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A B S T R A C T

Providing punctual, reliable and performant services to customers is one main goal of railway network
operators. The railway scheduling problem is to determine, ahead of time (timetabling), a plan describing
the timing of the operations in a railway network, or updating such plan during operations (rescheduling). By
optimization and automation, it is possible to operate more trains on the network, closer to the infrastructure
capacity. Especially when the scale and complexity of the scheduling problem is increasing, for large-scale
networks and multiple interconnected problems, this is of great value for network operators. When planning
or adjusting railway operations becomes increasingly complex, modern scheduling algorithms can bring
significant performance and economic benefits. In this survey we review approaches in the state of the art for
the problems of railway scheduling. We show how the many different approaches of decomposition proposed in
the literature of railway scheduling can be categorized into two general principles. We study different solution
methods and identify a list of open topics for dealing with large-scale problems for future research.
1. Introduction

Railway operations are normally following a predetermined plan
(timetable), which specifies times for arrival, departure and passing at
stations. Such plan can be designed well ahead of time (timetabling) or
adjusted during operations, when delays occur (rescheduling). When
following the timetable, trains should not encounter congestion or
result in unsafe situations with regards to infrastructure or other traffic
on the network. The timetable is also the key to an efficient usage
of railway resources and infrastructure. Careful planning of resource
usage, especially for large-scale railway networks and dense traffic,
enables a railway system to achieve high performance (Kroon et al.,
2009).

The timetable can be designed (offline) a few days up to months
before actual operation, normally based on a given planned demand
for railway services. The objectives are often to maximize the amount
of services running, to fulfill the demand, to ensure a limited deviation
from an ideal offer which could be politically determined. During
operations, the timetable is adjusted, when delays occur, and real-time
deviations need to be taken into account. The adjustment to unforeseen
delays and disturbances is often targeting the minimization of devia-
tions between the offline timetable and what is actually produced; or
a quick recovery of the offline plan. This problem is known as railway
rescheduling. Both problems deal with the time allocation of railway
services, considering scarce resources such as infrastructure capacity
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or vehicles. They identify choices in timing of services; their explicit
relative order or sequence; and the route that trains follow in the
network or at stations. The present paper considers both problems,
under the unifying term of railway scheduling.

In railway scheduling, operations of trains are generally described
by means of events. One event can represent the start or end of an
operation. Typical operations are traversals of trains over the railway
network, or dwell processes at stations. The problem can be considered
at different levels of detail, resulting in two typical models, macroscopic
and microscopic. In macroscopic railway scheduling, railway stations
are abstracted into nodes, such that the network is represented in a
set of nodes and lines. A single operation of a train in macroscopic
modeling is the traversal of a train from one station to another. In
microscopic railway scheduling, the railway network is considered in
segments of few hundred meters of railway track, i.e., block sections,
which provide enough precision in control, also for safety systems. A
single operation of a train in microscopic modeling is the traversal of
a single block section. The time of an event in railway scheduling is
generally represented either in continuous or time-indexed form. In
case of indexed time, often a time–space graph is used which connects
points, i.e., events, in the indexed space according to operations. Points
outside of the graph are neglected for scheduling. Extensive surveys on
models of railway scheduling can be found, e.g., in Fang et al. (2015)
and Cacchiani and Toth (2012).
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From a computational point of view, railway scheduling has been
proven NP-Hard in many different versions of the problem (e.g., Odijk,
1996; Mascis and Pacciarelli, 2002; Caprara et al., 2002). Scalability
issues for large-scale problems are thus unavoidable and it is crucial to
keep these issues under control through the design of novel methods.
Current practice in the industry is to split up (often geographically) a
large-scale scheduling problem and schedule separated parts individu-
ally. Manually or computer-aided, the local timetables are computed
and afterwards merged together to a consistent (i.e., globally feasible)
network-wide timetable. The merging process is in general suboptimal.
Often such process is a kind of heuristic, rule-based process (e.g., high-
speed trains have priority over suburban trains, first come first serve
strategies etc.), where resource utilization potential is lost. Due to the
heuristic merging, it is unavoidable that not all possible scheduling
solutions are considered and evaluated.

Complementary to those suboptimal processes stands a continuously
increasing demand in public transport and freight transport on railway
systems, which requires an increasingly higher level of performance
from railways. While the acquisition of new network resources, e.g., in-
frastructure or vehicles, is a possible way to increase performance,
it is in general very expensive, slow and with little flexibility. Many
railway companies, e.g., the Swiss Federal Railways, instead focus
on improving the utilization of existing resources. Railway operators
show an increasing interest in novel methods, which solve the railway
scheduling problem at an optimal level (Borndörfer et al., 2010a).
If large-scale practical instances could be solved to optimality, the
existing resources could be used more efficiently, going beyond the
shortcomings of today’s practices and matching the potential already
identified in academia, e.g. in Lamorgese et al. (2016).

A promising direction towards handling scalability issues of large-
scale railway scheduling problems is the idea of decomposition. Similar
to current practices, the problem is separated into smaller subproblems.
In contrast to current practice, appropriate mathematical methods can
reliably deliver good solutions, or even guarantee to find an optimal
one. Decomposition has already been proven promising in numer-
ous planning problems for railways (see e.g., Borndörfer et al., 2017;
Lamorgese et al., 2016). Still a gap between academia and industry
exists. The approaches of academia have been evaluated on scenarios of
increasing complexity up to 80 trains over 600 block sections (Corman
et al., 2010), 150 train over 968 block sections (Luan et al., 2020)
or 130 trains over 53 block sections (Lamorgese et al., 2016). Real
life large-scale networks, like the one of Switzerland, operate more
than 10,000 trains per day over more than 5000 block sections. The
need for novel methodologies to further scale up the complexity in
automated railway scheduling becomes evident, and motivates our
review on principles and solution methods of decomposition for railway
scheduling.

In this review, we analyze the literature of decomposed railway
scheduling and provide insights on the individual decomposition prin-
ciples and solution methods, highlighting similarities and differences
between different existing approaches in the literature. This review is
thought to be interesting and useful for both researchers and prac-
titioners. For researchers, we comprehensively analyze the railway
scheduling problems in the literature, identifying which specific as-
pects and mathematical structures have been shown to be particularly
suitable for decomposition. We also identify and motivate alternative
mathematical descriptions of the problem. Moreover, we can identify
combinations of mathematical models, decomposed according to some
principles, and solution methods. This identifies some combinations
which seem promising, even though have not been studied yet. For
practitioners, we discuss how decompositions based on physical char-
acteristics of the problem have been more popular, possibly because
they can be more directly understood. Nevertheless, there are other
approaches possible, which can be identified. We believe our review of
solution methods enables the discovery of new practical applications as
2

we review advantages of different methods.
We believe, with a coherent discussion of mathematical models,
decomposition principles, and solution methods, we can inspire further
development from an academic point of view and motivate possible
industrial application of those concepts. This review focuses on the
problems of railway timetabling and rescheduling, i.e., respectively the
design and adjustment of a timetable for the operation of a railway
system. Many other problems are also relevant, in a supply of railway
services: determining which infrastructure is needed, how to structure
lines of the required services, which vehicles should be available, and
for which services they should be used, how much personnel is required
and on which services it should be driving. In the same spirit of
the decomposition that this paper discusses, those problems are most
often treated independently, due to different time scales, and different
stakeholders and objectives. In this review, we assume that the input
to a scheduling problem is given, from a solution to some problems
upstream, and we can assume that the scheduling problem will in-
fluence other problems downstream. We will neglect upstream and
downstream problems (such as line planning, timetable rolling stock
and crew scheduling), and focus only on timetabling and rescheduling.

The remainder of this review is structured as follows. In Section 2
we review different domains of decomposition in the literature and
analyze decompositions in the literature from a railway point of view.
In Section 3 we discuss principles of decomposition to understand the
decompositions of Section 2 from a mathematical point of view. In Sec-
tion 4 we review solution methods of mathematical optimization from
the literature to understand how a decomposed problem is addressed
to determine a globally feasible (and optimal) solution. A discussion
on strengths and weaknesses of different decompositions, but also on
future research needs, is given in the final Section 5.

2. Decomposition in railway scheduling

Decomposition is a technique to solve mathematical problems, es-
pecially beneficial when dealing with large-scale instances, which gen-
erally show issues of scalability. A decomposition will operate on an
original large-scale problem, reformulating it into a set of different,
smaller and possibly multiple problems. We call decomposition principle
the way an original problem is reformulated into multiple problems.
Any of those problems can be solved with specific solution methods,
which need to solve the problems themselves, but also harmonize their
solution into something which satisfies the constraints of the original
problem. The decomposition is the combination of a decomposition
principle and a solution method.

We label a decomposition as hierarchical, if one problem has re-
sponsibility of the coordination, and results in one-to-many (vertical)
communication to many other problems. This identifies a master prob-
em with the responsibility of coordination (hierarchically higher) and
possibly) many subproblems (hierarchically lower). The subproblems

do not need to be of the same mathematical type and structure, and
most often, they are not. Moreover, the subproblems communicating
with a single master can also have same, or different, mathematical
type and structure. With a small abuse of notation, we might call
subproblems the entire set of problems in a decomposition, or just those
problems, that, compared to a master problem, are at the same lower
level.

We label a decomposition as decentralized, if it results in many-to-
many (horizontal) communication between problems, that are of the
same mathematical type and structure. We call those problems to be at
the same level.

The two types of decompositions are not exclusive and can appear
both in some complex approaches. Moreover, boundary cases exists
which can be hard to classify. Depending on specific characteristics,
we can call the multiple problems of one level as subproblems (which
highlights that they are constrained by some other problem), and some
other as masters (which highlights that the problem is coordinating

some other problems). If there are multiple levels, it can be that
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Table 1
Decompositions in railway scheduling.
Domain Aspect Publications

Geographic (GEO) Geographic Areas Corman et al. (2010), Corman et al. (2014),
Corman et al. (2012), Kersbergen et al. (2016),
Parkes and Ungar (2001), Sinha et al. (2016),
Luan et al. (2020), Luan et al. (2018), Toletti
et al. (2020)
Leutwiler and Corman (2022)

Lines and Stations Lamorgese and Mannino (2015), Lamorgese et al.
(2016), Lamorgese et al. (2017)

Junctions Liu et al. (2019)

Temporal (TMP) Overlapping Periods Zhan et al. (2016)
Disjoint Periods Luan et al. (2020)

Entity (ENT) Single Train Shang et al. (2018), Bretas et al. (2021), Proença
and Oliveira (2004), Bretas et al. (2019), Luan
et al. (2017), Cacchiani et al. (2012), Cacchiani
et al. (2008), Luan et al. (2020), Fay (2000)
Brännlund et al. (1998), Caimi et al. (2009), Caimi
et al. (2012), Borndörfer et al. (2010b), Perrachon
et al. (2020), Borndörfer and Schlechte (2007),
D’Ariano and Hemelrijk (2006), Parkes and Ungar
(2001), Narayanaswami and Rangaraj (2015),
Meng and Zhou (2014)
Khadilkar (2019), Caprara et al. (2002), Caprara
et al. (2006)

Group of Trains Herrigel et al. (2013), Liu and Dessouky (2017)
Infrastructure Borndörfer and Schlechte (2007), Borndörfer et al.

