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Abstract
Audio‐visual wake word spotting is a challenging multi‐modal task that exploits visual
information of lip motion patterns to supplement acoustic speech to improve overall
detection performance. However, most audio‐visual wake word spotting models are only
suitable for simple single‐speaker scenarios and require high computational complexity.
Further development is hindered by complex multi‐person scenarios and computational
limitations in mobile environments. In this paper, a novel audio‐visual model is proposed
for on‐device multi‐person wake word spotting. Firstly, an attention‐based audio‐visual
voice activity detection module is presented, which generates an attention score matrix
of audio and visual representations to derive active speaker representation. Secondly, the
knowledge distillation method is introduced to transfer knowledge from the large model
to the on‐device model to control the size of our model. Moreover, a new audio‐visual
dataset, PKU‐KWS, is collected for sentence‐level multi‐person wake word spotting.
Experimental results on the PKU‐KWS dataset show that this approach outperforms the
previous state‐of‐the‐art methods.
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1 | INTRODUCTION

Wake Word Spotting (WWS) aims to detect pre‐registered wake
words by classifying utterances into a pre‐defined set of words.
In recent years, due to the rapid development of artificial intel-
ligence technology, WWS [1–4] is widely used in various fields,
such as mobile phone voice assistants [5–9], intelligent robots
[10, 11], and smart home devices [12–15]. For example, virtual
assistants such as Microsoft's Cortana and Amazon's Alexa
[16, 17] rely on specific wake words for activation and further
human‐computer interaction. Meanwhile, WWS is usually per-
formed on portable devices for a faster response time.
Compared to Automatic Speech Recognition (ASR) [12, 14],
WWS does not require recognition of the entire input utterance,
which significantly reduces the computational cost of unnec-
essary operations.

Early research studies in the field of WWS typically use
audio‐only information to spot wakewords [1–4, 6–9, 12–14]. In
a noise‐free audio‐only environment, the performance of WWS
has far exceeded the level that can be achieved by the human

auditory system. Despite audio‐only methods [12, 14, 17, 18]
commonly used in daily life, the approach that relies exclusively
on audio modality faces unfixable drawbacks. For instance, in a
variety of sophisticated acoustic scenarios, especially in noisy
environments, WWS performance degrades significantly. In
addition, factors such as the number of speakers, gender, age, and
speaking style also impact the spotting of wake words.

As multi‐modal technology has advanced, audio‐visual
fusion methods [19–22] are considered the most promising
solution for robustWWS. The human speech perception system
is bimodal and relies on audio and visual information. There-
fore, in daily face‐to‐face communication, observable pronun-
ciation organs such as lips are also important sources of
information. Similarly, the speech processing system can also
use visual and audio information to improve the performance of
WWS in various complex acoustic scenarios. Visual information
is especially effective in real‐world scenes with severe acoustic
distortions, such as strong background noise and sound mixing,
since it is not affected by acoustic distortions. For the Audio‐
Visual Wake Word Spotting (AV‐WWS) task, we use lip
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motion information and audio information to identify the
presence or absence of wake words in the visual stream.

In recent decades, researchers have made much exploration
in the field of AV‐WWS. Traditional methods often take the
manual lip motion features and audio spectrum features as the
input of the Hidden Markov Model (HMM) [23–25] to achieve
audio‐visual fusion. However, because these systems rely on
hand‐crafted elements or rules to evaluate spatial patterns, the
accuracy of traditional methods used to develop these systems
is far from adequate for real‐world applications. It is chal-
lenging to modify the hand‐crafted models described above,
which are created for specific objectives. To address the above
issues, AV‐WWS based on deep learning methods has attracted
extensive attention. An AV‐WWS method based on multi‐
dimensional CNN is proposed in Ref. [26]. In particular,
Refs. [27, 28] apply the zero‐shot method for in‐the‐wild
videos rather than the methods evaluated with keywords
used during training. Deep learning methods can implicitly
capture audio and visual features, surpassing the limitations of
traditional models, which is the strength of deep neural net-
works. The proposed audio‐visual model achieves superior
performance compared to previous methods using hand‐
crafted parts, with considerably less effort in manual design.

