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Abstract

Dynamical systems are mathematical models expressing cause-e�ect
relations of time-varying phenomena. This thesis focuses on learn-
ing dynamical systems from empirical observations. Three settings
are considered: unsupervised, supervised, and active learning. The
unifying goal is to extract predictive information from data.

A method is introduced to cluster time-series and perform model
validation. The method addresses order and model selection with
the principle of Approximation Set Coding [Buhmann (2010)]. Ex-
perimental veri�cation is performed in the context of relational clus-
tering of temporal gene expression pro�les. The results demonstrate
wide applicability and consistency with the Bayesian Information Cri-
terion. Then, discrete dynamic transitions are reconstructed from
high-dimensional time-series with an unsupervised approach. The
approach, based on Hidden Markov Models over Gaussian Mixtures,
is applied to predict cell morphology classes from time-resolved mi-
croscopy data. Experimental validation with �uorescent markers and
screening data demonstrates accurate identi�cation of human cell phe-
notypes. Reported results highlight competitiveness and increased
objectivity in comparison to supervised approaches based on user la-
beling.

In the supervised setting, clustering is employed to improve con-
ventional particle �ltering for generalized state estimation. Preven-
tive clustering mitigates the inevitable divergence of resampling for
sequential Monte Carlo methods. Supervised learning with dynamic
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Bayesian Networks is employed to model human learning for e�ective
treatment of learning disabilities. In dyslexia, the model predicts for-
getting, focus and receptive states of the subject on the basis of input
behavior. In dyscalculia, numerical cognition is enhanced through
model-based adaptive training.

In the context of active learning, the thesis focuses on the near-
optimal design of experiments for dynamical system modeling. An
e�cient method is introduced to select informative time points and
measurable quantities. The design method is guaranteed to yield
near-optimal informativeness with a polynomial number of evalu-
ations of the objective function. The method builds on previous
work on submodular active learning [Krause and Guestrin (2005)]
and achieves the best possible constant approximation factor, unless
P=NP [Feige (1998)]. Experimental design is applied to the recon-
struction of cell signaling networks in systems biology.

The introduced contributions highlight fundamental analogies be-
tween learning and communication. In conclusion, the results demon-
strate that predictive models can be built from e�cient strategies of
information transmission over a noisy channel. On the basis of statis-
tical arguments, the presented results formalize and automate aspects
of the hypothetico-deductive method of scienti�c inquiry.
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Chapter 1

Introduction

�It is those who know little, and not those who

know much, who so positively assert that this or

that problem will never be solved by science.�

� C. R. Darwin

This chapter starts by outlining the content of the thesis. Focus
and motivation are described in the �rst paragraph. The second para-
graph gives an introductory survey of the relevant literature, and is
followed by a �rst positioning of the work. The organization of the
manuscript and the main contributions of the thesis are described in
the following. For clarity, the last section of the introduction contains
an informal explication of the terminology used through the text, as
well as of the most commonly used abbreviations. Before the bibli-
ography, the nomenclature consists of a topic-wise description of the
formal notation.

Focus of the thesis. The thesis focuses on modeling dynamical
systems from empirical observations. Dynamical systems are powerful
tools to predict and control time-varying phenomena. At present, dy-
namical models are employed in a variety of domains, such as physics,
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CHAPTER 1. INTRODUCTION

economics, biology, medicine, and engineering. They are fundamen-
tal: the foundation of entire scienti�c theories relies upon them. Dy-
namical systems are particularly useful models which express cause-
e�ect relations between the interacting components of a system.

This work entertains the idea that the value of a dynamical system
depends, among other things, on its predictive capacity with respect
to an objective. In the hands of a modeler, dynamical systems can
be employed as mathematical tools useful for prediction. Ultimately,
the expected quality of such predictions depends on the amount of
available information regarding the relevant aspects of the problem.
The modeler extracts such information from empirical observations
as well as, when possible, by incorporating previous knowledge. The
modeling process often involves both the estimation of the internal
states over time, as well as of the structural interactions between the
components of the system state. The models are, in practice, identi-
�ed through a combination of assumptions and accumulated evidence.
The central question is: on the basis of �nite and noisy observations,
which dynamical system should be selected for a certain application?
In this thesis, the value of a dynamical system is established by its
ability to perform accurate predictions within the application scope.
To make the goal precise, the evaluation of the predictive power re-
quires a formal de�nition of success in prediction. On the basis of
statistical arguments, the presented results aim at formalizing and
automating aspects of the hypothetico-deductive method of scien-
ti�c inquiry [Whewell (1837)]. Information theory provides a formal
framework to quantify uncertainty in terms of transmission rates over
communication channels. The theory constitutes the central theme
and the mathematical cornerstone on which the following results are
based upon.

Main motivation. By construction, dynamical models include time
as an independent variable. The models are able to incorporate reg-
ularities beyond those exhibited by primarily static (or stationary)
phenomena. Modeling of dynamical systems can be de�ned as the
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discipline which aims at selecting dynamic models from empirical ob-
servations. This research �eld has a long and successful history, and
currently o�ers important questions which remain open to further
research and improvement. A relevant epistemological question is:
how to perform induction? In technical terms, the question becomes:
how to build a learning agent? At present, learning agents are based
on estimation techniques which are empirically evaluated within the
scope of a given task. Some approaches are more general than oth-
ers, and are applicable to multiple concrete problems [Nelles (2001)].
Reasonable claims of universality are based on an assumption which
is often implicit: phenomena of interest do not exhibit absolute arbi-
trariness. They do exhibit special regularities which, however, might
be partially unknown to the modeler. Dynamical models aim at cap-
turing the regularities which can be expressed as interactions between
the constituting components of the system. In this sense, modeling
consists of capturing such regularities from a �nite set of empirical
observations. When such observations are obtained in a controlled
setting, the measurements qualify as experimental data. Ideally, the
models obtained from data re�ect the available evidence and the as-
sumptions taken by the modeler. In many applications, however,
data acquisition is a signi�cantly resource-demanding process. Direct
inspection of the inner workings of the system is often not possible
to the modeler, and thus datasets may consist of scarce and noisy
indirect observations. The limitation is severe because the expected
quality of the model predictions is constrained by that of the available
data. How to reliably extract genuine regularities from scarce data?
On the one hand, the modeler aims at capturing as many regularities
as possible from the available observations. On the other hand, the
modeler should �lter out the spurious noise e�ects to avoid prediction
errors. Noise �ltering is necessary to avoid confusing noisy �uctua-
tions as genuine regularities. In a prediction scenario, there exists
a justi�ed tradeo� between the two antagonistic goals: the optimal
balance yields the lowest error rate. How to de�ne and calculate such
a tradeo�? The available answers are well-justi�ed but incomplete
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CHAPTER 1. INTRODUCTION

[Nelles (2001); Bishop (2006); MacKay (2003)]. The results presented
in this thesis aim at contributing to this active �eld of research.

Introductory Survey of the Field. A variety of mathematical
methods are employed to model dynamical systems. In its essence,
the �eld can be seen as a branch of control engineering which signi�-
cantly overlaps with statistics and machine learning. In many cases,
it shares not only the goals of these disciplines, but also the mathe-
matical tools [Bishop (2006); MacKay (2003)]. There exists a rich and
comprehensive literature of the �eld, which is condensed in this brief
introduction. Precise surveys are postponed to the respective sections.
For now, it su�ces to refer the reader to a �eld of large applicability:
Model Predictive Control (MPC) [García and D. M. Prett (1989)].
MPC is theoretically sound and practically useful: it makes a direct
use of explicit and separately identi�able models to control physical
processes. Of direct relevance to the topics of this thesis are two set-
tings: that of modeling with non-linear systems and of learning under
signi�cant uncertainty. The former setting exhibits challenges whose
nature is primarily computational. In many practical problems, the
computational limitations of estimation are enormously aggravated
by the fact there are no known regularities which can provide an ad-
vantage for optimization. However, there also exist cases in which
such knowledge is available. This is often the case for concrete ap-
plications with well-studied models [Nelles (2001)]. High uncertainty
remains, however, a separate issue: it is exhibited when the modeler
has limited access to data which are very noisy. In such cases, the
modeler may not be able to satisfy an important requirement: that of
quantifying and assessing the uncertainty associated with the results.

Systems biology is a domain in which the described conditions
constitute the norm, rather than the exception. On the one hand,
bio-medical experimentation is particularly resource-demanding. On
the other hand, the investigated phenomena seem to exhibit excep-
tional complexity. As a research �eld, modeling of dynamical systems
overlaps with active learning when actions are possible. The �eld
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of system identi�cation covers the design of experiments aimed at
predictive modeling [Pronzato (2008); Atkinson and Donev (1992)].
Experimental design can be seen as a research area at the interface
with statistics. It encompasses the design of passive strategies, as well
as of active ones. In the passive setting, the modeler selects a subset
of measurable quantities from a pool of available candidates. This
case is in contrast to that in which interventions are performed by
an agent, which might, for instance, exercise its agency through the
actuation of input perturbations [He and Geng (2010)]. A comprehen-
sive literature covers both passive as well as active design strategies
[Pronzato (2008); Chaloner and Verdinelli (1995)]. Established pro-
cedures have been recently applied to related domains, such as those
involving Partial Di�erential Equations (PDEs) models [Banks and
Rehm (2013)].

In summary, a central theme is that of de�ning and selecting the
optimal trade-o� between model informativeness and estimation sta-
bility [Buhmann (2010)]. The issue is of theoretical as well as practical
importance: which model best generalizes the available data?

Positioning of the work. The work presented in the next chapter
interfaces with multiple research areas: unsupervised (cluster vali-
dation), supervised (parameter estimation and model selection), and
active learning (experimental design) [Nelles (2001); Bishop (2006)].
The central topics in the thesis are uni�ed by a common theme: in-
formation theory provides a useful framework to evaluate the predic-
tive power of dynamic models [Cover and Thomas (1991); MacKay
(2003)]. From a mathematical perspective, the thesis is based upon
three main frameworks: probability, information, and systems the-
ory. The contributions presented here are primarily methodological
and exhibit wide applicability. They are motivated, however, by open
questions in systems biology and human learning.

Organization The thesis is organized as follows. This chapter is
introductory: it describes structure and main contributions of the
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CHAPTER 1. INTRODUCTION

thesis. The second chapter contains the necessary background and
lists the main assumptions. The background consists of basic notions
from systems theory, probability theory, and information theory. Re-
sults are organized in three chapters: supervised, unsupervised, and
active learning of dynamical systems. The conclusion discusses the
reported results, and provides an analysis of limitations and potential
improvements.
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1.1. CONTRIBUTIONS

1.1 Contributions

�If I have seen further, it is by standing

on the shoulders of giants.�

� I. Newton

The contributions encompass multiple aspects of information the-
oretic modeling of dynamical systems. The organization follows the
structure of the three chapters described below. Detailed results are
reported in the respective sections and summarized in the conclusion.

• Unsupervised learning: (Chapter 3)

� Clustering of time series and validation (Sec. 3.1)
Objective 1: which measured trajectories are statistically
distinguishable? The task consists of selecting cost models
for clustering multivariate time series.
Motivation: when one can select between cost models, it is
often a central issue to decide which model best generalizes
the available observations. Approximation Set Coding is
a recently introduced principle which exhibits the poten-
tial to address the issue of model selection in this setting
[Buhmann (2010)].
Contribution: an ASC-based method is introduced to per-
form order and model selection of costs for relational clus-
tering of time series.

� Modeling of high-dimensional sequences (Sec. 3.2)
Objective 2: how to build a dynamic model from high-
dimensional data sequences without supervision? The task
of estimating the dynamic transition function aims at cap-
turing the behavior in a space of statistically distinguish-
able system states.
Motivation: human labeling of sequential data such as im-
age patches is not only time-consuming, but also tends
to lack self-consistency. Automated procedures are highly
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CHAPTER 1. INTRODUCTION

desirable because they enable objective inference with re-
producible and coherent results.
Contribution: a method is introduced with the aim of re-
constructing the dynamics of a system which evolves in
a high-dimensional space. The method is applied to mi-
croscopy image analysis; validation is performed with cell
cycle data and compared with supervised results.

• Supervised learning: (Chapter 4)

� Preventive resampling for generalized state estima-

tion: (Sec. 4.1)
Objective 3: how to reliably estimate the parameters of
a dynamic system from time series? Bayesian approaches
such as particle �ltering approximate the posterior distri-
bution of the parameters through sampling. However, they
tend to su�er progressive information loss due to sample
impoverishment and approximation degeneracy.
Motivation: particle �lters are established techniques whose
applicability is limited by computational constraints. Im-
proving the e�ciency of the techniques is important to
extend the scope of practical applicability of the methods.
Contribution: a preventive approach is introduced to miti-
gate the information loss due to divergent approximations
based on conventional resampling for generalized state es-
timation.

� Quality assessment of heuristic solutions for global

optimization problems: (Sec. 4.2)
Objective 4: what is the relative position of a solution ob-
tained from a given heuristic approach to optimization?
Optimization problems are often computationally hard to
solve. The available solutions obtained heuristically might
not be globally optimal. The task is to estimate how many
solutions are better than the best available heuristic ap-
proximation.

12



1.1. CONTRIBUTIONS

Motivation: many tasks are formulated as optimization
problems exhibiting unknown regularity. In such cases, it is
useful to know at least the uncertainty associated with the
relative position of the available solutions obtained with
heuristic procedures. Such results are directly applicable
to statistical estimation and to the design of experiments.
Contribution: a probabilistic bound is obtained to empiri-
cally quantify the uncertainty regarding the quality of op-
timized solutions. The bound is based on the argument
of the proof of the symmetrization lemma from statistical
learning theory [Bousquet et al. (2004)].

� Modeling human learning dynamics for the treat-

ment of dyslexia and dyscalculia: (Sec. 4.3)
Objective 5: how to model aspects of human learning to
develop targeted treatments for disabilities? Ideally, the
model should capture the learning rate of a subject and
other time-varying quantities from on-line observations.
On the basis of such information, a software tutoring sys-
tem can be employed to optimize the process of learning
by selecting appropriate actions.
Motivation: feature selection is one of the main challenges
in modeling human learning. Predictive features are im-
portant to estimate knowledge states and improvement
over time. Targeted treatment of learning disabilities ben-
e�ts from model-based selection of e�ective interactions.
Contribution: treatment of dyslexia and dyscalculia is im-
proved by employing dynamic models. Experimental val-
idation demonstrates the predictive power of the models
and their ability to enhance human learning.

• Active learning (Chapter 5)

� Near-optimal design of experiments for modeling

with dynamical systems: (Sec. 5.1)
Objective 6: which observations improve estimation with
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CHAPTER 1. INTRODUCTION

dynamical system? The modeler aims at actively tuning
experimental variables to perform better predictions.
Motivation: experiments are often resource-demanding. The
rational allocation of such resources is important to achieve
high e�ciency in learning.
Contribution: a near-optimal design method is introduced
to select informative time points and measurable quanti-
ties. The method exhibits formal performance guarantees
of near-optimality, which are proven by building on previ-
ous work [Krause and Guestrin (2005)].
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CHAPTER 1. INTRODUCTION

1.2 Terminology and Abbreviations

�My di�culty is only an � enormous � di�culty of

expression.�

� L. Wittgenstein (transl.)

For clarity, this section explains some terms used through the text.
These informal de�nitions serve the purpose of introducing the reader
to the setting of the study. Formal de�nitions are introduced in the
respective sections. The interdisciplinary nature of the work requires
an additional e�ort to explicate the terms which are shared among
several disciplines. The author apologizes in advance for slight abuses
of terminology. Particular emphasis has been placed on terms with
overloaded (and context-speci�c) connotations, such as �model� and
�hypothesis�.

• Computation: the process of deterministic execution of a �nite
sequence of symbolic operations. The thesis deals with com-
putation in the abstract, that is regardless of physical imple-
mentation. Results are based on the notion of digital computa-
tion and, more precisely, on the relation between abstract and
concrete computation expressed by the Church-Turing Thesis
[Church (1932); Turing (1937)].

• Measurement: the process of obtaining and recording numerical
data from the studied phenomenon. The observational quanti-
ties obtained through the operation of an experimental appara-
tus are referred to as measurement data.

• Epistemic Agent: a learning entity which is capable of computa-
tion and action. The agent exhibits internal consistency, means-
end coherence, and consistency with belief acquired through
passive or active observations [Bratman (1987)]. In this work,
the epistemic agent de�nes a formal modeling system. Such sys-
tem is capable to process information, retrieve and record data,
perform measurements and interventions.
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1.2. TERMINOLOGY AND ABBREVIATIONS

• Hypothesis: a candidate explanation for a phenomenon. Hy-
potheses must be amenable to statistical testing and are con-
sistent with all observations available to the epistemic agent. A
priori, candidate hypotheses formalize aspects of a phenomenon
which are not conclusively explained on the basis of previous
data. Hypotheses are �simple� in the sense that they represent
individual candidate explanations [Grünwald (2007)].

• Model: mathematical description shared by a set of hypotheses
regarding a phenomenon. In contrast to hypotheses, models are
sets of candidate explanations with common properties (such
as, for instance, exhibiting identical functional forms but with
di�erent parameters). In the statistical literature, hypotheses
are also known as �simple hypotheses�. This de�nition is in
contrast to models, which are called �composite hypotheses�.

• Data: structured aggregates of measurement observations avail-
able to the epistemic agent. In this work, data are represented
and processed numerically.

• Belief State: internal state of an epistemic agent which mea-
sures the subjective plausibility of events. In learning, beliefs
are de�ned over the set of hypotheses, that is the hypothesis
class. Belief states are self-consistent and time-varying: their
update follows the rules of inference and depends on the avail-
able data. Whereas belief states a priori are subjective, justi�ed
belief states a posteriori follow deterministically from the priors.

• Dynamical System: time-dependent hypothesis which aims at
capturing relations between internal states, inputs and outputs
of a physical system (that is the data generator). Dynamical
systems are able to express cause-e�ect relations between the
variables.

• A Priori: the belief state of an epistemic agent before the ob-
servation of data.
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• A Posteriori: the belief state of an epistemic agent after the
update of the prior on the basis of the newly available data,
which consist of single or multiple measurement instances.
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1.2. TERMINOLOGY AND ABBREVIATIONS

The following abbreviations appear in the text:

Alg. : Algorithm
Def. : De�nition
Fig. : Figure
Obj. : Objective
Sec. : Section
Tab. : Table

Asc : Approximation set coding
Bic : Bayesian information criterion
Cc : Correlation clustering
Ci : Con�dence interval

Cse : Constant shift embedding
Dbn : Dynamic Bayesian network
Em : Expectation maximization
Ess : E�ective Sample Size

Fn/Tp : False negative/positive
Hmm : Gaussian mixture model
Gs : Gold standard

Hmm : Hidden Markov model
Iid : Independent identically distributed
Ivp : Initial value problem
Map : Maximum a posteriori

Mcmc : Markov chain Monte Carlo
Mdl : Minimum description length
Mpc : Model predictive control
Ode : Ordinary di�erential equation
Pc : Pairwise clustering
Pca : Principal component Analysis
Pde : Partial di�erential equation

RNAi : RNA interference
Sd : Standard deviation
Sde : Stochastic di�erential equation
Smc : Sequential Monte Carlo
Svm : Support vector machine
T3c : Temporal constrained combinatorial clustering

Tn/Tp : True negative/positive
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Chapter 2

Background

�Those who are in love with practice without

knowledge are like the sailor who gets into a ship

without rudder or compass and who never can be

certain whether he is going.�

� L. Da Vinci (transl.)

This chapter recapitulates basic notions from systems theory, prob-
ability theory, and information theory. The expert reader can skip the
�rst three sections, which cover the minimal introductory background.
The end of the chapter lists the main assumptions on this work. De-
spite the simplistic nature of the assumptions, they constitute a useful
starting point to clarify the scope of the reported results. For reasons
of space, these sections gloss over technical subtleties. Further in-
sights are left to the specialized literature in the respective �elds.
The presented notions are covered in considerable depth by the liter-
ature [Hopcroft et al. (2007); Li and Vitányi (1997); MacKay (2003);
Jaynes (2004); Cover and Thomas (1991); Nelles (2001)].
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CHAPTER 2. BACKGROUND

2.1 Systems Theory

�Science is what we understand well

enough to explain to a computer.

Art is everything else we do.�

� D. E. Knuth

The term dynamical system typically refers to the model of a
natural or arti�cial phenomenon which is referred to as the physical
system. In engineering applications, dynamical systems are used for
control, design, diagnosis, simulation and optimization. In a learning
setting, a dynamical system Σ can be seen as a tool aimed at predic-
tion. The learned system captures aspects of interests of the studied
physical system Σ∗. Dynamical systems are often modeled through
the combination of �rst-principle assumptions and experimental data
[Nelles (2001)].

2.1.1 State-space Modeling

Among the existing alternative de�nitions, this thesis de�nes dynam-
ical systems as computable state-space models. State-space models
express input-output relations in terms of causal e�ects between the
internal states of a system. In this study, however, the modeler is
unable to observe the inner workings through direct inspection.

Let X denote the state space, that is the set of all possible distin-
guishable states x of a system. The state space might be continuous or
discrete, depending on the case. Let nx ∈ N>0 denote the dimension
of the state space.

Let T ⊂ R be the discrete set of time points ti from the initial
time point t0, i ∈ N. Every pair of time points (ti, tj) ∈ T 2 obeys the
total order ti > tj induced by the ordering i > j of the indexes.

The transition function F : X × T → X maps current states onto
consequent ones (in some cases, the de�nition may be restricted to
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time-invariant transition functions). The function is the map

F : (ti, x(ti)) 7→ x(ti+1). (2.1)

De�nition 1. A dynamical system Σ is de�ned as

Σ := (X , T ,F), (2.2)

where X is the state space, and T is a set of time points. The system
obeys the transition function F(x, t).

It is worth noting that, with the provided formulation, the mem-
ory of the system solely consists of the con�guration expressed by
the current state. De�nition 1 captures a simplistic notion of causal
deterministic behavior. It is, however, in theory su�cient for our
purposes. The de�nition, in fact, captures a rich set of possible be-
haviors [Li and Vitányi (1997)]. The scope of the de�nition includes
a dynamical system capable of universal computation: a universal
Turing machine U [Turing (1937)]. Universal Turing machines are
theoretical systems which are able to emulate the behavior of any
other Turing machine without any loss of information [Hopcroft et al.
(2007)]. The Church-Turing thesis states that the set of all numerical
functions amenable to e�ective computation coincides with the class
of partial recursive functions (that are those calculated by Turing ma-
chines) [Turing (1937); Church (1932); Li and Vitányi (1997)]. When
Σ de�nes a universal Turing machine, the function F implements a
universal partial recursive function [Li and Vitányi (1997)].

In its full generality, systems theory also considers systems beyond
those of Def. 1. The set of considered systems includes, for instance,
stochastic and continuous dynamical systems (with continuous time
and state space). In the thesis, such systems are considered within
the limits of their e�ective numerical approximation. In the case
of stochastic and continuous systems, the results that follow apply
to their numerical approximation [Stoer (2002)]. Consistently with
that, data representation and information processing are intended to
be algorithmic in nature.
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The transition function F de�nes explicitly the causal relations
among the components of the state. It also de�nes implicitly the
trajectory of the system over time. The initial condition of the system
Σ is denoted as

x0 := x(t0) ∈ X . (2.3)

The trajectory of length s+ 1 for the system Σ from x0 is

ϕ := (x(t0), . . . , x(ts)). (2.4)

So far, the de�nitions described only autonomous dynamical sys-
tems, that are systems without input interventions. When the activity
of the epistemic agent is limited to passive modeling, the transition
function already incorporates by de�nition all external inputs and
in�uences (through time-dependency, for instance). There are other
cases, however, which are interesting in the context of active learning.
When the agent can interact with the system, input interventions are
considered explicitly in the de�nition of Σ.

In the non-autonomous case, the dynamical system Σt is subject
to series of instantaneous input interventions

u := (u(t0), . . . , u(ts)). (2.5)

Each intervention is denoted as u(t) ∈ U , for the intervention space
U . The interventions in�uence the behavior of the system through
the transition function. In the active setting, the de�nition of F is
extended to

F : (ti, x(ti), u(ti)) 7→ x(ti+1). (2.6)

2.1.2 Di�erential Models

In the rest of the manuscript, continuous dynamical systems are de-
�ned in terms of di�erential equations. For systems of ordinary dif-
ferential equations (ODEs), the system ΣODEs is de�ned as follows.
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De�nition 2. A system of ODEs ΣODEs is given by

dx(t)
dt

= FODEs(x(t), θ), (2.7)

where the function FODEs denotes the system of equations de�ning the
in�nitesimal increments in the trajectory over the state space.

The reader should note that system of ODEs may exhibit time-
dependency as well. The numerical approximation of such system
is performed up to a tolerance which is �xed a priori. The results
that follow assume negligible numerical errors for the discretization
of the system. Analogous de�nitions are introduced for systems of
Stochastic Di�erential Equations, which are introduced in Sec. 3.2.

The parameter vector of Eq. (2.7) is denoted as θ ∈ Θ, and de�ned
over the parameter space Θ. The functional form FODEs is an example
of a model M , that is a family of hypotheses sharing the functional
form of Eq. (2.7) in the range of parameters de�ned by Θ. When
modeling, the model classM is assumed to be �xed a priori. It may,
however, still be data-dependent, as in clustering. From a model M ,
hypotheses are identi�ed with their individual parameters θ ∈ Θ. In
a learning scenario, the modeler is often assumed to know X and
T . In this setting, the modeler aims at estimating from the data the
function F∗ of the physical process Σ∗ := (X , T ,F∗).

For a given initial condition x0, one can determine the integral
solution of the system over time. The task constitutes a conventional
initial value problem (IVP). Whereas the solution of IVPs is straight-
forward for discrete cases, the de�nition of continuous IVPs may re-
quire careful restrictions on the set of allowable functions describing
the in�nitesimal transitions in the state space. All results in the thesis
assume that the necessary conditions for the well-posedness of IVPs
are satis�ed. Well-posedness is de�ned in the sense of Hadamard1.
The requirement extends to the numerical approximations of Eq. (2.7)
and of other di�erential systems such as those described by delay or

1Informally, a problem is well-posed when its solution exists, is unique, and
depends continuously on the data [Hadamard (1902)].
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partial di�erential equations (DDEs and PDEs, respectively). Alter-
native formulations are also considered through the text, including
hidden Markov models and dynamic Bayesian networks. The formal
de�nition of these model classes is postponed to the relevant chapters.

