictors are available to split upon only within

some regions of the predictor space defined according to other predictors. This structure on

the variables needs to exist and be imposed by the researcher. If blind to such a structure, an

easy cure is distribution-based imputation (DBI) by [137]. When selecting a predictor and split

point, only observations with no missing value in this predictor are considered. An observation

with a missing value in the variable of the split is randomized to left and right according to the

distribution of the observations that have no missing value in this variable. [18] proposed the

approach of so-called surrogate variables. Again, only observations with no missing value are

considered when choosing a predictor and split point. After choosing a best (primary) predictor
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and split point, a list of surrogate predictors and split points is formed. The first surrogate

mimics best the split of the primary split, the second surrogate is second best and so on. This

approach makes use of the correlation between the variables. There are also approaches that

require fully observed training data, but are able to deal with missing values in prediction, such

as [148] or [118], but these are less relevant in our context.

7 Empirical Validation

This section presents an empirical study of the performance of the DR I-Score. We do not aspire

to perform an extensive comparison of state-of-the-art imputation methods, but instead employ

the different imputations as a tool to validate the DR I-Score. As such, we chose commonly

used imputation methods that are easily usable in R. We investigate whether there is evidence

against propriety of the DR I-Score and assess the alignment of the ranking induced by the DR

I-Score with desired distributional properties. We first list the 9 imputation methods and 15

real world data sets used, covering a range of numbers of observations n as well as numbers of

variables d.

7.1 Imputation Methods

We employed the following prevalent single and multiple imputation methods available in R,

that can be divided into mice methods (“mice-cart” , “mice-pmm”, “mice-midastouch”, “mice-

rf”, “mice-norm.predict”) and others (“mipca”, “sample”, “missForest”, “mean”).

All methods have in common that they are applicable to the selected data sets without indi-

cation of errors or severe warnings. For each method with prefix “mice” we used the R-package

mice [176]. If a method required specification of parameters, we used the default values. A

more detailed description of the methods used can be found in Appendix 1.

7.2 Data Sets

We used the real data sets specified in Table 1 for the assessment of the DR I-Score. They are

available in the UCI machine learning repository5, except for Boston (accessible in R-package

MASS) and CASchools (accessible in R-package AER). We preprocessed the data by cancelling

factor variables, in order to be able to run all the assessed imputation methods without errors.

However, we kept numerical variables with only few unique values. This preprocessing was

done solely for the imputation methods, our proposed score could be used with factor variables

as well. Finally, in the data set ecoli we deleted two variables because of multicollinearity

issues.
5https://archive.ics.uci.edu/ml/index.php

https://archive.ics.uci.edu/ml/index.php
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data set n d

airfoil 1503 6

Boston 506 14

CASchools 420 10

climate.model.crashes 540 19

concrete.compression 1030 9

concrete.slump 103 10

connectionist.bench.vowel 990 10

ecoli 336 5

ionosphere 351 32

iris 150 4

planning.relax 182 12

seeds 210 7

wine 178 13

yacht 308 7

yeast 1484 8

Table 1: Data sets used for performance assessment of the DR I-Score with number of observations n and number
of variables d.
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7.3 Propriety of DR I-Score

In this section we check empirically whether any imputation is ranked significantly higher than

the true underlying data. This is an attempt to empirically assess if the DR I-Score is proper

and a lack of significance might also indicate an insufficient sample size to detect a violation.

In addition, we can check how well each method performed on each data set with respect to the

DR I-Score. To test empirical propriety of the score, that is the non-inferiority of the true data

score, we score the fully observed data set by pS ˚
NApP˚, Pq and the imputed data set by pS ˚

NApH, Pq

for each imputation distribution H and consider the difference DH :“ pS ˚
NApH, Pq ´ pS ˚

NApP˚, Pq.

We want to test the following hypotheses for all H:

H0 : DH “ 0 vs HA : DH ą 0. (10)

We do this by p-value calculation assuming that approximately

DH
H0
„ Np0, σ2

pDHqq, (11)

where we estimate σpDHq with the Jackknife variance estimator formula (9) using 30 times

1{2-subsampling. Details of the whole simulation are given in Appendix 5.

We fixed the overall fraction of missingness to pmiss “ 0.2. When setting data to NA, we

applied the MCAR and the MAR mechanism: In MCAR, we set each value in the data set to

missing with probability pmiss. In MAR we created d{2 random missingness patterns m for a

data set of dimension d. Afterwards, we used the “ampute” function of the package mice with

these patterns, where all patterns have the same frequency, to create a MAR data set. In the

MAR case, pmiss might slightly deviate from 0.2.

As parameters for the DR I-Score estimation we chose the number of trees per projection

(num.trees.per.proj) to be 5 and the minimal node size in each tree to be 10 (the default for

a probability RF). We chose the number of projections (num.proj) adaptively to the dimension

d of the data set: for d ⩽ 6 we used 50, for 7 ⩽ d ⩽ 14 we used 100 and for d ⩾ 15 we used

200. We set the number of imputations to m “ 5 (the default value in the R-package mice).

We generated a realization of the NA-mask for the MCAR and the MAR case and then

computed for each method/data set combination the corresponding p-value of testing (1) under

assumption (11). All methods were computable on all data sets, without throwing errors or

major warnings, except for mice-midastouch on yeast, indicated with an NA in Figure 3. Our

findings for testing propriety can be summarized as follows: At level α “ 0.05 we found no

single significant p-value in the MCAR or in the MAR case. At level α “ 0.1 we found in the

MAR case two significant p-values for mice-rf in the data sets yeast and concrete.slump and in

the MCAR case one significant p-value for mice-cart in ionosphere. The latter data set has the

highest dimension of 32, which for MCAR leads to the extreme case of only observing each
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(a) MAR (b) MCAR

Figure 3: Discretized p-values of testing (2) under assumption (11) for the 9 methods applied to the 15 data sets.
We used missingness mechanisms MAR (a) and MCAR (b), pmiss “ 0.2 and m “ 5. The parameter values of the
DR I-Score are described in the text. “NA” means that the method was not computable on the respective data set.

missingness pattern once. In summary, these results do not reveal enough evidence against the

propriety of our estimated DR I-Score. We point out that, in the MAR case, we did not verify

the MAR assumption on the projections.

Reversing the alternative hypothesis we obtain,

H0 : DH “ 0 vs HA : DH ă 0, (12)

whose corresponding test may reveal more information about the performance of the methods

as well as the difficulty for imputation of each data set. We assume (11) and calculate the

corresponding p-values for (2). In Figure 3, we discretized each p-value corresponding to a

method applied to a data set into one of 6 batches, which reflect different significance levels.

The larger the p-value, the lighter the shade, the better the respective method imputed on the

given data set with respect to our score. With a p-value in the batch p0.1, 1s (white) we can not

reject the null that DH “ 0 even at the level 0.1, i.e., the imputation performed as well as the

true data. We sorted the rows and columns to cluster similarly scored methods and data sets

together.

Reading the plot row-wise reveals performance information of the methods, the higher up

a method appears the better it performed according to the DR I-Score. Interestingly, the MAR

and MCAR case reveal almost exactly the same ordering of the methods: Only ranks of mice-

norm.predict and mipca are flipped, however these two reveal very similar p-value patterns
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in both plots. If we divide the methods into two groups, we observe in the better group the

mice methods (mice-cart, mice-rf, mice-pmm, mice-midastouch). The best method overall in

both cases is mice-cart, whose imputations were indistinguishable from the true data in 11

data sets in the MAR case and 12 in the MCAR case, even at level 0.1. In addition, we want

to emphasize the suboptimal performance of methods that predict conditional means, without

additional randomization to impute values, in particular missForest and mean. This may be

surprising as missForest is known to perform very well in the literature, see e.g. [182]. However

this impression of good performance is based on measures of accurary, such as RMSE. As laid

out in [175], as a prediction method, missForest does not account for the uncertainty caused

by the missing data. Contrary to accuracy measures, our score takes the joint distribution into

account when assessing performance, hence the comparatively weak performance of missForest

over the chosen data sets. The worst method appears to be the mean, a method known to heavily

distort the distribution.

Reading the plot column-wise reveals information about how easy or hard the data sets could

be imputed by the methods considered. The further to the right a data set appears, the easier it

was to impute. For instance, we find that none of the considered methods was able to find an

imputation that recovers the joint distribution well enough for the data set concrete.compression

(MAR) and airfoil (MCAR).

7.4 Relevancy of DR I-Score

In the last section, we did not discover evidence against the propriety of the estimated DR I-

Score. However, a practitioner might want to select the best method with the score, or at least

determine the worst performing methods to definitely not employ them. Unfortunately, there is

no ground truth to compare to. However, one would hope that the methods chosen by our score

perform well on a wide range of targets, even though it was not designed to select for any of

these targets specifically. We focus on a target that presumably will be of interest in practice

when doing multiple imputation: Average coverage and average width of marginal confidence

intervals for each NA value, obtained by the m multiple imputations. More specifically, let

N Ď t1, . . . , nu be the set of i for which
řp

j“1 Mi j ą 0, i.e., those observations that contain at

least one missing value. For each observation xi, letNi Ă t1, . . . , pu be the missing coordinates

of xi. Given an imputation method H, we obtain for each xi j, i P N , j P Ni, m imputed values

x1
i jpHq, . . . , xm

i jpHq. For m large enough, we compute the empirical 0.025- and 0.975-quantiles

x0.025
i j pHq and x0.975

i j pHq and consider the interval spanned in between as the empirical 95%-CI

for xi j defined by the method H through x1
i jpHq, . . . , xm

i jpHq. We denote it by

CIpx1
i jpHq, . . . , xm

i jpHqq :“ rx0.025
i j pHq, x0.975

i j pHqs.
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(a) MAR (b) MCAR

Figure 4: Average coverage plotted against average width for the 9 methods applied to the 15 data sets (total =
9 ˆ 15 “ 135 points). The darkness indicates the rank induced by the DR I-Score (the darker, the higher the rank).
We used the missingness mechanism MAR in (a) and MCAR in (b) with pmiss “ 0.2, m “ 20 and the in the text
described parameter values to compute the DR I-Scores.

We then check whether the true missing data point xi j lies within the CI or not and obtain an

average marginal coverage for the method H by averaging over all i P N , i.e.,

CoveragepHq :“
1
N

ÿ

iPN

1
Ni

ÿ

jPNi

Itxi j P CIpx1
i jpHq, . . . , xm

i jpHqqu.

A method that has a large enough variation between the m different imputations will reach

a coverage of 1, however the average width of its corresponding CI is large, indicating very

little power. We use the average width of the confidence intervals as an indicator of statistical

efficiency. A good imputation method will have small average width while still maintaining

high average coverage. We define the average marginal width for the method H by

WidthpHq :“
1
N

ÿ

iPN

1
Ni

ÿ

jPNi

`

x0.975
i j pHq ´ x0.025

i j pHq
˘

.

For better visualization we constrain the WidthpHq for all methods H to the interval r0, 1s: Given

a data set, we normalize WidthpHq for all methods H by the maximal width of all methods.

In Figure 4 we plot CoveragepHq against the normalized WidthpHq for all methods applied

to all data sets, leading to totally 15 ˆ 9 “ 135 points. Not all of them are visible since they

can lie on top of each other. For example the method mean always produces the point p0, 0q

for all 15 data sets, since there is no variation in the m imputed data sets. The shade of the



Näf et al. (2022) 111

method/quadrant I II III

cart 0.47 0.53 0

pmm 0.53 0.47 0

midastouch 0.67 0.33 0

rf 0.73 0.27 0

mipca 0.87 0.13 0

sample 0.87 0.13 0

norm.predict 0 0.13 0.87

mean 0 0 1

missForest 0 0 1

(a) MAR

method/quadrant I II III

pmm 0.40 0.60 0

cart 0.47 0.53 0

midastouch 0.53 0.47 0

rf 0.60 0.40 0

mipca 0.87 0.13 0

norm.predict 0 0.13 0.87

sample 0.93 0.07 0

mean 0 0 1

missForest 0 0 1

(b) MCAR

Table 2: The fraction of times each method appeared in the quadrants I, II and III of Figure 4 in the MAR case (a)
and the MCAR case (b).

points reflects the induced rank by the DR I-Score, assigning one of the 9 ranks to each method

in a given data set: rank 1 to the best scored method (black) up to rank 9 to the worst scored

method (light gray). We set the number of imputations to m “ 20, used missingness mechanism

MCAR and MAR and pmiss “ 0.2 and the same parameter setting as in Section 7.3. For easier

interpretation, we name the four quadrants of the square in Figure 4 by the letters I-IV. We

observe that quadrant IV, corresponding to high average width and low average coverage, does

not contain any points, which makes sense. Considering the shade gradient, the DR I-Score

seems to indeed often rank points with high average coverage and low average width the best.

Clearly, methods that produce small average width combined with small average coverage as

well as high average width combined with high average coverage, are ranked low, which is

highly desirable.

Table 2 shows a clearer picture of the roles of the methods in these results. We indicate

for each method the fraction of times in the data sets it appeared in the quadrants I, II and III

in Figure 4. We observe that all points making up quadrant III are from the methods mice-

norm.predict, mean and missForest, i.e., the methods that use a sort of mean imputation. From

a distributional point of view, these methods are often not favourable, which is a property nicely

captured by the DR I-Score.
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(a) Estimated DR I-Score with CIs. (b) OOB error with CIs.

Figure 6: Births data: Estimation of the proposed DR I-Score (a) and the OOB error of the classification RF (b)
with corresponding CIs for the methods mean, missForest, sample, mice-cart and mice-pmm with sample size
n “ 500 (grey) and n “ 2000 (black). We obtained the CIs by subsampling as described in Section 5.3.

7.5 Real Data Example: Births Data

We further illustrate our method on the natality data of 2020 obtained from the Centers for Dis-

ease Control and Prevention (CDC) website.6 This data set contains information on « 3.5 mil-

lion births in 2020 in the US. We subsample the data as detailed later and consider 23 variables,

listed in Appendix 2. The variables include categorical variables, such as race and education of

mother and father and the gender of the newborn, as well as continuous variables, such as the

age of the parents and the baby’s birth weight. We consider a subset of imputation methods that

can deal with these mixed data: mice-pmm, mice-cart, sample and missForest. We also include

the mean as a baseline comparison.

We subsample the data to obtain two smaller subsets, one of size 500 and one of size 2000,

where we sample at random observations with at least one missing value. As such, we obtain

in both samples an overall probability of missingness of pmiss « 0.08, which is lower than in

the previous sections. Missing values are encountered predominantly in the variables weight of

mother, weight gain of mother and BMI of mother, which are correlated, and variables about the

father, such as the age, race or education. We estimate the DR I-Score for the aforementioned

imputation methods applied to the two data sets (sizes 500, 2000) with missing values.

Since the births data set also contains a lot of complete cases, it is possible to validate our

score in a special way: We compare each of the imputations with a disjoint sample of only com-

plete cases of the same size that we obtained by randomly sampling complete cases from the

whole data set. The comparison is assessed via a classification Random Forest, distinguishing

6https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm

https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm
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between the sample of complete cases and the imputation, where we report the out-of-bag pre-

diction error (OOB error). We note that in this case, the smaller the OOB error, the easier it was

for the classifier to distinguish the imputation from the true data. Hence, the smaller the OOB

error, the worse the imputation method. For both the score and the OOB error we also compute

95%-CI with the Jackknife variance estimator formula (9) using 30 times 1{2-subsampling. We

plotted the results in Figure 6 to compare the ranking of methods obtained by our score with

the one obtained by the RF. We ordered the methods according to the mean score/OOB error,

computed on the sample of size 2000.

First, we observe that the rankings obtained from the DR I-Score and the OOB error of

the RF are the same. Second, the ranking is in line with the one we obtained in Section 7.3:

mean and missForest appear to be the weakest methods followed by sample, while mice-cart

and mice-pmm are ranked best. Third, by increasing the sample size from 500 (gray) to 2000

(black), the CIs get more narrow and the methods can be held apart more significantly for both

the score and the RF. We observe that the score cannot distinguish sample from the two best

methods as clearly as the RF, which would be desirable. However, the RF is allowed to use

an additional (large) complete sample, which is naturally an unfair advantage. Moreover, this

method is generally not applicable without this large amount of fully observed points. In con-

trast, the DR I-Score works with only incomplete observations, and still manages to reproduce

the same ordering as the RF.

8 Discussion

In this paper we presented the convenient framework of Imputation Scores to score a given set

of imputation methods for an incomplete data set. The widespread assessment of imputation

methods via RMSE (of masked observations) favors methods that impute conditional means but

do not necessarily reflect the whole conditional distributions. Given the assumption of MAR on

each projection, our proposed density ratio I-Score is able to give high scores to methods that

replicate the data distribution well.
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1 Details of Imputation Methods

1) missForest is a multiple imputation method based on iterative use of RF, allowing for

continuous and categorical data [167]. After an initial mean-imputation, the variables are

sorted according to their amount of missing values, starting with the lowest. For each

variable as response, a RF is fitted based on the observed values. The missing values are

then predicted with the RF. The imputation procedure is repeated until a stopping criterion

is met. We used the R-package missForest [166].

2) mipca is a multiple imputation method with a PCA model [84]. After an initialization

step, an EM algorithm with parametric bootstrap is applied to iteratively update the PCA-

parameter estimates and draw imputations from the predictive distribution. The algorithm

is implemented in the function MIPCA of the R-package missMDA [83]. We use the func-

tion estim ncpPCA to estimate the number of dimensions for the principal component

analysis by cross-validation.

3) mean is the simplest single imputation method considered. It imputes with the mean of

the observed cases for numerical predictors and the mode of observed cases for categori-

cal predictors. We use the implementation of the R-package mice.

4) sample is a multiple imputation method sampling at random a value of the observed

observations in each variable to impute missing values. We use the implementation of the

R-package mice.

5) mice-cart is a multiple imputation method cycling through the following steps multiple

times [45]: After an initial imputation through sampling of the observed values, a classi-

fication or regression tree is fitted. For each observation with missing values, the terminal

node they end up according to the fitted tree is determined. A random member in this

node is selected of which the observed value leads the imputation.

6) mice-norm.predict is a multiple imputation method cycling through the same steps as

mice-cart with the adaptation that a linear regression is fitted and its predicted value is

used as imputation.

7) mice-pmm Predictive Mean-Matching is a semi-parametric imputation approach ([106]

and [147]). Based on the complete data, a linear regression model is estimated, followed

by a parameter update step. Each missing value is filled with the observed value of a

donor that is randomly selected among complete observations being close in predicted

values to the predicted value of the case containing the missing value.
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8) mice-midastouch is a multiple imputation method using an adaption of classical pre-

dictive mean-matching, where candidate donors have different probabilities to be drawn

[55]. The probability depends on the distance between the donor and the incomplete

observation. A closeness parameter is specified adaptively to the data.

9) mice-rf is a multiple imputation method cycling through the same steps as mice-cart with

the adaptations that one tree is fitted for every bootstrap sample. For each observation with

missing values, the terminal nodes in each tree are determined. A random member of the

union of the terminal nodes is selected of which the observed value leads the imputation.

2 Details on Birth Data

Even though the original data contains a lot of variables, we took only the following variables

from the source data:

• mother’s age, height, weight before the pregnancy, weight gain during pregnancy and

BMI before pregnancy

• mother’s race (black, white, asian, NHOPI, AIAN or mixed), marital status (married or

unmarried) and the level of education (in total 8 levels)

• father’s age, race and level of education

• month of birth

• plurality of the birth (how many babies were born at once)

• whether and when the prenatal care started

• pregnancy duration

• delivery method (vaginal or C-section)

• birth order - the total number of babies born by the same mother (including the current

one)

• birth interval - number of months passed since last birth (NA if this is the first child)

• number of cigarettes smoked per day on average before and during the pregnancy

• birth weight (in grams) and gender of the baby

• indicators whether baby had any abnormal condition.
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3 Algorithm and Implementation Details of DR I-Score Esti-
mation

Here we present additional details of the implementation of the DR I-Score and the full algo-

rithm in pseudo-code.

Projection Distribution. In Section 5.2 we describe the distribution K over the projections

with restricted support used for the empirical estimation of the DR I-Score. The choice of this

distribution is up to the experimenter and can be adapted to the specific patterns of missinginess

in a given data set. In particular, the projections can be chosen such that each projection satisfies

the MAR assumption, if this can be determined with domain knowledge.

Ensuring Class Balancing. We follow a simple procedure to ensure the same number of ob-

servations in the training sets SP
A and SH

mA
. First if SH

mA
has fewer elements than SP

A, but is “large

enough” relative to SP
A, we simply upsample SH

mA
with replacement until it contains the same

number of elements as SP
A. The exact same procedure is applied if SP

A has fewer elements than

SH
mA

. On the other hand, if the set SH
mA

is smaller than SP
A, that is if |SH

mA
| ă τ|SP

A| for some

τ P p0, 1q, we sample with replacement observations from other patterns and add them to SH
mA

.

We found that τ “ 0.75 works well empirically. This is done to ensure that we do not upsample

one or two observations. In practice it seems adding additional patterns in the training step of

the classifier does not hurt propriety.

Numerical Truncation. To avoid numerical issues when calculating the log of the density ratio

with Expression (4.7), we apply for each A, mA and xA the following truncation function to

π̂mApxAq

ppxq “ minpmaxpx, 10´9
q, 1 ´ 10´9

q.

Thus, we slightly adapt the predicted probabilities π̂mApxAq that are close to 0 or 1, such that the

log of (4.7) can be computed.

Patterns of Size 1. In our algorithm to estimate the DR I-Score, we split the observations of a

given missingness pattern m into a training and a test set. We then use the training set to estimate

the RF and use it to predict on the test set. Predominantly in the MCAR case, but also potentially

in MAR situations, it often happens that several patterns contain only one observation. In this

case, we group these patterns of size 1 together, use all of these samples for training and testing

and only fit one RF based on several projections for this new group. This is mainly done due to

computational reasons.
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Algorithm 1: Algorithm for estimation of DR I-Score
Inputs: data set X containing missing values to impute, a multiple imputation method

applied to X yielding N imputed data sets X̂i, i=1,. . . , N;

Result: DR I-Score s for the imputation method as the average of the N scores tsiu
N
i“1

for each of the N imputed data sets

Hyper-parameters: number of projections num.proj, number of trees per projection

num.trees.per.proj, standard parameters of the Probability Forests;

- Group observations in X into J different groups according to their unique missing

value patterns M j, j “ 1, . . . , J.;

for i “ 1, . . . ,N do
for m “ M1, . . . ,MJ do

- Sample a set of num.proj projections, Ak, k “ 1, . . . , num.proj compatible

with the missingness pattern m as described in Section 5.2;

- Get the projected imputed data X̂i with pattern m, and split them in two halves

X̂0
i and X̂1

i ;

for l “ 0, 1 do
for k “ 1, . . . , num.proj do

- Get the complete observations Xcomp
Ak

from the projected data XAk ;

- Get the projected imputed data X̂l
i,Ak

;

- Fit a Probability Forest with num.trees.per.proj trees and mtry

full, discriminating Xcomp
Ak

from X̂l
i,Ak

(ensuring a balance of classes, see

above for details);

end
- Form one Probability Random Forest based on the num.proj many

random forests;

- Get an estimate of the density ratio, π̂mA
1´π̂mA

, through this Probability Forest

as in Equation (4.7);

- Compute the individual score contributions, as log π̂mA pxq

1´π̂mA pxq
of the left-out

imputations x P X̂1´l
i,Ak

;

end
- Average for l “ 0, 1 the individual score contributions of all points, leading to

score si,m;

end
- Average the scores si,m over all patterns m to get score si;

end
- Average the score si over all imputations i to get the final score s.
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4 Proofs

Proposition 28 (Restatement of Proposition 4.1). Let H P HP, as defined in (4.1). If for all

A P A,

p˚
poc

pxA,mAq|opxA,mAq,M “ m1
Aq “ p˚

poc
pxA,mAq|opxA,mAqq,

for all m1
A,mA PMA, (4.4)

then S ˚
NApH, Pq in (4.3) is a proper I-Score.

Proof Since,

S ˚
NApH, Pq “ ´EA„K ,MA„PM

A
DKLphMA || pAp¨ | MA “ 0qq,

it is enough to show that for all A P A, and all mA PMA,

DKLphmA || pAp¨|MA “ 0qq ⩾ DKLpp˚
mA

|| pAp¨|MA “ 0qq.

We thus drop the subscript A for simplicity.

It then holds that for all m PM,

hmpxq “ hpx|M “ mq “ hpoc
px,mq|opx,mq,M “ mqp˚

popx,mq|M “ mq,

by the definition ofHP. Similarly,

ppx|M “ 0q “ p˚
poc

px,mq|opx,mq,M “ 0qp˚
popx,mq|M “ 0q

“ p˚
poc

px,mq|opx,mqqp˚
popx,mq|M “ 0q,

where we used assumption (4.4) in the last step. Crucially, we can then decompose the KL

divergence:

DKLphm || pp¨|M “ 0qq

“

ż

log
ˆ

hpocpx,mq|opx,mq,M “ mqp˚popx,mq|M “ mq

p˚pocpx,mq|opx,mqqp˚popx,mq|M “ 0q

˙

hpx | M “ mqdµpxq

“

ż

log
ˆ

hpocpx,mq|opx,mq,M “ mq

p˚pocpx,mq|opx,mqq

˙

hpoc
px,mq|opx,mq,M “ mqp˚

popx,mq|M “ mqdµpxq

`

ż

log
ˆ

p˚popx,mq|M “ mq

p˚popx,mq|M “ 0q

˙

hpoc
px,mq|opx,mq,M “ mqp˚

popx,mq|M “ mqdµpxq

“ Eopx,mq„p˚
m

„
ż

log
ˆ

hpocpx,mq|opx,mq,M “ mq

p˚pocpx,mq|opx,mqq

˙

hpoc
px,mq|opx,mq,M “ mqdµpoc

px,mqq

ȷ

`

ż

log
ˆ

p˚popx,mq|M “ mq

p˚popx,mq|M “ 0q

˙

p˚
popx,mq|M “ mqdµpopx,mqq.
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The second summand in the last term is simply the KL divergence between p˚popx,mq|M “ 0q

and p˚popx,mq|M “ mq and represents the irreducible part, as it cannot be changed by any

imputation. The first summand is bounded below by zero, and attains zero for h “ p˚, proving

the claim.

[151] point out the problematic definition of MAR throughout the literature and define MAR

as:

PpMA “ mA|XA “ xAq “ PpMA “ mA|XA “ x̃Aq

for all xA, x̃A s.t. opxA,mAq “ opx̃A,mAq. (S2.1)

In the following we ensure that (4.4) and (S2.1) really mean the same:

Lemma .9. Condition (4.4) and (S2.1) are equivalent.

Proof Throughout we drop the subscript A for simplicity. We start by reformulating (S2.1), for

any x, x̃ such that opx,mq “ opx̃,mq,

PpM “ m|X “ xq “ PpM “ m|X “ x̃q ô

p˚px|M “ mqPpM “ mq

p˚pxq
“

p˚px̃|M “ mqPpM “ mq

p˚px̃q
ô

p˚popx,mq, ocpx,mq | M “ mq

p˚popx̃,mq, ocpx̃,mq | M “ mq
“

p˚popx,mq, ocpx,mqq

p˚popx̃,mq, ocpx̃,mqq
ô

p˚pocpx,mq | opx,mq,M “ mq

p˚pocpx,mq | opx,mqq
“

p˚pocpx̃,mq | opx,mq,M “ mq

p˚pocpx̃,mq | opx,mqq
ô

p˚
poc

px,mq | opx,mq,M “ mq “
p˚pocpx̃,mq | opx,mq,M “ mq

p˚pocpx̃,mq | opx,mqq
p˚

poc
px,mq | opx,mqq

(S2.2)

Clearly, (4.4) implies (S2.2). Integrating (S2.2) with respect to the missing part of x, ocpx,mq,

only shows that
p˚pocpx̃,mq | opx,mq,M “ mq

p˚pocpx̃,mq | opx,mqq
“ 1,

and thus also (4.4).

Lemma .10 (Restatement of Lemma 4.1). Let πmApxAq, πYmA pxAq and πmA be defined as in (4.6)

and (4.8) respectively. If πmA “ 0.5, it holds that

πmApxAq “ πYmA pxAq.
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Proof Given the definition of the class label YmA , we can rewrite pApxA | MA “ 0q and hmApxAq

by

pApxA | MA “ 0q “ f pxA | YmA “ 1q,

hmApxAq “ f pxA | YmA “ 0q.

By Bayes Formula it now follows

πYmA pxAq :“ PpYmA “ 1 | XA “ xAq

“
f pxA | YmA “ 1qPpYmA “ 1q

f pxA | YmA “ 1qPpYmA “ 1q ` f pxA | YmA “ 0qPpYmA “ 0q

“
pApxA | MA “ 0qπmA

pApxA | MA “ 0qπmA ` hmApxAqπmA

,

such that if πmA “ 0.5, we obtain that πYmA pxAq “ πmApxAq for any observation x.

5 Details on Propriety Assessment

We used the following pipeline to obtain the results of Section 7.3:

1. For the two missingness mechanisms MAR and MCAR we consider two overall proba-

bilities of missingness (pmiss “ 0.1 and 0.2). For each of the pmiss we do:

2. For each fully observed data set X we do:

(a) We mask X respecting the missingness mechanism as well as pmiss and obtain a fixed

X.NA.

(b) We apply 30 times 1{2-subsampling on X and X.NA and obtain 30 subsampled XS

and X.NAS .

(c) We score X with the DR I-Score.

(d) For each method in methods we do:

i. We impute X.NA m “ 5 times.

ii. We score each of the 5 imputed versions of X.NA with the DR I-Score and get

the final score by averaging.

iii. We compute the difference D of the DR I-Score of the imputation of X.NA and

the DR I-Score of X.

iv. For each of the S “ 1, . . . , 30 we do:

A. We apply steps (c) and i. and ii. to XS and X.NAS .
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B. We compute the difference DS of the DR I-Score of the imputation of

X.NAS and the DR I-Score of XS .

v. We estimate the variance of D, σ2pDq, with the Jackknife variance estimator

formula (5.2) based on DS .

(e) We compute a p-value by PH0pX ą Dq, where X H0
„ Np0, σ2pDqq

6 Empirical Results for pmiss “ 0.1

In this section we present additional results for pmiss “ 0.1.
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(a) MAR (b) MCAR

Figure 7: Discretized p-values of testing (7.3) under assumption (7.2) for the 9 methods applied to the 15 data sets.
We used missingness mechanisms MAR (a) and MCAR (b), pmiss “ 0.1 and m “ 5. The parameter values of the
DR I-Score are described in the main text.

(a) MAR (b) MCAR

Figure 8: Average coverage plotted against average width for the 9 methods applied to the 15 data sets (total =
9 ˆ 15 “ 135 points). The darkness indicates the rank induced by the DR I-Score (the darker, the higher the rank).
We used the missingness mechanism MAR in (a) and MCAR in (b) with pmiss “ 0.1, m “ 20 and the in the text
described parameter values to compute the DR I-Scores.
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method/quadrant I II III

cart 0.20 0.80 0

pmm 0.40 0.60 0

midastouch 0.40 0.60 0

rf 0.67 0.33 0

mipca 0.87 0.13 0

sample 1.00 0 0

norm.predict 0 0 1

mean 0 0 1

missForest 0 0 1

(a) MAR

method/quadrant I II III

pmm 0.33 0.67 0

cart 0.33 0.67 0

midastouch 0.40 0.60 0

rf 0.53 0.47 0

mipca 0.87 0.13 0

sample 0.93 0.07 0

missForest 0 0.07 0.93

norm.predict 0 0 1

mean 0 0 1

(b) MCAR

Table 3: The fraction of times each method appeared in the quadrants I, II and III of Figure 8 in the MAR case (a)
and the MCAR case (b).
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Abstract

We develop a fully non-parametric, easy-to-use, and powerful test for the missing

completely at random (MCAR) assumption on the missingness mechanism of a dataset.

The test compares distributions of different missing patterns on random projections in

the variable space of the data. The distributional differences are measured with the

Kullback-Leibler Divergence, using probability Random Forests [111]. We thus refer to

it as “Projected Kullback-Leibler MCAR” (PKLM) test. The use of random projections

makes it applicable even if very few or no fully observed observations are available or

if the number of dimensions is large. An efficient permutation approach guarantees the

level for any finite sample size, resolving a major shortcoming of most other available

tests. Moreover, the test can be used on both discrete and continuous data. We show

empirically on a range of simulated data distributions and real datasets that our test has

consistently high power and is able to avoid inflated type-I errors. Finally, we provide an

R-package PKLMtest with an implementation of our test.

Keywords. Ranking, Random Projections, Tree Ensembles, Random Forest, KL-

Divergence.

1 Introduction

Dealing with missing values is an integral part of modern statistical analysis. In particular, the

assumed mechanism leading to the missing values is of great importance. Based on the work of

[146], there are three groups of missingness mechanisms usually considered: The values may be

missing completely at random (MCAR), meaning the probability of a value being missing does

not depend on the observed or unobserved data. In contrast, the probability of being missing

127
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could depend on observed values (missing at random, MAR) or on unobserved values (missing

not at random, MNAR).

As stated in [190], “a formal confirmation of the MCAR missing data mechanism is of

great interest, simply because essentially all methods can still yield consistent estimates under

MCAR even if the underlying population distribution is unknown”. While there is, at least for

imputation, a number of approaches that can deal with MAR missing data such as Multivariate

Imputation by Chained Equations (mice) [23, 38], many commonly used methods still explicitly

rely on the validity of the MCAR assumption. Examples are the easy-to-use listwise-deletion

and mean-imputation methods [108]. As such, MCAR testing is still widely employed in the

analysis of (psychometric) data; see e.g., [21, 67, 25, 141, 168, 37] for some recent examples.

