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SUMMARY xi

Summary

Macrocyclic drugs are able to bind to flat binding sides and
modulate protein-protein interactions. Thus, they have the po-
tential to lead to new therapeutics for currently non-druggable
diseases. However, their application is limited by their often poor
solubility and membrane permeability.

In this PhD thesis, I aim to shed light on the permeation pro-
cess of large and flexible cyclic peptides and their internal confor-
mational dynamics. This knowlege is used to the development of
new design strategies to increase the membrane permeability of
macrocyclic drugs. To gain atomistic and kinetic insights into the
permeation processes, we use molecular dynamics simulations in
combinations with Markov state modeling. A major challenge for
studying the permeability process at lipid membranes are the slow
kinetics dominating these processes, termed rare events. Despite
their importance, it is often not feasible to computationally inves-
tigate such rare events, as their typical time scale exceeds the ac-
cessible simulation time. In this thesis, I present two approaches
to address this problem. The first approach aims to mimic the
membrane permeation event using a simpler polar/apolar inter-
face system. Reducing the system size and complexity decreases
the computational costs. The second approach focuses on en-
hanced sampling and dynamic reweighting techniques. Enhanced
sampling methods speed up rare events by applying a bias to the
system. Dynamic reweighting is afterwards used to recover the
underlying equilibrium and kinetic properties.



xii SUMMARY

In Chapters 1 - 7 of this thesis, I report our advances in un-
derstanding the structure-permeation relationship of macrocyclic
drugs applying the strategies outlined above. In addition, I de-
scribe the unbiased simulation results on cyclic peptides at lipid
membranes. These results shed light on the permeation pathway
of flexible cyclic peptides and open up new design strategies for
permeable cyclic peptides.

Chapter 1 gives an introduction into the simulations tech-
niques fundamental for this thesis.

Chapter 2 provides a comprehensive review on the state of the
art and current challenges for macrocyclic drug discovery. A focus
is set on how the combined power of computer simulations and
experimental techniques has led to new insights into the rational
design for permeable macrocycles.

In Chapter 3, we investigate the conformational and kinetic
behavior of cyclic decapeptides at a polar/apolar interface. The
interface mimics the unique environment inside the lipid mem-
brane at the head group and tail group region. We discovered
that in this unique interface environment the peptides can po-
sition themselves in two different orientation with different dy-
namic properties. One of these orientations facilitates the adop-
tion of the permeable ‘closed’ conformation.

Continuing on the results of Chapter 3, in Chapter 4 we track
the pathway of cyclic decapeptides through a lipid membrane.
We analysed how the cyclic peptides establish the first contact
with the membrane, and were able to collect closing and leaflet
crossing events. The discovered pathway highlights the role of
molecular anchors for the permeability of cyclic peptides.

In order to speed up the occurrence of rare events, one can use
enhanced sampling methods. However, enhanced sampling comes
at the cost of losing the underlying kinetics. Thus, in Chap-
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ter 5 we describe the current approaches in dynamic reweight-
ing that were developed to recover the system’s kinetics. Us-
ing the underlying physical principles, we derived the connection
between the existing reweighting methods and suggested an im-
proved reweighting approach.

In Chapter 6, we revisit the conformational dynamics of cy-
closporin A and apply dynamic reweighting techniques. By im-
proving and correcting previous kinetic models for cyclosporin
A, we gain new insights into its permeable states and highlight
challenges and pitfalls associated with kinetic models. Our re-
sults show that a vast amount of simulations are necessary to
sample the rare cis/trans isomerization in the peptide backbone
of cyclosporin A. As an alternative to this massive sampling, we
show how enhanced sampling and dynamic reweighting can be
applied to this system. We compare the reweighted equilibrium
and kinetic information as well as the model’s robustness to our
massive-sampling reference. In addition, we give guidelines on
best practices and highlight obstacles for enhanced sampling and
dynamic reweighting.

In the final chapter (Chapter 7), an outlook is given on the
implications of the results covered in this thesis, and future di-
rections of macrocyclic drug discovery and rare event kinetics are
discussed.
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Zusammenfassung

Makrozyklische Wirkstoffe sind in der Lage, an flache Bindungs-
stellen zu binden sowie Protein-Protein-Wechselwirkungen zu mo-
dulieren. Daher haben sie das Potenzial zu neuen Therapeu-
tika für derzeit nicht heilbare Krankheiten zu führen. Ihre oft
schlechte Löslichkeit und Membranpermeabilität begrenzt jedoch
noch ihre Anwendbarkeit.

Ziel dieser Doktorarbeit ist, den Permeationsprozess sowie die
interne Konformationsdynamik grosser und flexibler zyklischer
Peptide zu beleuchten. Dies soll zur Entwicklung neuer Design-
strategien zur Erhöhung der Membranpermeabilität makrozyk-
lischer Wirkstoffe beitragen. Um atomistische und kinetische
Einblicke in den Permeationsprozess zu gewinnen, verwenden wir
Molekulardynamiksimulationen in Kombination mit Markov-Zustands-
modellierung. Eine grosse Herausforderung für die Untersuchung
des Permeabilitätsprozesses durch Lipidmembranen sind die langsamen
Kinetiken, welche diese Prozesse dominieren und als seltene Dy-
namiken bezeichnet werden. Trotz ihrer grossen Bedeutung für
den Permeationsprozess ist es oft nicht möglich, diese seltenen
Ereignisse rechnerisch zu untersuchen, da ihre typische Zeitskala
die verfügbare Simulationszeit übersteigt. In dieser Arbeit stelle
ich zwei Ansätze vor, um diese Problematik anzugehen. Der er-
ste Ansatz zielt darauf ab, den Membranpermeationsprozess mit
einem einfacheren polaren/apolaren Grenzflächensystem nachzuah-
men. Das Reduzieren der Grösse und Komplexität des Systems
verringert seinen Rechenbedarf. Der zweite Ansatz konzentriert
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sich auf enhanced sampling und dynamic reweighting Techniken.
Enhanced sampling Methoden beschleunigen seltene Ereignisse,
indem sie einen Bias auf das System anwenden. Anschliessend
wird dynamic reweighting verwendet, um das zugrunde liegende
Gleichgewicht und die kinetischen Eigenschaften wiederherzustellen.

In den Kapiteln 1 - 7 dieser Dissertation berichte ich über
unsere Fortschritte beim Verständnis der Struktur-Permeations-
Beziehung von makrozyklischen Arzneimitteln, unter Anwendung
dieser Strategien. Zusätzlich berichte ich über unsere unbiased
Simulationsergebnisse zu zyklischen Peptiden an Lipidmembra-
nen. Diese Ergebnisse geben Aufschluss über den Permeationsweg
dieser Moleküle und eröffnen neue Designstrategien für permeable
zyklische Peptide.

Kapitel 1 enthält eine Einführung in die Simulationsmethoden,
die für diese Arbeit relevant sind.

Kapitel 2 enthält eine umfassende Übersicht über den ak-
tuellen Stand und die Hürden für die Entwicklung makrozyklisch-
er Wirkstoffe. Hierbei wird der Fokus darauf gelegt wie Comput-
ersimulationen und experimentelle Techniken sich ergänzen kön-
nen, um neue Erkenntnisse im rationalen Design von permeablen
Makrozyklen zu erlangen.

In Kapitel 3 untersuche ich das konformelle und kinetische Ver-
halten von zyklischen Dekapeptiden an einer polaren/apolaren
Grenzschicht. Eine solche Grenzschicht imitiert die polare/apolare
Grenzumgebung, die in der Lipidmembran zwischen den polaren
Kopfgruppen und den apolaren Kohlenwasserstoffketten der Lipide
herrscht. Diese Untersuchungen zeigen, dass diese besondere Umge-
bung zu einem Auftrennen in zwei Orientierungen führt und das
Einnehmen der permeablen geschlossenen Struktur fördern kann.

Basierend auf den Ergebnissen von Kapitel 3 analysiert Kapi-
tel 4 den Weg eines zyklischen Dekapeptids durch eine Lipidmem-
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bran. Die Bildung des ersten Kontakts zwischen zyklischen Pep-
tid und Membran sowie die konformellen Schliessungen und Öff-
nungen werden beschrieben. Basierend auf dem beschriebenen
Permeabilitätsweg können neue Empfehlungen für das rationale
Design von zyklischen Peptiden abgeleitet werden.

Sogenannte enhanced sampling Methoden erlauben es, langsame
Dynamiken zu beschleunigen. Als Preis für diese Beschleuni-
gung werden jedoch die Kinetiken des Systems verzerrt. Um die
originalen Kinetiken zurückzuerlangen, wurden dynamic reweight-
ing Methoden entwickelt. Kapitel 5 beschreibt zunächst beste-
hende Ansätze von dynamic reweighting. Die dabei gefundenen
physikalischen Prinzipien und Verbindungen wurden anschliessend
genutzt, um einen verbesserten dynamic reweighting Ansatz zu
formulieren.

In Kapitel 6 re-analysiere ich die Konformationsdynamik von
Cyclosporin A und zeigen die Anwendung von dynamic reweight-
ing. Durch die Verbesserung und Korrektur früherer kinetischer
Modelle für Cyclosporin A werden neue Einblicke in seine per-
meablen Zustände gewonnen sowie Herausforderungen und Fall-
stricke im Zusammenhang mit kinetischen Modellen hervorge-
hoben. Diese Ergebnisse zeigen, dass eine grosse Menge an Sim-
ulationen notwendig ist, um die seltene cis/trans-Isomerisierung
in der Peptid-Hauptkette von Cyclosporin A zu untersuchen. Als
Alternative zu diesem massiven Sampling zeige ich, wie enhanced
sampling und dynamic reweighting auf dieses System angewen-
det werden können. Ich vergleiche die reweighted Gleichgewichts-
und kinetisch-en Informationen sowie die Robustheit des Modells
mit unserer Referenz. Darüber hinaus gebe ich Richtlinien zu
Best Practices und heben Hindernisse für enhanced sampling und
dynamic reweighting hervor.

Das finale Kapitel (Kapitel 7) enthält einen Ausblick auf die
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Bedeutung der in dieser Dissertation vorgestellten Resultate für
die Entwicklung makrozyklischer Wirkstoffe und die computergestützte
Analyse seltener Ereignisse.
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INTRODUCTION 3

1Introduction

„Everything should be made as simple
as possible, but not simpler“

Albert Einstein
This quote and chapter are dedicated

to Carmen Esposito and her gift for
well-structured and concise science



4 1 INTRODUCTION

1.1 GENERAL OVERVIEW

Computer simulations are widely used as a “super microscope” to
analyse the mode of action of biological systems.1 Molecular dy-
namics (MD) simulations simulate molecular motion on the atom-
istic or coarse grained level using Newtonian physics. MD simu-
lations are therefore especially valuable for studying the kinetics
and energy states of biological and chemical systems. However,
MD simulations are computationally demanding and currently
limited to the microsecond time scale in routine applications, even
on specialized computer clusters. In contrast, the mode of action
of macromolecules like proteins is often dominated by slow, rare-
event kinetics, like the dissociation of a ligand from the binding
pocket of a protein.2 Here, unbinding is rare and most simulation
time is spent without simulating the desired process.3 Therefore,
the waiting time for rare events of biologically and chemically
relevant systems is often not computationally feasible.

To overcome the limitations of slow kinetics, enhanced sam-
pling algorithms were developed.4 Enhanced sampling simula-
tions add a biasing potential to the system, with the goal to
accelerate crossing of energy barriers.5 Biasing leads to faster
sampling, at the cost of losing the information on the true ki-
netics. Only recently, approaches based on transition-path sam-
pling, Markov models, or path ensemble averages were proposed
to reweight such biased simulations in order to recover the correct
kinetics.6–8 The basic idea behind these methods is to find the
reaction coordinate of the slowest processes, accelerate the tran-
sition by applying a bias, and afterwards reweight the simulation
to estimate the unbiased kinetics. The reaction coordinate is a
low-dimensional molecular observable and chosen to be an good
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representation of the free-energy landscape and the correspond-
ing highest barriers.9,10 The highest energy barriers correspond
to rare events and define the kinetics of the system. Knowledge
of the reaction coordinate is crucial to reduce the energy barriers
of the system in enhanced-sampling techniques. However, espe-
cially in complex biological systems, it is challenging to find a
good representation of the reaction coordinate.

The combination of finding the reaction coordinate, enhanced
sampling, and reweighting is a valuable tool to enable research on
slow biological systems and further development of these method-
ologies is crucial for the field of computational biology. In this
thesis, we apply unbiased simulations as well as enhanced sam-
pling and reweighting to cyclic peptides in order to rationalize
their membrane permeability process. Cyclic peptides display
complex conformational dynamics and due to their peptidic ori-
gin mimic the behavior of proteins. Thus, they constitute an
insightful test system to study the applicability and potential of
enhanced sampling and reweighting techniques.

Cyclic peptides are a class of drug candidates, which can bind
onto large and flat binding sites with high affinity. Therefore,
they are possible new therapeutics for difficult targets such as
protein-protein interfaces and class B G-protein coupled recep-
tors (GPCRs) that are often considered to be undruggable.11,12

Although the first cyclic peptide drugs – like the immunosuppres-
sive cyclosporin A (CycA)13–15 – are on the market, more insights
into the mode of action and pharmacokinetics of cyclic peptides
are needed. Especially the bioavailability is of great importance
but difficult to achieve with this class of compounds. In order to
reach intracellular targets, cyclic peptides need to cross the cell
membrane barrier. Some cyclic peptides, like CycA, are able to
passively diffuse through the membrane.16 However, most cyclic
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peptides are non-permeable. New insights into the dynamics of
cyclic peptides will improve the efficiency of drug discovery and
lead to the development of new therapeutics for currently undrug-
gable targets.

MD simulations and Markov state models (MSMs) build the
foundation of the studies and the reweighting techniques pre-
sented in this thesis. Thus, a short introduction in these topics
are provided in the next sections.

1.2 MOLECULAR DYNAMICS
SIMULATIONS

MD simulations describe molecules and their dynamics on an
atomistic or coarse grained level. An empirical force field is used
to evaluate the interactions of the simulated particles.17–19 The
type of force field determines the level physical accuracy. A force
field that treats the particles on the level of classical mechan-
ics can be used for simulations that reproduce conformational
changes and dynamics, but is not applicable to study chemical
reactions. The force acting on each particle can be calculated
as the negative gradient of the potential energy defined by the
force field.20 To obtain a dynamic trajectory of the particle, New-
ton’s equations of motion are integrated numerically with fem-
tosecond time steps (Section 1.2.1). The time scales accessible
to protein simulations have grown exponentially over the past
decades. This advance was mainly achieved by efficient paral-
lelization of MD software codes, better hardware, and sophisti-
cated analysis of multiple independent trajectories.21 However,
the time scales of macrocyclic membrane permeation are often



1.2 MOLECULAR DYNAMICS SIMULATIONS 7

still beyond the practical scope of MD simulations. Thus, en-
hanced sampling techniques, as described above, are important to
achieve sufficient sampling of the relevant states. Another power-
ful method tackling the challenge of reaching relevant time scales
that has evolved in the last decade is the combination of MD
simulations and MSMs (Section 1.3).22–24 MSMs can be used to
achieve a speed-up by using embarrassingly parallel simulations
and a statistical framework. This framework allows to construct
a kinetic model from trajectories that are an order of magnitude
shorter than the longest relaxation times of the system and thus
well describes the systems’ long-time dynamics.25 Below we will
give a short introduction into the integration schemes and ensem-
bles used in MD simulations and the mathematical framework of
MSMs.

1.2.1 Integration Schemes

In order to attain the dynamics of a system from its force field,
one has to integrate the equations of motion. In practice, this is
done using numerical integration and several integration methods
with unique advantages and disadvantages were developed.

If the goal of the computation is to find the next local minima
of the system on the potential-energy surface, optimization algo-
rithms such as the steepest descent26 or conjugated gradient27

are the tool of choice. These algorithms are also widely used to
minimize the system energy and relax the coordinates prior to a
MD simulation.20 If instead the goal is to sample the states of
the system without the need for dynamic information, one can
use stochastic approaches like the Monte-Carlo approach or the
Metropolis-Hastings integrator.28 Both approaches are based on
the Metropolis-Monte Carlo criterion,29 which assures that the
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system is sampled according to its Boltzmann distribution. If
both the state distribution and the dynamic information of the
system are of interest, one should consider integration schemes
based on Newton’s equations of motion.20,30 These integration
schemes are usually subdivided based on their order of accuracy.
MD simulations for biological systems often use second-order al-
gorithms like the Verlet31 and leap-frog algorithms.32 Higher ac-
curacy can for example be obtained using the Runge-Kutta algo-
rithm,33,34 which is often used to calculate spacecraft trajectories,
but the multiple force evaluations per time step limit its applica-
tion in molecular simulations. As an example, the leap-frog algo-
rithm calculates the coordinates ri of atom i at time t+∆t and
its velocities vi at time point t+ 1

2∆t using,

ri(t+∆t) = ri(t) + vi(t+
1

2
∆t)∆t

vi(t+
1

2
∆t) = vi(t−

1

2
∆t) + ai(t)∆t.

(1.1)

Here, ai(t) is the acceleration of on atom i calculated by the
atomistic force Fi, which in return is derived from the potential
energy using,35

−∂V (r(t))
∂ri(t)

= Fi(r(t)) = miai(t). (1.2)

1.2.2 Simulation Ensembles

Thermodynamic ensembles describe how a large quantity of par-
ticles behaves under specific thermodynamic conditions in equi-
librium. One generally discriminates microcanonical, canonical,
grand canonical, and isobaric-isothermal ensembles. In the mi-
crocanonical (NVE) ensemble, the number of particles (N), the
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system box volume (V ), and the total energy of the system are
fixed.36 Thus, this ensemble describes a system that is completely
isolated from its surroundings and can neither exchange particles
nor thermal energy nor work. In contrast, the canonical (NVT)
ensemble can exchange thermal energy with its surroundings. In
this system, the number of particles (N), the system box volume
(V ), and the temperature (T ) are fixed. The grand canonical
(µVT) describes a system that can exchange particles with its
surroundings but has a fixed chemical potential, volume, and tem-
perature. The isobaric-isothermal (NPT) ensemble comes closest
to the conditions applicable to a lab experiment. The number of
particles, pressure, and temperature are kept constant.36

In order to keep the temperature or the pressure constant
during a MD simulation, one has to apply so-called thermostats
and barostats. Various algorithms are available for this purpose.
First introduced by Berendsen37 in 1984, the weak-coupling ap-
proach ranks among the oldest thermostats for MD simulations.37

The weak-coupling thermostat scales the velocities by a factor
λ(T (t); τT ,∆t, T0) that depends on the current temperature T (t),
the reference temperature T0, a coupling constant τT , and the
time step of the simulation ∆t in order to maintain a constant
temperature. The velocities are scaled according to,37

λ(T ; τT ,∆t, T0) =

√
1 +

∆t

τT

(
T0
T (t)

− 1

)
. (1.3)

Other, more sophisticated approaches are the Nosé-Hoover38–40

and Nosé-Hoover chain41 thermostats. Typical algorithms to
maintain a constant pressure are the weak-coupling barostat,37

the Parinello-Rahman barostat,42 Andersen barotstat,43 or the
Nosé-Hoover barostat.44
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1.3 MARKOV STATE MODELS

In their original form, MSMs are based on unbiased MD simula-
tions. Therefore, they are capable of describing realistic system
kinetics.23 However, as described above, using new reweighting
techniques, MSMs can be combined with biasing and accelerat-
ing techniques,6,45,46 e.g. replica exchange47,48 or metadynam-
ics/local elevation.49,50 MSMs are able to describe the complete
system dynamics based on independent short simulations that are
incorporated in a statistical framework. Thus, a big advantage
of MSMs is their embarrassingly parallel nature. In addition,
the time scales covered by an MSM can be much longer that
the time scales of the individual trajectories used to build the
model.22,51–53 Guided by knowledge – gained by experiments or
previous simulations – one can also find an optimal distribution of
simulation starting points that reduces sampling of uninteresting
or already witnessed states. This process is called adaptive sam-
pling.54–56 Moreover, MSMs can simplify the simulation analysis
by discarding very fast dynamics below the so-called lag time.21

With choosing the lag time, it is possible to scale the model to
multiple levels of complexity – from quantitatively accurate (high
resolution) to human understandable (low resolution). The math-
ematical foundation of MSMs presented in the subsequent chapter
is based on Refs. 22,53,57,58.

1.3.1 Mathematical Foundation of Markov State
Models

MSMs can provide kinetic models on experimentally relevant time
scales and statistical significance.22 To explore the mathematical



1.3 MARKOV STATE MODELS 11

foundation of MSMs, we consider a system in a state space Ω.
The state of the system at time t is called x(t). In order to build
a MSM, the system is supposed to have the following properties:

• Markovianity: The system has no memory. Thus, the state
at time x(t + ∆t) only depends on x(t) and the transi-
tion probability. States previous to t do not influence the
outcome of x(t + ∆t). The transition probability density
p(x, y; t) of going from point x to point y in the time τ is
defined by

pτ (x, y; t) = P [x(t+ τ) ∈ y|x(t) ∈ x], (1.4)

with x, y ∈ Ω.

• Ergodicity: The state space Ω is not subdivided in two or
more dynamically disconnected sets. Therefore, for t→ ∞,
the system will visit each state x ∈ Ω. In that limit, the
time spent in state x is relative to its stationary distribution.
Thus, the time average and the phase-space average of a
function f(x(t)) become equal, i.e.

lim
T→∞

1

T

∫ T

0

f(x(t))dt =
∫
Ω

f(x)µ(x)dx. (1.5)

Here, µ(x) is the stationary density distribution.

• Detailed balance: To fulfill detailed balance, the amount of
transitions from state x to y need to equal the amount of
transitions from state y to x. Thus,

µ(x)pτ (x, y; t) = µ(y)pτ (y, x; t). (1.6)

Here, µ(x) is the stationary density distribution. On a phys-
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ical level, detailed balance is justified by the following ar-
gument: If detailed balance is not fulfilled, there exists a
state space loop, where more transitions happen in one di-
rection then in the other. Using the preferred direction of
this state space loop, work could be produced. However,
a system in equilibrium is driven only by thermal energy.
Thus, this would violate the second law of thermodynamics
by converting pure thermal energy to work.

Suppose ρt(x) is the density distribution at time t. Based on
the transition probability density pτ (x, y; t), this density distribu-
tion is changing over time. Assuming a continuous phase space,
one could write

ρt+τ (x) = L(τ)◦ρt(x), (1.7)

with the continuous transport operator L(τ). The operator L(τ)
describes the transport of densities and fulfills the Chapman-
Kolmogorov equation:

ρt+k∗τ (x) = [L(τ)]k◦ρt(x), (1.8)

with k being a natural number. An important property of the
stationary density distribution µ(x) is that applying L(τ) to the
stationary density distribution will again yield the stationary den-
sity distribution, i.e.

µ(x) = L(τ)◦µ(x). (1.9)

This is equivalent to an eigenvalue equation with an eigen-
value λi = 1 and an eigenvector µ(x). Due to ergodicity, there
exists only one solution to the eigenvalue equation with the eigen-
value λi = 1 and the corresponding eigenvector is the stationary
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density distribution. This can be validated using the following
reasoning: If a second eigenvalue λj = 1 exists, then two dynami-
cally disconnected subsets in Ω exist. This, by definition, contra-
dicts the concept of ergodicity. By extracting the transport oper-
ator L(τ) from the MD simulation trajectory, it is thus possible to
extract the corresponding equilibrium distribution by solving the
eigenvalue equation. Due to detailed balance, all eigenvalues of
L(τ) are real values and smaller or equal one.59,60 The eigenvalue
equation of L(τ) can exhibits additional solutions with eigenval-
ues λj < 1. These eigenvalues correspond to processes that decay
over time. The smaller the eigenvalue, the faster is the decay.
The time scale of the decay can be measured using the implied
time scale t. The ith-implied time scale is defined as

ti =
−τ

lnλi
. (1.10)

Figure 1.1 shows the generation of a MSM on a didactic one-
dimensional energy landscape. The energy landscape is shown
in Figure 1.1a. The energy landscape is characterized by four
minima and a large energy barrier at the center. Panel 1.1 (b)
displays the metastable eigenfunctions of L(τ). The eigenfunction
of the first eigenvector corresponds to the stationary density dis-
tribution and only contains positive values. For the other eigen-
functions, interconverting states have opposite signs. Panel (c)
displays the eigenvalue spectrum of the continuous transport op-
erator L(τ). The eigenvalue spectrum can be used to distinguish
the metastables processes (colored) and fast decaying processes.
Those two classes are separated by a gap in the eigenvalue spec-
trum.
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Figure 1.1: Schematic illustration of a one-dimensional Markov state
model (MSM), adjusted from Ref. 23. (a): One-dimensional energy
landscape with four distinct energy minima. (b): Eigenfunctions of the
four slowest decaying processes. Interconverting states have opposite
signs. (c): Sorted eigenvalue spectrum of L(τ).
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1.3.2 Discrete Markov State Processes

In order to calculate the stationary density distribution of contin-
uous processes, the continuous transport operator L(τ) is needed.
This operator can be estimated from the MD simulations trajecto-
ries. However, in practice, the state space Ω has to be discretized
to obtain a computational manageable description of L(τ). The
discretization process divides the phase space into n micro-states
S. Traditionally, these states are defined in such a way that they
do not overlap, i.e.

n∪
i=1

Si = Ω and Si ∩ Sj = δijSi. (1.11)

The discretization introduces an error.58 Due to the loss of the
exact locality of the state, the discrete jump process in no longer
strictly Markovian. Thus, the dynamics of the corresponding
discrete MSM are only approximated. A prototypical discretiza-
tion process of a continuous 2D-trajectory is shown in Figure 1.2.
Based on the discrete trajectory, the discrete transition matrix
T can be calculated. Each entry Tij of the transition matrix is
defined as the probability for a transition from discrete state i
to j. It can be calculated by dividing the probability of being in
state i at time t and in state j at time t+ τ by the probability of
being in i at time t,23

Tij(τ) = P [x(t+τ) ∈ Sj |x(t) ∈ Si] =
P [x(t+ τ) ∈ Sj ∩ x(t) ∈ Si]

P [x(t) ∈ Si]
.

(1.12)

Using cij , the observed transition count in the discrete trajec-
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Figure 1.2: Discretization of the continuous phase space to a discrete
trajectory. Due to the coarseness of the discretization, the information
on the exact localization of the particle is lost.
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tory, we can rewrite Eq. 1.12 as

Tij(τ) =
cij(τ)∑n
j=1 cij(τ)

. (1.13)
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2Passing the Barrier - How
Computer Simulations Can
Help to Understand and Im-
prove the Passive Membrane
Permeability of Cyclic Pep-
tides ∗

„After a certain high level of technical
skill is achieved, science and art tend
to coalesce in aesthetics, plasticity,
and form. The greatest scientists are
always artists as well.“

Albert Einstein
This quote and chapter are dedicated
to Anna S. Kamenik and her fabulous

and beautiful didactic figures

∗ This Chapter is reproduced in part from S. M. Linker, S. Wang, B. Ries,
T. Stadelmann, S. Riniker, CHIMIA, 75 (2021) 518–521 and A. S. Kamenik, S.
M. Linker, S. Riniker, ACS Symp. Ser. ”Approaching the Next Inflection in
Peptide Therapeutics: Attaining Cell Permeability and Oral Bioavailability”
(2022), Ch. 5, 137–154, with the permission of ACS Publishing.
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Proteins with large and flat binding sites as well as
protein-protein interactions are considered “undrug-
gable” with conventional small-molecule drugs. Cyclic
peptides have been found to be capable of binding to
such targets with high affinity, making this class of
compounds an interesting source for possible thera-
peutics. However, the often poor passive membrane
permeability of cyclic peptides still imposes restric-
tions on the applicability of cyclic peptide drugs. Here,
we describe how computational methods in combina-
tion with experimental data can be used to improve
our understanding of the structure-permeability rela-
tionship. Especially the conformational dynamic and
chameleonic nature of cyclic peptides, which we inves-
tigate by a combination of MD simulations and kinetic
modeling, is important for their ability to permeate
passively through the membrane. The insights from
such studies may enable to formulate design principles
for the rational design of permeable cyclic peptides.
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2.1 INTRODUCTION

Studies based on the sequence and structural similarity of the hu-
man genome estimate that traditional small-molecule drugs can
only target 10-15% of human genes.11 Small-molecule drugs pri-
marily bind to deep and narrow binding pockets.61 Many poten-
tial targets such as protein-protein interfaces or class B G-protein
coupled receptors (GPCRs) have, however, large and flat binding
sites and are thus “difficult-to-drug”. To address this issue, in-
creasing efforts in pharmaceutical research focus on the discovery
of new compounds beyond small-molecule drugs. Cyclic peptides
(and macrocycles in general) have been shown to be capable of
binding to large and flat binding sites with high affinity,62 making
them possible therapeutics for difficult targets. In addition, cyclic
peptides display low toxicity due to their amino acid makeup.63

Although first cyclic peptide drugs – like the immunosuppressive
cyclosporin A13 or the anti-cancer drug romidepsin64 – are al-
ready on the market, more insights into the mode of action and
pharmacokinetics of cyclic peptides are needed.

Successful drug design requires not only strong and selective
interactions between the drug and its target but also the ability of
the drug to arrive at its site of action. This includes sufficient oral
bioavailability (the drug fraction reaching systemic blood circula-
tion).65 Importantly, the key steps of oral bioavailability, which
are absorption in the gut and passing the portal venous system
of the liver to reach the blood stream, both require cell perme-
ability.65 Although there are many potential routes to enter a
cell – including active transporters, endocytosis, or vesicle-based
cargo systems – passive membrane permeability is the predom-
inant mechanism for drugs.66–68 Although cyclic peptides show
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an improved membrane permeability in comparison to their lin-
ear counterparts, most cyclic peptides are still not permeable
enough for oral administration.69 In general, passive permeability
decreases with increasing size (Figure 2.1).70

Figure 2.1: Molecular size impacts passive membrane permeability.
High permeability is typically found for small molecules with a molecu-
lar size below 500 Da with a topological polar surface area (TPSA) be-
low 140 Å2. Chameleonic molecules like cyclosporin A can still achieve
high permeability as they switch between conformations that are favor-
able in polar environments (high 3D PSA) and apolar environments
(low 3D PSA). Adapted from P. Matsson and J. Kihlberg, J. Med.
Chem. 2017, 60, 5, 1662–1664 with permission.

Despite violating several or all known guidelines for bioavail-
ability,71 the number of cell-permeable cyclic peptide drugs in-
creases steadily.72 The weights of typical cyclic peptides span a
range of 500 to 2’000 Da (1 Da = 1 g/mol), which corresponds
to a length of 5-14 amino acids and covers both relatively rigid
and very flexible peptides.73 Small cyclic peptides are conforma-
tionally restricted due to the strong ring tension imposed by the
cyclization. Their passive permeability originates from their small
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volume that allows them to hop in-between cavities that stochas-
tically appear within the lipid membrane.74,75 In contrast, with
increasing size, cyclic peptides can have multiple rotatable bonds,
resulting in a diverse conformational ensemble. The increased
size, however, commonly leads to a reduced permeability as larger
cavities are less likely to randomly emerge.70 Some noteworthy
exceptions exist. One of the first cases reported was the natural
product cyclosporin A, which is orally available despite its rela-
tively large ring size of 11 amino acids.13 After its approval as an
immunosuppressive drug in the 1980s, it quickly became estab-
lished in transplantation medicine.76,77 Most surprisingly at the
time, this cyclic peptide was found to cross the cell-membrane
via passive diffusion.78 Hence, soon after its discovery, many re-
searchers were inspired to understand why cyclosporin A has such
a high membrane permeability despite its large size.14,15,79–82

One eye-catching feature of cyclosporin A is its N-methylation
pattern. While the introduction of N-methylations can improve
cell-permeability due to removal of hydrogen-bond donors,83–85

several comprehensive studies clearly have shown that the num-
ber of methylated peptide bonds alone cannot explain the cell-
permeability of cyclic peptides.86–89

The predominant strategy to distinguish permeable and im-
permeable compounds is to synthesize a series of cyclic peptides
and experimentally determine their membrane permeability. Typ-
ical approaches to improve the permeability in a given compound
series are to investigate different backbone N‐methylation pat-
terns, side chain modifications, and stereochemical changes.90 In
some cases, the addition of a cell-penetrating peptide that trig-
gers endocytosis was found to improve bioavailability.91 However,
these changes are often applied in a time-consuming trial-and-
error process and improvements in permeability may come with
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loss in binding affinity. Therefore, demands and efforts have in-
creased to develop computational models to rationalize membrane
permeability and support the development of bioavailable cyclic
peptide drugs.