2.1.3 Noisy Time Series Data

In the thesis, the epistemic agent is able to perform imperfect mea-
surements of the physical system Σ∗. The experimental observations
available to the modeler consist of �nite datasets which are noisy.
Noise terms are here denoted as ν and distributed according to the
respective distributions N(N ). The noise variables are de�ned over
the noise space N . When measuring the state of Σ∗ at time point ti,
for every i, the observer obtains the readout samples

y(ti) := h(x(ti), ti, νi) (2.8)

where
h : X × T ×N → Y. (2.9)

The measurement space is denoted as Y. Measurements are taken at
the time points

T ↓ ⊆ T , (2.10)

where the �nite sample size is

n := |T ↓|. (2.11)

Individual trajectories measured at time points T ↓ are denoted as

ψ := (y(tj), . . . , y(tn)), (2.12)

with 1 ≤ j ≤ n. Time series are obtained by combining trajectories
with the respective sampling points, giving

Ψ := {(tj , y(tj))}tj∈T ↓ . (2.13)

Data availability and noise level are de�ned by the experimental
setting. Individual experiments are de�ned as ε ∈ E, over the space
of experimental settings E.
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De�nition 3. The experimental setting ε ∈ E can be de�ned as

ε := (T ↓, N, h). (2.14)

Experimental design aims at selecting the best ε according to a
given objective. In practice, the process of design amounts to setting
the tunable parameters of ε to the most informative values. Sec-
tion 5.1 adopts a simpler de�nition for ε: the experiment consists of
a set of indexes which refer to individual observations, thus indirectly
operating on h.
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2.2 Probability Theory

�One sees, from this Essay, that the theory of

probabilities is basically just common sense

reduced to calculus.�

� P.-S. Laplace (transl.)

This section recalls the basics of probability theory, which plays
a central role in many (but not all) approaches to learning [Bishop
(2006)]. Currently, probability theory remains the prevalent frame-
work to quantify and update the justi�ed belief states of epistemic
agents. It is, however, not the only option available to the modeler.
An alternative to probability theory would be given, for instance, by
possibility theory [Dubois and Prade (1988)] (which is based on fuzzy
set theory [Zadeh (1978)]). Another alternative could be Dempster-
Shafer theory of belief functions [Dempster (1968); Shafer (1976)]. In
contrast to probability theory, transferable belief model theory [Smets
and Kennes (1994)] separates belief from decisions2. Discussing about
the relative merits of alternative approaches to quantify belief would
be epistemologically interesting and intellectually valuable, but the
topic goes beyond the scope of this work. The thesis is based on
probabilistic grounds, which also constitute the foundation of (classi-
cal) information theory [Cover and Thomas (1991)].

Probability theory has been formalized according to alternative
sets of axioms. At this point, it is important to note that the frame-
work of probabilistic inference is not a choice made ad-hoc: there
exist di�erent sets of axioms for belief quanti�cation which invari-
ably lead to the conventional rules of probability [Bishop (2006)].
Alternative formalizations of probability theory are di�erent in phi-
losophy and purpose. Among others, there exist theories of Ram-
sey [Ramsey (1931)], Kolmogorov [Kolmogorov (1933, 1965)], Cox

2The formalization rejects the validity of betting arguments which are widely
employed to justify probabilistic belief.
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[Cox (1946, 1961)], Good [Good (1950)], Savage [Savage (1961)], de
Finetti [de Finetti (1970)] and Lindley [Lindley (1982)]. They sug-
gest di�erent interpretations3, but the distinguishing technical details
seem to be negligible for most practical purposes. As a �rst drastic
simpli�cation, it is customary to de�ne the two main interpretations
of probabilities as either classical (sometimes called frequentist) or
Bayesian. It is important to highlight, however, that no single classi-
cal or Bayesian interpretation exist [Bishop (2006); Jaynes (2004)].

2.2.1 Modeling Justi�ed Belief

The thesis subscribes to the Pólya-Cox axioms, which assign proba-
bilities on logical grounds. Pólya-Cox axioms satisfy three minimal
desiderata of rationality and consistency [Cox (1946); Jaynes (2004)].
To formalize these ideas, let us denote B(ρ) as the degree of belief in
proposition ρ, and B(ρ|%) as the degree when % is true. In brief, the
axiomatic desiderata are [Jaynes (2004); MacKay (2003)]:

PC-A1: Probability values are divisible, comparable, bounded,
and depend on the available information4:

B : Ξ→ [0, 1], (2.15)

where Ξ is a set of propositions.

PC-A2: The degree of belief in a proposition ρ ∈ Ξ is a function
of its negation ¬ρ ∈ Ξ:

B(ρ) = χ[B(¬ρ)],

for a certain function χ.

3Even the term �interpretation� is not strictly applicable in its typical sense to
this topic. A more de�nition would be �explication� [Carnap (1945)], since there
does not exist a single formal system of probability. This topic is philosophically
important and deserves attention, but goes beyond the scope of this work.

4Probabilities are here arbitrarily (yet conventionally) normalized between
B(False) = 0 and B(True) = 1. The choice is without any loss of general-
ity.
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PC-A3: The degree of belief in the conjunction of ρ ∈ Ξ and
% ∈ Ξ is a function of the degrees of plausibility of ρ given %
and that of % alone:

B(ρ ∧ %) = ζ[B(ρ|%), B(%)],

for a function ζ.

In the limit of absolute certainty, these requirements are consistent
with Aristotelian deductive logic obeying a Boolean algebra. No-
tably, the formalization generalizes Aristotelian logic by including
weak (but still valid) syllogisms [Jaynes (2004)]. The axioms, in con-
junction with the additional di�erentiability condition for ζ, deter-
mine uniquely the set of valid reasoning rules (up to normalization)
[Jaynes (2004)]. Invariably, one has that B(ρ) ≡ p(ρ). The obtained
rules consist of the (familiar) sum and product rules of conventional
probability calculus. In the end, all existing de�nitions of probability
invariably lead to the same set of rules. In probability theory, the
justi�cation of any set of axioms is currently not undisputed [Jaynes
(2004)]. However, it is noteworthy that the Pólya-Cox system is in es-
sential agreement with that derived from Kolmogorov's axioms. The
di�erence between the two is primarily epistemological: Pólya-Cox
axioms provide a foundation based on logic [Jaynes (2004)].

Several of the results in this thesis are better understood within a
Bayesian framework, while others, such as Approximation Set Coding
(ASC), not necessarily. In the Bayesian setting, distributions quantify
the belief state of the epistemic agent [Bishop (2006); Jaynes (2004)].
Bayesian belief states are thus subjective, yet not arbitrary. In fact,
they are justi�ed on the basis of the available evidence [Jaynes (2004)]
and coincide under the same priors. The Bayesian perspective is in
contrast to the interpretation of probabilities in terms of frequencies of
random and repeatable events. In all cases, probabilities are intended
as carriers of information5. The isomorphism of the alternative def-

5To be more precise, it would be better to talk about probabilities in terms
of carriers of incomplete information, that is uncertainty. This subtle but impor-
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initions of probability makes the axiomatic di�erences of negligible
impact for the overwhelming majority of practical purposes [Bishop
(2006); Jaynes (2004)].

2.2.2 Bayesian Inference

Combining the sum and product rules, one obtains the cornerstone
of Bayesian inference: Bayes' theorem. For two random variables M
and D, Bayes' rule is given by

p(M |D) ≡ p(D|M)p(M)
p(D)

. (2.16)

Letting model and data be denoted, respectively, as M and D, the
terms of Bayes' theorem are conventionally referred to as

• p(M): prior probability
(probability of model M before observing data D);

• p(M |D): posterior probability
(probability of model M after observing data D);

• p(D|M): likelihood
(probability of generating data D from model M);

• p(D): the evidence
(general probability of observing data D).

The class of models, that is the sample space for M , is denoted asM
and called the model class. The calculation of the model posterior
involves the marginalization for all individual hypotheses. In fact,
taking hypotheses H from the hypothesis class H into account, one
has

p(M |D) ≡
∑
H∈H

p(M,H|D). (2.17)

tant distinction is clari�ed in the next section, which introduces basic ideas from
information theory.
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The data space D∗ indicates the space of datasets, which consists of
all possible sequences of samples y(ti) of size n obtainable from Σ∗

through the measurement process of Eq. (2.8). In the rest of the the-
sis, H will indicate hypothetical transition functions F. Similarly, M
will indicate families of hypothetical transition functions sharing the
same functional form (but, for instance, subject to di�erent assign-
ments of the parameters).

2.2.3 Modeling Uncertainty

A signi�cant advantage of Bayesian inference is the direct inclusion of
previous knowledge in terms of prior probabilities. In the case of in-
dependent experiments, the posterior of the last iteration constitutes
the prior of the current one without su�ering any loss of informa-
tion. The Bayesian reliance on priors is, however, also the subject
of heated controversies [Bishop (2006)]. One might ask: where are
the priors coming from? Are they chosen according to mathematical
convenience or on the basis of previous evidence? These questions
are important because the e�ect of the prior on the posteriors might
be signi�cant. Multiple solutions have been proposed to solve the
issue of assigning priors. All these solutions, in a way, are attempts
at modeling ignorance.

The agnostic learner wants to avoid assigning zero priors to ele-
ments of H. Imposing such prior would make any posterior zero by
default, irrespective of the data. No evidence would be strong enough
to modify the belief state for models which are excluded a priori. This
problematic situation is avoided by Cromwell's rule [Lindley (1991)].
The rule states that the assignment of 1 or 0 to prior probabilities
should be exclusively restricted to statements which are logically true
or false, such as logical propositions.

Other approaches to assign priors require the transfer of aggregate
statistics from previous experiments. The technical way to incorpo-
rate into the prior some non-probabilistic information is delicate and
deserves special attention. To set the prior, Bayes rule must be com-
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plemented by subscribing to one or more external assumptions. In
the agnostic case, one could apply the principle of indi�erence. Infor-
mally, it states that, given insu�cient reasons to distinguish individ-
ual hypotheses, all available candidates should be considered equally
plausible [Keynes (1921)]. Formally, the principle sets the prior to
the uniform distribution6. More generally, non-informative priors are
attempts at exercising minimal in�uence on posteriors. Among other
issues, they might even be improper due to lack of normalization. As-
signing a prior gets even more problematic when densities are trans-
formed according to non-linear changes of variables [Bishop (2006);
Berger (1985)]. Je�reys' rule addresses this issue by constructing in-
variant non-informative prior distributions on the parameter space.
Such distributions exhibit invariance under a class of reparameteriza-
tions. The rule assigns priors which are proportional to the square
root of the determinant of the Fisher information [Jaynes (2004)].

When only partial information is available, the principle of maxi-
mum entropy provides a way to incorporate the available testable in-
formation7. As shown later, testable information has to be amenable
to statistical veri�cation. In the continuous case, which is introduced
below, the application of the principle of maximum entropy requires
the speci�cation of an invariant measure function. The requirement
is necessary to avoid dependency on the choice of the parameters
[Jaynes (2004)]. Informally, the principle of maximum entropy states
that no additional information should be presumed (the formal de�-
nition is postponed to the next section). Notably, several well-known
distributions are obtainable from maximum entropy arguments. This
set of distributions includes uniform, exponential, Gaussian, Laplace
and Gibbs distributions [Bishop (2006)]. With awareness regarding
the limitations of maximum entropy arguments, the principle may be
employed as an additional assumption. In principle, there exists an

6Additional considerations are required in the case of non-bounded hypotheses
classes [Jaynes (2004)]. In such cases, transformation invariance may become a
particularly dangerous issue.

7One has to be careful, however, on how testable information is de�ned and
obtained [Jaynes (1957a,b); Shannon and Weaver (1963)]
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elegant way to de�ne a general prior which is, in a technical sense,
objective and universal [Rathmanner and Hutter (2011)]. Such dis-
tribution, named Solomono�-Levin distribution, speci�es a prior over
the set of computable functions [Solomono� (1964a,b)]. The universal
prior is

M(z̄) ∝
∑

pg:U[pg]=z̄∗

2−len(p), (2.18)

where z̄ = z1z2 . . . zn is a string of length n. In the equation, the
terms zi ∈ Z for all i = 1, . . . , n, indicate symbols from the alphabet
Z. Now, z̄∗ denotes the subset of strings of arbitrary (but always
�nite) length having z̄ as a pre�x. The minimal program pg of length
len(pg) outputs string z̄ when emulated by the universal Turing ma-
chine U [Rathmanner and Hutter (2011); Solomono� (1964a,b)]. The
prior M(z̄) relies on quantities which cannot be computed even in
principle, and thus requires practical approximations. Under rather
minimal assumptions, inference based on the universal prior can, how-
ever, be regarded as a gold standard [Rathmanner and Hutter (2011)].
At present, the application of such concepts remains an area of ac-
tive research [Li and Vitányi (1997); Rathmanner and Hutter (2011)].

The likelihood function p(D|M) constitutes a probability with
respect toD, but not with respect toM (due to lack of normalization).
It plays a central role both in Bayesian inference through Bayes' rule,
and in the classical framework. In classical statistics, conclusions
are often drawn according to the principle of maximum likelihood
[Fisher (1922)]. The normalization of p(D|M) is given by Bayes' rule.
Bayesian agents perform inference by calculating posteriors from prior
and likelihood (given the data). In the Bayesian setting, the evidence
term is not as fundamental as the prior and the likelihood; in fact,
it constitutes just a normalization constant (for a given dataset). In
practice, the evidence can be calculated as

p(D) ≡
∑
M∈M

p(D|M)p(M), (2.19)
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whereM is the hypothesis class, that is the set of candidate models
available to the modeler.

So far, probabilities have been de�ned over propositions. Equiv-
alently, they may be expressed as functions on sets of events (con-
sistently with established formulations). It is possible to extend the
given de�nitions to continuous random variables, obtaining similar
properties for density functions. In the easy univariate case, a prob-
ability density may be de�ned as

p(z ∈ (a, b)) :=
∫ b

a
p(z) dz, (2.20)

where z ∈ Ω denotes the value taken by a continuous random variable
Z. Here, (a, b) denotes the continuous interval on the real line R. Sum
and product rules of probability apply to densities as well, and also
to combinations of discrete and continuous variables [Bishop (2006)].
Similar properties extend the univariate de�nitions to multivariate
settings [Jaynes (2004)]. For mean and covariance parameters µ and
Σ, the multivariate normal distribution of dimension r is de�ned as

Nor(z|µ,Σ) :=
1

(2π)r/2|Σ|1/2
exp

(
−1

2
(z − µ)TΣ−1(x− µ)

)
.

The sample space is Ω = Rr and the covariance matrix Σ is sym-
metric and positive de�nite. With a slight (but conventional) abuse
of notation, the rest of the thesis will homogeneously refer to both
probability distributions and densities as p(Z). The distinction is
typically clear from the context. If Z is a random variable and z ∈ Ω
is an element of the sample space Ω, one may for simplicity use p(z)
or p(Z) rather than p(Z = z).
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2.3 Information Theory

�Information can tell us everything. It has all the

answers. But they are answers to questions we

have not asked, and which doubtless

don't even arise.�

� J. Baudrillard (transl.)

This section starts by de�ning two central concepts: self-information
and entropy. These concepts are consistent with commonly accepted
notions of uncertainty [MacKay (2003); Cover and Thomas (1991)].
The Shannon self-information content for the outcome z in the sample
space Ω of the random variable Z is given by

h(z) := − log2 p(z), (2.21)

where p(z) is the probability distribution for Z [Shannon (1948);
Shannon and Weaver (1963)]. Except otherwise speci�ed, the base
of the logarithm will remain �xed to 2. The choice of measuring
information in Bits is arbitrary and without any loss of generality8.

2.3.1 Uncertainty Quanti�cation

Shannon entropy is a measure of the uncertainty associated with the
distribution of the random variable Z. Informally, entropy measures
the missing information over a weighted ensemble of possible out-
comes.

The Shannon entropy of the random variable Z is given by

H[p] := E[h(z)] ≡ −
∑
z∈Ω

p(z) log2 p(z), (2.22)

that is by the expected self-information for the ensemble.

8There will be other cases in which the base of the logarithm is e, leading to
alternative measures in Nats.
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In a communication scenario, Shannon entropy arises as an an-
swer to the following technical question: what is the average length of
the shortest description of the random instance emitted by a station-
ary source [Shannon (1948); Cover and Thomas (1991)]? Shannon-
Khinchin axioms provide the foundation for the derivation of Shannon
entropy from a set of minimal requirements [Khinchin (1957); Shan-
non and Weaver (1963)]. De�ning the probabilities pi := p(zi) with
zi ∈ Ω for all i = 1, . . . , n, the axioms are de�ned for an uncertainty
measure S [Khinchin (1957); Suyari (2004)]:

SK-A1: for every n ∈ N>0, S(p̄) is continuous with respect to
the argument p̄ := (p1, . . . , pn).

SK-A2: for a given n ∈ N>0, the point of global maximum for
S(p̄) is ūn := (1/n, . . . , 1/n) (that gives the uniform distribution
Unif (Ω)).

SK-A3: the function S is additive with respect to every pij ≥ 0,
that is

S(p11, . . . , pnmn) = S(p̄) +
n∑
i=1

piS

(
pi1
pi
, . . . ,

pimi
pi

)
, (2.23)

for all i = 1, . . . , n and all j = 1, . . . ,mi, where pi :=
∑mi

j=1 pij .

SK-A4: the function S is expandable, that is

S(p1, . . . , pn, 0) = S(p1, . . . , pn). (2.24)

These requirements are met by a single function, which is Shannon
entropy (up to scaling)9. One has, in fact, that S(p̄) ∝ H[p]. Let
Z∗ denote the set of strings of arbitrary length composed of symbols
from the alphabet Z.

9Please note that, since limpi→0 pi log pi = 0, the work subscribes to the con-
vention of taking pi log pi = 0 for pi = 0.
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The pre�x-free Kolmogorov complexity K(z̄) [Solomono� (1964a,b);
Kolmogorov (1965); Chaitin (1966); Li and Vitányi (1997)] is de�ned
for the string z̄ ∈ Z∗ as

K(z̄) := min
{pr : U[pr]=z̄}

len[pr], (2.25)

where U is a pre�x-free universal Turing machine.
Notably, the choice of the universal machine a�ects the program

length by at most a constant number of bits [Li and Vitányi (1997)].
A fundamental notion relates the Kolmogorov complexity to Shannon
entropy. In fact [Li and Vitányi (1997)],∑

z̄∈Z∗
p(z̄)K(z̄) ≤ H[p] + K(p) +O(1), (2.26)

for every recursive probability p over Z∗.
Di�erential entropy exhibits similar (but not exactly the same)

properties holding for Shannon entropy [Bishop (2006); Li and Vitányi
(1997)]. The di�erential version is obtained by quantizing the con-
tinuous random variable and eliminating the logarithmic term (which
diverges in the in�nitesimal quantization limit).

De�nition 4. The di�erential entropy of the density p is

H[p] := −
∫

Ω
p(z) log p(z) dz. (2.27)

For precision and consistency with the principle of maximum en-
tropy, the thesis considers di�erential entropy with respect to the
invariant measure function m(z). The precise (and preferable) de�ni-
tion of di�erential entropy then becomes [Jaynes (2004)]

Hm[p] := −
∫

Ω
p(z) log

p(z)
m(z)

dz. (2.28)

As for probabilities, the thesis homogenizes the notation for discrete
and continuous cases. This overload is acceptable since the case is
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typically clear from the context10.

On the basis of these de�nitions, it is now possible to formalize
the principle of maximum entropy (to incorporate it as an additional
axiom). Let T denote the available testable information (that is,
amenable to statistical veri�cation), then

ME-A1: the candidate distribution over the models in the hy-
pothesis class is given by

pME = arg max
{p:Υ[p]=T}

H[p]. (2.29)

where Υ[p] is the function producing statistics as T from p.

The principle it not only used to set priors, but also as a stand-alone
principle for model speci�cation [Jaynes (1957a)].

2.3.2 Learning and Communication

A fundamental quantity which relates two probability distributions p
and q is the relative entropy [Kullback and Leibler (1951)], which is
sometimes called Kullback-Leibler divergence.

Relative entropy is de�ned as follows:

KL[p ‖ q] :=
∑
z∈Ω

p(z) log
p(z)
q(z)

. (2.30)

The interpretation of Eq. (2.30) is the following: given the approxi-
mating distribution q of the unknown stationary source p, KL[p ‖ q] is
the expected number of additional bits required for communication.
The equation is obtained under the assumption that transmission is
performed with respect to an optimal coding for q (rather than for p,
which is the source generator). It is important to note that relative

10Depending on the context, entropy is denoted either as H[p] or as H(z). The
former notation highlights the dependency on the distribution, whereas the latter
emphasizes the random variable associated with the distribution.
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entropy is not symmetric, that is KL[p ‖ q] 6≡ KL[q ‖ p], and thus can-
not be a distance [Kullback and Leibler (1951); Cover and Thomas
(1991)]. Another fundamental quantity from information theory is
the mutual information, which measures the statistical dependence of
two random variables Z1 and Z2 (with respective sample spaces Ω1

and Ω2). The mutual information between two random variables is

I(Z1, Z2) :=
∑
z1∈Ω1

∑
z2∈Ω2

p(z1, z2) log
p(z1, z2)
p(z1)p(z2)

. (2.31)

Mutual information is a measure of statistical dependence, in the
sense that

I(z1, z2) = 0⇐⇒ z1 ⊥ z2, (2.32)

where ⊥ indicates statistical independence, that is

p(z1, z2) = p(z1)p(z2). (2.33)

Conditional entropy is de�ned as

H(Z1|Z2) := −
∑
z1∈Ω1

∑
z2∈Ω2

p(z1, z2) log p(z1|z2). (2.34)

Hence, mutual information can be seen as the relative entropy between
the joint distribution and the product of the marginal distributions:

I(Z1, Z2) ≡ KL[p(z1, z2) ‖ p(z1)p(z2)]
≡ H(Z1) + H(Z2)−H(Z1, Z2)
≡ H(Z1)−H(Z1|Z2),

(2.35)

where the term H(Z1|Z2) denotes the conditional entropy. The last
equivalence of Eq. (2.35) o�ers a particularly valuable interpreta-
tion. Mutual information can be seen as the reduction of uncertainty
about Z1 as a consequence of observing Z2 [Bishop (2006); Cover and
Thomas (1991)]. The di�erential versions of the introduced quanti-
ties share fundamental similarities with their discrete counterparts11.

11They also exhibit important di�erences [Bishop (2006); Cover and Thomas
(1991); Jaynes (2004)].
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The di�erential relative entropy, mutual information, and conditional
entropy are, respectively, the following:

KL[p ‖ q] :=
∫

Ω
p(z) log

p(z)
q(z)

dz

I(Z1, Z2) :=
∫

Ω1

∫
Ω2

p(z1, z2) log
p(z1, z2)
p(z1)p(z2)

dz1dz2

H(Z1|Z2) − :=
∫

Ω1

∫
Ω2

p(z1, z2) log p(z1|z2) dz1dz2;

(2.36)

in all these, the random variables are continuous. As for the di�er-
ential entropy, there exist analogous (and preferable) versions which
include an invariant measure function.
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2.4 Main Assumptions

�Making assumptions simply means believing

things are a certain way with little or no evidence

that shows you are correct, and you can see how

this can lead to terrible trouble.�

� L. Snicket in �The Austere Academy�

The main assumptions of this work are explicitly stated below.
This section contains informal and simplistic formulations. Rigorous
speci�cations and exceptions are introduced in the respective sections.

• There exists a data generating model. The studied phe-
nomenon admits a formal (that is, mathematical) representation
Σ∗, that is called the physical system. The system is associated
with a model M∗ which indicates the transition function of the
system, as in Eq. (2.2). The model may or may not (depending
on the case) be an element of the hypothesis class of an epistemic
agent. The evaluation of experimental design, for instance, con-
siders both settings. Nonetheless, data are always assumed to
be consistently generated according to Σ∗. Whereas guaran-
tees and designs are formulated with respect toM∗, results and
model predictions are evaluated empirically with external test-
ing. The assumption is in contrast, for instance, to the view of
extreme empiricism for which phenomena are not even in prin-
ciple amenable to formal representation [van Fraassen (1980)].
Justi�cation: the assumption provides a framework to evaluate
learning rates and to provide statistical guarantees.

• Belief states may be subjective, but inference is ob-

jective. The conclusions of epistemic agents coincide when
prior information, evidence, and inference method are shared
by the agents. The assumption means that the belief state is
B(M |D) := Ψ(B(M), D) for a certain function Ψ. Moreover,
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conclusions are derived taking into account all available evi-
dence: data points are not selected and no presumed evidence
can be incorporated if it is not already in the prior. The as-
sumption is in contrast, for instance, to radical subjectivism
[Dancy (1985)].
Justi�cation: the assumption is useful to justify the derivation
of objective conclusions from subjective belief states and applies
to Bayesian inference.

• The dynamic behavior of the physical system is sep-

arable from the belief state of the modeler. With the
exclusion of active interventions, the belief state of an agent ex-
ercises no e�ect on the behavior of the physical system (with
the additional requirement that the de�nition of the physical
system does not include the epistemic agent). It means that,
for every ti ∈ T , the state x(tj) (for j > i) of Σ∗ may depend
exclusively on the belief state of the agent at times {. . . , ti−1, ti}
through active interventions. The assumption is in contrast to,
for instance, EEG feedback systems in which the de�nition of
the physical system includes the agent itself [Engstrom et al.
(1970)].
Justi�cation: the assumption simpli�es the modeling process by
imposing independence of the behavior of the physical system
from the belief of the (passive) agent.

• The measurement apparatus exercises negligible inter-

ference on the physical system. As in classical mechanics,
for every ti ∈ T , the state x(ti) does not depend on the oper-
ations of obtaining, storing, and processing data D produced
at time ti (assuming all of them to be instantaneous processes
with respect to T ). Future states of Σ∗ may, however, be a func-
tion of interventions selected on the basis of previously available
data. The assumption is in contrast, for instance, to the Copen-
hagen interpretation of quantum mechanics [Brock (2003)].
Justi�cation: the assumption simpli�es the inference process by
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making the behavior of the physical system independent from
the e�ects of the measurement process.

