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Pan-Cancer landscape of protein activities
identifies drivers of signalling dysregulation and
patient survival
Abel Sousa1,2,3,4, Aurelien Dugourd5,6, Danish Memon1, Borgthor Petursson1, Evangelia Petsalaki1 ,
Julio Saez-Rodriguez5 & Pedro Beltrao1,7,*

Abstract

Genetic alterations in cancer cells trigger oncogenic transforma-
tion, a process largely mediated by the dysregulation of kinase and
transcription factor (TF) activities. While the mutational profiles of
thousands of tumours have been extensively characterised, the
measurements of protein activities have been technically limited
until recently. We compiled public data of matched genomics and
(phospho)proteomics measurements for 1,110 tumours and 77 cell
lines that we used to estimate activity changes in 218 kinases and
292 TFs. Co-regulation of kinase and TF activities reflects previ-
ously known regulatory relationships and allows us to dissect
genetic drivers of signalling changes in cancer. We find that loss-
of-function mutations are not often associated with the dysregula-
tion of downstream targets, suggesting frequent compensatory
mechanisms. Finally, we identified the activities most differentially
regulated in cancer subtypes and showed how these can be linked
to differences in patient survival. Our results provide broad
insights into the dysregulation of protein activities in cancer and
their contribution to disease severity.
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Introduction

Cancer is a highly heterogeneous disease that is generally caused by
the acquisition of somatic genomic alterations, including single
nucleotide variants (SNVs), gene copy number variations (CNVs)

and large chromosomal rearrangements (Beroukhim et al, 2010;
Pleasanceet al, 2010; ICGC/TCGA Pan-Cancer Analysis of Whole
Genomes Consortium,2020). The Cancer Genome Atlas (TCGA) has
led to an in-depth characterisation of the genomic alterations of more
than 10,000 tumours from 33 cancer types (Dinget al, 2018; Hoadley
et al, 2018). However, mutations in key driver genes are just the first
steps of a cascade of events that culminate in tumour formation and
cancer. These mutations generate the genetic diversity that promotes
the acquisition of multiple cancer hallmarks, including chronic
proliferation, resistance to cell death and tissue invasion and metas-
tasis (Hanahan & Weinberg,2011). An understanding of the molecu-
lar mechanisms that underpin the development of cancer is critical
in order to study cancer biology and to develop therapies.

While somatic alterations and gene expression changes across
tumours have been extensively studied, key driver genomic changes
in cancer are thought to result in changes in cell signalling including
the misregulation of protein kinases and transcription factors
(Blume-Jensen & Hunter,2001; Yaffe, 2019). As an example, about
40% of melanomas contain the V600E activating mutation in the
BRAF kinase, associated with constitutive signalling through the Raf
to mitogen-activated protein kinase (MAPK) pathway and increased
cellular proliferation (Davies & Samuels, 2010). Likewise, aberrant
transcription factors (TFs) activities are a key feature of cancer cells
(Garcia-Alonso et al, 2018). TFs are commonly dysregulated due to
genomic alterations in their sequences or in upstream signalling
regulatory proteins (Oliner et al, 1992; Ohh et al, 2000). Because of
their role as signalling effectors, aberrant kinase signalling may
dysregulate the activities of TFs and alter the expression of their
target genes. Consequently, kinases and TFs often accumulate
cancer driver mutations, such as TP53 (Rivlinet al, 2011) and KRAS
(Wang et al, 2015), and are the targets of anti-cancer drugs (Bhag-
wat & Vakoc, 2015; Bhullar et al, 2018).

Due to technical limitations, the study of protein signalling activi-
ties has been for many years limited primarily to the study of a few

1 European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
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key signalling proteins at a time using antibodies, which was
recently expanded to a few hundreds via the use of reverse-phase
protein arrays (RPPA; Li et al, 2013). The Clinical Proteomic
Tumour Analysis Consortium (CPTAC) has revolutionised the study
of cancer proteomes, including proteins and respective post-
translational modifications (PTMs), through the application of mass
spectrometry (MS)-based proteomics (Zhanget al, 2019). MS-based
proteomic profiling of human cancers has the potential to uncover
molecular insights that might be otherwise missed by genomics-
and transcriptomics-driven cancer research. CPTAC enabled to (i)
identify additional cancer molecular subtypes (Gaoet al, 2019; Mun
et al, 2019), (ii) find that changes at the genomic and transcriptomic
level are often buffered at the proteomic level (Zhang et al, 2014;
Mertins et al, 2016; Gonçalves et al, 2017; Sousa et al, 2019) and
(iii) uncover dysregulated signalling pathways by phosphopro-
teomics data integration (Clark et al, 2019).

