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Abstract

The central theme of this thesis is to push the limits of aerial robotics via novel vehicle design
and by developing methods that combine model-based control with machine learning approach
to exploit the best aspects of both methods. Conventional quadrotors have become popular
due to their mechanical simplicity and agility. Meanwhile, novel vehicle designs endow flying
machines with new capabilities that a standard quadrotor lacks. This thesis investigates two
designs: 1. a flying vehicle which has a single moving part and is yet able to hover and fully
control its position, the Monospinner; 2. a tilt-arm overactuated (18 actuators) omnidirectional
flying vehicle, the Omav. For the former design, this highly underactuated flying machine aims
to answer a fundamental question about flying machine: what is the minimum number of moving
parts for a controllable flying vehicle. The latter design is tailored for aerial physical interaction
tasks, for which flying vehicles need to exchange forces with their surrounding environment.
The Omav thus has a full actuation wrench envelope (that is, the ability of producing force and
torque in arbitrary directions) and is inevitably mechanically complex.

These novel designs require new modeling and control approaches: the controlled system
has to be robust against internal and external disturbances, these include modeling error due to
mechanical complexity, aerodynamics, manufacturing imperfections, measurement noise, and
environment disturbance. While first-principle model-based control methods are powerful for
design and control of dynamical systems and applied on the Monospinner, tools from statistical
learning theory help to capture the part of the Omav dynamics that is hard to model using
first principles. This in turn helps model-based control method to perform optimally for such
a mechanical complex flying machine. Challenges arise along with this novel approach such
as the data collection efficiency and efficacy and the embedding of the learned model into the
controller.

For the Monospinner, the core approach is to use model based control theory to find a vehicle
design that is robust under disturbance. In particular, its translational and attitude dynamics
are formulated as a twelve-dimensional state space system, which may be linearized to a lin-
ear time-invariant system amenable to controllability analysis, controller synthesis, and vehicle
design. A mathematical analysis is given to show the vehicle is fully controllable in position
after removing its yaw state, and in particular for the case of a vehicle with the shape of a planar
object and an offset thrust location (with respect to its center of mass). The equilibrium of the
resulting system has a large region of attraction such that it recovers after being thrown into the
air like a frisbee.

The research into the Omav puts emphasis on algorithmic methods. This thesis presents
an approach that combines a data-driven and a first-principle model for the system actuation
and uses it to improve the controller. Particular attention is paid to avoid ambiguous solutions
present in a standard inverse model. This is solved by an optimization problem only using
forward models. In addtion, an efficient training data collection procedure is devised using an
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Abstract

optimization problem formulation to find an informative trajectory. We present a sampling-
based method that computes an approximation of the trajectory that minimizes the predictive
uncertainty of the learned dynamics model. This trajectory is then executed, collecting the data
to update the learned model. Last but not least, an adaptive control strategy is proposed for aerial
sliding on surfaces with discontinuous change in geometry and unknown, spatially-varying fric-
tion properties. It augments a standard impedance controller using a control parameter adjust-
ment policy, which combines proprioceptive measurements, tactile sensing and control signals
as the policy input. In particular, this policy is trained in simulation with simplified actuator
dynamics and yet is capable of being transferred to the robot without any adaptation. The key
to this is the preserved controller structure.

Indoor experiments of the Monospinner and the Omav have been evaluated in various condi-
tions.
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Zusammenfassung

Das zentrale Thema dieser Arbeit ist die Erweiterung der Grenzen der Luftrobotik durch neuar-
tiges Fahrzeugdesign und die Entwicklung von Methoden, die modellbasierte Steuerung mit
Ansätzen des maschinellen Lernens kombinieren, um die besten Aspekte beider Methoden zu
nutzen.

Aufgrund der jüngsten Entwicklungen in Sensoren, Computertechnologie und Elektromo-
toren sind Mikro-Luftfahrzeuge mit Rotationsflügeln mittlerweile weit verbreitet. Konven-
tionelle Quadrokopter erfreuen sich aufgrund ihrer mechanischen Einfachheit und Wendigkeit
großer Beliebtheit. Gleichzeitig verleihen neuartige Fahrzeugdesigns Flugmaschinen neue Fähig-
keiten, die ein herkömmlicher Quadrokopter nicht besitzt.

Diese Arbeit untersucht zwei solcher Designs:
1. Ein Flugzeug mit nur einem beweglichen Teil, das schweben und seine Position vollständig

kontrollieren kann, der Monospinner; 2. Ein tilt-arm überaktuiertes (18 Aktuatoren) omnidirek-
tionales Flugzeug, das Omav.

Bei ersterem Design, einer stark unteraktuierten Flugmaschine, geht es darum, eine grundle-
gende Frage über Flugmaschinen zu beantworten: Wie viele bewegliche Teile sind notwendig,
um ein steuerbares Flugzeug zu bauen? Das letztere Design ist auf Luftaufgaben zugeschnit-
ten, bei denen Flugzeuge Kräfte mit ihrer Umgebung austauschen müssen. Das Omav verfügt
über einen vollständigen Aktuationskraft-Momentenbereich (das heißt, die Fähigkeit, Kräfte
und Drehmomente in beliebige Richtungen zu erzeugen) und ist zwangsläufig mechanisch kom-
plex.

Diese neuen Designs erfordern neue Modellierungs- und Steuerungsansätze: Das gesteuerte
System muss robust gegen interne und externe Störungen sein, zu denen Modellierungsfehler
aufgrund von mechanischer Komplexität, Aerodynamik, Herstellungsfehlern, Messrauschen
und Umgebungsstörungen gehören. Während modellbasierte Steuerungsmethoden aus erster
Prinzipien für Design und Steuerung dynamischer Systeme mächtig sind und auf den Monospin-
ner angewendet werden, helfen Werkzeuge aus der statistischen Lerntheorie dabei, den Teil der
Omav-Dynamik zu erfassen, der sich schwer aus ersteren Prinzipien modellieren lässt. Dies
wiederum hilft der modellbasierten Steuermethode, für eine solche mechanisch komplexe Flug-
maschine optimal zu funktionieren. Mit diesem neuartigen Ansatz treten Herausforderungen
auf, wie zum Beispiel die Effizienz und Wirksamkeit der Datensammlung und die Einbettung
des gelernten Modells in den Regler.

Für den Monospinner ist der Kernansatz die Verwendung der modellbasierten Regelungs-
theorie, um ein Fahrzeugdesign zu finden, das robust gegenüber Störungen ist. Insbesondere
werden seine translations- und attitude-Dynamik als zwölfdimensionales Zustandsraumsystem
formuliert, das linearisiert werden kann, um ein lineares zeitinvariantes System zu erhalten,
das für die Kontrollierbarkeitsanalyse, die Reglersynthese und das Fahrzeugdesign geeignet
ist. Es wird eine mathematische Analyse vorgelegt, die zeigt, dass das Fahrzeug nach Entfer-
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Zusammenfassung

nen des Gierzustands in der Position vollständig kontrollierbar ist, insbesondere für den Fall
eines Fahrzeugs mit der Form eines planaren Objekts und einem verschobenen Schubpunkt (im
Vergleich zum Schwerpunkt). Das Gleichgewicht des resultierenden Systems hat eine große
Anziehungskraftsregion, so dass es sich nach dem Wurf in die Luft wie ein Frisbee wieder
erholt.

Die Forschung zum Omav legt den Schwerpunkt auf algorithmische Methoden. Diese Ar-
beit stellt einen Ansatz vor, der ein datengetriebenes und ein erstprinzipielles Modell für die
Systemanregung kombiniert und es zur Verbesserung des Reglers nutzt. Besondere Aufmerk-
samkeit wird darauf gelegt, mehrdeutige Lösungen zu vermeiden, die in einem standardmäßi-
gen inversen Modell vorhanden sind. Dies wird durch ein Optimierungsproblem gelöst, das
nur Vorwärtsmodelle verwendet. Zusätzlich wird ein effizientes Verfahren zur Datensamm-
lung formuliert, um eine informative Trajektorie zu finden. Wir stellen eine samplingbasierte
Methode vor, die eine Approximation der Trajektorie berechnet, die die Vorhersageunsicher-
heit des gelernten Dynamikmodells minimiert. Diese Trajektorie wird dann ausgeführt, um die
Daten zur Aktualisierung des gelernten Modells zu sammeln. Nicht zuletzt wird eine adaptive
Regelungsstrategie für das Gleiten auf Oberflächen mit diskontinuierlichem Geometriewechsel
und unbekannten, räumlich variierenden Reibungseigenschaften vorgeschlagen. Es erweitert
einen Standard-Impedanzregler um eine Regelungsparameteranpassungsrichtlinie, die propri-
ozeptive Messungen, taktile Sensoren und Regelungssignale als Eingang nutzt. Insbesondere
wird diese Richtlinie in der Simulation mit vereinfachten Aktordynamiken trainiert und kann
dennoch ohne Anpassung auf den Roboter übertragen werden. Der Schlüssel dazu ist die erhal-
tene Reglerstruktur.

Indoor-Experimente des Monospinners und des Omavs wurden unter verschiedenen Bedin-
gungen evaluiert.
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Chapter 1

Introduction

Rapid reductions in cost and advances in sensing technologies, actuation, energy storage, and
computation have made aerial robots commonplace. The aerial robots market size is expected
to exceed 8.5 billion US dollar by 2027 [1]. Their applications range from entertainment [2],
photography, cinematography, glacier research [3], agriculture [4], industrial inspection [5] to
maintenance.

Rotary wing aerial robots are capable of staying in the air by producing lift from multiple
rotating propellers. They are different from the more conventional aeronautical designs such
as fixed-wing aircraft [6], which rely on aerodynamic forces caused by the aircraft’s forward
airspeed and aerodynamic surfaces. Quadrotors are the most common ones among rotary-wing
aerial robots, mainly due to their mechanical simplicity. They only have four moving parts, i.e.,
four motors rigidly attached to the vehicle body in a cross configuration. Their propellers are
mounted away from the center of mass and pointing in a parallel direction, therefore producing
a thrust of which direction is constant in the body frame. In order to translate, they have to
tilt using the torque generated by the thrust difference and accelerate with the collective thrust
pointing in the tilted direction [7]. Their large lever arms produce large torque and therefore
high angular acceleration, which results in exceptional agility. Despite this maneuverability,
their underactuation leads to a limited actuation wrench envelope and coupled translational and
attitude dynamics. This is suboptimal for aerial physical interaction tasks [8], which require
the robots to exert force to the environment while keeping a stable attitude. In recent years,
the possibility to have aerial robots capable of interacting with the environment has attracted
increasing attention. Tasks of interest include nondestructive testing inspection for bridges or
chemical containers [9], house spray-painting [9], construction and drywall layouting.

Meanwhile, ongoing research keeps exploring different rotary wing designs other than quadro-
tors [10]. This thesis investigates two designs (Fig. 1.1): one aims to discover the minimum
number of moving parts necessary for controlled flight and the other aims to address the above-
mentioned shortcoming of quadrotors. To fully exploit their capabilities, these new designs
require novel modeling and control approaches. This includes powerful tools from control the-
ory such as model-based control and linear system theory [11]. Model-based control requires
accurate model knowledge of the system and of the environment for high-performance control.
In situations where accurate modeling using first principles1 is difficult, controllers that learn a

1By first principles we mean the system dynamics are modeled using physical law and the parameters are empirically fitted.
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1 Introduction

(a) The Monospinner: a controllable flying vehicle with
a single moving part

(b) The Omav: an omnidirectional flying vehicle
with eighteen actuators

Figure 1.1: Experimental platforms in this thesis

dynamics model2 from data (either in advance or by adapting during operation) become attrac-
tive. While the data-driven model is good at approximating the complex dynamics using data,
first principle model has the advantage of good generalization [12]. This thesis aims to take
advantage of both methods and thus employs a hybrid approach. That is,

We aim to push the limits of multicopters via novel vehicle designs and by develop-
ing methods that combine model-based control with machine learning approach
to exploit the best aspects of both methods.