(2010b)

Generic (GEN) Ordering Binaries Lamorgese and Mannino (2019), Keita et al.
(2020), Liu and Dessouky (2017), Kersbergen et al.
(2016)

Routing Binaries Keita et al. (2020), Liu and Dessouky (2017),
Zhang et al. (2019), D’Ariano et al. (2008)

Macroscopic Scheduling Bešinović et al. (2016)
Duration of Operations Matos et al. (2021)
the subproblem for one master is actually itself a master for another
subproblem. Finally, we call centralized the original, non-decomposed
roblem.

Decomposition is often motivated by special structural properties
f the original problem, which lead the subproblem(s) to be a prob-
em significantly easier to be solved than the original problem. For
nstance, it may generate, from one large problem, numerous smaller
ubproblems that are computationally much easier to solve (e.g., due
o a superlinear relation between instance size and complexity). De-
omposition is advantageous in case the computational benefits from
olving the decomposed problems prevails over the additional efforts
f coordinating them. We here identify as typical the structure of a
ingle master and multiple subproblems, but some approaches might
e considered having a single subproblem; and/or no master problem.

A coordination scheme and a corresponding solution method is the
ay to solve the resulting problems of a decomposed reformulation. A

oordination scheme is an unavoidable necessity in decomposition to
chieve globally feasible (and optimal) solutions. Most solution meth-
ds are iterative schemes, where alternately master and subproblems
re solved. Through the coordination scheme, solutions of the subprob-
ems have an influence on the master problem to find feasible and
ptimal solutions. The combinations of principles to decompose and
olution methods to coordinate result in the variety of decompositions
e can find in the literature.

In this section we review decomposition approaches, looking at
omains and aspects by which academic approaches have decomposed
he problem of railway scheduling. Domains classify structures in the
athematical model of the scheduling problem, which are exposed for
decomposed reformulation of the problem. We use the concept of

omains, to link structures of the mathematical model to physical or
athematical characteristics of the scheduling problem and identify
ossible advantages and disadvantages for different domains. In our re-
3

iew, we identified four domains of decomposition in the literature: the
geographic, temporal, entity and generic domain. Within each domain,
a few aspects can be identified, based on which an original problem is
separated into master problem and subproblems. While the geographic,
temporal and entity domain have strong ties to the physical application
of railways, we categorize a decomposition as generic if the related
structure exploited has ties to general mathematical optimization. Still
for most of the decompositions in the generic domain, a railway related
interpretation can be made. In general, the geographic, temporal and
entity domain can be seen as special cases of the generic domain.
Table 1 summarizes the domains and aspects in the decompositions
of the literature. We will show later in Section 3 how particular
decompositions are achieved at a mathematical level.

2.1. Geographic domain

In decomposition approaches of the geographic domain (GEO),
the original (centralized) scheduling problem is separated such that
different subproblems correspond to different geographic areas, based
on the underlying structure of the railway network. Events in the
same subproblem correspond to operations which take place in the
same area. The majority of geographic decompositions in the literature
propose areas containing several stations, which generally happen to be
of uniform size. The master problem in such decompositions considers
the traffic in-between areas. A smaller number of geographic decompo-
sitions propose a decomposition by lines and stations. In this case, each
individual station is defined as an individual area, corresponding to an
individual subproblem; one large area contains what might remain of
the entire railway network, defining the master problem.

2.2. Temporal domain

In decomposition approaches of the temporal domain (TMP), the

original scheduling problem is separated into subproblems, each of
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which covers a reduced time period, such that all together cover the
temporal span of the original problem. The master problem in such
decompositions considers the railway traffic at temporal boundaries.
For a temporal decomposition it is necessary to know, for each event,
a time window when it can take place, such that events can be assigned
to a particular time period (i.e., a subproblem). In rescheduling, such
assignment can be done using the original timetable. Reduced time
periods may be overlapping in time, such as Zhan et al. (2016) or
be disjoint such as Luan et al. (2020). The consequences of such
choice will be analyzed in Section 3. Decompositions in the temporal
domain are structurally very similar to decompositions in the geo-
graphic domain (see also Section 3). We can consider the concept
of neighboring subproblems as those sharing some events or having
events that are somehow constrained to events of each other. In this
case, geographic decompositions have a variable number of neighbors,
depending on the topology. Temporal decomposition instead have at
most two neighboring subproblems (one earlier, one later).

2.3. Entity domain

In decomposition approaches of the entity domain (ENT), the orig-
inal scheduling problem is separated into subproblems, each of which
considers the scheduling a single entity. Entities can be any arbitrary
set of railway resources (e.g., a train, or an infrastructure element).
The master problem in such decomposition contains the interactions
amongst entities. Possible entities identified in the literature are indi-
vidual trains as individual entities or a group of trains as a single entity;
there exists also the case of a decomposition where one entity is the set
of all trains and a second entity is the set of all block sections in the
network.

For the majority of decompositions in the domain of entities, indi-
vidual trains are considered as individual entities. In this case, each
train is scheduled in a single subproblem. Other decompositions in
the domain of entities define a group of trains as a single entity. In
this case, a single subproblem concerns the scheduling of all trains in
the respective group. Grouping of trains can be conducted based on,
e.g., priority (Herrigel et al., 2013) or train-type (Liu and Dessouky,
2017). A special case in the domain of entities are Borndörfer and
Schlechte (2007), Borndörfer et al. (2010b) where exactly two entities
are defined. One entity represents all trains of the scheduling problem
and a second entity represents all block sections of the scheduling
problem.

In this decomposition, trains and infrastructure usage are optimized
independently and the master problem is to assure the match between
them. In the subproblem that is related to the entity of trains, all trains
are scheduled without considering their interaction on the infrastruc-
ture. Therefore, each train can be scheduled independent of the other
trains in an individual, smaller subproblem. In the subproblem related
to the entity of infrastructure (block sections) the interactions of trains
are modeled to assure a conflict free schedule.

2.4. Generic domain

In decomposition approaches of the generic domain (GEN), the
original scheduling problem is separated into subproblems, based on
the structure of the underlying mathematical optimization problem,
not directly motivated by the physical railway system. In the generic
domain, the literature shows exclusively decompositions, which exploit
structures related to particular types or classes of variables. Generic
decompositions exploiting structures in the constraints of a scheduling
problem could not be found. In case of structures related to variables,
subproblems are defined by means of variables to be optimized in the
subproblem. Variables not in the subproblems are optimized in the mas-
ter problem. Differently from the previous domains, where subproblems
4

are scheduling problems and often numerous, in the generic domain it
is possible that subproblems are not scheduling problems and only a
single subproblem is considered.

As an interesting fact, all decompositions in the generic domain
reviewed for this work, with the exception of Matos et al. (2021),
are based on time-continuous formulations. Furthermore, compared
to other domains the generic domain is the most diverse domain,
where subproblems related to different aspects substantially differ in
problem-type and complexity. We discuss this aspect in more detail in
Section 3.1.

3. Principles of decomposition

From a perspective of mathematical optimization, a problem suit-
able for decomposition should have a special structure, which causes
the decomposed problems to be significantly simpler than the original
problem. If such structure is absent, a decomposition is usually not
beneficial with respect to computational speed.

Assuming a problem can be written as a (linear) mathematical
optimization problem in standard form, i.e., 𝑚𝑖𝑛 𝑐𝑇 𝑥 𝑠.𝑡. 𝐴𝑥 ≥ 𝑏,
the structure of the constraint matrix 𝐴 may highlight a possible
decomposition. If such matrix has a block-diagonal structure, the in-
dividual blocks can be solved independently, leading naturally to a
decomposition into multiple problems of smaller size. Often, problems
that are suitable for a decomposition show an almost block-diagonal
structure. That is, apart from a few entries in the constraint matrix, all
others are within a block-diagonal structure. In this case, the problem
can be reformulated, considering entries outside of the block-diagonal
structure in the master problem and each block as an individual sub-
problem. The resulting subproblems, which are smaller in size can
effectively be parallelized and are often much easier to solve (e.g., due
to a superlinear relation between instance size and complexity).

Even if the problem is not itself transformable into a block-diagonal
structure of constraints, decomposition can be interesting. In fact, a
problem is suitable for decomposition if it can be separated into master
and subproblem, such that the subproblem (even without a block-
diagonal structure) becomes of a different problem type, that by itself is
significantly simpler to solve (e.g., the subproblem belongs to P instead
of NP as the original problem).

In both cases, a coordination scheme (used by a solution method)
makes sure the individual solution(s) of master and subproblem(s) are
modified accordingly, to result in a solution for the original (central-
ized) problem.

In the following, we review how existing approaches exploit the
two discussed properties (natural decomposition into smaller problems;
easier class of problems). Two big classes of approaches exist: the
principle of decomposing by complicating variables and the principle
of decomposing by complicating constraints (Conejo et al., 2005). We
review both in the subsections below with respect to the literature.

3.1. Complicating variables

In the principle of complicating variables, the term ‘‘complicating
variables’’ refers to a subset of variables in an optimization problem,
which is known to cause a significant part of its computational com-
plexity. If the complicating variables are set to constant value, the
residual optimization problem over the remaining variables is compu-
tationally significantly simpler, either due to a natural decomposition
or an easier problem class, e.g., P instead of NP.

In a decomposition of complicating variables the optimization over
the complicating variables is separated from the optimization of the re-
maining, i.e., non-complicating, variables. The non-complicating vari-
ables are optimized in a subproblem, while considering the complicat-
ing variables as fixed. The optimization over the complicating variables
is done in the master problem. We summarize different identifications

of complicating variables from the literature (together with a railway
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Table 2
Complicating variables in decomposed railway scheduling.
Publication Domain Description Interpretation (Master/Subproblem)

Lamorgese and
Mannino (2015),
Lamorgese et al.
(2016),
Lamorgese et al.
(2017)
Leutwiler and
Corman (2022)

GEO Variables of traffic between
stations.

Scheduling between stations/
Scheduling a station.