In efforts to find novel therapeutic opportunities from kinase and
TF oncogenic signalling, it is crucial to understand how the activi-
ties of these key signalling proteins are changing across tumours.
Previous studies found that TF mutations were correlated with tran-
scriptional dysregulation in cancer cell lines and primary tumours
and that TF activities can act as predictors of sensitivity to anti-
cancer drugs (Garcia-Alonsoet al, 2018). Similar results were found
regarding the impact of oncogenic mutations on kinase signalling.
However, these studies were focussed on few kinases and cancer
types (Guhaet al, 2008; Guo et al, 2008; Creixell et al, 2015; Lundby
et al, 2019). Despite all of these efforts, a systematic Pan-Cancer
analysis of the regulation of kinase and TF activities across tumours
is still lacking.

In this study, we compiled multiomics datasets for 1,110 tumours
and 77 cell lines to study the regulation of kinases and TFs across
tumour types. We estimated the activities of TFs and kinases from
the gene expression levels and phosphorylation changes in their
targets, deriving activity profiles of 292 TFs and 218 kinases. We
used these kinase and TF activities to study the principles of regula-
tion of these signalling proteins by mutations, changes in abundance
or phosphorylation. We show how their patterns of activity co-
regulation reflect underlying signalling relationships, and we iden-
tify the signalling molecules that show high degree of regulation in
each tumour type. Finally, we show how these TF/kinase activities
can be predictive of differential survival across patients. The profile
of protein activities across over 1,000 patient samples serves as a
resource to study the misregulation of signalling across different
tumour types.

Results

Standardised multiomics pan-cancer dataset

To study the regulation of protein activities of cancer cells, we
compiled and standardised multiomics datasets made available by
the CPTAC consortium (Fig 1A, Appendix Fig S1A; Materials and
Methods). These datasets were comprised of cancer patient samples
with matched somatic mutations, gene copy number variation
(CNV), mRNA expression, protein abundance, phosphorylation and
clinical data from nine tissues: breast (Cancer Genome Atlas
Network, 2012b; Mertins et al, 2016), brain (Petralia et al, 2020),

colorectal (Cancer Genome Atlas Network, 2012a; Zhang et al,
2014; Vasaikar et al, 2019), ovarian (Cancer Genome Atlas Research
Network, 2011; Zhang et al, 2016), liver (Gao et al, 2019), kidney
(Clark et al, 2019), uterus (Dou et al, 2020), lung (Gillette et al,
2020) and stomach (Mun et al, 2019). In addition, we collected data
for breast (Lawrence et al, 2015; Lapek et al, 2017) and colorectal
(Roumeliotis et al, 2017) cancer cell lines, for which multiomics
data were available (Fig1A, Appendix Fig S1A; Materials and Meth-
ods). In summary, the assembled data includes 1,110 tumours
samples and 77 cell lines, of which 1,008 samples (932 tumours and
76 cell lines) have available data for all data types used in this
study. For each analysis, we used all samples having data for the
types of omics measurement required, which results in small varia-
tions of the total number of samples used.

We first calculated correlations between each protein and phos-
phosites that mapped to the same protein, in up to 1,008 samples.
Across protein-phosphosite pairs, there is a correlation of 0.49
(P-value < 2.2 × 10e-16; Appendix FigS1B), which is similar when
calculated per tumour type (Appendix Fig S1C), and is in agreement
with previous studies (Arshad et al, 2019). This result shows that
the changes in phosphorylation are, to some extent, confounded by
the changes in the corresponding protein abundance (Wu et al,
2011). To be able to focus on phosphorylation changes that are
not driven primarily by protein abundance differences, we regressed
out matched protein abundance from the phosphorylation data in
our compiled dataset (Appendix Fig S1B and C; Materials and
Methods).