Up until recently, the existing works of AV‐WWS have
been carried out for single‐person scenarios. However, in daily
life, multiple people are often present in a human‐–computer
interaction situation. When multiple people appear in the
scene, it is difficult for existing AV‐WWS models to accurately
identify wake words utilising the Region‐Of‐Interest (ROI)
sequence of the mouth area. As a result, the performance of
the AV‐WWS models designed for the single‐speaker case
degrades drastically due to the intractable additional visual
redundancy. A multi‐task training model [29] is proposed to
close the gap between speech activity detection and AV‐WWS
by a jointly trained model with a multi‐task loss. However, the
performance of this work is not sufficient for complex multi‐
person scenarios. To address the WWS problem in multi‐
person scenarios, we propose an attention‐based Audio‐
Visual Voice Activity Detection (AV‐VAD) module. An
attention mechanism is introduced to compute the temporal
score matrix and detect potential speakers by comparing the
audio‐visual score results of each frame.

AV‐WWS models are commonly equipped on mobile and
portable devices. Therefore, the size and inference time of the
model is critical. In general, the models trained by current AV‐
WWS methods are large models whose prediction speed is
slow on mobile devices. To this end, the Knowledge Distilla-
tion (KD) method is designed to incorporate the temporal
knowledge embedded in attention weights of large models to
on‐device models [30]. In this work, we leverage knowledge
distillation [31] to transfer the knowledge from the large model
(teacher model) to the on‐device model (student model) to
achieve the purpose of compressing the model.

The contributions of our work are summarised as follows:

� We propose a novel on‐device audio‐visual network for the
challenging multi‐person wake word spotting task.

� We design an audio‐visual voice activity detection model for
multi‐person active feature extraction, which combines the
audio and visual representations via an attention module.

� We introduce the knowledge distillation approach to
compress the AV‐WWS model to meet the on‐device de-
mands with low computational complexity.

� A new annotated multi‐modal dataset is collected for audio‐
visual multi‐person wake word spotting. The proposed
model achieves superior performance compared to the
previous state‐of‐the‐art method.

The rest of this paper is organised as follows: Section 2
provides a literature review of the on‐device multi‐person AV‐
WWS method and discusses the voice activity detection
method and model compressing method in AV‐WWS. Sec-
tion 3 discusses the proposed method in detail, including the
visual front‐back module, audio front‐back module, voice ac-
tivity detection module, audio‐visual fusion module, and
knowledge distillation module. Section 4 describes the content
and configuration of our newly collected PKU‐KWS dataset.
Section V shows the implementation details and reports the
results of the experimental validation and robustness test of
our approach. Finally, conclusions are given in Section 6.

2 | RELATED WORKS

2.1 | Audio‐visual model for wake word
spotting

Figure 1 shows the general schematic of the representative
WWS system based on audio‐visual fusion. The audio and visual
signals are fed into a two‐branch framework for pre‐processing,
feature extraction, and temporal modelling. In previous AV‐
WWS works, the manually designed feature extractor is
commonly used for visual feature extraction. Recently, deep
learning models that directly process the raw image of the
speaker's lips have become the preferred method for visual
feature extraction [27]. Meanwhile, with respect to speech
feature extraction, deep learning models are gradually replacing
the traditional Hidden Markov Models (HMM) to obtain more
representative features. Temporal modelling is used for wake
word location detection, and the obtained local features are
enhanced for wake word spotting. Finally, the extracted audio‐
visual information is fused in the fusion module. The fusion
features are passed through a classifier to determine the pres-
ence or absence of wake words in the dialog segments.

Ref. [28] is the first to study query‐by‐text visual KWS for
words that are not seen during training, which designs an end‐
to‐end architecture that employs RNN to learn correlations
between visual features and keyword representations. Extending
on work [28], a CNN‐based AV‐WWS architecture is proposed
in Ref. [27]. Their best audio‐visual models can correctly spot
wake words under different background noises on the LRS2 [32]
dataset, which indicates that the combination of audio and visual
modalities enables the model to adapt to the various complex
acoustic scenes. It is also proved that the network can be
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extended to languages other than English. An AV‐WWS
method based on a multi‐dimensional Convolutional Neural
Network (CNN) is proposed in Ref. [26]. To make full use of the
dimensional information in the audio‐visual features, a two‐
dimensional CNN is designed to simultaneously learn the
time‐frequency features of the logarithmic spectrogram.
Meanwhile, the temporal and spatial features of the lip region
sequences are fully learned by the 3D CNN operation. The
previously mentioned AV‐WWS methods do not consider the
global dependencies in the features, and it is difficult to solve the
WWS of unconstrained long utterances. To this end, we pro-
posed a model based on an enhanced attention mechanism to
discover wake words in long sentences without location‐specific
annotations.