• The physical process is causal. The future behavior of the
physical system can be described solely as the function of cur-
rent and past states. The assumption, implicitly incorporated in
Eq. (2.2), imposes that transitions to future states x(ti+1) may
depend only on states and interventions acting at time points
tj with j < i. In other words, anticipatory e�ects are excluded.
The assumption is in contrast, for instance, to anti-causal ef-
fects in batch image processing.
Justi�cation: the assumption signi�cantly restricts the set of
possible behaviors for the physical system.

• Consecutive experiments are independent. The observed
outcomes of separate experiments are conditionally independent
given the behavior of the physical system and of the measure-
ment apparatus. This assumption requires that

I(Di, Dj |M∗, ε) = 0 (2.37)

for every measured dataset with i 6= j. As before, M∗ denotes
the data generator and ε ∈ E is the experimental setting. The
assumption is in contrast, for instance, to the case in which
memory e�ects are not negligible between experiments (and are
not already captured by M∗).
Justi�cation: the assumption enables the recursive combination
of evidence resulting from sequences of experiments.

• Axiomatic foundations. Unless otherwise speci�ed, the work
subscribes to

� Zermelo-Fraenkel set theory (with the axiom of choice)
[Zermelo (1908); Hardin and Taylor (2008)],

� the Church-Turing Thesis
[Church (1932); Turing (1937)],
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� Pólya-Cox axioms
(PC-A1,2,3) [Jaynes (2004)],

� Shannon-Khinchin axioms
(SK-A1,2,3,4) [Khinchin (1957)],

� the Principle of Maximum Entropy
(ME-A1) [Jaynes (1957a)].

An additional disclaimer should be made here. Overall, the thesis
maintains a pragmatic standpoint. In spite of the apparent simplicity
of the de�nitions, their application to real problems often requires
intricate justi�cations to maintain precision regarding the range of
validity of the obtained conclusions. The thesis is guided by the un-
derlying rationale of the theory, while empirical results are evaluated
externally in the context of the respective application domains.
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Chapter 3

Unsupervised Learning

�Science is the belief in the ignorance of experts.�

� R. P. Feynman

3.1 Time Series Clustering and Validation

Clustering is one of the cornerstones of unsupervised data analysis.
It proves particularly useful in the �rst stages of modeling dynami-
cal systems, for instance to extract compressed information regarding
the distribution of trajectories in the state space. In brief, the goal of
clustering is to select informative label assignments on the basis of the
available observations. The fundamental modeling question is: which
model should be selected? When models are seen as tools aimed at
prediction, the question ultimately relies on a measure of information.
Ideally, the modeler should select cluster assignments which are infor-
mative, as well as reasonably stable under the �uctuations induced by
the noise. The central idea is the following: the modeler selects the
model yielding the highest reliable information capacity. Models are
predictive if they are able to consistently distinguish candidate solu-
tions on the basis of the data. The capacity quanti�es the degree of
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statistical detail which is extracted by the model. The solutions con-
sist, in this setting, of cluster assignments from the hypothesis class
C. The hypothesis class contains all possible assignments of samples
to cluster labels.

This section introduces a method to cluster time series and vali-
date the obtained results1. The introduced method is based on Ap-
proximation Set Coding, a recently introduced principle for model
validation [Buhmann (2010)]. In ASC validation, consistently with
most of statistical learning theory, the task of model selection is for-
mulated with respect to a class of cost models. The class is given
to the modeler a priori and might consist of costs such as those from
correlation and pairwise clustering. Each cost model expresses a data-
dependent preference towards certain assignment solutions. For each
model, rather than selecting the individual best solution, ASC aims
at selecting the best set of assignments which are statistically indis-
tinguishable. By doing so, ASC enables

• the quanti�cation of the informativeness of the optimal set of
cluster assignments and

• the selection of the best cost model, that is the one maximizing
the informativeness in the prediction task.

The results of cluster validation with ASC may also be employed
as initial preprocessing steps for the �nal aim of supervised learning
[Nelles (2001)]. Figure 3.1 illustrates the position of exploratory data
analysis in a diagram which represents a drastic simpli�cation of the
modeling process.

3.1.1 The Principle of Approximation Set Coding

In one of its conventional formulations, clustering aims at partitioning
objects into clusters according to a cost model R. In a general setting,
data available to the modeler are denoted as D = {dj}n̄j=1 and consist
of n̄ individual samples.

1Parts of this section appear in [Chehreghani et al. (2012)].
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Figure 3.1: Schematic diagram illustrating exploratory data analysis
and hypothesis testing in the context of modeling.

For time series analysis, the samples di := φi correspond to mea-
sured trajectories obtained from sampling a dynamical systems at
arbitrarily given points in time. Individual samples are aggregated
into sequences as

φi = (yi(t1), . . . , yi(tn)), (3.1)

where n is the dimension of the feature space and yi(t) is the i-th
component of the measurement vector taken at time point tj , for
1 ≤ j ≤ s. The data space, that is the set of datasets, is denoted as
D∗. Datasets are assumed to be �nite in size, but arbitrarily large.

Given the data, the modeler minimizes a cost model. Costs are of-
ten explicitly de�ned by the modeler, but they may also be expressed
implicitly in terms of terminating algorithmic procedures.

De�nition 5. A clustering assignment is a mapping of samples from
D to labels λ ∈ Λ following

c : D → Λ (3.2)
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with c : d 7→ λ.

The assignments are elements of the hypothesis class C(D). The
class is data-dependent, as it maps individual data points to the as-
signed labels.

For every trajectory j = 1, . . . , l, let Vk denote the set of indexes
which correspond to samples assigned to the k-th cluster. Formally,
the sets are

Vk := {i ∈ [1, . . . , n] : c(i) = λk} (3.3)

for k = 1, . . . ,K and K = |Λ|.
Such index sets partition the sample indexes {1, . . . , n̄} ⊂ N>0

into K subsets. In this setting, individual models are identi�ed by
their associated cost functions.

De�nition 6. A cost model is a function evaluating hypothesis c given
data D as

R : C(D)× Y∗ → R. (3.4)

Implicitly, cost models specify regularities which can be extracted
from the data. The goal of model validation is to assess the degree of
matching between the regularities expressed by the model and those
exhibited by the data. Given a dataset and a cost model, the pro-
cess of learning terminates as soon as an optimal solution is found.
Depending on the cost model, on the algorithm, as well as on the avail-
able computational resources, the solutions which are found might be
optimal in a local or global sense.

At present, there already exist several established principles and
procedures for model selection. Among these, it is worth mentioning
Minimum Description Length [Rissanen (1978)], Kolmogorov Struc-
ture Function [Kolmogorov (1974)], BIC [Schwarz (1978)], AIC [Akaike
(1974)], Minimum Message Length [Wallace and Boulton (1968)],
Solomono�'s Induction [Solomono� (1964a,b)], PAC [Valiant (1984)],
as well as PAC-Bayesian generalization bounds [Seldin and Tishby
(2010a)]. These approaches rely on convincing justi�cations from in-
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formation theory, probability and statistical learning theory2. Ap-
proximation Set Coding (ASC) shares the aim of the mentioned ap-
proaches, but with a di�erent goal: that of selecting models by mea-
suring the informativeness associated with the best set of indistin-
guishable solutions. Rather than evaluating individual solutions or
global distributions over the hypothesis class, ASC extracts sets of
predictive hypotheses. This study focuses on ASC for clustering [Buh-
mann (2010)]. In this setting, clustering assignments are partitioned
into equivalence classes induced by noise �uctuations. The classes de-
pend on the model: under the same noise conditions, some models are
better than others at distinguishing sets of solutions. In this sense,
ASC operates on the e�ective resolution induced by the noise.

An informal justi�cation for ASC is the following. For a given
model, learning can be seen as �nding the best tradeo� between infor-
mativeness and stability of the solutions. Previous results emphasized
the importance of estimation stability alone [Dudoit and Fridlyand
(2002); Lange et al. (2004)], although not undisputedly [S. Ben-David
(2006)]. Other appeals to stability in estimation for data analysis are
based upon the concepts of well-posedness [Hadamard (1902); Kocha
and Tataru (2001)] and experimental repeatability. One requirement
is undisputed: in controlled settings, experiments are expected to
produce similar readouts under similar conditions. Yet estimation
stability alone is not enough. By itself, it does not take into account
the information contained in the data. A model should not only
replicate the data, but also generalize to other datasets. The modeler
must be careful: there exists an over�tting risk when the amount of
available information is overestimated. What is the optimal tradeo�?
Reductions of estimation stability are tolerable when compensated
by appropriate improvements in predictive power (measurable, for in-
stance, in terms of generalization capacity) [Vapnik (1982); Tishby
et al. (1999)]. If the modeler selects only few solutions, the selec-
tion is informative but possibly unstable [S. Ben-David (2006)]. In

2Discussing the individual merits of established approaches goes beyond the
scope of this thesis.
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fact, the set of optimal solutions for a given dataset might not co-
incide exactly with those selected by another dataset sampled from
the same (stationary) source. The opposite tends to happen when
too many solutions are selected. Sets consisting of many solutions
are certainly more stable with respect to resampling, but are not par-
ticularly informative. ASC formalizes this tradeo� idea on the basis
of a fundamental analogy between learning and communication. The
optimal tradeo� is the one which maximizes the capacity to transmit
set indexes through a noisy channel.

Empirical Minimizers and Approximation Sets

Formally, let us consider a setting with two datasets: D1 and D2.
Each dataset is of size n̄ and is independently sampled from the same
stationary source. The asymptotic equipartitioning property guaran-
tees that, with overwhelming probability, the datasets tend towards
typicality as the sample size grows [Cover and Thomas (1991)] The
requirement of two separate datasets is not limiting the generality of
the approach. When a single dataset instance is available and the
individual samples drawn independently from the same distribution,
a two sample set scenario can be e�ectively obtained through random
splitting of data D into sets D1 and D2. The scenario can be ex-
tended straightforwardly to cases in which more than two instances
exist. The conclusions are analogous and there is no loss of generality.

In the learning scenario, individual solutions are evaluated on the
basis of the data through the cost model. According to the preva-
lent convention from statistical learning theory, smaller costs indicate
preferable solutions. The total ordering of the solutions is, therefore,
directly induced by the cost model. The empirical minimizers are the
optimal solutions for the minimization of the cost model R(c|Dm) (for
m = 1, 2) and are de�ned as follows:

C⊥(Dm) := arg min
c∈C(Dm)

R(c|Dm). (3.5)

For simplicity of notation, the cost of the empirical minimizers is
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denoted as
R⊥(Dm) := R(c⊥|Xm) (3.6)

for c⊥ ∈ C⊥(Dm), m = 1, 2.
To assess the predictive capacity of a model, one has to estimate

the variability of the optimal solutions with respect to that of the data
Dm. Due to limited knowledge, average-case analysis is not possible
at this point: the data distribution is unknown to the modeler and
very hard to estimate directly (predominantly due to the high dimen-
sion of the data space). Instead, performing operations directly on
the solution space might be a tractable task. Even without average-
case analysis, it is still possible to say something regarding the range
of plausible �uctuations in the data on the basis of the empirical evi-
dence provided by at least two instances. How to compare solutions?
The two hypothesis classes are dataset-dependent. Then, to trans-
fer solutions between instances one has to choose a mapping function
from C(D1) to C(D2). The de�nition of the mapping function is a
modeling choice which is necessary to assess the generalization capac-
ity from training to test data.

The mapping function performs the mapping from the �rst dataset
instance to the second one. It is de�ned as

ψ : C(D1)→ C(D2). (3.7)

Relating solutions between hypothesis classes, ψ de�nes how the
modeler intends to generalize across instances (by mapping to the
nearest neighbor, for instance). For convenience of notation, subsets
of solutions A ⊆ C(D1) are mapped to other subsets through the
sample-wise application of ψ as

ψ ◦A := {ψ(a), a ∈ A} ⊆ C(D2). (3.8)

Because of noise, the set of mapped empirical minimizers ψ ◦ C⊥(D1)
do not necessarily coincide with the set C⊥(D2). The intersection
between the two is given by(

ψ ◦ C⊥(D1)
)
∩
(
C⊥(D2)

)
. (3.9)
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The cardinality of the intersection might be small or even empty. The
locations of the empirical minimizers, in fact, tend to diverge as the
noise level increases.

The central idea of ASC is that of selecting larger sets of cluster
solutions from the hypothesis classes to avoid instability in the esti-
mation. Approximation sets are de�ned as sets of solutions which are
γ-minimal.

De�nition 7. The approximation sets (AS) are

Cγ(Dm) := {c ∈ C(Dm) : R(c|Dm) ≤ R⊥(Dm) + γ}, (3.10)

for the respective dataset instances indexed by m = 1, 2.

The variable γ de�nes how close is the cost of the accepted solu-
tions with respect to the cost R⊥(Dm) of the empirical minimizers.
Hence, the elements of the approximation sets are at last γ-optimal.

The selection of an appropriate γ permits the optimization of the
tradeo� between selection stability and the informativeness of the
solutions. When γ = 0, the approximation sets consist solely of the
respective empirical minimizers, thus yielding unstable results. By
contrast, a too large value of γ forces the approximation sets to include
a large number of solutions from the hypothesis class. Large selections
tend to yield results which are stable. However, the conclusions are
uninformative if the selections are too large.

Learning and Communication

The optimal γ is found through information-theoretic optimization.
ASC entertains the idea that learning and communication share fun-
damental properties: performing predictions can be seen as coding
with error control and correction. The communication analogy pro-
ceeds as follows: in the sender-receiver scenario, distinguishing indi-
vidual solutions based on data corresponds to transmitting messages
over a noisy channel. The ability to discriminate solutions through
applied transformations of the data re�ects the communication ca-
pacity between the sender and the receiver. In learning as well as
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in communication, success ultimately depends on the coding strategy
(for �xed noise levels). For a given γ, the process of communication
is de�ned as follows (Algs. 1 and 2). In brief, the receiver aims at
decoding permutations σ ∈ Σ which are applied by the sender to the
second instance of the data. The set of indexes for the code problems
is denoted as Iσ.
Coding and transmission are described as follows. The applied trans-

Algorithm 1: Coding scheme.

Data: cost model R, γ, set of potential transformations Σ,
hypothesis class C(D1), dataset instance D1.

Result: coding scheme.

1 Sender and Receiver share R;
2 Sender and Receiver share D1;
3 Sender calculates the γ-approximation set Cγ(D1);
4 Receiver calculates the γ-approximation set Cγ(D1);
5 forall the σ ∈ Σ do

6 Sender generates the transformed training optimization
problem with minimization objective R(c|σ ◦D1);

7 Sender shares with Receiver the transformed training
optimization problem with minimization objective
R(c|σ ◦D1);

8 Sender and Receiver calculate the γ-approximation set
Cγ(σ ◦D1);

9 end

formation σsel is only available to the sender. However, the receiver
can employ a decoding rule based on the maximization of the inter-
section between the available approximation sets to estimate σ̂. De-
coding is possible because σsel ◦X2 is known by the receiver as well.
In contrast, σsel and X2 remain known solely by the sender. The
transmission scheme of Alg. 2 can be used to identify σsel with a cer-
tain error rate. Codebook vectors are de�ned from the approximation
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Algorithm 2: Transmission scheme.

Data: cost model R, γ, set of potential transformations Σ,
approximation sets Cγ(σ ◦D1) for all σ ∈ Σ, hypothesis
classes C(D1) and C(D2), mapping function ψ, dataset
instances D1 and D2.

Result: set of estimated σ̂.

1 forall the σsel selected by the Sender do
2 Sender applies σsel to D

2;
3 Sender sends σsel ◦D2 to Receiver;
4 Receiver calculates the γ-approximation set given

σsel ◦D2;
5 Receiver estimates σsel with σ̂ through the decoding rule:

σ̂ ∈ arg max
σ∈Σ

ψ ◦ Cγ(σ ◦D1) ∩ Cγ(σsel ◦D2)
 ; (3.11)

6 end
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sets. A large value for γ corresponds to few distinct vectors for cod-
ing, whereas small values produce higher error rates for decoding. The
(asymptotic) transmission rate de�nes the tradeo� between estima-
tion stability and informativeness on the basis of the same currency:
bits of information. The goal of communication is that of achieving
optimal communication (that is, maximally reliable and informative
transmission).

When σ̂ 6= σsel, the receiver performs the wrong decoding. The
noise �uctuations produced a communication error. The intersection
between approximation sets is given by

∆Cqγ :=
(
ψ ◦ Cγ(σq ◦D1)

)
∩ Cγ(σsel ◦D2) (3.12)

for all σq ∈ Σ. This term indicates the intersection between the q-th
training approximation set and the test set, for q ∈ Iσ.

Bounding of Error Probability

At this point, it is possible to bound the decoding error probability
p(σ̂ 6= σsel|σsel) [Buhmann (2010)]. Due to the union bound, one has
that

p(σ̂ 6= σsel|σsel) ≤
∑
q∈Iσ

P

(
|∆Cqγ | ≥ |∆Csγ |

∣∣∣∣σsel) . (3.13)

The bound is necessary since direct evaluation of the error probabil-
ity might be challenging and no closed-form solution is known. By
introducing the indicator function

I{a} =
{

1 a is true
0 a is false

, (3.14)

the bound in Eq. (3.13) becomes

p(σ̂ 6= σsel|σsel) ≤
∑
q∈Iσ

EEσsel

[
I{|∆Cqγ |≥|∆Csγ |}

∣∣∣∣σsel] . (3.15)
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In the equation, the �rst expectation is taken with respect to the pair
of instances D1 and D2. It constitutes an annealed approximation.
Since

I{|∆Cqγ |≥|∆Csγ |} = I{log |∆Cqγ |≥log |∆Csγ |}, (3.16)

one has that, because I{x≥0} ≤ exp(x) the bound becomes

Eσsel

[
I{|∆Cqγ |≥|∆Csγ |}

∣∣∣∣σsel] ≤ |Cγ(D1)| |Cγ(D2)|
|Σ| |∆Cγs|

. (3.17)

Since the σ are identically distributed and sampled independently,
the upper bound for the error probability of decoding is given by

p(σ̂ 6= σsel) ≤ (|Σ| − 1) exp (−n̄Iγ(σsel, σ̂)) , (3.18)

where the mutual information Iγ(σsel, σ̂) follows the de�nition below.
The mutual information for two approximation sets is given by

Iγ(σsel, σ̂) :=
1
n̄

log
( |Σ| |∆Csγ |
|Cγ(D1)| |Cγ(D2)|

)
. (3.19)

At this point, it is possible to determine the optimal γ as follows. The
optimal approximation threshold is

γ∗ ∈ arg max
γ∈[0,∞)

Iγ(σsel, σ̂). (3.20)

The described procedure provides to the epistemic agent:

• the set of γ-optimal cluster solutions which are statistically in-
distinguishable, as well as

• an absolute measure of the informativeness of the cost model
R, which is called approximation capacity.

De�nition 8. The approximation capacity (AC) for cost R and datasets
D1 and D2 is

AC[R|D1, D2] := I∗γ(σsel, σ̂). (3.21)
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The approximation capacity can be used to compare and select
costs from a set of candidates. The class of candidate cost models is
the model class

R ⊆ {R : C(D)× Y∗ → R}. (3.22)

In practical applications, the set of candidate models may consists of
di�erent functional forms as well as of alternative parametrization of
the same function.

3.1.2 Cluster Validation of Multivariate Time Series

In clustering, ASC can then be employed for

• model selection (selecting between alternative costs models, such
as K-Means, pairwise clustering, or others),

• model order selection (selecting the number of clusters for an
individual cost model).

When analyzing multivariate time series, the modeler might employ
clustering to abstract, denoise, or compress trajectories in the mea-
surement space. Informally, clustering addresses the question: what
is the e�ective resolution of the data? The modeler can select from
the plethora of alternative methods which is available in the litera-
ture. This study concerns the selection of relational cost models for
clustering multivariate time series. Relational clustering (sometimes
referred to as spectral clustering) is a general approach whose the-
oretical and practical importance is well recognized [Burnham and
Anderson (2002)]. Characterizing time points by relations rather
than vectors may prove particularly useful when the modeler does
not know a priori a predictive similarity measure between trajectories.
Until recently, model selection in relational clustering has been per-
formed primarily according to heuristics and expert knowledge [Lange
et al. (2004); Slonim et al. (2005)]. In this context, the Bayesian In-
formation Criterion (BIC) is a simple and well-justi�ed model selec-
tion method whose e�ectiveness has been extensively proved [Schwarz
(1978); Bishop (2006)].
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De�nition 9. The BIC cost is de�ned as follows:

BIC[M |D] := −2 log p(D|M) +$(M) log n̄ (3.23)

where $(M) is the number of parameters for model M .

The direct application of BIC to relational clustering seems to be
problematic. From the de�nition, BIC requires the speci�cation of the
number of free parameters. In its standard form, it can be applied
directly only to �nite dimensional parameter spaces. In relational
clustering, the number of (e�ective) free parameters is not available
to the modeler. Furthermore, the e�ective dimension may grow as a
function of the sample size. As a substitute, one could employ the
principle of Minimum Description Length (MDL), provided that an
appropriate strategy for coding is available [Rissanen (1978); Grün-
wald (2007)]. Alternatively, PAC-Bayesian analysis could provide
generalization bounds for model order selection [Seldin and Tishby
(2010b)].

The following part concerns the automatic determination of the
number of clusters as well as the selection of the cost model for clus-
tering time series with ASC [Chehreghani et al. (2012)]. The rest of
the section is organized in three parts: model order selection, model
selection, and application to scienti�c data analysis in systems biol-
ogy. The cost model class consists of pairwise clustering (PC) [Hof-
mann and Buhmann (1997a)] and correlation clustering (CC) [Bansal
et al. (2004)]. The obtained results are compared with the selections
provided by the stability criterion [S. Ben-David (2006); Dudoit and
Fridlyand (2002); Lange et al. (2004)] and by BIC [Schwarz (1978)].
The model validation task is formalized as follows.

Objective 1. Given data D, select the cost model in R∗ ∈ R with
the highest approximation capacity AC[R|D1, D2].
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Approximation with Boltzmann Factors

Up to logarithmic corrections, the cardinality of the approximation
sets can be estimated by borrowing the concept of canonical ensembles
from statistical mechanics [Buhmann (2010)].

The partition function approximates the cardinality of a set as

|Cγ(Dm)|'̇Zm :=
∑

c∈C(Dm)

exp (−βR(c|Dm)), (3.24)

for m = 1, 2, where β is the inverse computational temperature and
an=̇bn denotes the asymptotic relation

lim
n→∞

1
n

log
(
an
bn

)
= 0. (3.25)

In Eq. (3.24) and (3.26), the exponential weights are the Boltzmann
factors. The cardinality of the intersections can be similarly approx-
imated by taking

|∆Cγ(D)| '̇Z12 :=
∑

c∈C(D)

exp
(
−β(R(c|D1) +R(c|D2))

)
. (3.26)

The inverse temperature β can be normalized by imposing that the
average cost in Cγ(D) must yield R⊥(D) + γ.

Relational Clustering

For a cost model R, letK denote the number of clusters. Furthermore,
let Xij denote to the pairwise similarity between sample i and j, for
1 ≤ i, j ≤ n̄. For each sample and for each cluster, the given potential
hik quanti�es the cost of assigning the i-th sample to cluster k, for
1 ≤ i ≤ n̄ and 1 ≤ k ≤ K.

In the case of K-Means [Steinhaus (1957); MacQueen (1967)], the
cost function minimizes the within-cluster sum of squares giving

Rkm(c|D) :=
K∑
k=1

∑
i∈Vk

‖φi − µc(i)‖2, (3.27)
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where i ∈ Vk when c(i) = λk, and µc(i) denotes the mean of the cluster
assignment for φi. K-Means can be reduced to a model in which the
potentials are given by

hi,c(i) = ‖φi − µc(i)‖2, (3.28)

for all i = 1, . . . , n̄. The potentials consists of squared Euclidean dis-
tances between data vectors and cluster centroids. K-means is one
of the most popular choices for clustering due to its simplicity. The
generality of the model is restricted to Euclidean vector data. Rela-
tional clustering, in contrast, goes beyond this limitation: it clusters
data in terms of pairwise similarities (or dissimilarities). In relational
cost models, the potentials {hi,c(i)} may not be directly available to
the modeler from the formulation. Thus, equivalent potentials are
calculated through a mean-�eld approximation, as described below.

Relational clustering is conventionally de�ned in terms of an at-
tributed graph G = (V, E). The vertex set and the edge sets are
respectively denoted as V and E . The aim is that of clustering

Gu := {i : c(i) = u} (3.29)

for 1 ≤ u ≤ K. The set of edges between elements of cluster Gu and
Gv is

Euv := {(i, j) : c(i) = u ∧ c(j) = v}. (3.30)

Rewritten in terms of potentials, the weight sums of Eqs. (3.24)
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and (3.26) become

Zm =
∑

c∈C(Xm)

exp

(
−β

n̄∑
i=1

hmi,c(i)

)

=
n̄∏
i=1

K∑
k=1

exp (−βhmik)

Z12 =
∑

c∈C(X2)

exp

(
−β

n̄∑
i=1

(h1
i,c(i) + h2

i,c(i))

)

=
n̄∏
i=1

K∑
k=1

exp
(
−β
(
h1
ik + h2

ik

))
.

In the equations, the dataset Dm is substituted by the pairwise sim-
ilarity matrix Xm, for indexes m = 1, 2. Similarly, the potential hmik
denotes the potential in the m-th instance. The cardinality |Σ| is
estimated as the entropy of the empirical minimizer assignment as

1
n

log |Σ| ' −
K∑
k=1

Pk logPk, (3.31)

where Pk is the probability of the k-th cluster in c⊥ ∈ C⊥(X1). In
general, the solution for β satisfying the necessary condition for max-

imization
dIβ
dβ = 0 might be analytically unavailable. The compu-

tational cost of ASC is dominated by the estimation of the weight
sums in the approximation of the partition functions. Markov Chain
Monte Carlo (MCMC), as well as variational approaches, are directly
applicable to the cases presented here. Subsampling might prove par-
ticularly useful with large datasets.