2.2 COMPUTATIONAL APPROACHES
TO DESIGN CYCLIC PEPTIDES

Calculation of the membrane permeability of small molecules
ranges back to Meyer and Overton.92 The calculated lipophilic-
ity measure AlogP93 is often used as a heuristic for the passive
permeability of drug-like molecules. However, no established de-
scriptor that can be calculated from the molecular structure, such
as the number hydrogen bond acceptors/donors, lipophilicity (as
measured by logD or logP, i.e., the partition (or distribution)
coefficient between polar and apolar solvents), radius of gyra-
tion, or the (3D) polar surface area is able to reliably predict
the membrane permeability of macrocycles.12,94,95 Over the past
decades, evidence accumulated that the key to rationalize the
structure-permeability relationship of cyclic peptides lies in their
conformational flexibility and thus their conformational ensem-
bles.16,73,89,96–99 Indeed, the relationship between size and per-
meability differs distinctly between small molecules and macrocy-
cles, an effect that cannot be explained with traditional perme-
ation models.70 As a result, the focus shifted to computational
methods that can take into account the flexibility of molecules.
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2.2.1 Molecular Dynamics Simulations of Cyclic
Peptides

Molecular dynamics (MD) simulations use Newtonian physics to
simulate the motion and interaction of molecules. They are a
widely used tool to study kinetics, energetics, and conformations
of biological and chemical systems (for a review see e.g. Ref. 19).
Using MD, the dynamics of cyclic peptides can be analyzed in
atomic detail, a resolution that cannot be achieved with experi-
mental techniques. The hypotheses generated based on the simu-
lations are then tested and validated in experiments. Therefore, it
is common practice to combine MD simulations and experimental
techniques to obtain a holistic picture.

Combinations of NMR and MD studies revealed that cyclic
peptides display a chameleonic behavior.16,89,96,100 Cyclic pep-
tides can form intramolecular hydrogen bonds, leading to a so-
called closed conformation, where most polar groups are shielded
from the apolar environment. These molecules are conforma-
tionally flexible and can exhibit either lipophilic or lipophobic
properties, depending on their environment (Figure 2.2).12,100–103

Therefore, chameleonic molecules can combine high permeabil-
ity with high solubility, both of which are key features for oral
bioavailability.

Due to the shielding of polar groups in the closed conforma-
tion, the peptide has a lower desolvation energy barrier for mov-
ing into the membrane. Therefore, the closed conformation (also
termed low-permittivity conformation102) is considered the main
permeable “species”.102) However, the existence of the closed con-
formation is a necessary but not sufficient condition for perme-
ability.104 Other properties like side chains, size, and the polar
or hydrophobic surface area heavily influence the permeability
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Figure 2.2: Model for the passive membrane permeability of cyclic
peptides. In solution, cyclic peptides are predominantly in the open
form that can form hydrogen bonds with the solvent. The closed form
is characterized by internal hydrogen bonds. Those internal hydrogen
bonds shield the polar groups of the cyclic peptides from an apolar
environment making the cyclic peptide membrane permeable.
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of cyclic peptides. A recent study combining MD simulations,
NMR, and permeability assays showed that the size of the largest
connected hydrophobic surface of the cyclic peptide is decisive
for its permeability.105 To increase the membrane permeability
of cyclic peptides, the authors suggest to place N-methylations
or hydrophobic residues in positions where they connect two sep-
arated hydrophobic surfaces. Recent work in our group revealed
how a change in only a single stereocenter in two semi-peptidic
macrocycles (Figure 2.3) leads to a “permeability cliff” in experi-
mental permeability assays.106 Using a combination of NMR and
MD studies, we could show how the change affects the conforma-
tional ensemble of the macrocycles and through this the popula-
tion of conformations with a maximal number of intramolecular
hydrogen bonds in the apolar (chloroform) environment.

Figure 2.3: The two four amino acid cyclic peptides, Nleu-5S (golden)
and Nleu-5R (purple) differ only in the fifth C-atom stereocenter in the
alkyl linker (spheres). The shown structures are snapshots from our ex-
tensive MD simulations representing the differences in both molecules’
hydrogen-bond patterns in apolar environments.
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The findings described in these studies would not have been
possible without the atomistic insights on the cyclic peptides pro-
vided by MD simulations. Furthermore, computer simulations
may not only help to improve the permeability, but also to iden-
tify peptide candidates for specific targets. For example, MD
simulations have been used to pre-select cyclic peptides drug can-
didates for targeting protein-protein interfaces.107

2.2.2 Kinetic Models of Cyclic Peptides

As discussed above, conformational flexibility of cyclic peptides is
a crucial determinant for their membrane permeability. Kinetic
information is needed to fully account for the dynamics of cyclic
peptides. In contrast to many other computational techniques,
MD simulations can provide such kinetic information. The MD
procedure we have developed for permeability analysis is shown
in Figure 2.4.89,108 First, a diverse conformer set is generated
for a cyclic peptide of interest. When an experimental structure
(X-ray or NMR) is available, this can be done by taking snap-
shots from an enhanced sampling simulation starting from the
experimental structure. Alternatively, in silico conformer gener-
ators can be used. Due to their size, cyclic peptides span a far
larger conformational space than can be exhaustively sampled. It
is therefore instrumental to bias sampling towards the more rel-
evant phase space. We recently improved the RDKit conformer
generator ETKDG specifically for macrocyclic species by incorpo-
rating experimental torsion information as well as shape and in-
teraction heuristics.109 Once selected, each conformer is solvated
in water (mimicking the polar extracellular condition) and chlo-
roform (mimicking the apolar dielectric environment within the
lipid core). Next, extensive simulations are performed in parallel
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in the two solvents, starting from the conformer set. The individ-
ual simulations are typically on the order of hundreds of nanosec-
onds and total sampling time on the order of tens of microseconds
per solvent. The parallel trajectories are used to build Markov
state models (MSMs).22,23,110,111 MSMs extract metastable con-
formational states and the interconversion rate between them,
and enable the comparison of the conformational behavior of
structurally similar compounds. They are therefore a valuable
tool to rationalize membrane permeability. The kinetic models
obtained can also be used to compare internal flexibility between
slowly exchanging core conformations with experimentally deter-
mined NMR T2 relaxation times.112 When constructing MSMs,
we use density-based clustering algorithms.89 Recently, we could
show that a hierarchical density-based clustering is able to better
capture metastable states residing at free-energy wells of varied
depth.113

Our kinetic models based on MD simulations of the perme-
able cyclosporin A revealed the existence of so-called congruent
conformational states,16 which are populated in both polar and
apolar environments. Such congruent conformational states can
facilitate the transition between different environments and there-
fore increase permeability (Figure 2.2). The closed conformation
of cyclosporin A is an example of a congruent conformation. In
addition, MSMs suggested that the main difference between cy-
closporin A and the structurally closely related but imperme-
able cyclosporin E are the interconversion rates between their
metastable states.96 When applying our workflow to rationalize
the membrane permeability differences of six cyclic decapeptides
sharing the same backbone N-methylation pattern but differing in
their side chain composition,89 the kinetic models revealed that
the population of the closed conformational state in water cor-
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relates with the passive membrane permeability. Based on this
observation, we expanded our analysis onto a larger set of 24 de-
capeptides, systematically covering side chain compositions. We
find that the closed state population in water remains a distin-
guishing metric of passive permeability and the MD simulations
provided mechanistic insights into the formation of the closed
conformation.108

Figure 2.4: Workflow illustration to identify sufficiently populated
congruent conformations from extensive MD simulations in water and
chloroform.

2.2.3 Simulations of Cyclic Peptides at Mem-
branes and Interfaces

To better understand the passive membrane permeability of cyclic
peptides, it would be desirable to directly simulate their interac-
tion with lipid membranes. However, these large and complex
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systems require tremendous computational resources. Studies in-
vestigating these interactions for passively permeating peptides
are therefore still rare, and the few available works involved com-
putational tricks to speed up the simulations.80,114 For exam-
ple, Wang et al.80 simulated cyclosporin A at a POPC lipid
bilayer by increasing the flexibility of the peptide backbone by
40% and increasing the temperature to over 400 K. At such el-
evated temperatures, the membrane in the simulation becomes
porous. Nevertheless, their observations supported the view that
conformational flexibility is important for membrane permeabil-
ity and the authors hypothesized that a higher flexibility of the
peptide leads to a higher permeability. An alternative is to mimic
the water-membrane interface with a less resource-intense model
system. We found that cyclic peptides have the same preferred
orientation as at a biological membrane while residing at a chloro-
form/water interface.115 Therefore, this simplified system can be
useful to model properties that depend on the local polar/apolar
environment of the peptides.115

2.3 CONCLUSION

MD simulations yield atomistic insights into the conformational
dynamics of cyclic peptides. Together with experimental efforts,
the findings have already helped to improve our understanding
of the passive membrane permeability of cyclic peptides. Future
research will focus on the role of the membrane in the permeation
process and on further unveiling the complex relationship between
structure and conformational behavior of cyclic peptides. This
knowledge will help to improve the rational design of peptidic
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drug candidates and the development of novel therapeutics for
currently undruggable targets.
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Ist es ein lebendig Wesen,
Das sich in sich selbst getrennt?
Sind es zwei, die sich erlesen,
Dass man sie als eines kennt?

Johann Wolfgang von Goethe
This quote and chapter are dedicated
to Christian Schellhaas, who with his

dedication and sharp mind greatly
advanced our understanding of

permeability

∗ This Chapter is reproduced in part from S. M. Linker†, C. Schellhaas†,
B. J. Ries, H.-J. Roth, M. Fouché, S. Rodde, S. Riniker RSC Adv., 12
(2022), 5782–5796 with permission from the RSC. †These authors contributed
equally.
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Cyclic peptides have the potential to vastly extend
the scope of druggable proteins and lead to new ther-
apeutics for currently untreatable diseases. However,
cyclic peptides often suffer from poor bioavailability.
To uncover design principles for permeable cyclic pep-
tides, a promising strategy is to analyze the confor-
mational dynamics of the peptides using molecular
dynamics (MD) and Markov state models (MSMs).
Previous MD studies have focused on the conforma-
tional dynamics in pure aqueous or apolar environ-
ments to rationalize membrane permeability. How-
ever, during the key steps of the permeation through
the membrane, cyclic peptides are exposed to inter-
faces between polar and apolar regions. Recent stud-
ies revealed that the free energy minima of the per-
meation process (i.e. the most favorable position of
the peptide) was at these interfaces. Thus, a deeper
understanding of the behavior of cyclic peptides at po-
lar/apolar interfaces is desired. Here, we investigate
the conformational and kinetic behavior of cyclic de-
capeptides at a water/chloroform interface using un-
biased MD simulations and MSMs. The distinct en-
vironments at the interface alter the conformational
equilibrium as well as the interconversion kinetics of
cyclic peptide conformations. For peptides with low
population of the permeable conformation in aqueous
solution, the polar/apolar interface facilitates the in-
terconversion to the closed conformation, which is re-
quired for membrane permeation. Comparison to un-
biased MD simulations with a POPC bilayer reveals
that not only the conformations but also the orienta-
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tions are relevant in a membrane system. These find-
ings allow us to propose a permeability model that
includes both ‘prefolding’ and ‘non-prefolding’ cyclic
peptides – an extension that can lead to new design
considerations for permeable cyclic peptides.
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3.1 INTRODUCTION

Existing pharmaceutical drugs cover only a small fraction of the
over 20’000 proteins encoded in the human genome.11,116,117 Most
of the druggable proteins share distinct structural features, com-
pared to the undruggable fraction: They have restricted, pocket-
shaped binding sites that favor interactions with small organic
molecules.61,118 In addition, their amount of well-defined rigid do-
mains is significant. However, bioinformatic studies estimate that
85% to 90% of proteins do not contain suitable pocket-shaped
binding sites and/or well-defined rigid domains, and are there-
fore difficult to target by small-molecule drugs.11,116 In contrast,
macrocyclic drugs like cyclic peptides can bind to larger binding
sites with flat profiles or protein-protein interfaces.62,119–124 In
addition, cyclization prevents rapid metabolic clearance.63 There-
fore, cyclic peptides have the potential to vastly extend the scope
of druggable proteins and lead to therapeutics for currently un-
treatable diseases.125

The therapeutic applicability of cyclic peptides is, however,
limited by their often low cell permeability and oral bioavailabil-
ity.69,94 To address this issue, many experimental and compu-
tational studies have focused on the molecular mechanism of cell
permeation of cyclic peptides with the aim to define strategies for
the rational design of permeable cyclic peptides.16,89,96,105,108,126–129

N-methylation of the peptide backbone, change of stereocenters,
conformational flexibility, and side-chain modifications can all in-
fluence the permeability. Unfortunately, their effect is non-linear
and highly site-dependent.98,106,108,130–132 The cell permeability
of cyclic peptides often drops with increasing peptide size.70 Nev-
ertheless, some larger cyclic peptides can display internal con-
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formational changes, which are crucial for membrane permeablil-
ity.101,102,104 The different conformations can be distinguished by
the amount of intramolecular hydrogen bonds. In the so called
‘closed’ conformation, the internal hydrogen bonds shield the po-
lar groups from the environment leading to a low polar surface
area. In contrast, polar groups are exposed to the environment in
the ‘open’ conformation.16,100,102 Therefore, cyclic peptides can
adapt to polar and apolar environments by changing from one
conformation to another, an ability called the ‘chameleonic’ be-
havior of cyclic peptides.12,102

The shielding of polar groups in the ‘closed’ conformation
lowers the desolvation energy barrier for moving into the apo-
lar membrane interior. Therefore, the ‘closed’ conformation is
assumed to be the main permeable species.72,89,95,102 However,
the possibility to adopt a ‘closed’ conformation in an apolar envi-
ronment alone does not necessarily imply membrane permeabil-
ity.89,104 Molecular dynamics (MD) and nuclear magnetic res-
onance (NMR) studies have revealed that congruent conforma-
tional states (i.e. conformations occurring in both polar and
apolar environments, of which the ‘closed’ conformation can be
one) facilitate the transition between different environments and
therefore increase membrane permeability.16,89,108 The peptide
composition, size, and hydrophobic surface area heavily influence
the conformational behaviour of cyclic peptides and thus also
the permeability.70,89,98,105,130 The interplay between all these
factors is not trivial to decipher and therefore, it is difficult to
establish structure-permeability relationships.

During their path through the membrane, cyclic peptides pass
different environments. They start in a polar aqueous environ-
ment outside the cell, cross the polar and often charged lipid
head-group region, move through the apolar lipid-tail region, and
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again pass the head-group region in order to reach the interior
of the cell. Thus, cyclic peptides not only face different envi-
ronments, but also multiple interfaces between polar and apolar
regions. The conformational and dynamic behavior at these inter-
faces is hardly understood since previous simulation approaches
have focused mainly on homogeneous environments.89,108 Only
few studies have been reported that targeted cyclic peptides in
non-homogeneous environments.80,114 In both cases, biased en-
hanced sampling approaches were employed to achieve sufficient
sampling in the available simulation time. Wang et al.80 simu-
lated cyclosporin A at a water/chloroform interface as well as in a
1-palmitoyl-2-oleoylphosphatidylcholine (POPC) bilayer system.
To enhance sampling, the authors increased the temperature of
the system to 490K and reduced specific force constants acting on
the ω-dihedral angles. Sugita et al.114 used steered MD133 and
umbrella sampling134 to pull more than 100 different cyclic pep-
tides into a POPC bilayer and calculate their free-energy profile.
In addition, they focused on small cyclic peptides with little con-
formational flexibility in order to obtain converged results. These
studies led to important new insights into the permeability of
cyclic peptides. The free-energy minimum along the permeation
pathway (i.e. the most favorable position of the peptide) was nei-
ther in the aqueous phase nor in the apolar lipid-tail region, but
directly beneath the lipid head-group region at the polar/apolar
interface.80,114 This behavior was conserved over a wide range of
peptides with different hydrophilicity. The free-energy minimum
was more distinct for more lipophilic peptides, but even very hy-
drophilic peptides showed this minimum.114 As cyclic peptides
are likely to spend a large proportion of their permeation process
located at this minimum, a detailed and non-biased understand-
ing of how the interface influences the conformational behavior
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and dynamics of cyclic peptides is desired.

Figure 3.1: Cyclic decapeptide (CDP) series used in this chapter.
The backbone scaffold was reported by Fouché et al.135,136 and is kept
constant. The side-chain residues are systematically varied between
leucine/alanine at position 1, 3, 6, and 8 (yellow), proline/alanine at
position 4 and 9 (red), and D-phenylalanine/D-alanine at position 5
and 10 (blue). In position 2 and 8 are alanines in all peptides. In po-
sition 5 and 10 are D-amino acids to enable the correct β-turn confor-
mation. The parallel artificial membrane permeation assay (PAMPA)
data were taken from Ref. 108. Note that CDP 1 and 3 in this chapter
correspond to CDP 6 and 4, respectively, in Refs. 89,108.

In this chapter, we use extensive unbiased MD simulations
to investigate the behavior of a series of eight cyclic decapep-
tides (CDPs) at a water/chloroform interface, and compare the
results to unbiased simulations at a POPC bilayer. In contrast
to the work of Sugita et al.,114 the peptides are chosen to show
complex internal conformational dynamics. The simulations are
performed without biases and at room temperature to avoid ar-
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tifacts like the distortion of the interface or POPC bilayer or the
formation of pores. In addition, this ensures that the observed
conformations and kinetics reflect the natural behavior of the
cyclic peptides. The backbone scaffold of the CDPs and their N-
methylation pattern was introduced by Fouché et al.135,136 and
is kept throughout our series while the side chains are varied.
Figure 3.1 illustrates the variations that are performed in three
dimensions: (i) a switch from leucine to alanine at position 1,
3, 6, and 8, (ii) proline to alanine at position 4 and 9, and (iii)
D-phenylalanine to D-alanine at position 5 and 10. In the closed
conformation, as observed by NMR and in crystal structures, the
peptides form two β-strands (amino acids at position 1, 2, 3 and
6, 7, 8) and two β-turns (amino acids at position 4, 5 and 9,
10). In this conformation, all unmethylated amide nitrogen atoms
face towards the peptide’s interior and build the typical four H-
bonds pattern.89 We investigate how the interplay between po-
lar/apolar interfaces and the peptide orientation modulate the
conformational and kinetic behavior of the CDPs, and showcase
the important role of interfaces in the passive permeation process
of cyclic peptides.

3.2 METHODS

Experimental data shown in this chapter was generated by our col-
laborators at Novartis Institutes for BioMedical Research. Method-
ological details are described in Ref. 115.
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3.2.1 MD Simulations

Initial Conformations

All MD simulations were initiated with CDPs in their ‘closed’
or major ‘open’ conformation. The ‘closed’ conformers were ob-
tained from measurements in chloroform by NMR spectroscopy.135

The generation of the major ‘open’ conformers has been described
in detail in Refs. 89,108. Briefly, a set of 100 seed conformers from
enhanced sampling runs facilitating an opening of the ‘closed’
conformers was selected to perform repeated parallel MD simula-
tions of 100ns length until the subsequent core-set Markov model
(CSMM) converged. The ‘open’ conformers of CDPs 2 and 4-8
were adapted by in silico mutagenesis from CDP 1 and 3, respec-
tively, and used as an ensemble set of seeds for the corresponding
MD simulations.

Water/Chloroform Interface

All MD simulations at the water/chloroform interface were per-
formed using the Groningen Molecular Simulation (GROMOS)
software package137 and the GROMOS 54A8 force field.138 The
simulations were carried out under NPT conditions with rectan-
gular periodic boundary conditions. The leapfrog scheme32 was
used to integrate Newton’s equations of motion with a time step
of 2 fs. The simple-point-charge (SPC) water solvent model139

was used. Weak coupling37 to three separate temperature baths
for the peptide, the chloroform phase and the water solvent was
applied with a reference temperature of 300K and a relaxation
time of 0.1ps. The pressure was maintained around 1.013bar
(1 atm) by weak coupling to a pressure bath with a relaxation
time of 0.5ps and a isothermal compressibility of 0.4575 nm2/N
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under isotropic scaling of the simulation box. For the nonbonded
interaction, a twin-range cutoff scheme was used with 0.8nm and
1.4nm cutoffs. A reaction-field force140 with a relative dielec-
tric permittivity of 61.0141 was used for the treatment of elec-
trostatic interactions beyond the long-range cutoff. The SHAKE
algorithm142 was used to constrain bond lengths with a relative
tolerance of 10−4. Coordinate and energy trajectories were writ-
ten out every 5ps for data analysis.

The biphasic simulation system consisted of 400 chloroform
molecules and an equal volume of water molecules. The simula-
tion box measured 7.52nm x 3.76nm x 3.76nm. A cyclic peptide
in either the ‘closed’ conformation or the major ‘open’ state was
placed in the simulation box in various orientations either at the
interface of the water and chloroform phases, or at the center of
the aqueous phase, with approximately 1.88nm distance between
the CDP’s center of mass and the closest chloroform atom at
the interface. Each simulation was preceded by 20ps NVT ther-
malisation and equilibration under positional restraining of the
solute atoms. Initial velocities were generated using a random
number generator seed at an initial temperature of 300K. If not
mentioned otherwise, 50 MD simulations with different starting
orientations were performed for 200ns per peptide and starting
conformation, resulting in 20µs of sampling of each CDP. The
first 2ns of each simulation were discarded from the analysis for
equilibration.

POPC Bilayer

The MD simulations at the POPC lipid bilayer (a mimic for
a cellular membrane) were performed using the Groningen Ma-
chine for Chemical Simulations (GROMACS) 2020.5 software
package143 and the GROMOS 54A8 force field.138 Lipid parame-
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ters were adopted from the POPC model of Marzuoli et al.144 to
improve solvation properties of the head-group region. The simu-
lations were carried out under NPT conditions with rectangular
periodic boundary conditions. Again, the SPC139 water model
was used as solvent. The leapfrog scheme32 was used to integrate
Newton’s equations of motion with a time step of 2 fs. Weak
coupling37 to three separate temperature baths at 303K for the
peptide, the lipids and the solvent was applied with a relaxation
time of 0.1ps. The pressure was coupled semi-isotropically to
a Parrinello-Rahman barostat145 at 1.0bar with a coupling con-
stant of 2.0ps and an isothermal compressibility of 0.45nm2/N.
For both the short-range electrostatic and van der Waals interac-
tions, a single cutoff of 1.2nm was used. The long-range electro-
statics were calculated by the particle mesh Ewald (PME) algo-
rithm.146 The linear constraint solver (LINCS) algorithm147 was
used to impose constraints on the bond lengths with fourth order
expansion. Center-of-mass (COM) motion removal was applied
in every simulation step to remove the motion of the bilayer rela-
tive to the solvent. Coordinate trajectories were written out every
100ps for data analysis.

The topology of the simulation box containing 512 POPC
lipids in a bilayer (256 per leaflet) was adopted from Marzuoli et
al.144 The CDPs were placed either in their ‘closed’ conformation
or the major ‘open’ state at the center of the aqueous phase in
the simulation box, with approximately 3nm distance between
the CDP’s center of mass and the closest head-group atom of
the POPC lipids. Each simulation was preceded by 100ps NVT
thermalisation and 1ns NPT equilibration. In total, 50 runs with
100ns length were started in the ‘open’ and ‘closed’ conformation
of CDP 1 and CDP 3 each. After manual assessment, those runs
that showed an initial contact with the membrane were selected.
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For CDPs 1 and 3, two and three of the 100 runs showed an ini-
tial contact with the membrane, respectively. The last frame of
these simulations was used as the seed for five continuation runs
with 100ns each.

Construction of Markov Models

MSMs provide a statistical framework to describe the complete
system dynamics.22 Using MSMs, one can compute stationary
quantities and long-time kinetics from ensembles of short simula-
tions. Importantly, these short simulations need to be in ‘local
equilibrium’ within the MSM states, but are not required to be in
‘global equilibrium’. Thus, we can combine multiple short simu-
lations of 200ns to obtain the system’s kinetics in the µs regime.

For all trajectories, the sine and cosine of the backbone tor-
sion angles ϕ and ψ were extracted using the PyEMMA Python
library,148 representing the first 40 feature dimensions. Addition-
ally, the z-position in the simulation box and orientation of the
CDPs with respect to the z-vector of the simulation box were ex-
tracted from the trajectories using the MDTraj149 Python library,
resulting in a total of 42 feature dimensions. In the system de-
scription, no side-chain information was explicitly included. The
42 feature dimensions were reduced to 6–11 collective coordinates
(the exact number depends on the peptide) by time-lagged inde-
pendent component analysis (TICA).150

The hierarchical density-based Sittel-Stock clustering algorithm151

was used for the spatial clustering. The Sittel-Stock algorithm re-
quires a cutoff for the minimal number of members for a clus-
ter (k). Here, a cutoff k=100 was used. To obtain effective
transition probabilities between the conformational states, the
core-set Markov model technique (CSMM)152–155 was used. For
the Markov model, a lagtime τ of 1.5ns was chosen to ensure
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Markovianity. Furthermore, robust Perron cluster-cluster anal-
ysis (PCCA+)156 was performed to group the microstates into
metastable conformational states. Depending on the peptide,
three or four macrostates were chosen. Visual inspection of these
showed that this procedure lead to the separation of a ‘closed’, an
‘open orientation A’, and an ‘open orientation B’ state for each
peptide.

The mean first passage times (MFPTs) Ex [Ty] of the intercon-
version processes describe the expected hitting times of one target
state y in Y when starting in state x in X. MFPTs were calcu-
lated from the transition matrix T with the following equation,

Ex [Ty] =

{
0 x = y

1 +
∑

z Tx,zEz [Ty] x ̸= y
(3.1)

Bootstrapping was performed to obtain the average and stan-
dard deviation for the steady-state populations of the Markov
models. A total of 50 bootstrapping iterations were performed.
In each iteration, n trajectories were picked from the total set of
trajectories with replacement, where n equals the total number
of trajectories.

Data Analysis

If not stated otherwise, all trajectories were analyzed using the
MDTraj149 Python library.

Position. The position of the CDP inside the biphasic simu-
lation box was calculated by dividing the number of atom–atom
contacts within a threshold of 0.5nm between the CDP and the
chloroform molecules with the number of atom–atom contacts be-
tween the CDP and molecules of the water and chloroform phase
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as follows,

Position =
Atom contacts Peptide(CHCl3)

Atom contacts Peptide (CHCl3 + H2O)
(3.2)

Orientation with respect to the simulation box. To calculate
the orientation of the peptides with respect to the simulation box,
the cosine of α, the scalar product between the normal vector to
the plane set up by the CDP (⃗a) and a vector parallel to the
length of the simulation box (⃗b) was determined,

Orientation = cos (α) = (⃗a · b⃗) (3.3)

Because of the periodic boundary conditions, the vector parallel
to the length of the biphasic simulation box (⃗b) was calculated as
the vector pointing from the COM of the aqueous phase to the
COM of the chloroform phase. In the simulation with the POPC
bilayer, on the other hand, the z-axis of the system was used as
b⃗. In each case, these vectors (⃗b) constitute the normal vector to
the polar/apolar interface.

Orientation with respect to the water/chloroform interface by
side-chain interactions. To calculate the orientation of the pep-
tides with respect to the water/chloroform interface by side-chain
interactions, the number of atom–atom contacts within a thresh-
old of 0.5nm between the non-hydrogen atoms of the leucine side
chains (alanine if substituted) and chloroform molecules was di-
vided by the number of atom–atom contacts between the non-
hydrogen atoms of the leucine side chains (alanine if substituted)
and molecules of the water and chloroform phase as follows,

Orientation =
Atom contacts Leu/Ala (CHCl3)

Total Solvent Atom contacts Leu/Ala
(3.4)
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RMSD. The atom-positional backbone root-mean square devi-
ation (RMSD) was calculated with respect to the NMR solution
structure of the ‘closed’ state.

State assignment. Re-assignment of simulation frames to the
macrostates identified by Markov state modelling was used to
analyze the distribution of total energies as well as the positions
and orientations of the CDPs within these states. If not stated
otherwise, only the frames with a probability > 90% of belonging
to a certain metastable set were included.

Data and Software Availability

The structure and topology files of the CDPs in the closed and ma-
jor open conformation are available on GitHub (https://github.
com/rinikerlab/cyclic_peptide_at_interfaces). The GitHub
repository also contains a sample Jupyter notebooks for the MSM
analysis of CDP 1.

Further information, custom scripts, or production trajecto-
ries are available from the corresponding author (S.R.) upon re-
quest. The freely available software can be obtained via the
following links: GROMOS (http://www.gromos.net/), GRO-
MACS (https://www.gromacs.org/), and PyMol (https://github.
com/schrodinger/pymol-open-source).

3.3 RESULTS AND DISCUSSION

3.3.1 3D Hydrophobicity Profile

The 3D conformations of the cyclic decapeptides (CDPs) show a
directed hydrophobicity profile, i.e. one side of the peptides is

https://github.com/rinikerlab/cyclic_peptide_at_interfaces
https://github.com/rinikerlab/cyclic_peptide_at_interfaces
http://www.gromos.net/
https://www.gromacs.org/
https://github.com/schrodinger/pymol-open-source
https://github.com/schrodinger/pymol-open-source
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more hydrophobic than the other. This directionality is mainly
caused by leucine residues, a common feature of the CDP se-
ries.136 Figure 3.2 displays the conformation of CDP 1 in the
‘closed’ and the highest populated ‘open’ state obtained by a
MSM of the peptide in water. The solvent-accessible surface of
the hydrophobic leucine residues is highlighted in orange. In both
the ‘closed’ and ‘open’ conformation, all leucine residues point
outwards of the plane defined by the backbone macrocycle. We
will call this direction the peptide’s ‘normal’. The leucine side-
chain orientations are relative stable throughout the simulations.
In contrast, the orientation of the phenylalanine side chains is
flexible and can span a 180◦ angle. Thus, the CDPs show a
higher occurrence of hydrophobic side chains on one side, which
leads to the directed hydrophobicity pattern. In the ‘closed’ con-
formation, the leucine side chains build a continuous, large hy-
drophobic patch, while this patch is split into smaller ones in the
‘open’ conformations. The directed hydrophobicity and confor-
mational dependency was observed for all peptides of the series
except CDP 8, which contains no leucines (see Figure 3.3).

When the peptides are simulated in an isotropic environment
like a water box, the observed directed hydrophobicity has no ef-
fect on the conformational dynamics of the peptides. However,
this may be different at interfaces between polar and apolar en-
vironments. Sugita et al.114 have shown that the most favorable
position of cyclic peptides at the membrane is directly underneath
the lipid head-group region at the polar/apolar interface. Such an
interface has its own directionality that can interact with the di-
rected hydrophobicity of the CDPs and effect the conformational
behavior. As previous work has mainly focused on isotropic en-
vironments, the role of the directionality could not be captured.
The observed differences in the hydrophobic patch between the
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Figure 3.2: Metastable conformations of CDP 1 in water. The ‘closed’
as well as the highest populated ‘open’ state are shown. In the two
top panels, the solvent-accessible surface of the hydrophobic leucine
residues is indicated by orange spheres. The conformational ensemble
of the metastable states is shown at the bottom.
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Figure 3.3: Metastable conformations of proline-containing CDP 3
in water. The ‘closed’ as well as the highest populated ‘open’ state
are shown. In the two top panels, the solvent-accessible surface of
the hydrophobic leucine residues is indicated by orange spheres. For
the ‘open’ conformation, the solvent-accessible surface of a backbone
N-methylation, which bridges the hydrophobic leucine patches, is in-
dicated by a yellow sphere. The conformational ensemble of the
metastable states is shown at the bottom.
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‘open’ and ‘closed’ state are thereby of special interest, as Hoang
and co-workers105 found that the size of the largest continuous
hydrophobic surface patch correlates with the membrane perme-
ability in a series of cyclic hexapeptides and heptapeptides. This
raises the question whether the different patch sizes of ‘open’ and
‘closed’ conformers also lead to permeability effects.

3.3.2 Peptide Orientations at Interfaces

A water/chloroform interface was chosen as a model system. This
combination allows straightforward comparison to previous work
that was performed in pure water or pure chloroform.16,89,105,108

We first tested how the CDPs orient towards the interface. There-
fore, CDP 1 was placed at the interface in the ‘closed’ and in the
major ‘open’ conformation with different orientations and simu-
lated without constraints. Interestingly, only two stable orienta-
tions, called A and B in the following, were observed in the open
conformation. In the closed conformation, only one stable ori-
entation, orientation A, was seen. All other orientations quickly
rotated towards one of the stable ones. In both orientations A
and B, the plane defined by the peptide backbone laid flat on the
interface. In orientation A, the leucine side chains face towards
the chloroform phase, whereas in orientation B they face towards
the water phase.

