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A B S T R A C T

The widespread earthquake damage to the built environment induces severe short- and long-term societal
consequences. Better community resilience may be achieved through well-organized recovery. Decisions to
organize the recovery process are taken under intense time pressure using limited, and potentially inaccurate,
data on the severity and the spatial distribution of building damage. We propose to use Gaussian Process
inference models to fuse the available inspection data with a pre-existing earthquake risk model to dynamically
update regional post-earthquake damage estimates and thereby support a well-organized recovery. The
proposed method consistently aggregates the gradually incoming building damage inspection data to reduce
the uncertainty in ground shaking intensity geographic distribution and to update regional building damage
estimates. The performance of the proposed Gaussian Process methodology is demonstrated on one fictitious
earthquake scenario and two real earthquake damage datasets. A comparison with purely data-driven methods
shows that the proposed method reduces the number of building inspections required to provide reliable and
precise damage predictions.
1. Introduction

Damaging earthquakes carry the potential of catastrophic conse-
quences. In addition to direct financial losses, injuries, and fatalities
caused by damages to the built environment and short-term disruption
in societal functions, earthquakes may give rise to negative long-term
consequences, such as increases in home purchase prices and scarcity
of low-cost rentals [1]. Housing is an essential infrastructure system,
one that provides shelter for its inhabitants, enables higher societal
functions and, as shown by the Covid-19 pandemic, provides a safe
place to work remotely. The severity and duration of disruptions to
such an infrastructure system are not only affected by the seismic
resistance of buildings, but also by the efficiency and speed of public
and private stakeholder response. Reliable information on the regional
severity of damage plays a central role in organizing the emergency
response and recovery efforts [2]. However, such information is scarce,
incomplete, and imprecise in the early aftermath of an earthquake.
Simultaneously, under intense time pressure, stakeholders and agencies
need to take crucial decisions that affect immediate disaster assistance
as well as the long-term recovery. Currently, visual post-earthquake
inspections are conducted in the affected region to enable safe building
re-occupancy [3,4]. However, visual inspection of all buildings within
the affected region is time- and resource-intensive and may take several
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weeks [5,6]. Therefore, decision makers rely on damage estimates
deduced from incomplete and uncertain data.

Earthquake risk models may provide initial, quantitative, and spa-
tially exhaustive damage estimates. Such risk models aim to quan-
tify the probability of earthquake-induced consequences on the built
environment within a region and, in a broader sense, on its users
and inhabitants. While this study focuses on their use for rapid post-
earthquake damage estimation [7], risk models are also widely em-
ployed in pre-event seismic risk analyses [8,9]. Risk models require
information on the exposed buildings, in particular on their seismic
vulnerability, together with estimates of the spatial distribution of
ground motion intensity. In post-event applications, the latter can
be constrained using ground motion recordings [10]. The precision
and accuracy of the resulting damage estimates depends, amongst
other, on the density of the seismic network, the level of detail of
the available exposure information and, finally, how well the seismic
vulnerability estimates reflect local conditions of the built inventory.
While model-based damage estimates are particularly helpful in the
immediate aftermath of an earthquake, when damage observations are
not available yet, the inherent multiple sources of uncertainty underline
the need for a methodological framework to confirm or correct early
damage estimates using empirical evidence, once available.
vailable online 26 February 2023
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Expert-conducted building inspection in the aftermath of an earth-
quake guarantees a continuous, yet slow, data inflow. Such inspections
qualify the induced damage to individual buildings and, as a byproduct,
provide important building information that is typically missing in an
exposure database (e.g., on the actual lateral load-resisting system).
Given this data inflow, machine-learning and statistical inference tools
may be leveraged to estimate damage sustained by buildings that have
not been inspected yet. Kovačević et al. [11] have applied random
forests (RFs) to predict the damage state for individual buildings due
to the 2010 Kraljevo (Serbia) earthquake. Stojadinovic et al. [12] have
extended the use of RFs and formulated an operational methodology
for rapid regional repair cost estimation that requires careful prior-
itization of inspections. Using inspection data from the 2015 Nepal
earthquake, Loos et al. [13] employed geo-statistical techniques to
predict the mean damage state aggregated to equally spaced grid
cells. However, the proposed method only applies to continuous data,
requiring aggregation and averaging of categorical inspection results
over grid cells, potentially leading to information loss and constraining
the inspection process, because all buildings in a grid cell have to be
inspected. Sheibani and Ou [14,15] explored Gaussian Process (GP)
models by focusing on continuous quantities that either require sensors
within buildings, such as peak floor acceleration, or become available
much later in the recovery process (such as repair costs).

We propose to use GP models to fuse the available inspection data
with a pre-existing earthquake risk model in order to dynamically
update regional post-earthquake damage estimates. The proposed risk
model informed GP (RMGP) framework allows processing of observed
damage, in the form of multiple ordinal categories (i.e., damage states),
to reduce the uncertainty of the geographical distribution of the ground
shaking intensity, and to simultaneously update the regional building
damage estimates. Thus, instead of learning a new, entirely data-driven,
model after the event, individual risk model components are updated.
This allows for increasingly constrained predictions of building dam-
age that can be consistently aggregated at different spatial scales.
The present work is based on theoretical studies of (approximate)
Bayesian updating schemes for infrastructure systems focusing on the
failure probability of individual components [16,17] and overall system
performance [18–20].

The structure of this paper is: First, we present the mathematical
background of GP models in a general context (Section 2), followed
by an introduction to earthquake risk models in Section 3. Then,
Section 4 describes the risk model inference and updating process using
post-earthquake visual damage inspection data of the proposed RMGP
framework. Finally, in Section 5, the RMGP framework is applied to the
real data from the 1998 Pollino (Italy) and the 2010 Kraljevo (Serbia)
earthquakes, as well as to the simulated data for a fictitious event in
Zurich (Switzerland).

2. Statistical learning with Gaussian process models

A GP model is a versatile tool to regress and classify data under
the Bayesian paradigm [21,22]. GP models assume a directional depen-
dency between a 𝑑-dimensional input vector (covariate) 𝐱 from some
omain  and the corresponding observable scalar output (response) 𝑦.
ssuming this dependency is separable into a systematic and a random
omponent, the systematic dependency is given by a latent function
∶  → R, such that the likelihood of the output takes the form

(𝑦|𝑓 (𝐱),𝝑), where 𝝑 denotes additional parameters of the likelihood.
he objective of GP regression and classification is a probabilistic
rediction of outputs 𝑦∗ at the desired target inputs 𝐱∗, via inferring
nowledge about the function 𝑓 from training data and prior beliefs.

Consider a training set of empirical pairwise observations  =
{(𝐱𝑖, 𝑦𝑖)|𝑖 = 1,… , 𝑚}, where the vector 𝐲 = [𝑦1,… , 𝑦𝑚]⊤ and the matrix
𝐗 = [𝐱1,… , 𝐱𝑚]⊤ collect the outputs and inputs, respectively. Besides
the training data, GP inference about 𝑓 also involves formalizing the
prior belief about the latent function. Instead of assuming a fixed
2

parametric form of 𝑓 with a finite number of parameters 𝝍 and making
nference about 𝝍 only,1 a GP serves as a prior on the latent function

∼ 
(

𝑚(𝐱,𝜽𝑚), 𝑘(𝐱, 𝐱′,𝜽𝑘)
)

, (1)

where 𝑚(⋅) and 𝑘(⋅) denote the mean and positive definite covariance
unction with parameters 𝜽𝑚 and 𝜽𝑘, respectively. While we present
ean and covariance functions for regional earthquake risk modeling in

ection 3, the reader is referred to [21] for a comprehensive discussion.
A GP is a collection of random variables, any finite subset of which

ollows a joint multivariate normal distribution. A GP prior on 𝑓 means
hat each input vector 𝐱 ∈  has an associated random variable 𝑓 (𝐱),
nd that the prior joint distribution 𝑝(𝐟 |𝐗,𝜽) for a collection of function
alues 𝐟 = [𝑓 (𝐱1),… , 𝑓 (𝐱𝑛)]⊤ associated with an arbitrary set of 𝑛 inputs
s multivariate normal. The mean vector 𝐦 ∈ R𝑛×1 of this distribution
as entries [𝐦]𝑖 = 𝑚(𝐱𝑖,𝜽𝑚) and the covariance matrix 𝐊 ∈ R𝑛×𝑛 has
ntries [𝐊]𝑖𝑗 = 𝑘(𝐱𝑖, 𝐱𝑗 ,𝜽𝑘).