Since this is a broad topic, we investigate some specific instances in this direction.
With the objective of pushing the limits of multicopters, one could ask a question: What is

the minimum number of moving parts necessary for controlled flight? In addition, what tools
can we use to mechanically design and control such a flying machine? In this thesis, we found
out the minimum number is one and designed such a highly underactuated flying vehicle called
the “Monospinner” (see Fig. 1.1(a)) using tools from linear system theory and a first-principle
model-based linear controller.

It is also observed that this controller yields a non-negligible steady-state error due to model-
ing error despite our best modeling effort and the Monospinner’s simple mechanical structure.
More generally, modeling using first principles becomes less accurate for even more complex
systems. At the same time, research in aerial physical interaction tasks result in complex novel
vehicle designs, for which the modeling and control are challenging [8]. The above two aspects
motivates us to use an omnidirectional flying vehicle (the Omav shown in Fig. 1.1(b))) as the
research platform for studying control methods combining model-based control with machine
learning. Omnidirectional flying vehicles have decoupled translational and rotational dynamics
and the ability to exert forces and torques in arbitrary directions. On one hand, this makes them
a superior choice for physical interaction tasks compared to quadrotors. On the other hand,
unlike standard quadrotors, for which a simple and accurate actuation model is available for

2By model learning we mean a black box model (e.g., a neural network) where its parameter structure bears no resemblance
to the system’s physics-based dynamic modeling.
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low speed maneuvers [7], only an inaccurate and simplified actuation model can be obtained
for omnidirectional vehicles from first principles. This is caused by their overactuation and
hence increased mechanical complexity (i.e., the number of actuators is larger than the six de-
grees of freedom). This disturbance from modeling error degrades their control performance,
which is undesirable since the above-mentioned aerial physical interaction applications may re-
quire high-precision trajectory tracking performance. For example, drywall layouting during
construction requires drawing a line with a precision of 1 mm. In addition, external model un-
certainties of the interacting environments act as another disturbance during aerial interaction
tasks. For instance, when equipped with an end effector which slides on a surface, the Omav ex-
perience discontinuous disturbance caused by the inaccuracies in the given surface map such as
discontinuous change in geometry and unknown, spatially-varying surface friction properties.
Consequently, this may destabilize the system. The above challenges can be summarized into
the following question: How to achieve high performance control for omnidirectional flying
vehicles under model uncertainties in both free flight and aerial physical interaction?

To address the actuation model uncertainty problem of the Omav, this thesis proposes a
method to learn the residual dynamics of overactuated systems using a stochastic process. The
residual dynamics are the mismatch between the vehicle’s true dynamics and the simplified
first-principle model. An optimization problem is formulated to compute a compensation sig-
nal to the high-level control command (i.e., wrench command) to account for these modeling
errors. An efficient and effective data collection scheme for model learning is also a pertinent
problem due to the high-dimensional and continuous state space of a robotic system like Omav.
To address this problem, a sampling-based informative trajectory planning method is proposed.
The metric for the informativeness of the trajectory is the uncertainty provided by a learned
stochastic process dynamics model.

This thesis also presents a reactive adaptive control strategy for the Omav under external
model uncertainty during sliding tasks. It combines proprioceptive measurements and tactile
sensing to infer the geometry and friction properties of the interacting environment. This infer-
ence is used to adjust the robot’s controller gain according to the varying surface properties for
a good disturbance rejection. In particular, the adaptive control strategy is trained in a simula-
tion with simplified actuator dynamics and was able to be transferred to the real robot without
adaptation. This can reduce the time-consuming efforts of an accurate modeling of the actuator
dynamics.

This thesis puts an emphasis on experimental investigations, which have been conducted in
each individual part of the research. The experiments are performed in indoor motion capture
environments, whose available measurement precision allows for isolating individual research
questions and focusing on the control part of these novel flying vehicles.

This thesis is divided into three parts: the first part discusses a flying vehicle with only a
moving part, the second part presents methods that improve the control performance of the
Omav in free flight, and the third focuses on improving the performance in aerial interaction
tasks such as sliding on surfaces.

3



1 Introduction

1.1 A controllable flying vehicle with a single moving part

Highly underactuated flying vehicles have the advantages of increased reliability and reduced
manufacturing and maintenance costs due to their reduced mechanical complexity. At the same
time, this also leads to increased difficulty in the control of their attitude and position. There-
fore, many researchers have explored the aerodynamic properties and the mass distributions
of different vehicle designs that make the system’s attitude passively stable ([13]–[23]): if the
vehicle in hover is disturbed and tilts away or moves sideways, aerodynamic forces will damp
out the lateral motion and induce a restoring moment, bringing the vehicle’s attitude back to
its hover state and its translational velocity to zero. The vehicle’s position will not recover to
its position before the disturbance, which means that its position is not passively stable. While
eliminating the need for attitude sensing (using onboard sensors such as gyroscope, attitude
estimation, etc.) and active attitude control, this can limit the vehicle’s maneuverability, as its
actuators have to counteract these restoring aerodynamic forces and moments to achieve con-
trolled forward flight.

This thesis presents a different approach for an active position and attitude control: a highly
underactuated vehicle called the “Monospinner” (see Fig. 1.1(a)) is designed without relying on
aerodynamic effects (apart from the airframe drag torque and the propeller) or passive attitude
stability (Paper I [P1]). It has a single moving part (its rotating propeller), and its attitude is
stabilized by active feedback control. While attitude sensing is required for the Monospinner,
active attitude control increases the vehicle’s maneuverability. The vehicle is fully controllable
in position. Tools from linear system theory and optimal control are deployed for system anal-
ysis and controller design. This includes a formulation of the Monospinner’s translational and
attitude dynamics in a twelve dimensional state space and its corresponding equilibrium. With
the linearized system matrices at hand, the system is analyzed as a whole and its controllabil-
ity leads to a mathematical conclusion to whether the vehicle is controllable in position. It is
proven that the full twelve state system is not stabilizable for any vehicle configuration. How-
ever, the system may be fully controllable in position after removing the yaw state, as it does
not affect the dynamics of other states. This reduced eleven state system is thus investigated.
Specifically, three types of vehicle configuration under simplifying assumptions are analyzed,
giving guidelines for the mechanical design of the vehicle. A linear, time-invariant controller is
designed to control the hovering vehicle, and a vehicle design is found by optimizing primarily
for the vehicle’s mass distribution. Two robustness metrics are chosen: the ability to maintain
hover under perturbations and the probability of input saturation based on a stochastic model.
Experimental results show that the resulting vehicle is not only able to hover, but also has a
large region of attraction such that it recovers after being thrown into the air like a frisbee.

1.2 Model learning for control of omnidirectional flying
vehicles

Omnidirectional vehicles designs (e.g., the Omav in Fig. 1.1(b)) often cause complex aero-
dynamic effects that are non-negligible and hard-to-model from first principles, such as the
aerodynamic interference between the rotors. Furthermore, manufacturing imperfections in the
electronic speed controllers and motors lead to differences in thrust mapping and therefore sig-
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1.2 Model learning for control of omnidirectional flying vehicles

nificant torque model mismatches due to the large lever arm. These mapping differences are also
hard to identify in situ or on an external measurement device that replicates the same propeller
clearance in flight. This is disadvantageous from a control perspective. A standard control strat-
egy [24] for overactuated flying vehicles includes an outer loop controller which first computes
a desired wrench to reduce tracking error. This wrench is transformed into individual actuator
commands by inverting the actuation model. Due to unmodeled effects, this typically results in
a different actual wrench than the desired one. This leads to degraded control performance in
free flight and reduces the ability to accurately track desired trajectories.

To solve the problem mentioned above, adding only integral actions in the feedback controller
is often not enough, as they typically decrease the stability of the system and are not able to react
to fast-changing modeling errors.

Another solution is to treat the unmodeled dynamics as disturbances and employ a distur-
bance observer [25], [26]. While being computationally efficient, such a reactive strategy intro-
duces delays in tracking. One alternative solution is to identify these mismatched dynamics and
compute additional feedforward signals for the standard outer loop controller in an attempt to
cancel out the effect of modeling errors. This mismatch can be modeled using data-driven ma-
chine learning methods. Such methods have recently been shown to be capable to learn complex
and nonlinear dynamic functions [27]. Directly learning an inverse mapping of the actuation,
that is, a mapping from the wrench to the individual actuator commands, is a commonly used
method [24]. However, this approach is problematic for an overactuated system due to its one-
to-many mapping between wrench and actuator inputs, which is of multi-modal nature. It has
the risk of producing invalid results when averaging over multiple distinct modes with standard
inverse model approaches.

This thesis presents an approach (Paper II [P2]) that addresses the actuation modeling un-
certainties of overactuated systems which includes omnidirectional flying vehicles. It aims
to improve the trajectory tracking performance of overactuated flying systems by augmenting
model-based control methods with model learning. The actuation modeling error is learned
offline using a Gaussian process (GP) regressor. At each control step, a wrench command is
optimized using the analytical forward model and its learned error model such that the achieved
wrench is equal to a given desired wrench from the outer loop controller. An iterative opti-
mization problem is formulated to overcome the challenge arising due to the above-mentioned
one-to-many mapping, necessitating no inverse models.

A challenge related to model learning of dynamic systems is the training data collection pro-
cess. A high-quality learned model relies on good representative data. The training data often
has a different distribution than the test data due to several reasons: First, model uncertainties
and feedback controller might lead the system to a state not encountered in a previous data col-
lection routine. Secondly, the closed-loop dynamics change as the model used by the controller
is updated. Finally, given partial model knowledge, the region of the state space that leads to
the best performance is a-priori unknown.

A straightforward approach is to perform a large number of experiments to cover as much
of the input space as possible during training. However, for robotic systems with a high-
dimensional and continuous state space, the search space typically is too large to be covered
exhaustively. Furthermore, the dynamics can change significantly during consecutive experi-
ments, e.g., the crash of a flying vehicle could damage its motors and invalidate the previous
training data. Even when considering a specific task, a good model is required in the work-
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ing area of the state and input spaces, which still might be large. Thus, it is desirable to have
an efficient scheme to collect training data locally around the desired task. As these learning
techniques are nonparametric, common tools from parametric system identification [28], e.g.,
persistence of excitation, are not applicable.

This thesis proposes an active learning approach (Paper III [P3]) to exploit the statistical
information captured by the GP model to infer the most informative region, thus improving
sampling efficiency and efficacy. We then generate an informative trajectory that reduces the
overall uncertainty in the estimated region. This trajectory is then executed in the real world to
collect data. More specifically, in a first step, possible informative locations are inferred in sim-
ulation from the previously learned model. Then, different informative trajectories are sampled
and evaluated according to a cost metric defined as the integral of the predictive uncertainty over
these possible locations. The most informative trajectory is then selected and executed on the
real robot to collect data. As a result, the model learned from this informative trajectory leads to
improved trajectory tracking performance and a better generalization of the learned dynamics
model. The latter is achieved because the informative trajectory reduces the uncertainty over a
large region of state and input space.