To confirm that the stable orientations occur naturally and
are not an artifact of placing the peptide at the interface, 60
short simulations of 20 ns length with the peptides starting in the
aqueous phase in random orientations were performed. Indeed,
within few nanoseconds of simulation time, the peptides diffused
towards the interface and adopted the same stable orientations A
and B. Interestingly, 75% of the ‘open’ peptides initially adopted
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orientation A at the interface, whereas 25% initially interacted
with the interface in orientation B. This shows that while estab-
lishing the first contact with the interface, there is an initial pref-
erence for orientation A. This preference is amplified after a few
nanoseconds equilibration time at the interface, resulting in 97%
in orientation A versus 3% in orientation B (Table 3.1). Based on
these findings, the simulations of CDPs 2-8 were directly started
from the water phase with random orientations. Again, only the
two stable orientations A and B were observed (Table 3.1). Note
that Table 3.1 displays the simulation time spent in the orienta-
tions over 50 simulations of 200ns length. As we show later in
this chapter, the relaxation timescales for this system are in the
order of µs. Thus, at this stage, the reported values do not reflect
equilibrium distributions but rather mimic an initial distribution
after drug administration. For equilibrium populations, we refer
the reader to Section 3.3.5.

Table 3.1: Fraction of simulation time spent in orientation A and B
after equilibration for CDPs 1-8 in the ‘open’ and ‘closed’ conformation

Peptide ID ‘open’ ‘open’ ‘closed’ ‘closed’
orient. A orient. B orient. A orient. B

1 97% 3% 100% 0%
2 >99% < 1% 100% 0%
3 76% 24% 100% 0%
4 88% 12% 100% 0%
5 96% 4% 100% 0%
6 54% 46% 100% 0%
7 57% 43% 100% 0%
8 60% 40% 87% 13%

Figure 3.4 shows representative simulations of CDP 1 in the
stable orientations at the interface. The simulation in the top left
panel was started from the ‘closed’ conformation in orientation A.
This orientation was stable throughout the full simulation time
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Figure 3.4: Representative simulations of CDP 1 at the
water/chloroform interface. Blue lines show the fraction of
leucine/chloroform interaction with respect to all leucine/solvent in-
teractions as a measure for the peptide’s orientation. The root mean
square deviation (RMSD) of the peptide with respect to its ‘closed’
conformation is shown in orange. Snapshots of the simulations are pro-
vided to illustrate the location and orientation of the peptide towards
the interface. Chloroform molecules are shown as orange spheres. Wa-
ter molecules are not shown for visual clarity. Simulations were started
from the following combinations of conformation and orientation. (Top
left): ‘closed’/A. (Top right): ‘closed’/B. Bottom left: ‘open’/A. Bot-
tom right: ‘open’/B.
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Figure 3.5: Zoom in of the first nanosecond of the rotation from
orientation B to A for CDP 1 in the ‘closed’ conformation. Blue points
show the orientation of the peptide with respect to the membrane
measured by the side-chain contacts. In the simulation snapshots, the
chloroform molecules are shown as orange spheres. Water molecules
are not shown for clarity.
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of 100ns. In contrast, the simulation in the top right panel was
started from the ‘closed’ conformation in orientation B. Within
1ns of simulation time, the peptide rotates from orientation B
to orientation A, indicating that orientation B is unstable in the
‘closed’ conformation. A higher resolution of the rotation process
is shown in Figure 3.5.

Simulations started from the ‘open’ conformation are shown
in the bottom panels of Figure 3.4. When the peptide was started
from orientation A (left), the orientation was stable throughout
the full simulation as in the ‘closed’ case. Interestingly, orienta-
tion B appears to be metastable in the ‘open’ conformation (right
panel). After starting in orientation B, the peptide remained in
this orientation for a few nanoseconds, before rotating as well to-
wards orientation A. During the rotation, the peptide stayed in
the ‘open’ conformation in some simulations while it closed in oth-
ers (as in the example in Figure 3.4, a rotation from orientation
B to A without closing is depicted in Figure 3.6). The rotation of
the peptide occurs along its long axis and thus, the contacts with
the chloroform phase are temporarily increased until orientation
A is reached.

3.3.3 Composition Effects on the Orientation
Preference at the Interface

From Table 3.1, it is evident that all CDPs favor orientation
A at the interface. In the ‘closed’ conformation, all peptides
except CDP 8 are even exclusively observed in orientation A.
The stronger preference for orientation A in the ‘closed’ state in
comparison to the ‘open’ state aligns well with the hydrophobic
patches shown in Figures 3.2 and 3.3. In the ‘closed’ states, the
leucine side chains form a large continuous hydrophobic patch,
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Figure 3.6: Representative simulation and zoom into the first 5 ns
of the rotation from orientation B to A for CDP 1 in the ‘open’ con-
formation. Blue lines show the orientation of the peptide with respect
to the membrane measured by the side-chain contacts. Red lines show
the fraction of chloroform contacts with respect to all solvent contacts
of the peptide. Simulation snapshots are shown at specific points of
the simulation indicated by the black lines. Chloroform molecules are
colored orange and shown in surface representation. Water molecules
are not shown for clarity.
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while the patch is broken up in the ‘open’ state. In orientation A,
the hydrophobic patch faces the hydrophobic chloroform phase
resulting in favorable interactions. These are stronger with the
large continuous patch of the ‘closed’ state, leading to a stronger
preference for orientation A. Hence, not only the overall amount
of hydrophobic surface area is important but also its distribution
in different conformers.

The effect of the hydrophobic patch can be confirmed by the
orientation preferences of CDPs 6-8, which lack half (two) or
all (four) leucines side chains in comparison to the other pep-
tides. In the ‘open’ conformation, CDPs 6 and 7 (lacking two
leucines) have nearly equal preference for orientation A and B
(Table 3.1). CDP 8 (lacking all four leucines) is the only peptide
for which orientation B in the ‘closed’ conformation is observed.
It is also the peptide with the lowest passive membrane perme-
ability. Other amino acids also seem to influence the orientation
preference. Phenylalanine even shows a titratable effect. Upon re-
moval of both phenylalanine side chains from CDP 1, the fraction
of ‘open’ frames in orientation B drops from 3% to <1%. When
removing one phenylalanine from CDP 3, the fraction drops from
24% to 12%, while removing an additional phenylalanine leads
to a further decrease to 4%. The presence of proline, on the other
hand, seems to reduce the preference for orientation A. CDPs 1
and 3 as well as 2 and 5 only differ in the presence of proline
residues. In the first pair, the fraction of orientation B in the
‘open’ conformation increases from 3% to 24%, and in the sec-
ond pair it increases from <1% to 4% upon introduction of the
proline side chain. CDPs that contain proline residues have a
more round shape in the ‘open’ states (compare Figure 3.2 and
Figure 3.3). Therefore, the hydrophobic patch of those peptides
is more fragmented in the ‘open’ state than for peptides without
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proline. A more separated hydrophobic patch thus leads to a
lower preference for orientation A.

The CDPs can only adopt distinct orientations at polar/apolar
interfaces. The preference between the orientations is modulated
by the amino-acid composition as well as the conformation of
the peptide. This particular feature of cyclic peptides could only
be observed by advancing from simulations in simple isotropic
environments to anisotropic environments such as a polar/apolar
interface. However, the question remains if the observations from
the water/chloroform interface are transferable to a real lipid
membrane system.

3.3.4 Comparison with Lipid Membranes

Lipid membranes and simple polar/apolar interfaces share im-
portant features like the directed hydrophobicity, but also differ
in many points. Lipid membranes consist of a polar and often
charged head-group region and an apolar lipid-tail region. Each
layer of the membrane exhibits a dipole moment that points from
the membrane’s middle plane toward the head-group region. The
head-group region is usually hydrated by water molecules. In com-
parison to chloroform molecules, the lipids are much larger, more
bulky, and therefore not that easily displaced. The orientations A
and B of the CDPs maximize the interface surface area occupied
by the peptide (i.e., the peptide lies parallel to the interface), and
are thus expected to distort the membrane surface more than a
peptide in a tilted orientation. This raises the question how trans-
ferable the results from the water/chloroform system are towards
a lipid membrane.

As an approximation for a biological membrane, we used a
large patch containing 512 POPC lipids (256 in each layer). This
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system was chosen to minimize finite size and buckling effects.
Due to the increased size and complexity of the system, the sim-
ulation program was changed to GROMACS with the same force
field (see Method section). To ensure that this change does not
cause significant differences in the results, we compared the sim-
ulations of CDP 1 in water between the two simulation programs
(the MSMs are displayed in Figure 3.7). The kinetic timescales
as well as the fraction of ‘closed’ and ‘open’ conformational states
were within a ratio of 1.5 of each other. In addition, the station-
ary distributions of the peptide overlapped in the TICA subspace
with the exception of two minor conformational states (marked
with red boxes). These small deviations can be explained by sta-
tistical fluctuations of the simulations or the difference between
the twin-range versus single-range cutoff scheme used in the GRO-
MOS and GROMACS software, respectively.

Simulations of the POPC patch with CDPs 1 and 3 were per-
formed at room temperature without the addition of any bias.
The two peptides were selected as representatives of the peptide
classes with and without proline residues. The equilibrium pop-
ulation of ‘closed’ states in water is 45% for CDP 3, but only
<1% for CDP 1.89 Therefore, these peptides are good candi-
dates to test the role of conformation preference for entering the
membrane interface. We use no biases in the simulations in or-
der to remain as realistic as possible and avoid membrane dis-
tortion or pore formation, unwanted effects that would alter the
results. The simulations were initialized with peptides placed
in the aqueous phase. In the chloroform/water simulations, the
peptides moved to the interface within a few nanoseconds. In
contrast, it took much longer in the lipid membrane system for
the peptide to reach the membrane interface. In most simula-
tions, the peptide remained in the aqueous phase entirely. Due
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Figure 3.7: Comparison of Markov state model (MSM) results of
CDP 1 in water with the GROMOS and GROMACS simulation soft-
ware packages. (Top): Stationary distributions according to the MSM
in the TICA subspace. The distribution overlap, except for two mi-
nor conformational states marked with red boxes. (Middle): Implied
timescales of the MSMs. (Bottom): State assignment of the PCCA+
algorithm. The ‘closed’ state and its population is highlighted.
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to their conformational flexibility, the peptides adopted confor-
mations according to their equilibrium distribution during the
elongated stay in the aqueous phase. CDP 3 adopted both ‘open’
and ‘closed’ conformations in the aqueous phase. Interestingly,
the peptide was able to move to the membrane interface in both
‘open’ and ‘closed’ conformations. CDP 1 was nearly exclusively
found in ‘open’ conformations in the water phase. Accordingly,
only open conformations were seen inserting into the membrane
interface.

Figure 3.8: Representative simulations of CDPs 3 and 1 inserting
into the membrane interface. (Top): CDP 3 in the ‘closed’ conforma-
tion. (Bottom): CDP 1 in the ‘open’ conformation. Black dots show
the COM position of the peptide. The position of the membrane is
indicated by dark grey (head groups) and light grey (tails) lines. The
orientation of the peptide with respect to the membrane is shown in
blue, α indicates the angle between the peptide normal and the mem-
brane normal. The orange lines indicate the RMSD of the peptide
with respect to its ‘closed’ NMR solution structure. The black arrow
indicates the time point corresponding to the snapshots shown on the
right. In the snaphots, the peptide is shown in green and the mem-
brane in orange.

Figure 3.8 shows representative simulations of CDPs 1 and 3
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inserting into the membrane interface in the ‘closed’ and ‘open’
state, respectively. In the trajectory of CDP 3, the peptide re-
mained in the ‘closed’ conformation throughout the simulation.
After an initial phase of diffusion in the water phase (0-15ns), the
peptide stayed in the proximity of the membrane for some time
(15-25ns), before entering the membrane in a tilted orientation
(22-28ns), and eventually moving deeper into the membrane and
adopting orientation A (30ns onward). The membrane thickness
was unperturbed by the embedding of the CDP. The area per
lipid, which was 0.637nm2 without the CDP, dropped slightly
(0.02nm2) upon CDP insertion, but relaxed back into the equi-
librium value within a few ns. Orientation A was relatively sta-
ble over the rest of the simulation. Looking at the snapshots,
one can confirm that the peptide is indeed in orientation A with
the leucine residues pointing towards the apolar tail region. The
lipids were thereby pushed aside to make room for the peptide. In
the top view, one can observe that the peptide is not covered by
the lipids but still has contacts with the aqueous phase through
a water funnel. This water funnel together with the polar head-
groups in the proximity of the peptide and the apolar tail region
creates a local polar/apolar interface for the peptide. The envi-
ronment at this interface is comparable with that observed in the
water/chloroform system. In some frames in the ‘closed’ confor-
mation (but never in ‘open’ conformations), lipids fully cover the
peptide, leading to the disappearance of the water funnel and a
slightly deeper penetration of the peptide in the membrane.

CDP 1, which inserts into the membrane in the ‘open’ confor-
mation, shows a similar trajectory. It exhibited more conforma-
tional dynamics but never closed. It also entered the membrane
in a tilted orientation that is stable between 60-125ns. Eventu-
ally, it adopts orientation A with the leucines pointing towards
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the tail region (125ns onward). In contrast to orientation A of
the ‘closed’ conformation, the phenylalanine side chains point to-
wards the membrane plane and not towards the head-group re-
gion. Nevertheless, the environment is very similar to that in
water/chloroform and also shows the characteristic polar/apolar
interface formed by the water funnel and the head groups.

Before fully entering the membrane, the peptides position
themselves at the membrane/water interface. Our findings high-
light that conformationally flexible peptides can do this in both
‘closed’ and ‘open’ conformations. In all simulations with pep-
tides in the ‘open’ conformation and in a majority of the sim-
ulations with peptides in the ‘closed’ conformation, the peptide
remains in contact with the aqueous phase through a water funnel
and also in proximity of the head-group region. Thus, the peptide
creates its own local interface environment. Especially peptides
that preferentially adopt the ‘open’ conformation in water seem
to insert into the membrane in the ‘open’ conformation. For
peptides that predominantly enter the membrane in the ‘open’
conformation, the closing dynamics at the interface is potentially
the decisive factor for their membrane permeability. Within our
simulation time, the peptides appear to be trapped in one leaflet
of the membrane, indicating that crossing the interior of the mem-
brane is connected with a substantial energy barrier for the large
and flexible CDPs. Unfortunately, the insertion events into the
membrane are very rare. A total of 10µs simulation time per pep-
tide was necessary to sample two and three membrane insertion
events for CDPs 1 and 3, respectively. Additionally, simulating a
big POPC patch is very computer resource intensive. Therefore,
this analysis was only performed for CDPs 1 and 3 and no statis-
tical evaluation of the distribution between orientation A and B
was possible.
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In summary, striking similarities in terms of positioning, con-
formation, and orientation preferences of the CDPs were observed
between the water/chloroform interface and the membrane inter-
face, indicating that the former model system can be used as
an approximation for the conformational dynamics at lipid mem-
branes. Due to its large size, the computational costs to simulate
the membrane system are very high. Additionally, the dynamics
of the peptides at the membrane are slower due to friction effects
with the bulky lipids. Collecting sufficient data to construct an
MSM would take considerably more simulation time than avail-
able for the membrane system in this chapter and is unfeasible
for a larger number of peptides. Therefore, we continued to study
the conformational dynamics of the CDPs using the simpler and
faster equilibrating water/chloroform system, where it is possible
to obtain sufficient data for the construction of MSMs.

3.3.5 Interface Catalyzes the Closing of Cyclic
Peptides

Next, we investigated how the interface influences the conforma-
tional dynamics of the CDPs. Figure 3.11 shows a trajectory of
CDP 1 interconverting from the ‘open’ to the ‘closed’ conforma-
tion at the interface. Interestingly, the backbone torsional angle
ϕ of leucines 3 and 8 is highly correlated with the change in RMSD
with respect to the ‘closed’ state, but not the backbone torsions
of leucine 1 and 6 or any other residue. In the trajectory, we can
see first half closing of the peptide (at approx. 10ns) followed by
a full closing event (at approx. 28ns). For the half closing, the
characteristic intramolecular hydrogen bonds are only formed on
one side of the peptide (see Figure 3.11C and E). For the full clos-
ing, a change in the backbone torsional angle ϕ of leucines 3 and 8
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of around 90°is necessary. In comparison, no closing events were
seen in our previous simulations of CDP 1 in pure water (CDP
6 in Ref. 89,108). Similar closing trajectories were observed for
all eight peptides (Figures 3.9 and 3.10 show a selection of these
closing and opening events).

To better understand the kinetics and metastable conforma-
tional states of the CDPs, we built MSMs for each of the peptides.
Previously, we used the backbone torsional angles as input fea-
tures for the MSMs.89,108 To take into account the role of the
interface, we included two additional features: the position and
orientation of the peptide relative to the interface. The position
of the peptide with respect to the interface was measured by the
ratio between the number of peptide-chloroform contacts and the
total number of peptide-solvent contacts. The orientation was
described with the angle between the peptide and the membrane
normal. Four or three metastable conformational states were iden-
tified for CDPs 1-8. The corresponding implied timescales are
shown in Figure 3.20.

Figure 3.12B shows the metastable state assignment mapped
on the orientation feature and the RMSD with respect to the
‘closed’ conformation. The model clearly distinguishes between
a ‘closed’ state (blue) and two different ‘open’ states (red and
orange). The two ‘open’ states are separated by their orientation
with respect to the interface. The ‘closed’ state can adopt a larger
variety of orientations. This first seems to be in contrast with
the observed stability of only one orientation in the ‘closed’ state
(Table 3.1). However, as discussed below, the ‘closed’ state can
diffuse into the apolar phase. There, it experiences an isotropic en-
vironment, which leads to more orientational variety. Therefore,
the ‘closed’ state has a highly preferable orientation while posi-
tioned at the interface but looses this preference once it diffuses
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Figure 3.9: Trajectories with closing events for CDPs 1-4 at the
interface. The orange line represents the RMSD with respect to the
‘closed’ NMR solution structure, and the blue line gives the orientation
of the peptide measured by the side-chain contacts.
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Figure 3.10: Trajectories with closing events for CDPs 5-8 at the
interface. The orange line represents the RMSD with respect to the
‘closed’ NMR solution structure, and the blue line gives the orientation
of the peptide measured by the side-chain contacts.
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Figure 3.11: Interconversion of CDP 1 from ‘open’ to ‘closed’ con-
formation at the interface. The orange line represents the RMSD with
respect to the ‘closed’ NMR solution structure, and the blue line the
cosine of the backbone ϕ angle. Arrows indicate the time points of the
snapshots shown on top.
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into the apolar phase. Panel C shows the MSM states mapped on
the position feature and the RMSD with respect to the ‘closed’
state. From this projection, it can be seen that only the ‘closed’
state (but not the ‘open’ one) can fully diffuse into the apolar
phase (position = 1).

The potential energy contributions in the MSM states of CDP
1 are compared in Figure 3.12D and E. As expected from the
equilibrium populations, the ‘open’ orientation B (state 1) has
a higher energy (less favorable) than the ‘open’ orientation A
(state 3). The higher energy of state 1 might facilitate the closing
process to state 2. Panel E splits the energy into water, chloro-
form, and intramolecular contributions. In the case of CDP 1,
the peptide has more favorable interactions with both water and
chloroform in orientation A (state 1) than in orientation B. For
the peptides containing proline, the preference for orientation A
can primarily be attributed to more favorable interactions with
water molecules.

Figure 3.12 shows the MSM of CDP 1 based on the interface
simulations. The results of all other CDPs are provided in Figures
3.13-3.19 and Figure 3.21.

Importantly, the kinetic model distinguishes for all peptides
metastable states in orientation A and B for ‘open’ but not ‘closed’
conformations. The model was not biased to make this distinc-
tion. The orientation feature was treated as any other of the 42
MSM input features. Its significance for the kinetic model un-
derlines the previous observation that it is important to consider
both orientations for ‘open’ conformations. The equilibrium pop-
ulations as well as the MFPTs between the metastable states are
shown in panel A. Interestingly, the ‘closed’ state of CDP 1 is
highly populated at the interface (43%). In contrast, its ‘closed’
population in water is <1%.89 Thus, CDP 1 mainly adopts ‘open’
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Figure 3.12: Markov state model (MSM) of CDP 1. A: Representa-
tive members of the metastable states, their equilibrium populations
as well as the mean first passage times (MFPTs) between them. B:
Metastable state assignment mapped to the orientation feature and
the RMSD with respect to the ‘closed’ state. C: Metastable state as-
signment mapped to the position feature and the RMSD with respect
to the ‘closed’ state. D: Violin plot of the interaction energies of the
metastable state members. E: Same as D, but split into water, chlo-
roform, and intramolecular contributions. Horizontal lines are added
to help guide the eye.
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Figure 3.13: MSM of CDP 2 in the water/chloroform system. A:
Representative members of the metastable states, their equilibrium
populations and MFPTs between them. B: Metastable state assign-
ment mapped to the orientation feature and the RMSD with respect
to the ‘closed’ state. C: Metastable state assignment mapped to the
position feature and the RMSD with respect to the ‘closed’ state. D:
Violin plot with the interaction energies of the metastable state mem-
bers. E: Same as D, but split into water, chloroform, and intramolec-
ular contributions. Horizontal lines are added to guide the eye.
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Figure 3.14: MSM of CDP 3 in the water/chloroform system. A:
Representative members of the metastable states, their equilibrium
populations and MFPTs between them. B: Metastable state assign-
ment mapped to the orientation feature and the RMSD with respect
to the ‘closed’ state. C: Metastable state assignment mapped to the
position feature and the RMSD with respect to the ‘closed’ state. D:
Violin plot with the interaction energies of the metastable state mem-
bers. E: Same as D, but split into water, chloroform, and intramolec-
ular contributions. Horizontal lines are added to guide the eye.
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Figure 3.15: MSM of CDP 4 in the water/chloroform system. A:
Representative members of the metastable states, their equilibrium
populations and MFPTs between them. B: Metastable state assign-
ment mapped to the orientation feature and the RMSD with respect
to the ‘closed’ state. C: Metastable state assignment mapped to the
position feature and the RMSD with respect to the ‘closed’ state. D:
Violin plot with the interaction energies of the metastable state mem-
bers. E: Same as D, but split into water, chloroform, and intramolec-
ular contributions. Horizontal lines are added to guide the eye.
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Figure 3.16: MSM of CDP 5 in the water/chloroform system. A:
Representative members of the metastable states, their equilibrium
populations and MFPTs between them. B: Metastable state assign-
ment mapped to the orientation feature and the RMSD with respect
to the ‘closed’ state. C: Metastable state assignment mapped to the
position feature and the RMSD with respect to the ‘closed’ state. D:
Violin plot with the interaction energies of the metastable state mem-
bers. E: Same as D, but split into water, chloroform, and intramolec-
ular contributions. Horizontal lines are added to guide the eye.
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Figure 3.17: MSM of CDP 6 in the water/chloroform system. A:
Representative members of the metastable states, their equilibrium
populations and MFPTs between them. B: Metastable state assign-
ment mapped to the orientation feature and the RMSD with respect
to the ‘closed’ state. C: Metastable state assignment mapped to the
position feature and the RMSD with respect to the ‘closed’ state. D:
Violin plot with the interaction energies of the metastable state mem-
bers. E: Same as D, but split into water, chloroform, and intramolec-
ular contributions. Horizontal lines are added to guide the eye.
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Figure 3.18: MSM of CDP 7 in the water/chloroform system. A:
Representative members of the metastable states, their equilibrium
populations and MFPTs between them. B: Metastable state assign-
ment mapped to the orientation feature and the RMSD with respect
to the ‘closed’ state. C: Metastable state assignment mapped to the
position feature and the RMSD with respect to the ‘closed’ state. D:
Violin plot with the interaction energies of the metastable state mem-
bers. E: Same as D, but split into water, chloroform, and intramolec-
ular contributions. Horizontal lines are added to guide the eye.
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Figure 3.19: MSM of CDP 8 in the water/chloroform system. A:
Representative members of the metastable states, their equilibrium
populations and MFPTs between them. B: Metastable state assign-
ment mapped to the orientation feature and the RMSD with respect
to the ‘closed’ state. C: Metastable state assignment mapped to the
position feature and the RMSD with respect to the ‘closed’ state. D:
Violin plot with the interaction energies of the metastable state mem-
bers. E: Same as D, but split into water, chloroform, and intramolec-
ular contributions. Horizontal lines are added to guide the eye.
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Figure 3.20: Implied timescales of the MSMs of CDPs 1-8.
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conformations in water and also likely inserts into the interface
in an ‘open’ conformation (compare to Figure 3.8). Once at the
interface, the equilibrium and kinetics of CDP 1 are shifted com-
pared to the aqueous phase. The closing process becomes much
faster. Thus, the interface can act as a catalyst for the intercon-
version between ‘open’ and ‘closed’ conformations. Additionally,
the MFPT for the closing process is much shorter for orientation
B than for orientation A. In our equilibrium model, orientation
B is hardly populated. However, we have found that in 25% of
cases CDP 1 initially interacted with the interface in orientation
B (Section ‘Peptide Orientations at Interfaces’). Therefore, in a
real world non-equilibrium scenario where the cyclic peptide is
administered as a drug, the importance of orientation B may be
higher than anticipated by the equilibrium model.
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Figure 3.21: Markov state models (MSMs) of CDP 1-8. Representa-
tive members of the metastable states, their equilibrium populations
as well as the mean first passage times (MFPTs) between them are
shown on top of the simulation data points mapped to the orientation
feature and the RMSD with respect to the ‘closed’ state. Note that
the simulation data points represent non-equilibrium data while for
the MSMs the equilibrium populations are shown.
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Figure 3.21 displays an overview of the MSMs of all eight pep-
tides. The kinetics and equilibrium populations of the metastable
states are shown on top of the simulation data points mapped to
the features RMSD to the ‘closed’ state and the orientation. The
simulation data points were colored according to their metastable
state assignment. All CDPs showed a distinct separation between
at least three metastable states: the ‘closed’ conformations and
the ‘open’ conformation in orientation A and B. CDPs 4-6 pop-
ulate an additional metastable state that could be assigned to ei-
ther the ‘half-closed’ or an ‘alternative closed’ conformation. For
all eight CDPs, the ‘closed’ state was highly populated in equi-
librium with the interface present (>38% for peptides without
proline and >55% for peptides with proline). Additionally, ori-
entation A was always higher populated, and thus energetically
more favorable, than orientation B.

We were able to show that the unique environment of the inter-
face alters the conformational equilibrium and favors the ‘closed’
state. This effect is especially strong for peptides that rarely
close in aqueous solution. For these peptides, the interface effect
can increase the fraction of ‘closed’ conformations by a factor
> 50. In addition, peptides starting from an ‘open’ conformation
in orientation A and B have different closing dynamics with faster
closing in orientation B. Next, we will have a closer look at how
the ‘closed’ peptides behave at the interface.

3.3.6 Permeable Conformations

Proceeding from the peptide in the ‘closed’ conformation at the
interface, a total of ∼500 events of peptides diffusing into the chlo-
roform phase were counted. These events will be referred to as
‘membrane diffusions’ in the following. All diffusion events start
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from the ‘closed’ orientation A with the leucine side chains inter-
acting with the apolar phase. In most cases, the peptide rotates
along its long axis until the leucine side chains point towards the
aqueous phase. Then, it diffuses into the apolar phase until it is
fully surrounded by chloroform molecules. An example trajectory
of this process is provided for CDP 1 in Figure 3.22. Not a sin-
gle event of ‘membrane diffusion’ in the ‘open’ conformation was
observed. This is in line with the findings reported in Ref. 80 for
cyclosporine A.

Figure 3.22: Representative apolar diffusion trajectory of CDP 1.
The orange line shows that the peptide remains in the ‘closed’ con-
formation throughout the diffusion process. The blue line indicates
the fraction of peptide-chloroform contacts of the total peptide-solvent
contacts. The diffusion event starts in orientation A. Next, the peptide
rotates along its long axis until the leucine side chains point towards
the aqueous phase. Then, it diffuses into the apolar phase until it is
fully surrounded by chloroform molecules.
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Interestingly, an ‘alternative closed’ state was identified for
CDP 6 (Figure 3.23). In this ‘alternative closed’ state, the pheny-
lalanine and proline side chains build a cage structure and the
backbone resembles a twisted ‘eight’. Four intramolecular hydro-
gen bonds stabilize the structure with the center carbonyl oxygen
contributing to two hydrogen bonds. The MSM revealed that the
‘alternative closed’ state has a significant equilibrium population
of around 24% (Figure 3.17). Therefore, it might contribute no-
tably to permeability. The existence of this ‘alternative closed’
state showcases the versatility of cyclic peptides and highlights
the need to have exhaustive knowledge of their conformational
behavior.

Figure 3.23: Apolar diffusion process of the ‘alternative closed’ state
of CDP 6. In this ‘alternative closed’ state, the phenylalanine and pro-
line side chains build a cage-like structure. The backbone conformation
resembles a twisted ‘eight’. Four intramolecular hydrogen bonds stabi-
lize the structure with the center carbonyl oxygen contributing to two
hydrogen bonds. The peptide diffuses into the apolar phase in a side
orientation with one leucine residue pointing upwards.
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The finding that ‘membrane diffusion’ events only occur in
the ‘closed’ or ‘alternative closed’ conformations strengthens the
long-standing hypothesis that large and flexible cyclic peptides
can permeate only when they can adopt conformations in which
the polar groups are shielded by intramolecular hydrogen bonds.
Although cyclic peptides in the ‘open’ state are mainly located at
the interface, they can not fully immerse into the apolar phase.

3.4 CONCLUSION

In this chapter, we investigated the conformational and kinetic
behavior of CDPs at a polar/apolar interface. All examined pep-
tides preferred to be located at the interface over a position in
pure polar or apolar solvent. Due to their directed hydropho-
bicity (Figure 3.2), the CDPs adopted two distinct orientations
with respect to the interface: the hydrophobic patch formed by
the leucine residues pointed either towards the apolar (orienta-
tion A) or polar phase (orientation B). The existence of these
orientations was evident from both visible inspection of the sim-
ulations (Figure 3.4) and the MSMs (Figure 3.12). The same
conformations and orientations were also observed in the POPC
bilayer system (Figure 3.8). Interestingly, the local environment
of the peptides in the membrane matched the environment of
the water/chloroform interface. On one side the peptide was in
contact with the apolar lipid tails, while a water funnel and the
head-group region of the lipids formed a polar surrounding on
the other side. The equilibrium populations and interaction ener-
gies of orientation A and B showed that orientation A is clearly
preferred. Interestingly, this preference was modulated by both



88 3 CYCLIC PEPTIDES AT INTERFACES

the conformation and the amino-acid composition of the CDPs
(Table 3.1). These modulations can be linked to changes in the
hydrophobic patch on the peptide surface. A larger continuous
patch led to a stronger preference for orientation A. Peptides in
orientation B showed a faster closing dynamics, probably due to
the higher (less favorable) energy of this orientation (Figure 3.12).
Although the equilibrium population of orientation B was rather
low in the MSMs, a significant fraction of CDPs that started in
the water phase initially docked to the interface in orientation
B. Thus, in a non-equilibrium scenario, the importance of ori-
entation B might be higher than anticipated by the equilibrium
kinetic models.

The MSMs furthermore revealed that the unique environment
of the interface not only led to distinct orientations but also influ-
enced the conformational equilibrium and kinetics of the CDPs.
Importantly, the presence of the interface facilitated the closing
process for all examined peptides. Especially for CDP 1, which
rarely adopts the ‘closed’ conformation in aqueous solution, the
equilibrium population of the ‘closed’ state was increased by a
factor of approximately 50 (i.e. from <1% to 38%). Thus, the
interface might function as a catalyst for the closing process. This
is especially relevant for peptides with low ‘prefolding’ in water.
Furthermore, we were able to explicitly show that the peptides
can only diffuse into the apolar phase in the ‘closed’ conformation,
marking it as the ‘permeable species’.