Model selection and model order selection are both based on the
maximization of the approximation capacity described in Alg. 3. For
model order selection, the initial number of cluster is denoted asKmax.
The detailed algorithmic procedures for model order selection and
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cost model selection are given by Algs. 4 and 5, respectively. For
model selection, let R = {Rl}Ll=1 indicate the class of candidate cost
models, each with its own respective hypothesis class dependent on
the similarity matrices Xm, for m = 1, 2.

Algorithm 3: Calculation of AC.

Data: computational temperature range W, permutations Σ,
k, cost model R, set of hypothesis classes Ck(Xm) and
similarity matrices Xm for m = 1, 2.

Result: ACk[R|X1, X2] for model order k.

1 forall the β−1 ∈ W do

2 calculate the potentials hik at β
−1 (either by annealed

Gibbs sampling or annealed mean-�eld approximation);

3 calculate the mutual information Ikβ ;
4 end

5 Compute the approximation capacity

ACk[R|X1, X2] := maxβ Ikβ .

Algorithm 4: Model order selection.

Data: computational temperature range W, set of
transformations Σ, order range 1, . . . ,Kmax, cost model
R, set of hypothesis classes {Ck(Xm)}Kmax

k=1 and
similarity matrices Xm for m = 1, 2.

Result: optimal model order k∗.

1 for k = 2 to Kmax do

2 Compute the approximation capacity ACk[R|X1, X2] for k;
3 end

4 Select {k∗} := arg max1≤k≤Kmax
ACk.

The subsection proceeds by comparing two established cost mod-
els for relational clustering: pairwise and correlation clustering.
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Algorithm 5: Model selection.

Data: computational temperature range W, set of
transformations Σ, order range 1, . . . ,Kmax, cost model
R, set of hypothesis classes {Ck(Xm)}Kmax

k=1 for all
models in R and similarity matrices Xm for m = 1, 2.

Result: optimal model order k∗.
1 forall the R ∈ R do

2 Select {k∗} := arg max1≤k≤Kmax
ACk for the cost R;

3 Compute ACk
∗
[R|X1, X2];

4 end

5 Select {R∗} := arg maxR∈R ACk
∗
[R|X1, X2].

De�nition 10. Given the similarity matrix X, the pairwise clustering
cost [Hofmann and Buhmann (1997b)] for K clusters is given by

Rpc(c|X) := −1
2

K∑
k=1

|Gk|
∑

(i,j)∈Ekk

Xij

|Ekk|
. (3.32)

For pairwise clustering, there exists a way to calculate exactly the
potentials without distortion of the solutions through constant shift
embedding (CSE) [Roth et al. (2003)]. CSE embeds relational data
into a high-dimensional Euclidean vector space. In summary, CSE
takes advantage of the fact that Rpc(c|X) sums the average similari-
ties per cluster weighted by size. Since the cost is shift-invariant, no
distortion of the solutions is introduced by adding a constant to all
pairwise similarities. This operation just adds a constant multiplied
by n to the costs of each solution. Consistent cost shifting neither
changes the total ordering induced by the cost, nor the obtainable
approximation capacities. The samples are embedded into a kernel
space of dimension n− 1. The components Xij of the similarity ma-
trix are then interpreted as scalar products between the two vectors
representing the objects i and j, for 1 ≤ i, j ≤ n̄.
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Dissimilarities are obtained from similarities through the transfor-
mation

Ddiss := −X + %, (3.33)

where % is a constant. In the kernel space, pairwise clustering solu-
tions share the same K-means costs [Roth et al. (2003)]. Hence, the
calculation of the weight sums is performed exactly by employing the
analytic solution available for K-means [Roth et al. (2003)].

As shown before, for factorial models the calculation of the poten-
tials is straightforward. For non-factorial models, the potentials are
calculated through approximations. This situation applies to correla-
tion clustering, for which no product form is known in terms of weight
sums as in Eqs. (3.24) and (3.26). The approximation capacity is then
calculated by mean-�eld approximation as follows [Chehreghani et al.
(2012)]. Essentially, the cost function of correlation clustering sums
the object disagreements, which are given by the negative intra-cluster
edges and the positive inter-cluster ones. The cost of correlation clus-
tering for K clusters is

Rcc(c,X) :=
1
2

K∑
k=1

∑
(i,j)∈Ekk

(|Xij | −Xij)

+
1
2

K∑
k=1

k−1∑
v=1

∑
(i,j)∈Ekv

(|Xij |+Xij).

(3.34)

The mean-�eld approximation holds for non-factorial models such
as correlation clustering [Chehreghani et al. (2012)]. It is noteworthy
that, in this case, the mean-�eld approximation admits an analytic
form. In other cases, one could approximate the weight sums by
sampling. Since the Boltzmann weights do not assume a product
form, the potentials hik are determined by employing a factorial form
to approximate the Gibbs distribution

pGibbs(c) := w(c,X)/Z, (3.35)
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where the Boltzmann weights are

w(c,X) := exp(−βR(c|X)) (3.36)

and Z is the normalizing partition function. The mean-�elds of the
approximating distributions correspond to the adjustable parameters.
Given the potentials, the cluster assignments are conditionally inde-
pendent. The distribution for the factorial form is de�ned with respect
to the set

Q :=

{
Q : Q(c) =

n̄∏
i=1

qi,c(i), qi,c(i) ∈ [0, 1]

}
. (3.37)

The best approximation is the one minimizing the relative entropy
with respect to pGibbs(c). Formally, it minimizes

KL [Q ‖ Pcc] =
∑

c∈C(X)

Q log
Q

exp(−β(Rcc − Fcc))

=
n̄∑
i=1

K∑
k=1

qik log qik + βEQ[Rcc]− βFcc.
(3.38)

The free energy is given by

Fcc := −β logZ (3.39)

Notably, the free energy does not depend on qik. Satisfying the nor-
malization constraint

K∑
k=1

qik = 1 (3.40)

for all i = 1, . . . , n̄, the minimization of KL (Q ‖ Pcc) is performed
with respect to qik. One proceeds by imposing the necessary condition

0 =
∂

∂qik

KL [Q ‖ Pcc] +
n̄∑
j=1

Λj(
K∑
k=1

qjk − 1)


=

∑
c∈C(D)

∏
j≤n̄:j 6=i

qj,c(j)I{c(i)=k}Rcc +
1
β

(log qik + 1) + Λi.

(3.41)
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which determines the mean-�eld assignments

qik =
exp(−βhik)∑
k′ exp(βhik′)

, (3.42)

where
hik = EQi→k [Rcc]. (3.43)

The term EQi→k [Rcc] denotes the expectation taken over all con�gu-
rations which assign object index i to the k-th cluster. Finally, the
mean-�eld approximation of correlation clustering yields

hik =
1
2

∑
j≤n̄:j 6=i

(|Xij |+Xij)(1− EQi→k [I{c(j)=k}])

+
1
2

∑
j≤n̄:j 6=i

(|Xij | −Xij)EQi→k [I{c(j)=k}] + %

=
1
2

∑
j≤n̄:j 6=i

(|Xij |+Xij)(1− qjk)

+
1
2

∑
j≤n̄:j 6=i

(|Xij | −Xij)qjk + %.

(3.44)

where % indicates an additive constant. The cost is decomposed into
contributions depending on the i-th sample and on the cost of all
other samples. Each qik is hence in�uenced by terms depending on
the i-th sample.

Through mutual conditioning, mean-�elds and probabilities can
thus be e�ectively approximated for each β. This step is performed
iteratively with an algorithm following the Expectation-Maximization
procedure [Bishop (2006)], as described by Alg. 6.

Proof-of-concept for PC and CC

Below are a couple of examples for illustration. In the following,
L = 2 and R = {Rpc, Rcc}. First, let us consider pairwise clustering
with two datasets X1 and X2 of dimension n̄ = 800 each. Samples
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Algorithm 6: AC mean-�eld approximation for CC.

Data: computational temperature range W, set of
transformations Σ, order k, hypothesis classes Ck(Xm)
and similarity matrices Xm for m = 1, 2.

Result: Computation of AC for CC.

1 repeat

2 Calculate q
(t)
ik as a function of hik

(t−1);

3 Calculate hik
(t) for given q

(t)
ik ;

4 until convergence (by iterating over t);
5 Calculate the weight sums of Eqs. (3.24) and (3.26);

6 Approximate ACk[Rcc|X1, X2] for k.

are drawn independently from four isotropic Gaussian sources in two
dimensions. The means of the sources are µ = {(±4,±4)}, the shared
covariance is the scalar matrix Σ = 5I2 (where I2 is the identity
matrix of dimension 2), and the component parameters are πk =
1/4 for k = 1, . . . , 4. The similarity matrices X are obtained by
calculating the pairwise squared Euclidean distances between objects:

Ddiss(ij) =‖ φi − φj ‖22:=
n∑
r=1

(yi(tr)− yj(tr))2 , (3.45)

for i, j = 1, . . . , n̄. The potentials hi,c(i) are calculated by annealed
Gibbs sampling for a number of initial clusters up to Kmax = 10, for
1 ≤ i ≤ n̄. The mutual information is calculated as a function of
β using the potentials, yielding the approximation capacity by maxi-
mization.

Figure 3.2 reports data and results for the example. The data are
shown in Fig. 3.2(a), whereas Fig. 3.2(b) plots the trajectories of the
mean of each cluster as a function of the computational temperature.
As the system cools down (that is with larger β), the positions of the
cluster centroids tend to diverge. The value of β is indicated by the
colors of the trajectories. For β ≈ 0, the color approaches dark blue
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and, viceversa, values of β � 1 are associated to the red color. At high
temperatures, all centroids tend to coincide since the process cannot
distinguish but a single cluster. The contrary holds at very low tem-
peratures, that is when too many clusters are estimated. The cluster
locations are highly susceptible to the in�uence of the �uctuations
and thus exhibit signi�cant instability in estimation. At the optimal
inverse temperature, which is denoted by β∗, there is a split from four
to eight clusters (transition from green to yellow). The optimizer es-
timates the correct number of clusters with the optimal temperature,
that is the one yielding the approximation capacity. The AC for a
di�erent number of clusters is shown in Fig. 3.2(d). Whereas the
mutual information is an objective function, BIC values (represented
in Fig. 3.2(c)) constitute costs to be minimized. It is noteworthy
that ASC and BIC yield consistent results in this case. The plot in
Fig. 3.2(e) shows the mutual information as a function of β. Its max-
imum de�nes the AC of the cost model Rpc. At the optimal value
of the inverse computational temperature 1/β∗, the approximation
capacity reaches the bitrate of ≈ 1.5 bits per sample. In the noiseless
case, the bitrate of the AC approaches 2 bits per sample (that is the
logarithm of the number of distinct sources).

As a second example, let us consider correlation clustering with
the introduced mean-�eld approximation. The datasets are pairs of
correlation graphs Xm, m = 1, 2, with n̄ = 1500 and 5 source clus-
ters. For varying level of noise, the datasets are generated as follows.
At �rst, the underlying structure is determined by setting a positive
similarity label (+1) to intra-cluster edges and a negative one (−1)
to inter-cluster edges. Then, each edge in Euv, for v 6= u, is randomly
�ipped to +1 with an independent and identically distributed (IID)
Bernoulli probability Bern(ε|ξ). The parameter ξ is �xed to the value
0.35 and de�nes the complexity of the underlying structure. As a last
step, the value of each edge Euv, for v 6= u, is replaced by a random
value with probability η. The noise parameter η determines the ob-
servational noise. The samples are mapped by the ψ function which
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identi�es samples according to their associated index. The order of
the samples coincides in all data instances. The pairs are generated
at noise levels ranging from 0.75 to 0.95.

The mean-�eld algorithm is executed with ten random initializa-
tions per model order. Initial values are varying from 1 to 10. The mu-
tual information is calculated at each round by taking the best results
in terms of costs. The approximation capacity is calculated selecting
the mutual information for the best numerical approximation of β∗.
The quality of the mean-�eld approximation is numerically veri�ed
by checking consistency with estimates obtained by Gibbs sampling.

As shown by Fig. 3.3, a noise level of η = 0.75 does not present
major challenges. Gibbs sampling and mean-�eld approximation in-
variably select the correct number of clusters. In case the initialization
contains too many clusters, the super�uous ones are left empty. A
noise level of η = 0.85 makes the task more complicated but still learn-
able. In this setting, signi�cant variations due to noise are visible in
the plot, which orders the samples according to the cluster assignment
of the �nal selection. The approach determines the correct number
of clusters. Higher levels of noise induce a reduced approximation
capacity. Figure 3.3(b) shows that the stability criterion, based on
the instability measure [Lange et al. (2004)], yields results which are
consistent with ASC both for η = 0.75 and η = 0.85. The setting
with η = 0.95 exhibits high level of noise. In this case, the edge labels
are e�ectively almost entirely random. Figure 3.3(a) shows that the
structure which can be extracted from the data is not learnable any
more and, therefore, only a single valid cluster is obtained. Estima-
tion instability, which is an unde�ned measure for a single cluster,
cannot be evaluated in this case.
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(a) Available data (b) Cluster trajectories

(c) BIC scores (d) Approximation Capacity

(e) Mutual Information

Figure 3.2: AC score (Fig. 3.2(d)) and BIC cost (Fig. 3.2(c)) for
pairwise clustering as a function of the number of clusters K for the
synthetic data (Fig. 3.2(a)). The model selection principles yield
consistent results on the data. The calculation of the mutual infor-
mation (Fig. 3.2(e)) for pairwise clustering has been performed with
annealed Gibbs sampling as a function of β. Figure 3.2(b) shows the
in�uence of the stopping temperature for annealed optimization on
the localization of the cluster centroids (Figures from [Chehreghani
et al. (2012)]).
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(a) Approximation Capacities (b) Instability Measures

Figure 3.3: On the left, the approximation capacities are estimated
for correlation clustering with ξ = 0.35 and noise parameters η taking
the values0.75, 0.85 and 0.95. On the right, the instability measure
yields consistent results with ASC in two out of three settings. In the
remaining case with η = 0.95, instability cannot be compared: the
measure is not de�ned for a single cluster (Figures from [Chehreghani
et al. (2012)]).
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Clustering of Time Series

The introduced method for model selection and model order selec-
tion is now applied to cluster the time-varying states of a biological
process. The experimental data consist of readouts of gene expression
pro�les obtained at uniformly spaced time-points. Published data are
extracted from the female digestive gland of Mytilus galloprovincialis
[Banni et al. (2011)], an organism studied to assess the impact of
environmental pollutants. The challenging nature of the application
domain motivates the introduced approach: the choice of an appro-
priate metric to analyze trajectories is far from obvious. Relational
clustering overcomes this limitation by comparing the informativeness
of the solutions through ASC.

The available dataset consists of relative gene expression mea-
surements for 12 consecutive months, with the �rst sample (January)
taken as a reference. The dataset contains information which is valu-
able to the biologists to study how seasonal environmental changes
a�ect physiology across the annual cycle of the organism [Banni et al.
(2011)]. The samples consist of n̄ = 295 di�erentially expressed
genes (with intensities evaluated on a log-scale). There exists a single
dataset, from which two similarity matrices are obtained by split-
ting. The separation is performed by interleaving the features, thus
capturing the statistical dependence and yet avoiding the risk of un-
dersampling small clusters. Feature splitting takes advantage of the
nature of the data, associating the months (Mar, May, Jul, Sep, Nov)
to the �rst sample set, and (Apr, Jun, Aug, Oct, Dec) to the second.
The similarity matrices are calculated from the respective datasets by
taking the Pearson correlation coe�cient for each pair of genes.

The approximation capacity is calculated by initializing the num-
ber of clusters to 10 and then by computing the mutual information at
di�erent (inverse) computational temperatures. The approximation
capacities yielded by pairwise clustering and correlation clustering are
plotted in Fig. 3.4 as a function of the respective inverse temperatures.
The capacities demonstrate the ability of pairwise clustering over cor-
relation clustering to capture predictable regularities in the data. The
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results are revealing: under the same noise, pairwise clustering is able
to discover more statistically valid structure from data than correla-
tion clustering. On this dataset, ASC validates pairwise clustering
as ≈ 3.5 times more informative than correlation clustering. The re-
spective approximation capacities for the optimal model order are, in
fact, ACpc = 1.03 and ACcc = 0.272. Figure 3.4(b) shows the accu-
racy of the mean-�eld approximation compared with Gibbs sampling.
Whereas pairwise clustering is able to discover 7 valid clusters at op-
timal temperature, correlation clustering is able to detect only 2. The
number of valid clusters identi�ed by pairwise clustering at varying
temperature is plotted in Fig. 3.4(c). Correlation clustering is unable
to discover more since it exhibits a strong bias which favors clusters
of equal size. By contrast, pairwise clustering is unbiased to size. The
consistency between the optimal solution of pairwise clustering and
correlation clustering is substantial: ≈ 3/4 of the co-clustered pairs in
pairwise clustering are members of the same cluster in correlation clus-
tering. For completeness, the model selection results obtained with
ASC are compared to those yielded by other established model selec-
tion criteria: BIC and the (in)stability criterion. The former is useful,
well-justi�ed and simple to apply. However, it lacks a well-understood
applicability in cases where the e�ective number of parameters is un-
known. This analysis exhibits such a limitation which is due to lower
e�ective dimension in the feature space. Thus, the application of BIC
is not straightforward in the case of pairwise clustering and even less
so for correlation clustering. For pairwise clustering, the BIC score
has been computed according to the e�ective number of dimensions,
that is the ratio between the trace and the largest data eigenvalue
[Kirkpatrick (2009)]. The stability criterion is a heuristic approach
which shares the spirit of cross-validation [Lange et al. (2004)]. In
contrast to BIC, the stability criterion is directly applicable to both
cost models, but exhibits the severe limitation of being applicable
only to alternatives with comparable informativeness. Figures 3.6(b)
and 3.6(c) illustrate the results obtained by BIC and the stability cri-
terion. Once again, it is worth noting the consistency between ASC
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and BIC. The individual assignment of the samples to the clusters are
reported in Fig. 3.5. The similarity matrix based on correlations is
plotted in Fig. 3.5(c). In both �gures, the samples are sorted accord-
ing to increasing numerical value of the cluster labels. The induced
order highlights the co-clustering structure of the optimal pairwise
clustering solution, which is visible in Fig. 3.5(a). Figure 3.5(b) puts
in contrast the co-clustering blocks of pairwise clustering and correla-
tion clustering (according to the permutation of the indexes obtained
for PC). Let us denote the co-clustering matrices for pairwise clus-
tering and correlation clustering as Hpc and Hcc, respectively. The
values of Hij for samples i and j, with 1 ≤ i, j ≤ n̄, is 1 when the
label is identical, and 0 otherwise. Subscribing to this convention,
Fig. 3.5(b) employs the following encoding for the pair (Hpc

ij , H
cc
ij ):

`yellow' for (1, 1), `red' for (1, 0), `light blue' for (0, 1), `dark blue' for
the pair (0, 0). In brief, (0, 0) and (1, 1) denote assignment agreement,
while (0, 1) and (1, 0) denote disagreement. Compared to correlation
clustering, pairwise clustering is able to discover valid clusters at a
higher level of resolution. The enhanced statistical detail is also con-
sistent with the coarser results obtained through correlation cluster-
ing. Each cluster identi�es an equivalence class of trajectories which
are statistically indistinguishable. Elements of di�erent clusters are,
by contrast, distinguishable. The aggregate trajectories for the opti-
mal pairwise clustering solution are reported in Fig. 3.7. The trajec-
tories are normalized with respect to the intra-cluster means and with
unitary variance. Such pre-processing of the trajectories is useful to
perform parameter estimation and model selection, as discussed in
the next chapters.

In summary, the task of model selection has been addressed by
ASC to estimate the optimal tradeo� between solution stability and
informativeness. ASC exhibited consistency with BIC in the analyzed
dataset of gene expression dynamics. In this application, pairwise
clustering is able to capture three times more information than cor-
relation clustering thanks to its unbiasedness with respect to cluster
size.
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3.2 Modeling of High-dimensional Sequences

�The great tragedy of Science � the slaying of a

beautiful hypothesis by an ugly fact.�

� T. H. Huxley

This section introduces a method for the unsupervised modeling
of discrete dynamical systems3. Whereas the previous section aimed
at quantizing the set of trajectories in the state space, the goal of
this section is to model the dynamic transitions between states. The
study is motivated by the current limitations in the analysis of cellular
phenotypes from image data [Zhong et al. (2012)].

In combination with large-scale perturbation by RNA interference
(RNAi), live-cell microscopy is a particularly informative approach to
discover gene function [Conrad and W. (2010); Goshima et al. (2007);
Collinet et al. (2010); Schmitz et al. (2010); Neumann et al. (2010)].
State-of-the-art methods analyze cell morphologies and phenotypes
with supervised statistical models, that is with approaches which com-
pletely rely on user annotation. In such settings, the data which are
available to the modeler consist of large sequences of time-resolved
microscopy images. So far, the task of modeling cell morphologies
has been formulated mainly as a conventional supervised learning
problem [Neumann et al. (2010); Boland and Murphy (2001); Held
et al. (2010); Harder et al. (2009); Wang et al. (2008); Loo et al.
(2007); Jonesa et al. (2009); Conrad et al. (2011)]. By subscribing to
the supervised framework, previous approaches implicitly limited the
applicability of cell-based screening to cases in which extensive knowl-
edge regarding morphology is already available. There exists another
signi�cant practical limitation associated with supervised approaches:
human labeling exhibits low consistency. This problem is enormously
aggravated when researchers compare results originating from di�er-
ent laboratories (due to bias and subtle change of controlled condi-
tions). The following annotation-free method overcomes these two

3Parts of this section appear in [Zhong et al. (2012)].
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issues. The method enables the automatic prediction of cell morphol-
ogy dynamics from time-resolved images [Zhong et al. (2012)]. The
application target of the method is the full automation of data label-
ing in image-based systems biology. The methodological goal is to
increase objectivity, reproducibility, and validity of the results. Being
unsupervised, the method has the additional advantage of being sig-
ni�cantly faster, since it does not rely on human labor. The method
is applied to unsupervised modeling of human cell phenotypes with
diverse �uorescent markers and screening data. Experimental results
in various experimental conditions verify the accuracy of the method,
which is highly competitive even compared to state-of-the-art super-
vised labeling [Zhong et al. (2012)].

3.2.1 Modeling the Cell Cycle

The cell cycle exhibits an important regularity: a quasi-periodic be-
havior. A central modeling question is: which related aspects are
amenable to predictive modeling? The obtained model demonstrates
that both morphological and dynamical aspects of the process can be
predicted e�ectively by dynamic modeling. The method is based on
Temporal Constrained Combinatorial Clustering (TC3), which takes
advantage of the quasi-periodicity of the cycle to initialize Gaussian
mixture models (GMMs). The individual cell dynamics are captured
by hidden Markov models (HMMs) through the incorporation of spa-
tial information. Figure 3.8 illustrates the pipeline designed for un-
supervised modeling of cell cycle dynamics.

Let Cj indicate the j-th cell in a population of size l. Furthermore,
let x indicate the time-varying state of the cell. Assume that each cell
behaves according to the following It	o stochastic di�erential equation
(SDE):

dx(j)(t) = f(x(j)(t), t, θ)dt+ σ(x(j)(t), t)dWt, (3.46)

for an unknown function f and with a standard Wiener process Wt

whose time-dependent di�usion coe�cient is σ(x(t), t) [Wilkinson (2006)].
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Figure 3.8: Overview of the processing pipeline for unsupervised mod-
eling of cell cycle dynamics from microscopy images. The obtained
unsupervised results are compared with the ones obtained through
the supervised work�ow (Figure from [Zhong et al. (2012)]).

According to this formulation, future states follow the current state
with indeterminacy due to the stochastic transitions.

Measurements are performed simultaneously by sampling the tra-
jectories φ(j) of each cell, obtaining data D = {(ti, y(ti))}ni=1. At time
point ti, the measurement for the j-th cell is given by

y(j)(ti) = h(x(j)(ti), ν
(j)
i ), (3.47)

where h(x, ν) is the measurement function for a �xed setting ε ∈ E.
In such setting, h is assumed to be a time-invariant non-linear vector
function of the state and of the experimental error νi. The error
distribution is estimated from the data.

The cell population is measured in sequences of images recorded
by a digital microscope. The �rst step in the analysis is that of cell
separation and segmentation. Images of the population are processed
by extracting features to detect and capture the current state for
each individual cell. Let Φ = (φ(1), . . . , φ(l)) indicate the set of l
synchronized multivariate time series, where each measured trajectory
φ(j) is a sequence of division phases of an individual cell recorded
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between time frames t1 and tn:

φ(j) := ((t1, y(j)(t1)), . . . , (tn, y(j)(tn))). (3.48)

Multivariate time series are thus represented as sequences of numerical
arrays [Held et al. (2010)]. Each element of Φ is a measurement of
the feature vector φ(j) ∈ Rr×n in the space of r dimensions describing
physiological states over time points.

At each frame, high-dimensional features can be extracted by pre-
processing techniques. The obtained features are statistically depen-
dent and their relation is, in general, nonlinear. Nonetheless, correla-
tion can be taken as a �rst-order approximation to study the struc-
ture of the system. Principal Component Analysis (PCA) [Pearson
(1901)], for instance, may be used to reduce dimension while preserv-
ing fundamental characteristics of the data [Pham and Tran (2006);
Wang et al. (2007)]. PCA o�ers the possibility to transform some
originally correlated feature variables into combinations which are
uncorrelated. In combination with that, feature normalization can be
performed by z-score standardization [Wasserman (2003)]. The noisy
measurements of the trajectories PCA-reduced to r dimensions are
denoted as φ̂. The tensors are obtained from keeping all features ac-
counting for up to 99% accumulative explained variance [Zhong et al.
(2012)].

De�nition 11. Each dataset is a third order tensor (l-by-n-by-r)
constructed as follows:

Y :=


ŷ(1)(t1) ŷ(1)(t2) · · · ŷ(1)(tn)
ŷ(2)(t1) ŷ(2)(t2) · · · ŷ(2)(tn)

...
...

. . .
...

ŷ(l)(t1) ŷ(l)(t2) · · · ŷ(l)(tn)

 . (3.49)

where ŷ(j)(ti) is the r-dimensional reduction of the measured samples
through PCA, with 1 ≤ i ≤ n and 1 ≤ j ≤ l.
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Objective 2. Estimate the phase labels with the hidden Markov model
Σ∗ on the basis of the available dataset (that is the measurement ten-
sor Y).