1.3 Aerial physical interaction learning control

Aerial interaction tasks such as contact-based non-destructive inspections [29]–[31] require the
flying vehicle to carry a sensor payload and fly along the surface while maintaining contact
between the sensor and surface. This results in a sliding movement of the flying vehicle’s end
effector across the surface of a static environment (push and slide task defined in [8]). Many
existing approaches that solve this task assume a perfect surface map is given, the surface end
effector pair has constant friction coefficient, and a desired high-level pose trajectory is planned
relative to the surface [30], [32]–[34]. Despite these successful demonstrations of aerial sliding
on homogeneous, continuous surfaces in the aforementioned works, the following challenges
remain to be investigated: 1. sensing of the inaccuracies in the given surface map such as dis-
continuous change in geometry and unknown, spatially-varying surface friction properties ;
2. control of the aerial vehicles in the presence of these disturbances. Firstly, the surface fric-
tion properties may vary spatially (i.e., heterogeneous surface) and cannot be directly measured.
Unknown discontinuous geometry of the surface (steps, holes, curvature) can be at best partially
observed using perception sensors such as a camera or a 3D time-of-flight camera due to occlu-
sion or spatial resolution respectively. The aforementioned perception sensors could also fail
on transparent surfaces or under adverse light conditions. Secondly, from the control perspec-
tive, the presence of these unexpected environment features introduces discontinuities in contact
forces. The induced torque (due to the lever arm between the contact point and the center of
mass) in turn causes abrupt changes in attitude and destabilizes the system. Thus, a control
strategy is needed to adapt to the uncertain environment and ensure a stable flight.

To the authors’ best knowledge, there is no prior work on aerial sliding on uneven, heteroge-
neous surfaces. Previous works in the fixed-base manipulation community demonstrated sliding
on uneven surfaces using passivity [35], or adaptive force control [36], [37]. These approaches
are not directly transferable to an aerial vehicle as they typically rely on repetitive executions of
the same trajectory to improve their performance in trajectory tracking. For aerial robots, these
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1.3 Aerial physical interaction learning control

might lead to instability in the first trial and thus damage the robot. One could also resort to
disturbance observer-based robust control [38], which may become overly conservative. Such
an approach also has the disadvantage of being slow to react, especially in the presence of noisy
measurements and inaccurate process model. Consequently, the flying vehicle can struggle to
handle abrupt changes in the environment. Finally, another option is to use mechanical com-
pliance of the flying machine’s end effector [29] [39], this increases its mechanical complexity
and cost and further decreases its limited payload.

A novel approach to address the aforementioned sensing challenge is to use proprioceptive
measurements and wrench sensing to infer the geometry and friction properties of the interacting
environment. This type of approach is found mainly in quadrupedal robots like MIT Cheetah
[40] and Anymal [41]. They use either command signals to infer a leg touchdown event or use
the IMU signals, robot states, and control commands to infer the surface properties. They do not
rely on RGB-D or Lidar sensors and are operative under adverse light conditions. Furthermore,
Lee et. al. [41] use reinforcement learning to learn a policy from simulation and a student teacher
approach [42] is deployed for better learning efficiency.

From a control perspective (the aforementioned second challenge), impedance control [43]
is a suitable control strategy for physical interaction tasks. It introduces algorithmic compli-
ance into the system such that the flying vehicle is less susceptible to the interaction distur-
bances. This has been successfully demonstrated to work for sliding tasks on homogeneous
surfaces with aerial vehicles [32], [34]. Selection of the impedance gains is a trade-off between
controller tracking performance and system compliance. In general, the impedance controller
should have a high impedance (high tracking performance and low compliance) only when the
task requires it. For this reason, a variable impedance controller [44] is an attractive option since
it adaptively selects the impedance gains. In [32], for example, the controller chooses the ap-
parent mass of the controller depending on the distance to the interacting surface. In free flight,
it has a higher apparent mass for disturbance rejection. During interaction, it has a lower ap-
parent mass for more compliance. Other applications are found on fixed-base manipulators for
disturbance rejection using Lyapunov theory-based adaptive control [45], or quadrupedal walk-
ing robots [46]. With recent advances in machine learning, methods combining reinforcement
learning with variable impedance control have been proposed, with examples in manipulator
control on peg-in-hole tasks [47], [48], human-robot collaboration [49], and hopper jumping
[50]. There exists also other learning methods such as using Gaussian processes [51]. Some
of these approaches also adapt the reference trajectory in addition to variable impedance [45],
[47], [48], [50].

This thesis (Paper IV, [P4]) proposes an approach that aims to address the challenge of
environmental uncertainty during physical aerial interaction for omnidirectional flying vehi-
cles. A local reactive strategy (a neural network mapping) is designed to augment the existing
impedance controller on the Omav. It adapts the impedance gain according to system signals.
These include control signals, proprioceptive sensor measurements, and wrench sensing, from
which the strategy implicitly infers the change of the geometry and friction coefficient of the sur-
face in contact. Based on this knowledge, it then changes the controller parameters to keep the
end effector’s orientation steady under disturbances. The training of this mapping is conducted
entirely in a simplified simulation and divided into two stages: in the first step, a teacher policy
is devised using ground truth information about the surface properties, which is not available
during execution in novel environments. The teacher policy then guides the student policy to
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use proprioceptive measurements instead of ground truth information via supervised learning.
This significantly improves the learning efficiency. Furthermore, RGB-D or lidar sensors are not
required with this approach. The learned mapping from simulation can be directly transferred
to the aerial vehicle. A key distinction with other sim-to-real approaches (e.g., [27]) is that we
instead use a simplified simulation and demonstrate that the control strategy can be transferred
to the robot. This is largely due to the fact the existing controller structure suppresses model
uncertainty and keeps the reality gap small. This is particularly advantageous for a complicated
system like the Omav [24], as shown in Fig. 1.1(b), where a large amount of training is required
for an accurate model learning of the whole body dynamics. As a comparison, a million sam-
ples are required for the modeling of a single one degree of freedom actuator [27]. Furthermore,
if the Omav crashes or if its configuration changes, training data needs to be recollected again.
Finally, compared to end-to-end learning approach (learn a mapping from the state space to the
actuator space), our approach is easier to train and more data efficient, as evidenced by the work
of [48].
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Chapter 2

Contributions

In this chapter, we summarize the contributions resulting in the publications included in this
thesis.

2.1 Part A: A controllable flying vehicle

Publication I

[P1] Weixuan Zhang, Mark W. Mueller, and Raffaello D’Andrea, “Design, modeling and
control of a flying vehicle with a single moving part that can be positioned anywhere in space”.
In Mechatronics, 61, 117-130, 2019.

Contribution

This paper follows previous work presented at a conference [52] and extends these previous
results by presenting:

• a twelve-dimensional state-space system description for the Monospinner, for which an
equilibrium exists and where techniques from linear time-invariant system theory may be
applied for system analysis and control design,

• a proof that the twelve-dimensional linearized system about hover is not stabilizable for
any vehicle configuration,

• controllability analysis of the reduced eleven-dimensional linearized system (with yaw
state removed) for three special types of vehicle configuration,

• the experimental results with a controller designed using the proposed linear system
model, which enables the resulting vehicle to move anywhere in space.
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2 Contributions

2.2 Part B: Model learning for control of omnidirectional
flying vehicles

Publication II
[P2] Weixuan Zhang, Maximilian Brunner, Lionel Ott, Mina Kamel, Roland Siegwart, and
Juan Nieto, “Learning dynamics for improving control of overactuated flying systems”. In
IEEE Robotics and Automation Letters, 2020, Volume 5, Issue 4, 2020.

Contribution

Following contributions are made:

• Presentation of a GP-based model to capture the model-plant mismatch common among
overactuated omnidirectional flying vehicles.

• Introduction of an optimization-based method using a first-principles model and a learned
GP error model to select a signal correcting for the model-plant mismatch, necessitating
only forward models.

• Experimental validation of the proposed approach on the Omav with a reduction of the
attitude tracking error of 32% on average.

Interrelations

The model learning framework of this paper is also used for the [P3]. In particular, the model
uncertainty provided by the model is used to infer region of training data collection in [P3].

Publication III
[P3] Weixuan Zhang, Marco Tognon, Lionel Ott, Roland Siegwart, and Juan Nieto, “Ac-
tive Model Learning using Informative Trajectories for Improved Closed-Loop Control on Real
Robots”. In Proceedings of the 2021 IEEE International Conference on Robotics and Automa-
tion (ICRA), 2021.

Contribution

The contributions of this paper are summarized as follows:

• A formal mathematical formulation of the problem of efficient data collection for learning
dynamics model.

• A practical strategy to efficiently collect task-relevant data that improves the model-based
control performance when used to update the learned model.

• Real experimental results conducted on a complex overactuated omnidirectional flying
system with nonlinear dynamics and 18 actuators. For a figure-8 trajectory, two runs of
trajectory flight lead to an angular acceleration tracking error reduction of 54.4%.
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2.3 Part C: Aerial physical interaction learning control

2.3 Part C: Aerial physical interaction learning control

Publication IV
[P4] Weixuan Zhang, Lionel Ott, Marco Tognon, and Roland Siegwart, “Learning Variable
Impedance Control for Aerial Sliding on Uneven Heterogeneous Surfaces by Proprioceptive
and Tactile Sensing”. In IEEE Robotics and Automation Letters, 2022.

Contribution

The contributions made in this report include the following:

• A learning-based solution for aerial sliding tasks that senses, adapts, and remains ro-
bust against challenging interaction environment uncertainties in surface geometry and
friction properties.

• An approach to address sim-to-real transfer by including a closed-loop controller to sup-
press model uncertainty, which allows for learning from simplified actuator dynamics.
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2 Contributions

2.4 List of Publications

My doctoral studies resulted in or contributed to the following publications. The list is sorted
by year and first author’s name.

2.4.1 Publications Included in this Thesis
[P1] W. Zhang, M. W. Mueller, and R. D’Andrea, “Design, modeling and control of a flying

vehicle with a single moving part that can be positioned anywhere in space”, Mechatron-
ics, vol. 61, pp. 117–130, 2019

[P2] W. Zhang, M. Brunner, L. Ott, M. Kamel, R. Siegwart, and J. Nieto, “Learning dynamics
for improving control of overactuated flying systems”, IEEE Robotics and Automation
Letters, vol. 5, no. 4, pp. 5283–5290, 2020

[P3] W. Zhang, M. Tognon, L. Ott, R. Siegwart, and J. Nieto, “Active model learning using
informative trajectories for improved closed-loop control on real robots”, in 2021 IEEE
International Conference on Robotics and Automation (ICRA), 2021, pp. 4467–4473

[P4] W. Zhang, L. Ott, M. Tognon, and R. Siegwart, “Learning variable impedance control for
aerial sliding on uneven heterogeneous surfaces by proprioceptive and tactile sensing”,
IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11 275–11 282, 2022

2.4.2 Related Publications
[R0] W. Zhang, M. W. Mueller, and R. D’Andrea, “A controllable flying vehicle with a single

moving part”, in IEEE International Conference on Robotics and Automation, 2016

[R1] M. Brunner, K. Bodie, M. Kamel, W. Zhang, J. Nieto, and R. Siegwart, “Trajectory track-
ing nonlinear model predictive control for an overactuated mav”, in IEEE International
Conference on Robotics and Automation, 2020

2.5 List of Supervised Students

During my doctoral studies, a significant effort was spent on supervising student projects. Be-
low, all supervised students and projects are listed. For projects that contributed to a publication,
a citation is provided.