For the inference process, the posterior distribution of the function
alues 𝐟 is computed through Bayes’ rule and under the assumption of
factorizing likelihood:

(𝐟 |,𝜽,𝝑) = 𝑝(𝐲|𝐟 ,𝝑)𝑝(𝐟 |𝐗,𝜽)
𝑝(|𝜽,𝝑)

=
𝑝(𝐟 |𝐗,𝜽)
𝑝(|𝜽,𝝑)

𝑚
∏

𝑖=1
𝑝(𝑦𝑖|𝑓 (𝐱𝑖),𝝑) , (2)

here 𝑝(|𝜽,𝝑) = ∫ 𝑝(𝐲|𝐟 ,𝝑)𝑝(𝐟 |𝜽)d𝐟 is the marginal likelihood or model
vidence. Then, the posterior predictive distribution of function values
∗ at desired target inputs 𝐗∗ is derived by marginalizing the function
ariables over the available training inputs:

(𝐟∗|,𝜽,𝝑) = ∫ 𝑝(𝐟∗|𝐟 ,𝜽)𝑝(𝐟 |,𝜽,𝝑)d𝐟 . (3)

The probabilistic predictions of the target outputs are derived by
aking the expectation 𝑝(𝐲∗|,𝜽,𝝑) = ∫ 𝑝(𝐲∗|𝐟∗,𝝑)𝑝(𝐟∗|,𝜽,𝝑)d𝐟∗. The
nalytical tractability of posterior distributions depends on the type of
he output quantity of interest and assumptions about the likelihood
(𝑦|𝑓 (𝐱),𝝑). The following Section 2.1 serves as an introductory ex-
mple where we use a Gaussian likelihood. Section 2.2 specifies the
on-Gaussian likelihoods required for categorical data.

.1. Introductory example: Gaussian likelihood

For continuous outputs 𝑦 ∈ R and under the assumption of indepen-
ent normally distributed noise, we can assume a Gaussian likelihood
(𝑦|𝑓 (𝐱),𝝑) =  (𝑓 (𝐱), 𝜎0). The noise variance 𝜎20 is thus an additional
arameter of the likelihood 𝝑 = 𝜎20 . Bayesian inference of the latent
unction 𝑓 in this model is analytically tractable, while the posterior
rocess 𝑓 | is again a GP. Thus, the posterior of the function values at
he input points of the training set 𝐗, 𝑝(𝐟 |), as well as the posterior
redictive distribution for an arbitrary set of target inputs 𝐗∗, 𝑝(𝐟∗|),
ollow multivariate normal distributions. By evaluating the covariance
atrix between target and training inputs, 𝐊∗, and between the target

nputs themselves, 𝐊∗∗, we can compute the mean and covariance of
he posterior predictive as:

𝝁∗ = 𝐦∗ +𝐊∗(𝐊 + 𝜎20𝐈)
−1(𝐲 −𝐦) (4a)

∗∗ = 𝐊∗∗ −𝐊∗(𝐊 + 𝜎20𝐈)
−1𝐊⊤

∗ , (4b)

here 𝐈 is the identity matrix with the same dimensions as 𝐊.
To illustrate GP regression, we use a one-dimensional toy example,

here the prior GP is specified using the popular squared exponential
ovariance function defined as 𝑘(𝐱, 𝐱′,𝜽𝑘) = 𝜎2exp(− ∥ 𝐱 − 𝐱′ ∥22 ∕2𝓁2).
ere 𝜎2 is the variance, 𝓁 the length scale, and ∥ ⋅ ∥2 is a Euclidean
istance measure. A zero mean function (𝑚(𝐱) = 0) is chosen, limiting
he hyper-parameters of the prior GP to 𝜽 = (𝜎2,𝓁).

1 An example is the linear model 𝑓 (𝐱,𝝍) = 𝐱⊤𝝍 , where prior uncertainty
about 𝑓 is usually expressed in terms of a prior distribution on 𝝍 .
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Fig. 1. GP regression with independent normal noise. The input data , indicated using dots, was generated from the function shown as a solid line with additive normal noise.
The top row of plots shows the posterior of the latent functions, where the shaded area shows the density 𝑝(𝑓 |,𝜽,𝝑) and the dashed lines indicate the corresponding mean. The
bottom row of plots shows the posterior in the output space 𝑝(𝑦|,𝜽,𝝑). In the left column the parameters 𝜃 and 𝜗 are fixed, whereas in the right column the parameters are
estimated as their MAP values.
The dataset  consists of 𝑛 = 40 datapoints, at which 𝑦 is sampled
from the function sin(0.5𝑥)+0.5cos(0.2𝑥) polluted with a white noise 𝜖 ∼
 (0,

√

0.1). Input positions 𝑥 are uniformly sampled in two intervals.
A first model mimics the situation where the hyper-parameters are
fixed to 1, 7 and 0.15 for the GP variance 𝜎2, length scale 𝓁, and
noise variance 𝜎20 , respectively. Fig. 1a shows the posterior predictive
distribution over the input space 𝑥∗ ∈ [−20, 20]. Especially in regions
far from available data points, the resulting posterior function gives a
poor fit to the generating function, represented by the solid line. Fig. 1c
plots the posterior predictive in the output space 𝑝(𝐲∗|,𝜽,𝝑), with the
mean function identical to Fig. 1a above, but with the variance being
increased by the noise 𝜎20 .

The choice of appropriate hyper-parameters 𝜽 and 𝝑 prior to the
inference process is challenging, especially in situations with limited
prior domain knowledge. In a full Bayesian setting, hyper-prior dis-
tributions 𝑝(𝜽) and 𝑝(𝝑) are assigned and the joint posterior of the
latent function and the hyper-parameters are updated simultaneously.
This approach is analytically intractable and thus, requires an approxi-
mation via sampling, such as Markov-chain Monte Carlo. We use the
maximum a-posteriori (MAP) estimates of the hyper-parameters, for
example, the mode of their posterior distributions 𝑝(𝜽,𝝑|), via solving
an optimization problem

(�̂�, �̂�) = argmax
𝜽,𝝑

log 𝑝(|𝜽,𝝑) + log 𝑝(𝜽) + log 𝑝(𝝑) , (5)

which is analytically tractable for a Gaussian likelihood, and factorizing
hyper-prior distributions. In this example we chose log-normal hyper-
priors, with the median values identical to the initial values above, and
the standard deviations set to 0.8 for 𝓁 and 𝜎2 and to 0.2 for 𝜎20 . The
posterior function derived using the MAP-estimated hyper-parameters
provides a better fit (see Fig. 1b and d), obtained through the reduction
of 𝓁 from 7 to 3. The smaller length scale reduces the overconfidence
in regions away from known data points.

GP regression is also widely applied in the geo-statistics field, where
it is known as kriging [23] and focuses on two-dimensional input
spaces. The method for post-earthquake damage mapping proposed
by Loos et al. [13], first uses the non-spatial inputs in least-squares
regression to remove a linear trend in the data and secondly uses the
geo-coordinates to update GP models with the remaining residuals. The
method proposed by Sheibani and Ou [14] also relies on GP regression
but applies it to the entire input space and not only on the geo-
coordinates. Both methods rely on a Gaussian likelihood which hinders
their application to categorical data, such as the damage states assigned
during post-earthquake inspections.
3

2.2. Non-Gaussian likelihoods for categorical data

The next two paragraphs contain commonly used likelihoods for
ordered categorical output data (ordinal GP regression) and nominal
categorical outputs (multi-class GP classification). Those are of special
interest for earthquake risk models, because they describe discrete
building damage categories and typological building classes (see Sec-
tion 3). Finally, a method for approximate Bayesian inference in these
non-conjugate cases is presented.

Ordinal GP regression. Ordinal data is defined by scalar outputs 𝑦𝑖 being
elements of a finite set  of 𝑐+1 ordered categories, which are denoted
as integers, 𝑦𝑖 ∈  = {0, 1,… , 𝑐}, with preserved ascending ordering
information. According to Chu and Ghahramani [24], GP regression
can be rewritten for such ordinal data by employing 𝑐 parameters
𝜂1 < ⋯ < 𝜂𝑐 to define the class membership probabilities of label 𝑦𝑖
conditional on (latent) function value 𝑓𝑖 = 𝑓 (𝐱𝑖):

𝑝(𝑦𝑖|𝑓𝑖,𝝑) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 −𝛷
[(

𝑓𝑖 − 𝜂𝑦𝑖+1
)

∕𝛽
]

, if 𝑦𝑖 = 0

𝛷
[(

𝑓𝑖 − 𝜂𝑦𝑖
)

∕𝛽
]

, if 𝑦𝑖 = 𝑐

𝛷
[(

𝑓𝑖 − 𝜂𝑦𝑖
)

∕𝛽
]

−𝛷
[(

𝑓𝑖 − 𝜂𝑦𝑖+1
)

∕𝛽
]

, otherwise

(6)

where 𝛷(⋅) is the standard normal cumulative distribution function. The
threshold parameters, 𝜼 = (𝜂1,… , 𝜂𝑐 ), partition the real line into con-
tiguous intervals, mapping the continuous function 𝑓𝑖 into the discrete
variable 𝑦𝑖. The dispersion of these threshold parameters is denoted as
𝛽. The parameters of the likelihood function thus become 𝝑 = (𝜼, 𝛽).