The full algorithmic procedure employed to address Obj. 2 is out-
lined in Alg. 7. Segmentation, feature extraction, and tracking are
the employed pre-processing steps.

Algorithm 7: GMM-HMM estimation.

Data: r,K ∈ N>0, time series Φ(j) for all j = 1, . . . , l cells.
Result: HMM model Σ and reconstructed trajectories.

1 apply PCA to Φ;
2 assign r PCA components to φ̂;
3 for j = 1 to l do

4 cluster φ̂(j);
5 initialize GMM with TC3;

6 end

7 estimate GMM with EM;
8 estimate stochastic transition matrix A with the Baum-Welch
algorithm;

9 reconstruct Viterbi paths;

Constrained Clustering

After PCA dimension-reduction, the modeler extracts the mitotic sub-
graph from the data. This initial step already captures the two main
cell division phases through binary clustering. It circumvents the
harder task of directly clustering all cell division phases. Clustering is
performed with K-means, that is by minimizing the cost of Eq. (3.27)
with K = 2. The obtained clusters correspond to the two initial
components of a Gaussian mixture model [Richard O. Duda (2000)].
To take advantage of the temporal regularities in quasi-periodic se-
quences of observations, TC3 is employed to initialize the GMMs. In
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contrast to the previous section, clustering is now applied to partition
samples over time.

For K,n ∈ N>0, the set of indexes {1, . . . , n} can be partitioned
into K distinct clusters. If index i and j, with j > i, are in the same
cluster Vk 6= ∅, for k = 1, . . . ,K, then r must be in Vk as well.

De�nition 12. Let ζ(n,K) be the number of possible clustering as-
signments of the measured time series {(t, ŷ(ti))}ni=1 into K clusters.
The function obeys the recurrence relation

ζ(n,K) :=


ζ(n− 1,K − 1) + ζ(n− 1,K) 1 < K < n

1 K = 1 ∨K = n

0 K > n.

(3.50)

The complete enumeration of all possible assignments of n indexes
into K clusters is given by the Stirling numbers of the second kind
[Fortier and Solomon (1966); Jensen (1969)], giving

S(n,K) :=
1
K!

K∑
j=0

(−1)K−j
(
K

j

)
jn. (3.51)

Conveniently, the temporal structure of the task signi�cantly con-
strains the space of possible cluster solutions to be considered. As
a consequence, the growth of ζ(n,K) is modest compared to that of
general combinatorial clustering [Jain and Dubes (1988); Hastie et al.
(2001)]. Solving the recurrence relation of Eq. (3.50), one has that

ζ(n,K) ≡
(
n− 1
K − 1

)
<

(
n

K

)
≤ S(n,K). (3.52)

In many cases, the number of constrained combinations satis�es the
inequality (

n

K

)
� S(n,K), (3.53)
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with the exception of cases close to the boundary conditions (that are
close to K = 1 ∨K = n). For instance, when n = 19 and K = 4,

ζ(19, 4) = 816� 1010 ≈ S(19, 4), (3.54)

which already constitutes a di�erence of seven orders of magnitude.

In the analysis, TC3 is applied twice. Firstly, it is applied to
all cell time series in mitotic and non-mitotic subgraphs after binary
clustering. The step already reduces the number of possible assign-
ments. The search space is further reduced by the second application,
which imposes a minimal size for clusters. By imposing the minimum
cardinality mink |Vk| = q one has that the size becomes

ζ(n− (q − 1)K,K). (3.55)

In the case of the cell cycle, the search space is thus relatively lim-
ited. Optimization can be performed exhaustively to set the best
initial conditions for the GMM.

For all cells, that is for all j = 1, . . . , l, the intra-cluster scatter of
the trajectories is minimized with respect to the cost

W(c|D) :=
K∑
k=1

∑
j∈Vk

‖ φ̂(j) − µk ‖22, (3.56)

where the clustering assignment c ∈ C(D) associates label λk to clus-
ter set Vk for all k = 1, . . . ,K. Recalling Eq. (3.27), W(c|D) is the
K-means cost for the measured trajectories. Equation (3.56) mea-
sures dissimilarities in terms of squared Euclidean distances from the
cluster centroids µk (for the PCA-reduced trajectories).

When K = 6 the cluster labels can be associated with the conven-
tional names of the cell cycle phases [Zhong et al. (2012)]. Sequentially
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ordered, the names of the labels in Λ are

λ1 = inter(-phase),

λ2 = pro(-phase),

λ3 = prometa(-phase),

λ4 = meta(-phase),

λ5 = ana(-phase),

λ6 = telo(-phase).

(3.57)

De�nition 13. The labeled dataset obtained from the population is

Dλ := {(φ̂(j), c(j))}lj=1, (3.58)

with c(j) ∈ Λ for all j = 1, . . . , l.

Discrete States: Mixtures and Transitions

Modeling proceeds by assigning a Gaussian component from a GMM
to each phase of the cycle [Pham and Tran (2006); Wang et al. (2007)].
Discrete states are identi�ed with the latent variables of the GMM,
hence yielding X = Λ.

De�nition 14. The mixture model for the measured trajectories is
given by

pGMM(φ) :=
K∑
k=1

πkNorm(φ|µk,Σk), (3.59)

where πk are the mixing coe�cients satisfying normalization

K∑
k=1

πk = 1. (3.60)

To �t the GMM, the initial value of the mixing coe�cients is given
by the probabilistic membership of the samples. Means are initial-
ized to the class discriminative sample means fromDλ. The maximum
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likelihood estimation of the GMM is performed with the Expectation
Maximization (EM) algorithm for �xed K.

On the basis of the obtained GMM structure, two models are
obtained: a discrete and a continuous hidden Markov model [Rabiner
(1989)].

De�nition 15. A stochastic transition matrix is the matrix

A := [ai,j ] ∈ [0, 1]K×K , (3.61)

with transition probabilities ai,j such that

K∑
j=1

ai,j = 1, i ∈ Y (3.62)

for all i = 1, . . . ,K.

In general, HMMs are represented in terms of a single (often dis-
crete, but possibly continuous) random state variable x(t) ∈ X .

De�nition 16. The HMM ΣHMM is de�ned by

• the transition model p(x(ti)|x(ti−1)),

• the observation model p(y(ti)|x(ti)),

• and the initial state distribution p(x(t0)).

The stochastic transitions between the K hidden states of a dis-
crete HMM are governed by the matrix A. Measured emissions are
noisy, satisfying the assumption of identically distributed and condi-
tionally independent noise terms. In the continuous case, the obser-
vation density for each state is given by the corresponding Gaussian
component Norm(φ|µk,Σk). Transition probabilities are constrained
to traverse hidden states in a speci�c forward order by imposing

ai,j = 0, (3.63)
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for j < i or j > i+ 1 and with

ai,j 6= 0, (3.64)

with j = 1 and i = K. By applying the Baum-Welch algorithm [Baum
et al. (1970)] in combination with the Viterbi algorithm [Viterbi (1967)],
parameters and hidden states are estimated from the datasetDλ. The
estimated states of the learned HMM system Σ are denoted as x̃(ti)
for i = 1, . . . , n. When a priori domain knowledge is not available,
validation of model order can be performed with ASC [Chehreghani
et al. (2012)].

3.2.2 Veri�cation and Application to Real Data

The method is evaluated in its application to diverse �uorescent mark-
ers and screening data for the classi�cation of cell phenotypes [Zhong
et al. (2012)]. Precisely, reference data consist of time-lapse mi-
croscopy images of human tissue culture cells (HeLa "Kyoto" cells).
The �uorescent chromatin marker employed in the study is the hi-
stone H2B-monomeric mCherry. Object detection, tracking of cells
over time, and feature extraction are carried out using the image
analysis framework CellCognition [Held et al. (2010)]. Detailed im-
age segments with user-labeled phases are shown in Fig. 3.9.

The applied aim of modeling is that of predicting cell morphology
labels from image data. In this experimental setting, the number
of distinct phases is known to the modeler. The labels correspond
to interphase and to the phases of mitosis: prophase, prometaphase,
metaphase, anaphase and telophase.

Figure 3.10 shows that user annotation exhibits signi�cant incon-
sistency. The image visualizes the degree of dissimilarity of three
trained biologists with respect to a gold standard (GS). The standard
is given by the consensus approximation to ground truth obtained
through a majority vote of multiple user label annotations. The dis-
similarity matrix reveals relatively modest inconsistency for the same
user on di�erent days. By contrast, the inconsistency in the anno-
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Figure 3.9: Fluorescence images from time-lapse microscopy of a live
HeLa cell with user-labeled morphology phases. The cell expresses
Histone 2B fused to mCherry. The time lapse is of 4.6 min per frame
with a scale bar of 10 µm (Figure from [Zhong et al. (2012)]).

tations performed by di�erent users is statistically and scienti�cally
signi�cant.

The analysis is based on seven image sequences with 326 cell di-
vision events. The images are sampled uniformly in time with time-
lapse interval of 4.6 min. Segmentation is performed with CellCog-
nition [Held et al. (2010)]. The total number of cells is l = 13, 040.
The result of the extraction of the principal components is reported
in Fig. 3.11.

After the application of PCA, the labels obtained from the data
with various methods are compared. Figure 3.12 visualizes the labels
with the color-coding of Fig. 3.9. Each of the l = 51 rows in the
matrices is a labeled cell trajectory in n = 40 consecutive time points
from T ↓. The GMM alone exhibits a poor match with respect to user
annotation. The direct application of the GMM results in low predic-
tive capacity, predominantly due to sensitivity to local maxima and
to initial conditions. In Fig. 3.12, comparison with other approaches
demonstrates the bene�ts of incorporating additional knowledge for
e�ective learning of cell morphologies. To improve classi�cation ac-
curacy, TC3 is used to initialize the GMM as described in the pre-

93



CHAPTER 3. UNSUPERVISED LEARNING

Figure 3.10: Label dissimilarity for three di�erent annotators (Users 1
to 3) with respect to the gold standard obtained by majority vote. The
plot shows signi�cant inconsistency between di�erent users (Figure
from [Zhong et al. (2012)]).

vious subsection. Further improvements are obtained by performing
state reconstruction with the estimated hidden Markov model. The
stochastic transition matrix A identi�es the dynamics of the system
Σ, while individual cell morphologies are predicted on the basis of
the observation densities. The analysis show that the obtained model
predicts well the dynamics of the cell cycle, and yields labels which
are consistent with user annotation.

For completeness, the performance of the unsupervised method
which combines TC3, GMM and HMM is compared with the state-
of-the-art supervised method: support vector machine classi�cation
with HMM correction. Overall, the SVM approach yields relatively
low error rates in post-classi�cation inspection. The largest contribute
to the uncertainty of state estimation is due to the regions of transition
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Figure 3.11: On the left, the plot visualizes the �rst seven principal
components of 51 cell trajectories. On the right, the distribution of
the samples is projected with respect to the two main principal com-
ponents. Color-coding is consistent with that of Fig. 3.9. Dots and
black crosses indicate, respectively, individual cell objects and sample
means per component according to human annotation. Temporal pro-
gression is indicated by the cyclic arrows (Figure from [Zhong et al.
(2012)]).

between phases. Ambiguity in transitional cell morphology makes the
estimation of absolute error rates particularly challenging. Validation
is performed as follows: an SVM is independently trained on cell
trajectories from 7 image sequences, using the other 6 image sequences
as test datasets. Detailed results of precision, recall, and F -score are
reported in Tab. 3.1. Figure 3.13 visualizes the total accuracy of
each approach. In the analysis, true positives, true negatives, false
positives, and false negatives are respectively denoted as TP, TN, FP,
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FN. The measures are

Precision :=
TP

TP + FP
,

Recall :=
TP

TP + FN
,

F -score := 2
Precision · Recall
Precision + Recall

.

(3.65)

The results show that supervised SVM learning with HMM error
correction yields slightly lower mean total accuracy than the unsu-
pervised method, as shown in Fig. 3.13. Overall, unsupervised learn-
ing achieves classi�cation accuracy comparable to that of supervised
methods and is more objective [Zhong et al. (2012)].

Application of the modeling approach to additional markers in
live imaging of HeLa cells expressing EGFP-tagged proliferating cell
nuclear antigen (PCNA) yields labels that closely match user annota-
tion with 86.7% total accuracy [Zhong et al. (2012)]. Total accuracy
of 75.5% is achieved when modeling mitotic spindle dynamics of HeLa
cells expressing �uorescently tagged α-tubulin. This analysis demon-
strates that there exists a non-negligible degree of confusion between
midbody and interphase morphologies [Zhong et al. (2012)].
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3.2. MODELING OF HIGH-DIMENSIONAL SEQUENCES

Figure 3.12: Organized plot of the labeled trajectories of all cells from
the image containing the example in Fig. 3.9. Progressing clock-wise
from the upper-left corner, the plots visualize the labels obtained from
GMM (alone), TC3 (alone), GMM initialized by TC3, HMM exten-
sion of GMM with TC3, and SVM followed by HMM error correction
(Figure from [Zhong et al. (2012)]).
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Chapter 4

Supervised Learning

�Prediction is very di�cult,

especially about the future.�

� N. Bohr (attr.)

4.1 Clustered Filtering

Given a model M and data D, parameter estimation can be formu-
lated as the task of evaluating parameters on the basis of the data1. In
the Bayesian setting, the aim is to calculate the posterior distribution
p(θ|D) over the parameter space Θ. When the model M corresponds
to a parametric form for the transition function f of a dynamical
system, θ incorporates all free parameters of f . Recalling Def. 2 and
Eq. (3.46), the following section refers to the parameters of FODEs for
ODEs, as well as for the deterministic component of SDEs.

Objective 3. Calculate the parameter posterior p(θ|D) for the free
parameters θ ∈ Θ given the data D.

1Parts of this section appear in [Busetto and Buhmann (2009)].
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Since model selection is often performed taking into account ranges
of plausible parameter values, parameter estimation plays an impor-
tant role in system identi�cation. Uncertainty in parameter estimates
might propagate signi�cantly to higher levels of abstraction. In many
cases, it is convenient to reduce parameter estimation to generalized
state estimation. One can, in fact, consider parameters as additional
components of the generalized state space Xθ := X ×Θ. Generalized
states are de�ned as follows.

De�nition 17. The generalized state xθ ∈ Xθ is obtained by incor-
porating the parameters as extensions of the state components in

xθ(t) :=
[
x(t)
θ

]
, (4.1)

where the parameter vector θ ∈ Θ contains all free parameters for a
certain functional form f identi�ed by model M .

The parameters are then considered as additional states which are
not time-varying and whose initial condition is unknown by the mod-
eler [Nelles (2001); Doucet and Tadi�c (2003)]. The transition function
of the extended model is denoted as fθ. The role of supervised learn-
ing in the modeling process is highlighted in Fig. 4.1.

4.1.1 Avoiding Approximation Divergence

In almost all non-linear cases of practical interest, no analytic formu-
lation is available for the parameter posterior. As a consequence, the
estimation is typically performed numerically, and the quality of the
inference process is limited by the available computational resources.
In general, the dominant bottlenecks are the evaluation of the like-
lihood and the high-dimensional integration of the evidence [Bishop
(2006)].

There exist multiple application domains in which linear-Gaussian
assumptions rarely yield acceptable results. Together with economics
and chemistry, systems biology makes no exception [Kitano (2002)].
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4.1. CLUSTERED FILTERING

Figure 4.1: This reduced representation of the modeling process speci-
�es the position of the supervised approaches discussed in this section.

In such domains, particle �lters are generally applicable approaches
which often enable e�ective state-space estimation [Gordon et al.
(1993); Doucet and Tadi�c (2003)]. Alternatively, the modeler could
aim at approximate Bayesian computation methods, which approx-
imate the likelihood function, for instance by performing rejection
sampling with a given tolerance [Sunnåker et al. (2012)]. Exact-
likelihood sampling approaches are approximate inference techniques
which are more computationally intensive, but exhibit the potential
to reproduce rather complex multimodal belief states over Xθ [Banga
(2008)]. Particle �ltering is based on sequential resampling of the
posterior and are asymptotically correct as the number of samples
grows. However, straightforward �ltering su�ers from well-known de-
generacy problems since the resampling phase exhibits a systematic
loss of information [King and Forsyth (2000)]. Precisely, the method
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CHAPTER 4. SUPERVISED LEARNING

produces the approximate posterior

p̃(θ|D) ' p(θ|D) (4.2)

which exhibits a tendency to diverge from the correct posterior p(θ|D).
The quality of the approximation can be quanti�ed in terms of relative
entropy, that is a fundamental measure of information loss. Recalling
Eq. 2.30, the approximation should aim at minimizing the number of
additional bits which is given by KL[p ‖ p̃]. Increased computational
power is su�cient but not necessary to address the issue of estimation
divergence. This section introduces a method to mitigate the problem
of divergence by keeping track of multimodal posteriors [Busetto and
Buhmann (2009)].

The learning scenario is the following. Time series data Φ of
sample size n are given to the modeler, who knows the functional
form of the physical system Σ∗. The parameters of the model are
uncertain and subject to a given prior density p(θ). The parameter
posterior follows from Bayes' rule as

p(θ|Φ) =
p(Φ|θ)p(θ)
p(Φ)

, (4.3)

and the same holds for the posterior of the extended space p(xθ|Φ).
The goal is the approximation of the posterior given the data at time
tn. At any time point, the posterior incorporates all the knowledge
available to the modeler. The posterior is the solution of the optimal
�ltering problem [Arulampalam et al. (2002)]. Assuming IID noise,
the likelihood can be factorized and, consequently, Bayes' rule can be
calculated recursively for each sample point. This property permits
incremental storing of the data and enables online inference. Recur-
sive Bayesian �lters are based on the iteration of two stages: update
and propagation. During the former, new data are incorporated into
the belief state. During the latter, the belief state is propagated with
its uncertainty following drift and di�usion between measurements.

104



4.1. CLUSTERED FILTERING

The belief state at time t is denoted as pt(xθ|Φt), where

Φt := {(ti, y(ti))}ji=1 (4.4)

is the time series until the largest j ≤ n such that tj ≤ t with all ti ∈
T↓. In the time interval [tj , tj+1), that is between measurements, the
belief state follows the dynamics of the Kolmogorov forward equation
of the system [Risken (1996)]. For a system of SDEs, the probability
in the extended state space is given by the Fokker-Planck equation

∂pt(xθ|Φt)
∂t

= −∇ · [fθ(xθ, t)pt(xθ|Φt)] + ∆[Ð(xθ, t)pt(xθ|Φt)] (4.5)

from a given initial condition pt(xθ|Φt) and where Ð(xθ, t) is the ex-
tended di�usion tensor [Risken (1996)]. Equation (4.5) is a drift-
di�usion equation: the drift follows the deterministic component,
while the di�usion is due to the stochastic terms of the SDEs. In
the case of ODE models, only the drift term exists, yielding the sim-
pler form

∂pt(xθ|Φt)
∂t

= −∇ · [fθ(xθ, t)pt(xθ|Φt)]. (4.6)

As soon as the new sample (ti, y(ti)) = Φi \ Φi−1 is available, the
time-varying posterior is recursively updated following

pti(xθ|Φti) =
p(y(ti)|xθ, ti)pti(xθ|Φti−1)

p(y(ti|ti))
, (4.7)

where pti(xθ|Φti−1) is the solution of the Kolmogorov forward equa-
tion from the initial condition pti−1(xθ|Φti−1). Algorithm 8 describes
recursive Bayesian �ltering given the initial belief state pt1(xθ).

Sequential Monte Carlo (SMC) methods numerically approximate
through sampling the stages of propagation and update as in Alg. 8.
The posterior density is approximated by a discrete set of np weighted
(pseudo-)random samples. For compactness, let y1:k denote the se-
quence y(t1), . . . , y(tk) and let (x; t1:k) denote xθ(t1), . . . , xθ(tk) for
k ≤ n. Then, the update follows

p(x; tk|y1:k) =
p(yk|x; t1:k)p(x; tk|y1:k−1)

p(yk|y1:k−1)
. (4.8)
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Algorithm 8: Recursive Bayesian �ltering.

Data: Φ and pt1(xθ), f and Ð
Result: ptn(xθ|Φ).

1 for i = 1 to n do
2 in [ti−1, ti): calculate the Kolmogorov forward equation

from pti−1(xθ|Φti−1) ;
3 at ti: calculate the posterior pti(xθ|Φti);
4 end

De�nition 18. Let us denote as {xi, wi(t)} a random measure for
the posterior p(xθ,0:k|{yj : tj < tk}), for i = 1, . . . , np. The measure
is approximated by

p̃(xθ,0:k|{yj : tj < tk}) :=
np∑
i=1

wikδ(xθ,0:k − xiθ,0:k). (4.9)

The weights are normalized to one

np∑
j=1

wj = 1 (4.10)

and obtained according to importance sampling [Doucet (1998)]

wik ∝
p(xθ,0:k|{yj : tj < tk})
q(xθ,0:k|{yj : tj < tk})

. (4.11)

The proposal importance density can be factorized as

q(xθ,0:k|{yj : tj < tk}) =q(x; tk|xθ,0:k−1, {yj : tj < tk})
· q(xθ,0:k−1|{yj : tj < tk−1}).

(4.12)

The factorization leads to the recursive update of the time-varying
weights

wik ∝ wik−1

p(yk|xiθ,k)p(xiθ,k|xiθ,k−1)

q(xiθ,k|xiθ,k−1, yk)
. (4.13)
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At this point, the system of SDEs can be numerically integrated (for
instance with the Euler-Maruyama method) to sample from

q(xiθ,k|xiθ,k−1, yk) = p(x; tk|xiθ,k−1). (4.14)

Iteratively, this means that

wik ∝ wik−1p(yk|xiθ,k), (4.15)

where the likelihood in p(yk|xiθ,k) is de�ned by the measurement pro-
cess (assumed to be known).

After several iterations, however, most of the weight mass might
already concentrate on only few samples. In this divergent behav-
ior, the overwhelming majority of the particles are updated despite
their overall negligible contribution to the approximation [King and
Forsyth (2000)]. The problem leads to signi�cant waste of the avail-
able computational resources. Two techniques are typically employed
to counteract the divergence: importance resampling and careful de-
sign of proposal densities. In standard resampling, the new set of
samples {xi∗θ,k}

np
i=1 is obtained from the approximated density. Resam-

pling is useful and, in many cases, even necessary, but su�ers from two
limitations: sample impoverishment and unimodal divergence. The
former issue refers to the tendency towards a systematic reduction
of the diversity of the sample set. Divergence is due to the inability
to maintain multimodal densities: there is a systematic bias which
favors unimodal densities. The presented approach addresses both
issues with resampling through clustering and appropriate proposal
densities [Busetto and Buhmann (2009)].

Resampling from the approximating discrete density involves a
loss of information. Over time, iterated resampling behaves as a gen-
erally inhomogeneous Markov chain [King and Forsyth (2000)]. The
chain exhibits a tendency to make the sample set collapse into a sin-
gle mode, diverging from the possibly multimodal posterior. For il-
lustration, consider the following simple example in the state space
X{A,B} = {A,B}. Let 2m be the available number of samples, and
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mA(t) the number of samples which are in state A at time t. The
probability distribution p(x) = Bern(x|1/2) is time-independent. At
time t, the time-varying approximation is

p̃(x) ' mA(t)
2m

Ix=A +
2m−mA(t)

2m
Ix=B. (4.16)

The approximation is accurate when mA(t) ≈ m. Since one has that

p̃(mA(ti)|mA(t1:i−1)) = p̃(mA(ti)|mA(ti−1)), (4.17)

the process of resampling constitutes a Markov chain which is homo-
geneous and has the 2m + 1 states 0, . . . , 2m. By resampling with
replacement,

p(mA(ti) = j) =
2m∑
k=0

p(mA(ti−1) = k)
(

2m
j

)
k

2m

j 2m− k
2m

. (4.18)

The two degenerate states 0 and 2m are attractors and, consequently,
mA(t) inevitably tends to diverge from the correct value [King and
Forsyth (2000); Busetto and Buhmann (2009)]. Figure 4.2 visualizes
the divergence probability of iterative resampling.
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Figure 4.2: Starting from a balanced approximation with mA(1) =
m = 10, iterative resampling rapidly increases the probability of
reaching one of the attractors at the boundaries. In the case study of
Eq. (4.16), the two degenerate representations (mA = 0 andmA = 20)
are probabilistically inevitable with consecutive resampling (Figure
from [Busetto and Buhmann (2009)]).

Let ti be the time point at which the new measurement y(ti) is
available to the modeler and let t−i ∈ T indicate the previous time
step. In the propagation phase, the posterior predicts the value at ti
on the basis of the data accumulated until t−i through Eq. (4.5) (or,
more generally, through the forward equation of the system). At this
point, the samples are grouped into K clusters. Their indexes are
partitioned into the sets Vk for k = 1, . . . ,K. Clustering is performed
with weighted K-means [Tseng (2007)]. At time t−i , every cluster has
|Vk| = pk samples and

K∑
k=1

pk = np. (4.19)
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To maintain multiple modes, resampling is performed by keeping the
cardinality of each cluster constant over time. The process is based
on the estimation, for every cluster, of two multivariate normal com-
ponents. The component N−k is obtained at time t−i , while N

+
k is

obtained at time ti. Independently, each component is employed as
a proposal distribution for the importance resampling of the density
from time t−i . The centroids µk of the components de�ne a Voronoi
tessellation of partitions {(X × Θ)k}Kk=1 of the parameter space Θ
[Aurenhammer (1991); Busetto and Buhmann (2009)]. New samples
are taken within each cluster, keeping pk constant in each partition
(X ×Θ)k. Each new sample xjθ is sampled from N−k and accepted if
I
xjθ∈(X×Θ)k

= 1. When accepted, the weight is computed according

to the ratio

wj+ ∝
N−k (xj−θ )

N−k (xj−θ )
, (4.20)

where xj− denotes a sample of the extended state at time t−i . The
procedure guarantees a constant number of samples in every partition.
The weight mass tends to concentrate in regions with signi�cant con-
tributions to the approximation. The procedure is outlined in Alg. 9.

How to measure the quality of the approximation? E�ective Sam-
ple Size (ESS) can be employed to measure the quality of a sampled
approximation [Doucet and Johansen (2011)].