Landscape of protein activities in cancer

The genomics characterisation of tumour samples has so far been
primarily focussed on stratifying samples by their mutational pro-
files or changes in abundance of specific bio-molecules such as tran-
scripts, protein or phosphorylation states. We and others have
shown that changes in phosphorylation and gene expression levels
can be used to infer the activation states of protein kinases and TFs
(Casado et al, 2013; Ochoa et al, 2016; Hernandez-Armenta
et al, 2017; Garcia-Alonso et al, 2018). Based on these methods, we
set out to define the landscape of kinase/TF activity patterns across
these tumour samples.

The kinase activities were estimated from the protein abundance-
corrected phosphorylation data using a z-test (Hernandez-Armenta
et al, 2017; Fig 1B; Materials and Methods). Briefly, the activity of a
given kinase in a sample is estimated by comparing the changes in
phosphorylation of its substrates with changes in all other phospho-
sites. Similarly, the activation state of TFs was inferred from the
changes in gene expression of their known transcriptional targets
using the DoRothEA regulons (Garcia-Alonsoet al, 2019) coupled
with the VIPER algorithm (Alvarez et al, 2016; Fig 1B; Materials and
Methods). In total, we estimated the activities of 292 TFs across
1,187 cancer samples (1,110 primary tumours and 77 cell lines;
Dataset EV1). For the estimation of kinase activities, we evaluated
different lists of kinase substrates from repositories (e.g. Phospho-
sitePlus; Hornbecket al, 2015), computational text mining (preprint:
Bachman et al, 2019), kinase inhibitor experiments (Hijazi et al,
2020) or phosphorylation of cell extracts (Sugiyama et al, 2019;
Appendix Fig S2A and B). We tested each list in a compilation of
phosphoproteomic experiments where kinase regulation is known
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(Hernandez-Armenta et al, 2017; Materials and Methods) keeping
those from repositories and text-mining as the most accurate
(Appendix Fig S3A and B). After applying this approach, we inferred
the activities of 218 kinases across 980 samples (930 tumours and
50 cell lines; DatasetEV1, Materials and Methods).

For some kinases, there are phosphosites within the kinase itself
that are known to activate or inhibit it. As a validation, we corre-
lated the estimated activity scores with the quantifications of acti-
vating phosphosites, finding the expected higher correlation when
compared to phosphosites without annotation (Fig 1C). A similar
trend was observed when excluding the kinase auto-regulatory
phosphosites before re-estimating the activities (Appendix FigS3C).

Finally, we benchmarked the kinase activity scores using reverse
phase protein array (RPPA) data from the TCGA programme. We
first evaluated the agreement between the MS-based and the RPPA-
based phosphosite quantifications and found that phosphosite pairs
corresponding to the same phosphosite show higher correlations
than random pairs (Appendix Fig S3D). Then, we found that the
RPPA phosphosites correlate significantly better with the activity of
the kinase bearing the phosphosites than with other kinase activities
(Fig 1D).

The activity profiles of kinase and TFs across a large number of
samples allow us to ask how these activities are themselves regu-
lated. We first selected 99 kinases and 120 TFs that are strongly

BA

C D E

Figure 1. Multiomics atlas and inference of protein activities.

A Number of samples with coverage for all multiomics data by cancer dataset.
B Schematic representation of kinase and TF activity inference. GES, gene expression signature.
C Comparison of the Pearson’s correlation distributions between the kinase activities and the quantifications of phosphosites (log2 fold-changes) that mapped to the

same kinase, with (n = 126) and without (n = 793) annotation (activating) in PhosphoSitePlus. AP-value from a Wilcoxon rank-sum test is shown.
D Comparison of the Pearson’s correlation between the RPPA phosphosites and the kinase activities, for kinase-phosphosite pairs mapping to the same kinase (auto-

phosphosite) and other pairs. The activities were calculated using the kinase substrates (n = 336and n = 21) and the kinase regulatory phosphosites (n = 94 and
n = 13; Materials and Methods). TheP-values from Wilcoxon rank-sum tests are shown.