The testing framework is of an ANOVA-type: when observing a dataset with missing values,

there are n observations and G missingness patterns, g “ 1, . . . ,G. The observations belonging

to the missingness pattern g can be seen as a group, such that we observe G groups of obser-

vations. The MCAR hypothesis now implies that the distribution of the observed data in all

groups is the same, while under the alternative at least two differ. This is technically testing

the observed at random (OAR) assumption defined in [144], see also the end of Section 3 for a

discussion. This distinction can be avoided by assuming the missingness mechanism is MAR,

which is what is usually implicitly done [101].

The idea of testing the MCAR assumption traces back to [107]. While some more refined

versions of this testing idea were developed since then [26, 90, 78], relatively little has been

done on distribution-free MCAR tests, able to detect general distributional differences between

the missingness patterns. [101] recently made a step in that direction. Their test is completely

nonparametric and shown to be consistent. Empirically it is shown to keep the level and to have

a high power over a wide range of distributions. An application area where their proposed test

struggles is for higher-dimensional data with little or no complete observations. Their testing

paradigm is based on “a reasonable amount” of complete cases and all pairwise comparisons

between the observed parts of two missingness pattern groups. This is problematic, since, as

the dimension p increases, the number of distinct patterns G tends to grow quickly as well. The

most extreme case occurs when G “ n, that is, every observation forms a missingness pattern

group on its own. Consequently, their test appears computationally prohibitively expensive for

p ą 10. Additionally, as the dimension increases, both the number of complete cases and the

number of observations per pattern tends to decrease, both contributing to a reduction in power

for the test in [101].

In this paper, we try to circumvent these problems in a data-efficient way, by employing

a one v.s. all-others approach and using random projections in the variable space. Consider-

ing observations that are projected into a lower-dimensional space allows us to recover more

complete cases. As realized by [101], the problem of MCAR testing, as described above, is a



Näf et al. (2022) 129

problem of testing whether distributions across missingness patterns are different. The method

presented here relies on some of the core ideas of [124] and [24], who do distributional test-

ing using classifiers. We extend the ideas of [24] to be usable for multiclass classification and

use the projection idea of [124] to build a test that is usable and powerful even for “high” di-

mensions. Moreover, using a permutation approach, we are able to provably keep the nominal

level α for all n. As outlined later, this is in contrast to other tests, for which the level might

be kept only asymptotically, or is even unclear. The approach of random projections together

with a permutation test also allows to extract more information than just a global hypothesis

test. We make use of this to calculate individual p-values for each variable. Such a partial

test for a variable addresses the null hypothesis that, once that variable is removed, the data is

MCAR. Together with the test of overall MCAR, this might point towards the potential source

of deviation from the null, that is, the variables causing an MCAR violation.

The paper is structured in the following way. Section 2 introduces notation. Section 3 details

the testing framework including the null and alternative hypotheses we consider. Section 4 then

showcases how to perform this test in practice and details the algorithm. Section 5 shows some

numerical comparisons for type-I error control and power. Section 6 explains the extension of

partial p-values, while Section 7 concludes. Appendix 1 contains the proofs of all results, while

Appendix 2 adds some additional details and shows computation times of the different tests.

1.1 Contributions

Our contributions can be summarized as follows: We develop the PKLM-test, an easy-to-use

and powerful non-parametric test for MCAR, that is applicable even in “high” dimensions. We

thereby extend the testing approach of [24] to multiclass testing, which in connection with

random projections in the variable space and the Random Forest classifier leads to a powerful

test for both discrete and continuous types of data. To the best of your knowledge, no other test

is as widely applicable and powerful. Moreover, we are able to formally prove the validity of our

p-values for any sample size and number of groups G. As we demonstrate in our simulations,

this is remarkable for the MCAR testing literature. It appears no other MCAR test has such a

guarantee and many have inflated type-I errors, even in realistic cases, see e.g. the discussion in

[78].

As an extension, we can compute partial p-values corresponding to each variable, address-

ing the question of the source of violation of MCAR among the variables. We demonstrate the

validity and power of our test on a wide range of simulated and real datasets in conjunction

with different MAR mechanisms. Finally, we make our test available through the R-package

PKLMtest, available on https://github.com/missValTeam/PKLMtest and on CRAN.

https://github.com/missValTeam/PKLMtest
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1.2 Related Work

Previous advances for tests of MCAR were mostly addressed by [107] (referred to as “Little-

test”) and extensions [26, 90] under the assumption of joint Gaussianity. To the best of our

knowledge, the only distribution-free tests are developed in [78], [101] and [194]. The first

paper develops a test (referred to as “JJ-test”), which is distribution-free but is only able to spot

differences in the covariance matrices between the different patterns. As such, the simulation

study in [101] shows that their test (referred to as “Q-test”), which can detect any potential dif-

ference, has much more power than the JJ-test. Moreover, the JJ-test requires prior imputation

of missing values, which appears undesirable. [194] develop a test that can be used to subse-

quently also consistently estimate certain estimators under MCAR. Their test requires a set of

fully observed “auxiliary” variables that can be used to first test and then estimate properties of

some variable of interest. As such their approach and goals are quite different from ours.

Consequently, the test closest to ours is the fully non-parametric method in [101]. However,

it is computationally costly or even infeasible to use their test with dimensions typically found

in modern datasets (p " 10), as all pairwise comparisons between missingness patterns are

calculated. While this could in principle be avoided by only checking a subset of pairs, we

empirically show that, even if all pairwise comparisons are performed, our test has comparable

or even higher power than theirs in their own simulation setting. This gap only increases with

the number of dimensions or with a decrease in the fraction of fully observed cases.

We also address a major issue in the MCAR testing literature: none of the proposed methods

has a finite sample guarantee of producing valid p-values and for some it can even be empirically

checked that the produced p-value is not valid in certain settings. If Z is a p-value generated

from a statistical test, then it is valid if PpZ ⩽ αq ⩽ α under H0 for all α P r0, 1s, see e.g., [99].

Figure 2 in Section 5 shows some example of previous tests violating this validity of p-values.

This issue might be surprising since the requirement of a valid p-value might be the most basic

demand a statistical test needs to meet. For the Little-test, this is generally true under normality

or asymptotically, that is if the number of observations is going to infinity, under some moment

conditions and conditions on the group size. Despite this, Section 5 shows that type error rates

can strongly exceed the desired level even in samples of 500 observations. The same holds for

the JJ-test of [78] for which we sometimes observed a strong inflation of the level. As with the

JJ-test, [101] also do not provide a formal guarantee that the level is kept. Though in our own

simulation study, which is similar to theirs, we did not find any notable violation of the level for

their test.

To conduct our test, we adapt and partially extend the approaches of [24] and [124]. The

former develops a two-sample test using classification, an approach that has gained a lot of at-

tention in recent years (see e.g., [89] or [69] for a literature overview). We extend this approach
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PKLM Q Little JJ

Computational Complexity Oppn logpnqq Opn2 pq Opnp2q Opnpp2 ` logpnqqq

Can be used without Yes No No Yes

complete observations

Mixed data types possible Yes No No No

Does not require initial imputation Yes Yes Yes No

Power beyond differences Yes Yes No No

in first and second moments

Table 1: Illustration of some of the properties of various tests. For details on the calculation of the computational
complexities we refer to Appendix 2.

to multiclass testing, to obtain a test statistic akin to [24], but using the out of bag (OOB) proba-

bility estimate of the Random Forest (RF) instead of the in-sample probability. This was already

hinted in [69] to increase the power of the two-sample testing approach designed by [24]. [124],

on the other hand, use random projections to increase the sample efficiency in the presence of

missing values. This simple idea makes our test applicable and powerful, even in high dimen-

sions, and even if the number of patterns G is the same as the number of observations. It can

also provide additional information together with the rejection decision, as we demonstrate in

Section 6. Finally, through an efficient permutation testing approach, we are able to formally

guarantee that our test produces valid p-values for any n and any number of groups G. It appears

that the PKLM-test is the first MCAR test with such a guarantee. Table 1 summarizes some of

the properties of different tests. In particular, “mixed data types” refers to a possible combi-

nation of continuous data (such as income) and discrete data (such as gender), while “power

beyond differences in first and second moments” means the test is able to detect differences

between distributions, even if their means or variances are identical. Though this is difficult to

show formally, it appears quite clear that the nonparametric nature of our approach allows for

the detection of differences in distributions between patterns, even if the missingness groups all

share the same mean or covariance matrix. As outlined in [190] this is crucial for the detection

of general MCAR deviations and is not the case, for instance, for the widely used Little-test.

Appendix 3 studies a simulated MAR example taken from [190], whereby observed means and

variances are approximately the same across different groups. Tests such as the Little-test have

no power in this example, yet with our approach, we reach a power of 1.
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2 Notation

We assume an underlying probability space pΩ,F ,Pq on which all random elements are de-

fined. Along the lines of [128] we introduce the following notation: let X˚ P Rnˆp be a matrix

of n complete samples from a distribution P˚ on Rp. We denote by X the corresponding in-

complete dataset that is actually observed. Alongside X we observe the missingness matrix

M P t0, 1unˆp, of which an entry mi j P t0, 1u is 1, if entry x˚
i j is missing, and 0, if it is observed.

Each unique combination in t0, 1up in M is referred to as a missingness pattern and we assume

that there are G ⩽ n unique patterns in M. As an example, for p “ 2, we might have the pattern

p1, 0q (first value missing, second observed), p0, 1q (first value observed, second missing) or

p0, 0q (both values are observed). We do not consider the completely missing pattern, in this

case p1, 1q.

We assume that each row xi (x˚
i ) of X (X˚) is a realization of an i.i.d. copy of the random

vector X (X˚) with distribution P (P˚). Similarly, M is the random vector in t0, 1up encoding the

missingness pattern of X. Furthermore we assume that P (P˚) has a density f ( f ˚) with respect

to some dominating measure. For a random vector X or an observation x in Rp and subset

A Ď t1, . . . , pu, we denote as XA (xA) the projection onto that subset of indices. For instance

if p “ 3 and A “ t1, 2u, then XA “ pX1, X2q (xA “ px1, x2q). For any set C Ď t1, . . . , pu,

we denote by X‚C the matrix of n observations projected onto dimensions in C, so that X‚C is

of dimension n ˆ |C|. Similarly, for R Ď t1, . . . , nu, XR‚ denotes the matrix of observations

in set R, over all dimensions, so that the dimension of XR‚ is given by |R| ˆ p. We denote

by Fg (respectively fg) the complete distribution (density) of the data in the gth missingness

pattern group. A quick overview of the notation including the use of indices for the number of

missingness patterns, dimensions, observations, projections and permutations is given in Table

2.

3 Testing Framework

In this section, we formulate the specific null and alternative hypotheses for testing MCAR

considered by the PKLM-test. Recalling the notation of Section 2, a missingness pattern is

defined by a vector of length p, consisting of ones and zeros, indicating which of the p variables

are missing in the given pattern. We divide the n observations into g P t1, . . . ,Gu unique

groups, such that the observations of each group share the same missingness pattern. Each

group g P t1, . . . ,Gu contains ng observations such that n1 ` . . . ` nG “ n. Let Fg denote

the joint distribution of the p variables in the missingness pattern group g, such that the ng

observations of the group g are i.i.d. draws from Fg. As stated in [101], testing MCAR can be



Näf et al. (2022) 133

notation partial full

distribution P P˚

dataset X X˚

observation in Rp xi x˚
i

random vector X X˚

density f f ˚

number of missingness patterns G

number of dimensions p

number of observations n

number of projections N

number of permutations L

Table 2: Notation: Summary of the notation used throughout the paper, with (“partial”) and without (“full”)
considering the missing values.

formulated by the hypothesis testing problem

H0 : F˚
1 “ F˚

2 “ . . . “ F˚
G

v.s. (1)

HA : D i , j P t1, . . . ,Gu s.t. F˚
i , F˚

j .

We want to emphasize the use of F˚ in the testing problem (1), indicating that these hy-

potheses involve distributions we cannot access. Thus, (1) needs to be weakened. Borrowing

the notation of [101], for missingness pattern group g we denote with og and mg the subsets

of t1, . . . , pu indicating which variables are observed and which are missing, respectively. We

denote the induced distributions by Fg,og and Fg,mg . For two groups i and j, we denote by

oi j :“ oi X oj the shared observed variables of both groups. As mentioned in [101], it is not pos-

sible to test (1) reliably, since the distribution Fi,mi of the unobserved variables is inaccessible.

Thus, [101] consider the following hypothesis testing problem

H0 : Fi,oi j “ F j,oi j @i , j P t1, . . . ,Gu

v.s. (2)

HA : D i , j P t1, . . . ,Gu with oi j ,H s.t. Fi,oi j , F j,oi j .

The null hypothesis H0 of (2) is implied by H0 of (1), but not vice-versa. In other words,

if we can reject the null hypothesis of (2), we can also reject the null hypothesis of (1). But

if the null hypothesis of (2) cannot be rejected, there could still be a distributional change for

different groups in the unobserved parts, so that the null hypothesis of (1) is not true. In this
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case, the missingness mechanism would be MNAR. Thus, using the terminology of [144], (2)

tests the “observed at random” (OAR) hypothesis instead of the MCAR hypothesis. The differ-

entiation can be circumvented by assuming that the missingness mechanism is MAR, which is

the approach usually taken, see [101].

The comparison of all pairs of missingness groups in the hypothesis testing problem (2)

is problematic however, as laid out in the introduction. In the following, we circumvent this

problem in a data-efficient way, considering a one v.s. all-others approach and employing

random projections in the variable space. Considering observations that are projected into a

lower-dimensional space allows us to recover more complete cases. Let A be the set of all

possible subsets of t1, . . . , pu with at most p ´ 1 elements. For A P A we define by NA the

indices in 1, . . . , n of observations that are observed with respect to projection A, i.e., obser-

vations of which the projection onto A is fully observed. These observations may belong to

different missingness pattern groups g P t1, . . . ,Gu. As an example, x “ pNA, 1, NA, 2, 4q and

y “ pNA, NA, NA, 1, 3q are not complete and not in the same group, however if we project them

to the dimensions A “ t4, 5u, xA and yA are complete in this lower-dimensional space.

Additionally, to circumvent the problem of many groups with only a few members, we

assign new grouping or class labels to all observations in NA. To do so, we consider the set of

projections BpAcq, which is defined as the power set of t1, . . . , puzA. The set BpAcq is never

empty since |A| ⩽ p´1. For a given projection B P BpAcq, we project all observations with indx

in NA to B and form new collapsed missingness pattern groups GpA, Bq, where GpA, Bq is the

set of labels corresponding to distinct missingness patterns among observations with index in

NA projected to B. This is solely done to determine the grouping or class labels of observations

with index in NA. If two observations with index in NA are in the same overall missingness

pattern group g P t1, . . . ,Gu, they also end up in the same collapsed group. The other direction

is not true, that is the number of collapsed groups |GpA, Bq| is at most as large as the initial

number of distinct groups G among the observations with index in NA. Considering again

x “ pNA, 1, NA, 2, 4q and y “ pNA, NA, NA, 1, 3q, if B “ t1, 2u, then observations x and y are

not in the same missingness pattern group. However, if B “ t1, 3u, we assign the same class

label to x and y. Thus, given the projection A, we obtain a set of fully observed observations

XNA,A “ X˚
NA,A

, and given the projection B we assign to them the |GpA, Bq| different class

labels. Figure 1 provides a schematic illustration of projections A and B on a more complicated

example with four observations, each corresponding to a different pattern (i.e., n “ G “ 4).

According to B “ t2u, the first observation in XNA,A obtains one collapsed class label whereas

the second and third observation obtain another, common label, resulting in |GpA, Bq| “ 2.

We are now equipped to formulate our one v.s. all-others approach with the hypothesis



Näf et al. (2022) 135

Figure 1: Illustration of the projections A and B in an example with n “ 4 and p “ 5. In a first step, a projection
A “ t3, 4, 5u Ă t1, . . . , 5u is drawn. The fully observed points on A form XNA,A, as indicated in green. In a
second step, a projection B “ t2u Ă t1, . . . , 5uzA is drawn, as indicated in blue. The patterns in projection B then
determine the labels assigned to the observations in XNA,A. In this case we obtain two different class labels: the
first observation has one label, and the second and third observations share another common label.

testing problem

H0 : Fg,A “
ÿ

jPGpA,Bqzg

ω
g
j F j,A

@g P GpA, Bq, @B P BpAc
q, @A P A

v.s. (3)

HA : Fg,A ,
ÿ

jPGpA,Bqzg

ω
g
j F j,A.

for one g P GpA, Bq, B P BpAc
q, A P A,

where Fg,A is the joint distribution of the observations of class g with index in NA and the

groups j P GpA, Bq are jointly determined by A and B. Thus, we compare the distribution of the

observed part with respect to A of one group g with the mixture of the observed parts of the rest

of the groups. The weights ωg
j are non-negative, sum to 1, and are proportional to the respective

fraction of observations in class j.

Example 7. To give some intuition about the hypothesis testing problem (3), we relate it to

the hypothesis testing problem (2) with the help of the example of Figure 1. In this example,

each observation i “ 1, . . . , 4 has a different pattern and can thus be seen as a draw from a

distribution F˚
i . We first assume that the null hypothesis of (3) holds and show, as an example,

that this implies F1,o13 “ F3,o13 . Since the null hypothesis of (3) refers to all A P A, it also

includes A “ o13 “ t3, 4, 5u, which is what we consider in Figure 1. While we are only

interested in F1,A and F3,A, taking B “ t1, 2u the observations in XNA,A come from the three
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distributions F1,A, F2,A, F3,A. Due to (3) it holds that

F1,A “ ω1
2F2,A ` ω1

3F3,A,

F2,A “ ω2
1F1,A ` ω2

3F3,A,

F3,A “ ω3
1F1,A ` ω3

2F2,A.

(4)

Some algebra shows that equation system (4) is equivalent to F1,A “ F2,A “ F3,A, which in

particular means F1,A “ F3,A, that we wanted to show. While we took i “ 1 and j “ 3 as an

example matching Figure 1, we cycle through all A P A in (3) and thus A “ oi j for all patterns

i, j eventually. We now assume that the null hypothesis of (2) is true and consider again A “

t3, 4, 5u as an example. Since we only look at the fully observed observations in NA in (3), i.e.,

leave out the fourth point, we again deal with the three distributions F1,A, F2,A, F3,A. Moreover,

by construction, A Ă o12 and A Ă o13 (even A “ o13 in this case). Thus, F1,o12 “ F2,o12 and

F1,o13 “ F3,o13 , implied by the null hypothesis of (2), means that F1,A “ F2,A “ F3,A, which

implies (4). Again this might seem constructed, but since by definition, (3) only considers the

distributions Fi,A and F j,A of fully observed points on A, it will always hold that A Ă oi j.

We make note of an abuse of notation in (3), as the group g in Fg,A only corresponds to the

same index of Fg in (2), if B “ Ac, as can be seen in the example of Figure 1: If B “ Ac, the three

observations in XNA,A are drawn from F1,A, F2,A and F3,A respectively. However, if B “ t2u,

then observations two and three are now assumed to be drawn from a single distribution, which

corresponds to a mixture of F2,A and F3,A.

In short, the null hypothesis of (3) implies the null hypothesis of (2) because for A “ oi j,

observations coming from Fi,A and F j,A are contained in XNA,A. Vice-versa, the null hypothesis

of (2) implies the null hypothesis of (3) because A is nested in oi j for all Fi and F j considered

on A. This actually sketches the proof of the following result:

Proposition 29. Hypothesis testing problem (3) is equivalent to (2).

Tackling hypothesis testing problem (3) would be rather inefficient since we might test many

times the same hypothesis when cycling through all A P A and B P BpAcq. However, the idea

is that A and B will only be random draws from A and BpAcq. This is discussed in the next

section.

4 MCAR test Through Classification

In this section we introduce the classification-based statistic of our test and detail the implemen-

tation of our permutation approach, permuting the rows of the missingness matrix M, to obtain

a valid test.
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4.1 Test Statistic U

Let us fix a projection A P A and corresponding projection B P BpAcq. We denote the induced

collapsed class labels based on projections A and B by YpA,Bq, by XA the projection of the ran-

dom vector X on A and correspondingly by xA the projection on A of observation x in XNA,A.

Furthermore, we define for each g P GpA, Bq and x in XNA,A the following quantities:

ppA,Bq
g pxq :“ PpYpA,Bq

“ g | XA “ xAq,

f pA,Bq
g pxq :“ PpxA | YpA,Bq

“ gq,

π
pA,Bq
g :“ PpYpA,Bq

“ gq.

Let us fix g P GpA, Bq as well. We reformulate the hypothesis testing problem (3):

HpA,Bq

0,g : f pA,Bq
g “

1

1 ´ π
pA,Bq
g

ÿ

jPt1,...,GpA,Bquzg

π
pA,Bq

j f pA,Bq

j

v.s. (5)

HpA,Bq

1,g : f pA,Bq
g ,

1

1 ´ π
pA,Bq
g

ÿ

jPt1,...,GpA,Bquzg

π
pA,Bq

j f pA,Bq

j .

Let S f pA,Bq
g

Ă NA denote the indices of observations in XNA,A that belong to class g. For each

missingness pattern g, we now define the following statistic in analogy to [24],

UpA,Bq
g :“

1
|S f pA,Bq

g
|

ÿ

iPS
f pA,Bq
g

˜

log
ppA,Bq

g pxiq

1 ´ ppA,Bq
g pxiq

´ log
π

pA,Bq
g

1 ´ π
pA,Bq
g

¸

. (6)

This statistic is motivated by the following claim:

Lemma .11. The logarithm of the density ratio for testing (5) is given by UpA,Bq
g .

The main motivation for the form of this test-statistic is that one can use the same argu-

ments as in [24, Proposition 1] to show that a test based on UpA,Bq
g will have the highest power

among all tests for (5), according to the Neyman-Pearson Lemma. In addition, the test statistic

converges to the Kullback-Leibler Divergence between f pA,Bq
g and the mixture of the other den-

sities, motivating the name of our MCAR test. A high value of KL-Divergence indicates that

the distributions of two samples deviate strongly from each other.

Lemma .12. UpA,Bq
g converges in probability to the Kullback-Leibler Divergence between f pA,Bq

g

and the mixture of the other densities:

UpA,Bq
g Ñ E fg

«

log
f pA,Bq
g pXqp1 ´ π

pA,Bq
g q

ř

jPGpA,Bqzg π
pA,Bq

j f pA,Bq

j pXq

ff

,

as ng and
ř

jPt1,...,Guzg n j Ñ 8 and ng{n Ñ π
pA,Bq
g P p0, 1q.
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Since the statistic UpA,Bq
g is evaluated only on cases x P S f pA,Bq

g
, it holds that f pA,Bq

g pxq “

f ˚pA,Bq
g pxq and ppA,Bq

g pxq “ p˚pA,Bq
g pxq. This means that the projected complete and incomplete

distributions coincide on the projected complete samples. Thus we are indeed asymptotically

measuring the Kullback-Leibler Divergence between f ˚pA,Bq
g and the mixture of the other densi-

ties.

Since there might be only very few observations for a single class g, we symmetrize the

KL-Divergence. That is, we use the samples of all classes to evaluate the KL-Divergence and

not only the samples of class g. Let S f
gcpA,Bq

Ă NA denote the indices of observations in XNA,A

that belong to all other classes GpA, Bqzg. For each missingness pattern g, we will use, in the

following, the difference between two of the above statistics, namely

UpA,Bq
g ´ UpA,Bq

gc “
1

|S f pA,Bq
g

|

ÿ

iPS
f pA,Bq
g

log
ppA,Bq

g pxiq

1 ´ ppA,Bq
g pxiq

´
1

|S f
gcpA,Bq

|

ÿ

iPS f
gcpA,Bq

log
ppA,Bq

g pxiq

1 ´ ppA,Bq
g pxiq

, (7)

where the terms including the class probabilities πpA,Bq
g cancel out. This difference converges to

the symmetrized KL-Divergence between the mixture of f pA,Bq
g and the remaining classes and is

more sample efficient than only using UpA,Bq
g . The test statistic for fixed pA, Bq is then given by

UpA,Bq :“
GpA,Bq
ÿ

g“1

pUpA,Bq
g ´ UpA,Bq

gc q,

and the final test statistic is defined as

U :“ EA„κ,B„κpAcqrUpA,Bq
s. (8)

4.2 Practical Estimation of U

We estimate ppA,Bq
g with a multiclass-classifier, yielding p̂pA,Bq

g . Plugging-in this quantity into (7)

yields ÛpA,Bq
g ´ ÛpA,Bq

gc . We then estimate UpA,Bq by

ÛpA,Bq :“
GpA,Bq
ÿ

g“1

pÛpA,Bq
g ´ ÛpA,Bq

gc q.

Finally, we estimate U by

Û :“
1
N

N
ÿ

i“1

ÛpAi,Biq, (9)

where N is the number of draws of pairs of projections pAi, Biq, i “ 1, . . . ,N, with A P A

according to a distribution κ and B P BpAcq according to a distribution κpAcq.

Our chosen multiclass classifier is Random Forest [19, 16], more specifically, the probability

forest of [111]. That is, for each of the N projections, we fit a Random Forest with a specified
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number of trees, a parameter called num.trees.per.proj. Thus, for each tree (or group of

trees) a random subset of variables and labels is chosen based on which the test statistic is

computed. In each tree, we set mtry to the full dimension of the projection to not have an

additional subsampling effect. This approach aligns naturally with the construction of Random

Forest, as the overall approach might be seen as one aggregated Random Forest, which restricts

the variables in each tree or group of trees to a random subset of variables. We finally use the

OOB-samples for predicting p̂pA,Bq
g .

The question remains how to sample the sets pA1, B1q, . . . pAN , BNq at random. Our chosen

approach is quite simple: we first randomly sample a number of dimensions r1 by drawing

uniformly from t1, . . . , p ´ 1u. We then draw r1 values without replacement from t1, . . . , pu to

obtain A. Similarly, we randomly draw a value r2 from t1, . . . , p ´ r1u and then draw r2 values

without replacement from t1, . . . , puzA to obtain B. We then consider MNA,B, i.e., all patterns

for the fully observed observations in A projected to B, and build the labels YpA,Bq based on the

patterns in this matrix. This simple approach is used as a default, but one could also employ a

more data-adaptive subsampling. In our algorithm, we might restrict the number of collapsed

classes by selecting B corresponding to A accordingly. The parameter indicating the maximal

number of collapsed classes allowed is given by size.resp.set. If set to 2, we reduce the

multi-class problem to a two-class problem. In Algorithm 1 we provide the pseudo-code for the

estimation of ÛpA,Bq.

To ensure that the level is kept by a test based on the statistic Û for any choice of κ and

κpAcq, we use a permutation approach, as detailed next.

Algorithm 1: UhatpX,M, A, Bq

Inputs: incomplete dataset X, missingness indicator M, projections A, B

Result: ÛpA,Bq

Hyper-parameters: number of trees per projection num.trees.per.proj, standard

parameters of the Probability Forests size.resp.set;

- Recover the complete cases NA with respect to A;

- Generate the GpA, Bq collapsed class labels YpA,Bq from MNA,B;

- Fit a multi-class probability forest with num.trees.per.proj trees and mtry full;

for g “ 1, . . . ,GpA, Bq do
- Estimate p̂pA,Bq

g with the fitted forest above using out-of-bag probabilities;

- Return the log-likelihood contribution ÛpA,Bq
g ´ ÛpA,Bq

gc for class g;

end
- Average the log-likelihood ratio contributions ÛpA,Bq

g ´ ÛpA,Bq

gc from the GpA, Bq

collapsed classes g to get the statistic ÛpA,Bq;
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4.3 Permutation Test

To ensure the correct level, we follow a permutation approach. Informally speaking, the per-

mutation approach works in this context if the testing procedure can be replicated in exactly the

same way on the randomly permuted class labels. This is not completely trivial in this case, as

the labels are defined in each projection via the missingness matrix M. It can be shown numer-

ically that permuting the labels at the level of the projection does not conserve the level, as this

is blind to the correspondence between the projections across the permutations.

The key to the correct permutation approach is to permute the rows of M. That is, for L

permutationsσℓ, ℓ “ 1, . . . , L, we obtain L matrices Mσ1 , . . . ,MσL with only the rows permuted.

Then we proceed as above: We sample A „ κ, B „ κpAcq and for each permutation of rows σℓ,

ℓ “ 1, . . . , L, we calculate UpA,Bq
g,σℓ ´ UpA,Bq

gc,σℓ
as in (7). Using p̂pA,Bq

g instead of ppA,Bq
g this results in

ÛpA,Bq
g,σℓ and in the statistic

ÛpA,Bq
σℓ :“

GpA,Bq
ÿ

g“1

ÛpA,Bq
g,σℓ ´ ÛpA,Bq

gc,σℓ
.

We note that we do not need to refit the forest for this permutation approach to work. Instead,

we can directly use p̂pA,Bq
g from the original Random Forest that we fitted on the original M.

Finally, we calculate the empirical distribution of the test-statistic under the null, by calcu-

lating for ℓ “ 1, . . . , L,

Ûσℓ :“
1
N

N
ÿ

j“1

ÛpA j,B jq
σℓ . (10)

The p-value of the test is then obtained as usual by

Z :“
řL
ℓ“1 ItÛσℓ ⩾ Ûu ` 1

L ` 1
. (11)

Then it follows from standard theory on permutation tests that Z is a valid p-value:

Proposition 30. Under H0 in (1), and Z as defined in (11), it holds for all z P r0, 1s that

PpZ ⩽ zq ⩽ z. (12)

Algorithm 2 summarizes the testing procedure.
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Algorithm 2: PKLMtest(X)
Inputs: incomplete dataset X
Result: p-value

Hyper-parameters: number of pairs of projections N, number of permutations L,

number of trees per projection num.trees.per.proj, standard parameters of the

Probability Forests, maximal number of collapsed classes size.resp.set;

- Randomly permute the rows of M L times to obtain Mσ1 , . . . ,MσL ;

for j “ 1, . . . ,N do
- Sample a pair of projections pA j, B jq hierarchically according to A j „ κ and

B j „ κpA jq;

- Calculate ÛpA j,B jq “ UhatpX,M, A j, B jq;

for ℓ “ 1, . . . , L do
- Calculate ÛpA j,B jq

σℓ “ UhatpX,Mσℓ , A j, B jq;

end
end
- Average the statistics ÛpA j,B jq, ÛpA j,B jq

σℓ over the couples of projections pA j, B jq to get

the final statistic Û, Ûσℓ , ℓ “ 1, . . . , L ;

- Obtain the p-value with (11);

5 Empirical Validation

In this section, we empirically showcase the power of our test in comparison to recent competi-

tors on both simulated and real data. The simulation setting is set up along the lines of [78]

and [101] with a common MAR mechanism. For the real datasets we also add a random MAR

generation through the function ampute of the R-package mice, see e.g., [150].

As we did throughout the paper, we refer to our test as “PKLM”, the test of [101] as “Q”,

the test of [107] as “Little” and finally the one of [78] as “JJ”. The Little-test is computed with

the R-package naniar [171], while the JJ-test uses the code of the R-package MissMech [79].

Finally, the code for the Q-test was kindly provided to us by the authors.

5.1 Simulated Data

We vary the sample size n, the number of dimensions p, and the number of complete observa-

tions, which we denote by r. Cases 1 ´ 8 describe the following different data distributions,

similarly as in [101] and in [78]: Throughout, Ip is a covariance matrix with diagonal elements

1 and off-diagonal elements 0 while Σ is a covariance matrix with diagonal elements 1 and

off-diagonal elements 0.7:
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1. A standard multivariate normal distribution with mean 0 and covariance Ip,

2. a correlated multivariate normal distribution with mean 0 and covariance Σ,

3. a multivariate t-distribution with mean 0, covariance Ip and degree of freedom 4,

4. a correlated multivariate t-distribution with mean 0, covariance Σ and degree of freedom

4,

5. a multivariate uniform distribution which has independent uniformp0, 1q marginal distri-

butions,

6. a correlated multivariate uniform distribution obtained by multiplying Σ1{2 to the multi-

variate uniform distribution in 5,

7. a multivariate distribution obtained by generating W “ Z ` 0.1Z3, where Z is from the

standard multivariate normal distribution,

8. a multivariate Weibull distribution which has independent Weibull marginal distribution,

and each Weibull marginal distribution has scale parameter 1 and shape parameter 2.

The above implements the fully observed X˚. To compute the type-I error, we then simulate

the MCAR mechanism where each value in the p columns of the missingness matrix M has a

probability of 1 ´ r1{p being one and is otherwise zero. To compute the power, we simulate the

MAR mechanism following the description in [101]: We generate M such that the first column

consists only of zeros so that the first variable is fully observed. Further, each value in the

remaining p ´ 1 columns has a probability of 1 ´ r1{pp´1q being one, while the rest is zero. This

results, on average, in r rows in M with only zeros, and thus in r fully observed rows in X.

Next, we sort the rows of M into two groups, those that will be fully observed (complete group)

and those that will have at least one missing value (missing group). So far, the generation is

still MCAR. However now, for each row i “ 1, . . . , n we compare X˚
i,1 with the mean of X˚

‚,1,

denoted by X̄1. If X˚
i,1 ă X̄1, the corresponding row i is placed into the complete group with

probability 1/6, and with probability 5/6 into the missing group. That is, with probability 1/6,

the row i is paired with a row in M from the complete group, and with probability 5/6, it is paired

with a row from the missing group. Thus, in this case it is 5 times more likely that the row is

placed in the missing group. On the other hand, if X˚
i,1 ⩾ X̄1 the situation reverses, and row i is

5 times more likely to be associated with a row in M from the complete group. Assigning the

rows of X˚ successively to the rows of M like this results in X with MAR missingness.