2.2 | Audio‐visual model for voice activity
detection

To close the gap between the active speaker detection task and
the audio‐visual speech recognition task, a multi‐task training
model is proposed in Ref. [29]. It applies a single model to be
jointly trained with a multi‐task loss. The architecture provides
a signal for on‐screen speakers without requiring an explicit
model. By combining these two tasks in training, the proposed
model increases the accuracy of voice activity classification
while improving automatic speech recognition performance
compared to a multi‐person baseline trained specifically for
automatic speech recognition. An extension of the work of
Refs. [33, 34] proposes a method for active speaker detection
using an attention mechanism, which is a soft selection method.
After adding the active speaker recognition module, the per-
formance of audio‐visual speech recognition improves greatly.
Experiments with more than 50,000 h of YouTube public
videos as training data show that the system can perform well
under various noise conditions. The previous voice activity
detection model is mainly learned as an independent task or
used as an upstream speech recognition task. In this paper, we
design a multi‐person AV‐VAD module based on the attention
mechanism, effectively improving the performance of AV‐
WWS.

2.3 | Lightweight audio‐visual model

Lightweight model design [35] is important in real‐world appli-
cation scenarios where computational resources are limited. In

the field of knowledge distillation, some researchers focus on the
compression method of the audio‐only speech recognition
model. An attention distillation method is proposed in Ref. [30],
which incorporates the temporal knowledge embedded in
attentionweights of a large transformer‐basedmodel into an on‐
devicemodel. TheMHAtt‐RNN [36] and the TC‐ResNet14 [37]
are considered as their student models. As a result of the ex-
periments, whenusing themulti‐label Experimental results show
that the accuracy of MHAtt‐RNN and TC‐ResNet14 improves
when tested with multi‐label datasets, which displays the tem-
poral knowledge from large teacher model is transferred to the
on‐device student model for audio classification. With the
widespread use ofmulti‐modalmodels, researchers have focused
more on designing lightweight audio‐visual fusion models. Ref.
[21] proposes a compact audio‐visual WWS system by intro-
ducing a neural network pruning strategy via the lottery ticket
hypothesis in an iterative fine‐tuning manner. The proposed
audio‐visual system achieves significant performance in an in-
door corpus that is collected in a homeTV scenario. Themethod
introduced above is either to distill the knowledge of the audio‐
only model or to compress the AV‐WWS model by pruning. In
this paper, we propose a method to distill and compress the
knowledge of the AV‐WWS model. The student model after
distillation not only has a faster response time but also better
noise resistance.

3 | THE PROPOSED METHOD

In this paper, we propose an audio‐visual fusion network to
determine the active speaker in multi‐person scenes and detect
wake words in unconstrained utterances. The overview of the
proposed AV‐WWS architecture is illustrated in Figure 2. The
architecture consists of the following parts: a visual stream to
process the visual signals, an audio stream to process the speech
signals, the AV‐VAD module to choose the active speaker, a
fusion module to fuse the audio and visual representations, a
classifier module to predict the wake word, and a KD structure
to compress the AV‐WWS model. The model takes mouth ROI
sequences and speech sequences as the input signals of the
front‐back processing module, which includes a frontend block
for feature extraction and a backend block for temporal
modelling. Themodified ResNet‐18 [38] network pre‐trained on
LRW [39] is used for visual frontend feature extraction. The
wav2vec [40] model pre‐trained on Librispeech [41] is used for
audio feature extraction. The audio time‐frequency feature is fed
to an attention module along with the visual feature for active

F I GURE 1 Illustration of the representative audio‐visual wake word spotting framework. The audio and visual data are pre‐processed, feature extracted,
and temporal modelled separately, and then integrated with the fusion module. Finally, a classifier is applied to determine the presence or absence of wake words.
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speaker detection. Then, a transformer encoder is applied to
model and enhance the feature of each stream. Finally, the in-
formation of different streams is fused to estimate the posterior
probability of each wake word. Moreover, in order to transfer
knowledge from the teacher model to the student model, we
employ the KD method to compress the model.

3.1 | Visual stream

The frontend architecture of the visual modality is used to
capture lip motion, and its output representation reflects lip
position differences. The architecture is similar to the common
encoder in Ref. [32]. In order to capture the informative lip
position differences between frames, a 3D convolutional layer
is used to extract the temporal and spatial information of lip
motion. Then, a modified ResNet‐18 is applied to extract the
internal information of each frame. In the visual backend, a
stack of four layers of transformer encoder is employed to

model the mouth ROI sequences in the time dimension.
Through the visual feature extraction module, the input grey‐
scale image of each frame is converted into a feature vector
with a size of 512. Table 1 shows detailed information about
the network architecture of the visual stream.