E Percentage of kinases and TFs significantly and not significantly correlated with the corresponding CNV, RNA, protein and phosphorylation levels. The proteins
without correlations due to lack of data or reduced number of samples (n < 10) were labelled as unknown (blue).

Data information: The box plots represent the1st, 2nd (median) and3rd quartiles and the whiskers indicate1.5 times the interquartile range (IQR). The central notches
show the95% confidence interval around the median and are calculated as median� 1.58* (IQR / sqrt(n)).
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regulated (i.e. activities > 96.7th percentiles) in at least 5% of all
samples (Appendix FigS3E). We then correlated across samples the
predicted activities with the measured changes in gene copy number
(CNV), mRNA, protein and phosphorylation levels of the respective
protein (Dataset EV2). We observed that 55% of kinase activities
correlated with their phosphorylation state, 27% with changes in
protein abundance and very few correlated with changes in their
mRNA (Fig 1E). Contrary to this, TF activities are most often corre-
lated with changes in abundance of the TF, as measured by RNA
(91%) or protein (59%), with fewer cases of significant correlations
with phosphorylation levels (29%; Fig 1E). The CNV levels were
overall poor indicators of changes in kinase and TF activities. TF
phosphosites predicted to be important for function (Ochoa
et al, 2020) are more likely to show significant correlations with the
TF activity (Appendix Fig S3F).

Overall, these results showed that our kinase activity estimates
are likely to capture kinase regulatory events across different
tumour types and therefore the usefulness of our multiomics atlas to
study kinase signalling in cancer.

Impact of genetic variation on protein abundance and activities

The large number of cancer samples in this study constitutes a
resource to measure the effects of genetic alterations, that is somatic
mutations and CNVs, on protein abundances and activities. We first
set out to assess the effects of CNVs on the mRNA and protein abun-
dances. As described previously, the CNVs showed a stronger corre-
lation with the mRNA than with the protein levels (Appendix
Fig S4A and B), highlighting mechanisms of post-transcriptional
control and gene dosage buffering at the protein level (Gonc¸alves
et al, 2017; Sousa et al, 2019). We then extended the analysis to
globally assess the effects of mutations (Materials and Methods),
and we found that proteins carrying loss-of-function (LoF) alter-
ations, including frameshift, nonsense, splice site and stop codon
loss, caused on average a significant decrease in protein abundance.
This was not observed with in-frame and missense mutations
(Appendix Fig S4C). To validate the decrease in protein abundance
for LoF mutations, we confirmed that this was also recapitulated in
a proteomic dataset with 125 cancer cell lines (CCLs) from the
NCI60 and CRC65 panels (Frejnoet al, 2020; Appendix Fig S4D;
Materials and Methods). These observations confirm that the
genetic alterations are often recapitulated at the protein level as
captured by the MS data.

We next looked at the impact of genetic alterations on TF and
kinase activity estimates. Across all samples, we looked at all cases
where a TF or kinase carries a mutation, segregated by mutation
type as above (e.g. missense, frameshift and nonsense). We then
asked whether TFs and kinases carrying such mutations would
have, on average, differences in their predicted activities as
measured by changes in their targets. On average, we did not
observe reduced predicted activity for proteins carrying different
types of mutations in the tumour samples (Appendix Fig S5A).
Overall, we only found a modest average decrease in predicted
activities for proteins carrying frameshift mutations in cell lines
(Appendix Fig S5B). This observation did not depend on the
predicted deleterious impact of the mutations (Appendix Fig S5C
and D) nor on the purity of the tumour samples (Appendix
Fig S5E).

To further characterise this result, we focussed on highly
mutated cancer genes. As an example, we investigated the impact of
mutations BRAFV600E, KRASG12D and KRASG12C on the predicted
activities of proteins from the MAPK/ERK signalling transduction
pathway (Materials and Methods). Across all samples, BRAFV600E

and KRASG12D mutations were not significantly associated with
changes in activity of key pathway components (Appendix FigS6A).
For BRAFV600E, we found instead that CDK1 and CDK7 were more
active in samples carrying the mutation (FDR< 5%; Appendix
Fig S5G). For samples having the KRASG12C, we found a consistent
increase in predicted activity of kinases in the MAPK pathway
(Appendix Fig S6A). These results suggest that samples carrying
KRASG12D or BRAFV600E mutation will often have kinase activity
levels that have adapted to the mutational state without a higher
level of activation of the pathway.