Each experiment was rerun nsim “ 300 times to compute type-I error and power. We used

the following default hyperparameter setting for the computation of our PKLM-test: number of

permutations nrep “ 30, number of projections num.proj “ 100, minimal node size in a tree
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min.node.size “ 10, number of fitted trees per projection num.trees.per.proj “ 200

and maximal number of collapsed classes allowed in a projection size.resp.set “ 2. We

note that the choice of these hyperparameters is intriguingly simple: besides size.resp.set,

it holds that “higher values are better”. Thus, as with RF in general, it is mostly a question

of computational resources determining how large the values can be chosen. This is especially

true for the number of trees for each forest, which should be relatively high in order to minimize

additional randomness. We found num.trees.per.proj “ 200 to be a good compromise

between speed and accuracy. As the level is guaranteed for any number of permutations, and

we desired a choice of hyperparameters that would work for p “ 4 as well as p “ 40, we chose

the number of permutations low (nrep “ 30), but the number of projections relatively high

(num.proj “ 100). The only “difficult” parameter to set is size.resp.set, as there appears

to be some loss in accuracy when the number of classes is larger than two. We thus found that

size.resp.set “ 2, generating two classes, works well in a wide range of examples.

As mentioned throughout the paper, the Q-test could not be calculated for a large range of

settings.1 In particular, computation times were infeasible for the setting p “ 10 and r “ 0.1,

and for any configuration with p “ 20 or p “ 40. For the setting n “ 500, p “ 10 and r “ 0.1

for instance, one test for case 2 took around 20 minutes to finish, implying an approximate

overall computation time of 500 ¨ 8 ¨ 2 ¨ 20 “ 16000 minutes or approximately 110 24-hour

days. This despite the fact that the R-code of the Q-test we received was well implemented.

In the upcoming Tables 3 and 4 of results we always used the nominal level of α “ 0.05. We

boldfaced the results for each row in the tables in the following manner: Whenever the type I

error of a test is below or equal to 0.05 and the test has the best power, it will be boldfaced.

If this is true for more than one test, they are all boldfaced. Additionally, we boldfaced all the

type-I errors that are below or equal to the nominal level α “ 0.05 to indicate which tests holds

the level on average in the given settings.

In the simulation set-up of n “ 200 and p “ 4, the Q-test is very powerful, while keeping

the nominal level. The PKLM-test is rarely the most powerful here, however the power of the

PKLM-test is often relatively close to the best power. As an example, in case 2 for r “ 0.65, the

Q-test has a power of 1 while the PKLM-test has a power 0.93, with both keeping the nominal

level α “ 0.05.

In the set-up of n “ 500 and p “ 10, the overall picture changes. The PKLM-test is in all

but two of the 24 cases the most powerful test, sometimes leaving the second-best test quite far

behind. As an example, in case 3 for r “ 0.65, the PKLM-test has a power of 0.85 while the

Q- and the Little-test exhibit a power of 0.26 and 0.61, respectively. While the Little- and the

JJ-test often show inflated levels, this is never a problem for the valid PKLM-test.

In the simulation set-up of n “ 500 and p “ 20, it appears as if the Little-test is a strong

1The largest number p reported in the paper of [101] is 10, while r is at least 0.35.
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competitor. But this is only until one considers its type-I error. Though to a much lesser degree

than the JJ-test, the type-I error is often heavily larger than the nominal level. Considering for

instance case 4, the power of the Little-test is even slightly less than its actual type-I error for

r “ 0.1. In case 4 with r “ 0.35, our test displays a power of 0.89 and keeps the level, while the

Little-test only has a power of 0.33 despite having a grossly inflated type-I error. All of these

problems are worsened for the JJ-test, which often displays an inflated type-I error in almost all

cases and simulation set-ups. A similar story plays out in the case r “ 0.65.

Finally, in the simulation set-up of n “ 1000 and p “ 40, the power of our test is again

much better than that of all other tests. Interestingly, the PKLM-test tends to have higher power

when the components of the distribution are not independent, such as in the cases 2, 4, 6, and 8.

For example, in case 1 for r “ 0.65, PKLM has a power of 0.2, while for case 2 it has a power

of 0.95. The main difference between these two cases is the strong positive correlation induced

in case 2. This pattern repeats: in all correlated examples and for both r “ 0.65 and r “ 0.35,

the PKLM has a power nearing 1, whereas in the independent versions, the power is closer to

the type-I error. Thus, our test is able to use the dependencies in the data to its advantage, at

least for r “ 0.65 and r “ 0.35, and can reach a very high power even for comparatively large

p.

In summary, our test is very competitive even in small dimensions, where the Q-test is very

powerful. It leaves behind all other tests by a wide margin as soon as one increases p. The

Q-test remains strong in these situations as well, but becomes quickly infeasible as either p

increases or the fraction of complete cases r decreases. Crucially, only the PKLM-test and the

Q-test are able to consistently keep the nominal level over all experiments, with the Little- and

JJ-test showing blatant inflation of the type-I error in many situations. This is the case despite

the fact that simply checking the type-I error for a single level α (0.05 in this case) is far from

sufficient to analyse the validity of a p-value.

As an illustration, we randomly chose one of the above experiments in which the Little-test

kept the nominal level, e.g., in the simulation set up n “ 500, p “ 10, r “ 0.65 in case 5. In

Figure 2 we plot the empirical cumulative distribution functions (ecdf) of 500 p-values under

the null (MCAR) of the four different tests. The red line is the x “ y line. In blue we plotted

100 ecdfs of a uniformp0, 1q-distribution. As described in Equation (12), a valid p-value has

the property that the corresponding black ecdf values do not lie above the region defined by

the blue lines. As Proposition 30 predicts, this is clearly the case for the PKLM-test. That the

p-values appear rather discrete stems from the fact that we chose a low number of permutations

(nrep “ 30). The Q-test is sometimes overshooting the red line, though this appears to mostly

stem from estimation error. In general, it is remarkable how closely the ecdfs of p-values from

both the Q- and PKLM-test resemble the ecdf of a uniform sample. The JJ-test appears to

consistently have PpZ ⩽ zq ⩾ z. The Little-test finally appears to produce a valid p-value
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Figure 2: Example plot of cumulative distribution function values of the p-values under the null (MCAR) of the
four different tests. The simulation set up is n “ 500, p “ 10, r “ 0.65 in case 5, with 500 repetitions. The red
line is the x “ y line, while the blue lines show 100 ecdfs of 500 simulated uniform random variables.
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as long as only values z ă 0.5 are considered. For z ⩾ 0.5, the the ecdf clearly violates the

requirement of a valid p-value. If there is no theoretical guarantee, it is thus important to not

just check the type-I error at α “ 0.05, but to instead consider other levels, e.g., α “ 0.1.

5.2 Real Data

We used 13 real datasets with varying number of observations n and dimensions p for further

empirical assessment of the PKLM-test and comparison to the other three tests. The datasets

are available in the UCI machine learning repository2. We preprocessed the data by cancelling

factor variables, in order to be able to run all other three tests. However, we kept numerical

variables with only few unique values.

For the generation of the NAs, we use an overall probability of missingness of pmiss “ 0.3

(not to be confused with r from the last subsection, denoting the number of complete cases).

We used a random MAR generation through the function ampute of the R-package mice. This

function can randomly generate realistic MAR mechanisms, see e.g., [150]. Each experiment

was run nsim “ 300 times to compute the type-I error and power. We used the following

hyperparameter setting for the computation of our PKLM-test: number of permutations nrep “

30, number of projections num.proj “ 300, minimal node size in a tree min.node.size “ 10,

number of fitted trees per projection num.trees.per.proj “ 200 and maximal number of

collapsed classes allowed in a projection size.resp.set “ 2. The results are shown in Table

5. Our test is again very competitive with the best power in 7 out of 13 datasets, conditional

on valid type-I errors. The Little-test shows also often good performance, though given the

problematic level displayed in the previous section, this has to be considered with some care.

The Q-test also has relatively high power in the situations where it can be calculated. However,

due to computational time we only run the Q-test for p ⩽ 10. All in all, we see that the Q-test

quickly gets infeasible for large p and n and the advantage of the PKLM-test strengthens with

increasing p.

6 Extension

In addition to the “global test” of MCAR, we can study the effect of single variables: For any

given variable k “ 1, . . . , p, we can calculate

Û´k
“

1
|P´k|

ÿ

iPP´k

ÛpAi,Biq,

where P´k are all pairs of projections pAi, Biq from the N randomly chosen ones, with Bi not

containing variable k. We can use the analogous calculation based on the permuted missingness
2https://archive.ics.uci.edu/ml/index.php

https://archive.ics.uci.edu/ml/index.php
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Power Type-I Error

n p r case PKLM Q Little JJ PKLM Q Little JJ

200 4 0.65 1 0.73 0.98 0.98 0.12 0.03 0.03 0.06 0.04
2 0.93 1.00 0.96 0.04 0.03 0.06 0.06 0.05
3 0.81 0.94 0.92 0.05 0.03 0.02 0.04 0.08

4 0.89 0.97 0.91 0.05 0.01 0.03 0.05 0.05
5 0.79 1.00 1.00 0.19 0.03 0.04 0.04 0.06

6 0.90 1.00 0.99 0.20 0.03 0.04 0.03 0.13

7 0.80 0.93 0.95 0.04 0.04 0.06 0.09 0.08

8 0.72 0.92 0.90 0.26 0.03 0.05 0.04 0.08

200 4 0.35 1 0.79 0.98 0.97 0.04 0.03 0.04 0.04 0.13

2 0.87 0.98 0.97 0.08 0.03 0.03 0.03 0.08

3 0.82 0.97 0.90 0.16 0.03 0.03 0.06 0.12

4 0.87 0.99 0.92 0.10 0.03 0.02 0.08 0.11

5 0.79 0.99 0.99 0.10 0.04 0.05 0.05 0.08

6 0.80 1.00 0.97 0.12 0.03 0.04 0.06 0.11

7 0.79 0.98 0.92 0.09 0.03 0.05 0.07 0.06

8 0.83 0.99 0.99 0.10 0.05 0.05 0.06 0.05
200 4 0.10 1 0.30 0.40 0.26 0.20 0.06 0.03 0.05 0.22

2 0.35 0.50 0.27 0.12 0.03 0.10 0.05 0.18

3 0.25 0.29 0.18 0.21 0.04 0.01 0.04 0.24

4 0.37 0.42 0.17 0.19 0.03 0.03 0.03 0.17

5 0.27 0.51 0.33 0.26 0.05 0.02 0.05 0.20

6 0.31 0.40 0.27 0.24 0.03 0.03 0.04 0.17

7 0.26 0.42 0.22 0.20 0.04 0.04 0.09 0.31

8 0.31 0.39 0.32 0.23 0.03 0.03 0.04 0.18

500 10 0.65 1 0.93 0.89 0.88 0.09 0.05 0.06 0.06 0.05
2 0.99 1.00 0.84 0.08 0.02 0.06 0.05 0.05
3 0.85 0.26 0.61 0.12 0.02 0.05 0.18 0.10

4 0.99 0.96 0.60 0.10 0.04 0.06 0.19 0.12

5 0.89 0.98 0.96 0.16 0.04 0.05 0.03 0.10

6 0.99 1.00 0.91 0.15 0.04 0.07 0.02 0.13

7 0.90 0.61 0.68 0.09 0.02 0.07 0.12 0.07

8 0.79 0.76 0.76 0.18 0.03 0.04 0.05 0.09

500 10 0.35 1 0.89 0.74 0.66 0.07 0.02 0.02 0.02 0.08

2 0.99 0.99 0.69 0.09 0.03 0.06 0.03 0.11

3 0.88 0.33 0.51 0.14 0.04 0.05 0.18 0.11

4 0.98 0.91 0.48 0.12 0.04 0.08 0.20 0.10

5 0.91 0.92 0.83 0.12 0.04 0.06 0.04 0.12

6 0.98 1.00 0.75 0.09 0.03 0.08 0.04 0.11

7 0.89 0.46 0.52 0.05 0.03 0.03 0.08 0.11

8 0.92 0.78 0.74 0.10 0.05 0.06 0.06 0.07

500 10 0.10 1 0.31 ´ 0.06 0.12 0.02 ´ 0.03 0.10

2 0.45 ´ 0.07 0.12 0.03 ´ 0.03 0.07

3 0.34 ´ 0.18 0.16 0.03 ´ 0.19 0.14

4 0.45 ´ 0.20 0.16 0.02 ´ 0.22 0.11

5 0.33 ´ 0.04 0.12 0.06 ´ 0.02 0.14

6 0.45 ´ 0.03 0.08 0.05 ´ 0.01 0.12

7 0.34 ´ 0.12 0.09 0.05 ´ 0.09 0.15

8 0.34 ´ 0.04 0.16 0.03 ´ 0.05 0.13

Table 3: Simulated power and type-I error of PKLM, Q, Little and JJ for n “ 200, p “ 4 and n “ 500, p “ 10.
We use r “ 0.65, 0.35 and 0.1. Cases 1 ´ 8 describe different data distributions. The experiments were repeated
300 times and the parameter setting for PKLM described above was used.
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Power Type-I Error

n p r case PKLM Q Little JJ PKLM Q Little JJ

500 20 0.65 1 0.39 ´ 0.36 0.06 0.02 ´ 0.05 0.09

2 0.91 ´ 0.48 0.08 0.03 ´ 0.05 0.10

3 0.33 ´ 0.49 0.20 0.03 ´ 0.24 0.11

4 0.90 ´ 0.40 0.14 0.04 ´ 0.22 0.11

5 0.32 ´ 0.64 0.14 0.04 ´ 0.04 0.08

6 0.93 ´ 0.39 0.25 0.04 ´ 0.01 0.09

7 0.33 ´ 0.37 0.07 0.03 ´ 0.09 0.10

8 0.23 ´ 0.25 0.14 0.04 ´ 0.06 0.03
500 20 0.35 1 0.45 ´ 0.22 0.08 0.03 ´ 0.04 0.09

2 0.90 ´ 0.22 0.09 0.03 ´ 0.04 0.08

3 0.43 ´ 0.35 0.18 0.02 ´ 0.34 0.12

4 0.89 ´ 0.33 0.20 0.03 ´ 0.31 0.15

5 0.46 ´ 0.24 0.09 0.02 ´ 0.02 0.12

6 0.91 ´ 0.14 0.14 0.02 ´ 0.03 0.10

7 0.41 ´ 0.22 0.11 0.02 ´ 0.11 0.10

8 0.52 ´ 0.18 0.08 0.03 ´ 0.04 0.07

500 20 0.10 1 0.13 ´ 0.00 0.14 0.03 ´ 0.00 0.10

2 0.24 ´ 0.01 0.14 0.04 ´ 0.01 0.12

3 0.08 ´ 0.21 0.16 0.06 ´ 0.22 0.10

4 0.26 ´ 0.27 0.08 0.04 ´ 0.31 0.13

5 0.12 ´ 0.00 0.10 0.03 ´ 0.00 0.19

6 0.19 ´ 0.00 0.11 0.05 ´ 0.00 0.18

7 0.07 ´ 0.08 0.12 0.04 ´ 0.07 0.12

8 0.07 ´ 0.02 0.11 0.04 ´ 0.00 0.16

1000 40 0.65 1 0.20 ´ 0.00 0.09 0.05 ´ 0.00 0.15

2 0.95 ´ 0.00 0.12 0.03 ´ 0.00 0.14

3 0.23 ´ 0.00 0.29 0.02 ´ 0.00 0.17

4 0.94 ´ 0.00 0.26 0.05 ´ 0.00 0.17

5 0.16 ´ 0.00 0.30 0.02 ´ 0.00 0.19

6 0.97 ´ 0.00 0.26 0.02 ´ 0.00 0.19

7 0.23 ´ 0.00 0.11 0.02 ´ 0.00 0.10

8 0.13 ´ 0.00 0.17 0.03 ´ 0.00 0.12

1000 40 0.35 1 0.35 ´ 0.00 0.12 0.02 ´ 0.00 0.11

2 0.97 ´ 0.00 0.13 0.05 ´ 0.00 0.10

3 0.37 ´ 0.00 0.30 0.03 ´ 0.00 0.30

4 0.96 ´ 0.00 0.33 0.04 ´ 0.00 0.27

5 0.32 ´ 0.00 0.14 0.04 ´ 0.00 0.11

6 0.98 ´ 0.00 0.16 0.03 ´ 0.00 0.10

7 0.36 ´ 0.00 0.11 0.02 ´ 0.00 0.08

8 0.30 ´ 0.00 0.16 0.02 ´ 0.00 0.10

1000 40 0.10 1 0.08 ´ 0.00 0.15 0.02 ´ 0.00 0.12

2 0.32 ´ 0.00 0.12 0.02 ´ 0.00 0.10

3 0.06 ´ 0.00 0.13 0.05 ´ 0.00 0.20

4 0.25 ´ 0.00 0.25 0.03 ´ 0.00 0.28

5 0.08 ´ 0.00 0.11 0.03 ´ 0.00 0.09

6 0.27 ´ 0.00 0.09 0.04 ´ 0.00 0.11

7 0.07 ´ 0.00 0.16 0.03 ´ 0.00 0.13

8 0.07 ´ 0.00 0.15 0.04 ´ 0.00 0.08

Table 4: Simulated power and type-I error of PKLM, Q, Little and JJ for n “ 500, p “ 20 and n “ 1000, p “ 40.
We use r “ 0.65, 0.35 and 0.1. Cases 1 ´ 8 describe different data distributions. The experiments were repeated
300 times and the parameter setting for PKLM described above was used.
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Power Type-I Error

dataset n p PKLM Q Little JJ PKLM Q Little JJ

iris 150 4 0.41 0.91 0.84 0.27 0.03 0.04 0.03 0.16

blood.transfusion 748 4 0.48 0.97 1.00 NA 0.01 0.06 0.04 NA

airfoil 1503 6 0.92 0.13 0.17 0.09 0.02 0.03 0.06 0.42

seeds 210 7 0.64 0.74 0.57 0.24 0.05 0.02 0.02 0.10

yacht 308 7 0.60 0.56 0.76 0.24 0.03 0.07 0.05 0.24

yeast 1484 8 0.82 0.52 0.15 0.14 0.05 0.06 0.23 0.85

glass 214 9 0.10 0.02 0.20 0.20 0.01 0.00 0.03 0.33

concrete.compression 1030 9 0.64 0.48 0.81 0.47 0.04 0.04 0.05 0.41

wine.quality.red 1599 11 0.81 ´ 0.72 0.80 0.04 ´ 0.15 0.52

wine.quality.white 4898 11 0.98 ´ 0.96 0.87 0.04 ´ 0.10 0.79

planning.relax 182 12 0.29 ´ 0.20 0.14 0.00 ´ 0.00 NA

climate.model.crashes 540 19 0.18 ´ 0.22 0.47 0.00 ´ 0.00 NA

ionosphere 351 32 0.45 ´ 0.97 0.18 0.00 ´ 0.06 NA

Table 5: Simulated power and level of PKLM, Q, Little and JJ for 13 real datasets. We use pmiss “ 0.3. The
experiments were repeated 300 times and the parameter setting for PKLM described above was used. The NAs for
some values of the JJ-test indicate that the test was not computable in any of the 300 repetitions due to not enough
observations in enough usable missingness groups.
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Figure 3: X1 and X2 of the fully observed data in the simulated example of Section 6. In red: Points with missing
values in X1, in blue: points with missing values in X2. The blue points are randomly scattered, independently of
the value of X1, while in the red points, there is a visible trend towards having more missing values in X1 for higher
values of variable X2.

matrix M
Û´k
σℓ

“
1

|P´k|

ÿ

jPP´k

ÛpA j,B jq
σℓ ,

to obtain the p-value as in (11). This “partial” p-value is valid and corresponds to the effect of

removing the patterns induced by variable k. Indeed, assume the difference in the distribution of

two patterns stems from a variable j alone. If j P B, a perfect classifier will be able to reliably

differentiate the two, leading to a high value for Û´k relative to the permutation values. If j is

not forming the labels, we will not test these two classes against each other and thus not be able

spot this difference. As such, we might expect to see a high p-value for Û´ j, when variable j is

removed, but a tendency to low p-values for Û´k, k , j.

We illustrate the usefulness of partial p-values with an example. Let C´k “ t1, . . . , puztku.

We assume X‚,C´k has a MCAR missingness structure, in particular, we simulate below the

MCAR mechanism described in Section 5.1 with r “ 0.65. Let k “ 1 and assume that this first

column of observations X‚,1 has missingness depending on the observed values of X‚,2. For

instance, each value is missing if the mean of the corresponding row X j,2 is larger than 0.5. In

this simple example X is MAR, but X‚,C´1 is MCAR. We simulate this example, with p “ 4

and n “ 500, Xi,‚ being independent standard Gaussian and the MAR/MCAR mechanism as

described above. The first two fully observed components, X1 and X2, are shown in Figure 3.

As before, we set num.trees.per.proj=200 and use 100 projections. In this example, we

are only able to spot any difference when j “ 1 is used to build the labels.
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Our test reliably delivers small p-values (⩽ 0.05) for the three partial tests based on pro-

jections potentially including variable 1, i.e., sets of projections P´2, P´3, and P´4 and a high

p-value for the partial test based on P´1. Thus in this sense, the test detects that the main culprit

of the MAR mechanism lies in the first variable.

7 Concluding Remarks

In this paper we presented the powerful, flexible and easy-to-use PKLM-test for the MCAR

assumption on the missingness mechanism of a dataset. We proved the validity of the p-value of

the test and showed its power over a wide range of distributions. We also provided an extension

allowing to do partial tests, that may shed light on the source of the violation of the MCAR

assumption. Naturally, with some slight adaptations the test can be used as a general test of

homogeneity of G different groups in the sense that it tests whether G different groups have the

same distribution.
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1 Proofs

Proposition 29. Hypothesis testing problem (3) is equivalent to (2).

Proof We first show H0 of (2) implies H0 of (3). Let A, B be arbitrary. If they are such that

there is only one label, there is nothing to test, so we may assume to have |GpA, Bq| ⩾ 2 patterns

in XNA,A. This means that A Ă oi j for all patterns i, j P GpA, Bq. This simply follows because,

by construction, each of the |GpA, Bq| patterns in XNA,A has the elements in A fully observed.

But since by assumption for all i, j P t1, . . . ,Gu, Fi,oi j “ F j,oi j and A Ă oi j, this immediately

implies that Fi,A “ F j,A for all i, j P t1, . . . ,Gu and thus Fg,A “
ř

jPGpA,Bqzg ω
g
j F j,A. Since A, B

were arbitrary, one direction follows.

We now show that H0 of (3) implies H0 of (2). The proof is based on the following claim:

Consider G arbitrary distribution functions F1, . . . , FG and weights pω
g
jq

G´1
j“1 , j “ 1, . . . ,G such

that
řG´1

j“1 ω
g
j “ 1 for all j. Then

Fg “
ÿ

jPt1,...,Guzg

ω
g
j F j, @g P t1, . . . ,Gu ùñ Fi “ F j, @i , j P t1, . . . ,Gu. (13)

We prove the implication by induction: Consider first G “ 3. Assuming the LHS of (13) and

plugging the equation for F2 into the equation for F1, we obtain:

F1 “ w1
2w2

1F1 ` w1
2w2

3F3 ` w1
3F3

“ w1
2w2

1F1 ` pw1
2w2

3 ` w1
3qF3,

which implies p1 ´ w2
1w1

2qF1 “ pw1
2w2

3 ` w1
3qF3. Since

1 “ w1
2 ` w1

3 “ w1
2pw2

3 ` w2
1q ` w1

3 “ w1
2w2

3 ` w1
2w2

1 ` w1
3,

we have the equality p1 ´ w2
1w1

2q “ pw1
2w2

3 ` w1
3q and thus F1 “ F3. Plugging this back into

the equivalent equation for F2, we obtain F1 “ F2 “ F3. Now assume (13) is true for G

distributions F1, . . . , FG and we now would like to prove it for G ` 1. Assume wlog that the

weight of F2 in the equation of F1 is nonzero (there will always be at least one such distribution

F2, . . . , FG). Using the same trick as above, we may plug say the equation for F2 into F1,

thereby reducing the number of equations/distributions to G. By the induction assumption this

implies that F1 “ F3 “ . . . “ FG. But immediately this also implies that F2 “ F1 and implies

(13). With this result we can now proof the that H0 of (3) implies H0 of (2).

Take two arbitrary groups i, j and A “ oi j and take B “ Ac. To ease notation we just wlog

take i “ 1 and j “ 2. Then A “ o12 contains the dimensions for which patterns 1 and 2 have

fully observed values. Thus, observations in XNA,A contain draws from F1,o12 and F2,o12 . Since

by assumption

H0 : Fg,A “
ÿ

jPGpA,Bqzg

ω
g
j F j,A , @g P GpA, Bq, (14)
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it follows by (13), that Fi,A “ F j,A for all i, j P GpA, Bq and thus in particular, F1,A “ F2,A. Since

we will have A “ oi j for all groups i , j, H0 of (2) holds.

Lemma .11. The logarithm of the density ratio for testing (5) is given by UpA,Bq
g .

Proof Based on the definitions of ppA,Bq
g pxq, f pA,Bq

g pxq and πpA,Bq
g we obtain by Bayes Rule,

ppA,Bq
g pxq “

f pA,Bq
g pxqπ

pA,Bq
g

ř

jPGpA,Bq π
pA,Bq

j f pA,Bq

j pxq
, (15)

assuming the existence of densities fg of distributions Fg for each g P GpA, Bq. Following the

same steps as in [24], we get that the logarithm of the (joint) density ratio for testing H0 vs H1

of (5), given by

log
f pA,Bq
g pxqp1 ´ π

pA,Bq
g q

ř

jPGpA,Bqzg π
pA,Bq

j f pA,Bq

j pxq
. (16)

We reformulate the fraction in (16) in terms of ppA,Bq
g , starting from (15):

ppA,Bq
g pxq

ÿ

jPGpA,Bqzg

π
pA,Bq

j f pA,Bq

j pxq “ pπ
pA,Bq
g ´ ppA,Bq

g pxqπ
pA,Bq
g q f pA,Bq

g pxq

“ π
pA,Bq
g p1 ´ ppA,Bq

g pxqq f pA,Bq
g pxq.

Thus, the inside of the logarithm of (16) is given by the following function of ppA,Bq
g :

f pA,Bq
g pxqp1 ´ π

pA,Bq
g q

ř

jPGpA,Bqzg π
pA,Bq

j f pA,Bq

j pxq
“

1 ´ π
pA,Bq
g

π
pA,Bq
g

ppA,Bq
g pxq

1 ´ ppA,Bq
g pxq

.

Lemma .12. UpA,Bq
g converges in probability to the Kullback-Leibler Divergence between f pA,Bq

g

and the mixture of the other densities:

UpA,Bq
g Ñ E fg

«

log
f pA,Bq
g pXqp1 ´ π

pA,Bq
g q

ř

jPGpA,Bqzg π
pA,Bq

j f pA,Bq

j pXq

ff

,

as ng and
ř

jPt1,...,Guzg n j Ñ 8 and ng{n Ñ π
pA,Bq
g P p0, 1q.

Proof From the proof of Lemma .11, we know that UpA,Bq
g can be rewritten as

UpA,Bq
g :“

1
|S f pA,Bq

g
|

ÿ

iPS
f pA,Bq
g

˜

log
ppA,Bq

g pxiq

1 ´ ppA,Bq
g pxiq

´ log
π

pA,Bq
g

1 ´ π
pA,Bq
g

¸

“
1
ng

ÿ

iPS
f pA,Bq
g

log
f pA,Bq
g pxiqp1 ´ π

pA,Bq
g q

ř

jPGpA,Bqzg π
pA,Bq

j f pA,Bq

j pxiq
. (17)
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Since ng{n Ñ π
pA,Bq
g P p0, 1q and the xi are i.i.d., the result follows from the law of large num-

bers.

Proposition 30. Under H0 in (1), and Z as defined in (11), it holds for all z P r0, 1s that

PpZ ⩽ zq ⩽ z. (12)

Proof
Let A “ pA1, . . . , ANq and B “ pB1, . . . , BNq be two sets of N projections. Let G1, . . .GL˚

be all possible permutations of the rows of the missingness matrix M, such that

GℓpX˚,M,A,Bq “ pX˚,Mσℓ ,A,Bq,

for ℓ “ 1, . . . , L˚. Note that, since we are only considering fully observed observations for all

projections in A, Û, a function of pX,M,A,Bq, is indeed a function of pX˚,M,A,Bq, while Ûσℓ
is a function of GℓpX˚,M,A,Bq. It also holds that under the null, that is under MCAR, that

pX˚,M,A,Bq
D
“ pX˚,Mσℓ ,A,Bq “ GℓpX˚,M,A,Bq @ℓ “ 1, . . . L˚. (18)

This is true because, under MCAR, M and X˚ are independent. Since by the i.i.d. assumption

also Mσℓ
D
“ M for all ℓ “ 1, . . . , L˚ and since A, B are also independent of M, (18) follows. As

outlined for example in [70], this implies that under H0,

PpZ ⩽ z | A,Bq ⩽ z.

Integrating over pA,Bq, results in (12).

2 Additional Details and Computation Times

Here we provide more implementation details, discuss the complexity calculations in Table 1

and show computation times of the different tests in the experiments.

Numerical truncation. In order to avoid numerical issues when calculating the density ratio

with Expression (6) or the log thereof, if we get predicted probabilities p̂A close to 0 or 1, we

apply the following truncation function to p̂A:

ppxq “ minpmaxpx, 10´9
q, 1 ´ 10´9

q.

Hyperparameter Selection. Generally speaking, it holds that “the more the better”, certainly

for the parameters N, L and num.trees.per.proj. As such, the choice of those three param-

eters depends mostly on the computational power available to the user. For size.resp.set,

this is not quite as clear, though we found a value of two to work well in most situations.
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PLKM Test. We first consider the complexity of one Random Forest, which is in this case

num.tree ¨ pn logpnq.

Note that this includes the calculation of p̂ on the test sample through the OOB-error. In total

we do this num.proj times. However, we consider num.tree and num.proj independent of n

and p and thus treating it as constant. In this case we end up with pn logpnq. Finally we need to

calculate the statistics U and repeat this number of calculations a fixed number of times. This

would add a factor Bn, where again we assume that B does not grow with n and p. As this is

neglible compared to pn logpnq, the complexity is given as Oppn logpnqq

Q-test. The Q-test compares all groups leading to a complexity of G2 to compare each group

with any other. Additionally, the statistic used is an MMD type, so the complexity is pn1 ` n2q2,

where n1, n2 are the respective group sizes. The group size can be at worst n{G, which together

results in Opn2q. The bootstrap on the other hand can also be ignored, as it simply results in a

constant factor multiplied to n2.

JJ and Little-test. Both JJ- and Little-test rely on covariance estimation which scales as np2.

This gives the Opnp2q complexity for the Little-test. For the JJ-test one also needs an ordering

operation to obtain the test statistics, with complexity n logpnq, which results in overall com-

plexity Opnpp2 ` logpnqqq.

As mentioned above, Table 1 just shows how the complexity scales in n and p and, in case

of our test, treats the number of projections as constants. One might argue that the number of

projections should be a function of p as well. Similarly, for “small” p and small number of

groups G, the Q-test can be faster than ours. Still the complexities provide a good illustration

of how quickly the Q-test can become infeasible, when the number of groups (often a function

of p) and/or the number of observation increases.

3 Example of [190]

[190] study settings where group means and variances are approximately equal across missing-

ness patterns, such that MCAR tests based on differences in means and variances, such as the

Little-test, have no power. We study one such example here: Let p “ 2 and pZ1,Z2q be jointly

multivariate normal with correlation zero and let X1 “ Z1 and

X2 “ 0.5Z1 ` p1 ´ 0.25q
1{2Z2.

We set X2 to NA if

X1 P p´8,´1.932s ∪ p´0.314, 0.314s ∪ p1.932,8q.
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Figure 4: Histogram with relative frequencies of X1 if the corresponding X2 is NA.

This corresponds to around 30% missing values. Figure 4 displays a histogram, plotting all

observations of X1 with X2 missing for a simulation of n “ 101000. This corresponds to the

MAR example used in [190, Section 3] and we refer to their paper for more details.

We simulate the above distribution for n “ 1000 and run our PKLM-test with the same

parameters as described in Section 5.1. Though the deviation from MCAR cannot be detected

through the first two moments in this example, our test reliably reaches a power of 1.
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Abstract

Random Forest [15] is a successful and widely used regression and classification

algorithm. Part of its appeal and reason for its versatility is its (implicit) construction

of a kernel-type weighting function on training data, which can also be used for targets

other than the original mean estimation. We propose a novel forest construction for

multivariate responses based on their joint conditional distribution, independent of the

estimation target and the data model. It uses a new splitting criterion based on the

MMD distributional metric, which is suitable for detecting heterogeneity in multivariate

distributions. The induced weights define an estimate of the full conditional distribution,

which in turn can be used for arbitrary and potentially complicated targets of interest.

The method is very versatile and convenient to use, as we illustrate on a wide range of

examples. The code is available as Python and R packages drf.

Keywords. causality, distributional regression, fairness, Maximal Mean Discrep-

ancy, Random Forests, two-sample testing

1 Introduction

In practice, one often encounters heterogeneous data, whose distribution is not constant, but de-

pends on certain covariates. For example, data can be collected from several different sources,

its distribution might differ across certain subpopulations or it could even change with time, etc.

Inferring valid conclusions about a certain target of interest from such data can be very chal-

lenging as many different aspects of the distribution could potentially change. As an example,

in medical studies, the effectiveness of a certain treatment might not be constant throughout the

159
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population but depend on certain patient characteristics such as age, race, gender, or medical

history. Another issue could be that different patient groups were not equally likely to receive

the same treatment in the observed data.

Obviously, pooling all available data together can result in invalid conclusions. On the other

hand, if for a given test point of interest one only considers similar training data points, i.e. a

small homogeneous subpopulation, one may end up with too few samples for accurate statistical

estimation. In this paper, we propose a method based on the Random Forest algorithm [15]

which in a data-adaptive way determines for any given test point which training data points

are relevant for it. This in turn can be used for drawing valid conclusions or for accurately

estimating any quantity of interest.