Multi-class GP classification. Nominal categorical data, similar to ordi-
nal data, is discrete and finite with possible class outputs 𝑦𝑖 ∈  =
{0, 1,… , 𝑐}, where 𝑐 is the number of classes. Unlike ordinal labels,
nominal class labels do not provide any ranking information and,
instead of having one function 𝑓 as is the case for ordinal data, we
have 𝑐 independent latent functions, i.e. one for each class. The function
values evaluated at data point 𝐱𝑖 are denoted as 𝐠𝑖 = (𝑔0𝑖 ,… , 𝑔𝑐𝑖 ),
where we denote functions as 𝑔 to avoid confusion with preceding
sections. The conditional class membership probabilities of label 𝑦𝑖 are
calculated using the softmax function [21]:

𝑝(𝑦𝑖|𝐠𝑖) =
exp𝑔𝑦𝑖𝑖

∑𝑐
𝑘=1 exp𝑔𝑘𝑖

. (7)

If for class 𝑘 we write 𝐠𝑘 = (𝑔𝑘1 ,… , 𝑔𝑘𝑛 ), then 𝑝(𝐠𝑘|𝐗) follows a multi-
variate normal distribution. Furthermore, because the 𝑐 latent functions
are independent, so is 𝑝(𝐠|𝐗), where 𝐠 = (𝐠1,… , 𝐠𝑐 ). In this case, the
likelihood function has no specific parameters 𝝑 = ∅.
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Variational Gaussian approximation. Because of the non-Gaussian likeli-
hoods defined in Eq. (6) and Eq. (7), the posterior distribution defined
in Eq. (2), is not analytically tractable and we use the variational
Gaussian approximation scheme [25] for inference. The posterior is
approximated with a multivariate normal distribution 𝑞(𝐟 ) that is close
to the true posterior 𝑞(𝐟 ) =  (𝝁,𝜮) ≈ 𝑝(𝐟 |,𝜽,𝝑). Specifically, we
search for parameters 𝝁 and 𝜮 that minimize the Kullback–Leibler
(KL) divergence between the variational distribution 𝑞(𝐟 ) and the true
posterior. We can write this KL divergence as

KL (𝑞(𝐟 ) ∥ 𝑝(𝐟 |,𝜽,𝝑)) = log 𝑝(|𝜽,𝝑) + vfe(𝑞,𝜽,𝝑) , (8)

where vfe(⋅) denotes the variational free energy. Because of the non-
Gaussian likelihood, the evidence 𝑝(|𝜽,𝝑) is not analytically tractable.
However, the evidence being a constant term, minimizing Eq. (8) is
equivalent to minimizing the variational free energy. The latter is
expressed as

vfe(𝑞,𝜽,𝝑) = KL (𝑞(𝐟 ) ∥ 𝑝(𝐟 |𝜽)) −
𝑛
∑

𝑖=1

[

∫ log(𝑝(𝑦𝑖|𝑓𝑖,𝝑))𝑞(𝑓𝑖)𝑑𝑓𝑖
]

. (9)

The first term in Eq. (9) is the KL-divergence between two multi-
variate normal distributions, the variational distribution and the prior
of 𝑓 , and is analytically tractable. The one-dimensional integrals in the
second term, also called the expected log likelihood of the data with
respect to 𝑞(𝐟 ), can, for example, be approximated using Gauss–Hermite
quadrature. In order to keep the variational free energy small, a model
should provide a good explanation of the data (via large values for
the second term) while not deviating too far from the prior (keeping
the first term small). Negative variational free energy is also called the
evidence lower bound (ELBO), because it provides a lower bound to
the log of evidence. This follows from Eq. (8) and the KL-divergence
measure being positive. Therefore, vfe(⋅) is used to learn the param-
eters of the variational distribution 𝝁 and 𝜮, while it simultaneously
provides approximate MAP estimates for the hyper-parameters 𝜽 and
𝝑, using the following objective function:

(�̂�, �̂�, �̂�, �̂�) = argmax
𝝁,𝜮,𝜽,𝝑

− vfe(𝑞,𝜽,𝝑) + log 𝑝(𝜽) + log 𝑝(𝝑) . (10)

The application of this objective function to derive MAP estimates
for the parameters 𝝑 of the ordinal likelihood requires a two-fold re-
parameterization: First, to enable a parallel estimation of the threshold
parameters and their dispersion, we perform an up-front scaling �̃� =
𝜼∕𝛽. Second, to fix the order of the threshold parameters, positive
parameters 𝛥𝑦 = �̃�𝑦 − �̃�𝑦−1 are introduced for categories 𝑦 > 0. Thus,
a MAP estimation is performed for parameters 𝝑 = {𝛽, �̃�0, 𝛥1,… , 𝛥𝑐}.

Because the approximated posterior distribution, 𝑞(𝐟 ), is multivari-
ate normal, the approximate posterior predictive 𝑞(𝐟∗|�̂�) = ∫ 𝑝(𝐟∗|𝐟 ,
�̂�)𝑞(𝐟 )d𝐟 is also multivariate normal. Consequently, we can evaluate its
parameters as

𝝁∗ = 𝐦∗ + 𝐀𝝁 (11a)

𝜮∗∗ = 𝐀𝜮𝐀⊤ + 𝐁 , (11b)

where 𝐀 = 𝐊∗𝐊−1 and 𝐁 = 𝐊∗∗ − 𝐊∗𝐊−1𝐊⊤
∗ . In the following section

we link the outlined GP theory to regional earthquake risk models
and introduce appropriate mean and covariance functions of the GPs
described above.

3. Regional earthquake risk models

Regional risk models, when employed in a post-earthquake context,
provide rapid, yet uncertain, damage predictions at regional scale. The
geographical distribution of shaking intensity measures (IMs) remains
uncertain despite seismic network station measurements. Detailed in-
formation about the buildings in the affected region is rarely available.
Thus, buildings in the region are clustered into predefined types per
their seismic vulnerability. Given the lack of data and knowledge, such
4

average vulnerability often represents buildings at a national, if not
continental, scale [26]. Finally, building type attribution models, or ex-
posure mapping models, correlate building types with socio-economic
indicators and building attributes from public databases, such as build-
ing height, value and year of construction [27,28], in order to overcome
the lack of building-specific information. Such typological attribution
models may have limited applicability in the region hit by an earth-
quake, further adding to the uncertainties arising from the shaking
intensity and vulnerability components.

In this study, we assume existence of public databases containing
the basic building-specific information. For a building, this information
is gathered in a 𝑑-dimensional vector 𝐱, whose individual entries are,
for example, the geographic coordinates, the construction year, and the
number of stories. Building damage is then modeled as a consequence
of ground motion intensity at its location, using vulnerability functions
expressing the probability of reaching a given damage category as a
function of the ground motion IM. We use typological attribution mod-
els to map individual buildings to pre-defined building vulnerability
types.

This study focuses on the physical damage to residential build-
ings, because most models of other earthquake consequences, such
as recovery time and repair costs, use building damage as the start-
ing point [29,30] and empirical observations of building damage are
the main building-specific data source to constrain estimates of other
impacts after an earthquake occurs.

3.1. Ground motion intensity measures

Predicting earthquake-induced damage to a spatially distributed
set of buildings in this study involves the following assumptions: (i)
Conditional on a specific scenario event, the logarithm of the ground
motion IM at dispersed building sites follow a multivariate normal
distribution; (ii) Conditional on IM, damage to individual buildings is
independent; (iii) The capacity of a building is given in terms of an
IM threshold at which the building transitions into the next damage
state; (iv) The capacities of all buildings in the region are expressed
with respect to the same ground motion IM.

Let 𝑖𝑚𝑖 denote the ground motion IM at location 𝐱𝑖. The character-
istics of the corresponding event are collected in vector 𝐞. To estimate
𝑖𝑚𝑖, we employ empirical and ergodic ground motion models (GMMs)
of the form

ln 𝑖𝑚𝑖 = 𝑚(𝐱𝑖, 𝐞,𝜽𝑚) + 𝛿W,𝑖 + 𝛿B , (12)

where 𝑚(⋅) denotes the GMM trend function with parameters 𝜽𝑚 that
predicts the median IM conditional on the magnitude, the style of
faulting, the source-to-site distance, and the local soil conditions. The
terms 𝛿W,𝑖 and 𝛿B denote the within-event and between-event residuals
that are both normally distributed with zero mean and variances 𝜎2W
and 𝜎2B, respectively. For a specific event, 𝛿B is identical for two sites 𝐱𝑖
and 𝐱𝑗 , whereas within-event residuals, 𝛿W,𝑖 and 𝛿W,𝑗 differ. Standard
GMMs provide the parameters of Eq. (12) based on mixed-effects
regression on ground motion recordings from historic earthquakes.