We showed that cyclic peptides can insert into the interface
between the head-group and tail regions of the membrane in both
the ‘open’ and ‘closed’ conformations (Figure 3.8). This, in com-
bination with the observed catalytic ability of the interface, leads
to the proposition of a refined hypothesis for membrane perme-
ation (Figure 3.24). An equilibrium exists between ‘open’ and
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‘closed’ states in water. Peptides with a significant equilibrium
population of the ‘closed’ conformation in water (i.e. ‘prefold-
ing’) can insert into the interface directly in the ‘closed’ state,
and subsequently diffuse into the apolar phase (blue + black
route). Peptides with no or low population of the ‘closed’ con-
formation in water may still be able to permeate, although along
a different route. They insert into the interface in the ‘open’
state. The interface modulates the equilibrium between ‘open’
and ‘closed’ conformations, facilitating the closing process. Once
in the ‘closed’ conformation, the peptide is able to diffuse into
the apolar phase (red + black route). One can further speculate
that different amino acids contribute differently to the closing
process in water and in a lipid bilayer. Bulky residues may hin-
der the dynamics due to steric clashes inside the membrane but
not in water. Future work is necessary to test whether different
design principles apply for ‘prefolding’ and ‘non-prefolding’ cyclic
peptides. In particular, the influence of different amino-acid com-
positions on the closing dynamics has to be explicitly tested in
the presence of a membrane, as the water/chloroform interface
is not able to mimic the steric hindrance caused by the lipids.
Thus, future work will show the predictive power of the proposed
model.
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Figure 3.24: Hypothesis for the permeation process of ‘prefolding’
(closing in water) and ‘non-prefolding’ (closing in the membrane) cyclic
peptides. Peptides with a significant population of the ‘closed’ confor-
mation in water can insert into the interface or membrane directly in
the ‘closed’ state (blue route). Peptides with a no or a low population
of the ‘closed’ conformation in water insert into the interface in the
‘open’ state. There, the conformational dynamics are modulated by
the presence of the interface, resulting in a new equilibrium between
‘open A’, ‘open B’ and ‘closed’ states. The interface environment acts
as a catalyst, which facilitates the closing process (red route). Once in
the ‘closed’ conformation at the interface, the peptide can diffuse into
the apolar phase (black arrows).
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4Lessons for Oral Bioavailabil-
ity: How Conformationally
Flexible Cyclic Peptides En-
ter and Cross Lipid Mem-
branes ∗

”We build too many walls and not
enough bridges” and ”Niemand hat die
Absicht, eine Mauer zu errichten”

Isaac Newton and Walter Ulbricht
This quote and chapter are dedicated

to Benjamin Ries and his ability to
build bridges where others left walls

∗ This Chapter is reproduced in part from S. M. Linker†, C. Schellhaas†,
A. S. Kamenik, M. M. Velhuizen, F. Waibl, H.-J. Roth, M. Fouché, S. Rodde,
S. Riniker, J. Med. Chem.,66, (2023), 2773–2788 with permission of ACS
Publications. †These authors contributed equally.
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Cyclic peptides extend the druggable target space due
to their size, flexibility, and hydrogen-bonding capac-
ity. However, these properties impact also their pas-
sive membrane permeability. As the “journey” through
membranes cannot be monitored experimentally, lit-
tle is known about the underlying process, which hin-
ders rational design. Here, we use molecular simula-
tions to uncover how cyclic peptides permeate a mem-
brane. We show that side-chains can act as ‘molecular
anchors’, establishing the first contact with the mem-
brane and enabling insertion. Once inside, the pep-
tides are positioned between head groups and lipid
tails – a unique polar/apolar interface. Only one of
two distinct orientations at this interface allows for
the formation of the permeable ‘closed’ conformation.
In the closed conformation, the peptide crosses to the
lower leaflet via another ‘anchoring’ and flipping mech-
anism. Our findings provide atomistic insights into
the permeation process of flexible cyclic peptides and
reveal design considerations for each step of the pro-
cess.
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4.1 INTRODUCTION

Macrocyclic compounds like cyclic peptides represent promising
candidates to address difficult drug targets.121,125,157–161 Tradi-
tional small-molecule drugs typically show sufficient binding affin-
ity only for relatively deep and narrow protein binding sites.61,118

Consequently, this limits their target space to an estimated 10-
15% of the human proteome.11,116,117 In comparison to small-
molecules, macrocyclic compounds hold the potential to vastly
extend the scope of druggable proteins. Due to their potential
to target larger binding sites with flat profiles,62,119–122,124 like
protein-protein interaction (PPI) interfaces,123,162,163 they can
lead to new therapeutics for currently untreatable diseases. How-
ever, high binding affinity is not enough for a molecule to be
pharmaceutically relevant. One crucial aspect in drug design is
drug delivery, where passive membrane permeability is important
for oral bioavailability of drugs. Key steps of drug delivery like
the gastrointestinal absorption and passing the portal venous sys-
tem,65,164 predominantly rely on trans-cellular diffusion.165 More-
over, a majority of drugs with intracellular targets also pass the
final cell-membrane barrier via passive diffusion.71 Macrocycles
often possess high molecular weights that are associated with low
passive permeability,70 hampering the therapeutic applications
of macrocyclic compounds.69,70,94,97

Cyclic peptides are macrocycles that are composed of amino
acids.63 In comparison to their linear counterparts, they are asso-
ciated with better passive cell membrane permeability and metabolic
stability.63,69,166 Interestingly, there are examples of cyclic pep-
tides that can be administered orally,13,64 despite violating con-
ventional drug-likeliness rules based on their increased molecular
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weight and high number of hydrogen-bonding atoms.70,71,97,167,168

Nonetheless, designing orally bioavailable cyclic peptides with si-
multaneous high binding affinity to the target has been difficult
so far, and is often only achieved via a tedious trial-and-error pro-
cess.169–172 Addressing this issue, previous studies have substan-
tially advanced our understanding of the structure-permeability
relationship of cyclic peptides, and thus provide first guidance for
their design as therapeutics with oral bioavailability.70,114,126,127,129,166,173–176

N-methylation of the peptide backbone,128,177,178 changes of stere-
ocenters,179,180 tuning the amphiphilicity,181 and side-chain mod-
ifications108,182 were identified as membrane permeability factors.
The effects of these modifications are unfortunately non-linear
and highly site-dependent.98,106,108,130–132 Even small structural
modifications can lead to global conformational rearrangements
and thus change the physico-chemical properties and membrane
permeability of a compound.161,183,184 Coherently, it has been
shown that the conformational behavior of a cyclic peptide in
different environments is particularly impactful for passive per-
meability.16,89,95,96,101,102,104,115,185

Cyclic peptides with so-called ‘chameleonic’ behavior are able
to adapt to their environment and adopt different conformational
states that exhibit varying lipophilic properties.12,16,100–104,186

These conformational states typically can be distinguished by
their number of intramolecular hydrogen bonds: In so-called ‘open’
conformations, hydrogen-bonding atoms are exposed, allowing for
formation of favorable contacts with polar solvents (e.g., in the
blood stream or the cytosol). In the so-called ‘closed’ conforma-
tion, intramolecular hydrogen bonds are formed, which leads to a
less polar surface area and a lower desolvation energy for entering
apolar environments like the cell membrane interior. Intuitively,
this behavior of chameleonic cyclic peptides is beneficial for oral
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bioavailability, as good permeability is combined with good solu-
bility.187

It is generally assumed that the ‘closed’ conformation is the
main permeable species.16,72,89,95,102,108 However, little is known
about the structural origin of the chameleonic properties, let alone
the mechanistic details of the path of a chameleonic cyclic peptide
through the cell membrane with respect to its conformational be-
havior. While the composition (amino-acid sequence), size, and
hydrophobic surface have been identified as important determi-
nants of chameleonic conformational behavior,70,89,98,105,130 their
mechanistic interplay is complex and not yet understood well
enough to elucidate structure–permeability relationships. Ad-
dressing this challenge, molecular dynamics (MD) simulations
can serve as a computational microscope to track the pathway
and conformational dynamics of cyclic peptides in a time and
spatial resolution that is not (yet) feasible with current experi-
mental techniques. In combination with experimental data (e.g.,
PAMPA membrane permeability coefficients188), this enables the
development of a holistic view of the passive permeability of cyclic
peptides.185

In this chapter, we perform extensive all-atom MD simulations
of a series of eight cyclic decapeptides that show complex internal
conformational dynamics in a 1-palmitoyl-2-oleoylphosphatidylcholine
(POPC) bilayer system to decipher their pathway through the
membrane and rationalize the relationship between structure and
passive membrane permeability. Previous approaches have ei-
ther focused on simulations in homogeneous solvents,89,108 at
very high temperatures,80 or under application of steered pulling
forces.114,189 Here, we report an alternative sampling strategy
where insights from unbiased MD simulations are used to seed
biased simulations that allow for a step-wise enrichment of key
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events across the permeation pathway. Note that this strategy
enabled us to describe the membrane crossing pathway in an un-
biased manner at room temperature, avoiding artifacts like pore
formation or other distortions of the POPC bilayer.

Figure 4.1: Summary of the four steps for the passive membrane
permeation of conformationally flexible cyclic peptides. The peptide
is shown in blue and the membrane in orange. Peptides in the ‘closed’
conformation are indicated by their four hydrogen bonds (dashed lines).
Side-chain residues that anchor the peptide in the membrane are de-
picted with an anchor symbol. The hydrophobic moment is pointing
from the polar to the apolar part of a molecule.

Our key findings are summarized in Figure 4.1, highlighting
the four steps, which we identified, for the passive membrane
permeation of conformationally flexible cyclic peptides. First,
specific side-chain residues can act as ‘molecular anchors’, which
establish the contact between a cyclic peptide and a membrane
before insertion. Second, the peptide positions itself directly at
the interface between the polar head groups and the apolar tail
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region. There, the cyclic peptides show a preference for one of
two distinct orientations. Third, we observed conformational in-
terconversion into the permeable ‘closed’ state from only one of
these orientations. Last, only this ‘closed’ conformation can de-
tach from the polar/apolar interface and diffuse across the lipid
membrane leaflets, which again requires a unique anchoring and
flipping mechanism. Based on these steps, we identified multi-
ple design considerations and opportunities that can improve the
development of cyclic peptides with oral bioavailability.

4.2 METHODS

4.2.1 MD Simulations

The simulations were carried out with the Groningen Machine for
Chemical Simulations (GROMACS) 2020.5 software package143

in combination with the GROMOS 54A8 force field138 and the
POPC model of Marzuoli et al.144 Simulations were performed
under periodic boundary conditions with a leapfrog integration
scheme32 and a time step of 2 fs. Peptides, lipids, and solvent
were coupled to three separate thermostats at 303K using a weak
coupling scheme37 and a relaxation time of 0.1ps. A semi-anisotropic
Parrinello-Rahman barostat145 at 1.0bar with a coupling con-
stant of 2.0ps and isothermal compressibility of 0.45nm2/N was
used. Long-range electrostatics were treated using the particle
mesh Ewald algorithm.146 Bond lengths were constrained using
the linear constraint solver (LINCS) algorithm.147 A center-of-
mass (COM) motion removal was applied every step to eliminate
the movement of the bilayer relative to the solvent.
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In order to avoid finite size effects, a relatively large lipid patch
containing 512 POPC molecules was used. The CDP starting
structures in the ‘closed’ conformation were obtained by NMR
spectroscopy.135 The protocol to obtain the starting structures
in the major ‘open’ conformation has been described in detail in
Refs. 89,108 and Chapter 3. The CDPs were initially positioned
in the aqueous phase approximately 3nm away from the head-
group region of the POPC bilayer. The system was solvated with
the SPC139 water model, and equilibrated using a 100ps NVT
thermalisation and 1ns NPT equilibration. Unbiased production
runs (NPT) had a length of 100ns.

4.2.2 Biased simulations

Pulling simulations were performed using the GROMACS inter-
nal pull code. Peptides started in the aqueous phase approxi-
mately 3nm away from the head-group region of the POPC bi-
layer. A constant pulling force of 50 kJ nm−1 mol−1 was applied
on the distance between the COM of the selected anchor amino
acid and the COM of the POPC lipids. The pulling force was
chosen small enough so that, if applied on the COM of the pep-
tide, it did not perturb the membrane or lead to a membrane
insertion event (see Figure 4.2). To increase anchoring events,
five pulling simulations with a length of 5ns each were performed
for every leucine, phenylalanine, and proline residue of the respec-
tive CDP. For the pulling simulations of leaflet crossing, twenty
simulations with a length of 10ns each were performed for every
leucine, phenylalanine, and proline residue of the respective CDP.



4.2 METHODS 101

Figure 4.2: Pulling on the center-of-mass (COM) does not lead to
membrane insertion or membrane crossing. A COM pulling force iden-
tical to the anchor pulling force was applied to the peptide. (A): The
peptide is pulled to close proximity of the membrane but does not en-
ter. The average membrane thickness over time is shown in orange.
(B): Heatmap of the membrane thickness for simulation frame 100ns.
The position of the peptide is indicated with a blue asterisk. No sub-
stantial fluctuations in membrane thickness were observed around the
peptide. (C): Top view of the peptide with COM pulling towards the
membrane at frame 100ns. The membrane surface is shown in orange.
(D): Same as C but in side view.
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4.2.3 Data Analysis

If not stated otherwise, all trajectories were analyzed using the
Python library MDTraj.149

Position. The z-coordinate of the COM was used to indicate
the peptide position. As a reference, the head-group position and
the beginning of the tail group of the POPC bilayer are shown
in the figures. The average z-coordinate of the head groups was
calculated using the nitrogen position of the choline group. The
starting of the tail group was calculated using the carbon atom
succeeding the ester group.

Orientation with respect to the membrane. The peptide nor-
mal a⃗ was determined using the cross product of the major and
minor axis of the peptide backbone. As the membrane position re-
mains approximately fixed throughout the simulation, the z-axis
b⃗ was used as an approximation for the normal axis of the mem-
brane. The angle between these normal vectors was calculated
as,

Orientation = α = arccos
(
a⃗ · b⃗
|⃗a||⃗b|

)
. (4.1)

RMSD. The atom-positional backbone root-mean square de-
viation (RMSD) with respect to the NMR solution structure of
the ‘closed’ conformation was calculated using the Python library
MDTraj.149

Treating periodic boundary conditions. Due to the periodic
boundary conditions, peptides can access the membrane from
above and below. For consistency and didactic reasons, all trajec-
tories were transformed such that the peptide entered the mem-
brane at the upper leaflet. Thus, both the position and the ori-
entation were shifted by a 180° rotation of the simulation box
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around the x-axis if the peptide entered from below.

4.2.4 Biasing Simulation for the Phenylala-
nine Lock

Pulling simulations were performed using the GROMACS inter-
nal pull code for dihedral angles. An umbrella pulling force with
a pulling rate of 0.1nm and a force constant of 500 kJ nm−1 mol−1

was applied on the phenylalanine’s backbone ψ angle. In total 40
pulling simulations with a length of 20ns were performed. This
resulted in two successful lock removal events.

4.2.5 Distribution of Head-Group Gap Size

The hydrophobic residues anchor to the membrane via gaps be-
tween the lipid head groups. To better understand this process,
we simulated a pure POPC membrane as well as a membrane
containing a molar fraction of 30% cholesterol. Consistently
with the rest of this work, each membrane contained 512 POPC
molecules. The second system contained additional 216 choles-
terol molecules, which resembles the 30% cholesterol fraction ob-
served in mammalian cells. This resulted in a 163.5nm2 sized
membrane patch for pure POPC and a 169.5nm2 sized membrane
patch for POPC+cholesterol (both after equilibration.) After an
equilibration phase of 50ns, we simulated each membrane for
150ns, saving frames every 100ps, and computed the occurrence
of head-group gaps. As the average lifespan of a gap is below
20ps,190 we expect only weak correlations between consecutive
frames.

We used Packmem190 to analyze the occurrence of gaps. Pack-
mem creates a 2D grid of 0.1nm resolution along the x/y-coordinates
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of a leaflet of the membrane. At each chosen x/y-coordinate, the
highest z-coordinate is determined, which overlaps with the van
der Waals radius of a membrane atom. If this atom belongs to
the hydrophobic part of POPC or chlosterol, the respective grid
point is defined to be in a head-group gap. The hydrophobic part
of POPC was defined as all atoms below the carbon bound to the
phosphate group, and that of cholesterol as everything but the
C-OH group.

The area of a head-group gap was computed by searching
continuous patches of tiles that are in a gap. The occurrence of
head-group gaps of each size was normalized by the number of
frames times two, because there are two leaflets. This gives us
the probability of finding a head-group gap of a given size in a
single MD snapshot.

The minimum area needed to accommodate a side chain an-
chor was computed by noting that the broadest part of the sidechain
are the two methyl groups in front, and by modelling their area
as the obround shape defined by two circles of 0.2nm radius and
a distance of 0.25nm. We performed an exponential fit of the
data to determine the decay constant for both membrane setups.
As recommended in Ref.,190 we only considered head-group gaps
> 0.15nm2 for the fit.

4.2.6 Construction of Markov State Models

Markov state models (MSMs) allow for the calculation of equilib-
rium quantities and long-time kinetics from ensembles of short
simulations.22 MSM require ‘local equilibrium’ within the MSM
states, but not a ‘global equilibrium’ between all MSM states.

The PyEMMA Python library148 was used to construct the
MSMs. The sine and cosine of theϕ and ψ backbone torsional
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angles as well as the position with respect to the membrane cen-
ter and the orientation of CDP 4 with respect to the membrane
normal were extracted from the trajectories. This resulted in 42
input features, which were reduced to 12 collective coordinates
by time-lagged independent component analysis (TICA).150 The
trajectory was clustered using k-means clustering with 30 states.
A lagtime τ of 10ns was chosen to ensure Markovianity. To group
the microstates into metastable conformational states, robust Per-
ron cluster-cluster analysis (PCCA+)156 was performed.

4.2.7 Data and Software Availability

An example Jupyter notebook to analyse the CDP trajectories is
available on the rinikerlab GitHub (https://github.com/rinikerlab/
decapeptides-membrane). This repository also contains the topol-
ogy and structure files of the POPC system as well as topol-
ogy files of the CDPs and the ‘open’ and ‘closed’ starting struc-
tures used in this chapter. The freely available software can
be obtained via the following links: GROMACS (https://www.
gromacs.org/) and PyMol (https://github.com/schrodinger/
pymol-open-source).

4.3 RESULTS AND DISCUSSION

To investigate the permeability pathway of flexible cyclic pep-
tides, we performed extensive all-atom MD simulations of a se-
ries of cyclic decapeptides (CDPs) at room temperature. The
backbone scaffold and N-methylation pattern of the CDPs was
introduced by Fouché et al.135,136 and kept constant. The vari-
able amino acids in this series are highlighted in color in Figure

https://github.com/rinikerlab/decapeptides-membrane
https://github.com/rinikerlab/decapeptides-membrane
https://www.gromacs.org/
https://www.gromacs.org/
https://github.com/schrodinger/pymol-open-source
https://github.com/schrodinger/pymol-open-source
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Figure 4.3: (A): Backbone scaffold and amino acid composition of
the cyclic decapeptide (CDP) series used in this chapter. The colored
residues were systematically replaced according to Table 4.1. The back-
bone scaffold was reported by Fouché et al.135,136 and is kept constant.
(B): Schematic workflow showing the different conditions, total simula-
tion time, and number of observed events. Unbiased MD simulations
were used to elucidate the membrane permeation pathway of CDPs.
Biasing along this pathway was used to enrich sampling and to obtain
starting structures for new unbiased simulations.
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4.3A and listed in Table 4.1. The peptides are characterized by
two β-strands (residues 1-3 and 6-8) and two β-turns (residues
at positions 4, 5 and 9, 10). In the ‘closed’ conformation, four
intramolecular hydrogen bonds are formed that shield the polar
groups of the CDP from the environment.89 The NMR solution
structures and passive permeability data for the CDPs were taken
from the literature.89,108,115,135

The permeation process of the CDPs was tracked through cy-
cles of unbiased and biased simulations. Unbiased simulations
were used to learn the features important for permeability. This
knowledge was utilized to define the collective variable for biasing.
From the end states of the biased simulations, new unbiased sim-
ulations were started (see Figure 4.3 B). Unless clearly marked
otherwise, all results and conclusions in this paper were drawn
from the analysis of the unbiased simulations.

Table 4.1: Amino-acid composition of the CDPs used in this chapter.
D-amino acids are marked with the letter ‘D’, methylated amino acids
are marked with the letter ‘M’. The amino acids at position 2 and 7 (M-
Ala) were kept constant. The parallel artificial membrane permeation
assay (PAMPA) coefficients were taken from Ref. 115. CDP 1 and 8
with logPe <-5.5 can be considered non-permeable.

CDP 1 3 4 5 6 8 9 10 PAMPA
Pos.

1 Leu Leu DAla MPhe Leu Leu DAla MPhe -5.9
2 Leu Leu DAla MAla Leu Leu DAla MAla -4.0
3 Leu Leu DPro MPhe Leu Leu DPro MPhe -5.3
4 Leu Leu DPro MPhe Leu Leu DPro MAla -4.2
5 Leu Leu DPro MAla Leu Leu DPro MAla -4.6
6 Ala Leu DPro MPhe Ala Leu DPro MPhe -4.1
7 Ala Ala DPro MPhe Leu Leu DPro MPhe -4.4
8 Ala Ala DPro MPhe Ala Ala DPro M-he -6.4
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4.3.1 Cyclic Peptides Enter Lipid Membranes
Using ‘Anchor’ Residues

The simulations of the CDPs started in the aqueous phase at a
distance of around 3nm from the membrane and were allowed
to freely diffuse through the aqueous phase. Within the sampled
100ns per simulation, only a small fraction of the simulations
resulted in peptide-membrane contacts. Interestingly, all these
interactions followed the same unique mechanism: First, transient
and small gaps between the head groups of the membrane formed
due to thermal fluctuations. During this transient time span, the
apolar lipid tails are exposed to the aqueous phase. Figure 4.4A
visualizes the opening of these gaps, where the solvent-accessible
surface of the membrane is color coded as head groups (blue) or
tail region (orange). If, by chance, the CDP is in close proximity
to such a gap, its apolar residues can interact with the exposed
lipid tails and the peptide is stabilized at the water-membrane
interface. Hence, we find that an apolar side chain acting as a
molecular anchor is a key feature for this contact initiating step
(see Figure 4.4C). However, as the head-group gaps are short-
lived and small, contact formation happens on average only once
per 6µs simulation time. he area per lipid is not significantly
perturbed upon entry of the peptide (see Figure 4.5).

Figure 4.4B depicts a simulation of a CDP anchoring and en-
tering the lipid bilayer in more detail. To better track the position
of the peptide, the dark grey points indicate the position of the
upper head-group region and the light grey points indicate the
beginning of the apolar tails as defined in Section 4.2.3. For the
first 16ns, the peptide diffuses freely in the aqueous phase. Then,
the first membrane contact is established. The peptide stays an-
chored to the membrane for 26ns. In this anchored position, the
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Figure 4.4: (A): Snapshot of the CDP 1 directly before anchoring to
the membrane. The atoms of the POPC head groups are colored in
blue, the atoms of the tails are colored in orange. Thermal fluctuations
of the lipids can lead to temporary head-group gaps and the apolar tails
underneath become exposed (in this snapshot the gaps manifest as
orange patches). If the CDP is close to such a transient gap, its apolar
side chains can ‘anchor’ to the lipid membrane. (B): Trajectory of CDP
1 entering a membrane. The z-position of the CDP is indicated with
black dots. The position of the head-group and tail-group region are
indicated with dark grey and light grey lines, respectively. The angle
between the normal vectors of the peptide and the membrane is shown
in blue. The RMSD with respect to the ‘closed’ conformation of the
CDP is shown in orange. (C): Snapshot of the CDP while anchoring
to the membrane. A hydrogen bond between the CDP backbone and
the polar head-group atoms can stabilize the anchoring. (D): During
the anchoring process, three consecutive hydrogen bonds are formed.
The distance between the hydrogen-bond pairs are shown in red. The
z-position of the CDP and the membrane are shown as in panel B.
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angle between the normal vectors of the peptide and the mem-
brane is around 90◦ (see blue line). Thus, the peptide is oriented
perpendicular to the membrane. At around 42ns, the peptide
slowly penetrates deeper into the membrane. This causes no sig-
nificant perturbation in the area pear lipid (see Figure 4.5). The
peptide first moves through the head-group region in its initial
nearly perpendicular orientation. Then, the peptide gradually ro-
tates to be parallel with the membrane plane as it continues the
permeation process. Towards the end of the simulation (100ns),
the peptide is located directly at the interface between the polar
head groups and apolar tails (see also Figure 4.6). As indicated
by the RMSD plotted in orange in Figure 4.4B, in this particular
simulation CDP 1 inserts into the membrane in the ‘open’ confor-
mation. While we also observed anchoring events in the ‘closed’
conformation for other CDPs (see Figure 4.6), there was a strong
imbalance toward anchoring in the ‘open’ conformation (11 out of
13 unbiased anchoring events, see Table 4.2). This was surprising
because the ‘closed’ and ‘open’ conformations were equally rep-
resented in our starting structures and most of the CDPs have a
significant equilibrium population of the ‘closed’ conformation in
water.108,115 More so, in four simulations we observed CDPs that
started in the ‘closed’ conformation and opened prior to entering
the membrane.

Figure 4.4C shows a snapshot of the peptide (here CDP 1) an-
chored at the membrane. In this particular simulation, a pheny-
lalanine side chain acts as the ‘anchor’. In addition to phenylala-
nine, we observed that also the leucine and proline side chains
can act as membrane anchors. Here, the phenylalanine ‘pulls’
the peptide towards the membrane through a favorable contact
with the apolar tail region. In addition, this anchored structure
is stabilized by a hydrogen bond between a POPC head group
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Table 4.2: Summary of the observed unbiased permeation steps across
CDPs 1-8.

CDP 1 2 3 4 5 6 7 8
Anchoring ‘open’ 2 0 1 2 4 0 2 0
Anchoring ‘closed’ 0 0 1 0 1 0 0 0

Opening 1 0 0 5 0 1 2 2
Closing 0 0 1 2 1 1 1 7

Half-closing 0 1 0 2 2 0 3 5
Leaflet crossing permanent 0 2 1 0 0 0 1 1
Leaflet crossing transient 0 2 1 0 0 0 0 1

Figure 4.5: Change in the area per lipid (brown, right axis) over time.
The z-position of the CDP and the membrane are indicated with black
and grey dots, respectively. No significant changes in the area per
lipid were observed upon the peptide entering the membrane (starting
at 23ns).
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Figure 4.6: (Left): Trajectory of CDP 5 entering the membrane in
the ‘closed’ and in the ‘open’ conformation. The z-position of the CDP
and the membrane are indicated with black and grey dots, respectively.
The angle between the normal vectors of the peptide and the membrane
is shown in blue. The RMSD with respect to the ‘closed’ conformation
of the CDP is shown in orange. (Right): Snapshots of the CDP at the
end of the simulations. In both cases, the peptide backbone is nearly
parallel to the membrane plane.
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and the backbone of leucine at position 1. As indicated in Figure
4.4D, three hydrogen bonds are consecutively formed between the
peptide and the membrane in the course of the anchoring and
entering process. The first hydrogen bond, as described above,
is formed between the phosphate group and leucine 1. As the
peptide penetrates deeper into the membrane (at approximately
50ns), the initial hydrogen bond is replaced by a new hydrogen
bond between the same peptide residue and the ester oxygen of
the lipid tail. Later (at approximately 75ns), an additional hy-
drogen bond between the backbone nitrogen of leucine 6 and the
phosphate group of another POPC molecule is formed. Stabiliz-
ing hydrogen bonds were observed for all anchoring events in the
‘open’ conformation. In contrast to the ‘open’ conformation, the
‘closed’ conformation is characterized by four intramoleuclar hy-
drogen bonds. Hence, such stabilizing interactions require a tran-
sitional breaking of an intramolecular hydrogen bond in favor
of membrane peptide interactions. We observed such transient
hydrogen bond breaking and forming in both ‘closed’ anchoring
events. The associated energy barrier might be one reason that
membrane contacts in the ‘open’ conformation are more prevalent
in our simulations compared to contacts in the ‘closed’ conforma-
tion.

The unbiased simulations described so far are an adequate
MD simulation approach to answer the question how cyclic pep-
tides enter lipid membranes with only limited bias through the
simulation setup. However, the high computational cost associ-
ated with these simulations prevented us from obtaining sufficient
statistics to derive hypotheses for the rational design of perme-
able cyclic peptides. Nevertheless, the information gathered in
the unbiased simulation provided an ideal starting point for en-
hanced sampling, in our case pulling simulations. The basic idea
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in pulling simulations is to introduce a biasing potential along a
chosen ‘reaction coordinate’. With this technique, we could signif-
icantly enhance the occurrence of anchoring events within feasible
computational time. Based on the mechanism observed in the un-
biased simulations, we applied a weak pulling force on each of the
potential anchor residues and pulled towards the membrane cen-
ter (for details see Section 4.2.2 and Figure 4.3B). Additionally,
we performed simulations where we applied the pulling force on
the center-of-mass (COM) of the peptide (see Figure 4.2). How-
ever, only when the bias is applied to the potential anchor residues
we observed that the peptides do anchor and subsequently enter
the membrane. This emphasizes the importance of selecting an
appropriate reaction coordinate for biased simulations. Hence,
in our case insights on the permeation mechanism from the un-
biased simulations were vital to be able to bias effectively but
cautiously, with minimal distortion of the system. By applying
the bias, anchoring events occurred on average every 30ns, which
corresponds to a striking 250 fold speed-up.

Figure 4.7: ‘Anchor quality’ of the different side chains for the CDPs
in the ‘open’ (left) and ‘closed’ (right) conformations. The anchor
probability was determined as the fraction of successfully anchoring
events after pulling the CDPs on that respective side chain towards
the membrane. The probabilities are averaged over the eight CDPs.
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From the biased simulations, we calculated the fraction of suc-
cessful anchoring events for each potential anchor residue (Figure
4.7). For this, we pooled the pulling simulations of peptides that
share the amino acid of interest. For example, CDP 1-7 all have a
leucine at position 8. Thus, we combined the results of pulling at
leucine 8 from these seven peptides. Note that this approach ne-
glects how non-anchoring residues affect the anchor probability.
However, as shown in Figure 4.4C or Figure 4.11A.1, the non-
anchoring side chains are distant from the interaction side and
therefore unlikely to substantially impact anchoring. Interest-
ingly, the anchoring pattern was very different when the peptides
were in an ‘open’ or in a ‘closed’ state. In the ‘closed’ conforma-
tion, the phenylalanine residues were the best anchors. All other
residues showed only a very low probability. In contrast, the
phenylalanine residues were the weakest anchors in ‘open’ confor-
mations, whereas the leucine residues at position 3 and 8 showed
the highest probability. This difference can be explained by the
different accessibility of the side chains in the two conformations.
In the ‘closed’ conformation, the leucine residues form a contin-
uous hydrophobic patch, thus a single leucine is less accessible,
while the phenylalanine residues are oriented outwards (see also
Chapter 3). In ‘open’ conformations, on the other hand, only
leucine residues 1 and 6 form the continuous hydrophobic patch,
while the leucines at position 3 and 8 are positioned outwards and
accessible (Chapter 3). In general, the overall anchor probability
of the ‘open’ conformations was higher. This is potentially due to
the fact that ‘open’ peptides can form stabilizing hydrogen bonds
more easily and is more flexible. Thus, interactions between the
apolar residues and the gaps created by thermal fluctuations in
the lipids result more often to stable anchoring and subsequent
insertion into the membrane.
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4.3.2 Effect of Membrane Composition on Head-
Group Gaps

The probability of gaps to occur between the lipid head groups
is expected to affect the anchoring rate of the CDPs. To in-
vestigate how this probability is modulated by the addition of
cholesterol molecules (as in biological membranes), we performed
MD simulations of a pure POPC membrane and a POPC mem-
brane with 30% cholesterol (without any CDP). The distribution
of head-group gaps was computed using Packmem.190 In both
cases, we observed an exponential decrease in head-group gap
probability with increasing gap size ( Figure 4.8). Gaps up to an
area of 0.60nm2 and 0.40nm2 were observed for pure POPC and
POPC+cholesterol, respectively. The minimum gap size needed
for a leucine side chain is approximately 0.23nm2 (see vertical
line). Therefore, both lipid compositions lead to gaps that can ac-
commodate amino acid side chains. However, very bulky anchor
residues are likely not beneficial for the entry of the hydrophobic
part of the membrane, although the stronger interactions formed
by large anchors might compensate for this effect. We also find
that head-group gaps are less frequent in the membrane with
cholesterol. This is expected as experimental results show that
cholesterol decreases the flexibility of a membrane.191 Addition-
ally, cholesterol is known to decrease membrane permeability.192

Nevertheless, head-group gaps still occur and allow anchoring of
the CDPs.
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Figure 4.8: Probability of finding a head-group gap of a given size
in a pure POPC membrane (orange) or a POPC membrane with 30%
cholesterol (blue) at 303K 303 K. The straight lines show a linear fit
on the logarithmic probability values, omitting points below a proba-
bility of 1/1000 and below an area of 0.15nm2. The dashed line is at
0.23nm2, as an estimate of the area required by a leucine sidechain (as
explained above).
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4.3.3 Cyclic Peptides Occupy Two Distinct Ori-
entations at Lipid Membranes

Starting from the anchored peptides, we performed elongated un-
biased simulations to analyse how cyclic peptides behave inside
lipid membranes. Figure 4.11A displays the entry pathway for a
prototypical CDP (here on the example of the ‘open’ and ‘closed’
states of CDP 3). The plots for all CDPs are shown in Figures
4.9 and 4.10. The coordinates of the peptide are projected to the
distance of the peptide from the bilayer center (y-axis) and its
orientation with respect to the membrane plane (x-axis). The
blue heat map represents the density of simulations snapshots,
i.e., the darker the color the more simulation points fall into that
phase space. Note, however, that due to the rarity of the events
we did not reach simulation equilibrium. Thus, the densities do
not directly translate to free energies.