De�nition 19. The ESS is given by

Ne� :=
np

1 + V[w∗ji ]
, (4.21)

where

w∗ji =
p(xjθi|y1:i)

q(xjθi−1, yi)
. (4.22)

Since the quantity cannot be evaluated exactly, one can evaluate
the following approximation

N̂e� :=
1∑np

j=1(wji )2
. (4.23)
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Algorithm 9: Filtering with preventive clustering.

Data: Σ, xθ(t0), Φ, Θ, K.
Result: p̃(xθ).

1 for i = 1, . . . , n do
2 draw np samples from p̃t(xθ) with importance sampling;
3 propagate the samples according to the forward equation of

Σ;

4 weighted K-means of the samples xjθ, j = 1, . . . , n;
5 for k = 1, . . . ,K do

6 estimate components N−k and N+
k ;

7 resample xjθ within each cluster keeping pk �xed;
8 recalculate weights wj+ from importance sampling as in

Eq. (4.20);

9 end

10 end

Cases in which N̂e� ≈ Ne� is small are pathological and indicate de-
generacy in the approximation. It has also been proved that, as V[w∗ji ]
does not increase with time, Ne� cannot increase without resampling
[Doucet (1998)]. Small values of N̂e� indicate that, among all updated
samples, very few exhibit non-negligible contributions to the approx-
imation. In other words, N̂e� is a practical estimate of the e�ective
number of contributing samples in the approximation. Bottlenecks in
ESS result in serious instability of the modes, since they aggravate
the tendency to drift towards the unimodal attractors [Busetto and
Buhmann (2009)]. Standard techniques for resampling are able to
regenerate the weights of the samples obtaining intervals exhibiting
high ESS. However, they also create ESS bottlenecks. Resampling
with preventive clustering mitigates the problem by drastically re-
ducing frequency and intensity of the bottlenecks. Figure 4.3 illus-
trates preventive resampling with an proof-of-concept. In the �gure,
the Bayesian update of the weights of the samples from prior (upper
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plot) to posterior (lower plot) is shown on the left. After the update,
only a fraction of the samples maintain a non-negligible weight. In
contrast, on the right, resampling is performed with preventive clus-
tering. From the same prior (upper plot), resampling is performed be-
fore the update (plot in the middle). The resampled posterior (lower
plot) exhibits a sample concentration in regions of higher density, thus
retaining a large number of e�ective samples.
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4.1.2 Evaluation and Biological Application

The application of techniques from Bayesian inference is expanding
rapidly in several domains. This section focuses on the motivating ap-
plication, which comes from computational systems biology [Wilkin-
son (2007)]. The following considerations apply to general systems
of chemical equations. In the considered domain, MCMC approaches
have been remarkably successful in a variety of applications [Golightly
and Wilkinson (2008)], but remain rather computationally intensive.
The established approaches known as SMC su�er the limitations de-
scribed before.

Let us consider a dynamical system modeling the behavior of a bio-
chemical reaction network at thermodynamic equilibrium. Let nc de-
note the number of distinguishable chemical species Ci in the system,
for i = 1, . . . , nc. There are nr chemical reactions Ri, for i = 1, . . . , nr.
Assuming thermal equilibrium and homogeneous spatial distribution,
one can indicate reaction Rj as

Rj : Nin
1jC1 + . . .+ Nin

ncjCnc −→ Nout
1j C1 + . . .+ Nout

ncjCnc (4.24)

where each Nin
ij is the element at the i-th column and j-th row of the

input stoichiometric matrix Nin ∈ Nn×r. Similarly, each Nout
ij is an

element of the output stoichiometric matrix Nout ∈ Nn×r.

De�nition 20. The stoichiometric matrix N ∈ Nn×r associated with
a biochemical reaction network is given by

N := Nout −Nin. (4.25)

The stoichiometric matrix represents the net e�ects of all involved
reactions in the considered physical system. Let vj(C, θj) denote the
rate law associated with reaction Rj , for all j, which depends on the
current state C and on parameter θj .

The chemical master equation quanti�es the probability that, for
all t ∈ T, the biochemical system is in state C. The state is discrete
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and describes the time-varying number of molecules for each of the
nc species. The chemical master equation gives the transition proba-
bilities for the dynamics of the biochemical system. Its solutions can
be computed explicitly only in rare cases of practical interest [Wilkin-
son (2011)]. Dividing by the �nite volume ∆σ, the chemical species
concentrations can be de�ned as

xci =
Ci

∆σ
. (4.26)

At time t+ ∆t, the master equation gives, up to o(∆t)

pc(t+ ∆t) '
nr∑
j=1

p(C−Nj ; t)vj(C−Nj , θj)∆t

+ p(C; t)

1−
nr∑
j=1

vj(C, θj)∆t

 ,

(4.27)

where Nj denotes the j-th column of the stoichiometric matrix. Tak-
ing the the in�nitesimal limit for ∆t→ 0, the chemical master equa-
tion is given by

∂p(C; t)
∂t

=
nr∑
j=1

(p(C−Nj ; t)vj(C−Nj , θj)−p(C; t)vj(C, θj)) (4.28)

which is a continuous-time discrete-state Markov process. A drift-
di�usion equation is obtained by truncating the Taylor expansion of
Eq. (4.28) to the second order, giving the Langevin equation

∂p(xci; t)
∂t

=−
nc∑
i=1

∂

∂xci
µi(xc)p(xci; t)

+
1
2

nc∑
i=1

nc∑
j=1

∂2

∂xci∂xcj
Dcij(xc)p(xci; t),

(4.29)

where the drift term is given by

µi(xc) = lim
∆t→0

1
∆t

E[xci(t+ ∆t)− xci(t)|xc(t) = xc], (4.30)
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and the di�usion tensor has elements

Dcij(xc) = lim
∆t→0

1
∆t

C[{∆xci(t)}, {∆xcj(t)|xc(t) = xc}], (4.31)

with di�erences de�ned as ∆xci(t) = xci(t+∆t)−xci(t). Under weak
conditions [Wilkinson (2011)], the dynamics follows the systems of
SDEs

dxc(t) = µ(xc(t), θ)dt+D1/2(xc(t), θ)dWt, (4.32)

with

µ(xc(t), θ) = Nv(xc, θ) (4.33)

and

D(xc(t), θ) = Ndiag[v(xc, θ)]NT . (4.34)

Estimating the parameters of the chemical master equation involves
challenging computations and, therefore, the Langevin equation is em-
ployed as an e�ective approximation [Golightly andWilkinson (2008)].
The quality of the approximation increases as the Markov process ex-
hibits smaller jumps and slower variations in the solution of p(xc; t)
with respect to the state xc.

Generalized state space estimation can be performed as described
at the beginning of this section, that is by extending the state space X
to incorporate the parameters in X ×Θ. To improve resampling, the
modeler can subject the extended state space to an invertible trans-
formation [Busetto and Buhmann (2009)]. The transformation makes
all components of the state space time-varying, still maintaining xθ
the result of a bijective function of x and θ for any time point. The
transformation could, for instance, consider dynamic �uxes as well as
Hill variables as additional states of the biochemical reaction network
[Bullinger et al. (2008)]. The most common functional forms for the
reaction rate laws are mass action for signal transduction, Michaelis
Menten for metabolic pathways and Hill for gene regulation [Szallasi
et al. (2006); Wilkinson (2011); Farina et al. (2006)]. All these forms
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and their products can be expressed as

vj(xc, θ) = vj,nom

nc∏
i=1

c
νj,i
i

K
ηj,i
j,i + x

ηj,i
ci

, (4.35)

where the parameters vj,nom,Kj,i, νj,i and ηj,i are elements of the pa-
rameter vector. This formulation is remarkably expressive and able
to model realistic combinations of activation, inhibition, and cooper-
ative behavior. By expressing the new xθ = [xc, v,m] as a function of
�uxes and Hill variables, one can write the transformed dynamics as

d

dtmj,i
= fm(xθ(t), θ)

d

dtvj
= fv(xθ(t), θ)

(4.36)

with

fm(xθ(t)) = ηj,ix
(ηj,i−1)
ci

dxci
dt

fv(xθ(t)) = vj

nc∑
i=1

(
vνj,i

1
xci

dxci
dt
− 1
mj,i

dmj,i

dt

)
,

(4.37)

where mj,i = K
ηi,j
i,j +c

ηi,j
j and vj denote, respectively, the components

of m and v [Bullinger et al. (2008)]. Given the initial condition, the
system of SDEs can be written as

d

xcm
v

 =

 Nv
fm(xc,m, v)
fv(xc,m, v)

 dt+
[
I
0

]
D([xc,m, v], θ)1/2dWt. (4.38)

The parameters, which are unknown to the modeler, appear as ex-
tended initial conditions.

The described approach is applied to a dynamical system which
models the circadian clock [Busetto and Buhmann (2009)]. The sys-
tem is a modi�ed version of the Goodwin model for the molecu-
lar mechanisms of the circadian clock of Neurospora and Drosophila
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[Goodwin (1965)]. The model has interesting features: Hill and mass
action kinetics, as well as an inhibitory feedback loop. The system is
de�ned as the system of SDEs with deterministic function

dxc1(t)
dt

= 3− v1 − v2 − v4

dxc2(t)
dt

= v1 − v3

dxc3(t)
dt

= v2 − v3

dxc4(t)
dt

= 6v3.

(4.39)

In the equation, the rate laws are

v1 = θ1xc1

v2 = θ2xc1

v3 = θ3xc2xc3

v4 = θ4
x2
c4

x2
c4 + θ2

5

.

(4.40)

The stochastic terms are de�ned by the elements of the covariance ma-
trix of W, which are Dij = δij10−3 for i, j 6= 1 with D11 = 10−2. Fig-
ure 4.4 illustrates with a diagram the reaction network of the double
Goodwin model. The initial conditions are xc(t0) = [3, 0.6, 0.4, 0.8]T

and the nominal values for the parameters are θ = [7, 1, 10, 3, 1]T .
The measurement noise is additive, white, and normal with vari-

ance σ2
N = 0.6 per component of the measurement space. Only xc1

and xc4 are directly measurable, whereas xc2 and xc3 are measured as
a linear combination. For all ti ∈ T↓, the available measurements are
obtained from

y(ti) =


1 0 0 0
0 1/2 0 0
0 0 1/2 0
0 0 0 1

 ·

xc1(ti)
xc2(ti)
xc3(ti)
xc4(ti)

+

ν1(ti)
ν2(ti)
ν3(ti)

 , (4.41)
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Figure 4.4: Diagram illustrating the reaction network of the double
Goodwin model (Figure from [Busetto and Buhmann (2009)]).

with νj(ti) IID according to N = N (νj |0, σ2
N ) for j = 1, 2, 3 and

i = 1, . . . , n. An individual trajectory of the system, as well as a
noisy realization of readout data are visualized in Fig. 4.6. Figure 4.5
compares the N̂e� obtained with di�erent resampling strategies as a
function of time. The introduced approach regenerates the ESS, thus
mitigating the bottlenecks introduced by standard resampling.

On the left, Fig. 4.7 contains the plots of the marginalized pos-
teriors for each parameter. The surface on the right represents the
marginalized joint posterior for θ1 and θ2. In the calculation, np =
2 · 103 samples. Figure 4.8 illustrates the e�ect of preventive cluster
resampling in the parameter space. The approach avoids the situ-
ation in which particles with di�erent coordinates in the extended
space collapse into the same position in the parameter space. Pre-
ventive clustering maintains the equilibrium in multimodal cases, as
shown in Fig. 4.9. As visible in Fig. 4.7, the posterior density re-
mains bimodal in the parameter space. The plots of Fig. 4.9 show the
marginalized distribution for θ1 − θ2 of the number of samples (with
np = 200) staying the largest mode. With time, standard resampling
diverges in the overwhelming majority of the cases by accumulating
more and more samples with each iteration. Clustering helps by keep-
ing the number of particles constant in both regions of the parameter
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space. The �nal distributions are obtained by generating 500 IID
datasets. Figure 4.10 shows the marginal posterior for θ1 − θ2 over
time, demonstrating the persistence of the two modes with cluster
resampling.

In summary, the introduced approach yields two bene�cial prop-
erties: it mitigates sample degeneracy by preemptive resampling, and
contrasts unimodal attractors through clustering. It is worth high-
lighting the importance of selecting the appropriate number of clus-
ters K, a task which can be addressed by ASC validation (as shown
in the previous chapter).
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4.2 Evaluation of Optimized Solutions

�I believe that we do not know anything for

certain, but everything probably.�

� C. Huygens

Many estimation tasks are de�ned in terms of a cost function
R(c|D), which is minimized with respect to c ∈ C given the data.
Minimization is performed over a search space of candidate solutions.
The problem can also be equivalently formulated as an optimization
problem in which the objective function Fobj(c) := −R(c|D) is max-
imized. Practical examples of this setting are those of regularized
maximum likelihood and maximum a posteriori estimation. In prac-
tice, optimization is performed by the means of digital computation,
e�ectively on a �nite search space C (for instance, that of bounded
�oat-point numbers). Despite being �nite, the space is typically so
large that it would be impractical to �nd the globally optimal solu-
tion c∗ by inspection. In principle, one could take advantage of the
regularities of the objective function to make the problem tractable
(for instance, by excluding regions which are a priori known to yield
suboptimal scores). There as cases, such as in submodular optimiza-
tion [Nemhauser et al. (1978)], in which certain algorithms produce
optimized solutions whose scores are guaranteed to be near-optimal.
In practice, however, in most cases no regularities are known about
the objective. Because of that, the modeler has access to the best
solution c̄ obtained from heuristic algorithms. In this general set-
ting, one thing can be said for sure: the optimized solution c̄ ∈ C is
the best solution among the evaluated candidates. To the modeler,
such heuristic solution is often the best available approximation of the
globally optimal solution c∗. Computational limitations, in fact, may
limit signi�cantly the number of possible evaluations of the objective
function. In many cases of practical interest, no guarantees are avail-
able to the modeler for a general optimization task with objective
Fobj(c̄). However, even when nothing can be said regarding the value
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of the optimized score, the relative position of the optimized solution
can still be estimated with some additional empirical observations.

De�nition 21. For a �nite search space C, the relative position pos(c̄)
of the solution c̄ ∈ C is given by the ratio

pos(c̄) :=
|C+
c̄ |
|C|

, (4.42)

where

C+
c̄ := {c ∈ C : Fobj(c) ≥ Fobj(c̄)} (4.43)

is the set of solutions which are better or equal than c̄ according to the
total order induced by Fobj.

If a solution has pos(c̄) = α, then it can be said that it is in the
top α · 100% for Fobj(c).

Objective 4. For the objective function Fobj(c) over the search space
C, what is the relative position pos(c̄) of a given optimized solution c̄?

4.2.1 Bound Derivation

The central idea is to employ a bound to estimate the relative posi-
tion of the best available solution c̄, which is given by the heuristic
algorithm. The estimation can be performed through sampling, and
the uncertainty can be bounded by a Chebyshev-type inequality. The
results obtained here are an application of ideas employed as an ar-
gument in the proof of the symmetrization lemma from statistical
learning theory [Bousquet et al. (2004)].

In the optimization setting, the heuristic algorithm terminates and
yields the solution c̄. At that point, let the available computational
resources allow the additional evaluation of np samples. Let then cj ,
for j = 1, . . . , np, denote the IID samples drawn from the uniform
distribution Unif (C). The question is: what can be said about pos(c̄)
on the basis of these additional np evaluations? Let us introduce
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the indicators Ij
cj∈C+

c̄

for j = 1, . . . , np. The indicators are random

variables as well, IID drawn from the the Bernoulli distribution

Bern(Ij
cj∈C+

c̄

= 1|pos(c̄)) = pos(c̄). (4.44)

One can, at this point, introduce the additional random variable

kp =
np∑
j=1

Ij
cj∈C+

c̄

∼ Bin(kp|np, pos(c̄)), (4.45)

where Bin(kp|np, pos(c̄)) denotes the Binomial distribution

Bin(kp = k|np, pos(c̄)) =
(
n

k

)
pos(c̄)k(1− pos(c̄))np−k. (4.46)

From the equations above, one has that the relative position pos(c̄))
can be estimated as the ratio

p̂os(c̄) :=
kp
np
. (4.47)

Essentially, such ratio counts the proportion of uniformly sampled so-
lutions which yield better scores than Fobj(c̄). If pos(c̄) is small (that
is when its position is close to that of the point of global optimum),
the modeler can expect kp = 0 for small np with high probability.

Theorem 1. For any Fobj(c) over the search space C, the absolute
error between pos(c̄) and the estimated p̂os(c̄) satis�es the bound

p(|pos(c̄)− p̂os(c̄)| ≥ ε) ≤ 1
4npε2

, (4.48)

for any ε > 0 and np ∈ N>0.

Proof. Chebyshev's inequality gives

p(|E[Z]− Z| ≥ ε) ≤ V[Z]
ε2

, (4.49)
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for the random variable Z. For Z = kp/np, one has that, since kp ∼
Bin(kp|np, pos(c̄)),

E[kp] = nppos(c̄)
V[kp] = nppos(c̄)(1− pos(c̄))

(4.50)

and, thus, that

E
[
kp
np

]
= pos(c̄)

V
[
kp
np

]
=

pos(c̄)(1− pos(c̄))
np

≤ 1
4np

.

(4.51)

Finally, the bound is obtained with

p

(∣∣∣∣kpnp − pos(c̄)
∣∣∣∣ ≥ ε) ≤ pos(c̄)(1− pos(c̄))

Nε2
≤ 1

4npε2
. (4.52)

When kp = 0, as in many cases of practical interest, the bound
simpli�es to

p(|pos(c̄)| ≥ ε) ≤ 1
4npε2

, (4.53)

and can be interpreted as follows: the probability that the optimized
solution c̄ is not in the ε · 100% is smaller than 1/(4npε2).

The bound is also useful considering the dependence of R(c|D)
on the �uctuations of the data, so that the relative position re�ects
the variability due to the noise. In the context of statistical learning
theory, the upper bound is calculated with the intention of estimating
the deviation of empirical measures [Bousquet et al. (2004)]. In this
setting, the bound is used to quantify the uncertainty regarding the
relative position of a solution obtained through heuristic optimization.
To employ such result for estimation, one has to note that, by itself,
the bound does not address the problem of over�tting.
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4.3 Modeling Human Learning Dynamics

�All models are wrong, but some are useful.�

� G. E. P. Box

This section introduces two models of human learning aimed at
treating dyslexia and dyscalculia, respectively2.

Objective 5. On the basis of interaction data D, select models M of
human learning to design e�ective treatments for dyslexia and dyscal-
culia.

For dyslexia, the model of engagement dynamics in spelling learn-
ing is obtained from experimental data consisting of recorded user-
computer interactions. The model relates patterns of typed inputs to
three aspects of human learning. It relates learning rates to engage-
ment dynamics, predicting focused and receptive states, as well as
forgetting. The �nal model has been selected from a set of candidate
dynamic Bayesian networks (DBNs) which are estimated from data
[Murphy (2002)]. The available dataset contains more than 150, 000
complete inputs recorded over several months through a training soft-
ware for spelling.

The second model is introduced to enhance the numerical cogni-
tion of children with developmental dyscalculia through a computer-
based training program. The model aims at predicting aspects of
cognitive processes to control stimulation levels. The purpose is to
optimize the learning process with targeted selection of informative
exercises. The optimization process is based on a dynamic Bayesian
network model which represents domain knowledge and predicts the
level of accumulated knowledge of the subject over time. Estimation
is employed to perform action selection on the basis of the state of
knowledge of the subject.

2Parts of this section appear in [Baschera et al. (2011); Käser-Jacober et al.
(2012)].
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4.3.1 Modeling for Dyslexia Treatment

Sensor data [Cooper et al. (2010); Heray and Frasson (2009)] and in-
put data [Baker et al. (2005); Johns and Woolf (2006); Arroyo and
Woolf (2006)] are useful sources for modeling learning and a�ective
dynamics. These sources di�er in quality and quantity: sensor data
are more direct and comprehensive, whereas input data are more gen-
eral. The extraction of input logs, in fact, is not limited to labo-
ratory experimentation. Predictive modeling and control are possi-
ble through software tutoring systems, since large and well-organized
sample sets are available to the modeler. Inputs can be automati-
cally recorded onto log �les to capture informative features such as
time lags and hints per problem, as well as interval lengths between
consecutive solution attempts [Arroyo and Woolf (2006)].

Experimental Setting

The following results are obtained with data coming from Dybuster,
a multimodal spelling software designed for dyslexic children [Gross
and Vögeli (2007)]. During training, the tutoring system selects and
generates sequences of test words which are prompted orally. An-
swers are typed in by the user, with acoustic signals notifying errors
when incorrect letters are typed. Interactions are time-stamped and
stored in comprehensive log �les. Data are available from large-scale
studies spanning an interval of several months [Kast et al. (2007);
Baschera et al. (2011)]. The participants are German-speaking sub-
jects in the age group between 9 and 11 years, trained four times a
week for three months. The length of each session ranges from 15
to 20 minutes, summing up to ≈ 950 minutes of interactive training
per user. Complete training is available for 28 dyslexic and 26 con-
trol subjects, for a total of 159, 699 records of entered words, inputs,
errors, and respective timestamps.
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Feature Selection and Modeling

Table 4.1 shows the main features extracted from the log data. The
selection includes input and error behavior, timing, and controller-
induced setting variations. The features measure quantities which
are consistent with those of previous studies [Baker et al. (2005);
Johns and Woolf (2006); Arroyo and Woolf (2006)]. The engagement
state of the subject is estimated on the basis of the available data
without external direct assessment. Error repetitions are employed
to evaluate learning rates as well as forgetting. The analysis is re-
stricted to phoneme-grapheme matching errors. Such errors belong
to a category representing missing knowledge in spelling [Baschera
and Gross (2010)]. In total, 14, 892 error observations are available
in D. The features are processed according to the assumption that
sustainable progress is separable in terms of time scales from local
e�ects due to transitions between emotional and motivational states.
Long-term variations are extracted from the time series φ through
user-dependent regression under the assumption of additive white nor-
mal noise. Initial feature processing include scaling, outlier detection,
low-pass and variance �ltering [Baschera et al. (2011)]. The relation
between the processed features D̂ and the error repetition γr is es-
timated via LASSO logistic regression with 10-fold cross-validation
[Bishop (2006)]. Table 4.3.1 reports the values of the estimated pa-
rameters θ and the signi�cance for the selected features. The model
based on the processed features exhibits a better BIC score of −6369
compared to that obtained with unprocessed regression −6742. The
selected features highlight three main time-varying components which
in�uence the state of knowledge of the user:

• focus: indicating whether the subject is focused or distracted;

• receptivity: indicating the level of receptiveness of the subject;

• forgetting: indicating whether the subject is forgetting.

Non-focused states exhibit larger rates of non-serious errors which are
due to lapses of concentration. However, these errors are less likely
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to be committed again at later repetitions (that is, they exhibit lower
error repetition probability). In contrast, non-receptive states inhibit
learning, thus causing higher error repetition probabilities. Forgetting
of learned spelling, which is due to time decay and interference be-
tween error and repetition, increases the error repetition probability
as well.

The components of the parameter vector θ of the logistic regres-
sion indicate the relation between the individual features and the
error repetition probability. The parameter θEF = 0.06 demonstrates
that there exists a dependency between higher than expected error
frequency and lower error repetition probability. In fact, non-focused
subjects tend to commit more errors, but the errors are typically non-
serious. By contrast, when the answer is complete but contains errors
(that is, when FC = 0), the error repetition probability increases
(θFC = −0.49). The fact indicates that the subjects which do not
correct the errors before answering are less likely to learn the correct
spelling.

In the estimation setting, the model class consists of dynamic
Bayesian networks. Such models are dynamical systems de�ned in
terms of a Bayesian network graph structure which does not change
over time3. The main di�erence between HMMs and DBNs is that,
whereas the former class represents the state x(t) ∈ X by a single
random variable, the latter allows the state space to be represented
in factored form [Murphy (2002)]. DBNs do, in this sense, gener-
alize HMMs. In DBNs, the hidden state is represented in terms of
a set of (discrete or continuous) nh random variables. In contrast
to HMMs, which are de�ned by their transition model, the nh state
components and the no measured emissions are modeled as sets of
random variables subject to conditional distributions described by a
two-slice Bayes net.

De�nition 22. In a DBN ΣDBN, transitions and observations are

3time-varying structures are also possible but are here seen as extensions of
the conventional de�nition [Murphy (2002)]

134



4.3. MODELING HUMAN LEARNING DYNAMICS

described by the conditional distributions

p(Z(ti)|Z(ti−1)) =
nh+no∏
j=1

p(Zj(ti)|Pa(Zj(ti))), (4.54)

where Z(ti) denotes the node Z at time ti (hidden or observed) and
Pa(Z) are the parents of Z [Murphy (2002)].

Let xF and xR denote, respectively, the state components (nodes
in a DBN) indicating focus and receptiveness. Three candidate mod-
els are tested as on the basis of data D̂:

• (xF ⊥ xR) xF and xR are mutually independent;

• (xF ↽ xR) xF depends on xR;

• (xF ⇁ xR) xR depends on xF.

The parameters of the dynamic Bayesian network are estimated with
EM (Bayes Net Toolbox for MATLAB [Murphy (2001)]. On the basis
of D̂, the respective BIC costs of the models are

BIC[xF ⊥ xR|D̂] =− 724, 111

BIC[xF ↽ xR|D̂] =− 718, 654

BIC[xF ⇁ xR|D̂] =− 718, 577.

(4.55)

BIC selects the model ΣDBN in which the receptive component de-
pends on the focus of the subject. Figure 4.11 plots the diagram of
the selected model. The joint probability distribution for xF and xR
is reported on a log-scale in Fig. 4.12 (on the left). It is worth noting
that, when the subject is fully focused, complete non-receptiveness
is negligible. In contrast, it is not uncommon for the subjects to be
non-focused despite being in an overall receptive state. This e�ect
might be due, for instance, to temporary distraction. The error rep-
etition probability is plotted on the right of Fig. 4.12 conditioned on
the two components xR and xF. The top surface is obtained during
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forgetting, and shows a greater o�set in states of high focus. The
available evidence is consistent with the assumption that in states
of low focus the subjects tend to commit predominantly non-serious
errors, since the correct spelling is already known. In contrast to
forgetting, which has low impact on the error repetition probability,
non-receptive states are associated with higher rates of error repeti-
tion. The e�ect, though, is reduced for non-serious errors in states
with reduced focus. Table 4.3.1 reports parameter values for the se-
lected DBN [Baschera et al. (2011)]. A conclusive remark can be
made regarding the age-dependence of the engagement states. Non-
receptive and non-focused states are more frequently found in subjects
below the median of approximately 10 years (with p-value < 0.001).
For this group, the prevalence of non-receptive states is 24.2% and
that of non-focused states is 32.5%. In contrast, for subjects above
the median the respective prevalence is 20.0% and 27.0% [Baschera
et al. (2011)].