Let Y “ pY1,Y2, . . . ,Ydq P Rd be a multivariate random variable representing the data

of interest, but whose joint distribution is heterogeneous and depends on some subset of a

potentially large number of covariates X “ pX1, X2, . . . , Xpq P Rp. Throughout the paper, vector

quantities are denoted in bold. We aim to estimate a certain target object τpxq that depends on

the conditional distribution PpY | X “ xq “ PpY | X1 “ x1, . . . , Xp “ xpq, where x “ px1, . . . , xpq

is an arbitrary point in Rp. The estimation target τpxq can range from simple quantities, such

as the conditional expectations Er f pYq | Xs [15] or quantiles Qαr f pYq | Xs [117] for some

function f : Rd Ñ R, to some more complicated aspects of the conditional distribution PpY |

X “ xq, such as conditional copulas or conditional independence measures. Given the observed

data tpxi, yiqun
i“1, the most straightforward way of estimating τpxq nonparametrically would

be to consider only the data points in some neighborhood Nx around x, e.g. by considering

the k nearest neighbors according to some metric. However, such methods typically suffer

from the curse of dimensionality even when p is only moderately large: for a reasonably small

neighborhood, such that the distribution PpY | X P Nxq is close to the distribution PpY |

X “ xq, the number of training data points contained in Nx will be very small, thus making

the accurate estimation of the target τpxq difficult. The same phenomenon occurs with other

methods which locally weight the training observations such as kernel methods [155], local

MLE [51] or weighted regression [33] even for the relatively simple problem of estimating the

conditional mean ErY | X “ xs for fairly small p. For that reason, more importance should be

given to the training data points pxi, yiq for which the response distribution PpY | X “ xiq at

point xi is similar to the target distribution PpY | X “ xq, even if xi is not necessarily close to x
in every component.

In this paper, we propose the Distributional Random Forest (DRF) algorithm which esti-

mates the multivariate conditional distribution PpY | X “ xq in a locally adaptive fashion. This

is done by repeatedly dividing the data points in the spirit of the Random Forest algorithm [15]:

at each step, we split the data points into two groups based on some feature X j in such a way

that the distribution of Y for which X j ⩽ l, for some level l, differs the most compared to the
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distribution of Y when X j ą l, according to some distributional metric. One can use any multi-

variate two-sample test statistic, provided it can detect a wide variety of distributional changes.

As the default choice, we propose a criterion based on the Maximal Mean Discrepancy (MMD)

statistic [62] with many interesting properties. This splitting procedure partitions the data such

that the distribution of the multivariate response Y in the resulting leaf nodes is as homogeneous

as possible, thus defining neighborhoods of relevant training data points for every x. Repeating

this many times with randomization induces a weighting function wxpxiq as in [104, 105], de-

scribed in detail in Section 2, which quantifies the relevance of each training data point xi for

a given test point x. The conditional distribution is then estimated by an empirical distribution

determined by these weights [117]. This construction is data-adaptive as it assigns more weight

to the training points xi that are closer to the test point x in the components which are more

relevant for the distribution of Y.

Our forest construction does not depend on the estimation target τpxq, but it rather estimates

the conditional distribution PpY | X “ xq directly and the induced forest weights can be used to

estimate τpxq in a second step. This approach has several advantages. First, only one DRF fit is

required to obtain estimates of many different targets, which has a big computational advantage.

Furthermore, since those estimates are obtained from the same forest fit, they are mutually com-

patible. For example, if the conditional correlation matrix tCorpYi, Y j | X “ xqud
i, j“1 is estimated

componentwise using some other method, the resulting matrix might not be positive semidef-

inite, and as another example, the CDF estimates P̂pY ⩽ y | X “ xq might not be monotone

in y, see Figure 6. Finally, it could be extremely difficult to tailor forest construction to some

complex targets τpxq. The induced weighting function can thus be used not only for obtaining

simple distributional aspects such as, for example, the conditional quantiles, conditional corre-

lations, or joint conditional probability statements, but also to obtain more complex objectives,

such as conditional independence tests [193], heterogeneous regression (see also Section 4.4

for more details) [96, 181] or semiparametric estimation by fitting a parametric model for Y,

having nonparametrically adjusted for X [12]. Representation of the conditional distribution via

the weighting function has a great potential for applications in causality such as causal effect

estimation or as a way of implementing do-calculus [133] for finite samples, as we discuss in

Section 4.4.

Therefore, DRF is used in two steps: in the first step, we obtain the weighting function wxp¨q

describing the conditional distribution PpY | X “ xq in a target- and model-free way, which is

then used as an input for the second step. Even if the method used in the second step does

not directly support weighting of the training data points, one can easily resample the data set

with the sampling probabilities equal to twxpxiqun
i“1. This two-step approach is visualized in the

following diagram:
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PpY | X “ xq P̂pY | X “ xq

τpPq τpP̂q

1) get wxp¨q with DRF

objective 2) compute from wxp¨q

induced estimator

1.1 Related work and our contribution

Several adaptations of the Random Forest algorithm have been proposed for targets beyond

the original one of the univariate conditional mean ErY | X “ xs: for survival analysis [73],

conditional quantiles [117], density estimation [136], CDF estimation [74] or heterogeneous

treatment effects [181]. Almost all such methods use the weights induced by the forest, as

described in Section 2, rather than averaging the estimates obtained per tree. This view of

Random Forests as a powerful adaptive nearest neighbor method is well known and dates back

to [104, 105]. It was first used for targets beyond the conditional mean in [117], where the

original forest construction with univariate Y was used [15]. However, the univariate response

setting considered there severely restricts the number of interesting targets τpxq and DRF can

thus be viewed as an important generalization of this approach to the multivariate setting.

In order to be able to perform certain tasks or to achieve a better accuracy, many forest-based

methods adapt the forest construction by using a custom splitting criterion tailored to their spe-

cific target, instead of relying on the standard CART criterion. In [192] and [74], a parametric

model for the response Y | X “ x „ f pθpxq, ¨q is assumed and recursive splitting is performed

based on a permutation test which uses the user-provided score functions. Similarly, [4] esti-

mate certain univariate targets for which there exist corresponding score functions defining the

local estimating equations. The data is split so that the estimates of the target in resulting child

nodes differ the most. This is different, though, to the target-free splitting criterion of DRF,

which splits so that the distribution of Y in child nodes is as different as possible.

Since the splitting step is extensively used in the algorithm, its complexity is crucial for

the overall computational efficiency of the method, and one often needs to resort to approxi-

mating the splitting criterion [136, 4] to obtain good computational run time. We propose a

splitting criterion based on a fast random approximation of the MMD statistic [63, 195], which

is commonly used in practice for two-sample testing as it is able to detect any change in the

multivariate distribution of Y with good power [62]. DRF with the MMD splitting criterion

also has interesting theoretical properties as shown in Section 3 below.

The multivariate response case has not received much attention in the Random Forest liter-

ature. Most of the existing forest-based methods focus on either a univariate response Y or on

a certain univariate target τpxq. One interesting line of work considers density estimation [136]

and uses aggregation of the CART criteria for different response transformations. Another ap-



Ćevid et al. (2022) 163

proach [92, 152, 77] is based on aggregating standard univariate CART splitting criteria for

Y1, . . . ,Yd and targets only the conditional mean of the responses, a task which could also be

solved by separate regression fits for each Yi. In order to capture any change in the distribution

of the multivariate response Y, one needs to not only consider the marginal distributions for

each component Yi, but also to determine whether their dependence structure changes, see e.g.

Figure 8.

There is an increasing number of methods that nonparametrically estimate the joint multi-

variate conditional distribution PpY | X “ xq in the statistics and machine learning literature. In

addition to a few simple classical methods such as k-nearest neighbors and kernel regression,

there exist methods based on normalizing flows such as Inverse Autoregressive Flow [91] or

Masked Autoregressive Flow [131] and also conditional variants of several popular generative

models such as Conditional Generative Adversarial Networks [125] or Conditional Variational

Autoencoder [160]. The focus of these methods is more on the settings with large response

dimension d and small covariate dimension p, such as image or text generation. Another in-

teresting and related line of research focuses on estimating the conditional mean embedding

(CME), as described e.g., in [162, 126, 161, 132], rather than estimating the conditional distri-

bution directly. CMEs generalize the concept of embedding (marginal) probability distributions

into a Reproducing Kernel Hilbert Space (RKHS) to the conditional case. Interestingly, DRF

with the MMD-based splitting criterion can also be viewed as a method for estimating the

CME, as discussed in Section 3 below. This viewpoint provides a natural connection between

the Random Forest and kernel embedding literature. A comparison of DRF with the methods

for distributional estimation listed above can be found in Section 4.1.

Our contribution, resulting in the proposal of the Distributional Random Forest (DRF), can

be summarized as follows: First, we introduce the idea of forest construction based on sequen-

tial multivariate two-sample test statistics. It does not depend on a particular estimation target

and is completely nonparametric, which makes its implementation and usage very simple and

universal. Not only does it not require additional user input such as the log-likelihoods or score

functions, but it can be used even for complicated targets for which there is no obvious for-

est construction. Furthermore, it has a computational advantage as only a single forest fit is

needed for producing estimates of many different targets that are additionally compatible with

each other. Second, we propose an MMD-based splitting criterion with good statistical and

computational properties, for which we also derive interesting theoretical results in Section 3.

It underpins our implementation, which we provide as R and Python packages drf. Finally,

we show on a broad range of examples in Section 4 how many different statistical estimation

problems, some of which not being easily tractable by existing forest-based methods, can be

cast to our framework, thus illustrating the usefulness and versatility of DRF.
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2 Method

In this section we describe the details of the Distributional Random Forest (DRF) algorithm. We

closely follow the implementations of the grf [4] and ranger [187] R-packages. A detailed

description of the method and its implementation and the corresponding pseudocode can be

found in the Appendix 1.

2.1 Forest Building

The trees are grown recursively in a model-free and target-free way as follows: For every parent

node P, we determine how to best split it into two child nodes of the form CL “ tX j ⩽ lu and

CR “ tX j ą lu, where the variable X j is one of the randomly chosen splitting candidates and

l denotes its level based on which we perform the splitting. The split is chosen such that we

maximize a certain (multivariate) two-sample test statistic

D ptyi | xi P CLu , tyi | xi P CRuq , (1)

which measures the difference of the empirical distributions of the data Y in the two resulting

child nodes CL and CR. Therefore, in each step we select the candidate predictor X j which

seems to affect the distribution of Y the most, as measured by the metric Dp¨, ¨q. Intuitively, in

this way we ensure that the distribution of the data points in every leaf of the resulting tree is as

homogeneous as possible, which helps mitigate the bias caused by pooling the heterogeneous

data together. A related idea can be found in GRF [4], where one attempts to split the data

so that the resulting estimates τ̂L and τ̂R, obtained respectively from data points in CL and CR,

differ the most:
nLnR

n2
P

pτ̂L ´ τ̂Rq
2
, (2)

where we write nP “ |ti | xi P Pu| and nL, nR are defined analogously.

One could construct the forest using any metricDp¨, ¨q for empirical distributions. However,

in order to have a good accuracy of the overall method, the corresponding two-sample test using

Dp¨, ¨q needs to have a good power for detecting any kind of change in distribution, which is a

difficult task in general, especially for multivariate data [6, 169]. Another very important aspect

of the choice of distributional metric Dp¨, ¨q is the computational efficiency; one needs to be

able to sequentially compute the values of D ptyi | xi P CLu , tyi | xi P CRuq for every possible

split very fast for the overall algorithm to be computationally feasible, even for moderately large

data sets. Below, we propose a splitting criterion based on the MMD two-sample test statistic

[62] which has both good statistical and computational properties.

In contrast to other forest-based methods, we do not use any information about our estima-

tion target τ in order to find the best split of the data, which comes with a certain trade-off.
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On one hand, it is sensible that tailoring the splitting criterion to the target should improve the

estimation accuracy; for example, some predictors might affect the conditional distribution of

Y, but not necessarily the estimation target τ and splitting on such predictors unnecessarily re-

duces the number of training points used for estimating τ. On the other hand, our approach has

multiple benefits: it is easier to use as it does not require any user input such as the likelihood

or score functions and it can also be used for very complicated targets for which one could not

easily adapt the splitting criterion. Furthermore, only one DRF fit is necessary for producing

estimates of many different targets, which has both computational advantage and the practical

advantage that the resulting estimates are mutually compatible (see e.g. Figure 5).

Interestingly, sometimes it could even be beneficial to split based on a predictor which

does not affect the target of estimation, but which affects the conditional distribution. This is

illustrated by the following toy example. Suppose that for a bivariate response pY1,Y2q we are

interested in estimating the slope of the linear regression of Y2 on Y1 conditionally on p “ 30

predictors X, i.e. our target is τpxq “ CovpY1,Y2 | X “ xq{VarpY1 | X “ xq. This is one of

the main use cases for GRF and its variant which estimates this target is called Causal Forest

[181, 4]. Let us assume that the data has the following distribution:

P

˜«

Y1

Y2

ff
ˇ

ˇ

ˇ

ˇ

ˇ

X “ x

¸

„ N

˜«

x1

x1

ff

,

«

σ2 0

0 σ2

ff¸

X „ Np0, Ipq, (3)

i.e. X1 affects only the mean of the responses, while the other p ´ 1 predictors have no effect.

In Figure 1 we illustrate the distribution of the data when n “ 300, p “ 30, σ “ 0.2, together

with the DRF and GRF splitting criteria. The true value of the target is τpxq “ 0, but when σ is

not too big, the slope estimates τ̂ on pooled data will be closer to 1. Therefore, the difference of

τ̂L and τ̂R between the induced slope estimates for a candidate split, which is used for splitting

criterion (2) of GRF, might not be large enough for us to decide to split on X1, or the resulting

split might be too unbalanced. This results in worse forest estimates for this toy example, see

Figure 1.

2.2 Weighting Function

Having constructed our forest, just as the standard Random Forest [15] can be viewed as the

weighted nearest neighbor method [104], we can use the induced weighting function to estimate

the conditional distribution at any given test point x and thus any other quantity of interest τpxq.

This approach is commonly used in various forest-based methods for obtaining predictions, see

e.g., [74, 136, 4].

Suppose that we have built N trees T1, . . . ,TN . Let Lkpxq be the set of the training data

points which end up in the same leaf as x in the tree Tk. The weighting function wxpxiq is
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Figure 1: Top left: Illustration of data distribution for the toy example (3) when n “ 300, p “ 30. Bottom: The
corresponding MMD (12) (left) and GRF (2) splitting criteria (right) at the root node. The curves of different colors
correspond to different predictors, with X1 denoted in black. Top right: Comparison of the estimates of DRF and
Causal Forest [4] which respectively use those splitting criteria. Test points were randomly generated from the
same distribution as the training data. Black dashed line indicates the correct value of the target quantity.

defined as the average of the corresponding weighting functions per tree [105]:

wxpxiq “
1
N

N
ÿ

k“1

1 pxi P Lkpxqq

|Lkpxq|
. (4)

The weights are positive and add up to 1:
řn

i“1 wxpxiq “ 1. In the case of equally sized leaf

nodes, the assigned weight to a training point xi is proportional to the number of trees where

the test point x and xi end up in the same leaf node. This shows that forest-based methods can

in general be viewed as adaptive nearest neighbor methods. The sets Lkpxq of DRF will contain

data points pxi, yiq such that PpY | X “ xiq is close to PpY | X “ xq, thus removing bias due to

heterogeneity of Y caused by X. On the other hand, since the trees are constructed randomly

and are thus fairly independent [15], the leaf sets Lkpxq will be different enough so that the

induced weights wxpxiq are not concentrated on a small set of data points, which would lead to

high estimation variance. Such good bias-variance tradeoff properties of forest-based methods

are also implied by their asymptotic properties [10, 179], even though this is a still active area

of research and not much can be shown rigorously.

One can estimate the conditional distribution PpY | X “ xq from the weighting function by
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using the corresponding empirical distribution:

P̂pY | X “ xq “

n
ÿ

i“1

wxpxiq ¨ δyi , (5)

where δyi is the point mass at yi.

2.2.0.1 Two-step approach using weights. The weighting function wxpxiq can directly be

used for any target τpxq in a second step and not just for estimating the conditional distribution.

For example, the estimated conditional joint CDF is given by

F̂Y|X “ xptq “ P̂pY1 ⩽ t1, . . . ,Yd ⩽ td | X “ xq “

n
ÿ

i“1

wxpxiq1pX
d
j“1tpyiq j ⩽ t juq. (6)

It is important to point out that using the induced weighting function for locally weighted

estimation is different than the approach of averaging the noisy estimates obtained per tree

[181], originally used in standard Random Forests [15]. Even though the two approaches are

equivalent for conditional mean estimation, the former approach is often much more efficient

for more complex targets [4], since the number of data points in a single leaf is very small,

leading to large variance of the estimates.

For the univariate response, the idea of using the induced weights for estimating targets

different than the original target of conditional mean considered in [15] dates back to Quantile

Regression Forests (QRF) [117], where a lot of emphasis is put on the quantile estimation, as

the number of interesting targets is quite limited in the univariate setting. In the multivariate

case, on the other hand, many interesting quantities such as, for example, conditional quantiles,

conditional correlations or various conditional probability statements can easily be directly es-

timated from the weights.

By using the weights as an input for some other method, we can accomplish some more com-

plicated objectives, such as conditional independence testing, causal effect estimation, semi-

parametric learning, time series prediction or tail-index estimation in extreme value analysis.

As an example, suppose that our data Y come from a certain parametric model, where the pa-

rameter θ is not constant, but depends on X instead, i.e. Y | X “ x „ f pθpxq, ¨q, see also [192].

One can then estimate the parameter θpxq by using weighted maximum likelihood estimation:

θ̂pxq “ arg max
θPΘ

n
ÿ

i“1

wxpxiq log f pθ, yiq.

Another example is heterogeneous regression, where we are interested in the regression fit of an

outcome Y P R on certain predicting variables W P Rs conditionally on some event tX “ xu.

This can be achieved by weighted regression of Y on W, where the weights wxpxiq assigned to

each data point pwi, yiq are obtained from DRF with the multivariate response pY,Wq P Rs`1

and predictors X P Rp, for an illustration see Section 4.4.
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Figure 2: Top: the characteristics of the important training sites, for a fixed test site whose position is indicated
by a black star and whose characteristics are indicated in the title. The total weight assigned corresponds to
the symbol size. Bottom: estimated joint conditional distribution of two pollutants NO2 and PM2.5, where the
weights correspond to the transparency of the data points. Green area corresponds to ’Good’ air quality category
(AQI ⩽ 50).

The weighting function of DRF is illustrated on the air quality data in Figure 2. Five years

(2015´2019) of air pollution measurements were obtained from the US Environmental Protec-

tion Agency (EPA) website. Six main air pollutants (nitrogen dioxide (NO2), carbon monoxide

(CO), sulphur dioxide (SO2), ozone (O3) and coarse and fine particulate matter (PM10 and

PM2.5)) that form the air quality index (AQI) were measured at many different measuring sites

in the US for which we know the longitude, latitude, elevation, location setting (rural, urban,

suburban) and how the land is used within a 1{4 mile radius. Suppose we would want to know

the distribution of the pollutant measurements at some new, unobserved, measurement site. We

train DRF with the measurements (intraday maximum) of the two pollutants PM2.5 and NO2

as the responses, and the site longitude, latitude, elevation, land use and location settings as

the predictors and choose two decommissioned measurement sites as test points. For each test

point we obtain the weights to all training measurements. We further combine the weights

for all measurements corresponding to the same site. The top row illustrates for a given test

site, whose characteristics are indicated in the plot title, how much weight in total is assigned

to the measurements from a specific training site. We see that the important sites share many

characteristics with the test site and that DRF determines the relevance of each characteristic

in a data-adaptive way. The bottom row shows the corresponding estimates of the joint con-

ditional distribution of the pollutants (we choose 2 of them for visualization purposes), where

the transparency of each training point reflects the assigned weight. One can clearly see how
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the estimated pollution levels are larger for the suburban site than for the rural site. The forest

weights can be used, for example, for estimating the joint density (whose contours can be seen

in the plot) or for estimating the probability that the AQI is below a certain value by summing

the weights in the corresponding region of space.

2.3 Distributional Metric

In order to determine the best split of a parent node P, i.e. such that the distributions of the

responses Y in the resulting child nodes CL and CR differ the most, one needs a good distribu-

tional metricDp¨, ¨q (see Equation (1)) which can detect change in distribution of the response Y
when additionally conditioning on an event tX j ą lu. Testing equality of distributions from the

corresponding samples is an old problem in statistics, called two-sample testing problem. For

univariate data, many good tests exist such as Wilcoxon rank test [185], Welch’s t-test [183],

Wasserstein two-sample testing [143], Kolmogorov-Smirnov test [112] and many others, but

obtaining an efficient test for multivariate distributions has proven to be quite challenging due

to the curse of dimensionality [54, 7].

Additional requirement for the choice of distributional metric Dp¨, ¨q used for data splitting

is that it needs to be computationally very efficient as splitting is used extensively in the algo-

rithm. If we construct N trees from n data points and in each node we consider mtry candidate

variables for splitting, the complexity of the standard Random Forest algorithm [15] in the uni-

variate case is OpN ˆmtryˆn log nq provided our splits are balanced. It uses the CART splitting

criterion, given by:
1
nP

˜

ÿ

xiPCL

pyi ´ yLq
2

`
ÿ

xiPCR

pyi ´ yRq
2

¸

, (7)

where yL “ 1
nL

ř

xiPCL
yi and yR is defined analogously. This criterion has an advantage that not

only it can be computed in OpnPq complexity, but this can be done for all possible splits tX j ⩽ lu

as cutoff level l varies, since updating the splitting criterion when moving a single training data

point from one child node to the other requires only Op1q computational steps (most easily seen

by rewriting the CART criterion as in (13)).

If the time complexity of evaluating the DRF splitting criterion (1) for a single splitting

candidate X j and all cutoffs l of interest (usually taken to range over all possible values) is at

least nc for some c ą 1, say Op f pnqq for some function f : RÑ R, then by solving the recursive

relation we obtain that the overall complexity of the method is given by OpN ˆ mtry ˆ f pnqq

[3], which can be unfeasible even for moderately large n if f grows too fast.

The problem of sequential two-sample testing is also central to the field of change-point

detection [186, 20], with the slight difference that in the change-point problems the distribution

is assumed to change abruptly at certain points in time, whereas for our forest construction we
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only are interested in finding the best split of the form tX j ⩽ lu and the conditional distribution

PpY | tX P Pu X tX j ⩽ luq usually changes gradually with l. The testing power and the com-

putational feasibility of the method play a big role in change-point detection as well. However,

the state-of-the-art change-point detection algorithms [102, 113] are often too slow for our pur-

pose as sequential testing is done OpN ˆ mtry ˆ nq times for forest construction, much more

frequently than in change-point problems.

2.3.1 MMD splitting criterion

Even though DRF could in theory be constructed with any distributional metric Dp¨, ¨q, as a

default choice we propose splitting criterion based on the Maximum Mean Discrepancy (MMD)

statistic [62]. Let pH , x¨, ¨yHq be the RKHS of real-valued functions on Rd induced by some

positive-definite kernel k, and let φ : Rd Ñ H be the corresponding feature map satisfying that

kpu, vq “ xφpuq, φpvqyH .

The MMD statistic DMMDpkq pU,Vq for kernel k and two samples U “ tu1, . . . ,u|U|u and

V “ tv1, . . . , v|V|u is given by:

DMMDpkq pU,Vq “
1

|U|2

|U|
ÿ

i, j“1

kpui,u jq `
1

|V|2

|V|
ÿ

i, j“1

kpvi, v jq ´
2

|U||V|

|U|
ÿ

i“1

|V|
ÿ

j“1

kpui, v jq. (8)

MMD compares the similarities, described by the kernel k, within each sample with the simi-

larities across samples and is commonly used in practice for two-sample testing. It is based on

the idea that one can assign to each distribution P its embedding µpPq into the RKHSH , which

is the unique element ofH given by

µpPq “ EY„PrφpYqs. (9)

The MMD two-sample statistic (8) can then equivalently be written as the squared distance

between the embeddings of the empirical distributions with respect to the RKHS norm ∥¨∥H :

DMMDpkq pU,Vq “

∥∥∥∥∥∥∥∥µ
˜

1
|U|

|U|
ÿ

i“1

δui

¸

´ µ

˜

1
|V|

|V|
ÿ

i“1

δvi

¸

∥∥∥∥∥∥∥∥
2

H

, (10)

recalling that δy is the point mass at y.

As the sample sizes |U| and |V| grow, the MMD statistic (10) converges to its population

version, which is the squared RKHS distance between the corresponding embeddings of the

data-generating distributions of U and V . Since the embedding map µ is injective for a char-

acteristic kernel k, we see that MMD is able to detect any difference in the distribution. Even

though the power of the MMD two sample test also deteriorates as the data dimensionality

grows, since the testing problem becomes intrinsically harder [142], it still has good empirical

power compared to other multivariate two-sample tests for a wide range of k [63].
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2.3.1.1 Fast random splitting criterion approximation. The Opp|U| ` |V|q2q complexity

for computing DMMDpkqpU,Vq from (8) is nevertheless too large for many applications. For

that reason, several fast approximations of MMD have been suggested in the literature [63, 65,

191, 32, 81]. As already mentioned, the complexity of the distributional metricDp¨, ¨q used for

DRF is crucial for the overall method to be computationally efficient, since the splitting step is

used extensively in the forest construction. We therefore propose splitting based on an MMD

statistic computed with an approximate kernel k̃, which is also a fast random approximation of

the original MMD statistic [195].

Bochner’s theorem (see e.g. [184, Theorem 6.6]) gives us that any bounded shift-invariant

kernel can be written as

kpu, vq “

ż

Rd
eiωT pu´vqdνpωq, (11)

i.e. as a Fourier transform of some measure ν. Therefore, by randomly sampling the frequency

vectors ω1, . . . ,ωB from normalized ν, we can approximate our kernel k by another kernel k̃ (up

to a scaling factor) as follows:

kpu, vq “

ż

Rd
eiωT pu´vqdνpωq «

1
B

B
ÿ

b“1

eiωT
b pu´vq

“ k̃pu, vq,

where we define k̃pu, vq “ xrφpuq, rφpvqyCB as the kernel function with the feature map given by

rφpuq “
1

?
B

pφ̃ω1puq, . . . , φ̃ωBpuqq
T

“
1

?
B

´

eiωT
1 u, . . . , eiωT

Bu
¯T
,

which is a random vector consisting of the Fourier features rφωpuq “ eiωT u P C [139]. Such

kernel approximations are frequently used in practice for computational efficiency [140, 98].

As a default choice of k we take the Gaussian kernel with bandwidth σ, since in this case we

have a convenient expression for the measure ν and we sample ω1, . . . ,ωB „ Ndp0, σ´2Idq. The

bandwidth σ is chosen as the median pairwise distance between all training responses tyiu
n
i“1,

commonly referred to as the ’median heuristic’ [66].

From the representation of MMD via the distribution embeddings (10), we can obtain that

MMD two-sample test statisticDMMDpk̃q using the approximate kernel k̃ is given by

DMMDpk̃q

´

tuiu
|U|

i“1, tviu
|V|

i“1

¯

“
1
B

B
ÿ

b“1

∣∣∣∣∣∣∣∣ 1
|U|

|U|
ÿ

i“1

φ̃ωbpuiq ´
1

|V|

|V|
ÿ

i“1

φ̃ωbpviq

∣∣∣∣∣∣∣∣
2

.

Interestingly, DMMDpk̃q is not only an MMD statistic on its own, but can also be viewed as a

random approximation of the original MMD statistic DMMDpkq (8) using kernel k; by using the

kernel representation (11), it can be written as

DMMDpkq

´

tuiu
|U|

i“1, tviu
|V|

i“1

¯

“

ż

Rd

∣∣∣∣∣∣∣∣ 1
|U|

|U|
ÿ

i“1

φ̃ωpuiq ´
1

|V|

|V|
ÿ

i“1

φ̃ωpviq

∣∣∣∣∣∣∣∣
2

dνpωq.
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Finally, our DRF splitting criterionDp¨, ¨q (1) is then taken to be the (scaled) MMD statistic
nLnR
n2

P
DMMDpk̃q ptyi | xi P CLu , tyi | xi P CRuq with the approximate random kernel k̃ used instead

of k, which can thus be conveniently written as:

1
B

B
ÿ

b“1

nLnR

n2
P

∣∣∣∣∣∣∣ 1nL

ÿ

xiPCL

φ̃ωbpyiq ´
1
nR

ÿ

xiPCR

φ̃ωbpyiq

∣∣∣∣∣∣∣
2

, (12)

where we recall that nP “ |ti | xi P Pu| and nL, nR are defined analogously. The additional

scaling factor nLnR
n2

P
in (12) occurs naturally and compensates the increased variance of the test

statistic for unbalanced splits; it also appears in the GRF (2) and CART (see representation (13))

splitting criteria.

The main advantage of the splitting criterion based on DMMDpk̃q is that by using the repre-

sentation (1) it can be easily computed for every possible splitting level l in OpBnPq complexity,

whereas the MMD statistic DMMDpkq using kernel k would require Opn2
Pq computational steps,

which makes the overall complexity of the algorithm O pB ˆ N ˆ mtry ˆ n log nq instead of

much slower O pN ˆ mtry ˆ n2q.

We do not use the same approximate random kernel k̃ for different splits; for every parent

node P we resample the frequency vectors tωbuB
b“1 defining the corresponding feature map

φ̃. Using different k̃ at each node might help to better detect different distributional changes.

Furthermore, having different random kernels for each node agrees well with the randomness

of the Random Forests and helps making the trees more independent. Since the MMD statistic

DMMDpk̃q used for our splitting criterion is not only an approximation of DMMDpkq, but is itself

an MMD statistic, it inherits good power for detecting any difference in distribution of Y in the

child nodes for moderately large data dimensionality d, even when B is reasonably small. One

could even consider changing the number of random Fourier features B at different levels of the

tree, as nP varies, but for simplicity we take it to be fixed.

2.3.1.2 Relationship to CART. There is some similarity of our MMD-based splitting crite-

rion (12) with the standard variance reduction CART splitting criterion (7) when d “ 1, which

can be rewritten as:
nLnR

n2
P

˜

1
nL

ÿ

xiPCL

yi ´
1
nR

ÿ

xiPCR

yi

¸2

. (13)

The derivation can be found in Appendix 2. From this representation, we see that the CART

splitting criterion (7) is also equivalent to the GRF splitting criterion (2) when our target is the

univariate conditional mean τpxq “ ErY | X “ xs which is estimated for CL and CR by the sam-

ple means τ̂L “ yL and τ̂R “ yR. Therefore, as it compares the means of the univariate response

Y in the child nodes, the CART criterion can only detect changes in the response mean well,

which is sufficient for prediction of Y from X, but might not be suitable for more complex tar-

gets. Similarly, for multivariate applications, aggregating the marginal CART criteria [92, 152]
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across different components Yi of the response can only detect changes in the means of their

marginal distributions. However, it is possible in the multivariate case that the pairwise correla-

tions or the variances of the responses change, while the marginal means stay (almost) constant.

For an illustration on simulated data, see Figure 7. Additionally, aggregating the splitting cri-

teria over d components of the response Y can reduce the signal size if only the distribution

of a few components change. Our MMD-based splitting criterion (12) is able to avoid such

difficulties as it implicitly inspects all aspects of the multivariate response distribution.

If one takes a trivial kernel kidpyi, y jq “ yiy j with the identity feature map φidpyq “ y, the

distributional embedding (9) is given by µpPq “ EY„PrYs and thus the corresponding splitting

criterion based onDMMDpkidq (10) is exactly equal to the CART splitting criterion (7), which can

be seen from its equivalent representation (13). Interestingly, Theorem 31 in Section 3 shows

that the MMD splitting criterion with general kernel k can also be viewed as the abstract version

of the CART criterion in the RKHS H corresponding to k [50], with the response variable

being the feature map φpYq P H . Therefore, DRF with the MMD splitting criterion can also

be viewed as a forest-based method for estimation of the conditional embedding, which further

justifies the proposed method. In Section 3 below, we use this relationship to derive interesting

theoretical properties of DRF with the MMD splitting criterion.

3 Theoretical Results

In this section we first use the properties of the kernel mean embedding in order to relate DRF

with the MMD splitting criterion to an abstract version of the standard Random Forest with

the CART splitting criterion [15], where the response is taking values in the corresponding

RKHS. This representation reveals that DRF with the MMD splitting criterion can be viewed as

a Random Forest estimator of the conditional mean embedding (CME) [132], similarly as the

standard Random Forest estimates the conditional mean. This relationship is further exploited to

adapt the existing theoretical results from the Random Forest literature to show that our estimate

(5) of the conditional distribution of the response is consistent with respect to the MMD metric

for probability measures and with a good rate. Finally, we show that this implies consistency

of the induced DRF estimates for a range interesting targets τpxq, such as conditional CDFs or

quantiles. The proofs of all results can be found in the Appendix 2.

3.1 Casting DRF as a Random Forest in an RKHS

Recalling the notation from above, let pH , x¨, ¨yHq be the Reproducing kernel Hilbert space

induced by the positive definite kernel k : Rd ˆRd Ñ R and let φ : Rd Ñ H be its corresponding

feature map. The kernel embedding function µ :MbpRdq Ñ H maps any bounded signed Borel
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measure P on Rd to an element µpPq P H defined by

µpPq “

ż

Rd
φpyq dPpyq, (14)

see also (9). Boundedness of k ensures that µ is indeed defined on all ofMbpRdq, while conti-

nuity of k ensures thatH is separable [75].

By considering the kernel embedding µp¨q and using its linearity, the embedding of the dis-

tributional estimate µpP̂pY | X “ xqq of DRF (5) can be written as the average of the embeddings

of the empirical distributions of Y in the leaves containing x over all trees:

µpP̂pY | X “ xqq “
1
N

N
ÿ

k“1

µ

¨

˝

1
|Lkpxq|

ÿ

xiPLkpxq

δyi

˛

‚“
1
N

N
ÿ

k“1

1
|Lkpxq|

ÿ

xiPLkpxq

µpδyiq. (15)

This is analogous to the prediction of the response for the standard univariate Random Forest,

but where we average the embeddings µpδyiq “ φpyiq P H instead of the response values yi

themselves.