Past studies suggest that the within-event residuals are spatially
dependent, that their joint distribution is multivariate normal [31,32]
and that the spatial correlation, 𝜌, decreases exponentially with the
euclidean distance between two sites:

𝜌(𝐱𝑖, 𝐱𝑗 ,𝓁) = exp
⎛

⎜

⎜

⎝

− ∥ 𝐱(1∶2)𝑖 − 𝐱(1∶2)𝑗 ∥2
𝓁

⎞

⎟

⎟

⎠

, (13)

where 𝓁 denotes the length scale. The superscript (1 ∶ 2) indicates that
the correlation function acts on the geographical coordinates (i.e. East-
ing and Northing) of the input vectors, stored in dimensions one and
two.

All random variables in Eq. (12) are Gaussian and the correlation

function in Eq. (13) leads to positive definite covariances. Therefore,
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the random field of logarithmic IMs 𝑓 = ln 𝑖𝑚 follows a GP as de-
fined in Eq. (1). The mean GP function is the same as the trend
function of the GMM 𝑚(𝐱𝑖, 𝐞,𝜽𝑚), while the GP covariance function
is 𝑘(𝐱, 𝐱′,𝜽𝑘) = 𝜎2W𝜌(𝐱, 𝐱

′,𝓁) + 𝜎2B. For a finite set of buildings with
nputs 𝐗 and event characteristics 𝐞, the joint distribution 𝑝(𝐟 |𝐗, 𝐞,𝜽𝑓 )

is multivariate normal. The hyper-parameters 𝜽𝑓 of this GP model are
the GMM parameters (𝜽𝑚, 𝜎2W, 𝜎

2
B) and the length scale 𝓁 of the spatial

correlation model. The above formulation can be extended to cases
involving multiple IMs using separate GPs for each IM. The correlation
between the GPs can then be modeled using, for example, a linear
model of co-regionalization [33].

3.2. Building damage

We denote the damage state of building 𝑖 as a discrete random vari-
able 𝑌𝑖 with sequential, collectively exhaustive and mutually exclusive
categories 𝑦 ∈  = {0, 1,… , 𝑐𝑦}, where 𝑦 = 0 indicates no damage.
A building enters damage category 𝑦 > 0, if the ground motion IM at
the building location exceeds the corresponding capacity threshold. In
compliance with the state of the art, we assume these thresholds to be
log-normally distributed with location parameters 𝜂1 < 𝜂2 < ⋯ < 𝜂𝑐𝑦
and a common dispersion parameter 𝛽. Based on the logarithm of IM,
denoted as 𝑓𝑖, the probability of entering a damage state 𝑦 > 0 is
derived as

𝑃 (𝑌𝑖 ≥ 𝑦|𝑓𝑖,𝝑) = 𝛷
(𝑓𝑖 − 𝜂𝑦

𝛽

)

, (14)

here 𝝑 collects the parameters of the log-normal distributions. The
xpression in Eq. (14) is called a vulnerability function. Given the
imilarity to the likelihood employed in case of ordinal GP regres-
ion (Eq. (6)), inference using damage data from a small number of
nspected buildings can be performed.

Here we assume that 𝝑 have been derived for a finite set of vulner-
bility types  = {1, 2,… , 𝑐𝑏}, such as low-rise unreinforced masonry
URM) or mid-rise reinforced concrete (RC) shear wall buildings. Ide-
lly, the inputs 𝐱𝑖 would contain the type 𝑏𝑖 ∈  for each building. In re-
lity, however, this is rarely the case, because some building attributes
re uncertain, if not unknown, for large subsets of regional building
tocks. For example, acquiring input data on the lateral load resisting
ystem often requires detailed and time-consuming field surveys, as
escribed in the following.

.3. Typological attribution model

Typological attribution, in the present context, describes the process
f deriving unknown taxonomic attributes of buildings from known
nformation. The required attribute set depends on the building vul-
erability types ; yet, in our application, the input data 𝐱𝑖 for each
uilding 𝑖 contains the construction period or year, and the number
f floors or an approximate height indicator. The lateral load resisting
ystem (LLRS) is assumed unavailable, as in most real-world scenarios.

We model the randomness pertaining to the LLRS of building 𝑖
sing a discrete random variable 𝐴𝑖 with domain  = {1, 2,… , 𝑐𝑎}.
or example, 𝐴𝑖 = 1 indicates an URM building with flexible floors
nd 𝐴𝑖 = 2 indicates an URM building with stiff floors. A typological
ttribution model provides class membership probabilities for 𝐴𝑖 as a

function of known input data 𝐱𝑖. This makes it possible to generate type
samples 𝑎𝑖 for all buildings first, and then attribute a vulnerability type
𝑏 = ℎ(𝐱, 𝑎) using a deterministic function ℎ ∶  ∪  → , as well as
gather the corresponding parameters of the vulnerability function as
described above. As an example, the deterministic function ℎ(⋅) may
imply add the height class (i.e., low-rise) of a building, stored in 𝐱𝑖, to
he sampled unknown attribute combination 𝑎𝑖.

In the absence of region-specific data, a typology attribution model
ased on expert opinion presents the best alternative. Experts may
rovide insights into the proportions of building types in the region,
5

or instance, by specifying the evolution of the regional percentage of
C shear wall buildings. In Bodenmann et al. [34], latent functions
ccount for variability and correlations associated to the building at-
ribute combinations to incorporate typological information gathered
uring post-earthquake inspections. By analogy to the multi-class GP
lassification scheme (Section 2.2), we employ 𝑐𝑎 independent latent
unctions 𝐠 = [𝑔(1),… , 𝑔(𝑐𝑎)] and impose a GP prior on them. The

class membership probabilities conditional on these functions are given
by Eq. (7). The prior mean function 𝑢(⋅) is calibrated using heuristic
proportion estimates. For the covariance function, we combine multiple
squared-exponential covariance functions to capture spatially corre-
lated deviations over longer length scales, due to regional differences
in construction practices, 𝑣𝐿𝑆 , and short-scale correlated deviations for
classes of nearby buildings that share similar age and number of stories
𝑣𝑆𝑆 . The resulting covariance function is denoted as

(⋅) = 𝑣𝐿𝑆 + 𝑣𝑆𝑆,1 ⋅ 𝑣𝑆𝑆,2 ⋅ 𝑣𝑆𝑆,3 , (15)

here the individual functions of 𝑣𝑆𝑆 (⋅) measure similarity with respect
o the geo-coordinates, the number of floors and the construction year.
he multiplicative structure of the covariance function limits high
orrelation to buildings, for which all three individual functions are
ery similar.

.4. Risk model workflow

The damage to residential buildings 𝐗 resulting from a specified
arthquake scenario 𝐞 is estimated using the following framework: First,
e draw 𝑟 samples from the multivariate normal distributions 𝑝(𝐟 |𝐞,𝐗)

ground motion intensity) and 𝑝(𝐠|𝐗) (typological attribution). Then,
or each sample and for each building 𝑖, we first sample unknown at-
ributes 𝑎𝑖 from the categorical distribution 𝑝(𝐴𝑖|𝐠𝑖), with probabilities
iven by Eq. (7), and subsequently sample a damage state 𝑦𝑖 from the
ategorical distribution 𝑝(𝑌𝑖|𝑓𝑖, 𝑎𝑖), with probabilities given by Eq. (6).
inally, for each sample 𝑗, buildings with identical state of damage are
ounted and the values stored in a vector 𝐧𝑗 = {𝑛𝑦𝑗 |𝑦 ∈ }. Thus,
e obtain 𝑟 samples from 𝑝(𝐍|𝐞), which denotes the joint predictive
istribution of how the exposed buildings are partitioned amongst the
ifferent damage states. The marginal predictive distributions 𝑝(𝑁𝑦|𝐞)
f the entries of random vector 𝐍 denote the predicted number of
uildings in a certain damage state 𝑦.