Figure 4.11: Diagram representing the dynamic Bayesian network
selected by BIC. Dynamic components are indicated by rectangles.
Shaded nodes are directly observed (Figure from [Baschera et al.
(2011)]).
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4.3.2 Optimization for Dyscalculia Treatment

Computer-assisted learning is helpful to overcome learning disabili-
ties [Käser-Jacober et al. (2012)]. Conventional learning therapy can
be complemented by computer-based approaches which rely on for-
mal modeling. Domain knowledge can, in fact, be directly incorpo-
rated into the DBN to enhance numerical cognition. Developmental
dyscalculia is a learning disability with an estimated prevalence rang-
ing from 3% to 6% [Shalev and von Aster (2008)]. The disability
systematically a�ects the acquisition of arithmetic skills [Shalev and
von Aster (2008)]. Due to its di�usion, large amounts of genetic,
neurobiological, and epidemiological data are available to the mod-
eler [Käser-Jacober et al. (2012)]. With developmental dyscalculia,
the subjects are not only impaired by the disability itself, but tend
to develop additional anxiety and aversion to mathematics [Rubin-
sten and Tannock (2010)]. Furthermore, the subjects face individual
challenges which are mostly subject-dependent. Hence, training in-
dividualization has the potential of being particularly bene�cial for
treatment. The introduced model-based optimization system aims at
improving success as well as at making the subject more motivated.
The introduced results demonstrate substantial improvements veri�ed
by internal and external experimental evidence.

Learning Environment

Current models of neuropsychological development postulate the exis-
tence of cognitive representational modules. These modules are task-
speci�c and localized in circumscribed regions of the brain. Recent
studies identi�ed speci�c functions related to adult cognitive number
processing and calculation [Dehaene (2011)]. A reference framework is
given by Dehaene's triple-code model, which is based on three distinct
representational modules. The modules are associated to complemen-
tary aspects of number processing: understanding based on verbal,
symbolic, analogue magnitudes operations [Dehaene (1992)]. Further-
more, compelling justi�cations exist for two additional assumptions.
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Figure 4.13: Screenshots of two games: �landing� on the left and
�plus-minus� on the right (Figure from [Käser-Jacober et al. (2012)]).

The �rst is that modules develop hierarchically over time [von Aster
and Shalev (2007)]. The second is that, as the level of mathemat-
ical understanding grows, the overlap of di�erent number represen-
tations increases as well [Kucian and Kaufmann (2009)]. Learning
rates are subject-dependent and in�uenced by several factors, such as
the development of other cognitive skills and biographical aspects [von
Aster and Shalev (2007)]. Because of intrinsic variability, model-based
training optimization is necessary to better adapt to the individual
subject through structured curricula with targeted stimuli.
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The training system is based upon a hierarchical structure con-
sisting of multiple games. Each game focuses on a speci�c skill taken
from one of the two main training areas. The �rst area specializes on
number representations and understanding. The second one primarily
trains cognitive operations and numerical procedures. The di�culty
of each game is re�ected by the respective position in the hierarchical
structure, which contains tasks of increasing complexity. To reinforce
links between di�erent number representations, numerical properties
are associated to auditory and visual cues (color, form, and topology),
while numerical values are associated to visual representations (blocks
and positions in the place-value system) [Käser-Jacober et al. (2012)].
For illustration, the screenshots of two games are shown in Fig. 4.13.
The game on the left is designed to train number representation and
understanding. The one on the right aims at training and automating
arithmetical operations.

Student Modeling and Action Selection

Training decisions are made online by the pedagogical module, which
is a software system that adaptively selects games and con�gurations.
Selections are made on the basis of the current knowledge state, which
is estimated on the basis of the accumulated user inputs. The estima-
tion of the time-varying learning state x(t) is performed with respect
to the student model, a �xed DBN which incorporates domain knowl-
edge [Käser-Jacober et al. (2012); Dehaene (1992); von Aster and
Shalev (2007); Geary et al. (1992); Ostad (1997, 1999)]. The network
consists of a directed acyclic graphical model which satis�es Def. 22.
The structure of the student DBN model, containing 100 skills, is vi-
sualized in Fig. 4.14. Each skill xs ∈ Xs is a node in the network. A
directed connection from skill xsA to xsB indicates that mastering the
former is a prerequisite for learning the latter. Following the condi-
tional network structure, one has that the probability of having xsA
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in a certain learning state is

p(xs) =
∏

xsj∈Xs

p(xsj |Pa(xsj)). (4.56)

The state of each skill cannot be directly observed, and thus the
system performs online inference on the basis of the answers to the
posed task questions. Error patterns are identi�ed from the measured
actions of the subject, and matched with those available on the bug
library. The generation of remediation skills is triggered by the detec-
tion of the respective errors. Denoting observations as yE, the net pos-
teriors p(xsA|yEk) are updated taking into account the observations
coming the k-th task using the sum-product algorithm (through the
libDAI library for discrete approximate inference in graphical mod-
els [Mooij (2010)]). The initial condition of all such probabilities is
initialized to the uniform distribution, subscribing to the principle of
indi�erence. The DBN has a memory of �ve time points.

Training interventions are rule-based and non-sequential. Learn-
ing paths are adapted to the estimated state of knowledge expressed
by p(xs) at each time point. Three actions are available to the con-
troller:

• Go Back: train a precursor skill;

• Stay: train the current skill (by generating a new task for the
same skill);

• Go Forward: train a successor skill.

Decisions are based on the state of the skill net posteriors p(xs|yE) as
described below. The posterior is compared to the values of an upper
threshold pu and a lower one pl. The action Stay is selected when the
probability for skill xs is in the interval [pl, pu]. Above and below the
interval, the training system selects Go Back and Go Forward,
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respectively. The thresholds are time-varying and follow

pl = pl(init) · lncc
pu = pu(init) · uncc ,

(4.57)

where nc denotes the number of accumulated samples for the tested
skill, and parameters (lc, uc) and initial conditions (pl(init), pu(init))
are determined heuristically [Käser-Jacober et al. (2012)]. The aim
of these decision rules is to balance two learning aspects. On the one
hand, the system has to guarantee a su�cient number of tests per skill.
On the other hand, it avoids frustration in case of repeated failure.
The decision trees for the action selection are shown in Fig. 4.15.

Experimental Results

The quality of the control system based on the student model is as-
sessed on the basis of external testing. Input data are collected from
two large-scale studies from Germany and Switzerland [Käser-Jacober
et al. (2012)]. Both studies are conducted with cross-over design.
The set of participating subjects U is partitioned into two groups:
one starting the training immediately, the other waiting. Groups are
mapped according to intelligence score, gender and age (second to �fth
grade of elementary school). The participants are German-speakers
and attend normal public schools in the respective countries. Overall,
the subjects exhibit di�culties in learning mathematical concepts, as
indicated by the following below-average performances in arithmetic
tests [Ha�ner et al. (2005)]:

T-score SD

Addition 35.4 7.1
Subtraction 35.4 7.9

Available data consists of 33 complete log�les for participants trained
with �ve 20-minutes sessions a week for 6 weeks. On average, 29.84
sessions are completed per user (SD 2.87, minimum 24, maximum
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36.96), solving a total of 1562 tasks (SD 281.53, minimum 1011, max-
imum 2179). The number of solved tasks per session is 52.37 (SD 7.9,
minimum 37.8, maximum 68.1).

De�nition 23. A skill xsA is a key skill for the subject u ∈ U if u
goes back to a precursor skill xsB of xsA at least once before passing
xsA. The set of key skills for u is denoted as Ku.

Key skills are the hardest skills to pass. The set of key skills
Ku re�ects the particular di�culties encountered by an individual
subject. The tutoring system adjusts rapidly to the estimated state
of knowledge of the subject. In fact, starting the training from the
easiest skill, subjects encounter the �rst key skill after solving 144.3
tasks on average (SD 113.2, minimum 10, maximum 459), that is after
an average of 1.95 sessions (SD 1.63, minimum 0.08, maximum 6.48).

For each subject u ∈ U, improvement is quanti�ed as the learning
rate over Ku on the basis of all the available samples. The improve-
ment is estimated with a non-linear mixed e�ect model employing one
group per user and key skill [Pinheiro and Bates (1995)]. Denoting
sample correctness as ȳi ∼ Bern(θi), zero-mean normal noise terms
as εi, and normalized sample indexes xi between [0, 1], learning is
estimated as

θi =
1

1 + e−(b0+b1xi+εi)
. (4.58)

Table 4.3 reports the estimation results, while Fig. 4.16 illustrates the
improvement over time.

The analysis of the 533 Go Back cases shows that the option is
bene�cial in two ways: it reduces the error rate, and it increases the
learning rate. Evaluation is performed for all cases in which a subject
trains with a certain skill (samples xb), goes back to one or several
easier skills, and �nally passes them to come back to the current skill
(samples xa). For each k-th case, the correct rates over time ca,k
and cb,k are estimated separately for xa and xb. Logistic regression is
performed with bootstrap aggregation (with resampling parameter B
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µ sig. 99% CI of µ SD σ 99% CI of of σ

d̄ 0.1494 <1e-6 [0.1204, 0.1784] 0.2593 [0.2403, 0.2814]
r̄ 0.3758 <1e-6 [0.3236, 0.4280] 0.4662 [0.4319, 0.5059]

Table 4.4: Improvement statistics related to Go Back actions. The
mean is denoted as µ (Table from [Käser-Jacober et al. (2012)]).

= 200) [Breiman (1996)]. For the k-th case, the direct improvement
is

dk := cb,k − ca,k, (4.59)

that is the di�erence between the correct rates for xa = 0 and xb = 1.
The average direct improvement is denoted as d̄. Similarly, rk indi-
cates the learning rate improvement as the di�erence in learning rate
over ca,k and cb,k. The average learning rate improvement is denoted
as r̄. Figure 4.17 visualizes the histograms for d̄ and r̄ and their nor-
mal approximation. Both averages are positive and a two-sided t-test
indicates that their di�erence from zero is statistically signi�cant, as
shown in Tab. 4.4.

Two external tests are employed to evaluate training e�ects:

• HRT is a paper-pencil test in which the subjects solve as many
addition (subtraction) tasks as possible within a time frame of
2 minutes. Tasks are ordered according to increasing di�culty
[Ha�ner et al. (2005)];

• AC is an arithmetic test in which the subjects solve addition
(subtraction) tasks of increasing di�culty in a time frame of
10 minutes. The test exists both in paper-pencil as well as in
computer-based versions.

The analysis compares the e�ects during training and waiting peri-
ods, respectively denoted as Tc and Wc. Results are available for 33

147



CHAPTER 4. SUPERVISED LEARNING

training subjects (26 females, 7 males) and 32 waiting subjects (23
females, 9 males). Whereas pre-tests indicate no signi�cant di�erence
between the groups, Tab. 4.5 shows that training induces a signi�cant
improvement in subtraction (for both HRT and AC) and no improve-
ment is found after waiting.

There exists additional evidence of learning with respect to a spe-
ci�c indicator: the relative amount of training time spent by the sub-
jects for subtraction tasks. Subtraction is considered the main indi-
cator for numerical understanding [Dehaene (2011)]. During training,
62% (73% for key skills) of arithmetical tasks consist of subtractions.
Consistent results are obtained for the improvement in the context of
number line representation.

Accuracy analysis is performed using the non-linear mixed model
based on a Poisson distribution of the deviance yi ∼ Pois(λi) in which
the parameter θi is given by

λi = eb0+b1xi+εi (4.60)

with zero-mean additive normal noise terms εi. In the estimation,
�tting is performed using a single group per user. Numerical results,
reported in Tab. 4.6 and plotted in Fig. 4.18, indicate that the subjects
achieved greater accuracy in positioning numbers on a line [Käser-
Jacober et al. (2012)].
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Figure 4.15: Simpli�ed decision diagram for Go Back and Go For-

ward options (Figure from [Käser-Jacober et al. (2012)]).

Figure 4.16: For the key skills, the percentage of correctly solved tasks
exhibits an increase of 22.6% over the training interval (Figure from
[Käser-Jacober et al. (2012)]).
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Figure 4.17: Histograms and normal approximation of the direct and
learning rate improvements d̄ and r̄ (Figure from [Käser-Jacober et al.
(2012)]).

Figure 4.18: Landing accuracy in the range between 0 and 100 in-
creases over time (Figure from [Käser-Jacober et al. (2012)]).
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b0 b1

Estimate(SD) 2.3 (0.07) -0.63 (0.02)
sig. <1e-4 <1e-4
95% CI [2.17, 2.44] [-0.67, -0.58]

Table 4.6: Estimated coe�cients of the non-linear mixed e�ects
model.
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Chapter 5

Active Learning

�Doubt is the origin of wisdom.�

� R. Descartes (transl.)

5.1 Design of Near-optimal Experiments for

the Selection of Dynamical Systems

The previous sections focused on modeling given the data. This chap-
ter reports results in the setting of active learning1.

These contributions �nd their position in the context of optimal
experimental design, that is the �eld in which the variables of an ex-
periment are tuned to yield maximally informative results. Design
optimization is motivated by the fact that, for many applications,
the quality of the obtainable predictions is severely limited by data
scarcity. In the hypothetico-deductive method of scienti�c inquiry,
optimal experimental design �nds its place in the iterative loop link-
ing experimentation to modeling and viceversa. Figure 5.1 illustrates

1Parts of this section appear in [Hauser (2009); Krummenacher (2010); Busetto
et al. (2009, 2013)].
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experimental design at the interface between the process of inference
and the execution of new experiments. Informally, the task of ex-
perimental design can be formulated as the selection of preparations,
interventions, and observations which, on the basis of the available
knowledge, yields the maximal amount of information. The general
objective is the following.

Objective 6. Given a set of candidate experiments E, a class of
dynamical systems functions F = {fi}mi=1 and prior information p(f),
select the most informative experiment ε∗ ∈ E to maximize predictive
capacity.

This section concerns the design of experiments aimed at selecting
dynamical systems from empirical data in a Bayesian setting. Pre-
cisely, the aim is to jointly select a set of informative time points and
measurable quantities.

Figure 5.1: Schematic diagram illustrating the place of experimental
design in the iterative loop between modeling and experimentation.

At present, there remain a number of open questions regarding ex-
perimental design aimed at selecting dynamical systems [Kreutz and
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Timmer (2009); Faller et al. (2003); Myung and Pitt (2009)]. By con-
trast, extensive and conclusive results already exist for design aimed
at parameter estimation [Bandara et al. (2009); Faller et al. (2003)].
The design of experiments for dynamical system selection remains
a challenging �eld especially when the hypothesis class F contains
strongly nonlinear systems. In systems biology and other applica-
tion domains, in fact, F often contains nonlinear systems which are
not well approximated through local linearization [Nelles (2001); Ki-
tano (2002); Balsa-Canto et al. (2008)]. For such settings, the set of
Bayesian techniques which are available to the designer has grown sig-
ni�cantly in recent years, particularly in the domains of neuroimaging
and biochemical modeling [Busetto et al. (2009); Kramer and Radde
(2010); Daunizeau et al. (2011); Steinke et al. (2007)]. Methods rooted
in classical statistics are employed as well, and among them ensemble
noncentrality constitutes a reference approach [Skanda and Lebiedz
(2010); Atkinson and Fedorov (1975); Ponce de Leon and Atkinson
(1991)].
This section introduces a method which is based on previous re-
sults from the �elds of active learning and optimization [Krause and
Guestrin (2005, 2007); Krause et al. (2008); Nemhauser et al. (1978);
Feige (1998)]. Building on such results, one can prove that, under con-
ditions which are satis�ed for systems of ODEs, the expected infor-
mation gain is a submodular function [Krause and Guestrin (2005)].
As a consequence of that, it is possible to prove that a greedy method
yields near-optimal solutions e�ciently (that is, with a polynomial
number of evaluations) [Krause and Guestrin (2005); Nemhauser et al.
(1978)]. Furthermore, the introduced method dominates all other ef-
�cient techniques, unless P=NP. The result is proved by reducing
the dynamical system scenario to a known setting which provides the
best constant approximation factor to the value of the optimal solu-
tion [Krause and Guestrin (2005); Feige (1998)]. The design method
exhibits general applicability and is motivated by biological ques-
tions. It addresses a challenging task in systems biology: the identi-
�cation of the Target-of-Rapamycin (TOR) pathway, an open prob-
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lem of high relevance for understanding metabolic operation [Kuepfer
et al. (2007)]. Numerical evaluation demonstrates that the introduced
method yields solutions with almost optimal informativeness when
applied to glucose tolerance modeling. The design method has been
recently applied to ongoing work in phosphoproteomics with the goal
of modeling the key control mechanisms of nuclear phosphorylation.

5.1.1 Theoretical Results

Consider the model class of dynamical systems expressed in terms
of systems of ODEs as in Def. 2, with known initial conditions and
parameters. In the learning scenario, the task is that of estimating
the transition function f∗ of Σ∗. The prior p(f) incorporates all
available information for all candidate dynamical systems fi ∈ F . In
the concrete application to biochemical modeling, for instance, f is
the vector-valued function of a set of ODEs describing the dynamics
of a chemical reaction network with �xed rates parameters and known
kinetic constants. Let the pair of indexes (i, j) indicate to the noisy
measurement

yj(ti) = xj(ti) + νij , (5.1)

that is the observation at time point ti ∈ T ↓ of the j-th component of
the state vector x(ti) ∈ X . The noise terms νij are independent and
distributed according to the respective arbitrary distributions Nij .

For simplicity, let us de�ne the space of (i, j) index pairs as

Yij := {1, . . . , n} × {1, . . . , nx}. (5.2)

In this setting, each candidate experiment ε ∈ E consists of a set of
index pairs (i, j) ∈ Yij . Each experiment ε is, hence, an element of the
powerset E = P(Yij). The random variable Dε denotes the dataset
obtained from measuring yj(ti) for all index pairs in ε. Formally, the
dataset obtained through ε is

Dε = {(ti, xj(ti)) ∈ T ↓ ×X : (i, j) ∈ ε}. (5.3)
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At this point, the question is: how to measure the information gain?
The example of Fig. 5.2 appeals to intuition: informative belief states
concentrate the mass of the posterior on few candidate models. The
update is a function of the data; as new independent samples are
available, new evidence is incorporated by using previous posteriors
as priors. Uninformative datasets induce negligible updates of the
prior.

Figure 5.2: Updates from the same prior to the posteriors induced
by two datasets. On the top, both initial and �nal belief states are
uninformative: the update yields low information gain. In the bot-
tom, instead, the illustration shows that the posterior concentrates
the probability mass on a single model, thus yielding a high informa-
tion gain).

The relative entropy between prior and posterior has interesting
properties: it measures the information loss when the prior is em-
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ployed as an approximation to the posterior [Baldi and Itti (2010)].
Such quantity is called information gain and is de�ned as follows

IG(Dε|p(f)) := KL[p(f |Dε) ‖ p(f)], (5.4)

where p(f |Dε) is, in the case of dynamical systems, found by solving
a system of di�erential equations. In the context of communication,
the information gain corresponds to the loss of information incurred
when the dataset is ignored. Extraordinary evidence yields large in-
formation gain, strongly revising the belief state of the observer (as
illustrated by Fig. 5.2). For any experiment ε, IG(Dε|p(f)) depends
on the experimental data. The data instances, however, are a pri-
ori unknown to the modeler. Nonetheless, predictions can be made
on the basis of available information. By taking advantage of all par-
tial information, the task of designing experiments becomes a decision
problem under uncertainty. The objective is to maximize the expected
information gain, where the expectation is taken over all possible ex-
perimental outcomes induced by ε. Weighting the informativeness of
individual outcomes by their respective probabilities, one has

I(ε) := I(f,Dε) = EDε [IG(Dε|p(f))] , (5.5)

which is the mutual information between Dε and f . Such quantity
measures the degree of statistical dependence between data and hy-
potheses [Busetto et al. (2009); Daunizeau et al. (2011); Chaloner
and Verdinelli (1995)]. The optimization task becomes the follow-
ing decision-theoretic problem: maximize the score of Eq. (5.5) with
respect to ε, and subject to the constraint

|ε| ≤ κ ≤ n · nx, (5.6)

for a given κ. The cardinality constraint re�ects the fact that the
epistemic agent can select only a reduced set of measurements. It is
important to note that the following complexity results refer to the
number of evaluations of the objective I(ε).

The solution of the optimization task can be approximated e�-
ciently with formal worst-case performance guarantees [Nemhauser
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et al. (1978); Feige (1998); Krause and Guestrin (2005)]. Starting
from the individual sample yielding the largest mutual information,
the designer proceeds by greedily selecting the pair of indexes (i, j)
maximizing the contribution to the objective in combination with the
current selection. Algorithm 10 formally describes the design process.

Algorithm 10: Greedy experimental design for the selection of
dynamical systems (joint selection of time points and measurable
quantities).

Data: set of hypotheses H with respective initial conditions
and assigned parameters, prior p(f), maximum number
of measurements κ ≤ n · nx, noise distributions Nij .

Result: selection ε̄.

1 initialization: ε0 := ∅;
2 forall the f ∈ H do

3 forall the (i, j) ∈ Yij do
4 calculate (t(f)

i , x
(f)
j (ti));

5 end

6 end

7 for k = 1 to κ do
8 εk := εk−1 ∪ arg max(i,j)∈Yij\εk−1

I(εk−1 ∪ {(i, j)});
9 end

10 ε̄ := εκ;
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By reduction to the active learning setting of graphical models
[Krause and Guestrin (2005)], the following properties of the method
can be proved.

Theorem 2. The method described by Algorithm 10 �nds a near-
optimal joint subset ε̄ of time points and measurable quantities for the
selection of dynamical systems with a polynomial number of evalua-
tions of I(·). Such approximate design satis�es the formal guarantee

I(ε̄) ≥
(

1− 1
e

)
I(ε∗), (5.7)

where ε∗ := arg maxε∈E : |ε|≤κ I(ε). Moreover, the provided constant
approximation factor is the best one for polynomial-time algorithms,
unless P=NP.

Proof. Let F = {fk}mk=1 denote the hypothesis class of transition
functions for dynamical systems de�ned on the state space X . The
trajectory of each dynamical system is determined, given x0 ∈ X and
θ ∈ Θ, by the respective integral solution of the system of ODEs
de�ned by f ∈ F . Let Φk indicate the noisy evaluation of the integral
solution under the measurement model of Eq. (5.1), that is

Φk = {(ti, y(ti))}ni=1. (5.8)

Let a graphical model be constructed by having the set of nodes

V = {f} ∪ {yj(ti)}(i,j)∈Yij , (5.9)

where the yj(ti) are those of Φk. The sets {f} and {yj(ti)}(i,j)∈Yij are
disjoint and, furthermore, one has that

I(yj(ti), yj′(ti′)|f, x0, θ) = 0 (5.10)

for all (i, j) 6= (i′, j′) ∈ Yij , because the measurements follow Eq. (5.1)
given the deterministic solution of the IVP in Eq. (2.7) for �xed θ.
The optimization of the mutual information with respect to ε then
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becomes a special case of the known submodular setting for graphical
models [Krause and Guestrin (2005)]. This is because the variables
{yj(ti)}(i,j)∈Yij are independent given f . One has that I(ε) is a sub-
modular set function, that is

I(ε1) + I(ε2) ≥ I(ε1 ∪ ε2) + I(ε1 ∩ ε2), (5.11)

and non-decreasing on (i, j) ∈ Yij , and I(∅) = 0. In this setting,
the greedy method of inclusion of Alg. 10 with unit cost per obser-
vation selects κ elements yielding the constant approximation factor
of (1 − 1/e) [Krause and Guestrin (2005); Nemhauser et al. (1978)].
Such factor is also the best for polynomial algorithms, unless P=NP
[Krause and Guestrin (2005); Feige (1998)].

5.1.2 Empirical and Applied Results

This subsection reports empirical evaluations and application to sys-
tems biology. First, the design method is numerically evaluated in a
controlled set of frequency and time point selection experiments. Nu-
merical evaluation with the Bergman glucose tolerance models shows
that the obtained solutions yield tight approximations of the optimal
informativeness. Secondly, the introduced method is compared with
alternative approaches in a controlled setting with an external mea-
sure of success. Finally, design is applied to select dynamical systems
of cell signaling pathways. Such results are biologically relevant to
understand metabolic control operation. Submodular optimization is
performed with SFO, the toolbox for submodular function optimiza-
tion [Krause (2010)]. It is noteworthy that reliable parameter estima-
tion constitutes an important requirement for successful design. This
issue is important but goes beyond the scope of this study.

Frequency and Time Point Selection

Bergman glucose tolerance models are phenomenological dynamical
systems which predict the e�ects of insulin on the degradation of
blood glucose [Bergman et al. (1979)]. The study considers a set of
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four models (I,IV,V,VI). These models are nonlinear, but relatively
simple and well-understood. Reliable parameter estimates are based
on comprehensive empirical observations [Hauser (2009); Bergman
et al. (1979)].

The plot in Fig. 5.3 shows the expected information gain as a func-
tion of sampling frequency in the range of [0, 1] samples/min. Noise
terms are assumed to be additive and normally distributed. The plot
shows that mutual information is a function subject to diminishing
returns with respect to sample frequency. Precisely, uniform sam-
pling at approximately 1/300 Hz already yields more than 90% of
the experimentally available information. In the experimental set-
ting, mutual information is calculated by marginalizing the uncertain
parameters through unscented �ltering [Julier and Uhlmann (2004)].
For solving the updated Bayesian drift equation with standard errors
of 10−2 nats, the unscented approximation is signi�cantly faster (on
average between 40 to 400 times faster) than standard sequential MC
sampling. For comparable numerical errors, in fact, SMC required at
least 104 samples [Hauser (2009)].