Corman et al.
(2010), Corman
et al. (2012),
Corman et al.
(2014)
Sinha et al.
(2016), Proença
and Oliveira
(2004),
Kersbergen et al.
(2016)

GEO Variables of traffic between
areas.

Scheduling between areas/
Scheduling an area.

Parkes and Ungar (2001) GEO Variables of traffic between
areas only of a single train.

Scheduling a single train/
Scheduling an area.

Liu et al. (2019) GEO Variables of traffic between
areas of different junctions.

-/Scheduling a junction area.

Zhan et al. (2016) TMP Variables of traffic between
time periods.

-/Scheduling a time period.

Herrigel et al. (2013), Liu and Dessouky (2017) ENT Variables related to groups
of trains.

-/Scheduling a group of trains.

Shang et al.
(2018), Bretas
et al. (2019),
Bretas et al.
(2021)
Perrachon et al.
(2020)

ENT Variables related to individual
trains. -/ Scheduling a single Train.

Bešinović et al. (2016) GEN Variables related to macroscopic
scheduling model.

Macroscopic scheduling/
Microscopic scheduling.

Lamorgese and
Mannino (2019),
Liu and
Dessouky
(2017), Keita
et al. (2020)
Kersbergen et al.
(2016)

GEN Variables related to precedence
of trains.

Ordering of trains/
Scheduling of trains.

Keita et al.
(2020), Liu and
Dessouky
(2017), Zhang
et al. (2019)
D’Ariano et al.
(2008)

GEN Variables related to routing
decisions of trains.

Routing of trains/
Scheduling of trains.

Matos et al. (2021) GEN Variables related to durations
of operations.

Setting durations/
Scheduling with given durations.
specific interpretation of master and subproblem) in Table 2 and re-
port on the resulting decomposition in Table 3. In most publications,
complicating variables have not been identified explicitly as such by
the authors themselves. We instead systematically apply this concept of
complicating variables, as we believe that it helps in bringing different
decompositions to a common denominator. In Table 3, we report on
the type of master and subproblem, where the type ‘‘Scheduling’’ refers
to a scheduling problem (explicitly including ordering decisions), as
such a mixed-integer linear problem. In case ordering is excluded, we
denote it by ‘‘(LP)’’ to indicate the non-integrality of such problem.
The types ‘‘Ordering’’ and ‘‘Routing’’ refer to integer linear problems;
integrality is required to describe the ordering and routing decisions of
railway scheduling respectively. Other types used in Table 3 are self-
explanatory. The last column reports respectively the type of master
and subproblem.

In the geographic domain, we see by Table 2 that such decom-
positions are achieved by fixing (i.e., determining as complicating)
5

variables related to traffic passing the borders between different areas,
stations or junctions. Complicating variables describe the sequence and
timing of traffic over borders, therefore the constraint matrix shows
a block-diagonal structure for non-complicating variables and multiple
subproblems can be identified. We see such phenomena in Table 3 as all
decompositions in the geographic domain show as many subproblems
as areas, stations or junctions, which are in general independent. We
further see in Table 3 multiple approaches with no master problem.
In such cases complicating variables are assigned to subproblems; and
subproblems then are dependent on each other. In Section 4, we will
see that particular solution methods can be used, which result in
independent solution processes for the subproblems, such that they
can be solved in parallel. A special case is the approach of Proença
and Oliveira (2004), where complicating variables are further divided
into smaller groups, in particular one group for each train. The result
are multiple master problems, as many as trains. Those problems are
independent, because interactions among trains are handled in the

subproblems, which consider the traffic inside different areas.
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Table 3
Decompositions of complicating variables in railway scheduling.

Publication Domain Master problem Subproblem

𝑁 Indp. Type 𝑁 Indp. Type

Lamorgese and Mannino (2015),
Lamorgese et al. (2016),
Lamorgese et al. (2017)

GEO 1 – Scheduling # Stations Yes List
Coloring

Leutwiler and Corman (2022) GEO 1 – Scheduling # Stations Yes Scheduling
Proença and Oliveira (2004),
Kersbergen et al. (2016)

GEO – – – # Areas No Scheduling

Corman et al.
(2010), Corman
et al. (2012),
Corman et al.
(2014)
Sinha et al.
(2016)

GEO 1 – Scheduling # Areas Yes Scheduling

Parkes and Ungar (2001) GEO # Trains Yes Shortest
Path

# Areas Yes Scheduling

Liu et al. (2019) GEO – – – # Junctions No Scheduling
Zhan et al. (2016) TMP – – – # Time Periods No Scheduling
Herrigel et al. (2013), Liu and
Dessouky (2017)

ENT – – – # Train Groups No Scheduling

Shang et al. (2018), Perrachon
et al. (2020)

ENT – – – # Trains No Scheduling

Bretas et al. (2019), Bretas et al.
(2021)

ENT – – – # Trains +
# Stations

No Scheduling

Bešinović et al. (2016) GEN 1 – Scheduling 1 – Scheduling (LP)
Lamorgese and Mannino (2019) GEN 1 – Ordering 1 – Scheduling (LP)
Keita et al. (2020) GEN 2 No Routing

Ordering
1 – Scheduling (LP)

Kersbergen et al. (2016) GEN – – – # Train Groups No Scheduling
Liu and Dessouky (2017), GEN 2 No Ordering

Routing
1 – Scheduling

Zhang et al. (2019) GEN 1 – Scheduling
with Routing

1 – Scheduling with
Maintenance

D’Ariano et al. (2008) GEN 1 – Routing 1 – Scheduling
Matos et al. (2021) GEN 1 – Scheduling

Durations (LP)
1 – Scheduling with

fixed Durations

Indp.: Independent Problems.
In the temporal domain, we see similar considerations as in the
eographical domain. Instead of geographic areas, time periods are
sed to identify complicating variables (see Table 2); complicating
ariables are events between subsequent time periods. In our review
f the literature we discovered only one related publication, where
omplicating variables describe traffic operating beyond the temporal
oundary of two subsequent time periods. The single decomposition
ound keeps the complicating variables in the subproblem, such that
ubproblems remain dependent (see Table 3).

In the entity domain, we see decompositions where complicating
ariables are a subset of variables related to an entity. In particular,
omplicating variables are those variables related to an entity, which
ppear in a constraint together with variables of other entities. Entities
sed for the identification of complicating variables are single trains or
roups of trains (see Table 2). Depending on the entities used, different
ecompositions are reported in Table 3. In the literature, no decompo-
ition on complicating variables in the entity domain has been found,
here a master problem is used and subproblems are independent due

o an entity related block-diagonal structure in the subproblem. In the
iterature, complicating variables for the entity domain are in general
ept inside the subproblems, such that these remain dependent. We
ill see that few publications apply solution methods, which are able

o treat such subproblems independently by appropriate heuristics (see
ection 4). A possible reason for no exploitation of block-diagonality
ay be that complicating variables in the entity domain are in general
umerous, leading to a large master problem and are usually hard to
dentify.

In the generic domain, we find four classes of complicating variables
n the literature (see Table 2). In the literature, complicating variables
re identified either related to macroscopic scheduling, ordering or
6

outing of trains, or the duration of operations (see Table 2). Variables
for the order of trains exclusively appear in continuous-time models,
such that any decomposition exploiting such variables can only be ap-
plied to a continuous-time model of railway scheduling. Furthermore,
depending on the particular railway scheduling problem addressed,
e.g., including of routing, different decompositions are reported in Ta-
ble 3. In case of complicating variables related to ordering and routing,
the master problem is a pure integer linear program, to optimize only
over the binary variables related to ordering or routing decision. In
case of Bešinović et al. (2016) the master is a macroscopic scheduling
problem and in case of Matos et al. (2021) the master is a scheduling
problem with no binary decisions, i.e., a linear program (LP). We
can see in Table 3 that all proposed decompositions in the generic
domain exploit not a block-diagonal structure in the subproblem, but
a simplification of the problem class, such that there is always a single
subproblem. Exceptions are Matos et al. (2021), where the subproblem
cannot be simplified and Kersbergen et al. (2016) where complicating
variables are kept in the subproblem and optimized in different groups
(see Section 4). In two publications (i.e., Keita et al., 2020; Liu and
Dessouky, 2017), complicating variables have further been grouped
into different sets. In both cases binary variables related to routing
decisions and ordering decisions are addressed separately.

3.2. Complicating constraints

In the principle of complicating constraints the term ‘‘complicating
constraints’’ refers to subset of constraints in an optimization problem,
which are the main cause for its computational complexity. If the com-
plicating constraints are removed from the problem, the optimization
over the remaining, non-complicating constraints is computationally,

significantly simpler, either due to a block-diagonal structure in the
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Table 4
Complicating constraints in decomposed railway scheduling.

Publication Domain Description Interpretation (Master/Subproblem)

Toletti et al. (2020), Luan
et al. (2020), Luan et al.
(2018)

GEO Constraints in-between different
areas.

Coordination of Areas/
Scheduling of an Area

Luan et al. (2020) TMP Constraints in-between different
time periods.

Coordination of Time Periods/
Scheduling of a Time Period

Brännlund et al.
(1998),
Cacchiani et al.
(2012), Caprara
et al. (2002)
Caprara et al.
(2006)

ENT Constraints of capacity between
individual trains (AB-TSG).

Coordination of Trains/
Scheduling a single Train

Caimi et al. (2009), Caimi
et al. (2012), Cacchiani
et al. (2008)

ENT Constraints of capacity between
individual trains (PB-TSG).

Coordination of Trains/
Scheduling a single Train

Meng and Zhou (2014),
Luan et al. (2017)

ENT Constraints of capacity between
individual trains (TI).

Coordination of Trains/
Scheduling a single Train

D’Ariano and Hemelrijk
(2006), Luan et al. (2020)

ENT Constraints of capacity between
individual trains (TC).

Coordination of Trains/
Scheduling a single Train

Khadilkar (2019),
Narayanaswami and
Rangaraj (2015), Proença
and Oliveira (2004)

ENT Constraints of capacity between
individual trains.

Coordination of Trains/
Scheduling a single Train

Borndörfer and Schlechte
(2007), Borndörfer et al.
(2010b)

ENT Constraints of capacity between
trains and block sections (PB-TSG).

Coordination of Blocks and Train/
Scheduling of Blocks and Trains

(AB/PB)-TSG: Arc/Path-Based Time–Space Graph Model.
T(I/C): Time-Indexed/Continuous Model.
emaining constraints and/or as the problem belongs to a different
omplexity class of problems, e.g., P instead of NP.