All peptides started anchored at the membrane (Figure 4.11A.1).
In these starting structures, the COM of the peptides resided out-
side the membrane (distance to the membrane center >2.1nm)
and their longitudinal backbone axis was oriented nearly per-
pendicular to the membrane. The peptides stayed in this up-
right orientation while moving deeper into the membrane (Figure
4.11A.2), as it minimizes both the perturbation of the membrane
and facilitates hydrogen bonding with the polar head groups (Fig-
ure 4.4). Once the head-group region was passed, the peptides
started to rotate in one of two stable orientations. In both orienta-
tions, the peptides lay relatively parallel to the membrane plane
at the interface between the head groups and the tails (Figure
4.11A 3.a and 3.b). A comparison of the entry pathway of pep-
tides in the ‘closed’ and ‘open’ conformation revealed that ‘closed’
peptides penetrated deeper into the membrane (Figure 4.10) and
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Figure 4.9: Positional phase space of CDPs 1-8 in the ‘open’ confor-
mation. The coordinates of the peptides are projected onto its distance
from the bilayer center and its orientation in respect to the membrane.
The heatmap shows the distribution of the simulation time spent in
this phase space. Darker color corresponds to more simulation time.



120 4 CYCLIC PEPTIDE MEMBRANE

Figure 4.10: Positional phase space of CDPs 1-8 in the ‘closed’ confor-
mation. The coordinates of the peptides are projected onto its distance
from the bilayer center and its orientation in respect to the membrane.
The heatmap shows the distribution of the simulation time spent in
this phase space. Darker color corresponds to more simulation time.
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Figure 4.11: (A): Representation of how cyclic peptides insert into
lipid membranes using the example of CDP 3. The coordinates of
the peptide are projected onto its distance from the bilayer center and
its orientation with respect to the membrane plane. The heatmap
shows the distribution of the simulation time spent in this phase space
with darker color corresponding to more simulation time. Regions of
interest are highlighted with simulation snapshots. The regions corre-
sponding to orientation A and orientation B are marked with a dotted
box. (B): Visualization of Table 4.3. The amino-acid composition of
the CDPs determines their preference for orientation A or B; proline
and phenylalanine residues favor orientation B, leucine residues favor
orientation A.
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only occupied one orientation, which we will term orientation B.
Peptides in the ‘open’ conformation occupied both orientation A
and B with a preference for orientation A. We also observed ro-
tation from one orientation to the other. An example trajectory
for such a rotation is shown in Figure 4.12.

Figure 4.12: Rotation of CDP 6 from orientation B to A in the ‘open’
conformation. The peptide rotates along its major axis defined by the
peptide backbone. Simulation snapshots of points of interest are shown.
The z-position of the CDP and the membrane are indicated with black
and grey dots, respectively. The angle between the normal vectors of
the peptide and the membrane is shown in blue. The RMSD with
respect to the ‘closed’ conformation of the CDP is shown in orange.

The difference between orientation A and B is highlighted in
Figure 4.13. The peptide is depicted in a top view at the mem-
brane. In comparison to orientation A, orientation B is rotated
roughly 180◦ along the major axis of the peptide backbone. In
both orientations, the leucine residues approximately align with
the lipid tails. To distinguish the two orientations in the cartoon
representation, we chose to depict the proline residues. The pro-
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Figure 4.13: Representative snapshots of orientation A and B using
the example of CDP 3. The peptide is shown at the polar/apolar
interface of the membrane and in a top view. To obtain orientation
B from orientation A, the peptide rotates by roughly 180° around its
major axis. In addition, the ϕ-angles of leucine residues 3 and 8 show a
∼160° shift such that the leucine side chains are approximately aligned
with the lipid tails. A cartoon was added for visual guidance.
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line ring is peaked towards the membrane middle in orientation
A and towards the aqueous phase in orientation B.

At a first glance, it may be surprising that the CDPs orient
parallel to the membrane, because this leads to a larger perturbed
area in comparison to a perpendicular orientation. Interestingly,
in Chapter 3, where we simulated CDPs at a water/chloroform
interface, we observed the same two orientations and identified
them as energetic minima (see Figure 4.14 for a comparison). We
hypothesize that the parallel orientation is more favorable as the
hydrophobicity profiles of the CDPs and the membrane match
(see also panel 4 in Figure 4.1). These favorable interactions seem
to outweigh the penalty of membrane perturbation. In addition,
in both orientation A and B, the leucine residues align with the
lipid tails, possibly reducing the entropic cost. Furthermore, the
observed positioning of the CDPs at the interface of the polar
head groups and apolar tails is also in line with the results of pre-
vious studies using enhanced sampling simulations that located
the free-energy minimum in this region.114

4.3.4 Amino-Acid Composition Influences the
Preferred Peptide Orientation

In Chapter 3, we found that the amino-acid composition deter-
mines the orientation preference of CDPs at a water/chloroform
interface. Therefore, we tested whether this finding was similar
in the lipid bilayer system. Table 4.3 lists the relative fraction of
simulation time spent in either orientation A or B for peptides in
their ‘open’ conformation.

Encouragingly, the numbers in Table 4.3 match the fractions
found in the water/chloroform system well (see Figure 4.15 and
Chapter 3). With the only exception of CDP 8, where the frac-
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Figure 4.14: Comparison of the orientations and conformations found
at a polar/apolar water/chloroform interface and at the POPC mem-
brane. Orientations and conformations at the polar/apolar interface
were taken from Chapter 3. Chloroform molecules are shown as orange
balls. Water molecules are omitted for visual clarity. Orientation A
at the interface agrees well with orientation A at the membrane. Sim-
ilarly, orientation B at the interface agrees with orientation B at the
membrane. This indicates that the peptides adopt comparable orien-
tations and conformations in both systems.
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Table 4.3: Relative fraction [%] of simulation time spent in orienta-
tion A and B after equilibration for CDPs 1-8 in the ‘open’ conforma-
tion.

CDP 1 2 3 4 5 6 7 8
orientation A 87 95 71 89 96 69 53 33
orientation B 13 5 29 11 4 31 47 67

tion differed by a factor of two, the mean relative difference was
only 7.6%. Three general trends can be observed in Table 4.3 and
Chapter 3, which are summarized in Figure 4.11B. (1) The pres-
ence of proline in the peptide increases the fraction of orientation
B. (2) The presence of phenylalanine also increases the fraction
of orientation B. Here, we even observed an titratable effect. Pep-
tides without phenylalanine in their sequence (e.g., CDP 5) show
the smallest fraction of orientation B, followed by peptides with
one phenylalanine (e.g., CDP 4). Peptides with two phenylala-
nines (e.g., CDP 3) have the highest fraction of orientation B.
(3) The presence of leucine increases the fraction of orientation A
in a titratable manner (e.g., CDP 3 versus 6/7 versus 8). Note
that the percentages in Table 4.3 display the distribution after
100ns simulation time. Thus, these numbers reflect the initial
orientation distribution after membrane insertion. These clear
sequence-specific differences in the orientation preferences of the
peptides naturally raise the question of how the orientation in-
fluences the permeation process. Indeed, as we show below, the
propensity of orientation B appears to be decisive for CDPs to
interconvert to the ‘closed’ conformation in the membrane, which
is a necessary prerequisite to cross the lipid bilayer. Therefore,
introducing structural modifications to favor orientation B might
be a valuable consideration when designing permeable cyclic pep-
tides.
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Figure 4.15: Fraction of simulation frames in orientation A at a
water/chloroform interface (orange) and the POPC membrane (blue).
The values for the membranes were taken from Table 2 in the main
text. The values for the water/chloroform interface were taken from
Chapter 3.
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4.3.5 ‘open’ Cyclic Peptides Can Close Inside
the Lipid Membrane

In our simulations, we observed that CDPs can insert into lipid
bilayers both in the ‘closed’ and ‘open’ conformation (see Fig-
ure 4.6). Interestingly, the CDPs retained their conformational
flexibility inside the bilayer. Thus, also inside the membrane
we observed multiple opening and closing events. Figure 4.16A
displays a prototypic closing event within the membrane environ-
ment. The peptide enters the membrane in the ‘open’ conforma-
tion (RMSD to the ‘closed’ conformation of > 0.2nm). After the
initial anchoring phase (till ∼ 18ns), the peptide adopts orienta-
tion B, as indicated by its high orientation angle (till ∼ 30ns).
The displayed inlay at 21ns also shows that the residues of the
peptide are shifted by one position in comparison to their loca-
tion in the ‘closed’ structure, which we called ‘register shift’. The
closing is initiated by the formation of a first hydrogen bond on
one side leading to a ‘half-closed’ conformation (∼ 40ns). In this
‘half-closed’ conformation, the residues relocate their relative po-
sition and the register shift is resolved. In order to fully close, the
formed hydrogen bond is broken again, thus leading to an ‘open’
conformation without a register shift. After further backbone tor-
sional changes, the peptide is finally in the ‘closed’ conformation
(∼ 60ns).

In total, we observed thirteen closing events and thirteen half-
closing events across the different CDPs (see Table 4.2). Impor-
tantly, all closing and half-closing events started in orientation
B. Although the peptides spent on average eight times more sim-
ulation time in orientation A, no closing event originating from
orientation A was observed. Figure 4.16B illustrates this finding.
The top panel shows the projected coordinates of all frames in the
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Figure 4.16: (A): Representative closing simulation using the ex-
ample of CDP 6. The peptide starts in the ‘open’ conformation and
closes inside the membrane via a half-closed structure. The closing of
the peptide is traced by its RMSD with respect to the ‘closed’ reference
conformation (orange line). Inlays show selected simulation snapshots.
Shaded areas correspond to the time point of the inlays. The dotted
line indicates the z-position of the peptide. The membrane position
is shown as a reference (grey). The peptide stays in orientation B for
the whole simulation (blue line). (B): Heatmap comparison of the ori-
entation/position of all simulation frames in the ‘open’ conformation
(here for CDP 6) versus the orientation/position of the twelve closing
trajectories. Whereas ‘open’ peptides prefer orientation A, all ‘open’
peptides that close during our simulations originate from orientation
B.
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‘open’ conformation of CDP 6. This analysis already reveals the
preference for orientation A when the CDP is in an ‘open’ con-
formation. The bottom panel shows the projected coordinates
of all frames in the ‘open’ conformations that subsequently close.
They are exclusively found in orientation B. Furthermore, as de-
scribed in Section 4.3.3 above, peptides that already enter the
membrane in the ‘closed’ conformation exclusively occupy orien-
tation B (see also Figure 4.10). In summary, these observations
suggest a link between the orientation of the peptide in the mem-
brane and its ‘internal’ conformational preferences. While orien-
tation A appears to prohibit rearrangements to the ‘closed’ con-
formation, orientation B shifts the ensemble population towards
it and closing events become favorable. Thus, we argue that the
phase-space overlap between the ‘open’ peptides in orientation B
and the ‘closed’ peptides may facilitate the closing. These conclu-
sions again match the central findings from Chapter 3 at the wa-
ter/chloroform interface. ‘open’ peptides that were in orientation
B occupied a higher energy state and showed faster closing kinet-
ics than peptides in orientation A. Additionally, Markov state
models on that simulation data revealed that some CDPs with a
low ‘closed’ population in water had a significantly higher ‘closed’
population at the interface. We hence hypothesize that the mem-
brane has a similar ‘catalytic’ effect on the conformational behav-
ior of the CDPs and can facilitate a population shift towards the
‘closed’ conformation. To test this hypothesis, we constructed a
MSM for CDP 4 as it was the best sampled peptide. The im-
plied timescale plot of the MSM and a comparison between the
MSM for CDP 4 at the water/chloroform interface and the mem-
brane are shown in Figure 4.17 and 4.18. Both models identified
a ‘closed’ and a ‘half-closed’ metastable state that only occupied
orientation B. The ‘open’ metastable states were split based on
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their orientation. Only orientation B showed transitions into the
‘closed’ and ‘half-closed’ conformation. More extensive studies
using enhanced sampling193 and dynamic reweighting (Chapter
5) will be required to test the ‘catalytic’ hypothesis further. How-
ever, from a methodological point of view, our combined works
so far indicate that highly valuable mechanistic insights can be
collected by approximating the membrane interface with a wa-
ter/chloroform system. This is particularly interesting from a
technical perspective as the latter system is computationally sig-
nificantly less demanding.

Figure 4.17: Implied timescales of the MSM of CDP 4

Taken together our observations so far imply that cyclic pep-
tides can cross membranes via two pathways: (1) In the ‘pre-
folding’ pathway, peptides have a significant population of the
‘closed’ conformation already in the aqueous solution. In this con-
formation, they are able to insert into the membrane and cross
it. (2) In addition, our simulations suggest that cyclic peptides
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Figure 4.18: MSM of CDP 4 in the water/chloroform system (left)
and at the membrane (right). Top panel: Metastable state assign-
ment mapped to the orientation feature and the RMSD with respect
to the ‘closed‘ state. Bottom panel: Representative members of the
metastable states, their equilibrium populations and mean first pas-
sage times between them.
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can enter the membrane in an ‘open’ conformation and close in-
side the membrane. Thus, we showed that also peptides without
pre-folding can possibly achieve passive permeability if closing
is sufficiently favorable inside the membrane. This opens up a
new realm of design considerations that focus on increasing the
‘closed’ population at the lipid interface in addition to pre-folding
in water.

4.3.6 Phenylalanine Residues Can Act as a ‘Lock’
That Prevents Closing

We observed in our simulations that CDPs only closed when in
orientation B. Although all closing events originated from orien-
tation B, not all peptides in orientation B closed. Therefore, we
investigated the difference between the ‘closing’ and ‘non-closing’
peptides in orientation B. We found that the residue position at
the β-turn of the CDPs (position 5 and 10, in this CDP series
either phenylalanine or alanine) was decisive for closing. The
left panel of Figure 4.19 illustrates this difference. In the top
snapshot, the two phenylalanine side chains at the β-turn both
point in the same direction towards the aqueous solution. In
this position, the peptide backbone is able to interconvert to the
‘closed’ conformation. In contrast, if the two residues point in
different directions, this creates a ‘lock’ that prevents the peptide
from closing (bottom snapshot). The right panel of Figure 4.19
shows a simulation where the peptide enters the membrane in an
‘open’ conformation and adopts orientation B. Initially, the two
phenylalanine residues point in different directions (∼ 14ns). In
this specific example, phenylalanine at position 5 points towards
the membrane center. Despite the bulkiness of the phenylala-
nine residue, it rotates away from the ‘locked’ position until both
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phenylalanine residues face toward the aqueous phase (∼ 29ns).
Shortly after this shift (and thus the release of the ‘lock’), we
observed the closing of the peptide. We validated the ‘lock’ hy-
pothesis using biased simulations (see Methods Section). Starting
from a ‘locked’ position, we applied a small force to the dihedral
angle of the phenylalanine backbone torsion that pulled it to the
unlocked position. Indeed, as shown in Figure 4.20, this led to
releases of the ‘lock’ and subsequent closing events.

Figure 4.19: Phenylalanine can act as a ‘lock’ that prevents closing
in the membrane. (Left): Phenylalanine can adopt two distinct po-
sitions in orientation B. In the unlocked position, both phenylalanine
residues point towards the aqueous phase. In the ‘locked’ position,
at least one phenylalanine residue is rotated and points towards the
membrane center. All closing events originate from the unlocked posi-
tion. (Right): Simulation of CDP 8 that shows an ‘unlocking’ and a
closing event. The closing of the peptide is traced by the RMSD with
respect to the closed reference (orange line). The red line indicates
the relative position of phenylalanine at position 5 with respect to the
ring plane of the peptide. Inlays show selected simulation snapshots.
Shaded areas correspond to the time point of the inlays. The dotted
line indicates the z-position of the peptide. The membrane position
is shown as a reference (grey). The peptide first adopts orientation B
in the ‘locked’ position after entering the membrane. After a rotation
of phenylalanine residue 5 to the unlocked position, the peptide starts
closing.
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Figure 4.20: Phenylalanine can act as a ‘lock’ that prevents intercon-
version from the ‘open’ to the ‘closed’ conformation. A bias was applied
on the ψ backbone torsional angle of phenylalanine in the position 5
to pull it from the ‘locked’ to the unlocked position. After unlock-
ing, the peptide started closing. The closing of the peptide is traced
by the RMSD with respect to the ‘closed’ reference conformation (or-
ange line). The red line indicates the relative position of phenylalanine
residue 5 with respect the the ring plane of the peptide. The dotted
line indicates the z-position of the peptide. The membrane position is
shown as a reference (grey).
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These findings highlight the contextual role of bulky residues
like phenylalanine at position 5 and 10. On the one hand, they
are the most efficient anchors in the ‘closed’ conformation. On
the other hand, their bulky nature can hinder conformational
closure if they are in the ‘locked’ position. Consequently, this
observation emphasizes again that for an optimal design strategy,
it is crucial to know the prevalent permeability pathway of a
cyclic peptide. Pre-folding peptides enter the membrane in the
‘closed’ conformation and thus rely on anchors at the β-turns. In
addition, they do not need to close inside the membrane as they
are already in the ‘closed’ conformation. In contrast, peptides,
which are mostly in ‘open’ conformations in water, prefer anchors
at different positions, but have to close inside the membrane. For
such peptides, it might be beneficial to have less bulky residues
at the β-turns.

4.3.7 Crossing From the Upper to the Lower
Leaflet Requires Anchoring and Flipping

After entering the lipid membrane, the cyclic peptides have to
cross from the upper leaflet to the lower leaflet in order to fully
permeate through the membrane. Previous research has shown
that this is associated with an energy barrier that can be higher
than the barrier for entering the membrane.114 Indeed, also in
our simulations, leaflet crossing was the rarest of the three mem-
brane permeation steps we observed (anchoring/entering, closing,
and leaflet crossing). However, we were able to observe five per-
manent and three transient unbiased leaflet crossing events. Gen-
erally, only peptides in the ‘closed’ conformation penetrated deep
enough into the bilayer to loose all water interactions (see Figure
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4.21) and subsequently cross to the lower leaflet. This is in line
with our observation that only ‘closed’ peptides fully enter the
apolar phase in a polar/apolar interface system (Chapter 3).

Figure 4.21: Water interactions of the peptide inside in the membrane
in the ‘open’ and ‘closed’ orientation. The lipid molecules are not
shown for visual clarity. In the ‘open’ conformation, the peptide stays
in contact with the aqueous phase through a water funnel. In the
‘closed’ conformation, the peptide loses all water contacts and fully
emerges into the membrane.

Figure 4.22A shows an unbiased leaflet crossing event for CDP
3. The ‘closed’ peptide first enters the membrane in the typical
upright position (0ns to 5ns). After penetrating deeper into the
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Figure 4.22: (A): CDP 3 crossing from the upper to the lower leaflet.
Inlays show representative simulation snapshots. Shaded areas corre-
spond to the time point of the inlays. Upon passing the membrane
center, the peptide undergoes a flip along its major axis (blue line).
(B): Zoom-in on the peptide anchoring in the lower leaflet. Lipid tails
from the upper and lower leaflet are colored differently to help distin-
guishing the two leaflets.
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lipid membrane, it adopts orientation B, which is the stable orien-
tation for ‘closed’ peptides (24ns). In this orientation, the proline
residues point towards the upper aqueous phase and the leucine
residues align with the lipid tails. Most of our simulations remain
in this state for the entire simulation time. However, we also ob-
served some rare leaflet crossing events that were associated with
a flip of the peptide as shown in Figure 4.22 at 56ns. During
the movement into the lower leaflet, the peptide rotates roughly
180 ° along its major axis. Figure 4.22 shows a fast flipping event
where the peptide performed the full flip within a few ns, while
other simulations also showed a slower and more gradual flipping.

A closer inspection of the flipping process revealed two un-
derlying principles. First, the flip was triggered by an anchoring
event. Anchoring of one of the peptide residues in the lipid tails
of the lower leaflet preceded the flip and leaflet crossing. Figure
4.22B shows a zoom-in on this anchoring. Here, the lipid tails
of the upper and lower leaflet are colored differently to aid the
visual inspection. Using the knowledge of the initial anchoring
events, we re-seeded simulations from anchored positions and ob-
tained 18 additional unbiased leaflet crossing events. Second, our
orientation analysis showed that ‘closed’ peptides almost exclu-
sively occupied orientation B (see Figure 4.10). In orientation
B, the leucine residues point towards the membrane center and
the phenylalanine and proline residues point towards the aque-
ous phase. In order to adopt this orientation in both leaflets, the
peptide has to rotate 180◦ while passing through the membrane
center. Thus, flipping is necessary to adopt the more favorable
orientation B for ‘closed’ peptides at the lower leaflet. Indeed, in
the three transient leaflet crossing events we observed no flipping
and thus the peptides diffused back to the original leaflet after a
few ns. Flipping along its major axis requires larger movements of



140 4 CYCLIC PEPTIDE MEMBRANE

the peptide in the rather viscous and sterically hindered lipid-tail
environment. We reason that the anchoring and the orientation
change go hand in hand to overcome the leaflet crossing barrier.

To assess the anchor quality of the different amino acid residues
for leaflet crossing, we again performed pulling simulations as de-
scribed above. Using these simulations, we were able to increase
the rate of leaflet crossing events by a factor of 140. The resulting
probabilities are depicted in Figure 4.23. The results resemble the
anchor probabilities for entering the membrane in the closed state
(Figure 4.7) with the difference that the total values are higher
for the leaflet crossing event. The phenylalanine residue is again
the best anchor. As the local environment in the upper and lower
leaflet are identical, there is no environmental change associated
with the anchoring. Thus, the different anchor probabilities can
be attributed to differences in accessibility, with the phenylala-
nine residue being the most exposed in the ‘closed’ conformation.

Figure 4.23: Ability of the different side chains of the CDPs for
anchoring in the lower membrane leaflet when the peptide is inserted in
the upper leaflet. Membrane crossings were observed only for peptides
in the ‘closed’ conformation . The anchor probability was determined
as the fraction of successfully anchoring events after pulling the CDPs
on that respective side chain towards the lower leaflet.
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4.3.8 Four Steps of Membrane Permeation

Figure 4.1 summarizes the four steps of passive membrane per-
meation that we identified for the series of CDPs. We found
that the first step involves the anchoring of an exposed residue
to a transient gap between the lipid head groups (Figure 4.4).
This process is stabilized by hydrogen bonds between the back-
bone atoms of the peptide and the head groups. Interestingly,
using machine learning techniques on a large compound library,
Rzepiela et al.161 found that an asymmetric accumulation of hy-
drophobicity on one side of a compound is predictive for highly
permeable macrocycles. The authors presume that hydrophobic
regions might enter the membrane first and thus catalyze the en-
try of the remaining molecule. This hypothesis is in line with
the mechanistic insights gained from our simulations, where the
apolar residues act as anchors and enter the membrane first. The
CDPs could insert into the membrane in both ‘open’ and ‘closed’
conformations, with different residues as main anchors. Interest-
ingly, ‘open’ conformations showed a higher total probability of
entering the membrane due to an increased ability to form stabi-
lizing hydrogen bonds with the lipid head groups.

The second step is insertion and orientation. In the bilayer,
the peptides locate themselves at the interface between the apo-
lar tails and the polar head groups. While peptides in the ‘open’
conformation can adopt two different orientations A and B that
differ by a 180◦ rotation (Figure 4.13), ‘closed’ peptides occur
only in orientation B. In line with our previous work, we found
that the amino-acid composition modulates the fraction between
orientation A and B for the ‘open’ peptides (Figure 4.11 and Table
4.3). If the peptide entered the membrane in an ‘open’ confor-
mation, it has to interconvert to the ‘closed’ conformation to be
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able to cross the membrane core. Importantly, only ‘open’ pep-
tides in orientation B interconvert to the ‘closed’ conformation
(Figure 4.16). Given the importance of orientation B for closing,
optimizing CDPs to occupy orientation B might be of interest in
designing peptides. In our simulations, both the presence of pro-
line and phenylalanine as well as the absence of leucine enhanced
the fraction of orientation B. However, both the phenylalanine
and leucine residues have an ambivalent role. As shown in Figure
4.19, phenylalanine residues can also act as a ‘lock’ and prevent
closing. Leucines favor orientation A but are also important an-
chors for peptides in ‘open’ conformations.

The fourth step is the crossing from the upper to the lower
leaflet. We found that this process again involves anchoring of an
exposed residue – this time to the lipid tails of the lower leaflet.
In addition, the peptide flips when passing the membrane center
(Figure 4.22). Thus, in each leaflet the CDP adopts the favorable
orientation B within the membrane. Given the major lipid rear-
rangements necessary to allow the flip of molecules as large as the
CDPs in this chapter, bulky amino acids are expected to reduce
the flipping rate.

Taking into account all studied permeation steps and the vari-
ous – and sometimes conflicting – roles amino acids play in those
steps, it is not surprising that the effects of the amino-acid com-
position are highly contextual. Although the dataset is small, we
can make some observations.
Leucines. Leucine residues are important anchors for ‘open’ pep-
tides, but favor orientation A inside the membrane and are rel-
atively bulky. Starting from CDP 3 and removing half of the
leucine residues leads to CDPs 6 and 7, which have an eight to
fifteen fold increased permeability over CDP 3 (Table 4.1). The
remaining two leucine residues appear to be sufficient to ensure
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reasonable anchoring rates while the probability of orientation
B is significantly increased (Table 4.3). However, if all leucine
residues are removed as in CDP 8, the permeability is decreased
by a factor of 12 compared to CDP 3, even though the fraction
of orientation B is even higher (Table 4.3).
Phenylalanines. Phenylalanine residues showed a special signifi-
cance throughout all four steps of permeation. For peptides in the
‘closed’ conformation, it showed the highest anchor probability for
entering the membrane as well as for crossing to the lower leaflet.
For peptides inserting in the ‘open’ conformation, the bulkyness
of phenylalanine hinders the interconversion to the ‘closed’ per-
meable conformation (‘lock’). In water, CDP 1 is found almost
exclusively in ‘open’ conformations, whereas CDP 3 has a signif-
icant population of the ‘closed’ conformation (< 1% versus 45%
‘closed’ fraction, respectively ).89 Thus, the replacement of all
phenylalanine residues affects these two peptides differently. The
‘open’ CDP 1 does not rely on phenylalanine to anchor to the
membrane but benefits from the removal of the ‘locks’. Thus, we
observe a large 80 fold increase in permeability upon replacement
of all phenylalanine residues resulting in CDP 2 (Table 4.1). In
contrast, replacing all phenylalanine residues of CDP 3 leads to
CDP 5, which is only associated with a moderate five fold perme-
ability increase (Table 4.1).

Based on these observations, we can draft schematic free-
energy surfaces for the permeation process of the impermeable
CDPs 1 and 8, and how it may change upon modifications (Fig-
ure 4.24). The main energy barriers are associated with the in-
terconvertion between the ‘closed’ and ‘open’ states in water and
in the membrane, passing through the lipid head-group region,
and leaflet crossing. As shown in our previous studies (Ref. 89
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Figure 4.24: Schematic free-energy surfaces and the corresponding
rate-limiting barriers for the impermeable CDPs 1 and 8 (conforma-
tional closure for CDP 1 and anchoring for CDP 8). The free energies
are projected to the conformation of the peptide and its position with
respect to the membrane. Design advices for lowering barriers and
thus improving the passive permeability are indicated.

and Chapter 3) and based on the fact that CDP 1 was the only
peptide where not a single closing or half-closing was observed
(see Table 4.2), CDP 1 suffers from both an unfavorable ratio
between ‘open’/‘closed’ states and high interconversion barriers.
To improve interconversion within the membrane, our permeation
model suggests to remove the bulky phenylalanine residue(s) that
can lock the peptide in the ‘open’ conformation inside the mem-
brane, leading to CDP 2 which has a significant higher permeabil-
ity. For CDP 8, in contrast, we observed a high interconversion
dynamic with multiple closing and opening events (Table 4.2).
However, CDP 8 contains no leucine residues. In our permeation
model, this should decrease its anchoring potential, especially in
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the ‘open’ conformation. Indeed, in this chapter not a single
anchoring event was observed for CDP 8 (see Table 4.2). This
highlights that different energy barriers can become rate limiting
for different cyclic peptides. In this case, introducing residues
with good anchoring ability is adviced by the model, leading to
CDPs 6 and 7 with dramatically improved permeabilities.

4.4 CONCLUSION

In this study, we investigated the pathway and main steps for
the passive membrane diffusion of conformationally flexible cyclic
peptides. Based on extensive simulations, we identified four steps
of the membrane permeation process of cyclic peptides: (1) an-
choring with residues in transient gaps between lipid head groups,
(2) insertion in the membrane and orienting parallel to the mem-
brane plane in orientation B, (3) if the peptide enters in an ‘open’
conformation, interconversion to the ‘closed’ permeable conforma-
tion, and (4) leaflet crossing involving anchoring and rotation.

For the first step, the pulling simulations revealed that the
main anchoring residues differ for ‘open’ and ‘closed’ conforma-
tions, due to the different accessibility of these residues in the two
conformations. Given that the anchoring probability of amino
acids is conformation dependent, characterizing the conforma-
tional behavior of cyclic peptides is therefore crucial for ratio-
nal design. Knowing the predominant conformation of the pep-
tide before entering the membrane and the exposed residues may
help to optimize the amino-acid composition for membrane per-
meable CDPs. Considering the anchor potential of residues for
permeability is a new design concept that might be transferable
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to other compounds as well. A recent study by Morstein et al.194

identified medium-chain lipid conjugation as a general modulator
of cell membrane permeability. Investigations of whether these
medium-length lipid chains act as ‘anchors’ will be part of future
research.

In the second step, the peptides insert in the membrane and
orient themselves parallel to the membrane plane. If the inser-
tion occurs in an ‘open’ conformation, two orientations A and B
are possible. If the peptides insert already in the ‘closed’ con-
formation (pre-folding), only orientation B was observed. This
design consideration should be applicable to other macrocycles
with asymmetrically oriented large and continuous hydrophobic
surface patches. Only orientation B is favorable for subsequent
interconversion to the ‘closed’ permeable conformation (step 3).
We expect this to apply to chameleonic cyclic peptides in general.

For full permeation, the peptides have to cross the membrane
center to reach the lower leaflet (step 4). An anchoring mecha-
nism similar to the initial step was observed in connection with a
rotation of the peptide to reach orientation B in the lower leaflet.
Again, we reason that this step should be applicable to other
macrocycles with asymmetrically oriented large and continuous
hydrophobic surface patches.

The simulations show that the effect of amino acids (e.g. leucines,
phenylalanines, prolines) can be highly contextual, i.e. it de-
pends on the location of the amino acid in the peptide and on
the other residues. The observations and hypotheses presented
in this study are based on a small data set and limited influence
parameters, but nevertheless provide important insights and a
highly detailed mechanistic model of the membrane permeation
process of flexible cyclic peptides. While biasing was applied in
the initial peptide-membrane association with a pulling force, all
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mechanistic conclusions were drawn from unbiased MD simula-
tions. Previous simulation-based studies either have focused on
significantly smaller and less flexible molecules and/or fully relied
on biased simulations. Most importantly, our findings emphasize
that solid understanding of the preferred conformation(s) of a pep-
tide in solution is decisive for the success of a lead optimization
campaign targeting permeability. With the here provided atom-
istic and dynamic insights into the permeation pathway of cyclic
peptides, we aim to inspire and stimulate new design principles
and predictive modeling approaches for bioavailable macrocyclic
drugs.
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5Connecting Dynamic
Reweighting Algorithms:
Derivation of the Dynamic
Reweighting Family Tree

∗

”Wer ein gutes Gedicht schrieben
kann, der kann auch programmieren”
and ”Wer die Poesie der Algebra
beherrscht, der kann auch
programmieren”

Michael Resch and
an anonymous physicist

This quote and chapter are dedicated
to R. Gregor Weiß and his mastery of

the poesy of physical equations

∗ This Chapter is reproduced in part from S. M. Linker, R. G. Weiß, S.
Riniker, J. Chem. Phys., 153, (2020) 234106, with the permission of AIP
Publishing.
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Thermally driven processes of molecular systems in-
clude transitions of energy barriers on the microsec-
ond timescales and higher. Sufficient sampling of such
processes with molecular dynamics (MD) simulations
is challenging and often requires to accelerate slow
transitions using external biasing potentials. Differ-
ent dynamic reweighting algorithms have been pro-
posed in the past few years to recover the unbiased
kinetics from biased systems. However, it remains an
open question if and how these dynamic reweighting
approaches are connected. In this work, we establish
the link between the two main reweighting types, i.e.
path-based and energy-based reweighting. We derive
a path-based correction factor for the energy-based
dynamic histogram analysis method (DHAM), thus
connecting the previously separate reweighting types.
We show that the correction factor can be used to com-
bine the advantages of path-based and energy-based
reweighting algorithms: it is integrator independent,
more robust, and at the same time able to reweight
time-dependent biases. We can furthermore demon-
strate the relationship between two independently de-
rived path-based reweighting algorithms. Our theo-
retical findings are verified on a one-dimensional four-
well system. By connecting different dynamic reweight-
ing algorithms, this work helps clarify the strengths
and limitations of the different methods and enables
a more robust usage of the combined types.
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5.1 INTRODUCTION

Molecular dynamics (MD) simulations play a central role in un-
derstanding molecular motion at atomic resolution across disci-
plines (see e.g. Refs. 19,195–198). Since the advent of MD sim-
ulations, the system size and complexity has considerably pro-
gressed. Nevertheless, MD is still limited at best to millisecond
timescales.199 However, free-energy landscapes of molecular sys-
tems may comprise barriers of several hundred thermal energies
(kBT ), which results in comparably rare transitions. Thus, suffi-
cient sampling of complex systems is challenging or even impos-
sible with unbiased MD setups.