. Model updating with post-earthquake data

In the immediate aftermath of an earthquake, it is imperative to
se the early-arriving ground motion intensity and building damage
ata as soon as possible to constrain the uncertainty of regional damage
stimates and to organize recovery. The following sections explain the
nference steps that use the ground motion intensity data measured by
eismic networks, and the building damage and typological data ob-
ained by inspection. Fig. 2 schematically illustrates the proposed risk
odel informed GP (RMGP) framework. The first damage estimates are

btained using a regional risk model, where estimates of ground motion
Ms are constrained by seismic recordings, analogous to the current
hake map systems. Then, data from the first inspected buildings is used
o further constrain the shake map and, in parallel, update the building
ulnerability function parameters as well as the typological attribution
odel. The Python implementation of the RMGP framework is publicly

vailable [35] and builds upon the software library GPFlow [36].
We use the subscripts  , and  to denote index sets related to

he seismic stations, the inspected buildings, and the target buildings
or which we aim to predict the damage category. In the immediate
ftermath of an event, the model predicts the damage to buildings with
ndices  = {1, 2,… , 𝑛}. Indices of buildings inspected after 𝑡 time steps
re denoted as 𝑡 ⊂  , while the indices of the remaining not (yet)
nspected buildings are denoted as  =  ∖ .
𝑡 𝑡
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Fig. 2. Schematic overview of the post-earthquake implementation of regional risk models and their GP dynamic updating using inspection data.
4.1. Seismic recordings

Ground motion intensity 𝑓 is constrained using seismic record-
ings [37]. We denote the dataset of recorded ground motion IMs from
a seismic network as  = {(𝐱𝑖, 𝑧𝑖)|𝑖 ∈ }, where 𝑧𝑖 are noise-free
measurements of the ground motion intensity (ln 𝑧𝑖 = 𝑓𝑖). In a first step,
we condition the distribution of the (constant) inter-event residual on
the seismic recordings by deriving its posterior distribution 𝑝(𝛿B| ) =
 (𝜉B, 𝜓B), where the parameters are calculated as

𝜓2
B =

(

1
𝜎2B

+
𝟏⊤𝐂−1

𝟏

𝜎2W

)−1

, (16a)

𝜉B =
𝜓2
B

𝜎2W

(

𝟏⊤𝐂−1
 (ln 𝐳 −𝐦 )

)

, (16b)

with 𝐂 denoting the correlation matrix of the within-event residuals
with entries [𝐂 ]𝑖𝑗 = 𝜌(𝐱𝑖, 𝐱𝑗 ,𝓁). Then we estimate the posterior pre-
dictive distribution of 𝑓 evaluated at the target inputs 𝐗 = {𝐱𝑖|𝑖 ∈  },
which is a multivariate normal distribution 𝑝(𝐟 | ) =  (𝝂 ,𝜳   ).
The mean vector 𝝂 and covariance matrix 𝜳   of the posterior
predictive distribution are then computed as

𝝂 = 𝐦 + 𝜉B + 𝐂 𝐂−1
 (𝐳 −𝐦 − 𝜉B) , (17a)

𝜳   = (𝜎2W + 𝜓2
B)

(

𝐂  − 𝐂 𝐂−1
𝐂

⊤
 

)

, (17b)

where matrices 𝐂  and 𝐂  denote the correlation matrices between
the target points and seismic stations and between the target points
themselves. To generate correlated realizations of damage states for the
target buildings 𝐗 , we follow the workflow described in Section 3.4,
where we sample from the posterior 𝑝(𝐟 | ) instead of the prior 𝑝(𝐟 ).
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4.2. Inspection data

During inspection of a certain building 𝑖 experts usually provide an
estimate of the inflicted damage 𝑦𝑖 via attributing a certain damage
category. Here we assume that those are consistent with the damage
state  employed in the fragility functions of the risk model 𝑦𝑖 ∈  .
Besides this damage description, experts are also asked to provide
some basic building attributes, e.g., the dominating material of the
lateral load-resisting system and its type. Again we assume that this
information allows attribution of a typological combination 𝑎𝑖 ∈ 
employed in the risk model. We denote the dataset from building
inspections conducted up to a given time step 𝑡 after the event as 𝑡 =
{(𝐱𝑖, 𝑦𝑖, 𝑎𝑖)|𝑖 ∈ 𝑡}, where we omit the subscript 𝑡 in the following for
better readability. This data is used to perform two separate inference
steps: First, we perform ordinal GP regression using the function 𝑓 ,
where we also account for the seismic recordings  . Second, we
perform multi-class GP classification using the functions 𝐠 related to
the unknown typological attributes.

In the first step, we use 𝑎𝑖 to allocate a certain fragility class
𝑏𝑖 = ℎ(𝐱𝑖, 𝑎𝑖) for each of the inspected buildings. Then we use the
data 𝑦𝑖 and the likelihood for ordinal data (see Eq. (6)) to perform
variational inference on 𝑓 . Specifically, we approximate the true pos-
terior 𝑝(𝐟 | , ) ∝ 𝑝(𝐲|𝐟 )𝑝(𝐟 | ) with a variational multivariate
normal distribution 𝑞(𝐟 ). Note that the posterior is conditioned on
both the inspection data  and seismic recordings  . To evaluate
the variational free energy in Eq. (9), we replace the prior 𝑝(𝐟 ) with
the posterior predictive 𝑝(𝐟 | ) from Section 4.1. As outlined in
Section 2.2, the objective function of this variational inference step
(given by Eq. (10)) allows for a simultaneous MAP estimation of the
model hyper-parameters. We exploit this capacity in order to update
the vulnerability functions. Specifically, we calculate MAP estimates of



Reliability Engineering and System Safety 234 (2023) 109201L. Bodenmann et al.
Table 1
Characteristics of the earthquake events and the considered regions in three case studies.

Zurich (simulated) Pollino (1998) Kraljevo (2010)

Magnitude Mw 5.8 5.6 5.5
Number of buildings 33594 20528 1959
Area size [km2] 97.1 931.1 25.4
Number of subregions 22 14 3
Fig. 3. Overview of the three case studies: (a) Simulated M5.8 scenario in the canton of Zurich (Switzerland), (b) Pollino (Italy) earthquake from 1998 and (c) Kraljevo (Serbia)
earthquake from 2010. The shaded areas delimit the sub-regions, the star indicates the epicenter location, and the triangles indicate available seismic network stations.
the damage threshold parameters �̂�𝑏 for all vulnerability types 𝑏 ∈ .
Given the limited amount of available building inspections in the early
aftermath of an earthquake, we keep the dispersion parameters (𝛽 in
Eq. (14)) and other hyper-parameters, such as the empirical GMM
parameters, fixed at the values specified in the risk model.

In a second step we perform approximate inference on the latent
functions 𝐠 using the data 𝑎𝑖 via standard variational inference as
described in Section 2.2. The true posterior 𝑝(𝐠 | ) is approximated
by a multivariate normal distribution 𝑞(𝐠 ). We keep the parameters of
the mean functions fixed to the initial expert-judgment based estimates
and perform MAP estimation for the variances and length scales of the
covariance function specified in Eq. (15).

To predict damage for a set of (still) un-inspected target buildings
𝐗 𝑡, we follow the procedure outlined in Section 3.4 with two ex-
ceptions: First, we sample from the (approximate) posterior predictive
distributions 𝑞(𝐟 ) and 𝑞(𝐠 ). The parameters of these multivariate
normal distributions are calculated using Eq. (11). To take into account
the seismic recordings in case of function 𝑓 , we use the mean vector 𝝂
and covariance matrices 𝜳   and 𝜳   to evaluate matrices 𝐀 and 𝐁 in
Eq. (11). Second, to sample damage categories we employ the updated
fragility functions 𝑝(𝑌 |𝑓, 𝑎,𝝑), using the inferred MAP-estimates of the
threshold parameters.

5. Application to three case-studies

The proposed RMGP framework is applied and evaluated in three
case studies, a simulated earthquake scenario in the Swiss Canton of
Zurich and two real-world case-studies, the 1998 Pollino (Italy) and
the 2010 Kraljevo (Serbia) earthquakes. Specifically, we seek to predict
the spatial pattern of earthquake damage as the number of buildings
assigned to be in a given damage state within sub-regions (i.e. zip-
codes or municipalities). Table 1 summarizes key characteristics of
the three examples, while Fig. 3 shows the epicenter locations, the
boundaries to the considered sub-regions, and the locations of available
seismic network stations. Whereas the earthquake events share similar
magnitudes, the case studies strongly differ in terms of the size of the
considered region, the number of exposed buildings, and the coverage
of the seismic network. The Zurich case represents a densely populated
region that is equipped with four seismic network stations. The Pollino
7

case study covers the largest area but has a relatively low building
density. Finally, the Kraljevo case study covers a small region with few
buildings and no seismic network stations.

Four states indicate the severity of earthquake damage to residential
buildings: none, slight, moderate, and extensive. These four damage
states are encoded as integers  = {0, 1, 2, 3}. We mimic a post-event
situation with first predictions provided in the immediate aftermath
(𝑡 = 0) using shake maps obtained following the process described
in Section 4.1, which are constrained using ground motion recordings
 . Subsequently, gradually increasing amounts of data from building
inspections 𝑡 enable dynamic updating the risk model components2

(see Section 4.2), and thereby lead to improved impact predictions in
subsequent time steps 𝑡 > 0. To assess the performance of the proposed
RMGP framework in each time step 𝑡 and for each subregion 𝑘, we
compare its predictions 𝐍𝑡𝑘 of the number of buildings in each damage
state to predictions obtained using two entirely data-driven methods
(presented in Section 5.2).