In the decomposition of complicating constraints, the optimiza-
ion over the complicating constraints (in the master) is separated
rom the optimization over the non-complicating constraints (in the
ubproblem). We summarize complicating constraints identified in de-
ompositions approaches of the literature in Table 4 and report on the
orresponding decompositions in Table 5. Similar to the case of com-
licating variables, in most publications, complicating constraints have
ot been identified explicitly as such by the authors themselves. We
nstead systematically apply this concept of complicating constraints,
s we believe that it helps in bringing different decompositions to a
ommon denominator. In Table 5, we report on the type of master
nd subproblems in the decomposition, where we refer by ‘‘Penalty
pdate’’ to a linear optimization problem over penalty parameters
sed to coordinate subproblems. We refer by ‘‘Set Packing’’ to an
nteger program with the basic structure of a set packing problem
nd possibly additional constraints, and by ‘‘Scheduling’’ to a mixed-
nteger problem, likewise as for Table 3. ‘‘Conflict Detection’’ and
‘Utility Evaluation’’ refer to an evaluation of solutions rather than to
n optimization problem; the remaining types of problems in Table 5
re self-explanatory.

In the geographic domain, we can identify complicating constraints
s the constraints between the different geographic areas (see Table 4).
reas might be defined differently in different publications, but all
ith the same goal of exploiting a block-diagonal structure leading

o multiple subproblems. We can see the result of the block-diagonal
tructure in Table 5 as all subproblems in such decompositions are
ndependent.

In the temporal domain, decompositions are very similar to de-
ompositions of the geographic domain. The only difference to the
eographic domain is that complicating constraints are not identified
etween different areas, but different time periods (see Table 4). As in
he geographic domain, a block-diagonal structure is exposed, leading
o independent subproblems (see Table 5).

In the entity domain, for all publications in the literature, we can
xclusively identify constraints of network capacity as the complicating
7

onstraints. In this case, a train related block-diagonal structure is
exposed; this leads to multiple smaller, independent subproblems, one
for each individual train. In Table 4, we identify different complicating
constraints related to network capacity, in relation to different underly-
ing models of railway scheduling. In arc- and path-based models using
a time–space graph, and also general time-indexed models, network
capacity constraints result in clique constraints. Each clique is the set of
arcs, paths, or time-indices, which would lead to a conflict on a single
particular block section if used simultaneously in the timetable. In time-
continuous models, network capacity constraints are often modeled
as disjunctive precedence constraints between pairs of trains on each
resource. The number of possible pairs for 𝑛 trains is at most 𝑛2, such
that the amount of network capacity constraints in time-continuous
models is in the worst case 𝑛2 ∗ 𝑚, where 𝑚 is the number of
resources. For time-indexed models, capacity constraints usually grow
linearly with the number of resources, i.e., a single capacity constraint
for each resource, in general resulting in smaller amount of capacity
constraints. Special cases are the decompositions of Khadilkar (2019),
Narayanaswami and Rangaraj (2015), Proença and Oliveira (2004).
In these approaches, network capacity constraints are not explicitly
considered, but network capacity is validated after the scheduling
process of individual trains. We argue this is the same rationale as
complicating constraints.

The entity domain is the most commonly used domain for de-
compositions based on complicating constraints. A possible reason to
this might be the fact that in decompositions based on train entities
on time-indexed formulations, subproblems are not only independent,
but also reduce to shortest, least-cost or similar path-based problem
(see Table 5), which in general can be solved extremely efficient. In
absence of a time–space graph, i.e., in general time-indexed models, a
time-dependent shortest path problem results. Hybrid situations occur
when the time–space graph is updated iteratively according to possible
train trajectories computed by a train dynamics model (Caimi et al.,
2009, 2012). A special case are the decompositions in Borndörfer and
Schlechte (2007), Borndörfer et al. (2010b), which are based on a
reformulation of a time–space graph model. Additional variables are
introduced to model the occupation of a block section by train, such
that complicating constraints can be identified as those constraints be-

tween the variables of scheduling (events) and variables of occupation.
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Table 5
Decompositions of complicating constraints in railway scheduling.

Publication Domain Master problem Subproblem

𝑁 Indp. Type 𝑁 Indp. Type

Toletti et al. (2020), Luan
et al. (2020), Luan et al.
(2018)

GEO 1 – Penalty Update # Areas Yes Scheduling

Luan et al. (2020) TMP 1 – Penalty Update # Time Periods Yes Scheduling
Brännlund et al.
(1998),
Cacchiani et al.
(2012), Caprara
et al. (2002)
Caprara et al.
(2006)

ENT 1 – Penalty Update # Trains Yes Shortest
Path

Caimi et al. (2009), Caimi
et al. (2012)

ENT 1 – Set Packing # Trains Yes Trajectory
Planning

Cacchiani et al. (2008) ENT 1 – Set Packing # Trains Yes Shortest
Path

Meng and Zhou (2014) ENT 1 – Penalty Update # Trains Yes Shortest
Patha

Luan et al. (2017) ENT 1 – Penalty Update # Trains Yes Least-Cost
Patha

Luan et al. (2020) ENT 1 – Penalty Update # Trains Yes Scheduling
D’Ariano and Hemelrijk
(2006)

ENT 1 – Scheduling # Trains Yes Utility
Evaluation

Khadilkar (2019),
Narayanaswami and
Rangaraj (2015)

ENT 1 – Conflict Detection # Trains Yes Scheduling

Proença and Oliveira
(2004)

ENT #Areas Yes Conflict Detection # Trains Yes Scheduling

Borndörfer and Schlechte
(2007), Borndörfer et al.
(2010b)

ENT 1 – Penalty Update #Trains +
#Block Sections

Yes Shortest
Path

Indp.: Independent Problems.
a: Time dependent.
he result are two subproblems, where one is to schedule all trains
nd another to schedule all occupations of block sections. In both these
ubproblems a block-diagonal structure is exposed and both problems
aturally decompose into a shortest path problem for scheduling each
rain and each occupation of a block section individually.

The literature in decomposed railway scheduling does not show
ny decomposition based on complicating constraints in the generic
omain.

. Solution methods in decomposed railway scheduling

Complementary to the principles of decomposition, different solu-
ion methods are used to solve and coordinate master and subproblems
ack to a solution, valid for the original (centralized) problem. In the
ollowing, we review solution methods considered in the literature
f decomposed railway scheduling. In general we will differentiate
etween exact methods and heuristic methods.

In the literature, we can identify purely hierarchical solution meth-
ds; purely decentralized solution methods; and a small group which
as both characteristics at once.

For decompositions showing a hierarchical aspect, problems of the
ecomposition (master and subproblems) are arranged in hierarchical
evels. In general problems of the same type are (considered to be)
n the same level. In hierarchical solution methods, problems on the
ame level are not coordinated directly with each other. A (master)
roblem on a hierarchically higher level can be identified, responsible
or coordination (i.e., one-to-many (vertical) communication). For de-
ompositions showing a decentralized aspect, in general the problems
often of the same type) are on a single level and are coordinated
irectly with each other (i.e., many-to-many (horizontal) communica-
ion). No specific problem within the decentralized structure can be
dentified as responsible for coordination of others.

The way of coordination directly determines which problems can be
olved in a specific order, or can be solved at the same time, i.e., paral-
elized. In decentralized solution methods, the problems can be solved
8

in arbitrary order. Instead, in hierarchical solution methods problems
of the same level can be solved independently (and parallelized), but
different levels must be addressed in some specific (partial) order,
e.g., a master problem has to be solved before/after all subproblems. In
this sense, hierarchical solution methods are partially parallelizable, as
the master must be solved only after all subproblems are solved, which
means the total execution time depends on the computation time of
both the master, and the slowest subproblem. Decentralized solution
methods can achieve full parallelization.

We review purely hierarchical solution methods in Section 4.1,
purely decentralized solution methods in Section 4.2, and we discuss in
Section 4.3 solution methods which have a combination of both aspects.
Furthermore, we review in Section 4.4 a small group of methods that
are non-iterative and apply only unidirectional coordination over the
problems of a decomposition.

4.1. Purely hierarchical solution methods

In purely hierarchical solution methods, problems of a decompo-
sition are solved in a hierarchy over multiple levels, where in general
the master problem(s) of a decomposition are considered hierarchically
higher than the subproblem(s).

In hierarchical solution methods, coordination is achieved exclu-
sively via different levels of hierarchy to establish consistency over all
problems of a decomposition. The coordination between hierarchical
levels (vertical communication) is in general bidirectional; from higher
to lower hierarchies and vice versa.

In hierarchical decomposition, the coordination from higher to
lower levels imposes some aspect of the solutions of hierarchically
higher problems onto problems of lower level. We find two different
schemes for this in the literature, either enforcing by constraints, or
guiding through adjusted penalties. For simplicity we refer respectively
to those concepts as strict imposition or soft imposition. With the excep-

tion of D’Ariano and Hemelrijk (2006), all publications considered for



EURO Journal on Transportation and Logistics 12 (2023) 100107F. Leutwiler and F. Corman

p

t
s
c

4

r
w
a
s
a
p
e
v

d
t
c
s
s
p
i
t

i
s
s
e
M
a
t
d
m
t
b
I
d
l
p
O
a
i
c
w
i
e
w
a
a

w
i
o
s
e
e
a
t
(
u
w
t

4

r
v
l
c
o
p
n
c
m
T
t
s
t

i
t
o
r
v
t
a
r
s
t

this review show a direct relation between the kind of impositions
used, and the principle of decomposition applied. Strict impositions
are mainly the result of using the principle of complicating variables.
Soft impositions are the result of using the principle of complicating
constraints. In solution methods applying strict impositions, solutions
of higher levels affect directly the solution space of problems of lower
levels. In other terms, solutions of higher hierarchy result in determin-
ing some values for variables, to be imposed: complicating variables are
fixed in the subproblems. In solution methods applying a soft imposi-
tion, solutions of higher levels are considered as parameters of a penalty
term in the objective of problems of lower levels, guiding in this way
their solutions process. Soft impositions are used in decompositions of
complicating constraints to substitute complicating constraints through
coordinating penalties.

Strict imposition has the advantage that solutions of the master
problem and subproblem(s) are always consistent, building together
a feasible solution for the original (centralized) problem. Therefore,
once solutions for master and subproblems have been found, a solution
for the original problem is given. As a drawback, strict imposition
must consider the possibility that the constraints imposed on the sub-
problems by the master make them infeasible. Therefore, the solution
process needs to handle infeasibility of subproblems (e.g., Corman
et al., 2012; Lamorgese et al., 2016; Leutwiler and Corman, 2022).
Moreover, it is often the case that no intermediate solution is available
until a master solution has been found, for which also a feasible
solution to all subproblems exists.