To overcome these limitations, a wide variety of enhanced
sampling techniques have been developed over the past decades.
Methods with time-independent biasing such as umbrella sam-
pling,200,201 replica exchange,202,203 and accelerated MD204,205

as well as methods with time-dependent biasing such as local el-
evation,49 conformational flooding,206 and metadynamics50 are
among the most widely used enhanced sampling algorithms. These
techniques have in common that a biasing potential or increased
temperature is applied to the system to systematically enhance
the occurrence of the slowest processes. Hence, by definition the
enhanced sampling algorithms distort the trajectories and their
information about the unbiased system’s thermodynamics and
kinetics.

The ensemble averages of the unbiased system can be recov-
ered from biased trajectories with phase-space reweighting meth-
ods.207–211 Note that these can recover thermodynamic proper-
ties (such as energetic differences), but not the unbiased system
kinetics.
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Only recently, dynamic reweighting methods have been pro-
posed that have the ability to extract the original, unbiased kinet-
ics from biased simulations.6–8,45,46,212,213 A summary of the dif-
ferent dynamic reweighting methods is provided by Kieninger et
al.214 In general, these dynamic reweighting methods are applied
to Markov state models (MSMs). MSMs are a widely used tech-
nique to obtain the slowest dynamic processes from simulated tra-
jectories.6,23,24,110,111,215 The application of MSMs is focused on,
but not limited to, meta-stable state detection, equilibrium dis-
tribution calculation, kinetic rate recovery, and flux analysis (see
e.g. Refs. 89,216–218 as recent examples). Dynamic reweighting
methods reweight individual transitions. For this, individual tran-
sitions between states are tracked, reweighted, and subsequently
collected in the so-called count matrix. This procedure is dis-
cussed in detail in Section 5.2.

One can distinguish two main classes of dynamic reweight-
ing approaches: path-based and energy-based. Both types of
approaches reweight the MSM propagator Pij , i.e. the proba-
bility of being in state j after a timestep τ under the condition
that we started in state i. Path-based reweighting methods are
currently only applicable to stochastic dynamics (SD) and require
the knowledge of both the bias energy and the random number for
integration at each step. The relatively new path-based reweight-
ing class has currently two members, Weber-Pande reweighting45

and Girsanov reweighting.8,213 Both methods yield good results
for the kinetics, however, their implementation is usually non-
trivial and depends on the chosen integration scheme. In con-
trast, the energy-based reweighting methods are independent of
the chosen integration algorithm and only require the knowledge
of the bias energy for each phase-space state, which is easily ac-
cessible from the MD trajectories. However, depending on the
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system, these methods are less accurate because they do not ex-
plicitly consider the different paths that could lead from state
i to state j. The energy-based reweighting class includes multi-
ple members, see Refs. 6,7,46,212. In this chapter, we will focus
on one of the earliest algorithms, the dynamic histogram analy-
sis method (DHAM),46 as a representative of this class. Other
energy-based reweighting methods are either extensions of this
method, i.e. DHAMed,7 or have a similar maximum likelihood
approach.6 In addition, DHAM can reweight kinetics based on
only enhanced sampling trajectories without the need for addi-
tional unbiased simulations. Therefore, DHAM was chosen as a
representative.

The different dynamic reweighting algorithms were developed
by different groups for different simulation setups and with dif-
ferent physical assumptions. Therefore, it remains an open ques-
tion if and how the different approaches are connected, and if
a “family tree” of dynamic reweighting can be established. In
this chapter, we derive the link between the two main reweight-
ing classes (path-based and energy-based). First, we demonstrate
that the two path-based reweighting algorithms Weber-Pande45

and Girsanov8,213 can be deduced from the same “generalized”
path reweighting idea. Therefore, they share the path reweight-
ing factor but differ significantly in the phase-space reweighting.
Next, we reformulate this generalized path reweighting idea to
show that the energy-based reweighting method DHAM is a spe-
cial case of the path-based reweighting methods. They are con-
nected by a path correction factor, which can be used to combine
the strengths of both reweighting types. Importantly, our new for-
mulation does no longer require the knowledge of the integrator’s
random number. Hence, this approach can be used with arbitrary
numerical schemes such that the scope of this type of reweight-
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ing methods is extended to MD simulations with deterministic
integrator schemes. Additionally, our formulation leads to mul-
tiple implementation advantages as well as increased parameter
stability. The impact of the derivation assumptions as well as the
previous and new formulations are illustrated using (stochastic)
simulations of a Brownian particle in a one-dimensional four-well
potential. This work clarifies strengths and limitations of the
different reweighting approaches and will be crucial for the appli-
cation of dynamic reweighting to more complex systems.

5.2 THEORY

5.2.1 Markov State Models

MSMs are a technique to analyze dynamic systems in a Master
equation representation.219,220 In the case of MD simulations, the
conformational dynamics are discretized into n states for which
a transition probability matrix is constructed. Particularly, the
total count Cij of transitions from state i to j can be expressed
as,

Cij(τ) =

Nτ∑
t=1

χi(xt)χj(xt+τ ), (5.1)

where Nτ is the number of paths of length τ , and χi(xt) are the
indicator functions with χi(xt) = 1 if the configuration xt at time
t is in state i and χi(xt) = 0 otherwise. The individual transitions
will be termed,

bij(t, τ) = χi(xt)χj(xt+τ ), (5.2)
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The total counts Cij are stored in the count matrix C, which
yields the MSM, i.e., the n × n transition probability matrix P ,
upon row-normalization,

Pij =
Cij∑n
j=1 Cij

. (5.3)

The eigenvalues λi and eigenvectors ρi of the transition probabil-
ity matrix P provide the dynamic information of the system. The
first eigenvector ρ1 represents the stationary probability distribu-
tion of the n states and its eigenvalue is λi = 1. The remaining
eigenvectors ρ2, . . . , ρn represent principal dynamic modes, i.e.,
probability fluxes, in the network of the n states. The correspond-
ing eigenvalues λ2, . . . , λn are smaller than one and quantify the
associated rates of the probability fluxes. Hence, the relaxation
timescales of the dynamic modes

ti = − τ

ln(λi)
, (5.4)

are determined by the eigenvalues with i > 1.

5.2.2 DHAM Reweighting

The dynamic histogram analysis method (DHAM)46 is based on
the Master equation ansatz. More specific, it is based on the spa-
tial discretization of the Smoluchowski diffusion equation derived
by Bicout and Szabo.221 This diffusion equation states that for
short time steps and diffusive dynamics the unbiased transition
probabilities Pij are related with the biased ones P̃ij by,

Punnorm
ij = P̃ij exp

(
−Uj − Ui

2kBT

)
, (5.5)
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where Ui and Uj are the biasing potentials of discretized states
i and j. The biasing potential is here defined as the potential
subtracted from the system. The resulting unbiased transition
probabilities Punnorm

ij are not normalized, thus an additional nor-
malization step is needed,

Pij =
Punnorm
ij∑

j P
unnorm
ij

. (5.6)

It can be easily shown that this procedure is equivalent to
reweighting every individual transition b̃ij(t, τ) and, subsequently,
perform a row normalization (Eq. (5.3)). Thus, DHAM is imple-
mented using,

bij(t, τ) = b̃ij(t, τ) exp
(
−Uj − Ui

2kBT

)
, (5.7)

where b̃ij(t, τ) is a transition of the biased simulation. DHAM
is limited to time-independent biasing potentials because Ui and
Uj are assumed to be time-independent. The reweighting type
of DHAM can be considered ’energy-based’ because Eq. (5.5)
employs the biasing energies of the start and end states. This
reweighting method was successfully applied to calculate mem-
brane crossing rates for drug molecules.222 Additionally, DHAM
was extended to the assumption of the detailed balance kinetics,
which was termed ’DHAM extended to detailed balance’ (DHAMed),7

which is similar to the earlier transition-based reweighting analy-
sis method (TRAM).6

5.2.3 Girsanov Reweighting

Girsanov reweighting8,213 is a path-based reweighting method, i.e.
it reweights individual trajectory paths. Since different transition
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paths can generally contribute to the same transition probability
(exemplified in Figure 5.1A), such a path-based method explic-
itly accounts for the biasing contributions of different pathways.
Girsanov reweighting is based on the Girsanov theorem.223 It de-
scribes how the dynamics of a system varies if the probability
measure is replaced by an equivalent measure.

In contrast to the Smoluchowski equation ansatz of DHAM,
path-based reweighting algorithms are derived from the Langevin
equation of motion for stochastic dynamics (SD),

ml
d2rl(t)

dt2
= Fl(t)− γlml

drl(t)

dt
+ σlWl(t). (5.8)

Here, rl(t) denotes the position vector of the lth particle with
mass ml. The force Fl = −∇lV is the gradient of the poten-
tial energy V and γl denotes the static friction coefficient. The
fluctuation-dissipation theorem determines the prefactor σ2

l =

2kBTγlml of the random force Wl(t). For simplicity, we drop the
particle index l on the constants in the following, i.e. ml = m,
γl = γ, and σl = σ. Additionally, in the subsequent equations
the time is indicated by the index for all time-dependent variable
such that, for instance, Flk = Fl(tk).

For reweighting, the Girsanov theorem uses the product of the
relative starting probability at configuration xk and the relative
path probability. Hence, Girsanov reweighting depicts the ratio
of path probabilities in the biased and unbiased setup as,

ωk,k+Mτ
=
π(xk)

π̃(xk)
· p(xk+1, . . . , xk+Mτ |xk)
p̃(xk+1, . . . , xk+Mτ

|xk)
. (5.9)

Note that Mτ = τ/∆t is the number of simulation frames
in the path from t = tk to t + τ = tk + Mτ∆t. The phase-
space probability ratio can be determined by the Radon-Nikodym
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derivative224 as,

g(xk) =
π(xk)

π̃(xk)
=
Z̃

Z
exp(−U(xk)

kBT
) . (5.10)

where U denotes the biasing potential, and Z and Z̃ stand for the
respective partition functions of the unbiased and biased system.

Similarly, the ratio of the path probability measures is deter-
mined by the Radon-Nikodym derivative. N is the number of
dimensions.

µpath =
p(xk+1, . . . , xk+Mτ

|xk)
p̃(xk+1, . . . , xk+Mτ

|xk)

= exp
[k+Mτ∑

k

(
N∑
l=1

∇lU |k
σ

w̃lk

√
∆t− 1

2

(∇lU |k)2

σ2
∆t

)]
.

(5.11)

For convenience, we will from here on use the action difference
defined by ∆S = −ln(P/P̃ ),

∆S =

k+Mτ∑
k

(
N∑
l=1

−∇lU |k
σ

w̃lk

√
∆t+

1

2

(∇lU |k)2

σ2
∆t

)
.

(5.12)

Eqs. (5.10) and (5.11) compose the reweighting factor in Eq. (5.9).
The reweighting factor is afterwards applied to every individual
transition,

bij(t, τ) = b̃ij(t, τ) · ωi,j . (5.13)

Note that the partition functions in Eq. (5.10) cancel for time-
independent biasing potentials during the row normalization of
the count matrix in Eq. (5.3). We will discuss the implication
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of the partition function for time-dependent biasing potentials in
Section 5.4.

Note that the random number and the force at every time
step are required to calculate the relative path probability. Most
MD software packages do not store random numbers and a write-
out frequency of every step is very storage demanding. Therefore,
for most use cases the Girsanov reweighting factor is calculated
on the fly during the numerical integration of the MD engine.
This requires implementation changes in the MD software in or-
der to use this reweighting approach. In contrast, energy-based
reweighting algorithms like DHAM,46 TRAM,6 or DHAMed7

can be applied entirely in a post-processing step. On the plus
side, the Girsanov algorithm was shown to be able to handle
the time-dependent biasing potentials U(t) during the build-up
phase of metadynamics simulations.8 Possible limitations of time-
dependent biasing in conjunction with a rigorous consideration of
the partition sums in Eq. (5.10) are discussed below in Section 5.4.

5.2.4 Weber-Pande Reweighting

Although among the first dynamic reweighting methods published,
the algorithm proposed by Weber and Pande45 remained largely
unnoticed. In contrast to the rigorous mathematical derivation
of Girsanov reweighting, Weber-Pande reweighting is derived via
a physical approach based on action differences. Additionally,
the phase-space probability reweighting of the start state is not
considered, which leads to some important implications that are
discussed in Section 5.4.

To follow the path-based reweighting arguments from Weber
and Pande, we consider a simulation step ∆t = tk+1−tk from the
same phase-space start point {rl(tk),vl(tk)} to the same phase-
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Figure 5.1: A Different paths can lead to a transition from state i to
j. Their corresponding contributions to the reweighting are accounted
for in path-based reweighting. B Illustration of the basic idea behind
the Weber-Pande algorithm.45 An identical simulation step from x1 to
x2 is performed on both the original energy potential (red) and the
biased potential (blue). The two systems experience different forces F
and F̃ . As the simulations steps are defined identical, the acceleration
and velocity terms cancel from the Langevin equation of motion (Eq.
(5.8)). The resulting relationship between the two random numbers
and the force terms is W = W̃ + [F̃ − F ]σ−1.

space end point {rl(tk+1),vl(tk+1)} in the unbiased and biased
energy landscape (Figure 5.1B).

In order to make the same step length in both the unbiased
and biased energy landscapes, the net forces in both cases must
be equal such that

Flk − γmvlk + σWlk = F̃lk − γmvlk + σW̃lk

Wlk = W̃lk + [F̃lk − Flk]σ
−1 . (5.14)

where quantities in the biased trajectory are labeled with tilde,
e.g. F̃ . Note that vlk is identical in the biased and unbiased
simulations because we demand that both systems end and start
at the same phase-space points.

Eq. (5.14) is used to determine the relative path probability of
the biased and unbiased simulations. The relative path probabil-
ity is defined as the probability to sample the sequence of random
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vectors required for the unbiased simulation
[W1k,W2k, . . . ,Wlk, . . . ,WN(k+Mτ )] in comparison to the sequence
[W̃1k, W̃2k, . . . , W̃lk, . . . , W̃N(k+Mτ )] of the actually performed
biased simulation.

The path reweighting term depends on the numerical repre-
sentation of Wlk. Due to the discretization the reweighting be-
comes integrator dependent. In their publication, Weber and
Pande chose Wlk ≈ wlk

√
∆t

−1, where wlk is sampled from a
Gaussian distribution with zero mean and unit variance.45 This
discretization is based on the Brunger-Brooks-Karplus (BBK) in-
tegrator.225,226 The BBK integrator assumes weak coupling be-
tween the system and the surrounding.226 Therefore, in contrast
to Girsanov reweighting, Weber-Pande is derived for the low fric-
tion limit. Insertion into Eq. (5.14) yields,

wlk = w̃lk + [F̃lk − Flk]σ
−1

√
∆t . (5.15)

Since both wlk and w̃lk are Gaussian random numbers with zero
mean and unit variance, the relative probability of wlk and w̃lk

is given by,

µpath = exp
(

k+Mτ∑
k

N∑
l=1

−
(
w2

lk − w̃2
lk

)
2

)
, (5.16)

and consequently is the action difference of the biased and unbi-
ased transition,

∆Sk,k+Mτ
=

k+Mτ∑
k

N∑
l=1

(
w2

lk − w̃2
lk

)
2

. (5.17)

This means that the path reweighting factor in the Weber-
Pande scheme is the ratio of transition probabilities. Note that



162 5 DYNAMIC REWEIGHTING FAMILY TREE

the relative phase-space probability of the initial state as in Eq. (5.10)
was not considered. This leads to some implications which are dis-
cussed in Section 5.4. The reweighting of the MSM is performed
on the individual transitions such that

bij(t, τ) = b̃ij(t, τ) · µi,j . (5.18)

Weber-Pande reweighting has similar advantages and limita-
tions as the Girsanov algorithm, i.e., it can reweight time-dependent
biases, but has to be incorporated in the numerical integration
of the MD engine. A detailed comparison of their relative advan-
tages and disadvantages is given in Section 5.4.

5.3 CONNECTION BETWEEN
WEBER-PANDE AND GIRSANOV

REWEIGHTING

We will formulate a generalized path-based reweighting algorithm
inspired by the work of Weber and Pande.45 In contrast to Weber-
Pande reweighting, we will assume high frictional diffusion pro-
cesses and use Ito diffusion, an alternative formulation of the
Langevin equation,

γm drl(t) = Fl(t)dt+ σdWl(t). (5.19)

Here, drl(t) denotes the infinitesimal position vector shift of the
lth particle with mass m. dWl(t) is the increment of a Wiener pro-
cess, which has the following properties: dWl(t) is Gaussian with
zero mean, i.e. ⟨dWl(t)⟩ = 0 and variance ⟨dWl(t)dWl(t)⟩ = dt.
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Additionally, the increments are independent of the past values
and independent across particles.

Following the reasoning of Weber and Pande, we consider an
infinitesimal step dt in the unbiased and biased energy landscape
that leads to the same displacement drl(t) such that

dWl(t) = (F̃l(t)− Fl(t))σ
−1dt+ dW̃l(t) . (5.20)

The instantaneous relative action differential of the biased and
unbiased simulation is given by,

dSinst =

N∑
l=1

(
dWl(t)

2 − dW̃l(t)
2
)

2⟨dWl(t)dWl(t)⟩
. (5.21)

Inserting the connection between the random numbers from Eq. (5.20)
in Eq. (5.21) yields a relationship that only contains parameters,
which are either directly obtained from the biased system (i.e.
F̃l(t) and dW̃l(t)) or defined by the unbiased potential (i.e. the
unbiased force Fl(t)). We abbreviate ∆Fl(t) = F̃l(t)−Fl(t) such
that the relative action reads,

dSinst =

N∑
l=1

(
(∆Fl(t)σ

−1dt+ dW̃l(t))
2 − ˜dW l(t)

2

2⟨dWl(t)dWl(t)⟩

)

=

N∑
l=1

(
2∆Fl(t)σ

−1dtdW̃l(t) + ∆Fl(t)
2σ−2dt2

2dt

)

=

N∑
l=1

(
∆Fl(t)

σ
dW̃l(t) +

∆Fl(t)
2

2σ2
dt

)
. (5.22)

To compare Eq. (5.22) with Girsanov reweighting, we need to
discretize, in particular dWl(t) and dt. Note that this discretiza-
tion is integrator dependent. Girsanov reweighting was derived
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for the Euler-Maruyama integrator, therefore we will use the same
integrator here. In the special case of the Euler-Maruyama inte-
grator, one uses dWl(tk) = wlk

√
∆t, where wlk is the discrete

random vector drawn at time tk. Similarly, the force at time tk
is termed Flk. Inserting the Euler-Maruyama discretization into
Eq. (5.22) yields the relative action for a single step,

∆Sstep =

N∑
l=1

(
∆Flk

σ
w̃lk

√
∆t+

(∆Flk)
2

2σ2
∆t

)
(5.23)

=

N∑
l=1

(
−∇lU |k

σ
w̃lk

√
∆t+

(∇lU |k)2

2σ2
∆t

)
(5.24)

In a final step, we use the fact that the force difference between
the biased and unbiased systems is exactly determined by the
biasing potential, i.e., ∆F = −∇U . Thus, the formulation of the
relative probability in Eq. (5.24) is identical to the relative path
probability in the Girsanov formulation (Eq. (5.11)). Therefore,
Girsanov and Weber-Pande reweighting can be deduced from the
same principles.

An interesting coincidence is that, even though Weber-Pande
reweighting was derived in the low and Girsanov reweighting in
the high friction limit, both yield the same transition reweighting
term. In particular, insertion of Eq. (5.15) into Eq. (5.17) yields,

∆Spath =

k+Mτ∑
k

N∑
l=1

(
∆Flk

σ
w̃lk

√
∆t+

(∆Flk)
2

2σ2
∆t

)
, (5.25)

which is identical to Eq. (5.23) that leads to the Girsanov reweight-
ing formulation. This observation is discussed in more detail in
Section 5.7.1.

The two path-based reweighting algorithms Weber-Pande and
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Girsanov have been developed independently by different groups.
The first method was derived by comparing the relative probabili-
ties S of Gaussian random forces in the biased and unbiased cases,
whereas the latter is based on the Girsanov theorem. However,
both methods can be traced back to a common path-reweighting
concept and therefore share some similarities.

5.4 DIFFERENCES BETWEEN
WEBER-PANDE AND GIRSANOV

REWEIGHTING

The main difference between Girsanov and Weber-Pande reweight-
ing lies in Eq. (5.10), namely the ratio of the phase-space probabil-
ity of the starting configuration. This term is present in Girsanov
reweighting but not in the Weber-Pande approach. The physical
intuition behind the phase-space probability term is depicted in
Figure 5.2A.1. Imagine that one combines a phase-space region,
in which phase-space points were biased differently, into a sin-
gle cluster n. We will now compare two of these phase-space
points r1 and r2 within cluster n that have a weak and a strong
bias, respectively. The path reweighting term of Weber-Pande
and Girsanov will correctly reweight the conditional transition
probability (Eq. (5.9)). In other words, the transition probability
under the condition that the path started in r1 or r2 is reweighted
correctly. However, the relative probability of starting a simula-
tion in r1 or r2 changes due to their different biases. In our
example, r2 has a higher equilibrium distribution on the biased
energy surface, because it is biased more strongly. Thus, more
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simulations will start in r2 then in r1 in the biased case, but not
in the unbiased one. This can create an imbalance in the count
matrix, if the conditional transition probabilities of r1 or r2 dif-
fer. Eq. (5.10) accounts for this imbalance by reweighting the
probability to start in r1 or r2. The Weber-Pande approach on
the other hand does not reweight the relative starting probability
within the cluster. Instead, it implicitly assumes that the biasing
potential Ui(t) is identical for each member of the cluster. In this
case, the phase-space reweighting factor can be moved in front
of the path summation (Eq. (5.1)) and cancels during the row
normalization. This assumption is approximately true only for
very fine MSM clusters. Note that DHAM uses the same approx-
imation and thus, also requires very fine clustering. In contrast,
Girsanov reweighting is not limited to small cluster sizes.

For time-dependent biases, we have to consider two effects.
First, Eq. (5.10) assumes that the starting probabilities at con-
figuration xk are Boltzmann distributed. This assumption can
be violated for time-dependent biases that push the system out
of equilibrium. This problem can be minimized using biases that
only lead to minimal non-equilibrium perturbations. However,
even in the case of Boltzmann distributed starting probabilities
a second problem occurs. The biased partition function Z̃ in
Eq. (5.10) becomes time-dependent. Thus, Z̃ does not cancel in
the row-normalization of the count matrix,

Pij =
Cij∑n
j=1 Cij

=

∑Nτ

t=1 b̃ij(t, τ) · µpath · Z̃(t)
Z exp(−Ui(t)

kBT )∑n
j=1

∑Nτ

t=1 b̃ij(t, τ) · µpath · Z̃(t)
Z exp(−Ui(t)

kBT )
. (5.26)

Therefore, for each time step the knowledge of the partition
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Figure 5.2: Relation between phase-space reweighting and cluster-
ing as well as time-dependent biases. (A.1) Phase-space reweighting
corrects for differently biased start states in the same cluster. Due to
row normalization the phase-space reweighting factor cancels if all clus-
ter members have the same bias. However, the coarser the clustering
and steeper the potential, the greater the phase-space reweighting cor-
rection. (A.2) Heatmaps showing the distance factor D between the
reweighted MSMs and the reference in the limiting case of very coarse
clustering. The phase-space reweighting factor of the Girsanov algo-
rithm is able to correct the imbalance imposed by the coarse clustering.
Weber-Pande lacks this factor, which leads to inaccurate reweighting
results. The inaccuracy of Girsanov reweighting for low cluster num-
bers is due to MSM errors and not the reweighting error. (B.1) Rep-
resentation of the time-dependent but position-independent biasing
potential U(t) = const · t. (B.2) Heatmaps showing the distance fac-
tor D between the reweighted MSMs and the reference in the limiting
case of a strong time-dependent biasing potential. The neglected time-
dependency of the Girsanov phase-space reweighting factor leads to
inaccurate reweighting results for strong time-dependent biases.
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function Z̃ would be necessary to reweight accurately. In the
Girsanov reweighting approach, however, it is assumed that the
partition function cancels in the row normalization,8 which is only
true for time-independent biases. The implication of this second
issue is depicted in Figure 5.2B.1. For didactic purposes, we
chose a biasing potential that is time- but not position-dependent
U(t) = const · t. Thus, the energy surface is shifted along the y-
axis for every step. The starting probabilities remain Boltzmann
distributed and the first issue does not apply. Therefore, this
bias can be used to observe the effect of the second issue only.
This bias neither changes the system’s kinetics nor its equilibrium
distribution. However, due to the phase-space reweighting factor
in Eq. (5.10), the Girsanov formulation gives higher weights to
transitions with a higher bias (i.e., transitions that occur later
in the simulation). This again creates an imbalance in the count
matrix. The effect of the imbalance can be minimized by choosing
time-dependent biases that decay over time, e.g., well-tempered
metadynamics.227

In summary, the phase-space reweighting factor Eq. (5.10) has
two consequences. It removes the intra-cluster imbalance in the
case of differently biased sub-states, but creates an imbalance
for time-dependent biases. By choosing fine-grained clusters or
applying well-suited enhanced sampling techniques, these effects
can be minimized. One has to carefully choose if one includes the
phase-space reweighting factor based on the combination of the
system and biasing technique.
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5.5 AN INTEGRATOR INDEPENDENT
REWEIGHTING SCHEME AND THE

CONNECTION TO DHAM

Both Girsanov and Weber-Pande reweighting used a specific dis-
cretization scheme and are therefore integrator dependent. We
start from the discretization independent form in Eq. (5.22) to de-
rive an integrator independent formulation for path-based reweight-
ing. Additionally, we show that it intrinsically contains the DHAM
formalism.

We start our derivation from the action difference formulation
in Eq. (5.22). Note that this formulation is only valid in the over-
damped regime (i.e., high friction), which is a good assumption
for molecules in aqueous solution,

dSinst =

N∑
l=1

(
∆Fl(t)

σ
dW̃l(t) +

∆Fl(t)
2

2σ2
dt

)
.

Furthermore, the assumption of an overdamped system is also
part of the derivation of the Smoluchowski diffusion equation and
therefore an intrinsic feature of DHAM.46 Solving Eq. (5.19) for
dW̃l(t) and introducing ∆Fl(t) = F̃l(t)−Fl(t) back into Eq. (5.22)
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leads to

dSinst =

N∑
l=1

F̃l(t)− Fl(t)

σ2
(γm drl(t)− F̃l(t)dt)

+

N∑
l=1

(F̃l(t)− Fl(t))
2

2σ2
dt

=

N∑
l=1

F̃l(t)− Fl(t)

σ2
γm drl(t)

+

N∑
l=1

(F̃l(t)− Fl(t))
2 − 2F̃l(t)(F̃l(t)− Fl(t))

2σ2
dt

=

N∑
l=1

F̃l(t)− Fl(t)

σ2
γm drl(t) +

N∑
l=1

Fl(t)
2 − F̃l(t)

2

2σ2
dt

=

N∑
l=1

∆Fl(t)

2kBT
drl(t) +

N∑
l=1

Fl(t)
2 − F̃l(t)

2

2σ2
dt. (5.27)

For the last step, the fluctuation-dissipation theorem deter-
mines σ2 = 2kBTγm. This formulation of the action difference
between biased and unbiased system is independent of the ran-
dom force realizations dW̃l(t). In particular, the random term
is mapped by the position shift drl(t) and thus, Eq. (5.27) is
independent of the numerical integrator.

This leads to three important technical implications:
(1) The requirement to know the random number at every time
step is currently one of the main limitations of path-based reweight-
ing algorithms. Many higher-level SD integrators work with mul-
tiple random numbers, or with random numbers that add to the
velocities (random impulses) and not to the forces.228,229 Conse-
quently, the path-dependent reweighting algorithms have to be
derived for each integrator separately. In some cases, it might
even be impossible to find a suitable modification. Therefore, a
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random-number independent path-based reweighting algorithm
would be preferable.
(2) The random number is uncorrelated between two time steps,
which makes it necessary to reweight at the same time step as the
integration. In contrast, the force F may be correlated between
time steps. Thus, it might be possible to write out the forces, like
the positions, at a lower frequency. However, if and how much
the write-out frequency can be reduced is still speculative and
subject to future research.
(3) In relation to the first point, path-based reweighting algo-
rithms are currently limited to SD simulations. Eq. (5.27) can
also be applied with MD simulations. In that case, an approxi-
mation of γ is required which is a problem-specific but straight-
forward task in MD simulation.230–232 The potential of this path
correction will be explored in future work.

In a final step, we can relate the formulation of Eq. (5.27)
to DHAM. We take DHAM’s assumption of a time-independent
biasing potential U . In order to obtain the relative action for the
whole path, we integrate over the instantaneous actions,

∆S =

∫
path

dSinst

=

N∑
l=1

∫ rl(t+τ)

rl(t)

∆Fl(r)

2kBT
dr +

N∑
l=1

∫ t+τ

t

Fl(t)
2 − F̃l(t)

2

2σ2
dt.

(5.28)

As we have defined before, the force at time tk is termed
Flk and ∆Flk = −∇lU |k is exactly the negative gradient of the
biasing potential of particle l at time tk. Hence, for deterministic
(non-stochastic) processes one can obtain from Eq. (5.28) directly
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the discrete form,

∆S =
U(rk+Mτ )− U(rk)

2kBT
+

N∑
l=1

k+Mτ∑
k

F 2
lk − F̃ 2

lk

2σ2
∆t. (5.29)

If the configuration of {rlk} lies in the (MSM) state i and the
terminal configuration {rlk+Mτ

} lies in a different state j, we
obtain,

Pk,k+Mτ

P̃k,k+Mτ

= exp
(
−Uj − Ui

2kBT

)

× exp
(

N∑
l=1

k+Mτ∑
k

−F 2
lk − F̃ 2

lk

2σ2
∆t

)
. (5.30)

For stochastic processes, the displacement dr consists of an
deterministic and stochastic proportion. Based on the principle
of superposition, one can split these proportions apart, i.e., dr =

drdeterm+drstoch. The integral of the force over the deterministic
displacement will again yield the energies. For small contributions
of the stochastic displacement drstoch one obtains,

∆S =
Uj − Ui

2kBT
+

N∑
l=1

k+Mτ∑
k

F 2
lk − F̃ 2

lk

2σ2
∆t+O(

∫
∆Fdrstoch).

(5.31)

Eq. (5.31) illustrates that path-based reweighting and DHAM
share the same (path independent) energy term, but differ in
the path-dependent term and the stochastic displacement term.
The magnitude of the deviation will be determined by the spe-
cific path taken, the length of the path, and the (random) forces
encountered along this path.

Starting from the path reweighting term, we showed that the
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reweighting can be split into a path-independent and a path-
dependent term (Eq. (5.27)). For deterministic processes, the
path-independent term is identical to the DHAM reweighting for-
mula, whereas the path-dependent term can be viewed as a cor-
rection factor. The contribution of the path correction increases
with the number of steps Mτ in a path, which is investigated with
a four-well test system in Section 5.7.3. Note however, that the
phase-space probability reweighting of the initial state has to be
performed in addition to the path reweighting as in Eq. (5.10).

5.6 METHODS

The reweighting performance of the different algorithms was as-
sessed using a simple one-dimensional (1D) four-well system. The
system contains three distinct energy barriers, which correspond
to the slowest kinetics of the system. In order to accelerate barrier
crossing, the system was perturbed by scaling the potential en-
ergy with a factor of 0.2. This corresponds to a biasing potential
of U(x) = 0.8V (x), where V (x) is the potential energy of the sys-
tem. The ability of a reweighting algorithm to recover both the
equilibrium population as well as the equilibrium kinetics was
evaluated. Reweighting was performed with the Weber-Pande
(Eq. (5.16)) and Girsanov (Eq. (5.11)) reweighting algorithms as
well as with the original DHAM (Eq. (5.5)) and DHAM with path
correction (Eq. (5.30)). Additionally, the reweighting was carried
out for different MSM parameters to assess the (in)dependence
of the chosen parameter set.