3.2 | Audio stream

The unsupervised model wav2vec [40] pre‐trained on the large
speech dataset Librispeech [41] is employed in our audio
frontend module, as it is normally used for feature extraction
of WWS tasks. In the audio backend, a stack of four layers of
transformer encoder is employed to model the audio feature
sequence in the time dimension. Through the feature extrac-
tion of audio modality, the original audio signal is converted
into a feature vector with a size of 512. Table 2 shows detailed
information about the audio stream, where TS is the length of
the original audio sequence.

F I GURE 2 Illustration of the proposed on‐device audio‐visual multi‐person wake word spotting network, including a visual stream, an audio stream, an
AV‐VAD module, a fusion module, and a classifier module. In addition, the KD structure is utilised to compress the AV‐WWS model.
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3.3 | Audio‐visual voice activity detection

The AV‐VAD module is designed to select the active speaker
when multiple speakers appear on the screen at the same time.
The inputs of the AV‐VAD module include visual and audio
features, and the attention scores they generate are used to
determine who is speaking. Here, we take two people
who appear on the screen simultaneously as an example. The
network architecture of the AV‐VAD module is illustrated in
Figure 3. Firstly, the network extracts the audio representation
A ∈ RTA�DA and the visual representation, respectively, and
then stacks the extracted visual representations on a new
dimension to derive V ∈ RN�TV�DV . N denotes the number of
people in the scene, and N = 2 in this example. The visual
representation V and audio representation A are multiplied with
a weighted feature matrix to convert them into the new feature
matrix K ∈ RN�TV�DK and Q ∈ RTA�DQ , respectively. In addi-
tion, the audio representation is expanded in dimension through
the broadcast mechanism to ensure the same size as the visual
dimension. Then, the matrix multiplication operation is per-
formed on the two representations to derive the time‐score
matrix S ∈ RN�TA�TV . It is formulated as follow:

Sntatv ¼QntaqWqkKnktv; S ∈ RN�TA�TV ; ð1Þ

where W ∈ RDQ�DK is a matrix used to unify the feature di-
mensions of K and Q. Adding the time score matrix S at the
audio time dimension, the score matrix is derived as
S0 ∈ RN�TV . It estimates the correlation of each frame of the

visual representation with the overall audio sequences. We
perform softmax over the N dimension of S0 to derive the
normalised score matrix, which is formulated as follows:

S0ntv
¼
X

ta

Sntatv; S0 ∈ RN�TV ; ð2Þ

αntv ¼
eS0ntv

P
neS0ntv

; α ∈ RN�TV : ð3Þ

We calculate the average score on the visual dimension,
where the index of the maximum value Nmax is derived. The
index is used to select the input visual representation
V 0 ∈ RTV�DV . The max index is calculated as follows:

Nmax ¼ argmax
N

1
TV

X

tv

αntv; Nmax ∈ 1; 2;…;N ; ð4Þ

where Nmax is used to derive the active visual representation V0
from the total visual inputs V. The AV‐VAD module is
regarded as a classification network, which is trained with the
Cross‐Entropy loss.

3.4 | Audio‐visual fusion and classifier

LayerNorm [42] is applied to the feature dimension of each
modality before fusion to balance the multi‐modal

TABLE 1 Detail information about the network architecture of the visual stream including kernel size, stride, and padding size

Stage Layer name Output size Detail

Visual frontend Input layer TV � 112 � 112

Conv3d TV � 28 � 28 � 64 Kernel = 5 � 7 � 7, Stride = 1 � 2 � 2, Padding = 2 � 3 � 3, max pool

Conv2d‐1 ResNet18 TV � 28 � 28 � 64 Kernel = 3 � 3, Stride = 1 � 1

Conv2d‐2 TV � 14 � 14 � 128 Kernel = 3 � 3, Stride = 2 � 2

Conv2d‐3 TV � 7 � 7 � 256 Kernel = 3 � 3, Stride = 2 � 2

Conv2d‐4 TV � 4 � 4 � 512 Kernel = 3 � 3, Stride = 2 � 2

Average pool TV � 1 � 1 � 512 Kernel = 4 � 4, Stride = 1 � 1

Out‐layer TV � 512

Visual backend Conv1d TV � 512 Kernel = 1 � 1, Stride = 1 � 1

Transformer encoder TV � 512 Hidden Dim = 1024, layer num = 4

TABLE 2 Detail information about the network architecture of the audio stream including kernel size, stride, and padding size

Stage Layer name Output size Detail

Audio frontend Input layer TS � 1

Wav2vec TA � 512 Pretrained on librispeech

Audio backend Padding 2TV � 512 Padding Number = 0

Conv1d TV � 512 Kernel = 2, Stride = 2

Transformer encoder TV � 512 Hidden Dim = 1024, layer num = 4

Note: The bolded values show the best experimental results.
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representations and avoid one modality covering the whole
representation with a large variance. Decision‐level audio‐visual
fusion is used in this work. The fusion weights of audio and
visual modalities are the same and set to 0.5.