Soft imposition does not constrain subproblems. Therefore, sub-
problems are in general always feasible but not necessarily consistent
with each other and thus not feasible with regard to the original
(centralized) problem. As a consequence of soft impositions, especially
for problems with integer variables (e.g., railway scheduling), it is
often difficult to achieve consistency between subproblem solutions. In
many publications, heuristics are used to recover a feasible solution for
the original problem, from the inconsistent solutions of subproblems
(e.g., Brännlund et al., 1998; Caprara et al., 2002; Luan et al., 2018). As
an advantage, these heuristics can also be used to determine a solution
at any intermediate point of the solution process.

The coordination from lower levels to higher levels in hierarchical
solution methods provides feedback from subproblem(s) to the master
problem(s). For such coordination we can identify in the literature five
types of coordination schemes: constraint generation, column generation,
enalty functions, solution passing and negotiation.

In Table 6 we summarize hierarchical solution methods of the litera-
ure and report the type of imposition, coordination scheme, particular
olution method and possible optimality of the method. We discuss the
oordination schemes of the literature in more detail below.

.1.1. Coordination by additional constraints: Constraint generation
In the coordination scheme of constraint generation, subproblems

eport feedback to the master problem in form of additional constraints,
hich are not part of the original problem. In general, these constraints
re incrementally generated and considered throughout iterations of
equentially solving master and subproblems. The generated constraints
re meant to represent the feasible space and optimal solutions of sub-
roblems, using only variables of the master problem. Constraint gen-
ration is exclusively used for decompositions based on complicating
ariables and thus all related methods use strict impositions.

Logic Benders (Hooker and Ottosson, 2003) and classical Ben-
ers decomposition (Geoffrion, 1972) are well-known schemes from
he field of mathematical optimization. Benders decomposition is a
onstraint generation scheme with proven optimality. Generated con-
traints, i.e., Benders cuts, are based on proofs of infeasibility and
uboptimality of subproblems, which can be used inside the master
roblem. While in classical Benders decomposition a clear procedure
s given to generate new constraints, in logic Benders decomposition
9

he actual procedure for constraint generation has to be designed s
ndividually for each specific application. The authors, which proposed
uch logic Benders decomposition in Hooker and Ottosson (2003)
imply propose guidelines for the constraint generation, rather than an
xact procedure. For the logic Benders decomposition in Lamorgese and
annino (2015), Lamorgese et al. (2016, 2017) the authors propose
novel constraint for their particular subproblem, i.e., scheduling

raffic at a station. In Leutwiler and Corman (2022), a logic Benders
ecomposition is used, where subproblems share the same mathe-
atical structure with the master and the centralized problem. For

he Benders decomposition, a novel type of constraint is introduced,
ased on the infeasibility of a general railway scheduling problem.
nstead, (Lamorgese and Mannino, 2019) applies classical Benders
ecomposition to railway scheduling. In Keita et al. (2020) a three-
ayer Benders decomposition has been introduced, where the master
roblem of a classical Benders decomposition is split into two layers.
ne master problem determines optimal routing in railway scheduling,
nd a subordinate master problem is to determine optimal precedences
n railway scheduling. In Corman et al. (2012) the authors designed
onstraints for a subproblem that is the scheduling of a geographic area,
hich has the same spirit of Benders decomposition as they address

nfeasibility and suboptimality in subproblems similarly. In Bešinović
t al. (2016) the master problem is a macroscopic scheduling problem,
hich includes macroscopic precedence constraints. These constraints
re iteratively adapted based on the analysis of the subproblem, that is
microscopic scheduling problem.

Benders decomposition is particularly suitable for a decomposition,
here the subproblems have large solutions spaces, that are rather

ndependent from the solution space of the master problem. In this case
nly few additional constraints are necessary to represent the solution
pace of the subproblem, in the master; quick convergence can be
xpected. A railway related example is the decomposition of Lamorgese
t al. (2016) where a subproblem relates to a station with many
lternative routes for passing trains, all taking the same amount of
ime to pass. In such case, scheduling the trains outside the stations
which would be the master problem) is basically independent of routes
sed by trains in the station. A single constraint for the master problem
ould be sufficient to represent travel times of all routes in the station

o the master.

.1.2. Coordination by additional solutions: Column generation
In the coordination scheme of column generation, subproblems

eport solutions to the master problem, which result in additional
ariables, i.e., columns in the constraint matrix of the master prob-
em. Column generation can only be applied to decompositions in
omplicating constraints; and all related methods use soft impositions
nly. Dual values from a solution of the master problem are used for
enalties in the subproblems (soft imposition) to generate appropriate
ew subproblem solutions, i.e., columns in the master. Approaches of
olumn generation typically work iteratively adding columns to the
aster problems based on the incumbent solutions of the subproblems.
hose latter are guided through iterative updates of the penalty in
heir objective, based on the incumbent master solution. The only
olution method used for column generation in all reviewed works is
he Dantzig–Wolfe reformulation.

Dantzig–Wolfe reformulation (Vanderbeck and Savelsbergh, 2006)
s an approach to reformulate the solution space of a mathematical op-
imization problem through its vertices, i.e., solutions at the boundary
f the solution space. The optimization problem after a Dantzig–Wolfe
eformulation is to find an optimal convex combination of vertices. The
ertices are the columns of such optimization problem. The reformula-
ion is in general addressed by a column generation, where new vertices
re iteratively generated. In case of decomposition, the Dantzig–Wolfe
eformulation is used to reformulate only the non-complicating con-
traints. In this case, generating new vertices (i.e., subproblem solu-
ions) is then, per definition of complicating constraints, a significantly

impler problem. Further, if the non-complicating constraints inherit
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Table 6
Hierarchical solution methods in decomposed railway scheduling.
Publications Imposition Coordination scheme Solution method Optimal

Lamorgese and
Mannino (2015),
Lamorgese et al.
(2016),
Lamorgese et al.
(2017)
Leutwiler and
Corman (2022)

Strict Constraint Generation Logic Benders Yes

Lamorgese and Mannino
(2019)

Strict Constraint Generation Classical Benders Yes

Keita et al. (2020) Strict Constraint Generation Three-Layer Benders Yes
Corman et al. (2012) Strict Constraint Generation Benders-Like Yes
Bešinović et al. (2016) Strict Constraint Generation Constraint Adaptation No
Borndörfer et al. (2010b),
Borndörfer and Schlechte
(2007), Cacchiani et al.
(2008)

Soft Column Generation Dantzig–Wolfe Yes

Caimi et al. (2009), Caimi
et al. (2012)

Soft Column Generation Dantzig–Wolfe No

Brännlund et al.
(1998), Luan
et al. (2017),
Meng and Zhou
(2014)
Toletti et al.
(2020),
Cacchiani et al.
(2012)

Soft Penalty Function Lagrangian Relaxation No

Caprara et al. (2002),
Caprara et al. (2006)

Soft Penalty Function Relax-and-Cut No

Luan et al. (2018), Luan
et al. (2020)

Soft Penalty Function ADMM No

Corman et al.
(2010), Corman
et al. (2014),
Sinha et al.
(2016)
Zhang et al.
(2019), D’Ariano
et al. (2008),
Kersbergen et al.
(2016)
Matos et al.
(2021)

Strict Solution Passing Multi-Shot No

D’Ariano and Hemelrijk
(2006), Narayanaswami
and Rangaraj (2015)

Strict Negotiation Auction No
a block-diagonal structure, a single new vertex can be computed in
parallel, over multiple independent subproblems.

In Borndörfer and Schlechte (2007), Borndörfer et al. (2010b), Cac-
chiani et al. (2008) a Dantzig–Wolfe reformulation is applied, where the
column generation is carried out within a branch-and-bound scheme;
these schemes are known as branch-and-price schemes, where pricing
refers to the generation of new columns by appropriate penalties. Com-
plicating constraints are capacity constraints, such that each column
generated, that is a partial vertex and a solution of a subproblem, is the
schedule of an individual train. Only with a branch-and-price scheme,
the Dantzig–Wolfe reformulation and column generation is able to pro-
pose optimal solutions in case of mixed-integer programming, e.g., the
railway scheduling problem.

In Caimi et al. (2009, 2012), Dantzig–Wolfe reformulation is applied
similarly, but column generation is performed in a heuristic manner.
Therefore, it is possible that the columns, which are part of the optimal
solution, are never generated; if this is the case, the optimal solution
cannot be found when solving the master problem. The approaches
in Caimi et al. (2009, 2012) distinguish themselves from the literature,
as they include train dynamics. Each column generated from a subprob-
lem in such decomposition corresponds to a dynamically feasible train
trajectory. Caimi et al. (2012) considers in comparison to Caimi et al.
(2009) strengthened capacity constraints.
10
Column generation is effective if new columns, i.e., subproblem
solutions, can be computed efficiently. In general, many different solu-
tions from each subproblem (corresponding to columns in the master)
are necessary, to make sure the master can find a combination of
them that is an optimal solution to the original (centralized) problem.
Therefore, it is crucial in column generation to compute subproblem
solutions quickly. The most effective examples in railway scheduling
are decompositions in the entity domain, where subproblem solutions
are schedules of single trains and reduce to problems of shortest-path,
which can be solved extremely efficient.

4.1.3. Coordination by objective function: Penalty functions
In the coordination scheme of penalty functions, solutions of sub-

problems are considered as parameters of a penalty function in the ob-
jective of the master problem. In particular the inconsistency between
solutions of subproblems (a mismatch in solutions of the subproblems,
determining a global infeasibility) manifests as a penalty in the master
problem. The master problem on the other hand is an optimization
problem over variables used to parameterize penalty functions in the
subproblems. This scheme is known as Lagrangian relaxation (Fisher,
1985). The penalty function in subproblems, parameterized by the
master, directs the optimization of subproblems inside the respec-
tive feasible area, away from solutions potentially inconsistent with
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other subproblem solutions. Coordination by penalty functions can
only be applied to decompositions in complicating constraints and is
exclusively found in the literature, in the form of Lagrangian relax-
ation (Fisher, 1985); all methods of the coordination scheme of penalty
functions use soft impositions only. Three different types are given:
those applying the general scheme of Lagrangian relaxation, those using
a relax-and-cut scheme, and those using ADMM (Alternating Direction
Method of Multipliers).