Furthermore, one can relate the MMD splitting criterion to the original CART criterion (7),

which measures the mean squared prediction error for splitting a certain parent node P into

children CL and CR. On one hand, from Equation (13) we see that the CART criterion also

measures the squared distance between the response averages 1
nL

ř

xiPCL
yi and 1

nR

ř

xiPCR
yi in

the child nodes, but on the other hand, Equation (10) shows that the MMD splitting criterion

measures the RKHS distance between the embeddings of the empirical response distributions

in CL and CR. This is summarized in the following theorem, which not only shows that the

MMD splitting criterion can be viewed as the abstract CART criterion in the RKHS H [50],

but also that DRF with the MMD splitting criterion can be viewed asymptotically as a greedy

minimization of the average squared MMD distance between our estimate P̂pY | X “ xq and the

truth PpY | X “ xq:

Theorem 31. For any split of a parent node P into child nodes CL and CR, let P̂splitpxq “
ř

jPtL,Ru 1px P C jq
1
n j

ř

xiPC j
δyi

denote the resulting estimate of the distribution PpY | X “ xq

when x P P. Then the MMD splitting criterion can be viewed as the version of the CART

criterion (7) onH:

arg max
split

nLnR

n2
P

DMMDpkq ptyi | xi P CLu, tyi | xi P CRuq

“ arg min
split

1
nP

ÿ

xiPP

∥∥∥µpδyiq ´ µpP̂splitpxiqq
∥∥∥2
H
.

Moreover, for any node P and any fixed distributional estimator P̂pY | X “ xq, we have:

1
nP

ÿ

xiPP

∥∥∥µpδyiq ´ µpP̂pY | X “ xiqq
∥∥∥2
H

“ VP ` E
“

∥µpP̂pY | Xqq ´ µpPpY | Xqq∥2
H

| X P P
‰

` Oppn´1{2
q,
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where VP “ E
“

∥µpδYq ´ µpPpY | Xqq∥2
H

| X P P
‰

is a deterministic term not depending on the

estimates P̂pY | X “ xq.

In conclusion, from the above results we see that by applying the kernel embedding (14), we

can shift the perspective to the RKHSH and view DRF as the analogue of the original Random

Forest for estimation of the CME µpPpY | X “ xqq “ ErφpYq | X “ xs in an abstract Hilbert

spaceH . Like some traditional CME estimators [162, 161, 126, 132] it is also of the form

µpP̂pY | X “ xqq “

n
ÿ

i“1

wxpxiq ¨ kpyi, ¨q. (16)

It can be shown that, since DRF produces nonnegative weights that sum to one in (16), there

is one-to-one correspondence between the resulting estimate inH and the empirical probability

distribution inMbpRdq. Thus DRF can be seen as a CME estimator through (16), or directly as

an estimator for the conditional distribution through (5). By contrast, other CME estimators of

the form (16) have weights that are unconstrained and can be negative. Finding an appropriate

distribution on Rd for a given mean-embedding (sometimes referred to as “distributional inverse

image problem”, see e.g. [115, 126]) is not straightforward in general. For certain tasks, such

as sampling from the estimated conditional distribution P̂pY | X “ xq or obtaining the plug-in

estimates of some target functionals τpPpY | X “ xqq, this is crucial.

3.2 Convergence of Conditional Distribution Estimates

As we have seen, DRF can be viewed as the abstract version of the standard Random Forest

when the response takes value in an RKHS. In principle, one could thus derive properties of

DRF by adapting any existing theoretical result from the literature to the RKHS case. However,

a lot of care is needed for making the results rigorous in this abstract setup, as many useful

properties of R need not hold for infinite-dimensionalH . This section is inspired by the results

from [181].

We suppose that the forest construction satisfies the following properties, which significantly

facilitate the theoretical considerations of the method and ensure that our forest estimator is well

behaved, as stated in [181]:

(P1) (Data sampling) The bootstrap sampling with replacement, usually used in forest-based

methods, is replaced by a subsampling step, where for each tree we choose a random

subset of size sn out of n training data points. We consider sn going to infinity with n,

with the rate specified below.

(P2) (Honesty) The data used for constructing each tree is split into two partOn the pitfalls of

Gaussian scoring for causal discoverys; the first is used for determining the splits and the

second for populating the leaves and thus for estimating the response.
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(P3) (α-regularity) Each split leaves at least a fraction 0 ă α ⩽ 0.2 of the available training

sample on each side. Moreover, the trees are grown until every leaf contains between κ

and 2κ ´ 1 observations, for some fixed tuning parameter κ P N.

(P4) (Symmetry) The (randomized) output of a tree does not depend on the ordering of the

training samples.

(P5) (Random-split) At every split point, the probability that the split occurs along the feature

X j is bounded below by π{p, for some π ą 0 and for all j “ 1, . . . , p.

The validity of the above properties are easily ensured by the forest construction used.

From Equation (15), the prediction of DRF for a given test point x can be viewed as an

element of H . If we denote the i-th training observation by Zi “ pxi, µpδyiqq P Rp ˆH , then

by (15) we estimate the embedding of the true conditional distribution µpPpY | X “ xqq by the

average of the corresponding estimates per tree:

µpP̂pY | X “ xqq “
1
N

N
ÿ

j“1

T px; ε j,Z jq,

whereZk is a random subset of tZiu
n
i“1 of size sn chosen for constructing the j-th tree T j and ε j

is a random variable capturing all randomness in growing T j, such as the choice of the splitting

candidates. T px; ε,Zq denotes the output of a single tree: i.e. the average of the terms µpδYiq

over all data points Zi contained in the leaf Lpxq of the tree constructed from ε andZ.

Since one can take the number of trees N to be arbitrarily large, we consider an “idealized”

version of our estimator, as done in [180], which we denote as µ̂npxq:

µ̂npxq “

ˆ

n
sn

˙´1
ÿ

i1ăi2ă...ăisn

Eε T px; ε; tZi1 , . . . ,Zisn
uq, (17)

where the sum is taken over all
` n

sn

˘

possible subsets of tZiu
n
i“1.We have that µpP̂pY | X “ xqq Ñ

µ̂npxq as N Ñ 8, while keeping the other variables constant, and thus we assume for simplicity

that those two quantities are the same.

Our main result shows that, under similar assumptions as in [180], the embedding of our

conditional distribution estimator µ̂npxq “ µpP̂pY | X “ xqq consistently estimates µpxq B

µpPpY | X “ xqq with respect to the RKHS norm with a certain rate:

Theorem 32. Suppose that our forest construction satisfies properties (P1)–(P5). Assume ad-

ditionally that k is a bounded and continuous kernel and that we have a random design with

X1, . . . ,Xn independent and identically distributed on r0, 1sp with a density bounded away from

0 and infinity. If the subsample size sn is of order nβ for some 0 ă β ă 1, the mapping

x ÞÑ µpxq “ ErµpδYq | X “ xs P H ,
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is Lipschitz and supxPr0,1sp Er}µpδYq}2
H

| X “ xs ă 8, we obtain the consistency w.r.t. the RKHS

norm:

∥µ̂npxq ´ µpxq∥H “ Op
`

n´γ
˘

, (18)

for γ “ 1
2 min

´

1 ´ β,
logpp1´αq´1q

logpα´1q

π
p ¨ β

¯

.

Remark 33. The rate in (18) is analogous to the one from [181], who used it further to derive

the asymptotic normality of the Random Forest estimator in R. Unfortunately, this alone is

not enough to establish asymptotic normality of pµ̂npxq ´ µpxqq{σn as an element of H . To do

so, one needs to prove a functional central limit theorem with a Gaussian limiting process in

the Hilbert space H . This then allows to deduce asymptotic normality of smooth real-valued

functionals. We will provide the detailed derivations in future work.

3.3 Convergence of the Induced Estimates

The above result shows that DRF estimate P̂pY | X “ xq converges fast to the truth PpY | X “ xq

in the MMD distance, i.e. the RKHS distance between the corresponding embeddings. Even

though this is interesting on its own, ultimately we want to relate this result to estimation of

certain distributional targets τpxq “ τpPpY | X “ xqq.

For any f P H , we have that the DRF estimate of the target τpxq “ Er f pYq | X “ xs equals

the dot product x f , µ̂npxqyH in the RKHS:

x f , µ̂npxqyH “

B

f ,
ż

Rd
φpyqdP̂py | X “ xq

F

H

“

ż

Rd
f pyq dP̂py | X “ xq “

n
ÿ

i“1

wxpxiq f pyiq,

where we recall the weighting function wxp¨q induced by the forest (4). Therefore, the consis-

tency result (18) in Theorem 32 directly implies that

n
ÿ

i“1

wxpxiq f pyiq “ x f , µ̂npxqyH
p

Ñ x f , µpxqyH “ Er f pYq | X “ xs for any f P H , (19)

i.e. that the DRF consistently estimates the targets of the form τpxq “ Er f pYq | X “ xs, for

f P H . From (18) we also obtain the rate of convergence when sn — nβ:
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

wxpxiq f pyiq ´ Er f pYq | X “ xs

ˇ

ˇ

ˇ

ˇ

ˇ

“ Op
`

n´γ∥ f ∥H
˘

,

for γ as in Theorem 32. When k is continuous, it is well known that all elements of H are

continuous, see e.g. [75]. Under certain assumptions on the kernel and its input space, holding

for several popular kernels, (e.g. the Gaussian kernel) [163], we can generalize the convergence

result (19) to any bounded and continuous function f : Rd Ñ R, as the convergence of measures

P̂pY | X “ xq Ñ PpY | X “ xq in the MMD metric will also imply their weak convergence, i.e.

k metrizes weak convergence [163, 157, 156]:
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Corollary 34. Assume that one of the following two sets of conditions holds:

(a) The kernel k is bounded, (jointly) continuous and has
ż ż

kpx, yqdPpxqdPpyq ą 0 @P PMbpRd
qzt0u. (20)

Moreover, y ÞÑ kpy0, yq is vanishing at infinity, for all y0 P Rd.

(b) The kernel k is bounded, shift-invariant, (jointly) continuous and ν in the Bochner repre-

sentation in (11) is supported on all of Rd. Moreover, Y takes its values almost surely in

a closed and bounded subset of Rd.

Then, under the conditions of Theorem 32, we have for any bounded and continuous function

f : Rd Ñ R that DRF consistently estimates the target τpxq “ Er f pYq | X “ xs for any

x P r0, 1sp:
n

ÿ

i“1

wxpxiq f pyiq
p

Ñ Er f pYq | X “ xs.

Recalling the Portmanteau Lemma on separable metric spaces, see e.g. [46, Chapter 11],

this has several other interesting consequences, such as the consistency of CDF and quantile

estimates; Let FY|X “ xp¨q be the conditional CDF of Y and for any index 1 ⩽ i ⩽ d, let FYi|X “ xp¨q

be the conditional CDF of Yi and F´1
Yi|X “ xp¨q its generalized inverse, i.e. the quantile function.

Let F̂Yi|X “ xp¨q and F̂´1
Yi|X “ xp¨q be the corresponding DRF estimates via weighting function (6).

Then we have the following result:

Corollary 35. Under the conditions of Corollary 34, for any 1 ⩽ i ⩽ d, we have

F̂Y|X “ xptq p
Ñ FY|X “ xptq

F̂´1
Yi|X “ xptq p

Ñ F´1
Yi|X “ xptq,

for all points of continuity t P Rd and t P R of FY|X “ xp¨q and F´1
Yi|X “ xp¨q respectively.

4 Applications and Numerical Experiments

The goal of this section is to demonstrate the versatility and applicability of DRF for many

practical problems. We show that DRF can be used not only as an estimator of the multivariate

conditional distribution, but also as a two-step method to easily obtain out-of-the box estimators

for various, and potentially complex, targets τpxq.

Our main focus lies on the more complicated targets which cannot be that straightforwardly

approached by conventional methods. However, we also illustrate the usage of DRF for certain

applications for which there already exist several well-established methods. Whenever possible
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in such cases, we compare the performance of DRF with the specialized, task-specific methods

to show that, despite its generality, there is at most a very small loss of precision. However, we

should point out that for many targets such as, that can not be written in a form of a conditional

mean or a conditional quantile, for example, conditional correlation, direct comparison of the

accuracy is not possible for real data, since no suitable loss function exists and the ground truth

is unknown. Finally, we show that, in addition to directly estimating certain targets, DRF can

also be a very useful tool for many different applications, such as causality and fairness.

Detailed descriptions of all competing methods, data sets and the corresponding analyses

can be found in Appendix 3, and some additional simulations can be found in the Appendix 4.

4.1 Estimation of Conditional Multivariate Distributions

In order to provide good estimates for any target τpxq “ τpPpY | X “ xqq, our method needs

to estimate the conditional multivariate distribution PpY | X “ xq well. Therefore, we first

investigate here the accuracy of the DRF estimate (5) of the full conditional distribution and

compare its performance with the performance of several existing methods.

In addition to a few simple methods such as the k-nearest neighbors or the kernel regres-

sion, which locally weight the training points, we also consider the CME estimator of [132]

and several advanced machine learning methods such as the Conditional Generative Adversar-

ial Network (CGAN) [125, 2], Conditional Variational Autoencoder (CVAE) [160] and Masked

Autoregressive Flow [131]. It is worth mentioning that the focus in the machine learning litera-

ture has been more on applications where d is very large (e.g. pixels of an image) and p is very

small (such as image labels). Even though some methods do not provide the estimated condi-

tional distribution in a form as simple as DRF, one is still able to sample from the estimated

distribution and thus perform any subsequent analysis and make fair comparisons between the

methods. For the CME estimator we simply set the negative weights to zero and renormalize,

such that the weights are nonnegative and sum to one.

We first illustrate the estimated distributions by the above methods on a toy example where

n “ 1000, p “ 10, d “ 2 and

Y1 |ù Y2 | X “ x, Y1 | X “ x „ Upx1, x1 ` 1q, Y2 | X “ x „ Up0, x2q, X „ Up0, 1q
p. (21)

In the above example X1 affects the mean of Y1, whereas X2 affects the both mean and variance

of Y2, and X3, . . . , Xp have no impact. The results can be seen in Figure 3. We see that, unlike

some other methods, DRF is able to balance the importance of the predictors X1 and X2 and

thus to estimate the distributions of Y1 and Y2 well.

One can do a more extensive comparison on a collection of real data sets. We use the

benchmark data sets from the multi-target regression literature [172] together with some ad-

ditional ones created from the data sets described throughout this paper. The performance of
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Figure 3: The illustration of the estimated joint conditional distribution obtained by different methods for the
toy example (21). For 1000 randomly generated test points Xtest „ Up0, 1qp the top row shows the estimated
distribution of the response component Y1, whereas the bottom row shows the estimated distribution of Y2. The 0.1
and 0.9 quantiles of the true conditional distribution are indicated by a dashed black line, whereas the conditional
mean is shown as a black solid line.

DRF is compared with the performance of other existing methods for nonparametric estimation

of multivariate distributions by using the Negative Log Predictive Density (NLPD) loss, which

evaluates the logarithm of the induced multivariate density estimate [138]. As the number of

test points grows to infinity, NLPD loss becomes equivalent to the average KL divergence be-

tween the estimated and the true conditional distribution and is thus able to capture how well

one estimates the whole distribution, instead of only its mean.

In addition to the methods mentioned above, we also include some methods that are intended

only for mean prediction, by assuming that the distribution of the response around its mean is

homogeneous, i.e. that the conditional distribution P pY ´ ErY | Xs | X “ xq does not depend

on x. This is fitted by regressing each component of Y separately on X and using the pooled

residuals. We consider the standard nonparametric regression methods such as Random Forest

[15], XGBoost [27], and Deep Neural Networks [60].

The results are shown in Table 1. We see that DRF performs well for a wide range of sample

size and problem dimensionality, especially in problems where p is large and d is moderately

big. It does so without the need for any tuning or involved numerical optimization.

4.2 Estimation of Statistical Functionals

Because DRF represents the estimated conditional distribution P̂pY | X “ xq “
ř

i wxpxiq ¨ δyi

in a convenient form by using weights wxpxiq, a plug-in estimator τpP̂pY | X “ xqq of many

common real-valued statistical functionals τpPpY | X “ xqq P R can be easily constructed from

wxp¨q.
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n 359 103 1K 768 337 296 143 323 1K 5K 10K 10K 10K 10K

p 15 7 16 8 370 370 8 21 22 10 73 23 24 15

d 3 3 14 2 6 6 3 3 6 2 2 2 4 6

DRF 3.9 4.0 22.5 2.1 7.3 7.0 2.0 -24.2 -24.3 2.8 2.8 2.5 4.2 8.5
CGAN 10.8 5.3 27.3 3.5 10.4 363 4.8 9.8 21.1 5.8 360 2.4 ą1K 11.8

CVAE 4.8 37.8 36.8 2.6 ą1K ą1K 108.8 8.6 ą1K 2.9 ą1K ą1K 49.7 9.6

MAF 4.6 4.5 23.9 3.0 8.0 8.1 2.6 4.7 3.8 2.9 3.0 2.5 ą1K 8.5

k-NN 4.5 5.0 23.4 2.4 8.8 8.6 4.1 -22.4 -19.7 2.9 2.8 2.7 4.4 8.8

kernel 4.1 4.2 23.0 2.0 6.6 7.1 2.9 -23.0 -20.6 2.8 2.9 2.6 4.3 8.4

RF 7.1 12.1 35.2 5.7 12.7 13.3 16.7 3.9 2.2 5.8 6.1 5.0 8.3 13.9

XGBoost 11.4 38.3 25.9 3.0 ą1K ą1K ą1K 0.3 1.6 3.5 2.9 ą1K ą1K 12.8

DNN 4.0 4.2 23.3 2.6 8.6 8.7 2.6 2.3 2.2 2.9 3.0 2.6 5.4 8.6

CME 3.2 4.9 23.2 2.9 8.5 8.4 2.5 -24.4 -24.3 2.8 3.5 3.8 15.2 8.8

Table 1: NLPD loss computed on out-of-sample observations for the estimated conditional distributions obtained
by several different methods (corresponding to rows) for many real data sets (corresponding to columns). The best
method is indicated in bold.

We first investigate the performance for the classical problem of univariate quantile esti-

mation on simulated data. We consider the following three data generating mechanisms with

p “ 40, n “ 2000 and Xi
i.i.d.
„ Up´1, 1qp:

• Scenario 1: Y „ Np0.8 ¨ 1pX1 ą 0q, 1q (mean shift based on X1)

• Scenario 2: Y „ Np0, p1 ` 1pX1 ą 0qq2q (variance shift based on X1)

• Scenario 3: Y „ 1pX1 ⩽ 0q ¨ Np1, 1q `1pX1 ą 0q ¨ Expp1q (distribution shift based on X1,

constant mean and variance)

The first two scenarios correspond exactly to the examples given in [4].

In Figure 4 we can see the corresponding estimates of the conditional quantiles for DRF,

Quantile Regression Forest (QRF) [117], which uses the same forest construction with CART

splitting criterion as the original Random Forest [15] but estimates the quantiles from the in-

duced weighting function, Generalized Random Forests (GRF) [4] with a splitting criterion

specifically designed for quantile estimation and Transformation Forests (TRF) [74]. We see

that DRF is performing very well even compared to methods that are specifically tailored to

quantile estimation.

The multivariate setting is however more interesting, as one can use DRF to compute much

more interesting statistical functionals τpxq. We illustrate this in Figure 5 for the air quality data

set, described in Section 2.2. The left plot shows one value of the estimated multivariate CDF,
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Figure 4: Scatter plot of predictions of the 0.1, 0.5 and 0.9 quantiles against X1 for randomly generated 500 test
data points Xtest „ Up´1, 1qp. The true values of the quantiles are displayed by black dashed lines. The columns
corresponds to different methods DRF (red), GRF (green), QRF (blue), TRF (purple). The rows correspond to
different simulation scenarios. The first two are taken from [4].

specifically the estimated probability of the event that the air quality index (AQI) is at most 50 at

a given test site. This corresponds to the ”Good” category and means that the amount of every

air pollutant is below a certain threshold determined by the EPA. Such probability estimates

can be easily obtained by summing the weights of the training points belonging to the event

of interest. For both plots in Figures 2 and 5, we train the single DRF with the same set of

predictor variables and take the three pollutants O3, SO2 and PM2.5 as the responses. In this

way we still have training data from many different sites.

In order to investigate the accuracy of the conditional CDF obtained by DRF, we compare

the estimated probabilities with estimates of the standard univariate classification forest [15]

Figure 5: Estimates of the probability PpAQI ⩽ 50 | test siteq (left) and the conditional correlation (right) derived
from the DRF estimate of the multivariate conditional distribution.
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Figure 6: Left: Comparison of the CDF estimates obtained by DRF (displayed also in the left plot of Figure 5) and
by the classification forest. Right: Example how the CDF estimated by using the classification forest (blue) need
not be monotone, whereas the DRF estimates (red) are well-behaved.

with the response 1pAQI ⩽ 50q. In the left plot of Figure 6, we can see that the DRF estimates

of the PpAQI ⩽ 50 | X “ xq (also visualized in Figure 5) are quite similar to the estimates of the

classification forest predicting the outcome 1pAQI ⩽ 50q. Furthermore, the cross-entropy loss

evaluated on the held-out measurements equals 0.4671 and 0.4663 respectively, showing almost

no loss of precision. In general, estimating the simple functionals from the weights provided by

DRF comes usually at a small to no loss compared to the classical methods specifically designed

for this task.

In addition to the classical functionals τpxq in the form of an expectation Ep f pYq | X “ xq

or a quantile Qαp f pYq | X “ xq for some function f : Rd Ñ R, which can also be com-

puted by solving the corresponding one-dimensional problems, additional interesting statistical

functionals with intrinsically multivariate nature that are not that simple to estimate directly are

accessible by DRF, such as, for example, the conditional correlations CorpYi, Y j | X “ xq. As

an illustration, the estimated correlation of the sulfur dioxide (SO2) and fine particulate matter

(PM2.5) is shown in the right plot of Figure 5. The plot reveals also that the local correlation

in many big cities is slightly larger than in its surroundings, which can be explained by the fact

that the industrial production directly affects the levels of both pollutants.

A big advantage of the target-free forest construction of DRF is that all subsequent targets

are computed from same the weighting function wx obtained from a single forest fit. First, this is

computationally more efficient, since we do not need for every target of interest to fit the method

specifically tailored to it. For example, estimating the CDF with classification forests requires

fitting one forest for each function value. Secondly and even more importantly, since all statisti-

cal functionals are plug-in estimates computed from the same weighting function, the obtained

estimates are mathematically well-behaved and mutually compatible. For example, if we esti-

mate CorpYi,Y j | X “ xq by separately estimating the terms CovpYi,Y j | X “ xq, VarpYi | X “ xq,

and VarpY j | X “ xq, one can not in general guarantee the estimate to be in the range r´1, 1s,

but this is possible with DRF. Alternatively, the correlation or covariance matrices that are esti-

mated entrywise are guaranteed to be positive semi-definite if one uses DRF. As an additional
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Figure 7: Estimated conditional joint distribution of pY1,Y2q and conditional copulas obtained by DRF at different
test points x, where x1 equals 0.25 and 0.75 respectively. The red lines are the contours of the true multivariate
density function.

illustration, Figure 6 shows that the estimated (univariate) CDF using the classification forest

need not be monotone due to random errors in each predicted value, which can not happen with

the DRF estimates.

4.3 Conditional Copulas and Conditional Independence Testing

One can use the weighting function not only to estimate certain functionals, but also to obtain

more complex objects, such as, for example, the conditional copulas. The well-known Sklar’s

theorem [159] implies that at a point x P Rp, the conditional CDF PpY ⩽ y | X “ xq “ PpY1 ⩽

y1, . . . ,Yd ⩽ yd | X “ xq can be represented by a CDF Cx on r0, 1sd, the conditional copula at x,

and d conditional marginal CDFs FYi|X “ xpyq “ PpYi ⩽ y | X “ xq for 1 ⩽ i ⩽ d, as follows:

PpY ⩽ y | X “ xq “ Cx
`

FY1|X “ xpy1q, . . . , FYd|X “ xpydq
˘

. (22)

Copulas capture the dependence of the components Yi by the joint distribution of the corre-

sponding quantile levels of the marginal distributions: FYi|X “ xpYiq P r0, 1s. Decomposing the

full multivariate distribution to marginal distributions and the copula is a very useful technique

used in many fields such as risk analysis or finance [30]. Using DRF enables us to estimate

copulas conditionally, either by fitting certain parametric model or nonparametrically, directly

from the weights.

To illustrate this, consider an example where the 5-dimensional Y is generated from the

equicorrelated Gaussian copula Y “ pY1, . . . ,Y5q | X “ x „ CGauss
ρpxq

conditionally on the

covariates X with distribution Xi
i.i.d.
„ Up0, 1qp, where p “ 30 and n “ 5000. All Yi have a Np0, 1q

distribution marginally, but their conditional correlation for i , j is given by CorpYi,Y jq “

ρpxq “ x1. Figure 7 shows that DRF estimates the full conditional distribution at different

test points x quite accurately and thus we can obtain a good nonparametric estimate of the

conditional copula as follows. First, for each component Yi, we compute the corresponding

marginal CDF estimate F̂Yi|X “ xp¨q from the weights. Second, we map each response yi Ñ
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Figure 8: Estimated conditional correlation of Y1 and Y2 (left) and estimated conditional dependence quantified by
HSIC statistic (right), obtained by DRFMMD (blue) and DRFCART (red) respectively. For every test point, we set
X j “ 0.5, j , 1. Black dashed curve indicates the population values.

ui B
`

F̂Y1|X “ x ppyiq1q , . . . , F̂Yd|X “ x ppyiqdq
˘

. The copula estimate is finally obtained from the

weighted distribution
řn

i“1 wxpxiqδui , from which we sample the points in Figure 7 in order to

visualize the copula.

If we want to instead estimate the copula parametrically, we need to find the choice of pa-

rameters for a given model family which best matches the estimated conditional distribution,

e.g. by weighted maximum likelihood estimation (MLE). For the above example, the correla-

tion parameter of the Gaussian copula can be estimated by computing the weighted correlation

with weights twxpxiqun
i“1. The left plot in Figure 8 shows the resulting estimates of the condi-

tional correlation Cor pY1,Y2 | X “ xq obtained from DRFMMD, which uses the MMD splitting

criterion (12) described in Section 2.3.1, and DRFCART, which aggregates the marginal CART

criteria [92, 152]. We see that DRFMMD is able to detect the distributional heterogeneity and

provide good estimates of the conditional correlation. On the other hand, DRFCART cannot de-

tect the change in distribution of Y caused by X1 that well. The distributional heterogeneity

can not only occur in marginal distribution of the responses (a case extensively studied in the

literature), but also in their interdependence structure described by the conditional copula Cx,

as one can see from decomposition (22). Since DRFMMD relies on a distributional metric for its

splitting criterion, it is capable of detecting any change in distribution [62], whereas aggregat-

ing marginal CART criteria for Y1, . . . ,Yd in DRFCART only captures the changes in the marginal

means.

This is further illustrated for a related application of conditional independence testing, where

we compute some dependence measure from the obtained weights. For example, we can test

the independence Y1 |ù Y2 conditionally on the event X “ x by using the Hilbert Schmidt Inde-

pendence Criterion (HSIC) [64], which measures the difference between the joint distribution

and the product of the marginal distributions. The right plot of Figure 8 shows that the DRFMMD

estimates are quite close to the population value of the HSIC, unlike the ones obtained by

DRFCART.
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4.4 Heterogeneous Regression and Causal Effect Estimation

In this and the following section, we illustrate that, in addition to direct estimation of certain

targets, DRF can also be a useful tool for complex statistical problems and applications, such

as causality.

Suppose we would like to investigate the relationship between some (univariate) quantity of

interest Y and certain predictors W from heterogeneous data, where the change in distribution

of pW,Yq can be explained by some other covariates X. Very often in causality applications, W
is a (multivariate) treatment variable, Y is the outcome, which is commonly, but not necessarily,

binary, and X is a set of observed confounding variables for which we need to adjust if we are

interested in the causal effect of W on Y . This is illustrated by the following causal graph:

W

X

Y

The problem of nonparametric confounding adjustment is hard; not only can the marginal

distributions of Y and W be affected by X, thus inducing spurious associations due to con-

founding, but the way how W affects Y can itself depend on X, i.e. the treatment effect might be

heterogeneous. The total causal effect can be computed by using the adjustment formula [133]:

ErY | dopW “ wqs “

ż

ErY | dopW “ wq,X “ xsPpX “ x | dopW “ wqqdx

“

ż

ErY | W “ w,X “ xsPpX “ xqdx. (23)

In general, implementing do-calculus for finite samples and potentially non-discrete data might

not be straightforward and comes with certain difficulties. In this case, the standard approach

would be to estimate the conditional mean ErY | W “ w,X “ xs nonparametrically by regressing

Y on pX,Wq with some method of choice and to average out the estimates over different x sam-

pled from the observed distribution of X. Using DRF for this approach is not necessary, but has

an advantage that one can easily estimate the full interventional distribution PpY | dopW “ wqq

and not only the interventional mean ErY | dopW “ wqs.

Another way of computing the causal effect, which allows to add more structure to the

problem, is explained in the following: We use DRF to first fit the forest with the multivari-

ate response pW,Yq and the predictors X. In this way, one can for any point of interest x
obtain the joint distribution of pW,Yq conditionally on the event X “ x and then the weights

twxpxiqun
i“1 can be used as an input for some regression method for regressing Y on W in the

second step. This conditional regression fit might be of an independent interest, but it can also

be used for estimating the causal effect ErY | dopW “ wqs from (23), by averaging the estimates
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ErY | W “ w,X “ xs over x, where x is sampled from the empirical observation of X. In this way

one can efficiently exploit and incorporate any prior knowledge of the relationship between W
and Y , such as, for example, monotonicity, smoothness or that it satisfies a certain parametric

regression model, without imposing any assumptions on the effect of X on pW,Yq. Further-

more, one might be able to better extrapolate to the regions of space where PpW “ w,X “ xq

is small, compared to the standard approach which computes ErY | W “ w,X “ xs directly, by

regressing Y on pW,Xq. Extrapolation is crucial for causal applications, since for computing

ErY | dopW “ wqs we are interested in what would happen with Y when our treatment variable

W is set to be w, regardless of the value achieved by X. However, it can easily happen that for

this specific combination of X and W there are very few observed data points, thus making the

estimation of the causal effect hard [133].

Figure 9: Left: Visualization of heterogeneous synthetic example (24). Middle: Gray points depict joint distribu-
tion of pW,Yq conditionally on X “ x, for some choices of x indicated in the top left corner. Black curve indicates
the true conditional mean ErY | W “ w,X “ xs, the blue curve represents the estimate obtained by DRF with re-
sponse pW,Yq and predictors X in combination with smoothing splines regression, the red curve represents the
estimate obtained by standard Random Forest, whereas the green line shows the estimate of the Causal Forest [4]
which makes the linearity assumption and is thus misspecified. Right: The corresponding estimates for all the
methods of the causal effect ErY | dopW “ wqs computed from (23). The true causal effect is denoted by a black
dashed curve.

As an illustration, we consider the following synthetic data example, with continuous out-

come Y , continuous univariate treatment W, n “ 5000 and p “ 20:

X „ Up0, 5q
p, W | X „ NpX2, 1q, Y | X,W „ NpX2 ` X1 sinpWq, 1q. (24)

A visualization of the data can be seen on the left side of Figure 9; treatment W affects Y

nonlinearly, X2 is a confounding variable that affects the marginal distributions of Y and W and

X1 makes the treatment effect heterogeneous. The middle part of Figure 9 shows the conditional

regression fits, i.e. the estimates of ErY | W “ w,X “ xs as w varies and x is fixed. In general,
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the conditional regression fit is related to the concept of the conditional average treatment effect

(CATE) as it quantifies the effect of W on Y for the subpopulation for which X “ x. We see

that combination of DRF with response pY,Wq and predictors X with the smoothing splines

regression of Y on W (blue curve) is more accurate than the estimates obtained by standard

Random Forest [15] with response Y and predictors pW,Xq (red curve). Furthermore, we see

that the former approach can extrapolate better to regions with small number of data points,

which enables us to better estimate the causal effect ErY | dopW “ wqs from (23), by averaging

the corresponding estimates of ErY | W “ w,X “ xs over observed x, as shown in the right plot

of Figure 9.

There exist many successful methods in the literature for estimating the causal effects and

the (conditional) average treatment effects for a wide range of settings [1, 28, 181, 96]. However,

some methods are not designed for the most general case and make certain modeling assump-

tions or are designed specifically for the (very common) case where the treatment variable is

univariate or even binary. Due to its versatility, DRF can easily be used when the underlying as-

sumptions of conventional methods are violated, when some additional structure is given in the

problem or for the general, nonparametric, settings [76, 49, 85]. Appendix 4 contains additional

comparisons with some existing methods for causal effect estimation.

4.4.1 Births data

We further illustrate the applicability of DRF for causality-related problems on the natality

data obtained from the Centers for Disease Control and Prevention (CDC) website, where we

have information about all recorded births in the USA in 2018. We investigate the relationship

between the pregnancy length and the birthweight, an important indicator of baby’s health.

Not only is this relationship complex, but it also depends on many different factors, such as

parents’ race, baby’s gender, birth multiplicity (single, twins, triplets...) etc. In the left two

plots of Figure 10 one can see the estimated joint distribution of birthweight and pregnancy

length conditionally on many different covariates, as indicated in the plot. The black curves

denote the subsequent regression fit, based on smoothing splines. In addition to the estimate

of the mean, indicated by the solid curve, we also include the estimates of the conditional 0.1-

and 0.9-quantiles, indicated by dashed curves, which is very useful in practice for determining

whether a baby is large or small for its gestational age. Notice how DRF assigns less importance

to the mother’s race when the point of interest is a twin (middle plot), as in this case more weight

is given to twin births, regardless of the race of the parents.