In order to generate hypotheses for the lack of pathway activa-
tion in the samples with BRAFV600E activating mutation, we selected
the 19 samples with this mutation and compared those where BRAF
activity was increased (six samples) with those where it was
predicted to be decreased (eight samples). We reasoned that phos-
phatase levels could be a potential mechanism explaining a down-
regulation of the pathway activity in the presence of an activating
mutation. We therefore measured the fold change in phosphatase
mRNA levels in these two groups of samples. Of 237 phosphatases
tested, 74% tend to have higher expression levels in the samples
with low BRAF activity, 17 of these have a significant difference
across the two groups of samples with a false discovery rate set at
15% (Appendix Fig S6B). This suggests that overexpression of phos-
phatases in the mutated samples could be a plausible mechanism
that explains the lack of activation.

We then extended the analysis by systematically associating the
activity of kinases and TFs with the recurrent mutational status of
any given gene mutated in at least five tumour samples (Materials
and Methods). As seen for the BRAF example, we did not observe
any case where recurrent mutation of the kinase itself was associ-
ated with a significant change in its activity as measured by the
phosphorylation of its substrates. This indicates that there is signifi-
cant adaptation of the signalling state of the cell after mutations. On
the contrary, we found 193 significant associations (FDR< 5%)
between mutations in other genes and changes in kinase activity
levels (Fig 2A; Dataset EV3). For example, samples with mutations
on STK11 (serine/threonine kinase 11) do not show a pronounced
change in activity of STK11 substrates but have decreased activity
for PRKACA kinase, a known activator of STK11 (FDR = 9.6e-5;
combined string network weight = 0.94; Fig 2C). Other examples
include increased activity for CDK1 and MAPK13 in samples with
mutations in TP53 and for AKT3 when PTEN is mutated (FDR<
5%; Fig 2C). Unlike for kinases, we found several cases where the

mutation of a TF was associated with a change in its own activity as
is the case for mutations in TP53, GATA6, SREBF2 and EBF1
(FDR < 5%; Fig 2B—inner plot, Appendix Fig S7; Dataset EV3). In
addition, we found 11,128 significant associations between a
mutated gene and a changed TF activity (FDR< 5%; 1,087 for
FDR< 1%; Fig 2B—outer plot; Dataset EV3), including increased
activity for E2F4 and TFDP1 coupled with TP53 mutation (Fig2D).

We replicated the associations between mutations and kinase
activity using the RPPA antibody measurements of phosphosites in
kinases that can report on kinase activities. We were able to
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measure the association strength for 29 gene-kinase pairs that over-
lap with those measured here. Across these associations, we find a
correlation of 0.57 (P = 0.0012) for the estimated association
strength (beta value). While there is much variation, it is not unex-
pected given the differences in methodology and samples. There are
only 2% of samples (95 out of 4,133) that overlap between the two
analyses, and as such, this analysis shows that the associations can
replicate in independent datasets.

Pan-Cancer analyses can result in spurious associations driven
by batch effects or molecular differences between tissues. We took
into account these effects by including the tissue type as a covariate
in our models (Materials and Methods). In this way, associations
that would have been driven by the tumour type would be
suppressed. As a further validation, we have repeated the associa-
tions between genetic variants and kinase/TF activities at the

tumour type level. We found that the effect size and significance of
these associations tend to be highly correlated with the Pan-Cancer
associations (Appendix FigS8A and B).

The association between mutated genes and altered protein activ-
ity contain several examples of previously known functional rela-
tionships. To evaluate this more broadly, we confirmed that our
predicted associations were enriched in protein–protein functional
associations annotated in the STRING database, for both the kinases
and the TFs (P-value < 5%; Fig 2E and F—top panel). We also
performed an enrichment analysis using the STRING network along
multiple cut-offs of adjusted P-values (Materials and Methods). The
� log10 transformed P-values from the enrichment test increased as
the association cut-offs were incremented (Fig2E and F—bottom
panel), validating the generality of the significant associations.
Overall, the genetic associations found are enriched in previously

E

F

C

D

A

B

Figure 2. Genetic associations with protein activities.