The classifier module includes a K‐max pooling layer and a
fully connected layer. In the K‐max pooling layer, the feature
vectors are summed along the channel dimension, and then the
top K‐frames with large values in the time dimension are
selected as the input to the fully connected layer. For long‐term
unconstrained input utterances, the wake words appear only in
local segments of the sequence. Thus, K‐max pooling in the
time dimension avoids introducing unnecessary redundant in-
formation by sampling in the time dimension. In the fully
connected layer, the AV‐WWS network is compressed into five
output units, representing the number of wake words. The
output represents the posterior probability of each wake word.
The Cross‐Entropy loss is applied for training the network.

3.5 | Knowledge distillation

Figure 2 shows the teacher model, the student model, and the
knowledge distillation process. The front‐back processing
module of the student visual stream is similar to the teacher
visual stream. Differently, the number of feature output
channels of the 3D convolutional layer changes from 64 to 16,
and the number of output channels of the 2D convolutional
layer changes from [64,128,256,512] to [16,32,64,128]. In the
audio feature extraction module, we employ a lightweight
CNN‐based model TC‐ResNet [37], where the backend input
size of the student model changes from 512 to 128. In the
training stage, we take the one‐hot vector corresponding to the
real label as the hard label and use the distillation temperature
TKD in a softmax function. Softening the hard label reduces
the gradient difference between the training examples of the
model to provide more information for the student model.

qi ¼
exp zi

TKD

� �

P

j
exp zj

TKD

� �; ð5Þ

where qi is the ith soft target and zi represents the ith hard
target. In the training process of the student model, the Cross‐
Entropy loss and the Kullback‐Leibler loss are applied. In the
evaluation process of the student model, we only use Cross‐
Entropy loss. The training loss function of the student
network model is defined as follows:

Lstudent ¼ λLCE þ 1 − λð ÞLKL; ð6Þ

where λ is a hyperparameter to control the importance of each
loss item.

4 | THE PKU‐KWS DATASET

Most of the audio‐visual speech datasets [32, 43] are focused
on speech recognition tasks. The datasets for speech recogni-
tion lack wake word labels. However, WWS datasets with wake
word labels are usually word level [39, 44] rather than sentence
and dialog. In addition, these datasets are recorded in simple
single‐speaker scenarios. To address the limitations of these
datasets, we collected a sentence‐level audio‐visual wake word
spotting dataset, including multi‐person dialogs in a super-
market scenario, called PKU‐KWS https://zenodo.org/re-
cord/6792058, which is publicly available for academic
research. The dataset is collected in a relatively quiet acoustic
environment with a colour camera recorded at 25 frames per
second (fps). The video resolution is 1080 � 1920. The audio
is synchronously recorded at the sampling rate of 16,000 Hz
with 16 bits for each sampling. We define five wake words
commonly used in supermarket shopping (‘Pengpeng’, ‘Nihao’,
‘Xiexie’, ‘Dazhe’, ‘Jiezhang’). These words are used to wake up
service robots, ask for checkout, inquire about discounts at
supermarkets, etc. Unlike other datasets, the PKU‐KWS
dataset is the first audio‐visual dataset of wake word spotting
based on Mandarin Chinese in a multi‐person environment.
The dataset contains 500 single‐speaker conversations, 300
double‐speaker conversations, and 200 three‐speaker conver-
sations. The content of each conversation is a common phrase
in everyday life, and there is no limit to its duration or sentence
length. Conversations may or may not contain wake words.

F I GURE 3 Network architecture of the proposed audio‐visual voice activity detection module. The colours of the arrows indicate different stages: blue for
training, red for inference, and black for both training and inference stages.
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The above scenarios are set closer to practical situations, bring
more difficulty to AV‐WWS.

Moreover, in the process of data augmentation, the super-
market background sound in the TAU‐urban‐acoustic‐scenes‐
2020‐mobile‐development dataset https://doi.org/10.5281/
zenodo.3685828 is used as added noise. The sampling frequency
of noise audio is 22,500 Hz, and it is downsampled to the audio
settings in the PKU‐KWS. The noise signal is added to the
original speech signals with different Signal‐to‐Noise Ratios
(SNRs) to evaluate the robustness of the algorithm.