Suppose now we would like to understand how a twin birth T causally affects the birth-

weight B, but ignoring the obvious indirect effect due to shorter pregnancy length L. For exam-

ple, sharing of resources between the babies might have some effect on their birthweight. We

additionally need to be careful to adjust for other confounding variables X, such as, for exam-
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Figure 10: Above: estimated relationship of pregnancy length and birthweight, conditionally on the criteria indi-
cated in the upper left corner. Below: estimated interventional effect of twin birth on the birthweight for a fixed
pregnancy length. In all plots the solid curves denote the estimated conditional mean and the dashed denote the
estimated 0.1 and 0.9 quantiles.

ple, the parents’ race, which can affect B,T and L. We assume that this is represented by the

following causal graph:

T

X

L

B

In order to answer the above question, we investigate the causal quantity PpB | dopT “ t, L “ lqq.

Even though one cannot make such do-intervention in practice, this quantity describes the to-

tal causal effect if the birth multiplicity and the length of the pregnancy could be manipulated

and thus for a fixed pregnancy length l, we can see the difference in birthweight due to T . We

compute this quantity as above, by using DRF with subsequent regression fits, which has the

advantage of better extrapolating to regions with small probability, such as long twin pregnan-

cies (see the middle plot of Figure 10). In the right plot of Figure 10 we show the mean and

quantiles of the estimated interventional distribution and we see that, as one might expect, a

twin birth causes smaller birthweight on average, with the difference increasing with the length

of the pregnancy.
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4.5 Fairness

Being able to compute different causal quantities with DRF could prove useful in a range of

applications, including fairness [97]. We investigate the data on approximately 1 million full-

time employees from the 2018 American Community Survey by the US Census Bureau from

which we have extracted the salary information and all covariates that might be relevant for

salaries. In the bottom left plot of Figure 11 one can see the distribution of hourly salary

of men and women (on the logarithmic scale). The overall salary was scaled with working

hours to account for working part-time and for the fact that certain jobs have different working

hours. We can see that men are paid more in general, especially for the very high salaries. The

difference between the median hourly salaries, a commonly used statistic in practice, amounts

17% for this data set.

We would like to answer whether the observed gender pay gap in the data is indeed unfair,

i.e. only due to the gender, or whether it can at least in part be explained by some other factors,

such as age, job type, number of children, geography, race, attained education level and many

others. Hypothetically, it could be, for example, that women have a preference for jobs that are

paid less, thus causing the gender pay gap.

In order to answer this question, we assume that the data is obtained from the following

causal graph, where G denotes the gender, W the hourly wage and all other factors are denoted

by X:

G

X

W

i.e. G is a source node and W is a sink node in the graph. In order to determine the direct

effect of the gender on wage that is not mediated by other factors, we would like to compute

the distribution of the nested counterfactual Wpmale, Xpfemaleqq, which is interpreted as the

women’s wage had they been treated in same way as men by their employers for determining

the salary, but without changing their propensities for other characteristics, such as the choice

of occupation [29]. Therefore, it can be obtained from the observed distribution as follows:

P pWpmale, Xpfemaleqqq “

ż

P pWpG “ male, X “ xqqPpX “ x | G “ femaleqdx

“

ż

P pW | G “ male, X “ xqPpX “ x | G “ femaleqdx, (25)

Put in the language of the fairness literature, it quantifies the unfairness when all variables X
are assumed to be resolving [86], meaning that any difference in salaries directly due to factors

X is not viewed as gender discrimination. For example, one does not consider unfair if people
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with low education level get lower salaries, even if the gender distribution in this group is not

balanced.

Figure 11: Top row: Estimated joint distribution of wage and gender for some fixed values of other covariates X
indicated in the top left part of each plot. Bottom row: observed overall distribution of salaries (left), estimated
counterfactual distribution P pWpmale, Xpfemaleqqq of women’s salaries (middle) and the quantile comparison of
the counterfactual distribution of women’s salaries and the observed distribution of men’s salaries (right).

There are several ways how one can compute the distribution of Wpmale, Xpfemaleqq from

(25) with DRF. The most straightforward option is to take W as the response and pG,Xq as

predictors in order to compute the conditional distribution P pW | G “ male, X “ xq. However,

with this approach it could happen that for predicting P pW | G “ male, X “ xq we also assign

weight to training data points for which G “ female. This happens if in some trees we did not

split on variable G, which is likely, for example, if PpG “ male | X “ xq is low. Using salaries

of both genders to estimate the distribution of men’s salaries might be an issue if our goal is to

objectively compare how women and men are paid.

Another approach is to take pW,Gq as a multivariate response and X as the predictors for

DRF and thus obtain joint distribution of pW,Gq conditionally on the event X “ x. In this way

we can also quantify the gender discrimination of a single individual with characteristics x
by comparing his/her salary to the corresponding quantile of the salary distribution of people

of the opposite gender with the same characteristics x [135]. This is interesting because the

distribution of salaries, and thus also the gender discrimination, can be quite different depending

on other factors such as the industry sector or job type, as illustrated for a few choices of x in

the top row of Figure 11.

Finally, by averaging the DRF estimates of P pW | X “ x, G “ maleq, conveniently repre-

sented via the weights, over different x sampled from the distribution PpX | G “ femaleq, we
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can compute the distribution of the nested counterfactual Wpmale, Xpfemaleqq [29]. In the mid-

dle panel in the bottom row of Figure 11 a noticeable difference in the means, also called natural

direct effect in the causality literature [133], is still visible between the observed distribution of

women’s salaries and the hypothetical distribution of their salaries had they been treated as

men, despite adjusting for indirect effects of the gender via covariates X. By further matching

the quantiles of the counterfactual distribution P pWpmale, Xpfemaleqqq with the corresponding

quantiles of the observed distribution of men’s salaries in the bottom right panel of Figure 11,

we can also see that the adjusted gender pay gap even increases for larger salaries. Median

hourly wage for women is still 11% lower than the median wage for the hypothetical popu-

lation of men with exactly the same characteristics X as women, indicating that only a minor

proportion of the actually observed hourly wage difference of 17% can be explained by other

demographic factors.

5 Conclusion

We have shown that DRF is a flexible, general and powerful tool, which exploits the well-

known properties of the Random Forest as an adaptive nearest neighbor method via the induced

weighting function. Not only does it estimate multivariate conditional distributions well, but it

constructs the forest in a model- and target-free way and is thus an easy to use out-of-the-box

algorithm for many, potentially complex, learning problems in a wide range of applications,

including also causality and fairness, with competitive performance even for problems with

existing tailored methods.
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1 Implementation Details

Here we present the implementation of the Distributional Random Forests (DRF) in detail.

The code is available in the R-package drf and the Python package drf. The implementation

is based on the implementations of the R-packages grf [4] and ranger [187]. The largest

difference is in the splitting criterion itself and the provided user interface. Algorithm 1 gives

the pseudocode for the forest construction and computation of the weighting function wxp¨q.

• Every tree is constructed based on a random subset of size s (taken to be 50% of the size

of the training set by default) of the training data set, similar to [181]. This differs from

the original Random Forest algorithm [15], where the bootstrap subsampling is done by

drawing from the original sample with replacement.

• The principle of honesty [10, 39, 181] is used for building the trees (line 4), whereby for

each tree one first performs the splitting based on one random set of data points Sbuild, and

then populates the leaves with a disjoint random set Spopulate of data points for determining

the weighting function wxp¨q. This prevents overfitting, since we do not assign weight to

the data points which we used to built the tree.

• We borrow the method for selecting the number of candidate splitting variables from the

grf package [4]. This number is randomly generated as minpmaxpPoissonpmtryq, 1q, pq,

where mtry is a tuning parameter. This differs from the original Random Forests algo-

rithm, where the number of splitting candidates is fixed to be mtry.

• The number of trees built is N “ 2000 by default.

• The factor variables in both the responses and the predictors are encoded by using the one-

hot encoding, where we add an additional indicator variable for each level l of some factor

variable Xk. This implies that in the building step, if we split on this indicator variable, we

divide the current set of data points in the sets where Xk “ l and Xk , l. This works well if

the number of levels is not too big, since otherwise one makes very uneven splits and the

dimensionality of the problem increases significantly. Handling of categorical problems

is a general challenge for the forest based methods and is an area of active research [82].

We will leave improving on this approach for the future development.

• We try to enforce splits where each child has at least a fixed percentage (chosen to be

10% as the default value) of the current number of data points. In this way we achieve

balanced splits and reduce the computational time. However, we cannot enforce this if we

are trying to split on the variable Xi with only a few unique values, e.g. indicator variable

for a level of some factor variable.
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• All components of the response Y are scaled for the building step (but not when we pop-

ulate the leaves). This ensures that each component of the response contributes equally

to the kernel values, and consequently to the MMD two-sample test statistic. Plain usage

of the MMD two-sample test would scale the components of Y at each node. However,

this approach favors always splitting on the same variables, even though their effect will

diminish significantly after having split several times.

• By default, in step 20 of the Algorithm 1, we use the MMD-based splitting criterion given

by

1
B

B
ÿ

k“1

|SL||SL|

p|SL| ` |SR|q2

∣∣∣∣∣∣∣∣ 1
|SL|

ÿ

pxi,yiqPSL

φωkpyiq ´
1

|SR|

ÿ

pxi,yiqPSR

φωkpyiq

∣∣∣∣∣∣∣∣
2

.

The Gaussian kernel kpx, yq “ 1
p

?
2πσqd e

´∥x´y∥22
2σ2 is used as the default choice, with the

bandwidth σ chosen as the median pairwise distance between all training responses

tyiu
n
i“1, commonly referred to as the ’median heuristic’ [66]. However the algorithm

can be used with any choice of kernel, or in fact with any two-sample test.

• The number B of random Fourier features is fixed and taken to be 20 by default. The

performance of the trees empirically shows stability for large range of B. Smaller values

of B help making the trees more independent which could improve the performance. One

could even use an adaptive strategy of choosing B, possibly increasing B as the depth of

the tree increases, but we decided to keep B fixed for simplicity.

• We compute variable importance similarly as for the original Random Forest algorithm

[15, 187], by sequentially permuting each variable and investigating the decrease in the

performance. However, since we target the full conditional distribution of the multivariate

response, as our performance measure we use for every test point px, yq the MMD distance

between the estimated joint distribution P̂pY | X “ xq, described by the DRF weights, and

the point mass δy.

2 Derivations and Proofs

In this section we present proofs and further details for the results in Sections 2.3.1 and 3, in

the order in which they appear. Sections 2.1 and 2.3 derive the splitting criterion presented in

Equation (12) in the main text, with Section 2.3 showing that the CART criterion can be written

in an analogous way. Section 2.4 provides background and proves to the statements in Section

3.
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2.1 Expressing MMD test statistic as an integral in the feature space

The biased MMD two-sample statistic is given as

DMMD ptuiu
m
i“1, tviu

n
i“1q

“
1

m2

ÿ

i, j

kpui,u jq `
1
n2

ÿ

i, j

kpvi, v jq ´
2

mn

ÿ

i

ÿ

j

kpui, v jq

“
1

m2

ÿ

i, j

kpui,u jq `
1
n2

ÿ

i, j

kpvi, v jq ´
1

mn

ÿ

i

ÿ

j

kpui, v jq ´
1

mn

ÿ

i

ÿ

j

kpv j,uiq.

Assume that the kernel k is bounded and shift-invariant, then by Bochner’s theorem there

exist a measure ν such that k can be written as kpx, yq “
ş

Rd eiωT px´yqdνpωq.

Let us write φU
ω “ 1

m

ř

i eiωT ui and φV
ω “ 1

n

ř

i eiωT vi . We can now writeDMMD as

DMMD ptuiu
m
i“1, tviu

n
i“1q “

ż

Rd

´

φU
ωφ

U
ω ` φV

ωφ
V
ω ´ φU

ωφ
V
ω ´ φV

ωφ
U
ω

¯

dνpωq

“

ż

Rd

∣∣∣φU
ω ´ φV

ω

∣∣∣2 dνpωq

“

ż

Rd

∣∣∣∣∣∣∣ 1m
m

ÿ

i“1

φωpuiq ´
1
n

n
ÿ

i“1

φωpviq

∣∣∣∣∣∣∣
2

dνpωq,

where φωpyq “ eiωT y P C are the corresponding Fourier features, which is what we wanted to

show.

2.2 Approximate kernel and its MMD

When the kernel k is bounded and shift invariant, we have seen that it can be written as kpx, yq “
ş

Rd eiωT px´yqdνpωq. This integral can be approximated by sampling from ν: Let ω1, . . . ,ωB „ ν

be a random sample from the measure ν. Then we can write

kpx, yq “

ż

Rd
eiωT px´yqdνpωq «

1
B

B
ÿ

b“1

eiωb
T px´yq

“
1
B

xrφpuq, rφpvqyCB :“ k̃pu, vq,

where rφpuq “ pφω1puq, . . . , φωBpuqqT is a random complex vector consisting of the Fourier

features φωpuq “ eiωT u P C. The kernel k̃ is analogous to the kernel k, but where the measure ν

is replaced by the empirical measure ν̃ “ 1
B

řB
b“1 δωb:

k̃px, yq “

ż

Rd
eiωT px´yqdν̃pωq.



Ćevid et al. (2022) 197

Analogously as in the section 2.1, we can now write the MMD for the kernel k̃ as:

DMMDpk̃q “

ż

Rd

∣∣∣∣∣∣∣ 1m
m

ÿ

i“1

φωpuiq ´
1
n

n
ÿ

i“1

φωpviq

∣∣∣∣∣∣∣
2

dν̃pωq

“
1
B

B
ÿ

b“1

∣∣∣∣∣∣∣ 1m
m

ÿ

i“1

φωbpuiq ´
1
n

n
ÿ

i“1

φωbpviq

∣∣∣∣∣∣∣
2

,

which can also additionally be interpreted as the approximation ofDMMD. Therefore, our split-

ting criterion is obtained as the MMD of the random approximate kernel k̃:

1
B

B
ÿ

b“1

nLnR

n2
P

∣∣∣∣∣∣∣ 1nL

ÿ

xiPCL

φωbpyiq ´
1
nR

ÿ

xiPCR

φωbpyiq

∣∣∣∣∣∣∣
2

.

The scaling factor nLnR
n2

P
occurs naturally and penalizes the increased variance of the sample

MMD statistic when nL or nR are small: it appears when we rewrite the CART criterion in the

related form, see section 2.3.

This representation of the MMD is the key why we use the approximate kernel k̃ instead

of k. This splitting criterion can be computed in OpBnPq complexity, by updating the sums
ř

xiPCL
φωkpyiq and

ř

xiPCR
φωkpyiq in Op1q computations, whereas this is not possible forDMMD.

2.3 CART criterion rewritten

Standard CART criterion used in Random Forests [15] is the following: we repeatedly choose

to split the parent node P of size nP in two children CL and CR, of sizes nL and nR respectively,

such that the expression

1
nP

˜

ÿ

iPCL

pYi ´ YLq
2

`
ÿ

iPCR

pYi ´ YRq
2

¸

(26)

is minimized, where YL “ 1
nL

ř

iPCL
Yi and YR is defined similarly.

We now have Y “ 1
nP

ř

iPP Yi “
nL
nP

YL `
nR
nP

YR, which gives Y ´ YL “
nR
nP

pYR ´ YLq, so we
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can write

ÿ

iPCL

pYi ´ YLq
2

“
ÿ

iPCL

pYi ´ Y ` Y ´ YLq
2

“
ÿ

iPCL

pYi ´ Y `
nR

nP
pYR ´ YLqq

2

“
ÿ

iPCL

pYi ´ Yq
2

` 2
nR

nP
pYR ´ YLq

ÿ

iPCL

pYi ´ Yq `
nLn2

R

n2
P

pYR ´ YLq
2

“
ÿ

iPCL

pYi ´ Yq
2

` 2
nR

nP
pYR ´ YLq ¨ nLpYL ´ Yq `

nLn2
R

n2
P

pYR ´ YLq
2

“
ÿ

iPCL

pYi ´ Yq
2

` 2
nRnL

nP
pYR ´ YLq ¨

nR

nP
pYL ´ YRq `

nLn2
R

n2
P

pYR ´ YLq
2

“
ÿ

iPCL

pYi ´ Yq
2

´
nLn2

R

n2
P

pYR ´ YLq
2.

Similarly we obtain

ÿ

iPCR

pYi ´ YRq
2

“
ÿ

iPCR

pYi ´ Y ` Y ´ YRq
2

“
ÿ

iPCR

pYi ´ Yq
2

´
n2

LnR

n2
P

pYR ´ YLq
2,

which gives us that the CART criterion (26) can be written as

1
nP

˜

ÿ

iPCL

pYi ´ Yq
2

´
nLn2

R

n2
P

pYR ´ YLq
2

`
ÿ

iPCR

pYi ´ Yq
2

´
n2

LnR

n2
P

pYR ´ YLq
2

¸

“
1
nP

ÿ

iPP

pYi ´ Yq
2

´
nLnR

n2
P

pYR ´ YLq
2,

since nL ` nR “ nP. Since the first term depends only on the parent node and not on the chosen

split, we conclude that minimizing the CART criterion (26) is equivalent to maximizing the

following expression
nLnR

n2
P

pYL ´ YRq
2. (27)

This equivalent criterion can be interpreted as comparing the difference in the means of the

resulting child nodes, i.e. we will choose the split such that the means in the child nodes are as

heterogeneous as possible. The scaling factor nLnR
n2

P
appears naturally, penalizing uneven splits

due to the increased variance of YL or YR.

2.4 Proofs for Section 3

2.4.0.1 Preliminaries. We first set notation and define basic probabilistic concepts on the

separable Hilbert space pH , x, ¨, yHq. We thereby mostly refer to [75] and [134]. The initial re-

sults derived here parallel some of the results derived in [132], but where derived independently.

Let pΩ,A,Pq be the underlying probability space. Let pH , x¨, ¨yHq be the Hilbert space induced
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by the kernel k and µ :MbpRdq Ñ H be the embedding function of, µpPq P H for all bounded

signed Borel measures P on Rd. Throughout we assume that k is bounded and continuous in

its two arguments. Boundedness of k ensures that µ is indeed defined on all ofMbpRdq, while

continuity of k : Rd ˆ Rd Ñ R ensures H is separable. Thus measurability issues can be

avoided, in particular, a map ξ : pΩ,Aq Ñ pH ,BpHqq is measurable iff xξ, f yH is measurable

for all f P H . Moreover, a quick check reveals that µpPq is linear onMbpRdq. If Er}ξ}H s ă 8,

we define

Erξs :“
ż

Ω

ξdP P H ,

where the integral is meant in a Bochner sense. Separability and Er}ξ}H s ă 8 mean this

integral is well-defined and moreover

FpErξsq “ ErFpξqs,

for any continuous linear function F : H Ñ R.1 In particular, Erxξ, f yH s “ xErξs, f yH for all

f P H . Define moreover for q ⩾ 1, and ξ, ξ1, ξ2 P L2pΩ,A,Hq,

Lq
pΩ,A,Hq “ tξ : pΩ,F q Ñ pH ,BpHqq measurable, with Er}ξ}q

s ă 8su

Lq
pΩ,A,Hq “ Set of equivalence classes in Lq

pΩ,A,Hq

Varpξq :“ Er}ξ ´ Erξs}2
s “ Er}ξ}2

s ´ }Erξs}2, ξ P L2
pΩ,A,Hq

Covpξ1, ξ2q “ Erxξ1 ´ Erξ1s, ξ2 ´ Erξ2syH s “ Erxξ1, ξ2yH s ´ xErξ1s,Erξ2syH .

It is well-known, that pLq, } ¨ }LqpHqq is a Banach space, with

}ξ}LqpHq “ Er}ξ}
q
H

s
1{q.

We can then also define conditional expectation. For a sub σ´ algebra F Ă A, ξ P

L1pΩ,A,Hq, Erξ | F s is the (a.s.) unique element such that

(C1) Erξ | F s : pΩ,F q Ñ pH ,BpHqq is measurable and Erξ | F s P L1pΩ,F ,Hq,

(C2) Erξ1Fs “ ErErξ | F s1Fs for all F P F .

See e.g. [173] or [134, Chapter 1]. (C2) in particular means that ErErξ | F ss “ ErErξ |

F s1Ωs “ Erξs, since Ω P F for any σ-algebra. It can also be shown that FpErξ | F sq “

ErFpξq | F s for all linear and continuous F : H Ñ R and that }Erξ | F s}H ⩽ Er}ξ}H | F s

[134, Chapter 1]. Moreover,

(C3) For ξ P L2pΩ,A,Hq, Erξ | F s is the orthogonal projection into L2pΩ,F ,Hq,

1Here and later Fpξq is meant to mean Fpξpωqq for all ω P Ω.
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again we refer to [173]. We note that, as with conditional expectation on R, Erξ | F s is only

defined uniquely a.s. As such all (in)equalitie statements hold only a.s. However, we will often

not explicitly write this going forward.

We then define Erξ | Xs “ Erξ | σpXqs. The following Proposition shows that this notion

is well-defined and some further properties of Hilbert space-valued conditional expectation, in

addition to (C1) – (C3):

Proposition 36. Let pH1, x¨, ¨y1q, pH2, x¨, ¨y2q be two separable Hilbert spaces, X,X1,X2 P

L1pΩ,A,H1q and ξ1, ξ2, ξ P L1pΩ,A,H2q.2

(C4) There exists a measurable function h : pH1,BpH1qq Ñ pH2,BpH2qq, such that Erξ |

σpXqs “ hpXq “ Erξ | Xs,

(C5) If ξ1 P L2pΩ,A,H1q, ξ2 P L2pΩ, σpXq,H1q, then Erxξ1, ξ2yH1 | Xs “ xErξ1 | Xs, ξ2yH1 ,

(C6) If X2 and pξ,X1q are independent, then Erξ | X1,X2s “ Erξ | X1s,

(C7) ErErξ | X1,X2s | X1s “ ErErξ | X1s | X1,X2s “ Erξ | X1s.

Proof We will use the following fact in the proof: Under the assumption of separability, all

relevant notions of measurability are the same, see e.g. [75, Chapter 2, 7]. In particular, ξ P

LqpΩ,F ,H2q, for any q ⩾ 1, means that ξ : pΩ,F q Ñ pH2,BpH2qq is measurable, which in

turns means there exists a sequence of simple functions

fn “

mn
ÿ

k“1

gk1Ak , (28)

with gk P H2 and Ak P F for all k and such that fn Ñ ξ a.s. onH2 and even } fn ´ ξ}LqpHq Ñ 0,

see e.g. [134, Proposition 1.2].

For (C4), we note that by (C1), Erξ | σpXqs P L1pΩ, σpXq,H2q and thus there exists a

sequence of functions fn : pΩ, σpXqq Ñ pH2,BpH2qq of the form (28), such that fn Ñ Erξ |

σpXqs a.s. on H2. Since Ak P σpXq, Ak “ tω : Xpωq P Bku for some Bk P BpH1q, we may

transform fn from a function on Ω to a function onH1 intoH2:

fnpωq “

mn
ÿ

k“1

gk1Akpωq “

mn
ÿ

k“1

gk1BkpXpωqq :“ hnpXpωqq.

This defines a sequence of measurable functions hn : pH1,BpH1qq Ñ pH2,BpH2qq with hpXq “

limn hnpXq “ Erξ | σpXqs a.s., proving the result.

2We again note that all equalities technically only hold a.s.
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We first show (C5) for simple functions and then extend this to L2pΩ, σpXq,H1q, using the

fact at the beginning of the proof. Let thus fn be of the form (28). Then for all F P σpXq,

ErxEr fn | Xs, ξ2yH1Fs “

mn
ÿ

k“1

ErxEr1Ak | Xsgk, ξ2yH1Fs

“

mn
ÿ

k“1

ErEr1Ak | Xsxgk, ξ2yH1Fs

“

mn
ÿ

k“1

ErEr1Akxgk, ξ2yH1F | Xss

“ Erx fn, ξ2yH1Fs,

from the properties of real-valued conditional expectation. As additionally xEr fn | Xs, ξ2yH is

clearly σpXq measurable, (C1) and (C2) are met for this candidate. Since conditional expecta-

tion is (a.s.) uniquely defined by (C1) and (C2), (C5) holds true for the special case of simple

functions. For general ξ1 P L2pΩ,A,H1q, let fn have } fn ´ ξ1}L2pHq Ñ 0. The goal is to show

that

|ErxEr fn | Xs, ξ2yH1Fs ´ ErxErξ1 | Xs, ξ2yH1Fs| Ñ 0, (29)

|Erx fn, ξ2yH1Fs ´ Erxξ1, ξ2yH1Fs| Ñ 0. (30)

We can bound both terms by the same quantity, using CauchyâSchwarz:

|ErxEr fn | Xs, ξ2yH1Fs ´ ErxErξ1 | Xs, ξ2yH1Fs| “ |ErxEr fn ´ ξ1 | Xs, ξ2yH1Fs|

⩽ ErEr} fn ´ ξ1}H1F}ξ2}H | Xss

“ Er} fn ´ ξ1}H1F}ξ2}H s,

as the random variable 1F}ξ2}H is σpXq measurable by assumption and

|Erx fn, ξ2yH1Fs ´ Erxξ1, ξ2yH1Fs| “ |Erx fn ´ ξ1, ξ2yH1Fs|

⩽ Er} fn ´ ξ1}H}ξ2}H1Fs.

The result thus follows from the Hölder inequality,

Er} fn ´ ξ1}H}ξ2}H1Fs ⩽ } fn ´ ξ1}L2pHq ¨ }ξ2}L2pHq Ñ 0.

Finally (C6) and (C7) is easily proven with the technique of “scalarization” [134, Chapter

1]. We do the full argument for (C6), (C7) can be shown analogously. That is, we show that for

any F : H2 Ñ R linear and continuous,

FpErξ | X1,X2spωqq “ FpErξ | X1spωqq. (31)
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for almost all ω and some representation of Erξ | X1,X2s. This then immediately implies the

result. Now, using the property of real-valued conditional expectations

FpErξ | X1,X2sq “ ErFpξq | X1,X2s “ ErFpξq | X1s,

since Fpξq is real-valued and independent of X2. Since ErFpξq | X1s “ FpErξ | X1sq, we obtain

(31).

(C4) in particular allows to see Erξ | σpXqs as a function in X and thus justifies the notation

Erξ | Xs and all the subsequent derivations. We may also define conditional independence

through conditional expectation: With the notation of Proposition 36, ξ and X1 are conditionally

independent given X2, if Er f pξq | X1,X2s “ Er f pξq | X1s for all f : pH2,BpH2qq Ñ pR,BpRqq

bounded and measurable, see e.g., [34, Proposition 2.3]. This leads to two further important

properties:

Proposition 37. Let pH1, x¨, ¨y1q, pH2, x¨, ¨y2q be two separable Hilbert spaces, X,X1,X2 P

L1pΩ,A,H1q and ξ1, ξ2, ξ P L1pΩ,A,H2q.

(C8) If ξ and X2 are conditionally independent given X1, then Erξ | X1,X2s “ Erξ | X1s,

(C9) If ξ1, ξ2 are conditionally independent given X, Erxξ1, ξ2y | Xs “ xErξ1 | Xs,Erξ2 | Xsy.

Proof We prove (C8) again using the scalarization trick: For any F : H2 Ñ R continuous and

linear, it holds that

Fnp f q :“ Fp f q1t|Fp f q| ⩽ nu @ f P H2,

is a bounded and measurable function. Thus by assumption,

ErFnpξq | X1,X2s “ ErFnpξq | X1s.

We now show that ErFnpξq | X1,X2s Ñ ErFpξq | X1,X2s and ErFnpξq | X1s Ñ ErFpξq | X1s

a.s. Let F stand for either σpX1,X2q or σpX1q. Then, as Fp f q “ Fnp f q ` Fp f q1t|Fp f q| ą nu,

|ErFnpξq | F s ´ ErFpξq | F s| ⩽ Er|Fnpξq ´ Fpξq| | F s

“ Er|Fp f q|1t|Fp f q| ą nu | F s.

Now, since for all n, |Fp f q|1t|Fp f q| ą nu ⩾ 0 and Er|Fp f q|1t|Fp f q| ą nu | F s ⩽ Er|Fp f q| |

F s ă 8 a.s. an application of Fatou’s Lemma for (real-valued) conditional expectation (see

e.g., [46, Problem 10.7]) to |Fp f q| ´ |Fp f q|1t|Fp f q| ą nu implies

lim sup
n

|ErFnpξq | F s ´ ErFpξq | F s| ⩽ Erlim sup
n

|Fp f q|1t|Fp f q| ą nu | F s “ 0.
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Thus, we have shown that for all F : H2 Ñ R continuous and linear, FpErξ | X1,X2sq “

FpErξ | X1sq, proving the claim.

Finally, combining (C5), (C7) and (C8), we obtain for ξ1, ξ2 conditionally independent given

X

Erxξ1, ξ2y | Xs “ ErErxξ1, ξ2y | X, ξ2s | Xs

“ ErxErξ1 | X, ξ2s, ξ2y | Xs

“ ErxErξ1 | Xs, ξ2y | Xs

“ xErξ1 | Xs,Erξ2 | Xsy.

Let for x P X, Px be the conditional distribution of Y given x on Rd and similarly with PX

(i.e. the regular conditional probability measure). Note that Px P H , while PX is a random

element mapping intoH .

As in [181], we define for f , g two functions, with lim inf sÑ8 gpsq ą 0, f psq “ Opgpsqq if

lim sup
sÑ8

| f psq|

gpsq
⩽ C,

for some C ą 0. If C “ 1, then we write f psq ≾ gpsq. For a sequence of random variables

Xn : ΩÑ R, and an P p0,`8q, n P N, we write as usual Xn “ Oppanq, if

lim
MÑ8

sup
n
Ppa´1

n |Xn| ą Mq “ 0,

i.e. if Xn is bounded in probability. We write Xn “ oppanq, if a´1
n Xn converges in probability

to zero. Similarly, for pS , dq a separable metric space, Xn : pΩ,Aq Ñ pS ,BpS qq, n P N and

X : pΩ,Aq Ñ pS ,BpS qq measurable, we write Xn
p

Ñ X, if dpXn,Xq “ opp1q.

Finally let X P L2pΩ,A,H1q, ξ P L2pΩ,A,H2q and assume that A Ă Ω depends on X,

A “ ApXq. Thus for X fixed to a certain value, A is a fixed set. If PpA | Xq ą 0 almost

everywhere, we define

Erξ | As “ Erξ | X, As :“
Erξ1A | Xs

PpA | Xq
P L2

pΩ, σpXq,H2q.

It then holds by construction that

Erξ1A | Xs “ Erξ | X, As ¨ PpA | Xq. (32)

Let again µpxq :“ µpPxq be the embedding of the true conditional distribution into H . We

first state 3 preliminary results:
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Lemma .13. It holds that ErµpδYq | X “ xs “ µpPxq.

Proof We first note that Px exists and is a probability measure on Rd. Since k is bounded

µpPxq P H exists and is uniquely defined by the relation

x f , µpPxqyH “ Er f pYq | X “ xs @ f P H .

On the other hand, by the above ErµpδYq | Xs P L2pΩ,A,Hq exists and for all f P H ,

xErµpδYq | Xs, f yH “ ErxµpδYq, f yH | Xs “ Er f pYq | Xs,

since F : H Ñ R, Fpgq “ xg, f yH defines a continuous linear function. In particular, for all

f P H ,

xErµpδYq | X “ xs, f yH “ Er f pYq | X “ xs,

or ErµpδYq | X “ xs “ µpPxq.

Since µpδYq “ kpY, ¨q, Lemma .13 in fact corresponds to Lemma 3.2 in [132].

For a more compact notation in the following Lemma, let N “ t1, . . . , nu and let for A Ă N

and k ⩽ |A|, CkpAq be the set of all subsets of size k drawn from A without replacement, with

C0 :“ H.

Lemma .14 (H-Decomposition of a Hilbert-space valued Kernel). Let pH1, x¨, ¨y1q, pH2, x¨, ¨y2q

be two separable Hilbert spaces, X1, . . . ,Xn be i.i.d. copies of a random element X : pΩ,Aq Ñ

pH1,BpH1qq. Write Xn “ pX1, . . . ,Xnq and let T : pHn
1 ,BpHn

1 qq Ñ pH2,BpH2qq measurable

with Er}T pXnq}2
H2

s ă 8. If T is symmetric, there exists functions T j, j “ 1, . . . , n, such that

T pXnq “ ErT pXqs `

n
ÿ

i“1

T1pXiq `
ÿ

i1ăi2

T2pXi1 ,Xi2q ` . . . TnpXnq, (33)

and it holds that

VarpT pXnqq “

n
ÿ

i“1

ˆ

n
i

˙

VarpTipX1, . . . ,Xiqq, (34)

and

T1pXiq “ ErT pXnq | Xis ´ ErT pXnqs.

Proof Composition (33) was proven in a range of different ways for real-valued T , see e.g. [71],

[47], [48], or [178]. We consider and slightly extend the elegant proof of [47] to also prove (34).
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See also [178]. Let

T1pXiq “ ErT pXnq | Xis ´ ErT pXnqs

T2pXi,X jq “ ErT pXnq | Xi,X js ´ ErT pXnq | Xis ´ ErT pXnq | X js ` ErT pXnqs

...

TℓpπNAℓpXnqq “

ℓ´1
ÿ

k“0

p´1q
ℓ´k

ÿ

BPCkpAℓq

ErT pXnq | πNBpXnqs.

We note that Tℓ does not depend on the exact indices in Aℓ thanks to the assumed symmetry of

T . Since ErT pXnq | X1, . . . ,Xns “ T pXnq is part of TnpXnq, this leads to a telescoping sum,

already proving (33).

Adapting the approach of [47], consider now L2pΩ, σpXnq,Hq and let Qi be the projection

operator into L2pΩ, σpX1, . . . ,Xi´1,Xi`1, . . . ,Xnq,Hq. That is

pQiT qpX1, . . . ,Xi´1,Xi`1, . . . ,Xnq “ ErT pXnq | X1, . . . ,Xi´1,Xi`1, . . . ,Xns,

by (C3). Now as in [178],

(I) the Qi commute,

(II) For Aℓ “ ti1, . . . , iℓu Ă N,

pQi1 ¨ ¨ ¨ QiℓT qpπNAc
ℓ
pXnqq “ ErT pXnq | πNAc

ℓ
pXnqs.