Master Thesis
Master student, 6 months full time, 30 ECTS

[MT0] Stefan Walser (2019):
“Model Learning of the Dynamics Model of a Tilt-arm Omnidirectional Flying Vehicle
using Neural Network”
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2.5 List of Supervised Students

[MT1] Ahmad Roumie (2020):
“High-performance Control using Model Learning for Tiltrotor Omnidirectional Aerial
Vehicles”

[MT2] Ramon Flammer (2021)
“Design and Analysis of an Omnidirectional Fixed-wing, Tilt-rotor Hybrid MAV”

[MA3] Elias Hampp (2021):
“Control for an Omni-Directional Tilt-Wing MAV”

[MT4] Jonas Wüst (2021):
“State Estimate of an Underwater Robot using DVL”

Semester Thesis
Master student, 3-4 months part time, 8 ECTS

[ST0] Mario Gini (2017):
“Improving the throw of the Monospinner”

[ST1] Ramon Flammer (2020):
“Analysis of Aerodynamic Effects on Coaxial Rotor Configurations”

[ST2] Fausto Tapia (2020):
“Sensing and Characterization of the Motor Dynamics on an Omnidirectionaly Flying
Vehicle”

[ST3] Daniel Steinmann (2021):
“Rotor Speed controller for Full-pose Control of Tiltrotor MAVs”

Bachelor Thesis
Bachelor student, 3-4 months part time, 15 ECTS

[BT0] Christoph Demuth (2018):
“Improving the Throw of the Monospinner using Model Predictive Control and Con-
troller Parameter Tuning”

[BT1] Jonas Wüst, Andrej Studer (2019):
“Design and Control of an Omnidirectional Underwater Marsupial Robot System for
Inshore Operations”

[BT2] Fabian Lyck (2020):
“ Tilt Arm Actuator Feedback on an Omnidirectional Flying Vehicle”

[BT3] Lukas Hänsli (2020):
“Design and Testing of a Novel Servo Actuator with Near Zero Backlash and Slip Ring
for Infinite Rotation Capability”
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Focus Project
10 Bachelor students, 12 months, part time, 14 ECTS

[FP0] Andrea Bale, Felix Stadler, Ian Boschung, Jonathan Becker, Luca Strässle, Lukas Hänsli,
Michael Baumgartner, Nasib Naimi, Sarah Steiner, Severin Laasch (Summer 2019 - Sum-
mer 2020):
“DroGone: Design of an Multicopter that Autonomously Detects, Tracks, and Catches a
Consumer Drone and Bring it back to Safety”

“Perception and Learning for Robotics” course project
2 Master students, 3-4 months part time, 4 ECTS

[PLR0] Pietro Zullo, Leon Locher (2021):
“Robot Dynamics Model Learning with Uncertainty”

“Studies on Mechatronics”
Bachelor student, 3-4 months part time, 5 ECTS

[SM0] Christoph Demuth (2018):
“Reduction of Computational Complexity in Model Predictive Control with Move Block-
ing”

Visiting Students and Summer Projects
[In0] Peter Werner (2019):

“Model learning using locally weighted projection regression”

[In1] Yilun Wu (Summer 2016):
“Embedded system toolchain porting for the Monospinner”

2.6 Outreach

The Monospinner was reported by BBC News, IEEE Spectrum, The Verge, Gizmodo, Daily
Mail and presented by Raffaello D’Andrea at TED2016, Vancouver. A Youtube video is made
to introduce this novel flying vehicle and has been viewed for more than 350 000 times.
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Chapter 3

Conclusions and Outlook

This thesis presents a controllable flying vehicle with a single moving part, along with its con-
troller design and controllability analysis using linear system theory. Furthermore, we presented
a framework that uses Gaussian processes to model the system’s residual dynamics. When em-
bedded as an optimization problem in the controller, this model significantly improves trajectory
tracking performance. This is demonstrated via the Omav on a complex trajectory. In addition,
the learned model outputs uncertainty, from which a method is derived to prevent destabilizing
the system in case of highly uncertain prediction of the model. An efficient data collection pro-
cedure is devised using an optimization problem formulation to find an informative trajectory.
Finally, an adaptive control strategy is designed for aerial sliding tasks. It adapts the robot’s
impedance controller gain to reject disturbance caused by the environment uncertainties such
as spatially changing, unknown friction properties, and local surface unevenness. This strategy
is trained from a simulation with simplified actuator dynamics via reinforcement learning and
can be successfully transferred to the real-world robot without further adjustment. While the
above research is general in nature, we always have hardware in mind. Hardware improvement
will help to improve the transferability of the proposed methods, as shown by the following
example:

The next generation of the Omav

In [P2], the proposed method learns the model plant mismatch of the Omav with all the model
uncertainties lumped together, while in [ST1] [ST2] [BT2], investigations have been made to
discover the root causes of these model plant mismatches regarding the aerodynamics, the open-
loop power train, and the tilt arm mechanism, respectively. The conclusion was that the indi-
vidual differences in the power train due to manufacturing imperfection dominate the model
plant mismatch. This type of modeling error is instance/component dependent. Even with a
single power train replacement, the modeling error is highly likely to change. This hinders the
transferability of the learned model. One may address this issue by equipping the Omav with
a closed-loop power train (i.e., each individual rotor speed is regulated in closed-loop). This
makes sure that each rotor is rotating at the desired rotor speed and results in the elimination of
the power train differences. This rotor speed feedback also helps to identify the rotor dynam-
ics, which improves the model knowledge for model-based control. This approach also helps
to isolate and identify the less dominating model mismatch sources, such as the aerodynamic
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3 Conclusions and Outlook

Figure 3.1: A tilt-arm omnidirection tilt-wing flying vehicle. Its wings can be separately con-
trolled.

interference between neighbouring rotors and servo backlash in the tilt arm. These sources of
model plant mismatch might be otherwise treated as noise in the model regression. Recognizing
them would help to push the Omav control performance to the next level.

At the time of writing of this thesis, the next iteration of the Omav with velocity controlled
electronic speed controller is already in preparation and has yet to make its maiden flight.

Long endurance physical aerial interaction

Autonomous aerial manipulators that can fly long distances increase operational coverage and
thus reduce operational cost of infrastructure maintenance in remote areas . For this purpose,
initial works [MT2] [MA3] demonstrated a hybrid vehicle prototype called “Soliro” (Fig. 3.1).
It combines a tilt-wing design with an omnidirectional flying vehicle.

This vehicle has a tricopter configuration (two main rotors and a tail rotor) with a favorable
axis of rotation (the axis connected by its two main rotors, i.e., its pitch axis). Two identical
symmetrical wings are rigidly placed underneath the main rotors so that their chord line is
perpendicular to the propeller disk. The main rotors and wings can be individually actively
tilted along the pitch axis. Depending on the wing tilt angle at steady state, it has three modes:
hover, transition, and fixed-wing. Soliro has in total five actuators.

Initial work [MT2] designed the airfoil and conducted wind tunnel tests for the system identi-
fication of its aerodynamic model. This is followed by [MA3] which designed a unified control
allocation strategy and a cascaded controller for this flying vehicle. Real flight tests have been
successfully conducted.

This results in a theoretical range of 27 km. From real test flights, Soliro reduces the power
consumption by 30 % flying at 9m s−1 in fixed-wing mode compared to hover flight.
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3.1 Future work

Many future works exists for this platform, including wind disturbance estimation, model-
based control and trajectory planning.

Equipped with a pitot tube, the vehicle is able to measure a projected component of the
wind speed vector. At steady state level flight, the vehicle’s airspeed can be derived using this
measurement together with a yaw angle estimate. A Kalman filter may be designed to estimate
the aerodynamic force and torque acting on the vehicle. Based on this, a model-based controller
such as a model predictive controller can be designed. The model knowledge helps to improve
control allocation and disturbance rejection and automate the transition phase, which needs a
pilot to manually input velocity and attitude set point for now.

Furthermore, given its ability to individually control its tilt wing angle, a strategy may be
developed to “manipulate” the air by tilting two wings to different angles, which leads to distinct
lift and drag characteristics. This can be used on purpose for high performance attitude control.

3.1 Future work

Region of attraction analysis for the Monospinner

For the Monospinner [P1], an area of additional investigation may be the analysis of the pre-
sented linear controller and the determination of the region of attraction of its resulting equilib-
rium. This will reveal the subset of state space in which a given controller renders the equilib-
rium stable. This can help us, for example, to predict whether a hand launch will be successful
based on the vehicle state when it leaves the hand.

Scalable model learning for control of the Omav

The model learning method developed in [P2] has shown to be able to approximate the model-
plant mismatch of the Omav and improving its control performance when the model is embed-
ded into a gradient-based optimization to compute a correction signal.

This work can be further extended in three ways: faster computation, feature selection and
actuator dynamics.

Firstly, the critical real-time requirement on aerial vehicles poses a huge challenge to the al-
ready limited computational resource onboard the Omav. Given current learned model (three
GPs with 6 dimensional input and a single output) with a hundred training data points, it takes
on average 75 % cpu usage (about 7.5 ms) to solve an optimization problem on a single thread.
Since the computational complexity for model prediction scales O(N2), where N is the num-
ber of data samples, it would be worth to investigate methods that scales better with the size of
training data. While extensive literature exists for scalable GPs [59], they are not specifically
tailored for real-time applications. Other computationally efficient methods include polynomial
chaos expansion needs a citation here, Locally Weighted Projection Regression [60] (initial
work in [In0]) or local GPs [61]. These methods all provide analytical gradient and uncertainty
estimate, and can therefore readily replace the standard GPs used in [P2].

In terms of feature selection, given enough computational resource, one may consider to take
the state, the measured tilt angles, and the measured rotor speed as the input to the model.
Finally, a control strategy may be designed to take the dynamics of the rotor and the servo into
account. They can be embedded into the optimization problem proposed in [P2], ideally in a
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receding horizon fashion.

Large scale computationally efficient model learning with uncertainty

In [P2], the learned model does not only provide a predictive mean, but also predictive vari-
ance for each query location which is correlated with the confidence of the learned model. This
information can be utilized in two ways: Firstly, the uncertainty can be embedded as a regular-
ization term into the cost function that is used to optimize for a correction signal that cancels out
the modeling error. By tuning the regularization parameter, one can achieve a desired trade-off
between canceling the modeling error and applying uncertain input. This comes at the cost of
increased computational effort in optimization.