In Brännlund et al. (1998), Cacchiani et al. (2012), Meng and
Zhou (2014), Luan et al. (2017) a classical Lagrangian relaxation is
applied to the constraints of network capacity. For (Brännlund et al.,
1998; Cacchiani et al., 2012; Meng and Zhou, 2014) the subproblem
reduces to a (time-dependent) shortest path problem. In Luan et al.
(2017) maintenance constraints lead to a least-cost path problem. In
all schemes above, the master problem computes a subgradient step
for an update on variables used to parameterize penalty functions
inside subproblems, based on the latest subproblem solutions. Often,
e.g., in Brännlund et al. (1998), subproblem solutions are first adapted
to be consistent with each other (i.e., build a centralized solution), and
then used for the subgradient step. These two steps of first ensuring
feasibility, and then updating the penalty, increases the convergence
amongst subproblem solutions. Still, the scheme of Lagrangian relax-
ation is known to converge slowly; in fact, all related publications
use some heuristic to compute a feasible upper bound solution at
any intermediate point of the scheme. Most common is a heuristic
where the penalty of a solution of the master problem is used to
determine priorities to trains (subproblems); those are then, train by
train, sequentially scheduled based on their priority. In Toletti et al.
(2020) a Lagrangian relaxation has been proposed for a geographic
decomposition. Complicating constraints at the border of geographic re-
gions are relaxed. The solution scheme follows the standard Lagrangian
relaxation scheme with a subgradient step to update penalty parameters
(i.e., master variables). In case convergence cannot be achieved after a
given number of iterations, a heuristic solution scheme is applied to
coordinate the transitions of trains between different geographic areas.

In Caprara et al. (2002, 2006), Lagrangian relaxation has been
paired with a lazy constraints scheme into a relax-and-cut scheme. In
this case, during the iterative adaptation of the penalty parameters
(i.e. master variables), only complicating constraints that are violated
by the latest subproblem solutions are considered. This allows to re-
duce the computation of the subgradient step in the master problem.
Also here, heuristics are proposed to compute intermediate feasible
solutions.

In Luan et al. (2018, 2020) the authors used the model of their
previous publication, i.e., Luan et al. (2017), to propose a decompo-
sition in the geographic domain. To solve the decomposed problem, an
alternating direction method of multipliers (ADMM) is applied. ADMM
uses a Lagrangian relaxation of the complicating constraint to generate
a penalty function for subproblems, but applies a different scheme to
update the penalty parameters in the master. In particular, subproblems
are solved sequentially; before the solution of each subproblem, the
penalty parameters in the master are adapted based on the latest
subproblem solutions. Like standard Lagrangian relaxation, ADMM has
no guarantee to converge for problems of railway scheduling, and in
fact a similar priority scheduling heuristics as in Caprara et al. (2002)
has been used to compute intermediate feasible solutions. Luan et al.
(2020) extends the decomposition principle of Luan et al. (2018) to dif-
ferent decompositions, and compares it to other heuristic coordination
methods.

A coordination by penalty functions (Lagrangian relaxation) is most
effective if subproblems can be solved efficiently. Often many updates
of penalty parameters in the master problem are necessary to find
consistent solutions for all subproblems and subproblems must be
solved many times. The most effective examples in railway scheduling
are, as for column generation, decompositions in the entity domain,
where subproblem solutions are schedules of single trains, extremely
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efficient to compute, by solving, e.g., a shortest-path problem.
4.1.4. Coordination by sharing solutions: Solution passing
We denote as solution passing a coordination scheme in which

subproblems report feedback by communicating (passing) their entire
solutions to the master, where in the master, depending on the actual
implementation of solution passing, some part of the reported solu-
tion(s) is fixed in its own optimization to coordinate with subproblems.
Solution passing is exclusively applied to decompositions based on
complicating variables; and all methods of solution passing use strict
impositions. According to our interpretation, a single solution method
has been identified in the literature. We name such method as multi-
shot; multiple tries (shots) are undertaken to find a global solution.
Each try is the sequence of first solving the master problem and subse-
quently all subproblems. The important part is, that each try is carried
out with different initial conditions, i.e., a slightly different master
problem. The initial conditions to be included in the master are the
results of solutions of subproblems passed to the master problem from
the previous try (shot), hence multi-shot in solution passing. Most often,
one master problem and several subproblems are considered (Corman
et al., 2010, 2014; Sinha et al., 2016; Zhang et al., 2019; D’Ariano et al.,
2008).

A special case on solution passing and multi-shot is the approach
of Kersbergen et al. (2016). Compared to the approaches above, the
decomposition of Kersbergen et al. (2016) has no clear master problem
but only multiple dependent subproblems; subproblems are sequen-
tially solved. The multi-shot characteristic in such approach is brought
in, as after solving all subproblems in sequence, the sequence is re-
solved again from the beginning, but this time considering the solutions
of the previous iteration.

A different special case is the approach of Matos et al. (2021), where
the decision at the master level is to determine the duration of all
operations in the timetable; and a single subproblem evaluates if a
feasible timetable exists for the durations determined by the master.
At the master level, a multi-agent approach is used: each agent defines
the duration of a single operation. We classify the scheme as solution
passing, as agents adapt their solutions based on solutions of the
subproblem.

All approaches of solution passing and multi-shot heuristically opti-
mize different subsets of variables from the original scheduling problem
in different problems of the decomposition. In Corman et al. (2010,
2014), Sinha et al. (2016) furthermore a block-diagonal structure is
exploited. In general we understand the heuristics of this section to
work best in cases where subproblems have large solution spaces with
little ties to (i.e., few variables fixed by) the master problem (or other
subproblems). A large solution space increases the likelihood for a
feasible solution in the subproblem while few variables fixed by the
master solution decrease potential coordination effort.

4.1.5. Coordination by sharing intentions: Negotiation
In coordination schemes of negotiation, subproblems report feed-

back to the master problem in form of an intention. The intention repre-
sent the desire of a subproblem to take a certain solution, i.e., schedule.
In an iterative process, the master problem allows or denies specific
solutions based on previously shared intentions from subproblems.
Based on the master’s decision, subproblem update their intentions. In
the literature we identified a single solution method in negotiation with
purely hierarchical structure: auctions.

In auctions, subproblems report their intentions in form of bids.
A bid represents the worth of a particular subproblem solution in
perspective of the subproblem objective. The master problem acts as
an auctioneer. The master receives all bids and then decides which
subproblem wins the auction, and consequently the solution. Auctions
are carried out multiple times, till a solution for each subproblem has
been found. Auctions may also consider only parts of the solution of
a subproblem, e.g., particular departure or arrival times of trains. In
general, all auction-based decomposition methods we discovered in

the literature of railway scheduling are also agent-based. That is, each
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Table 7
Decentralized solution methods in decomposed railway scheduling.
Publications Imposition Coordination scheme Solution method Optimal

Perrachon et al.
(2020), Liu et al.
(2019), Bretas
et al. (2019)
Bretas et al.
(2021)

Strict Negotiation Multi-Agent No
subproblem is represented by an agent which computes the bids, as
well as the auctioneer is represented by an additional agent. Auction
based methods belong to methods using strict impositions; the result of
an auction is strictly enforced to the subproblems, such that only the
winning subproblem is allowed for a particular schedule.

In D’Ariano and Hemelrijk (2006) agents represent subproblems,
each modeling a train; they bid on possible schedules provided by the
master problem, i.e., the auctioneer. In Narayanaswami and Rangaraj
(2015) agents are trains bidding for particular departure or arrival
times at stations.

Auction-based methods are a category of multi-agent methods
where convergence to a feasible solution is guaranteed, through the
structured interaction of auctioneers and bidding agents. In general,
there is no guarantee that other methods based on multi-agents will
converge, i.e., agree on a common consistent solution.

4.2. Purely decentralized solution methods

In purely decentralized solution methods, the master and/or sub-
problems can be solved in an arbitrary order. All problems which are
at the same level in the decomposition can be coordinated in a direct
exchange of information with each other (vertical communication). A
recent, more extensive review on the topic of decentralized railway
scheduling can be found in Marcelli and Pellegrini (2021). Such re-
view includes also applications beyond railways, where decentralized
solution methods have shown potential.

The key difference in decentralized solution methods is that only
methods using strict impositions are possible, where impositions are
made on a single level of hierarchy. If otherwise soft impositions would
be used, feasibility of a solution could not be guaranteed and central-
ized coordination would be necessary in some form, to recover a feasi-
ble solution for the original (centralized) problem (e.g., see Khadilkar,
2019). As strict impositions are required, decentralized methods of the
literature are exclusively applied to decompositions based on compli-
cating variables. Decentralized solution methods are applied in partic-
ular to those decomposition in Table 3 where no master problem or
multiple master problems are considered; hence vertical communica-
tion is required. In these cases, the solution methods enforce a certain
degree of parallelism among the various subproblems.

Regarding the coordination schemes in decentralized decomposi-
tion, the literature shows only a single scheme, i.e., the scheme of
negotiation, where in particular agents negotiate between each other.
We summarize all decentralized approaches of the literature in Table 7.

4.2.1. Coordination by sharing intentions: Negotiation
The coordination scheme of negotiation is a coordination scheme

that appears in both, hierarchical and decentralized decompositions.
In hierarchical negotiation a master problem may only guide, reject,
or restrict subproblem solutions in the process of negotiation. Instead,
approaches in decentralized negotiation have no master problem and
subproblems negotiate directly, mutually restricting each other’s so-
lution by strict impositions. In the literature reviewed, all solution
methods using negotiation on a decentralized decomposition are agent-
based approaches. Agents negotiate by exchanging (details of) their
(current best) solution.
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In Perrachon et al. (2020), Liu et al. (2019), Bretas et al. (2019,
2021) decentralized agent-based approaches are proposed. A full decen-
tralization is possible due to strict impositions, i.e., in these approaches
agents are not allowed to propose solutions with would conflict with
solutions they received from other agents. In Perrachon et al. (2020),
Bretas et al. (2019, 2021) agents represent trains. Each agent respects
the solutions it has received from other agents, such that in case of a
possible conflict, it determines for itself a different conflict-free solution
accordingly. In Liu et al. (2019) agents represent different geographic
areas. Agents exchange entry and exit times of trains; each agent adapts
its schedule according to exit and entry times of trains it receives
from other agents. In general, the decision processes of agents above
are designed to converge to a consensus in an iterative exchange and
adaptation of solutions.

Decentralized agent-based approaches can be parallelized to a high
extent, as each agent is almost independent from anything else in its
execution. The parallelism can be implemented locally on a single
machine or spread over multiple physical machines.

4.3. Hierarchically decentralized solution methods

Hierarchically decentralized solutions methods have at the same
time both aspect of hierarchical and decentralized decomposition. In
these approaches, the problems of the decomposition show a hierar-
chical structure; within the hierarchical structure, some problems on
the same hierarchical level are coordinated directly, in a decentralized
manner.

In the literature, hierarchically decentralized solution methods have
been found with both strict and soft impositions. For solution methods
using strict impositions it is not necessary to have a single problem
at the hierarchical top for coordination. Multiple problems can exist
on the highest hierarchical level; these problems can be addressed in
parallel. For solution methods using soft impositions it is necessary
to have a single problem at the hierarchical top for coordination. We
summarize hierarchically decentralized solution methods in Table 8.