In particular,

pQ1 ¨ ¨ ¨ QℓT qpXℓ`1, . . . ,Xnq “ ErT pXnq | Xℓ`1, . . . ,Xns.

Moreover, it holds that

TℓpXi1 , . . . ,Xiℓq “ prI ´ Qi1srI ´ Qi2s . . . rI ´ QiℓsQiℓ`1 ¨ ¨ ¨ QinT qpXi1 , . . . ,Xiℓq.

Expanding the identity

T pXnq “ pInT qpXnq “ prpI ´ Q1q ` Q1srpI ´ Q2q ` Q2s ¨ ¨ ¨ rpI ´ Qnq ` QnsT qpXnq,

as in [178] and using Qip1 ´ Qiq “ 0, proves (33). Furthermore the above implies that for

any subset Al Ă N that intersects with Aℓ “ ti1, . . . , iℓu, we must have ErTℓpXi1 , . . . ,Xiℓq |

πNAlpXnqs “ 0. Indeed assume Al X Aℓ “ ti2, . . . , iℓu, then since the elements of Xn are inde-

pendent, by (C6),

ErTℓpπNAℓpXnqq|πNAlpXnqs “ ErTℓpπNAℓpXnqq | πNpAlXAℓqpXnqs,
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i.e. all elements outside the intersection are irrelevant. Moreover,

ErTℓpπNAℓpXnqq | πNpAlXAℓqpXnqs

“ pQi1rI ´ Qi1srI ´ Qi2s . . . rI ´ QiℓsQiℓ`1 ¨ ¨ ¨ QinT qpπNpAlXAℓqpXnqq

and clearly this projection can only be 0. The same argument can be made for any other inter-

section set Al X Aℓ, even if it is the empty set.

Thus combining the above with (C5), for Aℓ , Al, it holds that

ErxTℓpπNAℓpXnqq,TlpπNAlpXnqqyH s “ ErErxTℓpπNAℓpXnqq,TlpπNAlpXnqqyH | πNAlpXnqss

“ ErxErTℓpπNAℓpXnqq | πNAlpXnqs,TlpπNAlpXnqqyH s

“ 0.

In other words, the covariance between any two elements in the decomposition of T pXnq ´

ErT pXqs in (33) is uncorrelated. Finally then

VarpT pX1, . . . ,Xnqq “ ErxT pXnq ´ ErT pXnqs,T pXnq ´ ErT pXnqsys

“

n
ÿ

i“1

ˆ

n
i

˙

VarpTipX1, . . . ,Xiqq.

In order to proceed, we first prove Theorem 31, which is somewhat separate from the remainder

of this section:

Theorem 31. For any split of a parent node P into child nodes CL and CR, let P̂splitpxq “
ř

jPtL,Ru 1px P C jq
1
n j

ř

xiPC j
δyi

denote the resulting estimate of the distribution PpY | X “ xq

when x P P. Then the MMD splitting criterion can be viewed as the version of the CART

criterion (7) onH:

arg max
split

nLnR

n2
P

DMMDpkq ptyi | xi P CLu, tyi | xi P CRuq

“ arg min
split

1
nP

ÿ

xiPP

∥∥∥µpδyiq ´ µpP̂splitpxiqq
∥∥∥2
H
.

Moreover, for any node P and any fixed distributional estimator P̂pY | X “ xq, we have:

1
nP

ÿ

xiPP

∥∥∥µpδyiq ´ µpP̂pY | X “ xiqq
∥∥∥2
H

“ VP ` E
“

∥µpP̂pY | Xqq ´ µpPpY | Xqq∥2
H

| X P P
‰

` Oppn´1{2
q,

where VP “ E
“

∥µpδYq ´ µpPpY | Xqq∥2
H

| X P P
‰

is a deterministic term not depending on the

estimates P̂pY | X “ xq.



Ćevid et al. (2022) 207

Proof The first part of the Theorem is shown analogously to the proof in Section 2.3 of the

appendix, but where we replace the standard dot product in R with the inner product x ¨, ¨yH

associated with pH , kq and use the induced RKHS norm ∥¨∥H . Also, since k is bounded, the

embedding µpDq into RKHSH exists for any distributionD, so everything is well-defined.

For the second statement of the Theorem 1, note that nP „ Binomialpπ, nq, where π :“

PpX P Pq ą 0. Let P̂x “ P̂pY | X “ xq be a fixed conditional distribution estimator and recall

that Px “ PpY | X “ xq. We now write

ÿ

xiPP

∥∥∥µpδyi
q ´ µpP̂xiq

∥∥∥2
H

“

n
ÿ

i“1

∥∥∥µpδyi
q ´ µpP̂xiq

∥∥∥2
H
1txi P Pu.

Then it holds that

E
”∥∥∥µpδYiq ´ µpP̂Xiq

∥∥∥2
H
1tXi P Pu

ı

“ E
”

E
”∥∥∥µpδYq ´ µpP̂Xq

∥∥∥2
H

| X
ı

1tX P Pu

ı

,

and

E
”∥∥∥µpδYq ´ µpP̂Xq

∥∥∥2
H

| X
ı

“ E
”

E
∥∥∥µpδYq ´ µpPXq

∥∥∥2
H

` E
∥∥∥µpPXq ´ µpP̂Xq

∥∥∥2
H

| X
ı

` 2E
“

xµpδYq ´ µpPXq, µpPXq ´ µpP̂XqyH | X
‰

.

It follows with Lemma .13 and (C5) that,

E
“

xµpδYq ´ µpPXq, µpPXq ´ µpP̂XqyH | X
‰

“

xE rµpδYq ´ µpPXq | Xs , µpPXq ´ µpP̂XqyH “ 0.

Combining the three equations, this means

E
”∥∥∥µpδYiq ´ µpP̂Xiq

∥∥∥2
H
1tXi P Pu

ı

“ E
”∥∥∥µpδYq ´ µpPXq

∥∥∥2
H
1tX P Pu `

∥∥∥µpPXq ´ µpP̂Xq
∥∥∥2
H
1tX P Pu

ı

“ π
´

VP ` E
”∥∥∥µpPXq ´ µpP̂Xq

∥∥∥2
H

| X P P
ı¯

, (35)

using that ErgpXq | X P Ps “ ErgpXq1tX P Pus{PpX P Pq. We now show that the difference

between 1
nP

ř

xiPP

∥∥∥µpδyiq ´ µpP̂pY | X “ xiqq
∥∥∥2
H

and the expectation on the left of Equation (35)

is Oppn´1{2q, using standard CLT arguments. Define K “ supz,z1 | kpz, z1q |ă 8, as we have

assumed that k is bounded. For any two distributionsD1,D2 we now obtain∥∥∥µpD1q ´ µpD2q
∥∥∥2
H

“ ErkpZ1,Z1
1qs ´ 2ErkpZ1,Z2qs ` ErkpZ2,Z1

2qs ⩽ 4K,

where Z1,Z1
1 „ D1 and Z2,Z1

2 „ D2 are independent random variables. Thus,

E
”∥∥∥µpδYq ´ µpP̂Xq

∥∥∥2
H

ı

⩽ 4K, E
”∥∥∥µpδYq ´ µpP̂Xq

∥∥∥4
H

ı

⩽ 16K2,
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implying that both first and second moments of the random variable∥∥∥µpδYq ´ µpP̂Xq
∥∥∥2
H
1tX P Pu are finite. Moreover, since

∥∥∥µpδyi
q ´ µpP̂xiq

∥∥∥2
H
1txi P Pu for

i “ 1, . . . , n are its i.i.d. realizations, it follows directly from the CLT that:

?
n

˜

1
n

n
ÿ

i“1

∥∥∥µpδyi
q ´ µpP̂xiq

∥∥∥2
H
1txi P Pu ´ E

”∥∥∥µpδYiq ´ µpP̂Xiq
∥∥∥2
H
1tXi P Pu

ı

¸

“ Op p1q .

By multiplying the above equation with n{nP “ p1{π` opp1qq “ Opp1q, it also holds that

?
n

˜

1
nP

ÿ

xiPP

∥∥∥µpδyi
q ´ µpP̂xiq

∥∥∥2
H

´
n
nP
E

”∥∥∥µpδYiq ´ µpP̂Xiq
∥∥∥2
H
1tXi P Pu

ı

¸

“ Op p1q . (36)

Thus,

?
n

˜

1
nP

ÿ

xiPP

∥∥∥µpδyi
q ´ µpP̂xiq

∥∥∥2
H

´
1
π
E

”∥∥∥µpδYiq ´ µpP̂Xiq
∥∥∥2
H
1tXi P Pu

ı

¸

“
?

n

˜

1
nP

ÿ

xiPP

∥∥∥µpδyi
q ´ µpP̂xiq

∥∥∥2
H

´
n
nP
E

”∥∥∥µpδYiq ´ µpP̂Xiq
∥∥∥2
H
1tXi P Pu

ı

¸

´
?

n
ˆ

1 ´
nπ
nP

˙

1
π
E

”∥∥∥µpδYiq ´ µpP̂Xiq
∥∥∥2
H
1tXi P Pu

ı

. (37)

Now both terms in (37) are Opp1q: For the first term this follows from (36). For the second term

it holds, since E
”∥∥∥µpδYq ´ µpP̂Xq

∥∥∥2
H

ı

⩽ 4K and

?
n

ˆ

1 ´
nπ
nP

˙

“ Opp1q,

which in turn is true by another application of the CLT on random variables 1tXi P Pu and the

fact that n{nP “ Opp1q:

?
n

ˆ

1 ´
nπ
nP

˙

“
?

n
nP ´ nπ

nP
“

n
nP

nP ´ nπ
?

n
“ Opp1q.

Combining the fact that the expression in (37) is Opp1q with (35) gives the result.

Let µ̂npxq be defined as in (17):

µ̂npxq “

ˆ

n
sn

˙´1
ÿ

i1ăi2ă...ăisn

Eε
“

T px, ε; Zi1 , . . . ,Zisn
q
‰

, (38)

where the sum is taken over all
` n

sn

˘

possible subsamples Zi1 , . . . ,Zisn
of Z1, . . .Zn and sn Ñ 8

with n. Moreover, a single tree is given as

T px; ϵk,Zk1 , . . .Zksn
q “

sn
ÿ

j“1

1pXk j P Lkpxqq

|Lkpxq|
µpδYk j

q. (39)
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Given these preliminary results, the proofs we use are for the most part analogous to the ones

in [181]. Thus the proofs are given mostly for completeness and sometimes omitted altogether.

We introduce the following additional notation, similar to Section 3: Let Zs “ pZ1, . . . ,Zsq

collect s i.i.d. copies of Z and define for j “ 1, . . . , sn,

VarpT q “ VarpT px, ε;Zsnqq

VarpT jq “ VarpErT px, ε;Zsnq|Z1, . . . ,Z jsq.

The index s will take the role of sn or n, depending on the situation. We note that, due to i.i.d.

sampling, it doesn’t matter for variance or expectation what kind of subset Zi1 , . . . ,Zis we are

considering. In particular, we might just takeZs each time.

Before going on to the main proofs, we repeat here the assumed properties of the trees for

completeness:

(P1) (Data sampling) The bootstrap sampling with replacement, usually used in forest-based

methods, is replaced by a subsampling step, where for each tree we choose a random

subset of size sn out of n training data points. We consider sn going to infinity with n,

with the rate specified below.

(P2) (Honesty) An observation Z “ pX, µpδYqq is either used to place the splits in a tree or to

estimate the response, but never both.

(P3) (α-regularity) Each split leaves at least a fraction α ⩽ 0.2 of the available training sample

on each side. Moreover, the trees are grown until every leaf contains between κ and 2κ´1

observations, for some fixed tuning parameter κ P N.

(P4) (Symmetry) The (randomized) output of a tree does not depend on the ordering of the

training samples.

(P5) (Random-split) At every split point, the probability that the split occurs along the feature

X j is bounded below by π{p, for some π ą 0 and for all j “ 1, . . . , p.

Note that assumption (P2) differentiates from assumption (P2) in the main text. We refer to

it as

(P2’) (Double Sampling) The data used for constructing each tree is split into two parts; the

first is used for determining the splits and the second for populating the leaves and thus

for estimating the response.

(P2) will allow us to assume that all sn observations of the tree are used to estimate the

response, as in (39) and the trees are built with some auxiliary data. This is done for simplicity
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of exposition, the results can be extended to hold in case of (P2’) as well. In fact, since the

(random) division into the two data sets can be seen as part of εk, the adaptation simply involves

changing sn to sn{2.

Now, we may directly apply Lemma (.14) to the U-statistics µ̂npxq:

Lemma .15. Let µ̂npxq be as in (38) and assume T satisfies (P4) and

VarpT q ă 8.

Then

Varpµ̂npxqq ⩽
s2

n

n
VarpT1q `

s2
n

n2 VarpT q

⩽

ˆ

sn

n
`

s2
n

n2

˙

VarpT q.

Proof Using the composition in (33) on T pZi1 , . . . ,Zisq :“ Eε rT px, ε; Zi1 , . . . ,Zisqs, we have

for A Ă N “ t1, . . . , nu, |A| “ sn,

T pπNApZnqq “ ErT pπNApZnqqs `

s
ÿ

ℓ“1

ÿ

BPCℓpAq

TℓpπNBpZnqq, (40)

Moreover, it holds by symmetry and i.i.d. sampling, that for A1 “ A2 Ă N, |A1| “ |A2| “ ℓ,

TℓpπA1pZnqq “ TℓpπA2pZnqq. Thus we obtain,

µ̂npxq “ ErT pZsnqs `

ˆ

n
sn

˙´1
´

ˆ

n ´ 1
sn ´ 1

˙ n
ÿ

i“1

T1pZiq `

ˆ

n ´ 2
sn ´ 2

˙

ÿ

i1ăi2

T2pZi1 ,Zi2q

` . . .`
ÿ

i1ăi2ă...ăisn

TspZi1 , . . . ,Zisn
q

¯

.

Now
ˆ

n
sn

˙´1ˆ

n ´ j
sn ´ j

˙

“
sn!
n!

pn ´ jq!
psn ´ jq!

“
sn ¨ psn ´ 1q ¨ ¨ ¨ psn ´ j ` 1q

n ¨ pn ´ 1q ¨ ¨ ¨ pn ´ j ` 1q

“
psnq j

pnq j
,

where psnq j “ snpsn ´ 1q ¨ psn ´ p j ´ 1qq “ sn!{psn ´ jq!. In particular

ˆ

n
sn

˙´1ˆ

n ´ 1
sn ´ 1

˙

“
sn

n
.



Ćevid et al. (2022) 211

Consequently,

µ̂npxq “
sn

n

n
ÿ

i“1

T1pZiq `
psnq2

pnq2

ÿ

i1ăi2

T2pZi1 ,Zi2q `
psnq3

pnq3

ÿ

i1ăi2ăi3

T3pZi1 ,Zi2 ,Zi3q`

. . .`
psnqsn

pnqsn

ÿ

i1ăi2ă...ăisn

TsnpZi1 , . . . ,Zisn
q,

with covariances between terms equal to 0, as in Lemma .14. Thus

Varpµ̂npxqq “
s2

n

n2 nVarpT1q `

sn
ÿ

i“2

ˆ

psnqi

pnqi

˙2 ˆ

n
i

˙

VarpTiq

“
s2

n

n
VarpT1q `

sn
ÿ

i“2

ˆ

psnqi

pnqi

˙ ˆ

sn

i

˙

VarpTiq

⩽
s2

n

n
VarpT1q `

psnq2

pnq2

sn
ÿ

i“2

ˆ

sn

i

˙

VarpTiq

⩽
s2

n

n
VarpT1q `

s2
n

n2 VarpT q,

where the last step followed from (34). This proves the first inequality. On the other hand, we

have from Lemma .14 that

VarpT q “

sn
ÿ

i“1

ˆ

sn

i

˙

VarpTiq ⩾ snVarpT1q,

leading to the second inequality.

Lemma .16. [ Lemma 2 from [181]] Let T is a tree satisfying (P3), (P5) trained on Zs “

pξ1,X1q, . . . pξs,Xsq and let Lpx,Zsq be the leaf containing x. Suppose that X1, . . . ,Xs are i.i.d.

on r0, 1sp independently with a density f bounded away from 0 and infinity. Then,

P

¨

˝diampLpx,Zsqq ⩾
?

d
ˆ

s
2k ´ 1

˙´0.51 logpp1´αq´1q

logpα´1q

π
p

˛

‚⩽ d
ˆ

s
2k ´ 1

˙´1{2 logpp1´αq´1q

logpα´1q

π
p

. (41)

Lemma .17. Let T be a tree satisfying (P1), (P2) and Lpx,Zsq be the leaf containing x. Then

ErT pZsqs “ ErErξ1 | X1 P Lpx,Zsqss, (42)

and

VarpT pZsqq ⩽ sup
xPr0,1sp

Er}ξ1}
2
H

| X “ xs. (43)
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Proof We want to prove

ErT pZsqs “ ErErT pZsq | Lpx,Zsqss “ ErErξ1 | X1 P Lpx,Zsq, Lpx,Zsqss. (44)

Let for the following Nx “
řs

i“1 1tXi P Lpx,Zsqu. Then due to i.i.d. sampling:

ErErT pZsq | Lpx,Zsqss “ ErEr

s
ÿ

i“1

S iξi | Lpx,Zsqss “ sErS 1ξ1 | Lpx,Zsqs.

The last expression can be broken into

sErErS 1ξ1 | Lpx,Zsqss “ sE rErErS 1ξ1 | Nx, Lpx,Zsqs | Lpx,Zsqss

“ E

„

E

„

s
Nx
Er1tX1 P Lpx,Zsquξ1 | Nx, Lpx,Zsqs | Lpx,Zsq

ȷȷ

“ E
”

E
” s

Nx
Erξ1 | Nx, Lpx,Zsq,X1 P Lpx,Zsqs

P pX1 P Lpx,Zsq | Nx, Lpx,Zsqq | Lpx,Zsq

ıı

. (45)

Now, by honesty, given the knowledge that X1 P Lpx,Zsq, ξ1 is independent of Nx, thus:

sErS 1ξ1 | Lpx,Zsqs

“ E

„

Erξ1 | Lpx,Zsq,X1 P Lpx,ZsqsE

„

s
Nx
P pX1 P Lpx,Zsq | Nx, Lpx,Zsqq | Lpx,Zsq

ȷȷ

“ E rErξ1 | Lpx,Zsq,X1 P Lpx,ZsqssE rS 1 | Lpx,Zsqss .

Now it holds by i.i.d. sampling that,

sE rS 1 | Lpx,Zsqs “

s
ÿ

i“1

E rS i | Lpx,Zsqs “ E

«

s
ÿ

i“1

S i | Lpx,Zsq

ff

“ 1,

as
řs

i“1 S i “ 1 by definition.

For (43), we write

VarpT pZsqq ⩽ E

»

–

›

›

›

›

›

s
ÿ

i“1

S iξi

›

›

›

›

›

2

H

fi

fl “ E

«

1
N2

x

s
ÿ

i“1

1tXi P Lpx,Zsqu}ξi}
2
H

ff

`

E

«

1
N2

x

s
ÿ

i“1

ÿ

j,i

1tX j P Lpx,Zsqu1tXi P Lpx,Zsquxξi, ξ jyH

ff

.

We focus on the second term. For the first, the bound follows by analogous arguments. Similar

as before,

E

«

1
N2

x

s
ÿ

i“1

ÿ

j,i

1tX j P Lpx,Zsqu1tXi P Lpx,Zsquxξi, ξ jyH

ff

“ sps ´ 1qE

„

1
N2

x
1tX1 P Lpx,Zsqu1tX2 P Lpx,Zsquxξ1, ξ2yH

ȷ

“ sps ´ 1qE

„

1
N2

x
E r1tX1 P Lpx,Zsqu1tX2 P Lpx,Zsquxξ1, ξ2yH | Nxs

ȷ

. (46)
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By the same argument as above

PpX1 P Lpx,Zsq,X2 P Lpx,Zsq | Nx, Lpx,Zsqq

“
1

sps ´ 1q
E

«

s
ÿ

i“1

ÿ

j,i

1tXi P Lpx,Zsqu1tX j P Lpx,Zsqu | Nx, Lpx,Zsq

ff

“
1

sps ´ 1q
E rNxpNx ´ 1q | Nx, Lpx,Zsqs

“
NxpNx ´ 1q

sps ´ 1q
,

and

E r1tX1 P Lpx,Zsqu1tX2 P Lpx,Zsquxξ1, ξ2yH | Nxs

“ E rE r1tX1 P Lpx,Zsqu1tX2 P Lpx,Zsquxξ1, ξ2yH | Nx, Lpx,Zsqs | Nxs

“ E
“

E rxξ1, ξ2yH | Nx, A,X1 P Lpx,Zsq,X2 P Lpx,Zsqs

PpX1 P Lpx,Zsq,X2 P Lpx,Zsq | Nx, Lpx,Zsqq | Nx
‰

“ E rE rxξ1, ξ2yH | X1 P Lpx,Zsq,X2 P Lpx,Zsq, Lpx,Zsqs | Nxs
NxpNx ´ 1q

sps ´ 1q
. (47)

Thus combining (46) and (47),

E

«

1
N2

x

s
ÿ

i“1

ÿ

j,i

1tX j P Lpx,Zsqu1tXi P Lpx,Zsquxξi, ξ jyH

ff

“ E
”NxpNx ´ 1q

N2
x

E rE rxξ1, ξ2yH | X1 P Lpx,Zsq,X2 P Lpx,Zsq, Lpx,Zsqs | Nxs

ı

⩽ E rE rxξ1, ξ2yH | X1 P Lpx,Zsq,X2 P Lpx,Zsq, Lpx,Zsqss

“ E rxErξ1 | X1 P Lpx,Zsqs,Erξ2 | X2 P Lpx,ZsqsyH s ,

where in the last step we used independence of pξ1,1tX1 P Lpx,Zsquq, pξ2,1tX2 P Lpx,Zsquq

conditionally on Lpx,Zsq and (C9). Finally,

E rxErξ1 | X1 P Lpx,Zsqs,Erξ2 | X2 P Lpx,ZsqsyH s ⩽ sup
xPr0,1sp

}Erξ1 | X “ xs}
2
H

⩽ sup
xPr0,1sp

Er}ξ1}
2
H

| X “ xs,

proving the claim.

Corollary 38. Under the conditions of Lemma .16, assume

x ÞÑ µpxq “ Erξ | X “ xs P H ,



214 Paper D

is Lipschitz and that the trees T in the forest satisfy (P2) and (P3). Then

}Erµ̂npxqs ´ µpxq}H “ O

ˆ

s´1{2 logpp1´αq´1q

logpα´1q

π
p

˙

, (48)

and

}Erξ | X P Lpx,Zsqs}H
p

Ñ }Erξ | X “ xs}H . (49)

If moreover,

x ÞÑ Er}ξ}2
H

| X “ xs P R,

is Lipschitz, then:

Er}ξ}2
H

| X P Lpx,Zsqs
p

Ñ Er}ξ}2
H

| X “ xs. (50)

Proof By (42), it holds as in [181]

}ErT px,Zqs ´ Erξ | X “ xs}H “ }ErErξ | X P Lpx,Zsqs ´ Erξ | X “ xss}H .

Let

s˚
1 “

?
d

ˆ

s
2k ´ 1

˙´0.51 logpp1´αq´1q

logpα´1q

π
p

, s˚
2 “ d

ˆ

s
2k ´ 1

˙´0.5 logpp1´αq´1q

logpα´1q

π
p

Then it follows from Lemma .16 that

PpLpx,Zsq ⩾ s˚
1 q ⩽ s˚

2 ,

while by Lipschitz continuity: Er}Erξ | X P Lpx,Zsqs ´ Erξ | X “ xs}H s ⩽

LErdiampLpx,Zsqqs, where L is the Lipschitz constant. Thus,

}ErErξ | X P Lpx,Zsqs ´ Erξ | X “ xss}H

⩽ }ErpErξ | X P Lpx,Zsqs ´ Erξ | X “ xsq1tdiampLpx,Zsqq ⩾ s˚
1 us}H

` }ErpErξ | X P Lpx,Zsqs ´ Erξ | X “ xsq1tdiampLpx,Zsqq ă s˚
1 us}H

⩽ Er}Erξ | X P Lpx,Zsqs ´ Erξ | X “ xs}H1tdiampLpx,Zsqq ⩾ s˚
1 us

` Er}Erξ | X P Lpx,Zsqs ´ Erξ | X “ xs}H1tdiampLpx,Zsqq ă s˚
1 us

⩽

˜

sup
x1,x2Pr0,1sp

}Erξ | X “ x1s ´ Erξ | X “ x2s}H

¸

PpdiampLpx,Zsqq ⩾ s˚
1 q ` Ls˚

1

⩽

˜

sup
x1,x2Pr0,1sp

}Erξ | X “ x1s ´ Erξ | X “ x2s}H

¸

s˚
2 ` Ls˚

1

≾

˜

sup
x1,x2Pr0,1sp

}Erξ | X “ x1s ´ Erξ | X “ x2s}H

¸

s˚
2 ,
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since s˚
1 {s˚

2 Ñ 0. Due to the Lipschitz condition

sup
x1,x2Pr0,1sp

}Erξ | X “ x1s ´ Erξ | X “ x2s}H ⩽ L sup
x1,x2Pr0,1sp

}x1 ´ x2}Rd “ Op1q.

Finally by the reverse triangle inequality

|}Erξ | X P Lpx,Zsqs}H ´ }Erξ | X “ xs}H | ⩽ }Erξ | X P Lpx,Zsqs ´ Erξ | X “ xs}H

⩽ LdiampLpx,Zsqq,

and if x ÞÑ Er}ξ}2
H

| X “ xs is Lipschitz as well, also

|Er}ξ}2
H

| X P Lpx,Zsqs ´ Er}ξ}2
H

| X “ xs| ⩽ CdiampLpx,Zsqq.

Since diampLpx,Zsqq
p

Ñ 0, as s Ñ 8, (49), respectively (50) hold true.

As the expectation of the forest is the same as that of one tree:

Erµ̂npxqs “ E
“

T px, ε; Zi1 , . . . ,Zisn
q
‰

,

the result follows.

This leads us to the proof of of Theorem 32 in the main text.

Theorem 32. Suppose that our forest construction satisfies properties (P1)–(P5). Assume ad-

ditionally that k is a bounded and continuous kernel and that we have a random design with

X1, . . . ,Xn independent and identically distributed on r0, 1sp with a density bounded away from

0 and infinity. If the subsample size sn is of order nβ for some 0 ă β ă 1, the mapping

x ÞÑ µpxq “ ErµpδYq | X “ xs P H ,

is Lipschitz and supxPr0,1sp Er}µpδYq}2
H

| X “ xs ă 8, we obtain the consistency w.r.t. the RKHS

norm:

∥µ̂npxq ´ µpxq∥H “ Op
`

n´γ
˘

, (18)

for γ “ 1
2 min

´

1 ´ β,
logpp1´αq´1q

logpα´1q

π
p ¨ β

¯

.

Proof We first note that supxPr0,1sp Er}µpδYq}2
H

| X “ xs ă 8 together with (43) implies

VarpT q ă 8. Thus, from Markov’s inequality and Lemma .15,

P pnγ||µ̂npxq ´ Erµ̂npxqs||H ą εq ⩽
n2γ

ε2 ps{n ` s2
{n2

qVarpT q “
1
ε2Opn2γ`β´1

q.

Thus

nγ||µ̂npxq ´ Erµ̂npxqs||H “ Opp1q,
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for γ ⩽ p1 ´ βq{2. In particular, it goes to zero for any ε ą 0, if γ ă p1 ´ βq{2. Since,

nγ }µ̂npxq ´ µpxq}
H
⩽ nγ }µ̂npxq ´ Erµ̂pxqs} ` nγ }Erµ̂pxqs ´ µpxq}

H
,

the result follows as soon as the second expression goes to zero. Now from Theorem 38, with

Cα “
logpp1´αq´1q

logpα´1q
,

}Erµ̂npxqs ´ µpxq}H “ O

´

s
´1{2Cα πp
n

¯

“ O

´

n´1{2βCα πp
¯

.

This goes to zero provided that,

1{2βCα
π

p
ą γ.

To prove Corollaries 34 and 35, we first need another auxiliary result:

Lemma .18. Let pS , dq be a separable metric space and Xn : pΩ,Aq Ñ pS ,BpS qq, n P N and

X : pΩ,Aq Ñ pS ,BpS qq be measurable. Then Xn
p

Ñ X if and only if for every subsequence

npkq there exists a further subsequence npkplqq such that

Xnpkplqq Ñ X a.s. (51)

Proof If Xn
p

Ñ X, then so does any subsequence Xnpkq. By well-known results, see e.g. [177,

Chapter 2], this implies that there exists a further subsequence Xnpkplqq such that a.s. convergence

holds.

As is well known, there exists a metric ρ on PpS q such that ρpXn,Xq Ñ 0 iff Xn
p

Ñ X, see

e.g., [46, Chapter 11]. Now assume that for any subsequence we can find a further subsequence

such that (51) holds, but the overall sequence does not converge in probability. Then we can

build a subsequence such that for some ε ą 0,

ρpXnpkq,Xq ⩾ ε

for all elements of that subsequence. Thus any further subsequence will also not convergence

in probability and consequently cannot converge a.s. This proves the claim.

We note that the set A with PpAq “ 1 on which (51) holds is allowed to depend on the

subsequence. Corollary 34 and 35 are finally proven jointly in the following Corollary. The

proof is motivated by the tools used in [9].

Corollary 39. Assume that one of the following two sets of conditions holds:
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(a) The kernel k is bounded, (jointly) continuous and has
ż ż

kpx, yqdPpxqdPpyq ą 0 @P PMbpRd
qzt0u. (52)

Moreover, y ÞÑ kpy0, yq is vanishing at infinity, for all y0 P Rd.

(b) The kernel k is bounded, shift-invariant, (jointly) continuous and ν in the Bochner repre-

sentation in (11) is supported on all of Rd. Moreover, Y takes its values almost surely in

a closed and bounded subset of Rd.

Then, under the conditions of Theorem 32, we have for any bounded and continuous function

f : Rd Ñ R that DRF consistently estimates the target τpxq “ Er f pYq | X “ xs for any

x P r0, 1sp:
n

ÿ

i“1

wxpxiq f pyiq
p

Ñ Er f pYq | X “ xs.

Moreover,

F̂Y|X “ xptq p
Ñ FY|X “ xptq

F̂´1
Yi|X “ xptq p

Ñ F´1
Yi|X “ xptq,

for all points of continuity t P Rd and t P R of FY|X “ xp¨q and F´1
Yi|X “ xp¨q respectively.

Proof As shown in [163, Theorem 3.2], (a) implies that k metrizes weak convergence. Sim-

ilarly, from Theorem 9 in [165], it follows that k is characteristic on the compact subspace

of Rd in which Y takes its value almost surely. Thus, ignoring the Null set, Theorem 23 in

[165] implies that k metrizes the weak convergence in this case as well. Thus in both cases

}µ̂npkplqqpxq ´ µpxq}H Ñ 0 implies weak convergence of µ̂npkplqqpxq to µpxq.

From Theorem .18, for any subsequence, we can choose a further subsequence, such that

}µ̂npkplqqpxq ´ µpxq}H Ñ 0 , a.s.

and since it is assumed that } ¨ }H metrizes weak convergence, µ̂npkplqqpxq converges weakly to

µpxq on a set A, depending on the subsequence, with PpAq “ 1. Let CbpRdq denote the space

of all bounded continuous functions on Rd. By the Portmanteau theorem (see e.g. [46]), this

implies that on A

(I)
ş

f dP̂pY | X “ xq Ñ
ş

f dPpY | X “ xq for all f P CbpRdq

(II) F̂Y|X “ xptq Ñ FY|X “ xptq for all continuity points t P Rd of FY|X “ xp¨q,

where we omitted the dependence on the subsequence. But, since the subsequence npkq was

arbitrary, this immediately implies
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(I’)
ş

f dP̂pY | X “ xq
p

Ñ
ş

f dPpY | X “ xq for all f P CbpRdq

(II’) F̂Y|X “ xptq p
Ñ FY|X “ xptq for all continuity points t of FY|X “ xp¨q,

for the overall sequence.

On the other hand, (II) implies that on A, for the given subsequence npkplqq, F̂Yi|X “ xptq Ñ

FYi|X “ xptq for all t P R at which FYi|X “ xp¨q is continuous. Using for each ω P A the arguments

in [177, Chapter 21], this implies that

F̂´1
Yi|X “ xptq Ñ F´1

Yi|X “ xptq, for all continuity points t of F´1
Yi|X “ xptq

on A for the given subsequence. Again, as the subsequence npkq was arbitrary, this implies the

result.

3 Simulation Details

In this section we describe in detail all our simulations shown in the main paper, together with

the data used in the analysis. The data sets are available in the R-package drf as well.

3.1 Air quality data

3.1.0.1 Data. This data is obtained from the website of the Environmental Protection

Agency website (https://aqs.epa.gov/aqsweb/airdata/download_files.html). We

have daily measurements for 5 years of data (2015-2019) for 6 ’criteria’ pollutants that form the

Air Quality Index (AQI):

• O3 - ground ozone (8 hours’ average, expressed in pieces per million (ppm))

• SO2 - sulfur dioxide (1 hour average, expressed in pieces per billion (ppb))

• CO - carbon monoxide (8 hours’ average, expressed in pieces per million (ppm))

• NO2 - nitrogen dioxide (1 hour average, expressed in pieces per billion (ppb))

• PM2.5 - fine particulate matter smaller than 2.5 micrometers (24 hours’ average, ex-

pressed in νg{m3)

• PM10 - large particulate matter, smaller than 10 micrometers (24 hours’ average, ex-

pressed in µg{m3)

https://aqs.epa.gov/aqsweb/airdata/download_files.html
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For the above quantities, we have the maximal and mean value within the same day. In our

analysis we have used only the maximal intraday values.