Secondly, in outdoor flights, the Omav will experience additional disturbance from wind
gusts. A Kalman filter disturbance observer can be designed where it incorporates the learned
model into the process model with predictive variance as process noise. In addition, The ex-
ternal force disturbance can be modeled as a random walk process. In this way, one can thus
distinguish between internal model error (induced by the actuator) and external model error
(wind gust). This distinction is important as these disturbances require separate treatments.
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Part A

A CONTROLLABLE FLYING VEHICLE WITH A
SINGLE MOVING PART





Paper I
Design, modeling and control of a flying

vehicle with a single moving part that can
be positioned anywhere in space

Weixuan Zhang, Mark W. Mueller, and Raffaello D’Andrea
Abstract

This paper presents a novel type of flying vehicle called the Monospinner, which has
only one moving part, the propeller, and is yet able to hover and fully control its po-
sition. Its translational and attitude dynamics are formulated as a twelve-dimensional
state space system, which may be linearized to a linear time-invariant system amenable
to controllability analysis, controller synthesis, and vehicle design. It is shown that the
linearized system may be both horizontally and vertically controllable in position after
removing its yaw state, and in particular, this is shown for the case of a vehicle with
the shape of a planar object and an offset thrust location (with respect to its center of
mass). The vehicle’s mass distribution is designed based on two robustness metrics:
the ability to maintain hover under perturbations by means of Monte-Carlo nonlinear
simulation, and the probability of input saturation based on a stochastic model. Ex-
periments are conducted for the resulting vehicle and controller. The equilibrium of
the resulting system has a large region of attraction such that it recovers after being
thrown into the air like a frisbee.
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Paper I: Monospinner

1 Introduction

Highly underactuated flying vehicles have the advantages of increased reliability and reduced
manufacturing and maintenance costs due to their reduced mechanical complexity. At the same
time, this also leads to increased difficulty in the control of their attitude and position. There-
fore, many researchers have explored the aerodynamic properties and the mass distributions of
different vehicle designs that make the system’s attitude passively stable ([13] [14] [15] [16]
[17] [18] [19] [20] [21] [22]): if the vehicle in hover is disturbed and tilts away or moves side-
ways, aerodynamic forces will damp out the lateral motion and induce a restoring moment,
bringing the vehicle’s attitude back to its hover state and its translational velocity to zero. The
vehicle’s position will not recover to its position before the disturbance, which means that its
position is not passively stable. While eliminating the need for attitude sensing (onboard sen-
sors such as gyroscope, attitude estimation, etc.) and active attitude control, this can limit the
vehicle’s maneuverability, as its actuators have to counteract these restoring aerodynamic forces
and moments to achieve controlled forward flight.

This paper presents a different approach: a highly underactuated vehicle (called the “Monospin-
ner” and shown in Fig. 4.11) is designed without relying on aerodynamic effects (apart from the
airframe drag torque and the propeller) or attitude passive stability. It has a single moving part
(its rotating propeller), and its attitude is stabilized by active feedback control. While attitude
sensing is required for the Monospinner, active attitude control increases the vehicle’s maneu-
verability. The vehicle is fully controllable in position. To the best of the authors’ knowledge,
there exist only two types of vehicles (the other one is the Maneuverable Piccolissimo [20]) that
are both horizontally and vertically controllable with only one moving part.

This article includes a formulation of the Monospinner’s translational and attitude dynam-
ics in a twelve dimensional state space and its corresponding equilibrium. With the linearized
system matrices at hand, the system is analyzed as a whole and its controllability leads to a
definitive answer to whether the vehicle is controllable in position. It is shown that the full
twelve state system is not stabilizable for any vehicle configuration. However, the system may
be fully controllable in position after removing the yaw state, as it does not affect the dynamics
of other states. This reduced eleven state system is thus investigated. Specifically, three types
of vehicle configuration under simplifying assumptions are analyzed, giving guidelines for the
mechanical design of the vehicle. A linear, time-invariant controller is designed to control the
hovering vehicle, and a vehicle design is found by optimizing mainly for the vehicle’s mass dis-
tribution. Two robustness metrics are chosen: the ability to maintain hover under perturbations
and the probability of input saturation based on a stochastic model. Experimental results showed
that the resulting vehicle is not only able to hover, but also has a large region of attraction such
that it recovers after being thrown into the air like a frisbee.

1.1 Related work
A vehicle similar to the Monospinner is the Maneuverable Piccolissimo: it also features only
one moving part (the propeller) and one actuator and is yet fully controllable in position. While
aiming for small size (the vehicle is 39 millimeters in its largest dimension and 4.47 grams in

1A video showing the Monospinner can be found under https://youtu.be/P3fM6VwXXFM
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weight), the authors designed the vehicle’s mass distribution and relative rotor speed to achieve
passive stability in attitude. With an offset between its thrust location and the center of mass,
the whole body rotates in the air with a small tilt angle. Horizontal control is achieved by
modulating its thrust at a rate of once per body revolution and thus creating net moments and
forces that control its roll, pitch and position.

Highly-underactuated flying machines can be categorized into several subgroups: The first
category is the samara-type vehicle, which can be traced back to the 1950’s [62] and is also
referred to as the Monocopter. Inspired by the maple seed (or samara), the vehicle’s whole
body is similar to that of a samara or a single wing and rotates around the vertical axis during
flight. Rotation is usually achieved by the thrust produced by a propeller mounted at one end
of the body, and the lift created by this rotation counterbalances the vehicle’s weight. Through
proper vehicle design, Monocopters become passively stable in attitude [63] and can hover
for a trimmed open loop control input. With a servo-driven control surface installed on the
wing, they may be controllable in the horizontal plane. Thus, they require two actuators to
be fully controllable in position. Notable references are [14] [15] [16] [17] [18] [19], which
focused on aspects related to the modeling, design, and control of the Monocopters. A more
detailed study and modeling on the Monocopter’s system dynamics, especially regarding its
aerodynamic properties, can be found in [64] and [65].

Vehicles in the second category are equipped with one actuator (a rotating propeller), pro-
viding thrust in the vertical direction and inducing body rotation around the vertical axis, while
aerodynamic dampers are installed to make sure that they are passively stable in attitude. The
thrust produced goes through the center of mass and can only control the height of the vehicle.
Such vehicles are presented in [13] [20], while similar vehicles exist as toys, for example the
Air Hogs Vectron [66] or Flower Flutterbye Fairy [67].

The third category is the flapping-wing flying vehicle. Biologically inspired, their main
propulsion comes from the flapping of a pair of wings, and aerodynamic dampers are often
installed to ensure passive attitude stability. In [21], [22], the presented flying vehicles have one

30 cm

Figure 4.1: The Monospinner is approximately 30 cm in size, the frame consists of five carbon-
fiber plates, and the electronics are mounted in an aluminium cage. The carbon fiber rods help
to protect the propeller during landing. A more detailed list of components is given in Table 4.1.

23



Paper I: Monospinner

actuator and are only controllable in height. In [68], [69], [70], the flying vehicles have at least
two actuators to achieve controlled forward flight.

Traditional small scale helicopters are not passively stable in attitude and require servo-
controlled swashplates for attitude control, which results in at least three actuators. In [71],
the authors presented a coaxial helicopter that uses only two actuators to control the vehicle’s
roll, pitch, and yaw orientation, as well as maneuvering thrust. For roll and pitch control, one
actuator uses a pair of passively hinged airfoil blades to mimic a conventional helicopter’s cyclic
control and generate torque around the roll and pitch axes. The other actuator is equipped with
a conventional fixed-pitch propeller, and thrust and yaw control are achieved by the collective
thrust and the differential propeller reaction torque of these two actuators. In [13], the author
presented a prototype called the UNO that uses the same passive hinge mechanism to achieve
horizontal, roll, and pitch control. It has one actuator (the motor) and three moving parts (the
passively hinged propeller).

Another category is the flying vehicle with no moving parts. These are actuated by an ionic
jet engine, which produces thrust by emitting positively charged ions and harvesting momentum
from their collisions with a neutral fluid. In [72], a robotic airfish with an ionic jet and plasma
ray propulsion system is presented. However, there is little information about its capabilities.
In [73], the flying vehicle presented has a similar configuration to a standard quadrocopter and
uses four ion thrusters (thus four actuators) instead of four propeller-based thrusters. Simula-
tion shows controlled flight, and the vehicle prototype is able to have an open-loop, uncontrolled
takeoff. Another class of vehicles with arguably no moving parts are spacecraft operating only
under thrusters (e.g. lunar landers) – they typically have significant redundancy, with substan-
tially more actuators than degrees of freedom, and thus do not fit into the category of underac-
tuated vehicles considered in this work.

Vehicles in the last category have only fixed-pitch propellers with parallel axes of rotation as
inputs, and they are fully controllable in position. In [74], [75] it is shown that a quadrocopter
can maintain flight despite the complete loss of two propellers (that is, with only two propellers
remaining) and in theory, control is possible after the complete loss of three propellers. The
Monospinner (one propeller), the Bispinner (two propellers) [75], and the Maneuverable Pic-
colissimo belong to this category. The Monospinner and the Bispinner require active attitude
control, whereas the Maneuverable Piccolissimo does not, since it is passively stable in attitude.

In [74], the authors derived conditions under which two degrees of freedom in attitude are
controllable for three different propeller loss cases (that is, complete loss of one, two or three
propellers) for a quadrocopter. They also derived in [75] a general framework for establishing
attitude controllability of the vehicles in the last category and investigated a special case where a
quadrocopter loses two opposing motors. In [76], a controllability test method is developed for
multicopter systems with positive thrust constraints and around their conventional hover state
(zero translational and rotational velocity).

This paper follows previous work presented at a conference [52] and extends these previous
results by presenting:

• a twelve-dimensional state-space system description for the Monospinner, for which an
equilibrium exists and where techniques from linear time-invariant system theory may be
applied for system analysis and control design,

• a proof that the twelve-dimensional linearized system about hover is not stabilizable for
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any vehicle configuration,

• controllability analysis of the reduced eleven-dimensional linearized system (with yaw
state removed) for three special types of vehicle configuration,

• the experimental results with a controller designed using the proposed linear system
model, which enables the resulting vehicle to move anywhere in space.

The remainder of this paper is organized as follows: the dynamic model of the Monospinner is
given in Section 2, together with a twelve-state system description and its equilibrium solution.
A linearized system is obtained and a controllability analysis is given in Section 3. A linear
controller for the system is derived in Section 4, and the vehicle design based on two robustness
metrics is discussed in Section 5. The resulting vehicle is presented in Section 6. Experimental
results including two types of takeoff are shown in Section 7, followed by a conclusion given in
Section 7.

2 Modeling and dynamics

This section provides the dynamic model for analysis and control of the Monospinner, followed
by the discussion of the hover equilibrium of the resulting twelve-state system.

2.1 Dynamic model
This model is the same as the one given in [52] and summarized here for the sake of com-
pleteness. Fig. 4.2 shows some of the salient forces and quantities used in this section. The
vehicle has a total mass m, and the gravity vector is denoted as g. Boldface symbols like g
are used throughout the paper to denote vectors in three-dimensional space. The propeller pro-
duces a thrust force of magnitude fP in the direction of the unit vector nP . The position of the
vehicle’s center of mass with respect to a point fixed in the inertial frame is denoted as s.

Two coordinate systems are used for the modeling: an inertial (ground-fixed) coordinate
system E and a body-fixed coordinate system B. A vector expressed in a specific coordinate
system is indicated by a superscript, for example gE expresses g in coordinate system E. The
body-fixed coordinate system B is oriented such that the motor arm (Fig. 4.2) is parallel with
its x-axis and the propeller axis of rotation is aligned with its z-axis. The propeller force vector
nB

P is then (0, 0, 1). The notation (0, 0, 1) is used throughout this paper to compactly express
the elements of a column vector.

The translational dynamics of the vehicle, expressed in the inertial frame E, are captured by
Newton’s law:

s̈E = m−1nE
P fP + gE (4.1)

where it is assumed that the vehicle travels at low translational velocities, such that translational
drag forces (such as those described in [77]) are neglected.