4.3.1. Coordination by sharing intentions: Negotiation
In all the literature, hierarchically decentralized solution methods

are either auction or multi-agent methods where agents negotiate
towards a consistent solution.

While auction-based methods of Section 4.1.5 have a single auc-
tioneer, auction-based solution methods of this section have multiple
auctioneers. In Parkes and Ungar (2001) agents represent trains, bid-
ding at different auctions for entry and exit times into different areas
of the network. Auctions are held for different geographic areas of the
railway network. We consider the decomposition of Parkes and Ungar
(2001) as a special case where neither auction agents, nor train agents
communicate among agents of the same type. Rather global coordina-
tion is achieved as train agents participate at multiple auctions, i.e., the
train agent assures consistency of a single train ride, and multiple train
agents participate at a single auction, i.e., the auction guarantees no
conflicts inside an area. In Table 3 we classified train scheduling as the
master problems, and auctions as subproblems. In reality, there is no
clear superiority of one the two of types of problems over the other, as
train agents coordinate the result of different auctions but also auctions
impose restrictions on train agents.
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Table 8
Hierarchically decentralized solution methods in decomposed railway scheduling.
Publications Impositions Coordination scheme Solution method Optimal

Parkes and Ungar (2001) Strict Negotiation Auction No
Proença and Oliveira
(2004)

Strict Negotiation Multi-Agent No

Khadilkar (2019) Soft Negotiation Multi-Agent No
Compared to the multi-agent methods of Section 4.2.1, in the multi-
gent methods discussed in this section, agents are partially arranged
n a hierarchy. In such setting, there are both hierarchical coordination
f problems; and decentralization. This latter is present when, for
ome levels, problems are coordinated directly instead of hierarchically.
n other terms, there might be multiple problems (or agents), which
re coordinated directly, on the highest hierarchical level. The other
ossibility is that on a lower hierarchical level, subproblems (or agents)
re coordinated directly with each other, partially without the input
rom hierarchically higher levels.

In Proença and Oliveira (2004) a multi-agent approach is proposed
here agents represent geographic areas on a hierarchically higher

evel, and train agents on a hierarchically subordinate level. Train
gents exclusively communicate with agents of areas, about available
lock sections for their operations. Agents of areas coordinate with each
ther to assure consistency for inter-area traffic.

In Khadilkar (2019) a multi-agent approach is proposed where
gents only represent trains plus a single coordination entity. Agents
ommunicate directly to each other exchanging the incumbent best
olutions, i.e., timetables. Train agents do not necessarily respect solu-
ions received from other agents, but rather the received solutions are
nput to a penalty function, which is considered in the decision process
f the receiving agent (soft impositions). Therefore, if the incentive
or the agent is big enough, the agent may decide for a solution,
hose execution would lead to a conflict with another agent. As a

onsequence, a final centralized recovery step is required, to adjust
olutions of train agents, i.e., subproblems, for feasibility. The recovery
tep is a hierarchical element in the otherwise decentralized solution
ethod. Building a schedule by a centralized (recovery) agent assures

hat no train agent may plan operations, which would lead to conflicts
r deadlocks in the system.

Hierarchically decentralized solution methods combine the benefits
f both hierarchical and decentralized methods. Ideally, such solu-
ion methods result in multiple problems equal in type (suitable for
ecentralization), where each subproblem is rather difficult to solve.
hen, it makes sense to solve these individual problems by a second
ecomposition, i.e., a using a hierarchical solution method.

.4. No coordination

In our review of the literature, we also identify several decompo-
itions with solution methods where no explicit coordination scheme
s applied. We classify as single-shot approaches with no coordination.
hat is, after a sequence of all problems of a decomposition is solved, ei-
her a feasible solution is found, or it is required that the fundamentals
f the scheduling problem are changed, either rule-based or by human
nteraction. No retry is undertaken using different initial conditions and
e may consider these solution methods as non-iterative.

In the literature all solution methods of no coordination apply
trict impositions, such that if a solution is found after a single shot,
uch solution is guaranteed to be feasible regarding the original (cen-
ralized) problem. As such all these methods are decompositions of
omplicating variables (see Table 3). Furthermore no solution method
n this class proposes an explicit master problem to exploit block-
iagonality. Rather all subproblems are dependent on each other and
olved sequentially.

In approaches of Shang et al. (2018), Herrigel et al. (2013), Liu
nd Dessouky (2017) different subproblems describe different trains or
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groups of trains. In Zhan et al. (2016) different subproblems relate to
different time periods. An overview is given in Table 9.

Solution methods with no coordination exploit exclusively the
super-linear decrease of complexity for decreasing problem size. Be-
cause each subproblem is significantly smaller than the original prob-
lem, the sequence of subproblems is in general solved faster than the
original problem. Despite the computational speedup, methods of no
coordination are not guaranteed to provide any solution.

5. Discussion

In this paper, we reviewed the academic literature discussing de-
composed railway scheduling. We included early approaches, following
mostly methods of mathematical optimization, but also more novel
approaches based on data-driven solutions or agents.

We identified mathematical principles for decomposition, which
depend on the structure of the mathematical models. A complemen-
tary analysis focused on solution methods; two properties have been
identified, the presence of a hierarchy in the solution process, and the
presence of decentralized communication within subproblems at the
same level. For each type of structure, we identified different ways
by which the decomposed problems are coordinated towards globally
feasible and (possibly) optimal solutions. Here, we take a step back and
reflect on the strength and potential for specific approaches.

5.1. Decomposition in different domains

Different decomposition domains often result in different sizes of
master and subproblem, different complexities of these problems and
also determine whether the subproblem(s) shows a block-diagonal
structure. In the ideal decomposition, the complexity of the master
and subproblem(s) is as low as possible. For the master problem, the
complexity often directly relates to the amount of complicating vari-
ables or complicating constraints in a decomposition, i.e., the amount
of variables or constraints in the master. For subproblem complexity,
there is no similar easy pattern. We discussed ways of decomposition
by which we may expose a block-diagonal structure in the subproblem
or fundamentally change the class of complexity of the subproblem.
The size alone does not determine the complexity of a subproblem, but
rather the complexity strongly depends on the domain and principle
of decomposition. It is therefore important to choose the right domain
and principle for a specific problem at hand, to result in a performant
decomposition approach. The ideal decomposition should have a small
amount of complicating elements (variables or constraints), and the
subproblems should display a block-diagonal structure, where blocks
propose an optimization problem of an easier class than the original
problem. We report in Table 10 on the characteristics of decompositions
in different domains, as seen in the literature. We report for domain and
principle an order of magnitude of the computational complexity as
depending on complicating elements and for related subproblems; and
how complexity is reduced, e.g., through a block-diagonal structure or
a computational complexity problem class (e.g., P instead of NP).

Geographic and temporal decompositions are promising, under the
aspects of small sized master problem and block-diagonality in sub-
problems, but subproblems remain in the same complexity class as
the original problem. The number of complicating elements relates
to the amount of railway traffic between different geographic areas
or time periods, and is usually much lower for those two domains,
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Table 9
Non-coordinating solution methods in decomposed railway scheduling.
Publications Imposition Coordination scheme Solution method Optimal

Shang et al.
(2018), Herrigel
et al. (2013), Liu
and Dessouky
(2017)
Zhan et al.
(2016)

Strict None Single-Shot No
Table 10
Characteristics of decompositions in different domains.
Domain Principle # Complicating elements Reduction of complexity

Geographic CV (Traffic between Areas) Block-Diagonal
Geographic CC (Traffic between Areas) Block-Diagonal
Temporal CV (Traffic between Time Periods) Block-Diagonal
Temporal CC (Traffic between Time Periods) Block-Diagonal
Entity CV (Single Entity) Block-Diagonal
Entity CC (Capacity Constraints) Block-Diagonal (& Problem Class)
Generic CV (Decisions) Problem Class
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than for the entity or generic domain (e.g., see Luan et al., 2020);
moreover the subproblems show in general a block-diagonal structure.
For temporal decompositions, one has to be careful when separating
the original time horizon into smaller periods. As Luan et al. (2020)
shows, if arbitrary periods are chosen (regular in time against a very
variable traffic, or irregular in time against a rather constant traffic), a
temporal decomposition can result in large numbers of complicating
elements, e.g., more than for a decomposition in the entity domain.
A possible solution for temporal decompositions can be to adjust the
length of time periods according to traffic density on the network
over time. Choosing time periods for the decomposition dynamically,
according to traffic density over time, we can minimize the amount of
traffic operating in more than one time period and thus minimize ties
(complicating elements) between different time periods. An interesting
open challenge is to exploit recurrent patterns in both decompositions,
for instance based on periodic timetables, to simplify the solutions. For
instance, Benders cuts can be computed for a recurrent service pattern
and then propagated to all relevant subproblems.

The entity domain is by far the most explored domain in decom-
posed railway scheduling. The decomposition with train entities shows
in general very beneficial properties with many very small subproblem
due to block-diagonality and moreover subproblems of a complexity
class usually extremely simple (e.g., shortest path problems). Decom-
positions in the entity domain have also drawbacks, which include a
very large number of complicating elements. In decompositions based
on complicating constraints, capacity constraints are in general iden-
tified as complicating; those are especially numerous in dense traffic
situations, resulting in increased coordination burden. Furthermore,
the entity domain shows only few decompositions by means of com-
plicating variables. We see here a big potential for novel approaches.
If entities are trains or block sections (e.g., Borndörfer and Schlechte,
2007), a specific analysis may identify the potential conflicts amongst
entities and identify those entities with many conflicts, such that vari-
ables related to those entities can be isolated as complicating variables.
A possible result can be a partition of the problem in a complexity
core; and a set of non-complicating entities, which have only little or
almost no interference with each other, and can be therefore scheduled
independently.

The generic domain results in very different approaches concern-
ing the amount of complicating elements (variables) and the type of
subproblem, in comparison to other domains. Often all or a subset
of discrete decisions are identified as complicating. An example such
as Lamorgese and Mannino (2019) shows, that if a decomposition is
appropriately chosen, the structures in the railway scheduling problem
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can be exposed, which lead to impressive speed-ups. An open challenge s
in the generic domain is how to determine an appropriate choice of
complicating variables to expose structures; several cases have already
been reported, where exposed structure lead to a significantly reduced
complexity of the subproblem. To this end, data driven methods based
on clustering or other unsupervised learning, as well as domain trans-
formation, can help solve the problem faster. Further, we did not come
across any generic decomposition based on complicating constraints.
It is important thus to analyze a railway scheduling problem for com-
plicating constraints, whose removal can lead to a decomposition with
favorable properties, i.e., few complicating constraints, block-diagonal
or simple subproblems. In this sense, graph representations of the
problem might be used to analyze connected components, and/or by
flow or cut approaches.