A Volcano plot displaying the associations between the mutational status of genes and the activity of kinases. The x-axis contains the mutation coefficients (effect
sizes) and the y-axis the adjustedP-values. The vertical line in the x-axis is at x =0 and separates the positive (right) from the negative (left) associations. The hori-
zontal lines in the y-axis represent the points of statistical significance in the plot (adjustedP-values< 0.05 and < 0.01). The associations are represented in the
form of a mutated gene—kinase. The colour gradient represents the string network edge weight interval of the pair (grey if the pair is not in the string network).

B Same as (A) for the TFs. The inner plot shows the effects of TF mutations on their own activities.
C, D Examples of the genetic associations highlighted in the volcano plots. The x-axis represents the associations and the y-axis the protein activities. The colours strat-

ify the samples by their mutational status in the respective genes. The outliers (defined as the data points beyond Q1-1.5*IQR and Q3 + 1.5*IQR, where Q1 and Q3
are the first and third quartiles and IQR is the interquartile range) were removed from the distributions for representation purposes. The number of protein activity
quantifications (including outliers) is shown beneath each boxplot. TheP-values from Wilcoxon rank-sum tests comparing both distributions are shown. All data
points (including outliers) were used to calculate theP-values.

E Top panel. Density plots comparing the edge weight distributions in the string network of the significant and non-significant association pairs obtained with the
kinases. The vertical lines in the x-axis show the mean edge weight of the significant and non-significant association pairs. Bottom panel. Enrichment of the associ-
ations in the string network (edge weight> 850) along multiple cut-offs of statistical significance. The x-axis shows the adjustedP-value cut-offs (� log10) and the
y-axis the Fisher-testP-values (� log10). The dashed lines represent the points of statistical significance in the x-axis and y-axis (adjustedP-value < 0.05).

F Same as (E) for the TFs.
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known functional associations, containing potential novel regula-
tory relationships for future experimental exploration.

An atlas of kinase and TF regulation in cancer

The estimation of kinase and TF activities across a large set of
tumour samples from different tissues provides a first look at the
space of tumour signalling states as measured by hundreds of regu-
lators. We projected the activity profiles in a lower-dimensional
space using the uniform manifold approximation and projection for
dimension reduction algorithm (UMAP; Materials and Methods).
For both the kinases and TF activities, we observed that cancer
samples were not clustered by experimental study (Fig 3A,
Appendix Fig S9A). The same was also observed using a principal
component analysis (PCA; Appendix FigS9B and C). These results
suggest that our normalisation procedures helped to mitigate the
technical biases between studies, being likely superimposed by
biological variation.

To select highly variable kinases, we first selected one kinase
from sets of redundant kinases that have many shared substrates
such as AKT1 and AKT2 (Materials and Methods). Of these, we
have identified 30 kinases with the largest amount of variation in
the predicted kinase activities across all samples (SD> median SD).
As expected, these kinases are highly correlated with the lower
dimensional UMAP projections (Fig 3B). This set of highly variable
kinases contains known cancer drivers and kinases with inhibitors
already used in the clinic as cancer treatment, such as BRAF, AKT,
MAP2K1, SRC among others. Examining the tumour samples in this
two-dimensional representation indicates that highly co-regulated
kinases from the MAPK signalling pathway tend to be activated or
inhibited across the same samples (Fig3C). CDK1 is known to phos-
phorylate the casein kinase 2 (CSNK2A1). These kinases together
showed opposite correlations with the UMAP projections and,
consequently, a distinct regulatory state across the samples (Fig3B
and C).