5 | EXPERIMENTS AND DISCUSSIONS

5.1 | Implementation details

In the pre‐processing step, we use dlib [45] to detect and track
68 facial landmarks for each video. The features are normalised
according to the overall mean and variance. Then, a bounding
box of 112 � 112 is set to crop the mouth ROI of each person
and stack them according to the face position in the video. The
size of the mouth ROI sequence is N � 112 � 112, where N
represents the number of faces on the screen. To avoid the
influence of colour difference information on the model, we
grey the obtained colour image and then splice the output of
each frame to obtain the preprocessed mouth ROI sequence.
For each raw audio, the features are normalised according to the
overall mean and variance. During the training process, instead
of setting all sentences to a uniform duration, we standardise
the sequence duration in each mini‐batch by padding.

In the feature extraction step, we use the pre‐trained model
to extract the front‐back features of the teacher network. In
the audio stream, the unsupervised learning model wav2vec
[40] pre‐trained on the Librispeech [41] dataset is set for the
audio frontend feature extraction. In the visual stream, the pre‐
trained model on the LRW dataset [38] is employed to extract
the frontend features for AV‐VAD and AV‐WWS. In the
classifier module, the parameter of the K‐max Pooling layer is

set to K = 25. The Dropout [46] with a probability of 0.1 is
used to reduce the overfitting caused by the convergence of
different modalities at different speeds.

In the process of knowledge distillation, we only learn the
audio and visual backend, feature fusion, and classifier pa-
rameters of the teacher model. In the training process, the
Cross‐Entropy loss is applied for the teacher model, and the
loss function defined in Eq. (6) is applied for the student
model. Moreover, a series of experiments are carried out on
the hyperparameters selection of the knowledge distillation.
The experimental results are shown in Figure 4. In the training
process of the student model, the hyperparameter λ is set to
0.5, and the distillation temperature TKD is set to 3 to make the
student model perform better.

Our implementation is based on the Pytorch https://
pytorch.org library and trained on NVIDIA GeForce
GTX1660 Ti GPU with 6 GB memory. The batch size of all
experiments is set to 8. The network is trained using the Adam
optimiser [47] with decay factors β1 = 0.9, β2 = 0.999, and the
initial learning rate is 0.0001. The dataset is split with a ratio of
8:2 for training and testing, respectively.

5.2 | Evaluation metrics

We evaluate the performance in terms of the Accuracy (ACC),
Receiver Operating Characteristic (ROC) Curve, Area Under
Curve (AUC), and Equal Error Rate (EER), which are
commonly used in WWS tasks. ACC is the most intuitive metric
to evaluate theWWSmodel, which represents the proportion of
positive cases to the total samples. The AUC is the area of the
curve enclosed by the horizontal coordinate of False Positives
(FP) and the vertical coordinate of True Positives (TP). EER is
the value when False Reject (FR) and False Alarm (FA) are equal.
The lower the EER value, the higher the accuracy of the model.
The metrics are also applied in papers [48–50]. To extend the
AUC to the multi‐class task, we compute the micro‐averaging
and macro‐averaging for multiple classes. The macro‐

F I GURE 4 Hyperparameters selection of KD, where TKD is the distillation temperature to soft labels and λ is to balance the loss of the student model.
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averagingmeans that themetrics are calculated within each class,
and the resulting metrics are averaged across classes. The micro‐
averaging method aggregates outcomes across all classes and
then compute metric with aggregate outcomes. In the experi-
ment results, AUC stands for micro‐averaging AUC if not
otherwise specified.

5.3 | Baseline model

The isolated word recognition based on the audio‐visual fusion
model described in Ref. [51] is employed as the baseline model.
Differently, our baseline model takes the Mel Frequency
Spectrum Coefficient (MFCC) representations of the audio as
an input of the audio stream. In the audio frontend feature
extraction module, a 1D convolutional layer is applied to
replace the modified ResNet‐18 network.

The strategies of decision fusion and feature fusion are
commonly used for multi‐modal fusion models. We compare
the two fusion strategies on the baseline model. The architecture
of the decision fusion method and feature fusion method is
shown in Figure 5. The experimental results in Table 3 show that
the absolute accuracy of the AV‐WWS model using decision
fusion is 4.2% higher than that using feature fusion, and its EER
and AUC are also significantly higher. Through the analysis of
the experimental results, the reason why the recognition per-
formance of AV‐WWS based on decision fusion is better is that
in the process of feature fusion the model needs to conduct
secondary temporal modelling of the fused information
through the attention mechanism. However, decision fusion
only needs to consider the results of the final classifier. In the
case of limited data, the performance is more robust using the
decision fusion‐based WWS model. Therefore, in the subse-
quent experiments, decision fusion is chosen as the fusion
method for our AV‐WWS model.