5.1. Data and models

The available building-specific input data 𝐗 consists of the geo-
graphical coordinates, the Eurocode 8 soil class [38], the construction
year (or period), and the number of stories (either exact or as a
range). The event characteristics 𝐞 consist of the earthquake (moment-)
magnitude, the coordinates of the epicenter and the style of faulting.

The historic inspection data of the Pollino and Kraljevo events do
not contain information regarding the inspection sequence. Therefore,
the inspection process is simulated in the same manner as for the Zurich
case study. Namely, at the beginning of each time step (inspection
day), an un-inspected building is randomly assigned to each inspection
team. Each inspection team then continues by additionally inspecting
four geographically closest (non-inspected) buildings to complete this
time step. While producing a spatial clustering of inspection data,
this procedure simplifies the time trajectory of the inspection process.

2 The inference process at each time step starts from the initial risk model
and shake map, and considers data from all buildings that were inspected until
this time step.
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Therefore, the results are presented as a function of the number of
inspected buildings rather than time elapsed since the event.

The supplementary material further describes the three case stud-
ies, and details the respective prior risk models, the inspection re-
sults, the building databases and, for the Pollino case study, the data
pre-processing steps.

5.1.1. Zurich
This case study examines damage to approximately 34000 residen-

tial buildings within the Canton of Zurich (Switzerland) inflicted by
a 𝑀𝑤 = 5.8 scenario earthquake (see Fig. 3). Building-specific infor-
mation 𝐗 is retrieved from the office for spatial development of the
Canton of Zurich (2020). The locations of the seismic network stations
𝐗 are fictitious and present a dense network. In addition, we take the
simplifying assumption of soil class B covering the entire region. The
risk model, assumed to be available before the scenario earthquake,
builds upon the GMM of Akkar and Bommer [40] and the spatial cor-
relation model of Esposito and Iervolino [41]. We employ vulnerability
functions that are defined for the peak ground acceleration (PGA) IM,
and specified for 12 vulnerability types.

The data-generating model is deliberately chosen to differ from the
above risk model in order to represent real conditions, in which models
never fully capture the real processes that govern regional damage
distributions. Four cross-correlated random fields of PGA and elastic,
5%-damped spectral acceleration at periods of 0.3, 0.6 and 1.0 s are
generated using the GMM of Chiou and Youngs [42]. The spatial cross-
correlation of the within-event residuals is accounted for using the
model of Markhvida et al. [43] and the cross-correlation of the inter-
event residuals follows the relations provided by Baker and Cornell
[44]. Finally, the vulnerability functions developed by Martins and
Silva [26] are used to simulate damage for each building.

While the available data on coordinates, construction year and
number of stories is deemed realistic, the vulnerability functions and
soil conditions are not. Therefore, neither the ‘true’ simulated results
nor the prior risk model predictions reflect the real earthquake risk
conditions in Zurich.

5.1.2. Pollino
On September 9, 1998, the Pollino region in Italy was struck by

a 𝑀𝑤 = 5.6 earthquake that caused widespread building damage.
This case study examines approximately 20000 residential buildings
spread over 14 subregions (see Fig. 3). The event characteristics and
the seismic recordings are taken from the Engineering Strong-Motion
database [45]. The main data source for this case study is the publicly
available building damage database Da.D.O. [46], containing inspec-
tion results for about 13000 residential buildings in the Pollino region.
This database provides the geographic coordinates, the construction
period (from pre-1919 to post-1981) and the number of stories. We
follow Dolce et al. [46], to transform the raw damage descriptions into
damage states.

The available data, however, does not cover the entire building
stock. The Italian National Institute of Statistics [47] census data from
2001 provides information on the number of residential buildings,
their construction period and their number of stories, at municipality
level. Based on this information, we augment the original database
with the missing buildings, for which spatial coordinates are generated
using the European Settlement Map [48]. The 2001 census data is the
temporarily closest to the 1998 event, yet, changes that occurred in
the three years may induce errors that are deemed small and thus,
acceptable. Finally, soil classes are attributed according to Forte et al.
[49]. Given the absence of documented damage, the buildings, which
are added to augment the database, are assumed to be undamaged. This
assumption, despite not reflecting small or undocumented damage, is
assumed reasonable.

The employed risk model builds on the GMM of Bindi et al. [50]
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and the spatial correlation model of Esposito and Iervolino [41]. In
accordance with the Italian risk model [9], buildings are first classified
according to their material: URM or RC. Rosti et al. [51,52] empirically
derived vulnerability functions for URM and RC buildings, which are
used in this case study.

5.1.3. Kraljevo
On November 3, 2010, an earthquake of 𝑀𝑤 = 5.4 struck the

region of Kraljevo (Serbia), claiming two fatalities and leading to
reported damage on about 16000 structures. This case study examines
damage to approximately 2000 single family residential buildings, for
which detailed information are publicly available [12]. We group these
2000 buildings artificially into three subregions (see Fig. 3). The event
characteristics are taken from the earthquake catalogue published by
the Seismological Survey of Serbia [53]. No seismic recordings from
stations sufficiently close to the Kraljevo region are available. The
risk model, builds on the GMM of Akkar and Bommer [40] and the
spatial correlation model of Esposito and Iervolino [41]. Due to the
lack of region-specific vulnerability functions, we attribute functions
from Martins and Silva [26], based on the building type descriptions
provided in Stojadinovic et al. [12].

5.2. Data-driven methods for comparative analysis

To assess the quality of the predictions obtained using the proposed
RMGP framework, two purely data-driven regression methods are used.
An ordered linear probit (OLP) model is selected as a simple base-
line, while a random forest (RF) model reflects a common approach
from literature studies [11,54]. The following building-specific features
are used for both approaches: geo-coordinates, epicentral distance,
construction year, number of stories, and soil class.

OLP regression is similar to the ordinal GP regression outlined in
Section 2.2, with the exception of the latent function 𝑓 not being
a GP but a linear combination of the features 𝐱⊤𝝍 . The form of
the likelihood is identical to Eq. (6) and the threshold parameters 𝜼,
together with the feature weights 𝝍 , are estimated by minimizing the
negative log-likelihood.

RF classifiers are ensembles of decision trees that are trained using
bootstrap samples of the data [55]. For each set of bootstrap samples,
a decision tree is grown by recursively partitioning the input space
until all terminal nodes contain a pre-defined minimum number of
samples. During training, a random subset of the 𝑑 input variables
is selected at each node and the best split is chosen as the split that
leads to the largest decrease in Gini-impurity [56]. For prediction, the
class membership probabilities are derived via averaging the proba-
bilities predicted by the individual trees. The number of trees in the
forest, the minimal required number of samples in a node, and the
size of the feature subset to split the nodes are hyperparameters of
this model. We fixed the number of trees in the forest to 1000 and
perform a grid-search amongst the pre-specified values of the other two
hyper-parameters, keeping the combination that returns the highest
out-of-bag performance.

5.3. Results

Probabilistic predictions 𝑝(𝐍𝑘) of the distribution of damage states
𝑦 ∈  of the buildings in subregion 𝑘 are the principal metric to
compare the proposed RMGP framework to the purely data-driven
models. We introduce two error metrics: (i) the marginal prediction
error (MPE) that measures the performance in terms of predicting the
number of buildings in any damage state; and (ii) the joint prediction
error (JPE) that measures performance jointly over all damage states.

The predictive multivariate distribution 𝑝(𝐍𝑘) is approximated via
𝑟 Monte-Carlo samples 𝐧𝑘𝑟, as described in Section 3.4. The vector �̌�𝑘
denotes for a subregion 𝑘 the ‘true’ number of buildings in each damage
state. We employ the continuous ranked probability score (CRPS) as

the error metric to quantify the MPE. The CRPS metric is often used to
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Fig. 4. Zurich case study: Evolution of the predicted number of moderately damaged buildings (𝑦 = 2) in the indicated subregion with increasing amounts of inspection data.
Predictions made with the proposed RMGP framework (blue) and an entirely data-driven random forest (RF, orange) model are compared with the ‘true’ value. The numerical
values indicate the marginal prediction error (MPE).
Table 2
Marginal and joint prediction error for damage state counts without inspection data (𝑡 = 0) and using data gathered in three
inspection time steps for the subregion indicated in Fig. 4.