Let IP denote the moment of inertia of the propeller (referred to the spin axis), and let
IB + IP denote the total moment of inertia of the vehicle (with respect to its center of mass).
The vehicle rotates at an angular velocity ωBE with respect to the coordinate system E, where
the subscript BE means the relative velocity of coordinate system B with respect to E. The
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propeller is located at a displacement rP with respect to the center of mass, and its angular
velocity with respect to the coordinate systemE is denoted as ωPE . Besides the thrust fP , the
propeller also experiences a torque of magnitude τP in the propeller thrust direction nP due
to the aerodynamic drag acting on the propeller blade, which is transmitted to the body through
the motor. The vehicle experiences an airframe drag torque τd due to the rotation of the vehicle
in the air.

The angular dynamics of the system, expressed in the body-fixed coordinate system B, are
formulated as:

IB
Bω̇B

BE + IB
P ω̇B

PE + JωB
BE×K(IB

BωB
BE + IB

PωB
PE) = JrB

P×KnB
P fP + nB

P τP + τB
d

(4.2)
where Ja×K represents the skew-symmetric matrix form of the cross product, so that Ja×Kb =
a× b for any vectors a and b in R3.

Without loss of generality, it is assumed that the propeller is left-handed. The propeller’s
scalar speed Ω with respect to the body is usually controlled by an electronic speed controller,
so that

ωB
PB = (0, 0,−Ω). (4.3)

Note that ωB
PE in (4.2) can be decomposed as below:

ωB
PE = ωB

PB + ωB
BE . (4.4)

The thrust fP produced from a stationary propeller is then assumed to be proportional to its
angular velocity ωB

PE squared with the proportional coefficient κf [78]:

fP = κf (ω
B
PE · nB

P )|ωB
PE · nB

P | (4.5)

with · denoting the vector inner product.
The propeller torque is assumed to be linear in the propeller thrust:

τP = κfP (4.6)

We neglect any potential torque effects due to blade flapping [79] or the propeller H-force [77].
It is assumed that the magnitude of the airframe drag torque τd is quadratic in the vehicle’s

angular velocity ωB
BE [75]:

τB
d = −

∥∥∥ωB
BE

∥∥∥KB
d ωB

BE (4.7)

where ∥·∥ denotes the Euclidean norm and Kd is a 3 × 3 matrix and assumed to be diagonal
when expressed in the coordinate system B, which is denoted by

KB
d = diag

(
Kd,xx,Kd,yy ,Kd,zz

)
. (4.8)

It is assumed that the different propeller speeds near the operating point discussed in the paper
are not significant enough to make a difference in the drag torque that the vehicle experiences.
Therefore it is assumed that the propeller’s contribution to the drag torque is constant and im-
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Figure 4.2: Monospinner in flight, showing some of the symbols and quantities required to
model the system.

plicitly included in (4.7).

2.2 Hover solution

Similar to Section 2.1, the Monospinner’s hover solution is derived in [52] and summarized here
for the sake of completeness. This hover solution follows the definition of the “relaxed hover
solutions” [75], which are defined as solutions that are constant when expressed in a body-fixed
reference frame and where the vehicle remains substantially in one position. Specifically, these
solutions allow the vehicle to have a non-zero translational acceleration (but it must average to
zero) and a non-zero angular velocity.

In hover, the Monospinner’s center of mass has a uniform circular motion and stays at a con-
stant height, while the vehicle body is rotating at a constant angular velocity ω̄B

BE in the parallel
direction of gravity. Note that the overbar in this paper is always used to denote quantities that
are constant in hover (i.e. the equilibrium solution). Also, a body-fixed unit vector na exists,
which does not change when expressed in the coordinate systemE. This vector may be thought
of as an averaged thrust direction of the vehicle: in hover it is aligned with the thrust vector
averaged over one rotation. Note that the instantaneous thrust direction may not be aligned with
gravity.
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Furthermore, the vector na is parallel to ω̄BE :

nB
a =

ω̄B
BE

ω̄
, (4.9)

where ω̄ is the magnitude of the equilibrium angular velocity
∥∥ω̄B

BE

∥∥.
The equilibrium propeller force nB

P f̄P can be decomposed into horizontal and vertical forces,
where the horizontal force induces the circular motion and the vertical force compensates for
the vehicle’s weight. Thus

f̄PnB
P · nB

a = m ∥g∥ . (4.10)

Substituting (4.9) into (4.10) yields the following solution for the equilibrium thrust

f̄P =
m ∥g∥ ω̄
nB

P · ω̄B
BE

. (4.11)

In hover (i.e. setting the derivatives to zero), (4.2) becomes:

Jω̄B
BE×K(IB

Bω̄B
BE + IB

P ω̄B
PE) = JrB

P×KnB
P f̄P + nB

P τ̄P + τ̄B
d . (4.12)

Note that the quantities ω̄B
PE , f̄P , τ̄P and τ̄B

d are uniquely defined by Ω̄ and ω̄B
BE (see (4.3),

(4.4), (4.5), (4.6), (4.7)), such that we have four equations in four unknowns. The hover solution
is therefore defined by the Ω̄ and ω̄B

BE that solve (4.11)-(4.12). With the resulting Ω̄ and ω̄B
BE

(if they exist) all other quantities in hover (such as nB
a or f̄P ) may be calculated.

2.3 Equilibrium

In this section two frames (see Fig. 4.3) are introduced: a body frame convenient for the con-
trollability analysis and control design, and a rotating reference frame for obtaining attitude
equilibrium. Translational and attitude equilibrium is solved using the hover solution in Sec-
tion 2.2.

Attitude equilibrium

For convenience, a body-fixed C-frame is introduced such that

nC
a = RCBnB

a = (0, 0, 1) (4.13)

Note that (4.13) remains valid if the C-frame rotates around its z-axis. This degree of free-
dom may be fixed by the constraint that the propeller thrust direction nC

P has no y component
when expressed in the C-frame, that is,

nC
P = RCBnB

P
!
= (∗, 0, ∗). (4.14)

Let (p, q, r) := ωC
CE be the body rates expressed in the C-frame. By (4.9) and (4.13) the
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Figure 4.3: This figure illustrates the two frames introduced in Section 2.3: the body-fixed
C-frame is introduced such that the body-fixed unit vector na is aligned with its z-axis, and
the propeller force vector nC

P has no y-component. The L-frame rotates at a constant angular
speed ω̄ around the gravity vector and therefore the z-axis of the inertial frame E.

body rates equilibrium ω̄C
CE is

ω̄C
CE = ω̄C

BE = RCBω̄B
BE = RCBnB

a ω̄ = (0, 0, ω̄). (4.15)

In other words, at equilibrium the body-fixed C-frame is rotating at a constant angular speed ω̄
about the gravity vector and the yaw angle between the C and the E-frame increases linearly
with time. In order to have a constant yaw equilibrium, a frame L rotating at a constant angular
speed ω̄ around the gravity vector is introduced with

ωL
LE = (0, 0, ω̄). (4.16)

Then the vehicle’s orientation may be represented by RCL, which relates the body-fixed frame
C and the frame L. We parametrize the rotation matrix RCL through the Euler Yaw-Pitch-
Roll sequence, following the common aerospace convention [80], with ϕ (roll), θ (pitch), and
ψ (yaw):

RCL = Rx(ϕ)Ry(θ)Rz(ψ) (4.17)
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where

Rx(ϕ) =

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 (4.18)

Ry(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (4.19)

Rz(ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 . (4.20)

In hover, it is clear from (4.15) and (4.16) that there is only a constant yaw offset (the equi-
librium yaw angle) between theC-frame and the L-frame. Therefore, the equilibrium pitch and
roll angles are both zero, that is, θ̄ = ϕ̄ = 0. Note that the equilibrium yaw angle (ψ̄) depends
only on the choice of the initial yaw between the L and E-frame and is therefore set to zero
without loss of generality. The rotation matrix RCL may alternatively be parametrized with a
3-1-3 Euler angle sequence, consisting of spin, nutation, and precession [81]. This parametriza-
tion is popular for describing spinning bodies, but is less useful than the proposed yaw-pitch-roll
sequence as it has a singularity at the equilibrium with zero nutation angle.

Translational equilibrium

Since in hover the center of mass of the vehicle is rotating in a circle at a constant height, its
horizontal position and velocity are oscillatory when expressed in the inertial frame. Thus, the
position and velocity states are expressed in the body frame C, and their dynamics are obtained
by applying Euler’s transformation on the position vector s and velocity vector v:

ṡC = vC − JωC
CE×KsC (4.21)

v̇C = RCE(s̈)E − JωC
CE×KvC (4.22)

=
1

m
nC

P fP +RCEgE − JωC
CE×KvC (4.23)

where v := ṡ and (4.1) is substituted into (4.22).
Setting (4.23)’s left hand side to zero and substituting the hover solution into the equation

yields

0 =
1

m
nC

P f̄P + R̄
CE

gE − Jω̄C
CE×Kv̄C . (4.24)

Recall that in hover the C-frame rotates about the gravity vector, thus R̄
CE

gE = gE .
Substituting the body rates equilibrium solution (4.15) and solving (4.24) yields

v̄Cy = −
f̄P n

C
P,x

ω̄m
, v̄Cx =

f̄P n
C
P,y

ω̄m
= 0, (4.25)
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where (nC
P,x, n

C
P,y , n

C
P,z) := nC

P , (v̄Cx , v̄
C
y , v̄

C
z ) := v̄C . The equilibrium state v̄Cx is equal

to 0 since nC
P,y is zero according to (4.14).

Setting the left hand side of (4.21) to zero, substituting the hover solution into it, and solving
the equation yields:

v̄Cz = 0, s̄Cy = − v̄
C
x

ω̄
= 0, s̄Cx =

v̄Cy

ω̄
= −

f̄P n
C
P,x

ω̄2m
, (4.26)

where (s̄Cx , s̄
C
y , s̄

C
z ) := s̄C .

Note that s̄Cz does not appear in the equilibrium equations and is set to zero without loss of
generality. The fact that the horizontal position equilibrium s̄Cx and s̄Cy cannot be set arbitrarily
is simply a feature of choice of the state and the coordinate system it is represented in.

Equilibrium solution

In conclusion, the twelve-state equilibrium (s̄Cx , s̄
C
y , s̄

C
z , v̄

C
x , v̄

C
y , v̄

C
z , ϕ̄, θ̄, ψ̄, p̄, q̄, r̄) is:

s̄Cx = −
f̄P n

C
P,x

ω̄2m
, s̄Cy = 0, s̄Cz = 0

v̄Cx = 0, v̄Cy = −
f̄P n

C
P,x

ω̄m
, v̄Cz = 0,

ϕ̄ = 0, θ̄ = 0, ψ̄ = 0,

p̄ = 0, q̄ = 0, r̄ = ω̄.

(4.27)

3 Linearized system and controllability analysis

In this section, the attitude kinematics for the Euler angles (ϕ, θ, ψ) that were introduced ear-
lier are derived. The resulting twelve-state dynamic system is linearized about hover and the
controllability analysis is subsequently given.