We obtained pairwise kinase regulatory relationships deposited
in the OmniPath database (Türei et al, 2016) and correlated their
activities (Materials and Methods). We found that kinases that are
known to regulate each other were more likely to have correlated
patterns of activity across samples (Fig3D). This was still observed
when taking into account cases where the pair of kinases shared
some substrates (Appendix FigS9D; Materials and Methods). Simi-
larly, we would expect that kinases and TFs within the same path-
way will tend to have similar patterns of activation across the
samples. To investigate this, we modelled the TF activities as a func-
tion of the kinase activities using linear regressions (Materials and
Methods), identifying 5,712 significant associations at an FDR< 5%
(3,130 for FDR< 1%; Fig 3E; DatasetEV4). These associations were
enriched in known kinase–TF functional interactions (Appendix
Fig S9E and F), including for example the relation between CDK1
activity and the activities of E2F4 and TFDP1 (Jiaoet al, 2017;
Spring et al, 2017; Appendix Fig S9F). Altogether, these results
corroborate that the variation in activities across the samples is
shaped to some extent by the underlying regulatory relationships.

Our analysis can indicate the kinases that are most often misreg-
ulated in cancer. For comparison, we estimated kinase activities
from phosphoproteomics experiments collected in human cell lines
perturbed in a wide range of diverse conditions (e.g. different kinase

inhibitors, cell cycle stages and DNA damage; Ochoaet al, 2016).
Then, we calculated the percentage of tumour samples and pertur-
bations where each kinase showed strong regulation (Materials and
Methods). This identifies the kinases that are often regulated in
tumour samples and in other non-cancer-related conditions. We
observed a significant correlation between the percentage of
samples where a kinase is regulated in cancer and noncancer condi-
tions (Pearson’s r = 0.78, P-value = 2.2e-16), with AKT1 and the
cell-cycle kinases CDK1/2 and AURKB being highly regulated in
both sets of conditions (Fig 3F). Kinases deviating from the regres-
sion line can be classified as preferentially regulated in the tumours
or in the non-cancer-related conditions (Materials and Methods).
There were a larger number of kinases specifically dysregulated in
cancer (e.g. PRKACA, CSNK2A1 and MAPK1) compared with other
noncancer conditions (Fig 3F). The kinases MAPKAPK2, RPS6KB1
and RPS6KA3 were more often regulated in the noncancer condi-
tions when compared to their degree of regulation in tumours
(Fig 3F). We performed the same analysis but divided by tissue type
(Appendix Fig S10A). The number of dysregulated kinases was
consistently higher in the tumours than in the noncancer conditions
across all tissues (Appendix FigS10A and B). The number of dysreg-
ulated kinases found specifically in tumours of a given tissue corre-
lated with the number of samples potentially indicative of higher
statistical power in these tumour types (Appendix Fig S10C). Some
kinases (e.g. PRKACA, CSNK2A1 and MAPK1) were found specifi-
cally dysregulated across multiple tumour types, but more than half
were dysregulated in just one tissue (68%) such as MYLK kinase in
stomach cancer and MTOR in kidney cancer (Appendix FigS10D).

Finally, we clustered the cancer samples into 8 cancer activity
subtypes. To do so, we defined each sample by the vector of activi-
ties of kinases and TFs and used an approach based on hierarchical
clustering to find groups of tumour samples with characteristic
patterns of kinase/TF activities (Materials and Methods). We char-
acterised each of the subtypes by performing over-representation
analysis of clinical features and the activities that are most often
regulated in each of the clusters. We then used CARNIVAL (Liu
et al, 2019; Dugourd et al, 2021) to investigate the most plausible
mechanistic links that could connect the most regulated kinase and
TF activities in each cluster (Materials and Methods). We provide
an extensive description of these eight activity subtypes in the
Appendix. Some of these activity subtypes are enriched in specific
tissue or subtypes characterised by other approaches. For example,
cluster 1 is enriched in high-grade serous ovarian cystadenocarci-
noma (SOC) with consistent activation of ARID1A. Cluster 5 is
enriched in lung carcinoma and breast cancer samples with a
general high activity of ZEB2, a promoter of epithelial to mesenchy-
mal transition (EMT), metastasis and resistance in LUAD and breast
cancer (Zhang et al, 2015; Malvi et al, 2019). As an interesting
example, Cluster 7 was found to be enriched in CD8-inflamed
tissues with consistent activation of the proinflammatory JUN and
NFKB1 TFs likely via the increased activity of PAK1.

Differential protein activity is associated with changes in patient
survival

Survival analyses from multiomics datasets have been largely based
on mutation, gene or protein expression differences between groups
of patients. However, kinase and TF activities should capture the
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