The energy surface of the system is defined by
V (x) = −4 ln(e−2(x−1.5)2−2+e−2(x−4)2+0.6e−2(x−7)2+e−2(x−9)2−1).
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The simulations were performed using stochastic dynamics with
a BBK integrator225 and a time step of ∆t = 0.005. The pa-
rameters for the Langevin equation of motion were set as follows:
γ = 50, m = 1, and kBT = 1.5. All quantities are in arbitrary
units. The parameters were chosen to fulfill the requirement
γ∆t < 1 for the BBK integrator and to yield reasonably short
simulation times. In general, dynamic-reweighting methods are
stable for different parameter choices. However, if the bias is very
large in comparison to σ, the relative path probability becomes
very small, which can lead to numerical instabilities. Forty trajec-
tories with a length of 400’000 steps each were simulated for the
biased systems, starting at 40 equally spaced points on the energy
surface. 200 reference simulations with 4’000’000 steps each were
performed for the original system. The simulation trajectories
were clustered in 250 microclusters based on their x-coordinate.
For the MSM transition matrix, counts were obtained using a
sliding window approach. A lagtime of 4’000 steps was chosen for
Weber-Pande and Girsanov reweighting. For DHAM reweighting,
a lagtime of 40 steps was used. The counts were reweighted by
each of the dynamic reweighting algorithms. Source code to per-
form both the simulations and reweighting is provided on Github
(see Section 5.6.1).

The distance factor D describes how accurate the reweighting
algorithm recovers the reference kinetics. To calculate D, we use
the MSM relaxation timescale of the slowest process tref2 and
treweight
2 of the reference and the reweighted system, respectively.

The MSM relaxation timescale is defined in Eq. (5.4). Thus, D
is computed using,

D =
min(tref2 , treweight

2 )

max(tref2 , treweight
2 )

. (5.32)
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The distance factor is always ≤ 1, where a value of 1 corresponds
to perfect agreement between reference and reweighted kinetics.

5.6.1 Data and Software Availability

Source code to perform the simulations and reweighting of the 1D
potentials as well as to reproduce all figures of this manuscript
is available on GitHub (https://www.github.com/rinikerlab/
Dynamic_Reweighting_FamilyTree).

5.7 RESULTS AND DISCUSSION

5.7.1 Transition Matrix Comparison Between
Weber-Pande and Girsanov Reweighting

As shown in Section 5.3, the Weber-Pande and Girsanov algo-
rithms share the same path-reweighting factor (Eqs. (5.11), (5.25))
but differ in the phase-space reweighting factor (Eq. (5.10)). In
the following, we showcase the discussed theoretical implications
on a simple test system. First, we tested the deviation between
Weber-Pande and Girsanov reweighting on the level of the tran-
sition matrix. An MSM with fine clustering was built on the
biased simulations and reweighted to the original energy surface
(Figure 5.3A) by either the Weber-Pande or Girsanov approach.
The resulting reweighted transition matrices were compared. Fig-
ure 5.3B depicts the difference between the transition matrices if
only the path reweighting term of Weber-Pande and Girsanov is
used. Every square of the 250x250 heat map represents a transi-
tion probability between a start state i and an end state j. The

https://www.github.com/rinikerlab/Dynamic_Reweighting_FamilyTree
https://www.github.com/rinikerlab/Dynamic_Reweighting_FamilyTree
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Figure 5.3: Potential-energy surface of the four-well test system (A),
and the difference between the transition matrices of Weber-Pande
and Girsanov reweighting without (B) and with (C) the phase-space
reweighting factor for Girsanov. The transition matrix is visualized as
a heatmap with elements for the 250 start states i and end states j.
Blue colors encode no difference, red colors encode high differences.

color indicates the difference between the Weber-Pande and Gir-
sanov transition matrices. Blue regions correspond to zero de-
viations, white regions indicate absolute differences of up to 3%
and red regions absolute differences of up to 6%. As expected
by theory, there are no differences in the transition matrix in
Figure 5.3B. This confirms that the path-reweighting terms are
identical. In contrast, Figure 5.3C shows the difference between
the transition matrices for the full reweighting approach, i.e. it
includes the phase-space reweighting factor g for Girsanov. Most
regions show still no difference between the two methods. Only
transitions that start from a high-energy cluster deviate around
3%. In our simple test system, clusters comprising high-energy
states have a higher intra-cluster variance in the bias energy. In
other words, not all members of the start cluster i have exactly the
same bias energy. As the bias energy contributes exponentially
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to the phase-space reweighting factor, a small relative change in
the bias energy may lead to a large change in the likelihood factor
g. However, for sufficiently fine-grained clustering the difference
between Weber-Pande and Girsanov is small. In the presented
case, we observed only minor deviations around 3%, which were
limited to a few regions.

Second, to explore the differences between Weber-Pande and
Girsanov reweighting further, we simulated extreme cases where
the phase-space reweighting factor g is expected to have the high-
est impact. For this, we tested the reweighting of an MSM as a
function of (a) the number of clusters, and (b) the magnitude of
a time-dependent biasing potential (but coordinate-independent,
i.e., U(t) = const · t). Figure 5.2A.2 shows the distance between
the reweighted MSMs and the reference for increasingly finer clus-
tering (with a time-independent bias). Red color indicates good
agreement with the reference, blue color indicates larger devia-
tions. As expected by theory, Weber-Pande reweighting is inac-
curate for a small (coarse) number of clusters, because the bias for
the different members of the cluster is not homogeneous, which
leads to an imbalance in the count matrix. Girsanov reweighting,
on the other hand, accounts for this imbalance with the phase-
space reweighting factor, and thus the reweighted results are close
to the reference.

Figure 5.2B.2 shows the distance between the reweighted MSMs
and the reference for increasing time-independent bias (and fine-
grained clustering). With increasing magnitude of the bias, Gir-
sanov reweighting becomes more inaccurate, because the phase-
space reweighting factor g leads to a stronger contribution of tran-
sitions that have a higher bias, i.e occur late in the simulation.
This leads again to an imbalance in the count matrix. In contrast,
the Weber-Pande approach without the phase-space reweighting
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factor gives accurate reweighting results.
We want to stress that Figure 5.2 explores extreme cases to

emphasis the impact of the phase-space reweighting factor g on
reweighting. For most use cases, the difference between Weber-
Pande and Girsanov reweighting is likely marginal. Neverthe-
less, it is important to keep in mind the difference between the
two path-reweighting algorithms when choosing a reweighting ap-
proach.

5.7.2 Reweighting Results for Weber-Pande,
Girsanov, and DHAM

The performance of different dynamic reweighting algorithms (Weber-
Pande, Girsanov, and DHAM) was tested on a four-well sys-
tem (Figure 5.4A). The ability to obtain both accurate equi-
librium populations as well as kinetics from biased simulations
was assessed. The original potential (red) contained high energy
barriers that were significantly lowered in the biased potential
(blue). The histograms from the 40 separate simulations on the
biased energy surface are shown in Figure 5.4B. An MSM was
built from these simulations and reweighted by Weber-Pande,
Girsanov, and DHAM, respectively. A second MSM was built
on the 200 unbiased simulations. The kinetics of this reference
system are displayed in Figure 5.4C (“Reference”). Three dis-
tinct slow processes can be observed that correspond to the three
barrier crossings in the four-well system. The numerical val-
ues of the timescales are given in Table 5.1. As expected, the
MSM from the biased simulations yielded kinetics that were up
to 300 fold faster due to the reduced barrier heights (Figure 5.4C:
“Not reweighted”). The reweighted kinetics (Figure 5.4C: “Weber-
Pande”, “Girsanov”, “DHAM”) are able to recover the original
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Figure 5.4: Comparison of Weber-Pande, Girsanov and, DHAM dy-
namic reweighting on a four-well 1D test system. (A) Free-energy
landscape of the unbiased system (red) and the biased system (blue).
(B) Frequency of visited states along the reaction coordinate for each
of the 40 biased simulations. (C) Kinetic spectra of the unbiased MSM
(Reference), of the MSM from the biased simulations (Not reweighted),
and of the MSMs obtained by reweighting with Weber-Pande, Gir-
sanov, and DHAM. (D) Heatmaps showing the distance factor D be-
tween the reweighted MSMs from Weber-Pande, Girsanov, and DHAM
with the reference MSM as a function of the number of clusters of the
MSM and the lagtime (red: good agreement, blue: no agreement). Pa-
rameter sets used for C and E are highlighted with a black box. (E)
Reweighted free-energy landscape (blue, dotted) in comparison with
the reference (red) and the biased landscape (blue).
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kinetic pattern. The two path-based reweighting methods, Weber-
Pande and Girsanov, give very similar results and differ only by
a factor 1.4 from the reference (see also Table 5.1). In contrast,
reweighting results obtained with DHAM are slightly different.
The kinetic results are also within 1.4 of the reference, however,
a much shorter lagtime was necessary to obtain good results.

This issue becomes more evident when varying the MSM in-
put parameters to test the stability of the model for different
parameter choices. Figure 5.4D shows the results of this param-
eter test for the slowest process using heatmaps. The number of
clusters of the MSM was varied between 25 and 2’500 and the
lagtime between 10 and 10’000 frames. These extreme ranges
were chosen to test the limits of the reweighting algorithms. All
reweighting methods showed improvement over the raw biased
MSM (“Not reweighted”). The path-based algorithms were again
nearly identical and also showed similar stability. They only devi-
ate from each other for small numbers of clusters, where Girsanov
reweighting outperforms Weber-Pande. This is in line with the
observations from theory and Section 5.7.1. For large numbers
of clusters, on the other hand, the contribution of the phase-
space reweighting factor g (Eq. (5.10)) approximately cancels out
in the transition matrix. Thus, similar results are obtained in
these cases. Furthermore, both path-based algorithms performed
poorly at small lagtimes (<400 steps) and well at high lagtimes
(>1’000 steps). DHAM, on the other hand, showed the reversed
lagtime dependency, i.e. it performed well for small lagtimes
(<1’000 steps) and poorly at high lagtimes (>4’000 steps). Ad-
ditionally, a sufficiently large number of clusters is necessary for
good performance . It is known that DHAM needs relatively fine-
grained clustering in order to keep the discretization error of the
MSM small.214 For our test system, DHAM showed the best per-



5.7 RESULTS AND DISCUSSION 181

formance of the three reweighting algorithms, within 1% of the
reference for 250 clusters and a lagtime of 10.

In addition to the kinetics, we also tested the performance of
the reweighting algorithms to recover the equilibrium distribution
(Figure 5.4E). All reweighting algorithms performed reasonably
well. Again the path-based approaches gave very similar results,
however, the reweighted potential-energy surface showed distinct
deviations from the reference one. In contrast, DHAM reweight-
ing recovered the reference potential-energy surface nearly per-
fectly, even though the kinetic results were similar to those from
Weber-Pande and Girsanov.

In summary, the path-based reweighting methods performed
very similar to each other as shown already in sSection 5.2. For
DHAM, we observed a different parameter dependency than for
the path-based methods. When choosing the optimal MSM-parameter
combination for each reweighting method, the results from DHAM
reweighting were closest to the reference for the chosen four-well
test system. This is especially remarkable as DHAM only uses
information about the first and last step of the path (in contrast
to the path-based methods, where the reweighting factor has to
be calculated for every simulation step within the path). Thus,
DHAM reweighting requires less input data and user effort. How-
ever, the best choice for a reweighting method will depend of
course on the use case and the enhanced sampling method used.

5.7.3 Path Correction Expands DHAM to Long
Lagtimes

In order to test the connection between DHAM and Weber-Pande,
we additionally reweighted the MSM with Eq. (5.30), which we
will term “DHAM + path correction”. We named it path correc-
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Figure 5.5: Reweighting performance at a lagtime of 40 steps (A)
and 4’000 steps (B). Top panel: DHAM reweighted free-energy land-
scape (blue, dotted) in comparison with the reference (red) and the
biased landscape (blue). Middle panel: “DHAM + path correction”
reweighted free-energy landscape (blue, dotted) in comparison with
the reference (red) and the biased landscape (blue). Bottom panel:
Kinetic spectra of the reference MSM, the DHAM reweighted MSM,
and the “DHAM + path correction” reweighted MSM. (C): Heatmaps
showing the distance factor D between the reweighted MSMs with
DHAM (top) and “DHAM + path correction” (bottom) and the ref-
erence as a function of the number of clusters and the lagtime (red:
good agreement, blue: no agreement). Parameter sets used for A and
B are highlighted with a black and grey box, respectively.
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Table 5.1: MSM relaxation timescales of the three slowest processes
(the crossings of the three distinct energy barriers in the four-well sys-
tem) of the reference MSM, the MSM from the biased simulations, and
the reweighted MSMs with the Weber-Pande, Girsanov, and DHAM
algorithms.

Relaxation Reference Biased Weber-Pande Girsanov DHAM
process timescale timescale timescale timescale timescale

[steps] [steps] [steps] [steps] [steps]
1 2.90 ·107 7.78 ·104 2.03 ·107 2.01 ·107 1.97 ·107
2 1.17 ·105 1.75 ·104 1.12 ·105 1.15 ·105 1.13 ·105
3 3.82 ·104 1.07 ·104 4.22 ·104 4.29 ·104 3.96 ·104

tion, because it adds a correction to DHAM based on the specific
path chosen. We compared the reweighting results from DHAM
and “DHAM + path correction” for short and long lagtimes. For
short lagtime, DHAM results match the reference both in terms
of the potential energy and the kinetics, and thus the application
of the path correction does not change these results (Figure 5.5A).
This is expected as the path correction (i.e. a sum over the transi-
tion path) does not contribute much to the reweighting for short
lagtimes.

As already discussed in Section 5.7.2, DHAM becomes inac-
curate for longer lagtimes. Figure 5.5B depicts the reweighting
results for a lagtime of 4’000 steps. The energy surface is un-
derestimated and the kinetics differ by a factor of 300 from the
reference. For long lagtimes, the path correction contributes sig-
nificantly, and thus the reweighted results with “DHAM + path
correction” improve (Figure 5.5B). The reweighted energy surface
is as close to the reference one as with Weber-Pande or Girsanov
for the same lagtime. The kinetics deviate from the reference
only by a factor of 3. However, the kinetic results have a larger
deviation from the reference than with Weber-Pande or Girsanov.
We speculate that this is because we assumed an overdamped
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(high friction) system in the derivation of the path correction. In
the test system, the assumption |γmdr

dt | >> |md2r
dt2 | is not true

for all simulation steps. Therefore, the path correction does not
perfectly resemble the Weber-Pande results. It remains to be
tested how well the path correction performs for more complex,
biological systems. This will be the subject of future work.

In Figure 5.5C, the performance of DHAM and “DHAM +
path correction” is compared for a wide range of MSM input
parameters. In contrast to the other three algorithms, “DHAM +
path correction” is applicable to a wide range of parameters and
is not limited to either short or long lagtimes. Additionally, note
that the application of the path correction does never lead to a
decrease in the performance, even at small lagtimes.

In their original publication, Rosta et al.46 proposed a differ-
ent reweighting term for long lagtimes,

Punnorm
ij = P̃ij exp

(
− Uj

kBT

)
. (5.33)

In contrast to Eq. (5.5), the reweighting with Eq. 5.33 is inde-
pendent of the bias energy of the start state Ui. The authors
argue that with increasing lagtime, the memory of the start state
vanishes. To compare this approach with the path correction de-
veloped in the present work, we reweighted the test system with
Eq. (5.33), termed “DHAM for long lagtimes” in the following
(Figure 5.6). This variant of DHAM gave more accurate reweight-
ing results for lagtimes in the range of 400-1’000 steps. However,
the results for short lagtimes (<400) showed significantly reduced
accuracy. Furthermore, we observed a high parameter sensitivity
for “DHAM for long lagtimes”, and even for the best parame-
ter combinations the kinetics results deviated around one order
of magnitude from the reference. Therefore, we conclude that
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Figure 5.6: Reweighting performance at a lagtime of 400 steps (A
and C ) and 4’000 steps (B and F). A and B Free-energy landscape
reweighted by “DHAM for long lagtimes” (blue, dotted) in comparison
with the reference (red) and the biased landscape (blue) at lagtimes of
400 and 4’000 steps, respectively. C Kinetic spectra of the reference
MSM and the MSM reweighted with “DHAM for long lagtimes” with
a lagtime of 400 steps. (D): Heatmap showing the distance factor D
between the biased MSMs and the reference as a function of the number
of clusters and the lagtime (red: good agreement, blue: no agreement).
Parameter sets used for A/C and B/F are highlighted with a black and
grey box, respectively. (E): Same as D but for the results with “DHAM
for long lagtimes”. (F): Kinetic spectra of the reference MSM and the
MSM reweighted with “DHAM for long lagtimes” with a lagtime of
4’000 steps.
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“DHAM + path correction” is more accurate as well as less pa-
rameter sensitive than “DHAM for long lagtimes”.

In summary, we showed that the application of the path cor-
rection is able to extend DHAM to longer lagtimes, with im-
proved parameter stability compared to the other tested reweight-
ing methods. With this approach, it was possible to recover the
same potential-energy landscape as with the path-based reweight-
ing algorithms. For long lagtimes, the kinetics were still a factor
of two less accurate than Weber-Pande and Girsanov reweighting,
but a factor of 100 more accurate than DHAM. Future work will
test the performance and stability of “DHAM + path correction”
for more complex systems to obtain more general conclusions.

5.8 CONCLUSION AND OUTLOOK

In this chapter, we presented the connection between path-based
reweighting and energy-based reweighting methods and shown
a strong similarity among the path-based reweighting algorithms.
We could show that Weber-Pande and Girsanov reweighting share
the same path-reweighting term (Eqs. (5.11), (5.25) ), but differ
in the phase-space reweighting term g, which is only present in the
Girsanov approach. The inclusion of g leads to improved perfor-
mances for MSMs with of a low number of clusters. In contrast,
g introduces an imbalance for time-dependent biases, and thus
decreases the performance in these cases. It therefore depends on
the system, the MSM input parameters, and the biasing poten-
tial if the inclusion of g is beneficial. Despite the small difference
due to the phase-space reweighting factor, the two path-based
reweighting approaches yield very similar results for our simple
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test system, especially with large numbers of clusters.
In addition, we tested the dependency of the different reweight-

ing methods on the MSM input parameters. Both path-based
reweighting algorithms performed well at long lagtimes but poorly
at short lagtimes. Further research is needed to clarify if the need
for long lagtimes is due to (implicit) physical assumptions in the
derivation or due to numerical reasons like precision problems.

In the second part of this chapter, we showed that the path-
based reweighting methods can be linked to the DHAM approach.
The only assumptions required to connect the approaches were
a high-friction system and time-independent biases. Especially
the latter assumption illustrates that path-based reweighting can
be applied to more different types of biases. However path-based
reweighting is currently limited to SD, whereas energy-based reweight-
ing can be applied to both SD and MD. Based on our derivation,
we found that path-based methods contain the path-independent
DHAM equation plus a path-dependent term, which we termed
“path correction”. While the original DHAM showed good perfor-
mance for short lagtimes and poor performance for long lagtimes,
the application of the path correction led to good performances
over the full range of lagtimes. “DHAM + path correction” com-
bines the strength of high numerical stability at short lagtimes
and the consideration of path dependency for long lagtimes. This
will be especially important for more complex systems and slow
dynamics, where it is inevitable to use long lagtimes.

From a technical point of view, “DHAM + path correction”
has a number of key advantages. First of all, the formulation does
not depend on the random number, in contrast to the path-based
reweighting methods Weber-Pande and Girsanov. The need to
know the random number at every time step is currently one of
the main limitations of path-based reweighting. Thus, the path
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correction can be applied with any SD integrator. Secondly, the
path correction depends on the force of every time step, which
may be correlated between time steps (in contrast to the random
number). Therefore, it may be possible to increase the write-out
frequency of the forces or even use the path correction for post
processing. Thirdly, the “DHAM + path correction” approach is
in principle no longer restricted to SD like the other path-based
methods but can be applied to MD as well. However, a good
approximation for γ will be necessary in this case. The poten-
tial of the path correction approach and its applicability to more
complex systems will be explored in future work.

This chapter led to new insights into the existing dynamic
reweighting algorithms and for the first time connected path-
based and energy-based approaches. In addition, a combined
method that joins the advantages of path-based and energy-based
reweighting was proposed. Nevertheless, many open questions
about dynamic reweighting remain: In the presented chapter, we
focused on the theoretical aspects and the mathematical deriva-
tion of the connection between path- and energy-based reweight-
ing methods. We chose a simple, easy to understand 1D model
system to test our theoretical derivations and to highlight im-
portant results. Future work is needed to validate the presented
findings on more complex atomistic systems of practical relevance
such as drug-like molecules or proteins. Additionally, in this
chapter we focused on DHAM as a representative of the energy-
based reweighting methods. As mentioned in the Introduction,
the energy-based reweighting class includes more members, e.g.
DHAMed7 and TRAM.6 The performance of these methods was
not explicitly tested in our study. It will be of special interest
to test if these methods do overcome the lagtime dependence of
DHAM.
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Future work will therefore need to systematically compare the
performance of all available dynamic reweighting algorithms on
both model systems and molecular systems. In addition to testing
different reweighting algorithms, it will be important to include
a variety of enhanced sampling techniques and bias strengths to
determine the best balance between speed-up and reweighting
performance. The main difficulty is thereby that the different
reweighting methods are not implemented in a single MD code
and were not tested on the same molecular systems.
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Cyclic peptide based drugs can be increasingly found
in pharmaceutical drug pipelines. Their size and large
number of potential hydrogen bond donors and accep-
tors allow them to bind to targets complementary to
conventional small molecule drugs. However, out of
the same reasons, they often suffer from poor mem-
brane permeability. The natural product cyclosporin
A (CycA) is known for its relatively high passive per-
meability given its size that originates from a com-
plex conformational behavior. Thus, CycA has been
considered a model system to study permeable cyclic
peptides. We revisit the conformational dynamics
of CycA and explore whether dynamic reweighting
techniques can be helpful to facilitate sampling. By
improving and correcting previous kinetic models for
CycA, we gain new insights into its permeable confor-
mational states, but observe also challenges and pit-
falls associated with kinetic models. Our results show
that a vast amount of simulations are necessary to
sample the rare cis/trans isomerization in the peptide
backbone of CycA. As an alternative to this massive
sampling, we show how enhanced sampling and dy-
namic reweighting can be applied to this system. We
compare the reweighted equilibrium and kinetic infor-
mation as well as the robustness of the kinetic models
to our massive sampling reference. In addition, we
give guidelines on best practices and highlight obsta-
cles for enhanced sampling and dynamic reweighting.
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6.1 INTRODUCTION

Cyclic peptides belong to the beyond rule-of-5 (bRO5) class of
compounds and expand the chemical space beyond traditional
small molecule drugs.119–121,158–161,183,233 With their relatively
large size, polar surface area, hydrogen bonding potential, and
often inherent flexibility they offer unique binding qualities and
are able to bind currently undruggable targets.234 Specifically,
cyclic peptide drugs hold the potential to bind to large and flat
bindings sites, for example on the surface of a protein or at the
interface of a protein-protein interaction.61,118,123,124,163,235–237

However, cyclic peptides come with their own unique challenges
related to solubility and permeability. As permeability decreases
exponentially with increasing molecular volume,70 the relatively
large cyclic peptides often suffer from poor membrane permeabil-
ity.69,70,94,97 To leverage the clinical potential of cyclic peptides,
the drug development community is striving to understand their
structure-permeability relationship.61,70,114,126,127,176,233 Efforts
from numerous groups have revealed the effects on permeability
from backbone N-methylations,84,85,128,177,178 side-chain modifi-
cations,108,182 stereocenters,106,179,180 and amphiphilicity.181 How-
ever, these effects are highly non-linear and context specific.98,99,106,108,115,129–132,185

Thus, we have not yet reached a level of understanding where
cyclic peptide permeability can be considered predictable.

The natural product cyclosporin A (CycA) ranks among the
best studied cyclic peptides. It is well known for its oral availabil-
ity despite its relatively high molecular weight of 1202.6 g mol−1,
and is used as an immunosuppressive drug in transplantation
medicine since 1983.13,76–78,238 The discovery of the surprisingly
high permeability of CycA triggered a cascade of research aim-
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ing to understand the origin of its permeability leap.14,15,79–82

A distinct feature of CycA caught the attention of the commu-
nity early on: CycA is a molecular chameleon and can adapt
to different environments.12,100–103 The chameleonic property of
CycA originates from its conformational flexibility that allows the
macrocycle to adopt different conformational states with differ-
ent lipophilicity depending on the environment.12,16,95,102–104,185

In one conformation, which is referred to as the ’closed’ state,
CycA can form three transannular hydrogen bonds and conse-
quently shield its polar surface area from the surroundings. The
conformer thus appears apolar from the outside and is favored
in an apolor environment. In contrast, in so-called ’open’ con-
formations, the polar atoms are exposed. These conformers ap-
pear more polar from the outside and can form favorable interac-
tions with a polar environment.187,239 The chameleonic property
of CycA allows the molecule to adapt to both polar and apolar
environment, thus leading to increased solubility and permeabil-
ity.

Computational and experimental approaches have worked hand
in hand to increase our understanding of the origin of the chameleonic
property of CycA and to extract design principles for new macro-
cycles with equal permeability. Passive membrane permeability is
measured either using cell-based assays (Caco-2 or MDCK)240,241

that resemble the in vivo membrane compositions or using an par-
allel artificial membrane permeability assay (PAMPA).188 How-
ever, both approaches do not permit to gain atomistic insights
into the permeability process or monitor the conformational changes
during permeation. Addressing this gap, computer simulations
using molecular dynamics (MD) can investigate the conforma-
tional and dynamic behavior of cyclic peptides in different polar
and apolar environments (e.g., chloroform and water) or in pres-
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ence of an explicit membrane.12,89,96,104,108,114,115,189,242 In addi-
tion, machine learning approaches have been explored to predict
the structure of permeable macrocycles.186 Especially Markov
state models (MSMs) – kinetic models based on MD simulations
– have proven useful to characterize the dynamic properties of
macrocycles.16,89,96,106,108,115 MSMs provide the metastable con-
formational states, their equilibrium populations, and the inter-
conversion kinetics between them.22,152–154 Thus, they are a pow-
erful tool to gather insights into the conformations relevant for
permeability. However, constructing MSM models has some pit-
falls and thus, a high validity model often requires expert knowl-
edge and proper manual user input, e.g. relevant input features,
appropriate clustering of the states, and a Markovian lagtime.

Previously, our group reported a kinetic model of CycA that
explored its conformational space in water and chloroform and
revealed that similar conformational states exist in both envi-
ronments (termed congruent states).16 The slowest interconver-
sion process between any conformer was reported to be around
100ns, however, as noted in Ref. 16 transition rates obtained
from MSMs are only rough estimates of the real time scales due
to discretization errors (e.g., from clustering) or force-field inac-
curacies. This is especially true if sampling is not fully converged.
Revisiting that data set, we discovered a slow cis/trans isomer-
ization that was highly undersampled – only one transition was
observed in the whole 10µs data set. Thus, the intrinsic assump-
tions of MSMs were violated. However, the conventional MSM
quality checks were passed, suggesting that the system was suffi-
ciently sampled.

In this work, we aim to improve the kinetic model of CycA
and to construct guidelines to better control the quality and ro-
bustness of MSMs. In order to achieve sufficient sampling of the
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rare cis/trans isomerization, the overall simulation time had to be
increased by one order of magnitude. As such massive sampling
is not always feasible, we explored whether enhanced sampling
simulations together with dynamic reweighting methods6,46 can
be used as an alternative. This work offers an improved kinetic
model for CycA, new insights into a transient ’closed’ state with
all trans amide bonds, and introduces exemplary workflows for
rare-event sampling. It also highlights the challenges and best
practices associated with MSMs and dynamic reweighting.

6.2 COMPUTATIONAL DETAILS

6.2.1 Starting Conformations

A set of 100 diverse conformations were obtained from Ref. 16
as starting points for the MD simulations. The protocol to gen-
erate these conformations is described in detail in Ref. 16. In
short, crystal structures of CycA in the ’closed’ and in one ’open’
state were obtained from the Cambridge Structural Database
(CSD) and the Protein Data Bank (PDB), respectively.14,243 Sim-
ulations at 400K in water and chloroform, partially with modi-
fied potential-energy terms, were performed to enhance confor-
mational sampling. The different enhanced sampling conditions
were (a) no backbone dihedral angle terms, (b) repulsive poten-
tial on atoms forming H-bonds, (c) no charges on atoms form-
ing H-bonds, (d) reduced charges (q = 0.1 e) on atoms forming
H-bonds, or (e) no potential-energy modifications. The obtained
enhanced sampling simulations were reweighted to physical condi-
tions and only the low energy conformations were considered fur-
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ther. Together with conformations from unbiased simulations at
300K, the conformations were clustered based on the root-mean-
square deviations (RMSD) of the backbone positions relative to
the ’closed’ or ’open’ crystal structures. The centroids of these
clusters were selected in the pool of 100 diverse conformations.

6.2.2 MD Simulations

Starting from the set of 100 diverse conformers, MD simulations
were carried out using the Groningen Machine for Chemical Sim-
ulations (GROMACS) 2020.5 software package.143 For compati-
bility with the results from Ref. 16, the GROMOS 54A7 force
field244 was employed. A time step of 2 fs together with the
leapfrog integration scheme32 was used, and periodic boundary
conditions were applied. The peptide and the solvent were cou-
pled to two different thermostats at 300K using a weak coupling
scheme37 and a relaxation time of 0.1ps. Pressure of the system
was controlled using an isotropic Parrinello-Rahman barostat145

at 1.0bar with a coupling constant of 2.0ps and a compressibil-
ity of 4.5× 105 bar−1. Long-range electrostatic interactions were
treated using the particle mesh Ewald algorithm.146 The linear
constraint solver (LINCS)147 algorithm was utilized to constrain
the bond lengths.

In total, five separate simulations with different random seeds
for the velocity generation and a 200ns length each were started
from each of the conformers. This resulted in a total simulation
time of 100µs. To increase the sampling of the ’cis state’ of CycA
(i.e., a cis amide bond between residues 9 and 10 as found in
the small-molecule crystal structure), additional ten 200ns simu-
lations were performed from five different cis starting conformers.
This provided an additional simulation time of 10µs.
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To explore the potential of dynamic reweighting methods, we
performed enhanced sampling simulation that were subsequently
reweighted to the physical conditions. To increase the sampling
of the cis/trans isomerization of the peptide bond in CycA, the
dihedral energetic contribution of the ω dihedral between residue
9 and 10 was modified. The different modification modes are
summarized in Table 6.1.

Table 6.1: Simulation Setups for the Enhanced-Sampling MD Simu-
lations

Condition ω 9-10 dihedral term [kJ/mol]
Unbiased 33.5 · (1 + cos(2ϕ− 180))

1 30 · (1 + cos(2ϕ− 180))
2 27 · (1 + cos(2ϕ− 180))
3 23 · (1 + cos(2ϕ− 180))
4 19 · (1 + cos(2ϕ− 180))
5 16.25 · (1 + cos(2ϕ− 180))
6 12 · (1 + cos(2ϕ− 180))
7 8 · (1 + cos(2ϕ− 180))
8 5.86 · (1 + cos(2ϕ− 180))

For conditions 2 and 5, eleven simulation with 50ns each were
performed for each of the 100 conformers, giving a total biased
simulation time of 55µs. For all other biased conditions, two
simulations with 50ns each were performed for each of the 100
conformers (i.e., total biased simulation time of 10µs).

6.2.3 Markov State Model and Analysis

Torsional angles analysis on the raw trajectories was performed
using MDTraj.149 In order to extract the kinetic and equilibrium
properties of the system, a MSM152–155 was constructed to deter-
mine the long-time properties from multiple short – and parallel
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– simulations.22 For this, we extracted the ϕ, ψ, and ω backbone
torsional angles of CycA for each simulation using the PyEmma
package.148 This resulted in 66 input features for the model. The
dimensionality of the input features was reduced to six dimensions
with time-lagged independent component analysis (TICA) dimen-
sionality reduction.150 Subsequently, the feature vectors were dis-
cretized. To assess the influence of the clustering method on the
MSM, two different algorithms (hierarchical density-based Sittel-
Stock clustering151 and the PyEmma intrinsic k-means cluster-
ing) were compared. For the k-means clustering, the number of
clusters was set to 100. For Sittel-Stock clustering, the minimum
number of cluster members was set to 50.

Based on the discretized trajectories, the transition matrix
of the MSM was constructed using a lagtime of 2.5ns. The ki-
netic spectrum as well as equilibrium energetics and cluster pop-
ulations were calculated. To kinetically group microstates into
metastable sets, we performed robust Perron cluster-cluster analy-
sis (PCCA+)156 using five or six metastable states. The resulting
states were visualized using PyMol245 and the mean first passage
times (MFPTs) between the metastable sets was computed.