RMGP RF

𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 1 𝑡 = 2 𝑡 = 3

Marginal Prediction Errora MPE𝑘𝑦 𝑦 = 0 118 65 22 26 36 87 27
𝑦 = 1 363 15 9 26 58 36 61
𝑦 = 2 97 44 15 14 83 115 83
𝑦 = 3 14 4 8 4 23 21 16

Joint Prediction Error JPE𝑘 365 80 31 41 113 149 107

aThe true damage state counts in this subregion are [519, 676, 245, 31] for damage states 𝑦 ∈ [0, 1, 2, 3].
compare the performance of probabilistic forecasts, for instance from
weather forecasting systems [57–59]. Thus, for the amount of buildings
in any subregion 𝑘 being in damage state 𝑦, the MPE for predictive
distribution 𝑝(𝑁𝑘𝑦) with respect to the true value �̌�𝑘𝑦 is approximated
via 𝑟 samples as

MPE𝑘𝑦=̂CRPS(𝑝(𝑁𝑘𝑦); �̌�𝑘𝑦)

≈ 1
𝑟

𝑟
∑

𝑗=1

(

∥ 𝑛𝑘𝑦𝑗 − �̌�𝑘𝑦 ∥2 −
1
2𝑟

𝑟
∑

𝑖=1
∥ 𝑛𝑘𝑦𝑗 − 𝑛𝑘𝑦𝑖 ∥2

)

. (18)

The first term of the MPE formulation measures the bias - or lack
of accuracy - of the predictions, while the second term of the MPE
accounts for the dispersion - or lack of precision. For deterministic pre-
dictions, the MPE simplifies to the absolute error metric, which renders
the interpretation of the MPE more intuitive. Also, using the definition
of Eq. (18), the MPE is given in the same units than the predicted
quantity, which is, in this case, the number of buildings. Finally, the
CRPS can be readily extended to the multivariate case. The energy
score (ES) is used to quantify the JPE. The ES generalizes the CRPS
towards multivariate predictions. The ES is calculated in a similar way
to Eq. (18), by replacing the scalar quantities 𝑛𝑘𝑦𝑗 and �̌�𝑘𝑦 with vectors
𝐧𝑘𝑟 and �̌�𝑘, which include all of the damage states. Hence, for the ES,
the first term in Eq. (18) measures the Euclidean distance between
the sampled damage state partitioning and the true partitioning of the
exposed buildings in a four-dimensional space (because we consider
four damage states in the case studies). Again, the ES as JPE has the
same units as the predicted quantity.

5.3.1. Zurich
The simulated Zurich case study contains the most exhaustive in-

formation about the geographical distribution of the ground motion
intensity and the ‘true’ damage. Therefore, the local performance of
impact estimation is reported in Fig. 4, which contains the predicted
9

number of moderately damaged buildings in a single subregion after
the M5.8 scenario earthquake (see Fig. 3 for the earthquake details).
When increasing amounts of buildings are inspected and thus, available
to train the GP model, the kernel density of the predictions made with
the proposed RMGP framework increases, meaning that the prediction
uncertainty decreases. The initial prediction – relying exclusively on
the risk model and the seismic-network measurements – suffers from
large uncertainties: the amount of buildings with moderate damage
ranges from below 100 to over 800 buildings, which corresponds to
a range from 7% to 54% of the 1471 buildings in this subregion.
Such large uncertainties undermine good decision making and the
organization of recovery activities. The predictions stemming from the
RF model require a minimum amount of initial building inspections to
enable predictions and therefore are represented only for 𝑡 ≥ 1. When
comparing the proposed RMGP framework with the RF model, the
latter returns more precise yet less accurate results. The over-confident
predictions with almost no uncertainty produced by the RF model stem
from the implicit model assumptions. Conditional on the input values
𝐱 of some buildings, the RF model considers damage to these buildings
as independent. The RMGP framework, on the other hand, generates
building damage conditional on spatially correlated samples of ground
motion intensity.

In addition to the probabilistic distribution of the predicted number
of moderately damaged buildings, the MPE values, provided in Fig. 4
and derived using Eq. (18), quantify the reduction of the predictive un-
certainty and the convergence towards the ‘true’ amount of moderately
damaged buildings. Comparing the kernel density distributions with the
MPE values highlights the joint contribution of precision and accuracy
of the MPE. Providing the MPE for all four damage states (from no
damage, 𝑦 = 0, to extensive damage, 𝑦 = 3) of the considered subregion,
Table 2 complements Fig. 4. The four time steps coincide with those
reported in Fig. 4, where inspection data is available for 0, 0.5, 1, and
1.5% of all 34000 buildings. Finally, Table 2 also provides the JPE,
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Fig. 5. Zurich case study: JPE for the proposed RMGP framework (top row) and a RF model (bottom row) in all considered subregions at four time steps (columns) with increasing
amounts of inspection data. The numerical values indicate the cumulative JPE (over all subregions) achieved by both methods in different time steps.
which measures the error in the joint distribution of building damage
states assigned in this subregion.

While Fig. 4 represents the results for a single subregion, impact
estimates generally cover the entire region. The damage prediction
JPEs for each subregion are reported in Fig. 5. The geographical
distribution of prediction errors confirms the rapid convergence of the
RMGP framework for all subregions, while the JPE remains high for
the RF model in some subregions. Also, the cumulative joint prediction
error (CJPE), obtained by summing the JPE over all subregions, shows
the convergence of the prediction results towards the ‘true’ building
damage.

The CJPE is subsequently used to compare the prediction outcomes
of RMGP, RF, and OLP methods in Fig. 6a. The violin outlines provide
a visual representation of the distribution of the kernel probability den-
sity, i.e., the width of the shaded area corresponds to the proportion of
the data at this vertical ordinate. The probability distributions is based
on the CJPE of 50 random inspection runs. The dashed and dotted lines
within the violins indicate the median and the inter-quartile range.

The RMGP framework produces the most reliable predictions, es-
pecially with few available building inspections. The median CJPE of
the RMGP framework with 175 inspected buildings is lower than the
median CJPE of the RF model after 525 buildings were inspected.
Hence, the underlying risk model reduces the need for building inspec-
tions in absence of optimized inspection schemes. The influence of the
inspection scheme is larger for the purely data-driven methods, RF and
OLP.

We use this simulated case study to analyze the performance of
the proposed RMGP framework in updating function 𝑓 , which is the
logarithmic ground motion IM, in this case expressed as PGA. The
top of Fig. 7 shows the evolution of the inferred median PGA over
the entire region when increasing amount of buildings are inspected,
while the bottom of the figure illustrates the probability density of the
posterior distributions at three locations. The uncertainty at specific
locations is reduced, especially when buildings in the vicinity of the
location get inspected, as evidenced by the uncertainty reduction after
175 inspections for locations S1 and S2. The variance at location S3 is
reduced only after 525 buildings are inspected, some of which are in
the location S3 subregion. This comparison is particularly interesting
given that the ‘true’ damage for the majority of the inspected buildings
originates from IMs other than PGA, namely spectral accelerations at
periods of 0.3, 0.6 and 1.0 s.

5.3.2. Pollino
The rapid impact assessment with the risk model for Pollino, shown

in Fig. 8 (top left), produces large prediction errors for three subregions.
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When inspection outcomes are used to update the risk model, the
quality of the estimates increases rapidly in all subregions. The CJPE,
representing the total number of mis-predicted buildings, obtained by
aggregating subregion data, decreases by over 60%, from 3480 to
1397, by fusing the risk model with inspection data of 600 buildings,
corresponding to 3% of the building stock in the region. For this specific
inspection sequence, the RF model (shown in the bottom row of Fig. 8)
performs better than the initial risk model. In addition, with increasing
amounts of data, the prediction performance of the RF model, measured
through the CJPE, approaches the one of the RMGP framework.

As outlined in Section 4, the proposed RMGP framework leverages
inspection data not only to constrain the distribution of the ground
motion IMs, but also to update the vulnerability function parameters.
Fig. 9 shows the evolution of the inferred median PGA in the top row,
and the evolution of the estimated vulnerability curves for low-rise
URM buildings of class A in the bottom row. Compared to the Zurich
case study, the Pollino region is almost ten times larger and has a sparse
seismic network, which results in larger heterogeneity of the inferred
median PGAs. While updating does not change the vulnerability curve
for the slight damage state (delimiting 𝑦 = 0 from 𝑦 = 1), the
initial vulnerability curve for the extensive damage state shifts towards
less conservative predictions after updating using inspection outcomes.
Such updated vulnerability curves may be useful in case of aftershocks
in the same region, or to develop risk models in other regions with
similar building inventories.

The violin outlines of kernel densities of the CJPE of 50 random
simulation inspection process outcomes for the Pollino case study are
reported in Fig. 6b. Compared with the simulated Zurich earthquake,
the initial Pollino risk model is contained within the range of possible
outcomes for the RF and the OLP models. Updating the risk model
with inspection outcomes in the RMGP framework leads to a median
reduction of approximately 50%. In addition, the median and 75-
percentile CJPE values for the RMGP framework with 200 inspected
buildings are similar to the corresponding RF model values based on
600 building inspections. This underlines the importance of the addi-
tional information provided by the risk model in the RMGP framework,
especially in the early stages of inspection, when data is scarce.