The pollutants are measured at different measurement sites. For each site we have informa-

tion about

• site address (street, city, county, state, zip code)

• site coordinates (longitude and latitude)

• site elevation

• location setting (rural, urban, suburban)

• how the land is used within a 1{4 mile radius (agricultural, forest, desert, industrial,

commercial, residential, blighted area, military reservation, mobile)

• date when the measurement site was put in operation

• date when the measurement site was decommissioned (NA if the site is still operational)

We have information about 191739 sites, much more than the number of 21419 sites from which

we have measurements in years 2015-2019, since many sites were only operating in the past

and are decommissioned.

In total there is 513051859 pollutant measurements. Many pollutants are measured at the

same site, but it is important to note that not every site measures every pollutant, so there is a

lot of ’missing’ measurements. It can also occur that there are several measuring devices for

the same pollutant at the same site, in which case we just average the measurements across the

devices and do not report those measurements separately.

3.1.0.2 Analysis. Since we have a lot of missing data, we use only the data points (identified

by the measurement date and the measurement site) for which we have measurements of all

the pollutants chosen as the responses. For that reason we also do not train DRF with all 6

pollutants as the responses, but only those that we are interested in, since only 64 sites measure

all pollutants. For computational feasibility, we only use 501000 of the available measurements

for the training step. We also omit the states Alaska and Hawaii and the US territories for

plotting purposes.

To obtain the results displayed in Figure 2, we train the DRF with the measurements (intra-

day maximum) of the two pollutants PM2.5 and NO2 as the responses, and the site longitude,

latitude, elevation, land use and location settings as the predictors. We manually choose two

decommissioned measurement sites (for which we have no measurements in years 2015-2019)

as the test points. For each test point we obtain the weights to all training measurements. We
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further combine the weights for all measurements corresponding to the same site, which is rep-

resented by the symbol size in the top row. The bottom row shows the estimated distribution

of the response, where the transparency (alpha) each training point corresponds to the assigned

weight. We also add some estimated contours.

For all plots in Figures 2 and 5, we train the single DRF with the same set of predictor

variables and take the three pollutants O3, SO2 and PM2.5 as the responses. In this way we

still have training data from many different sites (see the above discussion on missing data)

and moreover, those are the 3 pollutants that most likely cross the threshold for the ”Good”

AQI category set by the EPA. Carbon monoxide (CO), for example, almost never crosses this

threshold.

In left plot of Figure 6, we compare the estimated CDF value with the standard classification

forest which has the indicator 1pO3 ă 0.055ppm,SO2 ă 36ppb,PM2.5 ă 12.1µg{m3q as the

univariate response. In the right plot, we obtain the estimated CDF by fitting for each threshold a

separate classification forest with an indicator 1pO3 ⩽ thresholdq. We pick a test point such that

the classification performs bad, just to illustrate that its estimated CDF need not be monotone,

which cannot happen with DRF. In most of the cases, the estimated CDFs are very similar, as

can also be seen from the left plot in Figure 6.

3.2 Benchmark Analysis

In this part we compare the resulting distributional estimates of DRF with several benchmark

methods on a number of data sets. Because our target of estimation is now the whole conditional

distribution one needs to use a distributional loss, and there appears to be no well-established

choice in the literature. Furthermore, for any test point xi we only have one observation yi from

PpY | X “ xq, which makes performance evaluation of our estimator P̂pY | X “ xq hard. We

thus use the following performance measure:

• (NLPD loss) For a fixed conditional distribution estimator P̂pY | X “ xiq, we sample a set

of m “ 500 observations from which we estimate the conditional density via a Gaussian

kernel estimator, using the L2 loss with scale components and the median heuristic for the

choice of the bandwidth parameter. We then evaluate the negative log-likelihood of the

test observation yi implied by the kernel estimate of the distribution and average over the

test set (consisting of multiple pairs pxi, yiq). To reduce the dependence of these results

on single large values of the log-likelihood, we use an 0.05´trimmed mean to average

the losses over the training set.

This loss definition provides a fair way to compare the ability to estimate the conditional distri-

bution since most of the candidate methods only allow for sampling from the estimated condi-

tional distribution P̂pY | X “ xiq.
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3.2.1 Competing methods

We compare DRF that uses the MMD splitting criterion with many existing methods that can

be used for estimation of the conditional distribution.

• Nearest Neighbor (k-NN): The standard k-nearest neighbors algorithm with the Eu-

clidean metric. An estimated conditional distribution P̂pY|X “ xq at a test point x is

defined by a uniform distribution over the k nearest observations in the training set. k is

chosen to be the square root of the training set size.

• Gaussian kernel (kernel): The estimate of the conditional distribution P̂pY|X “ xq at a

test point x is obtained by assigning to each training observation pxi, yiq the weight pro-

portional to the Gaussian kernel kpx, xiq, analogously to usual kernel estimation methods.

Median heuristic is used for bandwidth selection.

• Homogeneous distribution models: This method makes the homogeneity assumption

that the residuals have constant distribution and only the conditional mean changes. The

estimate of the conditional distribution P̂pY|X “ xq is obtained by first fitting a regression

method of choice, computing the residuals, assigning the same weight to every residual

and then adding those residuals to the predicted mean. We chose three different methods

for the mean estimation:

1. Random Forests (RF), a classical univariate regression forest is fitted indepen-

dently for each response component;

2. Extreme Gradient Boosting (XGBoost), a tree gradient boosting model (as de-

scribed in [27]) is fitted independently for each response;

3. Deep Neural Network (DNN), a single deep neural network is fitted to predict the

conditional mean of each response.

• Conditional Generative Adversarial Neural Network (CGAN): The estimated condi-

tional distribution P̂pY|X “ xq is obtained through sampling from the discriminator with

conditional feature x. The implementation of the CGAN is taken from [2]. The archi-

tecture of the neural networks was taken to be the best one for the considered data sets

among a set of candidates.

• Conditional Variational Auto-Encoder (CVAE): The estimated conditional distribution

P̂pY|X “ xq is obtained through sampling from the decoder of the CVAE with conditional

feature x. The implementation of the CVAE follows the one in [160]. The architecture of

the neural networks was taken to be the best one for the considered data sets among a set

of candidates.
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• Masked Autoregressive Flow (MAF): The estimated conditional distribution P̂pY|X “

xq is obtained through sampling from the normalizing flow model with conditional feature

X. The implementation of the model follows the one presented in [131]. The number of

layers is chosen to be the best value from a set t5, 10u for the considered data set.

• Conditional Mean Embedding (CME): The CME is calculated as in (16) with the

weights given as in e.g., [162, 126, 132]. We choose both kernels to be Gaussian ker-

nels with σ “ 0.01, as in [132] and set λ “ 0.01. The estimated conditional distribution

P̂pY|X “ xq is obtained through sampling from the obtained weights, renormalized such

that they lie in r0, 1s and sum up to one.

3.2.2 Benchmark data sets

Many benchmark data sets used come from the multiple target regression literature, where only

the conditional means of the multivariate response is considered. We have used the data sets:

jura, slump, wq, enb, atp1d, atp7d, scpf, sf1 and sf2 collected in the Mulan [172] library.

Description about the dimensionality of the data sets, together with the descriptions of the out-

comes and the regressors can be found in [172] with links to the relevant papers introducing

these data sets. In each data set categorical variables have been represented by the one-hot

dummy encoding, the observations with missing data were removed together with constant re-

gressors.

We additionally added 5 data sets obtained from the data sets used in the main paper:

• copula: Simulated Gaussian copula example where the response Y is bivariate and whose

marginal distribution is Np0, 1q, but the correlation between Y1 and Y2 depends on X1.

• birth1: This data set is created from the CDC natality data and contains many covariates

as predictors and the pregnancy length and birthweights as the responses.

• birth2: This data set is similar as the above one, but we take pregnancy length as the

predictor and add 3 more measures of baby’s health as the response: APGAR score mea-

sured 5 minutes after birth and indicators whether there were any abnormal conditions

and congenital anomalies.

• wage: This data set is created from the 2018 American Community Survey. We take

the logarithmic hourly wage and gender as the response, as it was done in the fairness

example in the main paper.

• air: This data set is obtained from the EPA air quality data. All six pollutants were taken

as the response and we add both the information about the measuring site (location, which
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setting it is in, etc.), as well as the temporal information when the measurement has taken

place (month, day of the week).

3.3 Births data

3.3.0.1 Data. This data set is obtained from the CDC Vital Statistics Data Online Portal

(https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm) and contains the

information about the « 3.8 million births in 2018. However, as we do not need this many

data points, we subsample 3001000 of them. Even though the original data contains a lot of

variables, we have taken only the following variables from the source data:

• mother’s age, height, weight before the pregnancy and BMI before pregnancy

• mother’s race (black, white, asian, NHOPI, AIAN or mixed), marital status (married or

unmarried) and the level of education (in total 8 levels)

• father’s age, race and education level

• month and year of birth

• plurality of the birth (how many babies were born at once)

• whether and when the prenatal care started

• length of the pregnancy

• delivery method (vaginal or C-section)

• birth order - the total number of babies born by the same mother (including the current

one)

• birth interval - number of months passed since last birth (NA if this is the first child)

• number of cigarettes smoked per day on average during the pregnancy

• birthweight (in grams) and gender of the baby

• APGAR score (taken after 5min and 10min)

• indicators whether baby had any abnormal condition or some congenital anomalies

https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm
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3.3.0.2 Analysis. After removing the data points with any missing entries and taking only

the data points where the race of both parents is either black, white or Asian (for nicer plotting),

we are left with 1831881 data points. We use randomly chosen 1001000 data points for training

the DRF. We take the birthweight and the pregnancy length as the bivariate response and for

the predictors we take: mother’s age, race, education, marital status, height, BMI; father’s age,

race and education level; birth plurality, birth order, delivery method, baby’s gender, number of

cigarettes and indicator whether prenatal care took place.

For arbitrary test points from the data we can get the estimated weights by the fitted DRF,

thus estimating the joint distribution of birthweight and pregnancy length conditional on all

other variables mentioned above. Two such distributions are shown in Figure 10. In addition

we use the weights to fit a parametric model for the mean and 0.1 and 0.9 quantiles. This is

done as follows:

• We slightly upweight the data points where the pregnancy length is significantly above

or below the usual range. This is to avoid the bulk of the data points to dominate the fit

obtained for very long or short pregnancies.

• We apply the transformation f p¨q “ logplogp¨qq on both the pregnancy length and the

birthweight since then the scatterplots look much nicer.

• We estimate the mean with smoothing splines with a small manually chosen number of

degrees of freedom.

• The fitted mean is subtracted from the response (birthweight). The residuals seem well

behaved with maybe slight, seemingly linear trend in standard deviation.

• We fit the 0.1 and 0.9 quantiles as the best linear functions that minimize the sum of

quantile losses, by using the quantreg package [93].

• The data is transformed back on the original scale by using the function f ´1p¨q “

exppexpp¨qq.

For the right plot in Figure 10, we have the following causal graph, as mentioned in the main

paper:

T

Z

L

B

We want to determine the direct effect (indicated in bold) of the twin pregnancy T on the

birthweight B that is due to sharing of resources by the babies (space, food etc.) and is not
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due to the fact that twin pregnancy causes shorter pregnancy length L, which in turn causes

the smaller birthweight. Another big issue is that we have confounding factors Z which can

directly affect B, L and T . For example, the number of twin pregnancies significantly depends

on the parents’ race, but so do the pregnancy length and the birthweight, e.g. black people

have more twins, shorter pregnancies and smaller babies. We take all other variables as the

potential confounders Z and adjust for all of them (mother’s age, race, education, marital status,

height, BMI; father’s age, race and education level; birth plurality, birth order, baby’s gender,

number of cigarettes and indicator whether prenatal care took place). In order to do it, we fit

the same DRF as before, where Z and T are the predictors and (B, L) is the bivariate response

for which we can fit the parametric model described above. We compute then the interventional

distribution PpB | dopT “ t, L “ lqq for all values of t and l, by using the do-calculus to adjust

the confounding Z via the backdoor criterion [133], where we also use the obtained parametric

regression fit. In this way we can generalize the fit well, which is important when doing the do-

calculus, since we are interested in some hypothetical combinations of covariates which might

not occur frequently in the observed data, such as very long twin pregnancies.

3.4 Wage data

3.4.0.1 Data. The PUMS (Public Use Microdata Area) data from the 2018 1-Year Ameri-

can Community Survey is obtained from the US Census Bureau API (https://www.census.

gov/content/dam/Census/data/developers/api-user-guide/api-guide.pdf). The

survey is sent to « 3.5 million people annually and aims to give more up to date data than the

official census that is carried out every decade. The 2018 data set has 312141539 anonymized

data points for the 51 states and District of Columbia. Even though the original survey contains

many questions, we have retrieved only the subset of variables that might be relevant for the

salaries:

• person’s gender, age, race (AIAN, black, white, asian, mix, NHOPI, other), indicator of

hispanic origin, state of residence, US citizenship indicator (5 ordered levels), indicator

whether the person is foreign-born

• person’s marital status, number of own children in the same household and the number of

family members in the same household

• person’s education level (24 ordered levels) and level of English knowledge (5 ordered

levels)

• person’s employment status (employed, not at work, not in workforce, unemployed)

https://www.census.gov/content/dam/Census/data/developers/api-user-guide/api-guide.pdf
https://www.census.gov/content/dam/Census/data/developers/api-user-guide/api-guide.pdf
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• for employed people we have annual salary earnings, number of weeks worked in a year

and average number of hours worked per week

• for employed people we have employer type (government, non-profit company, for-profit

company, self-employed), occupation (530 levels), industry where the person works (271

levels) and the geographical unit where the person works (59 levels)

• statistical weight determined by the US Census Bureau which aims to correct sampling

bias

For our purposes, since we want to analyze the unfairness of the gender pay gap, we consider

only employed people that are at least 17 years of age, have worked full-time (at least 48 weeks

in a year) and have worked at least 16 hours a week on average. We also omit the self-employed

persons, since they often report zero annual salary and the pay gap there, if exists, cannot be

called unfair as the salary is not determined by any employer. Since there are no missing data

which would need to be omitted, we finally end up with 110711866 data points.

3.4.0.2 Analysis. We scale the salary with the amount of time spent working (determined

from the number of weeks worked and average hours worked per week) to compute the loga-

rithm of the hourly wages. The scaling with the time spent working is necessary, since full-time

employed men spend on average 11% more time working than women. The logarithmic trans-

formation is used since the salaries are very skewed (positively) and logarithmic wages show

nice behavior.

We also reduce the large number of levels of some of the categorical variables: for the oc-

cupation we use the group of 530 jobs into 20 categories provided in the SOC system (https:

//www.bls.gov/soc/); for the industry information we group the 271 possibilities in 23 cat-

egories as is done in the NIACS classification (https://www.bls.gov/bls/naics.htm);

for the work place we group the 59 US states and foreign territories into 9 economic regions

(including the ”abroad” category), as determined by the Bureau of the Economic Analysis

(https://apps.bea.gov/regional/docs/regions.cfm).

We want to investigate how the logarithmic hourly wage W is affected by the gender G,

depending on the other factors Z: age, race, hispanic origin, citizenship, being foreign-born,

marital status, family size, number of children, education level, knowledge of English, occupa-

tion, industry type and place of work. To do this, we train DRF with bivariate response pW,Gq

and predictors Z on a subsample of 3001000 data points. With it we can answer the follow-

ing: For fixed values of the covariates Z “ z, what are the distributions of salaries of men

and women. In addition, we can determine the ”propensities”, i.e. the proportion of men and

women corresponding to Z “ z. This information is displayed in the top row of Figure 11 for a

https://www.bls.gov/soc/
https://www.bls.gov/soc/
https://www.bls.gov/bls/naics.htm
https://apps.bea.gov/regional/docs/regions.cfm
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combination of covariates corresponding to some person in the left-out data. It illustrates how

the distribution of salaries and their relationship can vary with different covariates Z.

We do not only want to determine how different covariates Z affect the salary distribution,

but we want to quantify the overall fairness of the pay, after appropriate adjustments. In Figure

11, we can see that the observed salaries of men and women differ noticeably, and this difference

in the logarithmic wages means that an average woman has 17% smaller salary than an average

men. However, the question is how much of this difference is ”fair”. For example, the effect

of the gender on the salary can be mediated through some variables such as, for example, the

occupation, workplace or the level of education and we are only interested in the direct effect.

This is illustrated in the following causal graph:

G

Z

W

If we assume that people have the freedom to choose such variables themselves, the pay

gap which arises from such different choices for men and women is fair and those variables are

resolving variables [86]. Another way that the pay gap can be explained is that some of the

variables are not statistically independent of the gender in the population of full-time employed

people (e.g. the race or the age), but they themselves have an effect on the salary.

In order to address those issues, we compute the distribution of the nested counterfactual

Wpmale,Zpfemaleqq, corresponding to the wages of a person that has characteristics Z as a

woman, but which was treated as a man for obtaining the salary. Such distribution can be

computed from the DRF, as described in the main paper: we randomly draw a female person

and for its characteristics z we obtain the conditional distribution of wages of men with those

characteristics PpW | G “ male,Z “ zq via the weights. Those distributions are averaged over

random draw of 11000 women (that were not used in the training step of the DRF). In case that

the difference in salary is fair, the distribution of the counterfactual salary Wpmale,Zpfemaleqq

should be exactly the same as the observed distribution of women’s wages. However, we can see

that this is not the case and that the median salaries of the two distributions differ by 11%. Even

though this is smaller than the 17% we obtain by comparing only the observational distributions,

it still shows that women are paid less compared to men.
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4 Additional Synthetic Examples

4.1 Univariate distributional regression.

The univariate response (case d “ 1) is by far the most studied case in the regression literature.

However, at the level of the whole conditional distribution and compared to the multivariate

case, the range of practically interesting targets τpxq is quite reduced, e.g. conditional mean

of some functional Ep f pYq | Xq or conditional quantiles QαpY | Xq. In Figure 4, we have

compared the performance of DRF (which uses the MMD splitting criterion) with 3 different

tree-based univariate methods that can estimate the conditional quantiles in the univariate case:

• QRF: the quantile regression forest introduced in [117], which is equivalent to DRFCART

in the univariate case and uses the standard forest construction [15] to get the weights.

• GRF: the quantile forest proposed in [4] based on the generalized random forest algo-

rithm.

• TRF: the transformation forest, a model-based recursive partitioning approach, intro-

duced in [74].

Additionally to the visual inspection of the performance given in Figure 4, we present here

a formal performance comparison for the three simulation scenarios also described in the main

paper. The first two scenarios correspond exactly to the examples given in [4] for the quantile

version of the GRF, which serve to illustrate its advantage compared to the conventional quantile

regression forest (QRF) [117]. Scenario 3, in addition, aims at assessing the ability to detect a

change of distribution that does not relate to a change in the first two moments.

method 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

DRF 0.180 0.353 0.402 0.349 0.177 0.267 0.518 0.589 0.514 0.264 0.140 0.298 0.371 0.351 0.198

QRF 0.182 0.357 0.482 0.351 0.179 0.285 0.526 0.592 0.521 0.281 0.144 0.299 0.376 0.357 0.204

GRF 0.183 0.359 0.409 0.354 0.180 0.278 0.522 0.590 0.517 0.274 0.139 0.299 0.371 0.351 0.200

TRF 0.183 0.358 0.408 0.353 0.180 0.272 0.519 0.590 0.516 0.268 0.145 0.300 0.373 0.351 0.200

5-NN 0.232 0.402 0.452 0.404 0.239 0.354 0.587 0.657 0.584 0.340 0.187 0.348 .424 0.406 0.260

20-NN 0.192 0.368 0.418 0.366 0.192 0.290 0.535 0.606 0.533 0.283 0.146 0.310 0.382 0.365 0.211

40-NN 0.187 0.364 0.413 0.360 0.185 0.283 0.528 0.596 0.522 0.273 0.141 0.303 0.376 0.357 0.204

Table 2: Average quantile losses for scenarios 1 (left), 2 (middle), 3 (right) over the repeated out-of-sample vali-
dations.

The performance of each method is evaluated as follows: We consider the quantile (pinball)

loss for the resulting quantile estimates provided by each candidate method for the different per-



Ćevid et al. (2022) 229

centiles α P t0.1, 0.3, 0.5, 0.7, 0.9u. The losses are presented and computed based on repeated

(10 times) out-of-sample validation (with a 70 ´ 30% ratio between the training and testing

sets sizes). The results are presented respectively for each scenario in Table 2. We additionally

include the estimates obtained by k-nearest neighbor algorithm for several different values of k.

Table 3: Average mean squared errors (MSE) for the three scenarios described above over 10 repeated out-of-
sample validations for estimating the conditional mean.

method SC1 SC2 SC3

RF 1.0545 2.4940 0.9624

DRF 1.0412 2.4561 0.9340

Furthermore, Table 3 shows non-inferiority of DRF compared to the standard Random For-

est for the classical task of estimating the conditional mean. We observe that DRF has a good

relative performance that makes it on par with existing algorithms, some of which specially

designed for the problem of estimating conditional quantiles. Furthermore, it seems that the

MMD splitting criterion improves the CART criterion for distributional regression in a general

heterogeneous case (see e.g. scenarios 2 and 3), since the CART criterion is suitable only for

detecting the change in the conditional mean, unlike MMD.

Dependence of the estimated quantiles on X1 for each method (except the k-nearest neigh-

bors) is displayed in the main paper in Figure 4. In addition, the estimates of 2-Wasserstein

distance to the true conditional distribution, quantifying the difference in the estimated CDFs,

are shown in Figure 12.

Figure 12: Scatter plot of discrete estimates of the 2-Wasserstein distance between the estimated and true con-
ditional distribution against X1 for a grid of test points of the form px1, 0, . . . , 0q. The 2-Wasserstein distance is
estimated over a grid of 100 quantiles with levels equally spaced on r0, 1s. Different colors corresponds to different
methods: DRF (red), GRF (green), QRF (blue), TRF (purple).
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4.2 Heterogeneous regression and causal effects

We explore here the performance of DRF on the synthetic data for the setup of heterogeneous

regression, where we want to obtain the regression fit of Y on the explanatory (or treatment)

variables W, but where this fit might change depending on values of X. This can be done

by DRF by using X as predictors and pW,Yq as the response and then using some standard

regression method for regressing Y on W in the second step, having already obtained the weights

that describe the conditional distribution PppW,Yq | X “ xq.

The most important such setup is when the data come from the following causal graph:

W

X

Y

In the case of such a causal graph, X are confounding variables, which we need to adjust for to

understand the causal effect of W on Y . Not only can the marginal distributions of Y and W be

affected by X, but also the regression fit (e.g. the regression coefficients).

4.2.1 CATE and ATE

One special case of this setup that is intensively studied in the causal literature is when W is a

(univariate) binary treatment variable. In this case we are interested in the distribution of the

potential outcomes YpW “ 0q and YpW “ 1q and especially in their difference. It is commonly

measured by using the Conditional Average Treatment Effect

CATEpxq “ ErYpW “ 1q ´ YpW “ 0q | X “ xs

and the Average Treatment Effect

ATE “ ErYpW “ 1q ´ YpW “ 0qs “ ErCATEpXqs.

4.2.1.1 Competing methods. We will compare the performance of the DRF with the fol-

lowing methods, specially designed for estimation of the CATE (or ATE)

• Double Machine Learning (DML) of [28], which assumes the model Y “ mpXq ` Wθ` ϵ

with constant treatment effect and can thus only be used for estimating ATE and not

CATE.

• X-learner (XL) introduced in [96] (the version with RF learners)

• Causal Forest (CF) introduced in [181, 4] (we use the GRF version [4] with local centering

that substantially improves on the version in [181])

In order to make the comparison fair, we use the local centering approach for DRF as well.
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4.2.1.2 Data. We will use the following data models for our simulations, where the first

three are taken directly from [4]:

1. In this model X3 is a confounder affecting both W and Y:

X „ Up0, 1q
p, W | X „ Bernoulli

ˆ

1
4

p1 ` β2,4pX3qq

˙

,

Y | X,W „ 2
ˆ

X3 ´
1
2

˙

` Np0, 1q,

where βa, bpxq is the density of the beta random variable with parameters a and b.

2. In this model the treatment effect is heterogeneous, i.e. how W affects Y changes with X1

and X2:

X „ Up0, 1q
p, W | X „ Bernoullip0.5q,

Y | X,W „

ˆ

W ´
1
2

˙

ηpX1qηpX2q ` Np0, 1q,

where ηpxq “ 1 `

ˆ

1 ` e´20px´
1
3 q

˙´1

.

3. This model is a combination of the previous two, so the treatment effect is heterogeneous

and we have confounding:

X „ Up0, 1q
p, W | X „ Bernoulli

ˆ

1
4

p1 ` β2,4pX3qq

˙

,

Y | X,W „ 2
ˆ

X3 ´
1
2

˙

`

ˆ

W ´
1
2

˙

ηpX1qηpX2q ` Np0, 1q.

4. The following model is similar to above, with slightly different structure, where X2 in-

duces the confounding effects and X1 makes the treatment heterogeneous:

X „ Up0, 1q
p, W | X „ Bernoulli pexpitp4X2 ´ 2qq ,

Y | X,W „ 100X2
2 `

ˆ

W ´
1
2

˙

sinp3X1q ` Np0, 1q.

4.2.1.3 Results. For every model we generate n data points pX1, . . . , Xp,W,Yqi“1,...,n. We run

all methods and compute the root mean squared error of the obtained CATE estimate on a ran-

domly generated test set Xtest containing 1000 data points. CATE corresponds to the coefficient

of W in the data generating mechanism of Y . We repeat the same procedure 100 times and

report the average result. For methods other than the DML, we estimate ATE by averaging the

CATE estimates over the randomly generated test set. The results can be seen in Table 4 and

Figure 13. Even though DRF is performing less well in general compared to the methods that

are specially designed for the task of estimating CATE, we can still see that its estimates are

fairly good.
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Table 4: RMSE for the CATE, averaged over
1000 test points and 100 overall repetitions.

model n p DRF CF XL

1 800 10 0.140 0.109 0.149

1 1600 10 0.119 0.085 0.122

1 800 20 0.125 0.094 0.128

1 1600 20 0.105 0.076 0.107

2 800 10 0.452 0.319 0.288

2 1600 10 0.285 0.234 0.228

2 800 20 0.568 0.336 0.306

2 1600 20 0.341 0.254 0.241

3 800 10 0.621 0.328 0.319

3 1600 10 0.453 0.243 0.237

3 800 20 0.708 0.343 0.346

3 1600 20 0.533 0.257 0.256

4 800 10 0.320 0.273 0.682

4 1600 10 0.285 0.228 0.389

4 800 20 0.316 0.289 0.722

4 1600 20 0.291 0.248 0.412

Table 5: RMSE for the ATE, averaged over
100 repetitions.

model n p DRF CF XL DML

1 800 10 0.0841 0.0806 0.0858 0.0843

1 1600 10 0.0526 0.0517 0.0523 0.0538

1 800 20 0.0786 0.0762 0.0802 0.0785

1 1600 20 0.0585 0.0588 0.0609 0.0625

2 800 10 0.0844 0.0880 0.0877 0.0891

2 1600 10 0.0567 0.0587 0.0593 0.0584

2 800 20 0.0783 0.0767 0.0788 0.0872

2 1600 20 0.0645 0.0657 0.0665 0.0656

3 800 10 0.0914 0.0916 0.0932 0.1116

3 1600 10 0.0573 0.0581 0.0599 0.0778

3 800 20 0.0858 0.0917 0.0922 0.1114

3 1600 20 0.0623 0.0673 0.0599 0.0925

4 800 10 0.1061 0.1075 0.2554 0.9734

4 1600 10 0.0677 0.0665 0.1028 0.5542

4 800 20 0.1008 0.1046 0.2308 2.7805

4 1600 20 0.0655 0.0660 0.0947 1.834

4.2.2 Continuous W, linear treatment effect

When the treatment variable W is continuous, many methods designed for binary treatments,

such as the X-learner [96] cannot be used. However, many important real-word examples fall

within this framework. As an example, we might be interested in how the amount of medicine

W affects some biological parameter of interest Y (conditionally on X). When W affects Y

linearly conditionally on X, one can still use the Causal Forest (CF) [4, 181] method, which

makes the splits based on the slope of the conditional linear fit Y „ W. Due to its generality

and versatility, DRF can trivially be used in such setting as well.

To illustrate this, we consider the Model 3, as described in the previous section, which is

also taken from [4], but where we change the distribution of the binary treatment variable so

that it is continuous and it has a normal distribution with the same mean and variance, which
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Figure 13: Estimates of the CATE for DRF (left), Causal Forest (middle), and X-learner (right) plotted against the
true cate on the x-axis for Model 3 with n “ 1600, p “ 20.

depend on X. In this model W affects Y linearly, which is a crucial assumption for the CF

approach to work. We take n “ 10000 and p “ 10. The concept of CATE does not exist in this

form in such setup and therefore we consider how the forest obtained by each method estimates

both the intercept and the slope of the fit Y „ W, conditionally on X. The results can be seen

in Figure 14. We see that the estimate of the slope for DRF is slightly worse than for the CF,

whose forest construction is specially designed for estimating the conditional slope. However,

DRF estimates the intercept significantly better than the CF, especially in combination the local

centering approach, which uses the centered data Y ´ pYpXq and W ´ pWpXq instead. In this

example the slope depends only on X2, whereas the intercept depends on both X1 and X2. Since

CF targets only the slope for forest construction, it will split mostly on X2 and not on X1, which

leads to poor estimate of the intercept term. On the other hand, DRF splits both on X1 and X2,

depending on the size of their effect on the joint distribution of pW,Yq. For many applications,

especially in causality (see also the example in next section), it is essential to know the whole

conditional distribution PpY | W,Xq so the DRF approach might be more beneficial than the CF.

4.2.3 Nonlinear treatment effect

There are very few methods that can estimate the treatment effect when the treatment variable

W is continuous and affects Y nonlinearly, as it is commonly the case in real world settings.

Here we demonstrate that DRF can be easily used in such setup as well, as opposed to the CF,

which assumes a linear, though heterogeneous, treatment effect of W on Y . We further show

how the obtained regression fits Y „ W conditional on X can be used to estimate the causal

effect ErY | dopW “ wqs, as it is done in the main paper in the birth data example:

ErY | dopW “ wqs “

ż

ErY | W “ w,X “ xsPpX “ xqdx.

We compare the performance of DRF with the straightforward and commonly used approach,

where we first regress Y on pW,Xq and use this regression fit which estimates ErY | W “ w,X “

xs together with the above formula to estimate the causal effect.
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Figure 14: The estimates of the intercept (top row) and the slope (bottom row) for the linear fit conditional on X,
against the true values on the x-axis, obtained for the plain DRF (left), DRF with local centering as in [4] (middle)
and CF (right), which uses the local centering approach. The data is generated from Model 3 described in the
previous section, with continuous treatment variable W with the same mean and variance conditionally on X.

4.2.3.1 Data We consider the following example, similar to the previous examples:

X „ Up0, 1q
p, W | X „

1
2

|1 ` 4X3 ` Np0, 1q| ,

Y | X,W „ 3
ˆ

X3 ´
1
2

˙

` 3X1 sinp3Wq ` X2Np0, 1q.

Therefore, W affects Y highly nonlinearly through a sine function. X3 is a confounding

variable that affects the marginal distributions of Y and W. X2 regulates the error level for Y ,

whereas X1 makes the treatment effect heterogeneous. This is illustrated in the following plot:

4.2.3.2 Results In Figure 16 we can see the estimated joint distribution of pY,Wq condition-

ally on X “ x, where the values of X1 and X3 vary, while the rest are fixed (even though X2

also affects the conditional distribution, the effect is much weaker than for X1 of X3, see Figure

16). We see that the estimated distribution matches the true regression line, denoted in red, very

well. The estimated distribution induced by the DRF weights enables us to fit some specialised

regression method for regressing Y on W for every fixed value of X. The blue line indicates the

fit obtained by using smoothing splines. Compared to the green line, which shows the predicted

values for regression Y „ pW,Xq, it is nicer looking and also is able to extrapolate much better

to values of W which have low probability conditionally on X.

This extrapolation is crucial for causal applications, since for computing ErY | dopW “ wqs

we are interested in what would happen with Y when our treatment variable W is fixed to be

w, regardless of which values are achieved by X. However, it can easily happen that for this

specific combination of X and W there are very few observed data points, which makes the
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estimation hard [133]. In this example, W tends to be small for small values of X3 and vice-

versa and thus is hard to say what would happen with Y when X3 is large and W is set to a small

value by an outside intervention.

In Figure 17, we indeed see that the estimates of the causal effect ErY | dopW “ wqs by DRF

are much better. One can still see that the error increases for the border values of W, which have

small probability for some values of X, since the estimation there is much harder, but this error

is much less pronounced for DRF than for the standard regression approach.
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Figure 15: Visualization how X1, X2, X3 affect the conditional nonlinear regression fit Y „ W. X1 changes the
effect size, X2 changes the noise level, whereas X3 is a confounding variable which affects the means of W and Y .

Figure 16: For a grid of values for the test point x, the scatterplot illustrates the estimated joint distribution pY,Wq

by DRF. The subsequent regression fit using smoothing splines is denoted in blue, whereas the true conditional
mean ErY | W “ w,X “ xs is denoted with red dashed line. Green line shows the estimate of the conditional mean
ErY | W “ w,X “ xs with plain random forest.
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Figure 17: The estimated causal effect ErY | dopW “ wqs with DRF (blue) and with conventional method which
regresses Y on pW,Xq using plain Random Forest (green). The true value is denoted by a red dashed line.
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pletely atÂ random for incomplete multivariate data. Psychometrika, 75(4):649–674, Dec 2010.

[79] Mortaza Jamshidian, Siavash Jalal, and Camden Jansen. MissMech: An R package for testing

homoscedasticity, multivariate normality, and missing completely at random (mcar). Journal of

Statistical Software, 56(6):1–31, 2014.

[80] Jiantao Jiao, Yanjun Han, and Tsachy Weissman. Minimax estimation of the L1 distance. In

2016 IEEE International Symposium on Information Theory (ISIT), pages 750–754, July 2016.
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