3.1 Linearization
The angular rates ωC

CL and the rates of the Euler angles (ϕ̇, θ̇, ψ̇) have the following relation-
ship [80]:

ωC
CL =

ϕ̇0
0

+Rx(ϕ)

0θ̇
0

+Rx(ϕ)Ry(θ)

0
0

ψ̇

 , (4.28)

the inverse mapping of which (that is, the mapping from ωC
CL to (ϕ̇, θ̇, ψ̇)) has the following

form: ϕ̇θ̇
ψ̇

 =

1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ)/ cos(θ) cos(ϕ)/ cos(θ)

ωC
CL (4.29)
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Note that
ωC

CL = ωC
CE − ωC

LE = ωC
CE −RCLωL

LE (4.30)

Substituting (4.30) into (4.29) yieldsϕ̇θ̇
ψ̇

 =

1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ)/ cos(θ) cos(ϕ)/ cos(θ)

ωC
CE +

 sin(θ)ω̄
− sin(ϕ) cos(θ)ω̄
− cos(θ) cos(ϕ)ω̄


(4.31)

Introducing the state deviation from the equilibrium defined in (4.27)

x = (δsCx , δs
C
y , δs

C
z , δv

C
x , δv

C
y , δv

C
z , δϕ, δθ, δψ, δp, δq, δr), (4.32)

defining the control input u as deviation of the motor force from the equilibrium motor force
f̄P , and linearizing the system dynamics ((4.21), (4.23), (4.31) and (4.2)) about the equilibrium
yield a linear, time-invariant (LTI) system:

ẋ ≈ Ax+Bu. (4.33)

Substituting the equilibrium solution ϕ̄ = θ̄ = 0 into (4.33) (ψ̄ does not appear in the lineariza-
tion), the system matrices A and B become

A =


−Jω̄C

CE×K I3 0 Js̄C×K
0 −Jω̄C

CE×K −JgE×K Jv̄C×K
0 0 −Jω̄C

CE×K I3
0 0 0 AC

S

 , B =


0

m−1nC
P

0
BC

S

 . (4.34)

Every entry of A in the above expression denotes a 3 by 3 matrix and every entry of B denotes
a 3 by 1 matrix. AC

S and BC
S denote the linearization matrices of the Euler equation (4.2), and

I3 is an identity matrix of dimension 3. Note that the appearance of s̄Cz in the system matrix A
comes from the fact that the position state is formulated in the body frame. It does not, however,
affect the controllability of the system pair (see Section 3.2, s̄Cz does not appear in the matrices
in (4.37), (4.38), and (4.39)).

3.2 Controllability analysis
In this section, controllability analysis for the linearized system is conducted to gain intuition of
when it is possible to control the Monospinner. It will be shown that the full twelve-state system
(from now on referred to as the full state system) is never stabilizable2 , and the controllability
test of the reduced eleven state system (with yaw state removed and from now on referred to as
the reduced state system) is equivalent to the full rank tests of at most five matrices (two 4× 4
matrices and three 3 × 4 matrices). The controllability analysis of three special cases for the
reduced state system is subsequently given.

2In this article, controllability of an LTI system is defined to mean that for any initial state, there exists a control trajectory
such that the system can be steered from that state to 0 in finite time, whereas stabilizability is defined to mean that for any
initial state, there exists a control trajectory such that the system state converges to zero as time goes to infinity [82].

32



3 Linearized system and controllability analysis

The full state system

Note that the matrix A in (4.34) is an upper block diagonal matrix. The spectrum of A is
therefore the union of the spectra of the diagonal block matrices, that is,

spec(A) = spec(Jω̄C
CE×K) ∪ spec(AC

S ) (4.35)

The spectrum of the skew-symmetric matrix Jω̄C
CE×K is {ω̄i,−ω̄i, 0}, with i denoting the

imaginary unit. The eigenvalues of A are then divided into three categories: 0, ±ω̄i and the
eigenvalues of AC

S .
For a linear, time-invariant system, one could apply the Popov-Belevitsch-Hautus (PBH) test

to investigate its controllability (Corollary 12.6.19, [83]), the pair (A,B) is controllable if and
only if for all eigenvalues λ ofA, the concatenated matrix [λI−A B] ∈ C12×13 has full rank.
This includes the case of eigenvalue 0, where the test matrix has the form [−A B]. Note that
the third and the ninth column of the matrix A are zero vectors, meaning that the concatenated
test matrix [−A B] has at most rank 11 and therefore does not have full rank. The pair (A,B)
is thus not stabilizable. Note that including the translational drag forces (such as those described
in [77]) in (4.23) would not change the system’s stabilizability, as they do not depend on the
yaw and height of the vehicle and thus this does not change the rank of the test matrix [−A B].

The reduced state system and equivalent controllability tests

Rearranging the states in (4.32) (moving the yaw state δψ to the last state) yields:

Ã =

[
A11 0
A21 0

]
, B̃ =

[
B1

0

]
(4.36)

withA11 ∈ R11×11,A21 ∈ R1×11,B1 ∈ R11×1 and 0 being the zero matrix with associated
dimension. From (4.36), it can be seen that the yaw state does not affect the dynamics of other
states.

Furthermore, changing the yaw state (the yaw angle between theL and theC-frame) in hover
would not affect the direction of the averaged thrust, and therefore not the roll angle, pitch angle,
and position in the inertial frame. This motivates investigating the controllability of the system
without the yaw state, that is, the system matrix pair (A11, B1). Stabilizability of this reduced
state system implies the ability of the system to maintain a relaxed hover solution while rejecting
disturbances, remaining substantially at one point in space (though the yaw angle may not be
able to simultaneously achieve some setpoint. Note that the stabilizability of the reduced system
also implies that the yaw rate of the vehicle stays bounded.

The PBH test is then applied to the reduced system matrix pair (A11, B1). Applying the
algebra outlined in 9, it is revealed that for the eigenvalue 0, the matrix [−A11 B1] has full
rank if and only if the matrix U0 ∈ R4×4 has full rank, where

U0 =

[
V0 −(AC

S )⊤

m−1nC
P,z (BC

S )⊤

]
(4.37)

with V0 = (v̄Cy , 0, 0).
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Similarly, for the eigenvalues ±ω̄i, since [ω̄iI − A11 B1] and [−ω̄iI − A11 B1] have the
same rank (Fact 2.19.3, [83]), it suffices to investigate [ω̄iI − A11 B1], which has full rank if
and only if the matrix Ui ∈ C4×4 has full rank (9), where

Ui =

[
Vi ω̄iI − (AC

S )⊤

0 (BC
S )⊤

]
(4.38)

with Vi = (1,−i, 0).
Finally, for the eigenvalues ofAC

S , assuming that its eigenvalues are distinct from 0 and±ω̄i
(otherwise we can check the rank of U0 or Ui), its associated full rank tests are equivalent to
the test of whether or not the matrix Us(λ) : C 7→ C3×4 has full rank (9), where

Us(λ) =
[
λI −AC

S BC
S

]
(4.39)

with λ ∈ spec(AC
S ).

In summary, the system pair (A11, B1) is stabilizable if and only ifU0,Ui have full rank, and
Us(λ) has full rank for the eigenvalues of AC

S whose real part is non-negative. Also note that
obtaining the matrices AC

S and BC
S symbolically is nontrivial, since it requires the knowledge

of the equilibrium solution to define the C-frame, and solving the nonlinear equations (4.11)-
(4.12) symbolically for the equilibrium is in most cases very tedious, if not impossible.

Special cases for the reduced state system

In this section, special cases under simplifying assumptions are investigated to provide intuition
of when the reduced state system matrix pair (A11, B1) is stabilizable. This may be useful
since if the system is stabilizable for the simplified system equations, then it will be stabilizable
for the actual system, provided that the modeling error is small enough. This stems from the
fact that the eigenvalues of a matrix are continuous functions of its elements (Fact 10.11.9, [83])
that are also locally continuous at the model parameters. Therefore, the PBH test matrix does
not lose rank for a perturbation of the system matrices that is small enough. Conversely, if the
system is not stabilizable for the simplified system equations, it may still be stabilizable for the
actual system, but it is very likely that large control efforts would be required to stabilize it.

First, it is assumed that the terms IB
P ω̇B

PE and IB
PωB

PE are negligible. For a typical vehicle
design (that is, the vehicle is roughly the size of a quadrocopter described in [84]), the largest
component of the propeller moment of inertia IB

P (the moment of inertia around its body z-axis)
is two orders of magnitude smaller than the smallest diagonal entries of the vehicle moment of
inertia IB

B , and the equilibrium angular momentum term IB
P ω̄B

PE is an order of magnitude
smaller than IB

Bω̄B
BE . The Euler equation (4.2) thus becomes

IB
Bω̇B

BE + JωB
BE×KIB

BωB
BE = JrB

P×KnB
P fP + nB

P τP + τB
d . (4.40)

It is also assumed that the vehicle’s angular velocity with respect to the inertial frame is much
smaller than the propeller’s angular velocity with respect to the body, i.e., ∥ωBE∥ ≪ ∥ωPB∥,
so that fP is not a function of the body rates.

The following three special cases are then investigated:
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3 Linearized system and controllability analysis

Case 1

It is first assumed that the vehicle is a planar object (Fig. 4.4). The perpendicular axis theorem
applies then, that is, for a coordinate system where the object is lying in the xy-plane, the
sum of the moments of inertia about axis x and y is equal to the moment of inertia about axis z.
Furthermore, the vehicle’s inertia matrix is assumed to be diagonal in theB-frame. In summary,
IB
B = diag (Θx,Θy ,Θx +Θy).
It is assumed that the propeller thrust location has a positive offset to the center of mass, that

is, rB
P = (l, 0, 0), with l being positive. It is also assumed that the vehicle’s equilibrium pitch

and roll rates are small, such that the airframe drag torque around the body x and y-axes is
neglected:

τB
d = (0, 0,−KrB |rB |), (4.41)

where K is a positive constant and rB is the yaw rate in the B-frame. In a typical vehicle
design, it is found that the terms Jω̄B

BE×KIB
Bω̄B

BE and JrB
P×KnB

P f̄P are at least an order
of magnitude larger than the airframe drag torque around the body x and y-axes. A further
reason for this assumption is that, intuitively, for such a fast, almost flat wobbling planar object,
the gyroscopic effect and the offset propeller thrust dominate the roll and pitch rate dynamics,
whereas the propeller torque has to be counterbalanced by the airframe drag torque in the body
z-axis.

It is shown that in this case the reduced system matrix pair (A11, B1) is always stabiliz-
able (see 10.1). This implies that a vehicle of flat shape is a viable choice when designing
a Monospinner. A special case here is when the vehicle has the shape of a flat plate, that is,
IB
B = diag (Θ,Θ, 2Θ). The Maneuverable Piccolissimo [20], for instance, has such an inertia

distribution.