5.4 | Experimental results

In this section, we evaluate the effectiveness of each compo-
nent in an ablation experiment. The proposed teacher and

student models are compared with the uni‐modal method and
state‐of‐the‐art audio‐visual methods. Finally, we evaluate the
robustness of our AV‐WWS model and each module under
different noise conditions.

Ablation Study. Results of the ablation study on the PKU‐
KWS dataset are shown in Table 4. The audio frontend is
initialised with a model pre‐trained on Librispeech [41] instead
of training a modified ResNet‐18 [39] audio frontend. In the
backend module, a further absolute gain of 0.56% is obtained
by replacing the Bi‐GRUs module with a stacked 4‐layer
transformer encoder, which implies the advantage of the
attention mechanism. Additionally, K‐max Pooling further
enhances the features to extract effective information related
to the wake word from the high‐dimensional redundant in-
formation, which results in an absolute increase of 1.21%. In
particular, an improvement of 1.89% is obtained by using the
VAD module, showing the necessary role of the proposed
VAD module in the multi‐person task.

F I GURE 5 Architecture of the baseline model with the (a) decision fusion method and (b) feature fusion method.

TABLE 3 Comparison of Baseline Models based on the decision
fusion method and feature fusion method

Fusion method Param.(M) ↓ ACC (%) ↑ EER (%) ↓ AUC (%) ↑

Decision fusion 2.39 95.52 2.53 99.68

Feature fusion 2.92 91.32 3.94 99.29

Note: The bolded values show the best experimental results.

TABLE 4 Ablation Study of the proposed AV‐WWS model on the
PKU‐KWS dataset (The last column lists the absolute improvement relative
to the baseline model.)

Method ACC (%) ↑

Baseline [51] 95.52

+ Wav2vec frontend 96.06 +0.54

+ transformer encoder backend 96.62 +1.1

+ K‐max pooling 97.83 +2.31

+ voice activity detection 99.72 +4.2

Note: The bolded values show the best experimental results.
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Comparison with Audio‐Only Method.We compare the
proposedAudio‐Visual (AV)methodwith theAudio‐Only (AO)
method under the noiseless condition in Table 5. The AV
method achieves better results than the AO method, especially
with the VAD module. Further, we compare the AO and AV
methods under different noise conditions in terms of more
metrics in Figure 6. For a fair comparison, theAV‐WWSmodel is
not equippedwith VAD andKDmodules. As shown in Figure 6,
the difference in performance between theAO andAVmodels is
9.28%ACC at the noise condition of ‐5 dB. This indicates that lip
motion from the visualmodality plays a significant role in the low
SNR acoustic environment. Similarly, the AV model is more
robust in WWS by comparison to other evaluation metrics,
demonstrating the effectiveness of audio‐visual fusion.

Comparison with State‐of‐the‐Art Methods. Our
method is compared with the previous state‐of‐the‐art method
MCNN [26]. Unlike word‐level works, our work is for more
complex unconstrained sentence‐level wake words. For the
fairness of comparison, we fine‐tune the feature extraction
network of MCNN proposed in Ref. [26] and add the K‐max
pooling layer to the backend of MCNN. As shown in Table 6,
compared with the modified MCNN, our teacher model has

higher ACC (99.72% vs. 87.57%), lower EER (0.28% vs. 6.49%),
and higher AUC (99.99% vs. 98.25%). In addition, our student
model also performs better than MCNN. In the pre‐processing
process, we use the same ROI extraction method as MCNN.
Therefore, we only consider the number of parameters of the
WWS model. MCNN has fewer parameters because it is
designed for word‐level WWS and thus does not need to deal
with sequence data in long sentences, which makes it perform
poorly in real dialog scenarios.

Knowledge Distillation. We evaluated the effectiveness
of the KD module in Table 6. After the KD process, the pa-
rameters of the model decreased significantly, and the param-
eters of the student model are 7.53 M less than the teacher
model. The reduction in accuracy is very limited compared to
the compression of parameters. Figure 6 shows the perfor-
mance of the teacher model (VAD + AV‐WWS) and the stu-
dent model (KD + VAD + AV‐WWS) under different noise
conditions. Although the performance of the student model is
lower than the teacher model when the audio signal is clean,
the ACC of the student and teacher models reaches 91.27%
and 85.07% when the SNR level is 0 dB. This indicates that the
performance of the student model is better than the teacher
model in some high‐noise situations. With limited resources,
the compressed and effective knowledge has been successfully
transferred from the large teacher model to the smaller student
model on the device.