5.3.3. Kraljevo
The Kraljevo case study covers a much smaller impacted area (see

Fig. 3) without seismic network stations. Nevertheless, as seen in
Fig. 6c, the predictions originating from the proposed RMGP framework
outperform the predictions from the RF and the OLP models, as well as
the original risk model predictions. The predictions from RF and OLP
models are again very sensitive to changes in the inspection sequence,
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Fig. 6. For the Zurich (a), Pollino (b) and Kraljevo (c) case studies: Violin plots for the cumulative joint prediction error (CJPE) over 50 random inspection processes using the
proposed RMGP framework, and the RF and OLP models with increasing amounts of inspection data available for training. The solid black line illustrates the CJPE obtained with
the prior risk model and seismic recordings.

Fig. 7. Zurich case study: Inferred estimates of peak ground acceleration (PGA). The top row (a–c) shows maps of the median PGA inferred from inspection data, while the bottom
row (d–f) illustrates the posterior distributions of PGA for three sites S1, S2 and S3.
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Fig. 8. Pollino case study: JPE for the proposed RMGP framework (top row) and a RF model (bottom row) at four time steps (columns). The numerical values indicate the
cumulative (over all subregions) JPE.
Fig. 9. Pollino case study: For increasing amounts of inspection data the top row shows the posterior predictive median PGA, while the bottom row shows the initial and updated
vulnerability functions for low-rise URM buildings.
particularly when only 40 building have been inspected. Given that
2000 impacted buildings are considered, data from only 40 building
inspections is minuscule, considering the amount of information and
correlations to be inferred, especially in absence of an underlying risk
model.

5.4. Summary and limitations

Comparing the results of all three case studies, Table 3 summarizes
Fig. 6 by reporting the mean, minimum and maximum CJPE values
over 50 randomly sampled inspection processes. For a more transpar-
ent comparison, the CJPE is normalized by the number of exposed
buildings and the best-performing methodology is highlighted in bold
for each time step. The potential of the proposed RMGP framework
to reduce errors and uncertainty in the geographical distribution of
earthquake-induced building damage is confirmed in all three case
studies.

The first, simulated, Zurich case study shows that despite a rela-
tively dense seismic network, the initial predictions from the assumed
prior risk model may be inaccurate. Updating the components of the
risk model using early-arriving building damage inspection data rapidly
captures the actual trend in the data and thus, provides reliable regional
damage estimates after a fraction of the time that would be required to
inspect the entire city. This is also confirmed in the case of Pollino,
12
where the initial risk-model predictions are more accurate despite the
less dense seismic network. While the numbers of inspected buildings
at each time step are similar in Zurich and Pollino case studies, we used
substantially less inspection data in the case of Kraljevo. The first time
step is limited to 40 inspected buildings, which translates to a larger
span in CJPEs from different inspection sequences.

Overall, the proposed RMGP framework performs better than purely
data-driven models, such as RF. Our focus on the early aftermath, with
very few inspected buildings, undermines data-driven methods that,
typically, require large training sets. In addition, GP models account
for dependencies in the predictions of multiple, spatially distributed
outputs. This is particularly important in cases where aggregated dam-
age statistics are of interest. Note that all methods perform inference
in less than 40 s on a personal computer and for the maximum number
of inspected buildings considered.

It should be noted that the RFs, used for comparison in this paper,
are taken from post-earthquake damage prediction literature. Consid-
ering the rapid evolution of machine-learning tools, better RF models
or models based on other approaches, such as neural networks, may
outperform the herein adopted versions of data-driven models. The
comparison with the initial rapid damage estimates (𝑡 = 0) naturally
depends on the assumed prior risk models and do not allow for any
conclusions on the performance of official national risk models in
future earthquake events. Such models might profit from more detailed
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Table 3
Summary of the Cumulative Joint Prediction Errors (CJPEs) for all three case studies, using the proposed RMGP framework
and the RF and OLP data-drive model, without inspection data (𝑡 = 0) and using data gathered in three inspection time-steps
𝑡 after the event. The indicated values are the mean (min., max.) over 50 random inspection processes.

CJPE in % of the number of exposed buildings

Case study Model 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3

Zuricha RMGP 26.1 8.8 (6.1, 14.6) 7.1 (5.0, 10.3) 6.3 (4.3, 8.8)
RF 14.1 (9.2, 22.5) 10.8 (7.8, 14.2) 9.7 (7.2, 12.9)
OLP 14.8 (10.6, 22.4) 12.7 (10.6, 15.5) 12.1 (10.6, 15.0)

Pollinob RMGP 17.0 9.5 (6.6, 14.9) 7.9 (5.3, 12.0) 7.0 (5.0, 10.2)
RF 15.0 (9.1, 22.4) 11.0 (7.2, 14.3) 9.1 (4.7, 14.4)
OLP 12.7 (8.6, 20.8) 10.7 (8.7, 14.2) 10.0 (8.0, 12.6)

Kraljevoc RMGP 24.7 13.9 (7.3, 34.7) 11.4 (6.3, 20.9) 9.7 (4.7, 14.2)
RF 21.7 (8.6, 53.5) 14.5 (3.6, 26.4) 11.2 (5.7, 23.5)
OLP 25.5 (9.4, 47.1) 15.0 (8.4, 29.0) 11.9 (5.5, 22.3)

aAvailable inspection data for the three time steps: 175 (0.5%), 350 (1.0%), 525 (1.5%).
bAvailable inspection data for the three time steps: 200 (1.0%), 400 (2.0%), 600 (3.0%).
cAvailable inspection data for the three time steps: 40 (2.0%), 80 (4.0%), 120 (6.0%).
F
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nformation on the exposed building stock and can incorporate better
xpert knowledge.

The dataset of buildings for which inspection data becomes avail-
ble in the early aftermath is based on random starting points for
nspection teams. However, inspections may be performed only on
xplicit demand from building owners and are thus limited to buildings
hat have a higher a-priori probability of being damaged than the
andomly chosen buildings. To overcome this sampling bias, either
andom buildings need to be inspected in addition to those with an
pen inspection demand, or special model training schemes need to
e implemented. In the case of the RMGP framework, this could be
chieved by conditioning the vulnerability functions on the event that
he owner reported building damage.

While this study focuses on conventional post-earthquake data
ources (e.g., seismic network stations and building inspections), there
re numerous other data sources which provide helpful and important
nformation for post-earthquake response. Satellite and aerial imagery,
or example, offer high coverage information that could potentially be
ombined with the proposed RMGP framework to an ensemble model
elivering improved quantitative damage estimates.

. Conclusion

This paper presents a dynamic updating framework for regional
ost-earthquake damage estimation, RMGP, that leverages
arly-arriving observations of ground motion intensity and building
amage using Gaussian processes. The framework relies on Gaussian
rocess models to update the ground motion intensity, building type
ttribution and building type vulnerability components of a regional
arthquake risk model that is established prior to the event. Three case
tudies, focused on regional building damage estimation and updating,
llustrate the proposed framework. Our conclusions are:

• RMGP framework provides a powerful tool to combine inspection
evidence with prior estimates of traditional risk models, thus
enabling precise and accurate predictions of earthquake-inflicted
impacts on residential buildings in a fraction of the time required
to inspect the entire building stock.

• The parallel updating of ground motion intensity estimates, build-
ing vulnerability functions, and building typological attribution
models enable a local calibration of prior risk models with
broader geographical scopes. The produced byproducts, such
as the updated building vulnerability functions, provide useful
information for risk modelers beyond rapid damage assessment.

• Using GP models to fuse the early-arriving inspection data with
prediction models for probabilistic regional risk analysis requires
less data compared to the purely data-driven machine-learning
approaches, such as random forest models, to provide these esti-
mates.
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• Compared to purely data-driven approaches, predictions obtained
using the proposed RMGP framework are more robust with re-
spect to changing inspection sequences and do not require prior
optimization or allocation of buildings for priority inspection.

The promising results of the proposed GP dynamic damage updat-
ing framework highlight its potential for operational use after future
earthquakes. Yet, this requires close collaboration between risk mod-
elers and agencies responsible for planning the inspection process.
Future work may involve understanding the effect of different inspec-
tion prioritization schemes on the updated predictions, especially in
presence of possibly biased inspections, and could further include an
active-learning based strategy that optimizes information gain for the
RMGP framework. A further challenge lies in effectively combining
the dynamically improving damage estimates with damage-to-loss and
recovery models to examine the effect of rapid data collection on
financial loss predictions and recovery forecasts. This challenge can be
extended to include additional interdependent infrastructure systems,
such as electric power, potable water or communication. Finally, ap-
plying the proposed RMGP framework to more complete data, such
as that available at later stages of the inspection process, may offer a
robust and automated methodology to derive empirical region-specific
building vulnerability curves.

Supplementary material

The code to reproduce the presented case studies is available at
https://doi.org/10.5281/zenodo.7125172 [35]. It includes detailed de-
scriptions of the prior risk models employed in the three case studies,
a thorough explanation on the data pre-processing for the Pollino case
study, as well as an illustration of the RMGP inference scheme.
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