In conclusion, no domain used for decomposition seems to outper-
form the other in terms of general potential. The specific characteristics
of the railway scheduling problem to be solved can strongly suggest
some or other approaches, depending on which variables and con-
straints it imposes at global and local level. We expect decompositions
with a well balanced complexity between master and subproblems as
favorable for large-scale applications.

5.2. Important aspects of decompositions

In the following we discuss a few important requirements and
potentials for decompositions.

Parallelization. Computer architectures today are designed for ef-
icient parallel computing, especially modern GPU’s contain a very
igh number of cores, designed for highly parallelized computing. Still,
hether such potential can be explored depends on the problem to be

olved by the computer. With regards to parallel computing, decen-
ralized solution methods (Section 4.2) have a clear advantage over
ierarchical solution methods (Section 4.1). Hierarchical structures can
lso be parallelized, but the master (or single entity to which all sub-
roblems communicate) must be run at once, and after all subproblems
ave been executed. Instead, every decentralized structure features
any subproblems that can be run in parallel, lacking the possible

ottleneck of a single master problem. An important issue in the
arallelization is of course the communication, which should be fast,
ith high bandwidth (in case of geographically dispersed subproblems)
nd pertinent, i.e., exchanging what is needed to achieve consistency,
ut not much more. Instead, for hierarchical solution methods, we
an revisit Tables 3 and 5 to identify cases of multiple independent
ubproblems. Those are in general very effective for parallel computing.
n hierarchical solution methods the bottleneck remains the slowest

ubproblem in each iteration, as for each solution iteration, normally
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all subproblems must be solved. This would suggest to balance the
complexity of all subproblems (rather than the amount of sections,
length of time interval, or trains).

Dedicated Hardware. In case the task for a computer is always
the same in terms of operations to be done, the usage of dedicated
hardware such as GPU’s or FPGA’s can lead to substantial speedup
in computation. Revisiting Tables 3 and 5 to see which problems
are faced during the different decompositions, we see two possible
applications for dedicated hardware: In most publications reviewed on
train-entity based decompositions, the subproblems reduce to problems
of shortest path. Such problems are strongly structured and solved by
efficient algorithms, which repeat only few operations many times. As
such, these decompositions are very suitable for being solved via dedi-
cated hardware. The second use case for dedicated hardware relates to
agent-based approaches. Agents in such approaches are in general rule
based, or taking actions based on machine learning algorithms. Both
implementations require for the computation of an agents decision,
several matrix multiplications, for which GPU’s have proven extremely
effective.

Explainability of Solutions. An important aspect in industrial applica-
tions is that the experts accept the computed solutions. Here, in general
decomposition approaches could bring a benefit. Since solutions for the
original problem are the assembly of different subproblem solutions,
experts have the possibility to study also the subproblem solutions,
and get more insight in the determination of a particular solution.
Moreover, decomposition domains rooted in the real life problem (for
instance based on geography, or time) are commonly used in real life,
thus easier to understand by most operators. This could help for the
acceptance of novel decomposition methods.

Fast Availability. An important aspect with respect to industrial ap-
plications is the fast availability of a first good solution, or even better,
being extremely fast in determining the optimal solutions. There, a
clear difference exists between decompositions of complicating con-
straints, and complicating variables. In decompositions of complicating
variables, especially in the exact approaches, a subproblem determines
a feasible and optimal solution given the latest master solution. It
is likely that many iterations are necessary before a first feasible
solution for a subproblem is encountered, making it hard to have a
intermediate feasible solutions available quickly. The extreme case is
that the first time a feasible solution for all subproblems has been
found, is also the end of the algorithm, as it is the optimal solution
(see e.g., Lamorgese et al., 2016). In decompositions of complicating
constraints, subproblems often report some possible solutions. Either
one can find an intermediate feasible solution for the original problem
based on given subproblem solutions, or one of the many heuristics
in the literature can determine intermediate feasible, yet not optimal,
solutions. This could be an advantage in real-time truncated solution
processes.

Railway specific vs. Generic. Looking at Tables 3 and 5 we see that
many decompositions are inspired by traditional elements of railway,
e.g., areas, junctions or trains. We see great potential in getting away
from railway specific concepts and looking at the problem of railway
scheduling in a more generic way. In other terms, studying and un-
derstanding the problem not by its physical aspects, but by exploiting
its mathematical structure. An example of this idea is Lamorgese and
Mannino (2019), where the variables in the mathematical problem
are decomposed only by the type of variables, and not by domain
understanding. The paper proposes to separate all integer from all non-
integer variables, under a standard Benders decomposition approach,
and reports a significant speedup. Generic decomposition approaches
are a great opportunity to use the variety of generic tools which are
increasingly made available in mathematical optimization.

Indexing, or continuous Relaxation. Many of the decompositions re-
viewed in this work rely for their decomposition on a time-indexed for-
mulation of the railway scheduling problem. These formulations gen-
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erally suffer under a more detailed time granularity, as the size of the
solution space depends on the amount of time indices. In other terms,
if operators desire timetables with high accuracy, i.e., a fine discretiza-
tion of time, this becomes a big disadvantage for such models and
decompositions. This mainly concerns decompositions where capacity
constraints are identified as complicating constraints, as these decom-
pose in time-indexed form. Continuous formulations suffer from a more
detailed granularity only for numerical approximations, e.g., concerns
of floating-point arithmetic, which can be needed in case of nonlinear
constraints or objective functions. In contrast, continuous formulations
in general include big-M constraints to model the discrete decisions
of a railway scheduling problem. These constraints often show a poor
linear relaxation. Instead, in general good (tight) linear relaxations are
crucial for the efficiency of many algorithms that are used to solve
mixed-integer problems (railway scheduling).

Separability of objective function terms, extension to multi objective opti-
mization. One important factor we found in most of the decompositions
we reviewed, is that the objective should be separable in terms of
variables, i.e., does not contain any bi-linear or similar terms. If this
is not the case, a separation into master and subproblem is often not
possible, or possible only partially. In fact, it must be ensured that the
variables, which appear together in a nonlinear term in the objective,
have to be in the same problem. This can be either any of master or
subproblem.

No decomposition approach reviewed deals with multi-objective
optimization. Nevertheless, we believe that many decomposition ap-
proaches are easily extendable and some even as particularly bene-
ficial, compared to the non-decomposed problems. In multi-objective
optimization, where different objectives are optimized sequentially,
e.g., when using methods of column or constraint generation, the
columns/constraints generated during the optimization over one objec-
tive could partially or maybe even fully be reused in the optimization
of other objectives.

5.3. Current research gaps, and directions for future research

The literature of decomposed railway scheduling shows many differ-
ent promising decompositions. Nonetheless as shown in the introduc-
tion of this paper, a gap is still existing between the size of instances
addressed in academia, and the size of instances, which the operators
need to handle in real life, especially in microscopic scheduling. Most
decompositions we reviewed, sacrifice to some extent optimality for
the sake of speed. On the contrary, it is the main goal of railway
operations to increase the capacity of their railway network through
highly effective timetables. As such there needs to be a dialog between
academia and industry how much optimality may be sacrificed.

Future research must address the issues of today’s existing meth-
ods, which include the following: A clear issue amongst all works
reviewed is the lack of studies on benchmark large-scale instances of
railway scheduling. Many papers conclude stating that larger instances
have been tackled by decomposition, compared to existing centralized
approaches, but no exhaustive experiments have been conducted on
openly available actual large-scale instances. Several papers state the
issue, that in case of a non-optimal approach, it is extremely difficult
to estimate the quality, or optimality gap, of an intermediate solution. It
thus can hardly be estimated if it is worth to continue the computation
or stop with the incumbent best solution. A number of publications,
especially in column generation approaches, denote the issue of RAM as
a limiting factor towards large-scale instances. RAM could be expanded,
but this comes still at a high resource cost. Agent-based approaches
have been mostly tested and especially been trained only on medium
sized instances (i.e., 15 trains over 4 areas (Parkes and Ungar, 2001),
20 trains over 20 station (Perrachon et al., 2020), 48 trains over 2
junctions (Liu et al., 2019)). To prove a practical applicability of agent-
based approaches on larger instances (e.g., 150 trains and 1000 block
sections as in Luan et al. (2020)) further studies are necessary with an

increased amount of agents, and associated complexity. The amount
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of data (either from recorded operations, or from simulation, or both)
necessary to train the agents in case of large-scale instances becomes
an additional, significant factor of complexity.

Furthermore, many agent-based approaches reviewed in this work
rely on more or less complex rules to guide the underlying decision
process. The possibility to automatically learn such rules based on
the instance and the realization is very attractive: Khadilkar (2019)
and subsequently Bretas et al. (2021) use techniques from machine
learning, in particular q-learning, to provide a decision process for
agents. It is an interesting and yet open question whether other methods
in machine learning, ranging from simple regression to sophisticated
neural networks, can lead to an improved solution quality in railway
scheduling. Here, the availability of benchmarks (such as the ongoing
research at Swiss Federal Railways — SBB (Laurent et al., 2021)) allows
collaborative investigation and benchmarks of specific approaches,
which are typically only solved for specialized types of problems.

In a different direction, we see the integration of Benders decom-
position very promising. First, all publications using such an approach
are published within the last 6 years, which identifies it as a promising
new idea. Also as we discussed earlier, especially for logic Benders
decomposition, the design of appropriate constraints can be particularly
elaborated to outperform what can be achieved by following a simple
procedure. In this direction, the seminal paper (Hooker and Ottosson,
2003) proposes only a framework and the necessary requirements for
the validity of appropriate constraints, but leaves the problem open, on
how to design the constraints for different applications such as railway
scheduling. We believe there is large potential for further improvement
beyond the ideas of Lamorgese and Mannino (2015) and Leutwiler and
Corman (2022).

Finally, we see great potential in more generic decompositions. Most
of the decomposition approaches we reviewed in this work propose
decompositions based on ideas backed with a physical interpretation.
It is relatively easy to interpret geographic areas, time periods and the
entity of a train. Instead, generic decompositions can be less easy to
be interpreted, but might have computational advantages. In this case,
specific subset of complicating variables or complicating constraints
can be determined, that fit very simple structures, or balance the
load of the subproblems. In this sense, generic decompositions might
exploit approximate descriptions of complexity, and use the variables
and constraints of each subproblem (i.e., its complexity) as a hyper-
parameter to be determined. We believe it is possible to achieve in such
way decompositions closer to the ideal of a small master problem and
simple independent, numerous subproblems.
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