Robustness Test. We test the proposed method under
different noise conditions in terms of ROC curves and report
the individual categories and the total results in Figure 7. Unlike
other experiments using babble noise to evaluate the robustness
of the model, we test the model in a more challenging super-
market background noise environment. As shown in Figure 7a,
the detection performance of the first wake word in the five
categories is lower than the other four categories under all noise

TABLE 5 Comparison of Audio‐Visual Method with Audio‐Only
Method under noiseless condition (with/without VAD or KD Module)

Modality VAD KD ACC (%) ↑ EER (%) ↓ AUC (%) ↑

Audio‐only � � 97.46 1.12 99.79

Audio‐visual � � 97.83 1.19 99.94

✓ � 99.72 0.28 99.99

✓ ✓ 94.08 2.81 99.38

Note: The bolded values show the best experimental results.

F I GURE 6 Performance under different noise conditions in terms of (a) Accuracy, (b) Equal Error Rate, and (c) Area Under Curve. AO‐WWS: audio‐only
model, AV‐WWS: audio‐visual model, VAD + AV‐WWS: teacher model, KD + VAD + AV‐WWS: student model.

TABLE 6 Performance and parameters comparison with state‐of‐the‐art methods

Method Param. (M) ↓ ACC (%) ↑ EER (%) ↓ AUC (%) ↑

Teacher model 9.45 99.72 0.28 99.99

Student model with KD 1.92 94.08 2.81 99.38

Student model without KD 1.92 90.42 4.22 99.17

MCNN [26] 0.83 87.57 6.49 98.25
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conditions, exhibiting a lower ROC curve. The first wakeword is
a reduplicated word “Pengpeng”, which is pronounced
continuously or quickly by speakers in daily use, and different
speakers have different pronunciation habits for reduplicated
words, resulting in a lower recognition accuracy than other
words. We further test the robustness of the VADmodule under
different noise conditions, and the results are shown in Figure 6.
The VAD + AV‐WWS model (teacher model) results in an
absolute improvement of 16.64%, 6.1%, and 9.64% over the
AV‐WWS model in terms of ACC, EER, and AUC under high
noise levels (‐5 dB), respectively. Because the VAD module
greatly reduces the redundancy of visual information and thus
performs much better in multi‐person scenarios, especially in
low SNR acoustic environments.

5.5 | Visualisation results

Figure 8 shows the visualisation of the proposed AV‐WWS
model. Here, take the case of three people appearing on the
screen at the same time as an example. The top left shows the
input visual stream. The upper right shows the detection result
of the whole model. The bottom left shows the extraction result
of the face lips. Due to the limited display space, we only show a
few frames of the lip image. The lower right shows the result of
the selection of the speaker's face obtained by the attention‐
based AV‐VAD module. In the AV‐VAD results, the figure
shows the active speaker score for each frame, where different
speakers are represented by different colours. As shown in the

detection result (green bounding box) of the model in Figure 8a,
the active speaker p2 in the video is speaking. Meanwhile, the
corresponding AV‐VAD results show that the green marker
representing p2 fills most of the time frames. The visualisation
demonstrates the accuracy of the proposed active speaker
detection module. The performance of AV‐WWS can be
significantly improved by reducing unnecessary redundancy by
removing visual features of non‐speakers. As seen from the AV‐
WWS results, the posterior probability of the correct category is
considerably higher than other categories, showing the effec-
tiveness of the proposed model.

6 | CONCLUSION

In this paper, we propose a novel audio‐visual model for the
challenging multi‐person wake word spotting task. We design
an attention‐based audio‐visual voice activity detection module
to reduce redundant visual information from irrelevant per-
sons in multi‐person scenes. We introduce the knowledge
distillation method to compress the model parameters to meet
the low computational complexity requirements on the on‐
device level. The compressed student model maintains a
competitive detection accuracy rate while significantly reducing
parameters. In noisy environments, the audio‐visual fusion
method can significantly improve the performance of WWS
with the benefit of the lip information provided by the visual
stream. Unlike word‐level WWS, our approach achieves accu-
rate detection in unconstrained utterances or conversations,

F I GURE 7 ROC curves for each category and all categories under different noise conditions. Micro‐averaging and macro‐averaging calculate the overall
performance of multiple categories using two statistical methods. The larger the area under the ROC curve, the better the reliability of the classification.
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which is closer to practical application scenarios. Future work
will focus on large‐scale wake word spotting, rather than rec-
ognising a limited number of words.
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