6.2.4 Dynamic Reweighting

Dynamic reweighting was performed using the DHAM46 algo-
rithm in the short-time and long-time approximation (own imple-
mentation) or the TRAM6 algorithm (provided in the PyEmma148

package). For each frame of the trajectory, the difference between
the unbiased and corresponding biased dihedral term of Table 6.1
was calculated. The DHAM-reweighted transition matrix was
used as an input for the PyEmma package to extract equilibrium
distributions and kinetics. The TRAM algorithm directly returns
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the equilibrium distribution.

6.3 RESULTS AND DISCUSSION

Previous kinetic models revealed that the cis/trans isomerization
of the peptide bond between residues 9 and 10 (ω9−10, see also
Figure 6.1F) is the kinetic bottleneck to sample the full conforma-
tional space of CycA.16 To ensure that the rare cis/trans isomer-
ization was sufficiently sampled in our data set, we plotted the
ω9−10 distribution for all simulation trajectories (Figure 6.1A),
and tracked the time spent in each state as well as the transi-
tions between the states. In total, 31 transitions from cis to trans
as well as five transitions from trans to cis were observed. Al-
though the amount of trans to cis transitions is on the lower end,
it should still be sufficient to obtain a reasonable MSM. All back-
bone dihedral angles (ϕ, ψ, ω) were used as input features and
reduced using the time-lagged independent component analysis
(TICA) dimension reduction approach.150 Figure 6.1B shows the
data distribution mapped to the two slowest transitions, roughly
separated into four distinct clusters. To assess how the slowest
transition is linked to the ’open’ and ’closed’ states of CycA, we
projected the data to the first TICA coordinate and the RMSD to
the ’closed’ crystal structure (Figure 6.1C). Interestingly, ’closed’
states (i.e., RMSD ∼ 0.1 nm, marked with asterisks) were ob-
served at both extremes of the first TICA coordinate. To get an
intuition which dihedral transitions contributed to the slowest dy-
namics of CycA, we looked at the correlations between the input
features and the TICA coordinates. Not surprising, this analy-
sis revealed that the slowest interconversion process of CycA is
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dominated by the ω9−10 dihedral (time correlation = 0.995, see
also Figure 6.1E), which defines the cis and trans states of CycA.
This correlation can also be seen in Figure 6.1D when the ω9−10

dihedral angle is plotted against the first TICA coordinate. The
second slowest process is dominated by the ϕ backbone dihedral
angle of residue 6 (time correlation = 0.962) and the third slowest
process by the ϕ backbone dihedral angle of residue 4 (time cor-
relation = −0.630). The correlations between the three slowest
processes and all input features are shown in Figure 6.1E. The
three most dominating dihedrals are highlighted in Figure 6.1F.
Taking together our observations that the cis/trans isomerization
defines the first TICA coordinate and that ’closed’ states were
observed at both extremes of this coordinate, this suggests that
’closed’ conformations exist with the ω9−10 peptide bond in both
cis and trans configuration. We verified these observations at the
level of the raw data. Figure 6.2 shows trajectories visiting the
cis-closed as well as the trans-closed state. In addition, exam-
ples of cis to trans and trans to cis transitions are shown. The
trans-closed state showed frequent short opening events. In con-
trast, the cis-closed state was very stable over the length of the
simulation.

The MSM of CycA using the density-based Sittel-Stock clus-
tering algorithm is shown in Figure 6.3. Panel 6.3A shows the
implied timescales plot of a Bayesian MSM. The slowest process
of the system relaxes with a timescale of 2.2µs. The kinetic spec-
trum contains two spectral gaps (between the first and second
as well as between the sixth and seventh slowest process, Figure
6.3B). The equilibrium population predicted by the MSM showed
that the microstate corresponding to the cis-closed conformation
makes up 1.6±0.3% of the population (errors denote the standard
deviation based on the statistical error of the Bayesian MSM).
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Figure 6.1: Description of the unbiased data set of CycA. (A): ω9−10

dihedral distribution for the individual trajectories plotted against the
corresponding simulation index. Data points are colored based on the
visited state of the ω9−10 dihedral angle: only trans (red), only cis
(blue), only cis to trans transitions (orange), and trans to cis tran-
sitions (and potentially an additional cis to trans transition) (black).
(B): Phase space of cyclosporin A porjected to the two slowest TICA
coordinates. (C): Phase space of cyclosporin A projected to the slowest
TICA coordinate and the RMSD to the cis-closed state. (D): Slowest
TICA coordinate plotted against the cosine of ω9−10. (E): Correlation
between the input features and the three slowest TICA coordinates.
The highest correlating features for each TICA coordinate are high-
lighted in F.
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Figure 6.2: Example trajectories for cis-closed and trans-closed states
as well as transitions between cis and trans of the peptide bond between
residues 9 and 10. The RMSD to the cis-closed state is shown with
blue lines, the cosine of the ω9−10 dihedral angle is shown in orange.
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In comparison, the trans-closed microstate has a population of
3.0±0.2%. Thus, the trans-closed state has a two-fold higher
population. Figure 6.3C plots the equilibrium population of all
microstates as a function of the RMSD to the ’closed’ crystal
structure. The inlay shows the trans-closed conformation. With
the exception of the ω9−10 dihedral angle, the trans-close state is
identical to the cis-closed state and also contains three intramolec-
ular hydrogen bonds. The estimated free-energy surface of the
conformational states of CycA is shown in panel 6.3D. The two
clusters in the cis state (i.e., on the positive extreme of the first
TICA coordinate) only contain one minimum each. In contrast,
the two clusters in the trans state contain multiple minima.

Based on the MSM, we split the conformational landscape of
CycA into six metastable states (Figure 6.4). While one of the
metastable states is the cis-closed state, none of the metastable
states resembles the trans-closed conformation. This is in line
with our observations from the raw data that the trans-closed
state is unstable. However, it has a higher equilibrium population
than the cis-trans state. This raises the question of how this state
contributes to the permeability of CycA. On the one hand, the life
time of the trans-closed state might be too short to be relevant for
the permeability process. On the other hand, the relatively low
energy barrier for interconversion to ’open’ conformations may be
important for resolvation of the peptide after passing through the
apolar membrane part. Further analysis of the trans-closed state
will be necessary to answer these questions. However, we find it
intriguing that CycA is not only conformationally flexible but also
’kinetically flexible’, i.e., it exhibits both a slow interconversion
between open and closed conformations (in the cis isomer) as well
as a fast interconversion between open and closed (in the trans
isomer). The MFPT between the cis-closed state and the highest
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Figure 6.3: MSM based on the Sittel-Stock clustered data. (A):
Implied timescales as a function of the lagtime. (B): Kinetic spectrum
of the system. (C): Equilibrium population of the microstates as a
function of the average RMSD to the cis-closed conformation. Clusters
in the cis state are colored in red, clusters in the trans state are colored
in grey. The structure of the trans-closed state is highlighted in the
inlay. (D): Estimated free-energy profile of the MSM.



206 6 CYCLOSPORIN A

populated open state was found to be 1.1µs for the cis to trans
transition and 44.2µs for the trans to cis transition.

The MSM based on the k-means clustering is shown in Figures
6.5 and 6.6. The kinetics agree reasonably well with the MSM
based on the Sittel-Stock clustering (slowest timescale 1.5µs ver-
sus 2.2µs). Interestingly, the k-means clustering breaks the ’closed’
states up into multiple sub-states. Counting together all cis-
closed and trans-closed sub-states, the population of the trans-
closed state exceeds again the cis-closed population (3.7±0.1%
versus 2.0±0.1%, errors denote the standard deviation based on
the statistical error of the Bayesian MSM). In addition, the fact
that only the cis-closed state and not the trans-closed state is
metastable is in line with the results discussed above.

To assess the robustness of the MSMs, we chose a variational
approach, i.e. the input parameters for the MSM were varied
and the influence on the model output was tracked. A well con-
verged model with sufficient sampling should result in stable pre-
dictions,218 whereas insufficiently sampled data results in model
predictions that vary heavily with the input parameters. For
this, we compare the kinetics of the slowest process of the model
because this often shows the highest variation between MSMs.
Figure 6.7 shows the robustness analysis for MSMs based on the
density-based Sittel-Stock clustering and k-means clustering. To
learn whether the input data was sufficiently sampled, MSMs
were built on a random subset of the total data. The fraction
of data used to build the model with respect to the total 110µs
simulation time is shown in the y-axis of the heatmap in Figure
6.7. In addition, the input parameter for the clustering was var-
ied. The Sittel-Stock clustering did not converge for subdatasets
with a fraction ≤ 0.3. Thus, no data is shown in that regime. In
general, the variational approach revealed high discrepancies be-
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Figure 6.4: Metastable state assignment of the Sittel-Stock clustered
MSM. The distribution of the six metastable sets and their position
in the TICA phase space are plotted. For each metastable set, the
conformational ensemble is provided. MFPTs between the cis-closed
state and the highest populated open state are indicated.
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Figure 6.5: MSM based on the k-means clustered data. (A): Implied
timescales as a function of the lagtime. (B) Kinetic spectrum of the
system. (C): Equilibrium population of the microstates as a function
of the average RMSD to the cis-closed conformation. Clusters in the
cis state are colored in red, clusters in the trans state are colored in
grey. The structure of the trans-closed state is highlighted in the inlay.
(D): Estimated free-energy profile of the MSM.
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Figure 6.6: Metastable state assignment of the k-means clustered
MSM. The distribution of the six metastable sets and their position
in the TICA phase space are plotted. For each metastable set, the
conformational ensemble is provided. MFPTs between the cis-closed
state and the highest populated open state are indicated.
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tween the predicted slowest kinetics with differences of multiple
orders of magnitudes. Although the models based on Sittel-Stock
clustering seemed slightly more robust, both MSMs cannot be
considered fully converged. Thus, more sampling is necessary to
improve the MSMs and their robustness. This is concerning as
the model is already build on ten fold more simulation time than
previously published models (110µs versus 10µs of simulation
time).16 As such extensive sampling is not feasible for screening
and comparison of multiple cyclic peptides, we decided to evalu-
ate alternatives. In specific, we tested whether the combination
of enhanced sampling techniques and dynamic reweighting of the
MSM can be used to recover the kinetic and equilibrium informa-
tion about CycA.

Figure 6.7: Robustness analysis of the MSMs based on Sittel-Stock
clustering (left) and k-means clustering (right) by varying the cluster-
ing input parameter (x-axis) and the fraction of included simulation
trajectories (y-axis). The slowest relaxation timescale for every combi-
nation is shown as a heatmap. Units are displayed in µs.

The Holy Grail for enhanced sampling is to significantly in-
crease the frequency of desired transitions without disturbing the
remaining system. The ω dihedral angles are characterized by
a high force constant of 33.5 kJ mol−1 resulting in high transi-
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tion barriers. An apparently straightforward way to increase the
cis/trans transition frequency is to reduce the dihedral force con-
stant of the peptide bond of interest. Similar approaches have
been applied to cyclic peptides and proteins before.80,189,246 To
assess the effects of reducing the dihedral force constant, we car-
ried out a total of 5µs simulations for different scaling factors.
Figure 6.8 shows the distribution of the ω9−10 dihedral angle for
the different force constants. Gaussian functions were fitted to
the distributions to obtain the peak positions of the distributions.
In the unbiased simulations, two distinct peaks at 0 rad (cis) and
−π rad (trans) can be observed. Lowering the transition bar-
rier leads first to a slight shift of the cis peak. Below a force
constant of 23 kJ mol−1, both the cis and trans peaks shift sub-
stantially and a third peak (additional state) appears. Using a
50% reduced force constant (= 16.75 kJ mol−1) or smaller, the
previous energy minima at 0 rad and −π rad become increasingly
unfavourable. The dramatic shift of the energy minima of the
dihedral angle can be explained by the treatment of the 1-4 non-
bonded interactions of the force field. These interactions act in
combination with the dihedral-angle term, resulting in the de-
sired effective torsional profile. However, this means that scaling
the dihedral force constant without scaling the corresponding 1-4
nonbonded interactions disturbs the balance between the terms,
causing the shifts of the energy minima. Alternative biasing ap-
proaches should therefore be explored in the future, e.g., by ad-
dition of a phase-shifted dihedral-angle term or by an additional
scaling of the 1-4 nonbonded interactions.

Figure 6.8 highlights the importance of properly monitoring
the bias applied by enhanced sampling. Choosing a too small
force constant leads to an insufficient overlap between the original
and the biased phase space. In order to have sufficient overlap,



212 6 CYCLOSPORIN A

Figure 6.8: Effect of varying the force constant of the ω9−10 dihedral-
angle term. (A): Peak positions of the ω9−10 dihedral-angle distribu-
tion as a function of the force constant. (B): Distributions of the ω9−10

dihedral angle for different values of the force constant.
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the biased force constant was set to 27 kJ mol−1 in this work.
The resulting data set will be called ’moderately biased’ below.
In addition, we wanted to test the effect of insufficient overlap on
the reweighting approach and also performed biased simulations
with a force constant of 16.75 kJ mol−1. This data set will be
referred to as ’highly biased’ below. For both conditions, a total
simulations time 50µs biased simulations was collected.

Figure 6.9 summarizes the ’moderately biased’ data set. The
data was projected to the TICA coordinates from the unbiased
reference to facilitate comparison (Figure 6.9A). Interestingly, the
cluster assigned to the cis-open states (top-right corner) is not vis-
ible in the biased ensemble. Investigation of the raw data revealed
that the cis-open states are sampled in some simulations, however,
they were highly unstable and directly relaxed into a trans-open
state. Thus, although these states are metastable in the unbiased
data set, the reduction of the force constant leads to a destabiliza-
tion and subsequent disappearance from the phase space. This is
problematic for the reweighting methods as a state that is not ob-
served in the biased data set cannot be reweighted. Thus, an ad-
ditional biasing term that stabilizes the cis-open states might be
necessary to correctly sample all minima in the phase space. Fig-
ure 6.9B shows some example raw trajectories. The cis and trans
states are still well distinguishable and are distributed around 0
and -π rad, respectively. The corresponding cis/trans transition
plot in Figure 6.9C shows that the reduction of the force con-
stant to 27 kJ mol−1 is sufficient to significantly increase the cis
to trans (90 events) and trans to cis (83 events) transition rates.
However, as already observed above, the cis state becomes more
unstable. Simulations where the 9-10 peptide bond remains in the
cis-configuration become rare and less simulation time is spent in
the cis states in general.
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Figure 6.9: Description of the moderately biased data set. (A): Phase
space visited in the simulations projected to the TICA coordinates
of the unbiased reference system. (B): Example trajectories of the
moderately biased simulations. The RMSD to the cis-closed state is
shown with blue lines, the cosine of the ω9−10 dihedral angle is shown in
orange. (C): Distribution of the ω9−10 dihedral angle for the individual
trajectories as a function of the corresponding simulation index. Data
points are colored based on the state of the ω9−10 dihedral angle: only
trans (red), only cis (blue), only cis to trans transitions (orange), trans
to cis transitions (and potentially an additional cis to trans transition)
(black).
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To highlight the contrast between the moderately biased and
the highly biased simulations, Figure 6.10 shows the same plots
when the force constant is reduced to 50% or less. With an in-
creasing bias, the dihedral term is increasingly softened and the
effective dihedral-angle distribution shifts. Especially when re-
ducing the force constant to 24%, the ω9−10 dihedral angle is
sampling the full range without clear cis/trans transitions any-
more.

Figure 6.9C showed that moderate biasing results indeed in
the desired higher frequency of the cis/trans isomerization of the
9-10 peptide bond. To recover the original energy landscape
and kinetics, we applied different dynamic reweighting strate-
gies: DHAM46 in the short-time and long-time approximation
and TRAM.6 Figure 6.11 shows the reweighting results on the
MSM constructed using Sittel-Stock clustering. The unbiased
reference model is shown in Figure 6.11A. Without reweighting
(Figure 6.11B), the minima are ’smeared out’ in comparison to
the reference and the top-right cluster is not sampled. Although
all reweighting methods (Figure 6.11C-E) were able to slightly
reduce this ’smearing’, none was able to fully refocus the posi-
tions of the minima position compared to the reference. As ex-
pected, none of the reweighting methods could recover the lost
top-right cluster. Looking at the kinetic spectrum, none of the
reweighting methods leads to a convincing result. In the case of
DHAM with long-time approximation, the kinetics were still un-
derestimated by 30% (in comparison to a 50% underestimation
in the not-reweighted data). DHAM with short-time approxima-
tion even led to a higher discrepancy with the reference. Note
that TRAM reweighting only returns the reweighted equilibrium
distribution without the kinetics.

Similar results were obtained with reweighting the MSM con-
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Figure 6.10: Description of the highly biased data set (reduction
to 50%, 36%, and 24%). For each bias, the phase space visited in
the simulations projected to the TICA coordinates of the unbiased
reference system is shown as well as example trajectories. The RMSD
to the cis-closed state is shown with blue lines, the cosine of the ω9−10

dihedral angle is shown in orange. In addition, the cis/trans transition
plot is provided for the 50% biased data set.
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Figure 6.11: Reweighting results for MSMs using Sittel-stock clus-
tering with moderately biased data. (A): Unbiased free-energy distri-
bution projected to the TICA coordinates and reference kinetic spec-
trum. (B): Free-energy distribution of the moderately biased simu-
lations projected to the unbiased phase space. (C): Free-energy dis-
tribution and kinetic spectrum of the DHAM reweighted (short-time
approximation) biased data. Reweighted kinetics are shown in blue,
not reweighted kinetics in orange. (D): Free-energy distribution of
the TRAM reweighted biased data. (E): Free-energy distribution and
kinetic spectrum of the DHAM reweighted (long-time approximation)
biased data. Reweighted kinetics are shown in blue, not reweighted
kinetics in orange.
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structed using k-means clustering (Figure 6.12). The reweighted
kinetics were only marginally better than the not-reweighted bench-
mark and ’minima smearing’ was still an issue in the energy plot.

On a first glance, the reweighted results on the highly biased
force constant (50% reduction) seem more successful (Figure 6.13
for Sittel-stock clustering and Figure 6.14 for k-means clustering).
The kinetics of the DHAM in the short-time approximation are
identical to the reference when using the Sittel-Stock clustering
and slightly off with k-means clustering. In addition, the model
is able to identify the transition region between the cis and trans
state as a high energy region. However, the minima remain still
’smeared’, and the seemingly good results on the kinetics are mis-
leading. Considering the fact that the cis and trans distributions
in the highly biased data set are shifted towards unnatural dihe-
dral angles, one would expect much higher energies and slower
kinetics. For example, the former cis state at 0° became centered
around an -57°’angle. The unbiased kinetics leading to that state
should be extremely slow and not on the same magnitude as a
conventional cis/trans isomerization. Thus, also in the highly bi-
ased case we can conclude that reweighting did not recover the
expected kinetics.
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Figure 6.12: Reweighting results for MSMs using k-means cluster-
ing and moderately biased data. (A): Unbiased free-energy distribu-
tion projected to the TICA coordinates and reference kinetic spec-
trum. (B): Free-energy distribution of the moderately biased simu-
lations projected to the unbiased phase space. (C): Free-energy dis-
tribution and kinetic spectrum of the DHAM reweighted (short-time
approximation) biased data. Reweighted kinetics are shown in blue,
not reweighted kinetics in orange. (D): Free-energy distribution of
the TRAM reweighted biased data. (E): Free-energy distribution and
kinetic spectrum of the DHAM reweighted (long-time approximation)
biased data. Reweighted kinetics are shown in blue, not reweighted
kinetics in orange.
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Figure 6.13: Reweighting results for MSMs using Sittel-stock clus-
tering and highly biased data. (A): Unbiased free-energy distribu-
tion projected to the TICA coordinates and reference kinetic spec-
trum. (B): Free-energy distribution of the moderately biased simu-
lations projected to the unbiased phase space. (C): Free-energy dis-
tribution and kinetic spectrum of the DHAM reweighted (short-time
approximation) biased data. Reweighted kinetics are shown in blue,
not reweighted kinetics in orange. (D): Free-energy distribution of
the TRAM reweighted biased data. (E): Free-energy distribution and
kinetic spectrum of the DHAM reweighted (long-time approximation)
biased data. Reweighted kinetics are shown in blue, not reweighted
kinetics in orange.
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Figure 6.14: Reweighting results for MSMs using k-means cluster-
ing and highly biased data. (A): Unbiased free-energy distribution
projected to the TICA coordinates and reference kinetic spectrum.
(B): Free-energy distribution of the moderately biased simulations pro-
jected to the unbiased phase space. (C): Free-energy distribution
and kinetic spectrum of the DHAM reweighted (short-time approx-
imation) biased data. Reweighted kinetics are shown in blue, not
reweighted kinetics in orange. (D): Free-energy distribution of the
TRAM reweighted biased data. (E): Free-energy distribution and ki-
netic spectrum of the DHAM reweighted (long-time approximation)
biased data. Reweighted kinetics are shown in blue, not reweighted
kinetics in orange.
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6.4 CONCLUSION

Revisiting the dynamics of CycA showed that extensive sampling
is necessary to sufficiently sample the rare cis/trans isomerization
in the peptide backbone between residues 9 and 10. Such a a large
amount of accumulated sampling time was not reached by previ-
ous published models.16,80 Due to insufficient sampling and dis-
cretization errors, these models significantly underestimated the
transition kinetics of CycA (i.e., around 100ns). Our improved
model corrected these timescales to > 1µs, a difference of one
order of magnitude. In addition, by analyzing the MSM beyond
metastable states, we were able to identify an additional closed
state of CycA with all trans peptide bonds (termed trans-closed).
In contrast to the well known cis-closed state (corresponding to
the small molecule crystal structure), this trans-closed state has
fast interconversion kinetics with the open states and a higher
equilibrium population. Thus, CycA is not only conformation-
ally flexible, but also ’kinetically’ flexible, i.e., it exhibits two
very different transition rates between the open and closed states:
a slow one on the order of µs and a fast one on the order of ns.
It is possible that this kinetic flexibility provides advantages for
the passive permeation of CycA through a lipid membrane. For
example, the fast interconversion rates might be favorable for the
re-solvation of the peptide after passing the apolar core of the
membrane. Kinetic models of cyclosporin E (CsE), which differs
from CycA by a single backbone methylation but has a ten fold
decreased permeability, have shown that CsE has a metastable
trans-closed state.96 Thus, in contrast to the permeable CycA,
the impermeable CsE is not kinetically flexible. Further analy-
sis studying kinetic flexibility in a more complex environment,
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i.e., a polar/apolar interface or a lipid membrane, will reveal its
significance for permeability.

In addition to improving the kinetic model of CycA, this chap-
ter explored the usage of enhanced sampling techniques and dy-
namic reweighting to obtain MSMs with less computational re-
sources. The rare cis/trans isomerization of CycA requires sam-
pling times above 100µs. Thus, approaches that sufficiently sam-
ple this transition in a fraction of the time would be highly valu-
able. We showed that an increasing reduction of the dihedral
force constant for the ω9−10 peptide bond can lead to shifts in
the energy minima due to the increasing dominance of the 1-4
nonbonded interactions. Thus, simultaneous reduction of the 1-4
nonbonded interactions, addition of phase-shifted dihedral terms
or local elevation coupled with umbrella sampling (LEUS)247 may
be more suitable ways to increase the transition frequency of the
cis/trans isomerization. Compared to the not reweighted bench-
mark, the dynamic reweighting methods led to slightly improved
but unfortunately not accurate enough results. Major problems
were ’smearing’ of the free-energy minima and underestimation
of the kinetics. In addition, a considerable amount of human fine-
tuning was needed for the approach with enhanced sampling and
dynamic reweighting. Thus, we conclude that dynamic reweight-
ing methods in the current form do not provide the desired speed-
up when working with small systems like cyclic peptides. Should
future developments lead to significant improvements in the us-
ability and performance of these methods, the usage of dynamic
reweighting should be reassessed.

We want to conclude this chapter with highlighting pitfalls
and best practices for MSMs as well as enhanced sampling and
reweighting.
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Markov State Models

1. Feature selection and dimension reduction. This first
step of building the MSM defines which kinetics can be
considered. Some clustering methods require a strong di-
mension reduction (e.g., the Sittel-Stock clustering usually
handles only five to six input dimensions). The user has to
carefully check if this massive reduction is still able to re-
flect the complexity of the system. The variance explained
by the chosen dimensions can be a good measure.

2. Clustering. Improper clustering can lead to false transi-
tions, falsely connected states, and thus to incorrect kinet-
ics. A good example is the previous model for CycA, where
the rarest transition was not sufficiently sampled and thus
states were disconnected. However, improper clustering led
to false transitions and thus suggested a connected model.
Some examples of improper clustering are displayed in Fig-
ure 6.15. The user has to carefully test the model for proper
clustering. In general, we advice to use the more robust
density-based clustering methods such as Sittel-Stock.

3. Verification on raw data. We further advise too double
check the results from the high level MSM on the level of
the raw trajectory data. This can help to track down the
problems described in points 1 and 2.

4. Occurrence of non-metastable states. As the example
of the kinetic flexibility of CycA has shown, the most im-
portant insights are not always found on the level of the
metastable states. The user should evaluate the results on
all levels of the MSM to gain an comprehensive understand-
ing of the system.
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Figure 6.15: Examples of how misleading MSM results can emerge
from improper clustering.

Dynamic Reweighting

1. Proper biasing. As extensively discussed in this chap-
ter, the applied bias should speed up the desired transition
without disturbing the remaining system or shifting energy
minima.

2. Usability. In their current form, most dynamic reweight-
ing approaches need an implementation by the user, which
limits the dissemination and usage of these techniques. A
package containing efficient implementations of different
reweighting approaches would be desirable.

3. Performance. As discussed above, the results of dynamic
reweighting still lack accuracy. Thus, the application of
dynamic reweighting methods should be considered well for
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each system.

4. Metastable state extraction. In their current form, none
of the dynamic reweighting approaches yields metastable
states. Due to the reweighting, the detailed balance assump-
tion is violated, which prevents the use of PCCA-based to
assign metastable sets. As the metastable states are often
of particular interest, techniques to recover metastable sets
from reweighted methods should be developed.







OUTLOOK 229

7Outlook

”If I had asked people what they
wanted, they would have said faster
horses”

Henry Ford
This quote and chapter are dedicated
to Frederik Zwilling and his visionary

mind and his calm confidence
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Chapters 2 - 6 focused on the permeability analysis of cyclic
peptides with a special focus on rare events that dominate this
kinetics. In Chapters 3 and 4, we extended the current picture of
cyclic peptide permeability, while in Chapters 5 and 6 we explored
new methods to extend the boundaries of kinetic models for rare
events.

7.1 DESIGN OF PERMEABLE CYCLIC
PEPTIDES

A low permeability – and thus a poor oral bioavailability – is a
problem not only limited to cyclic peptides or macrocyclic drugs.
New insights in the permeability process and guidelines for per-
meable drugs will benefit the whole drug discovery field. Chapter
2 introduced the challenges associated with permeability analysis
and how to approach them using the combined power of computa-
tional and experimental techniques. We hope that this review will
inspire new collaborations between experts with an experimental
and computational background. We believe that the combination
of sound experimental parameters and the atomistic insights from
computer simulations is necessary to lead to a holistic view of pas-
sive permeability, extend current models, and thus advance the
field. An example of how the combination of molecular dynamics
simulations together with experimental permeability values can
lead to the extension of current models is given in Chapters 3 and
4. Chapter 3 highlights the importance of considering the local
environment during the permeation process using kinetic models.
Our work in agreement with previous findings in the literature
showed that cyclic peptides prefer to be located at the interface
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of a polar and apolar environment (e.g., the polar head group
and the apolar tail regions).114,115 Thus, the kinetics at such an
interface are likely decisive for the whole permeation process. In
addition, such an interface leads to an anisotropic and directional
environment, which causes the splitting into two metastable ori-
entations. We expect that the interface system we introduced will
be useful to study the dynamics of other series of cyclic peptides
or drug molecules in general. This simple system mimics the
condition at a lipid membrane but has the advantage of much
faster kinetics, thus less simulation time is needed to reach con-
vergence. To explore the transferability of the interface results to
a more realistic lipid membrane system, Chapter 4 presents atom-
istic insights into the permeation pathway at a lipid membrane.
We identified four permeation steps: (1) anchoring with residues
in transient gaps between lipid head groups, (2) insertion in the
membrane and orienting parallel to the membrane plane, (3) if the
peptide enters in an ’open’ conformation, interconversion to the
’closed’ permeable conformation, and (4) leaflet crossing involv-
ing anchoring and rotation. The membrane model confirmed the
preference of cyclic peptides to locate at the interface and showed
highly transferable results to the interface system with respect to
the cyclic peptide orientation. The anchoring observed in steps
(1) and (4) were exclusively found in the lipid membrane system.
This is no surprise as only the sterically hindered environment
at a lipid membrane generates the need for an anchor. Anchors
that help the molecule to insert into the membrane are a new
design concept that might be of value also for other compounds.
A recent experimental paper highlighted the occurrence of acyl
chains in natural products that increase membrane permeabil-
ity.194 Based on the findings from of our computer simulations,
we propose that these acyl chains act as anchors to enable mem-
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brane entrance. Together, the insights from these experiments
and our simulations generate a holistic view on the processes in-
volved and suggest that attaching anchors to drug compounds can
increase permeability and thus oral bioavailability. Multiple ad-
ditional influence factors are expected to modulate the permeabil-
ity process. For example, Sugita et. al.189 showed that adding
cholesterol to the lipid membrane shifts the energy landscape of
permeation. Furthermore, the lipid composition of the membrane
will likely influence the occurrence of headgroup gaps and the dy-
namics of the cyclic peptides inside the membrane. Thus, future
research is needed to compare different lipid compositions. In
addition, membrane proteins are expected to perturb the mem-
brane. Therefore, it would be interesting to study if membrane
insertions happen preferentially close to proteins. In addition,
the glycocalyx covering the cell membrane has to be considered
to mimic cellular systems. One can hypothesise that the glycoca-
lyx either sterically hinders the cyclic peptide to reach the cell or,
on the contrary, can act as a net and keep the peptide close to
the membrane. Last but not least, although quite challenging, it
might be interesting to study the influence of the chemical gradi-
ent. In the presented chapters, we solely performed equilibrium
simulations. However, the chemical gradient is expected to act
as a driving force to facilitate permeability.
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7.2 APPLICATION OF DYNAMIC
REWEIGHTING METHODS AND

KINETIC MODES

Due to the slow kinetics of the four permeation steps, it is cur-
rently not feasible to build a full kinetic model of a cyclic pep-
tide permeating through a lipid membrane. Thus, in the second
part of this thesis we explored techniques that can extract unbi-
ased kinetic and equilibrium information from biased simulations
– termed dynamic reweighting techniques – and thereby expand
the scope of kinetic models. In Chapter 5, we compared cur-
rent approaches in dynamic reweighting and derived their physi-
cal connection. On a one dimensional test system, we were able
to compare their performance and show limitations. Additionally,
we propose an improved reweighting algorithm that can overcome
some of these limitations. However, the insights gained were lim-
ited on theoretical considerations and a one dimensional system.
Thus, further work will be necessary to compare the performance
for different enhanced sampling and reweighting applications on
a more complex system. This causes an obstacle especially for the
so-called path-based reweighting methods that require modifica-
tions on the level of the numerical integration. Limited usability
and accessibility, low robustness, and the need for manual cura-
tion of the models are currently the main hurdles for dynamic
reweighting techniques. Thus, future software improvements are
most significant to advance the field. First steps towards the
assessment of dynamic reweighting techniques for more complex
and atomistic systems are given in Chapter 6. There, we applied
dynamic reweighting techniques on a cyclic peptide test system
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to sample a rare cis/trans isomerization in the peptide backbone.
Our findings show limitations of previous kinetic models on the
same system and give guidelines on the application of kinetic
models and dynamic reweighting techniques.
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Abbreviations

1SS one starting state
API application programming interface

ATB automated topology builder
COM Center of Mass

CSMM Core-set Markov Model
DAD Diode Array Detection

EMMA Emma’s Markov Model Algorithms
GROMACS Groningen Machine for Chemical Simulations

GROMOS Groningen Molecular Simulation
LC-MS Liquid Chromatography–Mass Spectrometry
LC-UV Liquid Chromatography-Ultraviolet Spectroscopy
LINCS Linear Constraint Solver

MD Molecular Dynamics
MFPT Mean First Passage Time

MSM Markov State Model
NMR Nuclear Magnetic Resonance

PCCA+ Robust Perron Cluster Cluster Analysis
PME Particle Mesh Ewald

POPC 1-Palmitoyl-2-oleoylphosphatidylcholine
RMSD Root-mean Square Deviation

SPC Simple-Point-Charge
TICA Time-lagged Independent Component Analysis
UPLC Ultra-Performance Liquid Chromatography
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