With the same class of dynamical systems (models I,IV,V,VI),
the greedy solution is compared with the optimal one (obtained by
inspection) for the selection from a pool of n = 20 time points with
κ = 3, 4, 5. Table 5.4 reports the solutions and shows that, not only
the greedy solutions yield comparable informativeness, but they are
also composed of very similar time points. Greedy solutions are, thus,
e�ectively indistinguishable from the optimality for all practical pur-
poses (below error tolerance) [Krummenacher (2010)].
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Figure 5.3: Already ≈ 90% of the experimentally available informa-
tion for modeling glucose tolerance dynamics is obtainable with a
sampling frequency of 0.2 min−1. The numerical approximation ex-
hibits standard errors of 10−2 nats (not visible). In the plot, the mu-
tual information is normalized to one (Figure from [Hauser (2009)]).
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5.1.3 Application and Comparison

For the benchmark task, the set of hypotheses F consists of candidate
models for the Target-of-Rapamycin (TOR) pathway in yeast. TOR is
a cell signaling structure which is highly conserved and whose mam-
malian homologue is implicated in cancer, cardiovascular diseases,
autoimmunity, as well as metabolic disorders. Models are built by
combining a core model with 18 hypothetical elementary extensions
[Kuepfer et al. (2007)]. The core model represents the consensus based
on all known molecular interactions from the inhibition of TOR ki-
nases to the activation of PP2A. The extensions consists of additional
reactions corresponding to putative mechanistic explanations of the
biochemical system. In principle, not all the elementary extensions
are mutually exclusive [Raman and Wagner (2011)]. By combining
the core with compatible extensions, the study considers a representa-
tive class of 200 hypothetical dynamical systems. The systems exhibit
heterogeneous complexity and the noise terms of Eq. (5.1) are additive
normal [Krummenacher (2010)]. In the design, the nx = 24 chemi-
cal species which are shared by all models are considered measurable
candidates for the selection. Figure 5.5 shows the expected infor-
mation gain by increasing the number of selected chemical species
(from left to right). For completeness, o�ine and online submod-
ular optimization bounds are reported as well [Krause and Guestrin
(2007); Minoux (1978)]. Notably, the complex Tap42pP-PPA2, which
is known for its central role [Kuepfer et al. (2007)], exhibits the high-
est individual information content. The selection of the readouts is
performed by sampling a maximum of 50 regularly spaced time points
in the dynamic range of 0 to 1.4 [AU] (arbitrary time units consistent
with [Kuepfer et al. (2007)]). The number of candidate experiments
amounts to |E| = 1200.

The empirical success rate is the external measure employed to
compare the introduced approach, which is Bayesian, with classical
alternatives [Atkinson and Donev (1992)]. Comparison with other ap-
proaches is performed in two settings: realizable and non-realizable.
In the former setting, the hypothesis class F contains the data gen-
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erator f∗. By contrast, the non-realizable scenario considers the case
in which f∗ 6∈ F . Overall, the success rate is estimated over 103

numerical simulations with synthetic data.
In each iteration, the method selects a set of measurable com-

ponents of the TOR models. Each candidate model is employed to
generate data with normal noise (variance corresponding to half of the
concentration). In the realizable case, the success rate is calculated as
the fraction of matches between the best a posteriori f ∈ F and f∗.
In the non-realizable case, the success rate is de�ned as the fraction of
matches between the best a posteriori model and the hypothesis in F
which minimizes the information loss for all shared species (in terms
of relative entropy). Figure 5.6 compares the success rate obtained
with the introduced methods with those of alternative approaches (on
the left, with the ensemble method). The analysis highlights the fact
that signi�cant computational load is the main practical disadvantage
of ensemble methods for model selection. In fact, ensemble methods
exhibits a bottleneck due to parameter �tting: all �tted parameter
con�gurations are tested against what is assumed to be the correct
model. The procedure is so resource-intensive that the hypothesis
class is limited to four models with two unknown parameters and two
unknown initial conditions.

On the right of Fig. 5.6, the analysis proceeds with the non-
realizable setting, which captures the fact that hypothesis classes are
approximations of reality. When f∗ 6∈ F , ensemble non-centrality
is not directly applicable because it assumes that the true model is
among the candidates (and performs selections with respect to it).
The alternative cost which is here considered is the average residual
sum of squares. In Fig. 5.6, the results on the right are obtained with
all 200 models by measuring 50 equally spaced time points.
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5.1. DESIGN OF NEAR-OPTIMAL EXPERIMENTS FOR THE
SELECTION OF DYNAMICAL SYSTEMS

Figure 5.5: Mutual information for greedy selection of components
of the measurement space is plotted in green, while online and o�ine
optimization bounds appear in blue and red, respectively (Figure from
[Krummenacher (2010)]).
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Figure 5.6: Success rate comparison for the selection of TOR pathway
models in a controlled setting. The realizable case appears on the left,
non-realizable one on right. The abbreviations EIG, ANC, and EUD
denote, respectively, the designs obtained with expected information
gain, ensemble non-centrality and sum of Euclidean distances. Rates
are de�ned in the range [0, 1], that is from complete lack of success to
complete success. The plot on the right o�ers a relative interpretation
of success, since the maximal rate achievable for the sample size is
unknown (Figure from [Krummenacher (2010)]).
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Chapter 6

Conclusion

�We can only see a short distance ahead, but we

can see plenty there that needs to be done.�

� A. Turing

The thesis introduced methods to model dynamical systems from
data in the settings of unsupervised, supervised and active learning.
The results are better understood within the hypothetico-deductive
method of scienti�c inquiry: modeling opens the way to further exper-
imentation, which in turn provides additional evidence for predictive
modeling. Below are summarized the main contributions, together
with an assessment of the respective limitations and an outline of fu-
ture research directions.

Clustering of Time Series and Validation.

Results: Section 3.1 presented an e�ective method to perform model
and order selection for relational clustering of time series. The method
is based on the principle of Approximation Set Coding [Buhmann
(2010)]. In the application to temporal gene expression pro�les, the
method showed consistency with the Bayesian Information Criterion
and wide applicability. In the considered experimental setting, pair-
wise clustering provides approximately three-times more information
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available for prediction than correlation clustering. In the reported
results, pairwise clustering with correlation similarity extracts more
information from the data; it generalizes better than correlation clus-
tering the available trajectories.
Limitations and Outlook: The thesis does not provide a study of the
theoretical relation between ASC and other principles for model selec-
tion. It is not known whether alternative approaches can be reduced
to the information theoretic framework of ASC. This topic deserves
attention and is the subject of active research.

Modeling of High-dimensional Sequences.

Results: Section 3.2 introduced an unsupervised approach to recon-
struct the transition function of a dynamical system. Hidden Markov
models derived from Gaussian mixture models yield accurate pre-
dictions of the trajectories extracted from pre-processed data. The
approach is applied to model the dynamic behavior of the cell cycle
from images sequences. Validation with biological data demonstrates
that the unsupervised method is highly competitive to supervised
approaches based on trained human labeling. Comprehensive testing
provides evidence that the introduced approach signi�cantly improves
the objectivity of the results.
Limitations and Outlook: This study relies on pre-processing with
PCA. In the general case, it would be useful to perform model and
order selection directly with ASC.

Preventive Resampling for Generalized State Estimation.

Results: Section 4.1 proposed a resampling approach which mitigates
the approximation divergence of conventional particle �ltering. Nu-
merical results show systematic increment of the e�ective number of
samples.
Limitations and Outlook: In high-dimensional �ltering, the task of se-
lecting the appropriate number of clusters might become intractable.
Future work will focus on bounding techniques to estimate the quality
of the empirical approximations.
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Quality Assessment of Heuristic Solutions for Global Opti-

mization Problems.

Results: In Sec. 4.2, a Chebyshev-type bound estimates the relative
position of an optimized solution on the basis of a limited amount of
additional empirical evaluations. The bound provides formal prob-
abilistic guarantees for the estimation error of the relative position
of heuristic solutions with respect to the total order induced by the
objective function.
Limitations and Outlook: The probabilistic bound is exact, but it
remains to be seen if tighter bounds are generally available. Impor-
tantly, the bound is only useful to estimate the relative position of
a solution, and says nothing regarding the closeness of the obtained
objective with respect to its maximum value. For this purpose, cur-
rent work focuses on approximate bounds taking into account further
regularities of the objective function.

Modeling Human Learning Dynamics for the Treatment of

Dyslexia and Dyscalculia.

Results: Section 4.3 introduced a predictive model for the dynamics
of engagement in spelling learning. The model is a dynamic Bayesian
network which relates typing errors to levels of receptiveness, focus,
and forgetting of the subject. For dyscalculia treatment, a dynamic
Bayesian network model is employed to improve learning of mathe-
matical concepts through optimized cognitive stimulation. Extensive
results with external validation provide evidence of e�ective learning
improvement.
Limitations and Outlook: The presented work is limited to basic as-
pects of human learning. Whereas data scarcity constitutes a primary
source of uncertainty, modeling could be improved by incorporating
additional knowledge through transfer learning. Future work will at-
tempt at generalizing the models to other aspects of human learning.
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Near-optimal Design of Experiments for Modeling with Dy-

namical Systems.

Results: Section 5.1 introduced an e�cient method to design experi-
ments for selecting dynamical systems with formal guarantees of near-
optimal informativeness. The method builds on recent results from
submodular optimization in machine learning [Krause and Guestrin
(2005)]. With a polynomial number of evaluations, the method yields
a design solution which achieves the best constant approximation fac-
tor, unless P=NP. Numerical evaluation shows that quasi-optimal so-
lutions are e�ciently found to address modeling questions from sys-
tems biology.
Limitations and Outlook: The presented method has not been ap-
plied to the design of input interventions, which are useful tools for
learning. It would be valuable to know which classes of interventions
can be e�ciently selected for informative design. Furthermore, the
methods requires reliable estimates of the parameters of the dynami-
cal systems in the hypothesis class. Finding such values is a separate
task which is computationally challenging.

In conclusion, the results presented in this thesis highlight the
fundamental analogies between learning and communication. Such
perspective yields a rich theory and abundant applications. The in-
troduced contributions facilitate the transfer of information theoretic
concepts to guide and improve learning of dynamical systems. Quot-
ing Francis Bacon:

�The eye of the understanding is like the eye of the sense:
for as you may see great objects through small crannies
or levels, so you may see great axioms of nature through
small and contemptible instances.�
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Nomenclature

�The world is a beautiful book,

but of little use to him who cannot read it.�

� C. O. Goldoni

The thesis conforms to the following notation.

Fundamentals:

∅ empty set
N natural numbers with zero

N>0 natural numbers without zero
Z rational numbers
R real numbers

R≥0 non-negative real numbers
Rr r-dimensional Euclidean space

ρ ∧ % logical And
ρ ∨ % logical Or
¬ρ logical negation

a ∈ A element of a set
(a1, a2) open interval
[a1, a2] closed interval
{a : . . .} set builder
A1 ∪A2 set-theoretic union

δ(a) Kronecker/Dirac delta
|A| cardinality
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A1 ∩A2 set-theoretic intersection
A1 \A2 set-theoretic minus
A1 ×A2 set-theoretic product

P(A) power set
ρ1 ⇐⇒ ρ2 double implication

dg(a) in�nitesimal increment
dg(a)/da �rst derivative

∂g(a1, a2)/∂a1 partial derivative∫
A g(a)da integral

Wt Wiener process
σ(g(a)) di�usion coe�cient
∇ · [g(a)] divergence operator

∆[g(a)] di�usion operator
IA indicator function Eq. (3.14)
ρ logical proposition Sec. 2.2
Ξ set of propositions Sec. 2.2

‖ v ‖r vector norm Eq. (3.45)

Computation:

Z alphabet Sec. 2.3
z ∈ Z symbol Sec. 2.3
Z∗ set of strings Sec. 2.3

z̄ ∈ Z∗ string Sec. 2.2
pg minimal program Sec. 2.3

U[pg] universal Turing Machine Sec. 2.1
len(pg) length of a program Sec. 2.3
K(z̄) Kolmogorov (pre�x-free) complexity Eq. (2.25)
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Matrices and Graphs:

MT matrix transposition
M−1 matrix inversion
|M| matrix determinant

diag[v] diagonal matrix
0 zero matrix
I identity matrix

Pa(v) node parents
G graph Sec. 2.3
V set of nodes Sec. 2.3
E set of edges Sec. 2.3
Eij edge Eq. (3.30)

Information Theory:

S(p) uncertainty measure Sec. 2.3
h(a) self-information Sec. 2.2
H[p] entropy Sec. 2.2

KL[p1 ‖ p2] relative entropy Eq. (2.30)
I(Z1, Z2) mutual information Eq. (2.31)
H(Z1|Z2) conditional entropy Eq. (2.34)
pME(Z) maximum entropy distribution Eq. (2.29)

pGibbs(Z) Gibbs distribution Eq. (3.35)
M(z̄) universal prior Sec. 2.2

IG(Dε|p(f)) information gain Eq. (5.4)
I(ε) design objective Eq. (5.5)
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Relations and Functions:

v := g(a) de�nition
a1 > (≥)a2 grater (or equal) than
a1 < (≤)a2 smaller (or equal) than

a1 � a2 much greater than
a1 � a2 much smaller than
a1 ≈ a2 approximately
a1 ' a2 similarity

g : A1 → A2 function
g1 ≡ g2 equivalence
g1 ∝ g2 proportionality
O(g) asymptotic behavior

a factorial(
a1

a2

)
binomial coe�cient

log a logarithm
exp a exponential function

maxA g(a) maximum
minA g(a) minimum

arg minA g(a) (set or element) argument of the
maximum

arg maxA g(a) (set or element) argument of the
minimum∑

A a sum over a set∏
A a product over a set

g2 ◦ g1 function composition
g1=̇g2 asymptotic equivalence Eq. (3.25)

S(n,K) 2nd kind Stirling numbers Eq. (3.51)

Statistical Mechanics:

Z ∈ R≥0 partition function Sec. 3.1
F free energy Eq. (3.39)

w(c,X) Boltzmann weights Eq. (3.36)
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Dynamical Systems:

Σ dynamical system Sec. 2.1
Σ∗ physical system Sec. 2.1

ΣHMM Hidden Markov model Def. 16
ΣDBN dynamic Bayesian network Def. 22
X state space Sec. 2.1
F class of transition functions Sec. 5.1

nx ∈ N>0 dimension of the state space Sec. 2.1
T time interval Sec. 2.1

t ∈ T time point Sec. 2.1
t0, ts ∈ R initial and �nal time points Sec. 2.1

F(x, t) ∈ F transition function Sec. 2.1
F∗ ∈ F transition function of Σ∗ Sec. 2.1
x ∈ X system state Sec. 2.1

s ∈ N>0 number of time points Sec. 2.1
ϕ ∈ X s system trajectory Sec. 2.1
x0 ∈ X initial condition Sec. 2.1
ΣODEs system of ODEs Def. 2

Θ parameter space Sec. 2.1
θ ∈ Θ parameter vector Sec. 2.1

f(x, t, θ) ∈ F deterministic update Def. 2
U) intervention space Sec. 2.1

u(t) ∈ U instantaneous intervention Sec. 2.1
u ∈ U2 series of interventions Sec. 2.1

A stochastic transition matrix Eq. (15)
Xθ generalized state space Sec. 4.1

xθ(t) ∈ Xθ generalized state Def. 17
fθ ∈ F extended transition function Sec. 4.1
Ð(xθ, t) di�usion tensor Sec. 4.1

nh ∈ N>0 number of DBN state components Sec. 4.3
no ∈ N>0 number of DBN readout compo-

nents
Sec. 4.3
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Probability and Statistics:

E[Z] expectation
V[Z] variance

C[Z1, Z2] covariance
n ∈ N>0 sample size
Z1 ⇁ Z2 statistical dependence
p1 ⊥ p2 statistical independence Sec. 2.3

Ω sample space Sec. 2.2
B(ρ) plausibility measure Sec. 2.2
p(Z) probability (distribution/density) Sec. 2.2

p̄ probability vector Sec. 2.2
M model class Sec. 2.1

M ∈M model Sec. 2.1
p(M |D) posterior Sec. 2.2
p(D|M) likelihood Sec. 2.2
p(M) prior Sec. 2.2
p(D) evidence Sec. 2.2
H hypothesis class Sec. 2.2

H ∈ H hypothesis Sec. 2.2
Υ[p] statistics functional Sec. 2.3
T testable statistics Sec. 2.3

$(M) number of model parameters Def. 9
BIC[M |D] Bayesian Information Criterion Def. 9

Q set of factorial distributions Eq. (3.37)
Q(Z) factorial distribution Eq. (3.37)

µ ∈ Rr mean parameter Sec. 2.2
Σ ∈ Rr×r covariance parameter Sec. 2.2

Norm(z|µ,Σ) multivariate normal distribution Sec. 2.2
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p̃(θ|D) approximate posterior Def. 18
np ∈ N>0 MC sample size Sec. 4.1
wj ∈ [0, 1] sample weight Def. 18
Ne� ∈ R≥0 ESS Def. 19

N̂e� ∈ R≥0 approximate ESS Eq. (4.23)
Unif (Ω) uniform distribution Sec. 2.2
Bern(z|θ) Bernoulli distribution Sec. 4.2

Bin(z|θ1, θ2) Binomial distribution Sec. 4.2
Pois(z|θ) Poisson distribution Sec. 4.2

Measurement Processes:

E set of experiments Def. 3
ε ∈ E experimental setting Def. 3
ε̄ ∈ E near-optimal design Sec. 5.1
ε∗ ∈ E optimal design Sec. 5.1
ν ∈ N noise instance Sec. 2.1

νi noise variable Sec. 2.1
N noise space Sec. 2.1
N noise distribution Sec. 2.1
Y measurement space Sec. 2.1

y(ti) ∈ Y measured sample Eq. (2.8)
ŷ ∈ Rr PCA-reduced sample Sec. 3.2

νi noise variable Sec. 2.1
h measurement function Eq. (2.8)

T ↓ ⊆ T sampled time points Sec. 2.1
φ ∈ Yn measured trajectory Sec. 2.1
φi ∈ Yn measured component Eq. (3.1)

φ̂ ∈ Rr×n PCA-reduced trajectory Sec. 3.2

Φ ∈ (T ↓ × Y)s
↓

measured time series Sec. 2.1
Y ∈ Y l×s measurement tensor Def. 11
x̃(ti) ∈ X estimated states Sec. 3.2

D̂ processed features Sec. 4.3
κ ∈ N>0 maximum number of samples Sec. 5.1
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Clustering:

n̄ ∈ N>0 clustering sample size
K ∈ N>0 number of clusters Sec. 3.1

di clustering sample Sec. 3.1
D∗ dataset space Sec. 3.1

D ∈ D∗ dataset Sec. 3.1
C(D) clustering hypothesis class Sec. 3.1

c ∈ C(D) clustering assignment Def. 5
R(c|D) ∈ R cost model Def. 6

Λ Label space Def. 5
λ ∈ Λ cluster label Def. 5

Vk set of elements in the k-th cluster Sec. 3.1
Rkm(c|D) K-means clustering cost Eq. (3.27)

hi,c(i) clustering potentials Def. 3.1

Pk cluster probability Eq. (3.31)
Xij similarity between samples i and j Sec. 2.3
X similarity matrix Sec. 2.3

Rpc(c|D) pairwise clustering cost Def. 10
Rcc(c|D) correlation clustering cost Eq. (3.34)

H co-clustering matrix Sec. 2.3
Hij co-clustering indicator Sec. 2.3
Ddiss dissimilarity matrix Eq. (3.33)

EQi→k [Rcc] expectation over assignments Sec. 3.1
η ∈ R≥0 noise level Sec. 3.1

ζ(s, k) ∈ N>0 counted assignments Def. 12
W(c) intra-cluster cost Eq. (3.56)
Yij set of index pairs Sec. (5.1)
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Optimization:

Λ Lagrange multiplier
c⊥ ∈ C⊥(D) empirical minimizer Eq. (3.5)
R⊥(D) ∈ R cost of the empirical minimizer Eq. (3.6)

γ ∈ R≥0 approximation threshold Def. 7
Fobj(c) objective function Sec. 4.1
c∗ ∈ C globally optimal solution Sec. 4.1
c̄ ∈ C optimized solution Sec. 4.1

pos(c̄) ∈ [0, 1] relative position Def. 21
p̂os(c̄) ∈ [0, 1] estimated pos(c̄) Eq. (4.47)

Approximation Set Coding:

Kmax initial number of clusters Sec. 2.3
ψ(D) mapping function Sec. 3.1

Cγ(D) ⊆ C(D) approximation set Def. 7
∆Cγ intersection set Eq. (3.12)

Σ set of permutations Alg. 1
σ ∈ Σ permutation Alg. 1

σsel ∈ Σ sent permutation Alg. 2
σ̂ ∈ Σ estimated permutation Alg. 2

Iσ set of index permutations Sec. 3.1
γ∗ optimal threshold Eq. (3.20)

Iγ(σsel, σ̂) ASC information Eq. (3.19)
ACk[R|X1, X2] approximation capacity Def. 8

R cost model class Sec. 3.1
β−1 ∈ W computational temperature Sec. 3.1

W computational temperature range Alg. 3
1/β∗ ∈ W optimal temperature Sec. 3.1

k∗ optimal model order Alg. 4
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Biology and Human Learning:

l ∈ N>0 population size Sec. 3.2
Dλ labeled population data Eq. (3.57)

pGMM(φ) GMM of trajectories Def. 14
πk mixing coe�cients Def. 14
Ci chemical species Sec. 4.1
Ri chemical reaction Sec. 4.1

nc ∈ N>0 number of chemical species Sec. 4.1
nr ∈ N>0 number of chemical reactions Sec. 4.1

Nin ∈ Nn×r input stoichiometric matrix Sec. 4.1
Nout ∈ Nn×r output stoichiometric matrix Sec. 4.1

N ∈ Nn×r stoichiometric matrix Def. 20
vj(C, θj) reaction rate law Sec. 4.1

γr error repetition Sec. 4.3
xF focused component Sec. 4.3
xR receptive component Sec. 4.3
Xs skill set Sec. 4.3

xs ∈ Xs learnable skill Sec. 4.3
pu ∈ [0, 1] upper threshold Sec. 4.3
pl ∈ [0, 1] lower threshold Sec. 4.3

U set of subjects Sec. 4.3
u ∈ U subject Sec. 4.3
Ku set of key skills Def. 23
ȳi sample correctness Sec. 4.3
d̄ average direct improvement Eq. (4.59)
r̄ average learning rate improvement Sec. 4.3
Tc training period Sec. 4.3
Wc training period Sec. 4.3
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Sommario

I sistemi dinamici sono modelli matematici che esprimono relazioni
di causa-e�etto riguardanti fenomeni soggetti a variazione temporale.
Questa tesi si concentra sulla stima di sistemi dinamici sulla base di
osservazioni empiriche. Si considerano tre scenari: stima senza super-
visione, con supervisione e attiva. L'obiettivo uni�cante è l'estrazione
di informazione predittiva dai dati.

Viene introdotto un metodo per il raggruppamento di serie tem-
porali e la validazione statistica di modelli. Il metodo si propone di
risolvere le questioni di selezione d'ordine e di modello con il principio
della Codi�ca tramite Insiemi di Approssimazione [Buhmann (2010)].
La veri�ca sperimentale è perseguita nell'ambito di raggruppamento
relazionale per pro�li temporali di espressione genetica. I risultati di-
mostrano vasta applicabilità e congruenza col Criterio d'Informazione
Bayesiano. Inoltre, le transizioni dinamiche discrete sono ricostru-
ite sulla base di serie temporali d'alta dimensionalità tramite un ap-
proccio privo di supervisione. L'approccio, che si basa su Modelli
Markoviani Nascosti su Miscele Gaussiane, trova applicazione nella
predizione di classi morfologiche da dati di microscopia che tengono
conto del fattore tempo. La conferma sperimentale con marcatori
�uorescenti e cernita dei campioni dimostra la capacità di accurata
identi�cazione dei fenotipi cellulari umani. I risultati riportati evi-
denziano competitività e miglioramento dell'oggettività rispetto agli
approcci supervisionati basati sulla catalogazione operata da parte
dell'utente.
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Nello scenario con supervisione, il processo di raggruppamento
trova impiego nel perfezionamento del �ltraggio convenzionale di cam-
pioni al �ne di ottenere stime di stato generalizzate. Il raggruppa-
mento preventivo mitiga l'inevitabile divergenza del ricampionamento
impiegato nei metodi sequenziali di tipo Monte Carlo. La stima su-
pervisionata con reti Bayesiane dinamiche è utilizzata nella model-
listica dell'apprendimento umano con il �ne di curare e�cacemente
alcune disabilità dell'apprendimento. Per la dislessia, il modello è in
grado di predire rate di dimenticanza, livelli di concentrazione e incli-
nazione all'apprendimento del soggetto sulla base del comportamento
misurato. Per la discalculia, la cognizione numerica è migliorata per
mezzo di una terapia adattabile ottenuta sulla base del modello.

Nel contesto della stima attiva, la tesi si concentra sulla proget-
tazione quasi ottima di esperimenti �nalizzati alla modellistica di sis-
temi dinamici. Viene introdotto un metodo e�ciente per selezionare
quantità misurabili e istanti temporali particolarmente informativi. Si
garantisce la quasi ottima informatività del metodo di progettazione,
il quale richiede un numero polinomiale di valutazioni della funzione
obiettivo. Il metodo si basa su lavoro precedente nell'ambito della
stima attiva sotto-modulare [Krause and Guestrin (2005)] e ottiene il
migliore fattore costante di approssimazione possibile, a meno che non
valga P=NP [Feige (1998)]. La progettazione di esperimenti trova ap-
plicazione nella ricostruzione di reti cellulari segnalatrici nell'ambito
della biologia dei sistemi.

I contributi presentati sottolineano le analogie fondamentali tra
stima e comunicazione. In conclusione, i risultati dimostrano che
modelli predittivi possono essere costruiti sulla base di e�cienti strate-
gie di trasmissione d'informazione tramite un canale rumoroso. Sulla
base di argomentazioni di natura statistica, i risultati esibiti formal-
izzano e automatizzano aspetti del metodo ipotetico-deduttivo di in-
vestigazione scienti�ca.
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