Case 2

It is assumed that the vehicle’s inertia matrix has the form IB
B = diag (Φ,Θ,Θ), and the

airframe drag matrix expressed in the body frame B has the form KB
d = diag (J,K,K),

where Φ, Θ, J , andK are non-zero. Here the vehicle’s equilibrium pitch and roll rates may not
be small, thus the aerodynamic effects in the pitch and roll axes cannot be neglected. As in case
1, it is assumed that the thrust location rB

P is equal to (l, 0, 0) with positive l. This corresponds
to the case where the vehicle has the shape of a cylinder and the thrust location is aligned with
its center axis (Fig. 4.5). Note that this case also includes the special case that the vehicle’s
mass distribution is symmetric, that is, IB

B = diag (Θ,Θ,Θ) (e.g. a sphere or cube).
It can be proved that the reduced state system is not stabilizable, since the PBH test ma-

trix associated with the eigenvalues on the imaginary axis does not have full rank (see 10.2).
Intuitively, the cross-coupling term (the term JωB

BE×KIB
BωB

BE in the Euler equation) in the
x-axis disappears due to the structure of the inertia matrix, so that the roll rate dynamics can be
hardly influenced by other states. In addition, the propeller thrust only creates moment around
the pitch axis. The reduced state system is therefore not stabilizable. This indicates that when
designing a Monospinner, the design should avoid to have an inertia matrix similar to the one
given in this case.
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eBx

eBz

eBy

fPnP

Figure 4.4: A possible shape of the vehicle in the special case 1 of the controllability analysis
for the reduced state system. It is a planar object with an offset thrust location.

eBx

eBz

eBy

fPnP

Figure 4.5: A possible shape of the vehicle in the special case 2 of the controllability analysis
for the reduced state system. It has the shape of a cylinder and the thrust location goes through
the cylinder’s center axis.
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4 Control strategy

Case 3

In this case, the propeller thrust location rP is assumed to be equal to (0, 0, 0). Assume the
vehicle’s inertia matrix has the form IB

B = diag (Θx,Θy ,Θz). Then one equilibrium of this

special case is p̄B = 0, q̄B = 0, r̄B =
√
κf̄P /Kd,zz , where (p̄B , q̄B , r̄B) := ω̄B

BE . It
can be shown that the linearized reduced state system around this equilibrium is uncontrollable
(10.3).

This is also intuitively easy to see, namely, due to the lack of the cross-coupling term in
hover and the term JrB

P×KnB
P fP in the x and y-axis, the control input could influence the yaw

rate dynamics, but not the roll and pitch rate dynamics. This indicates that when designing a
Monospinner, the thrust location should not be too close to the center of mass.

4 Control strategy

The above analysis indicates that by giving up the control of yaw, the reduced state system
may be stabilized by a state feedback controller. Recall that the vehicle’s position can still be
controlled.

Furthermore, the motor dynamics may have a large influence on the system, if the time con-
stant of their response to commands is comparable to the time constants of the remainder of the
system. For this reason the motor force is also included as a state, and is approximated by a first
order system with time constant τmot:

ḟP = τ−1
mot (fcom − fP ) (4.42)

where fcom is the command thrust for the propeller and fP is the current propeller thrust.
Augmenting the deviation of the motor force from the equilibrium force (i.e. fP − f̄P ) as a

state to the reduced state system, denoting the new state as x, and introducing the new control
input u := fcom − f̄P , the augmented state system equation is then

ẋ ≈ Acx+Bcu (4.43)

Note that although the motor force state (or equivalently, the motor speed) represents a degree
of freedom of the system, including it in the state space or not does not affect the system’s
controllability, as the motor force is considered directly as the input to the system in the latter
case. From now on, it is always assumed that the system matrix pair (Ac, Bc) is controllable,
such that a stabilizing feedback controller may be designed.

An infinite-horizon linear-quadratic regulator (LQR) [85] may be readily designed with with
the cost on the position states set to 1m−2 s−1, cost on the roll and pitch states set to 10 rad−2 s−1,
cost on the input set to 1N−2 s−1, and cost on the rest of the states set to 0, yielding a static
feedback gain K:

u = −Kx. (4.44)

The resulting thrust command is then:

fcom = f̄P + u. (4.45)
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Note that the controller presented here is different from the one in the conference version [52]:
it is a single linear controller that regulates both translational and attitude states, whereas the
controller in the conference version employs a cascaded control scheme that exploits time scale
separation. This full state control strategy may bring advantages if the desired position dynamics
have a similar time constant to the desired attitude dynamics. It also allows for the investigation
of the stability margin of the closed-loop system and addressing the issue of actuator saturation,
by designing a model predictive controller that takes the input constraint into account while
considering the position at the same time.

5 Design

Since the system has only limited control authority at its disposal, it is important to find the
vehicle design that is least sensitive to uncertainties such as parametric uncertainties and mea-
surement noise. This section presents the methods to find a vehicle configuration such that the
vehicle is sufficiently robust against these uncertainties.

5.1 Simplified mechanical model
To allow for efficient evaluation, a simplified mechanical model is used for the analysis, where
there are three major components in the vehicle: the battery, the electronics and the motor
(including the propeller). The components’ contribution to the composite inertia matrix is ap-
proximated as follows: the three major components are approximated as point masses and the
connecting frame components are approximated as thin rods. From the inertia matrix (and by
assuming that the vehicle has similar drag coefficients as the quadrocopter in [84]), the resulting
vehicle’s equilibrium solution and the linearized system matrices can be computed as described
in the preceding sections.

By measuring the weights of the available components of the prototype, the battery is taken
to have a weight of 0.06 kg, the electronics 0.045 kg and the motor 0.04 kg. The connecting
rods are taken to have a length density of 0.06 kgm−1.

5.2 Choosing the vehicle configuration
The vehicle design focuses on optimizing over the vehicle’s mass distribution. One motivation
here is that a mass distribution where the cross-coupling term (i.e. the gyroscopic effect) domi-
nates in hover would make the system’s body rate dynamics more coupled and therefore easier
to control.

The vehicle’s approximate size and shape are based on the existing trispinner [75], with a
Y-shape and a vehicle diameter of approximately 30 cm. The positions of the battery and the
motor are fixed to be two vertices of an equilateral triangle, while the position of the electronics
is to be determined.

A two-dimensional grid search of the position of the electronics is then conducted, where two
different quality metrics are considered. The first is the probability of input saturation and is
based on the linear, time-invariant model of the dynamic system. The second metric uses Monte
Carlo simulations of the nonlinear system, including parameter perturbations and noise, to ap-
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proximate the probability that the resulting vehicle is able to maintain hover. The probability of
input saturation may be computed in closed form for a given design and is therefore cheap to
evaluate, but is less informative than the Monte Carlo simulations.

Probability of input saturation

In feedback control, system noise may be amplified into the control input command and cause
input saturation even if the system is near equilibrium. It is therefore important to know how
measurement and process noise relates to the actual input force, specifically how likely it leads
to input saturation. This is particularly true for the Monospinner: with the available motor
and propeller, the hover propeller force is near saturation (about 75 percent of the maximum
available thrust). In the following, a stochastic analysis is presented: a discretized version of
the linear system is derived and augmented with measurement and actuator noise, which is
identified by dedicated experiments. The probability that input saturation occurs may then be
computed in closed-form.

Discretizing the system (4.43) with a zero-order-hold on the input u[k] leads to:

x[k + 1] = Adx[k] +Bdu[k] (4.46)

where Ad and Bd are the discretized system matrices.
The measurement outputs are taken to be those available on the experimental platform, that

is, every state except the linear velocity. The measurement z[k] is then

z[k] = Cdx[k] + wmeas[k] (4.47)

where wmeas[k] ∈ R9 is the measurement noise, which is assumed to be zero-mean, white,
and Gaussian. Furthermore, Cd ∈ R9×12 has the form

Cd =

[
I3 0 0
0 0 I6

]
(4.48)

where I3 and I6 are identity matrices with dimension 3 and 6 and 0 is the zero matrix with
associated dimension. Clearly, the system matrix pair (Ad, Cd) is observable.

With x̂ defined as the state estimate, a steady-state Kalman filter has the following form:

x̂[k] = (I12 −KfCd)(Adx̂[k − 1] +Bdu[k − 1]) +Kf z[k] (4.49)

where Kf is the filter gain and I12 is the identity matrix with dimension 12.
The controller input follows from applying the discrete LQR gainKd. It is also assumed that

white, Gaussian, and zero-mean actuator noise wact[k] exist and act on the system. The true
control input utrue[k] is then

utrue[k] = −Kdx̂[k] + wact[k]. (4.50)

Introducing the extended state x̃[k] = (x[k], x̂[k]) and noise w̃[k] = (wmeas[k+1], wact[k]),
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substituting (4.50) into (4.46) yields

x[k + 1] = Adx[k]−BdKdx̂[k] +Bdwact[k] (4.51)

Substituting (4.51) into (4.47) and then into (4.49) leads to

x̂[k] = KfCdAdx[k−1]+
(
(I12 −KfCd)Ad −BdKd

)
x̂[k−1]+Bdwact[k−1]+Kfwmeas[k]

(4.52)
Combining (4.50), (4.51) and (4.52) and introducing the corresponding extended system ma-

trices Ã, B̃, C̃ and D̃, the extended system equations are:

x̃[k + 1] = Ãx̃[k] + B̃w̃[k] (4.53a)

utrue[k] = C̃x̃[k] + D̃w̃[k]. (4.53b)

By separation theorem for LTI systems and quadratic cost [85], the extended system (4.53a)
is stable with a stable feedback controller and a stable state estimator. Thus, the extended system
will reach steady state (the equilibrium) as k goes to infinity. Let Pw̃ , Px̃ and Putrue be the
variables’ associated steady-state covariance matrices (e.g. Px̃ = Var (x̃[k]) for k → ∞).
Through the steady state equations of (4.53a) and (4.53b), the covariance matrices have the
following relationship:

Px̃ = ÃPx̃Ã
T + B̃Pw̃B̃

T (4.54a)

Putrue = C̃Px̃C̃
T + D̃Pw̃D̃

T . (4.54b)

Note that (4.54a) is a discrete-time Lyapunov equation, for which a solution Px̃ is guaranteed
to exist, since Ã is discrete-time asymptotically stable, and B̃Pw̃B̃

T is positive semi-definite
[83]. Furthermore, since the measurement noise variance Pw̃ is measured from experiment, and
Ã and B̃ are known, Px̃ can be readily solved by (4.54a). Substituting the solution into (4.54b)
gives the variance of the actuator Putrue .

Since the noise w̃[k] is assumed to be Gaussian and zero-mean, utrue[k] is also Gaussian
and zero-mean at steady state. As a result, the propeller thrust at equilibrium is a Gaussian
random variable with mean f̄P and variance Putrue , from which the probability of saturating
the maximal allowed thrust may be calculated. Note that this allows for capturing the fact
that a design with low variance may still have a high probability of saturation if it has a high
mean thrust. In this way the saturation probabilities of varying positions of the electronics are
computed and shown in Fig. 4.6, and the results are discussed in the following.

Monte Carlo analysis:

For each position of the electronics, the nominal hover solution is calculated and an LQR con-
troller is designed using the costs given in the preceding section: this controller is denoted as
the “nominal controller”. Two hundred perturbed vehicles are then generated, by perturbing the
following: inertia matrix IB

B , mass m, and drag coefficients Kd,xx, Kd,yy and Kd,zz . Each
of these parameters is perturbed by sampling within a certain percentage range of the nominal
value. For each perturbed vehicle a nonlinear simulation based on the dynamic model given in
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Figure 4.6: The probability of the input saturation for one time step for varying positions of the
electronics. In the colored area, a grid search with resolution 0.001 m both in x and y-direction
is conducted. Electronics positions for which a hover solution cannot be solved are marked with
hatching (the upper right corner of the color area). Note that the color bar has logarithmic scale.
Note that on the boundary between the regions that has equilibrium solutions and that has no
solution, there is a rapid increase of the input saturation probabilities. This is due to the rapid
increase in the equilibrium motor force at this boundary. The chosen position of the electronics
is also plotted.

Section 2.1 is conducted, lasting 10 simulated seconds. In addition to the perturbed parameters,
actuator noise and measurement noise are simulated as in (4.47) and (4.50).

The perturbed vehicle starts at the hover equilibrium of the unperturbed system and is con-
trolled by the nominal controller. If the vehicle has distance greater than 5m from the reference
position at the end of the simulation, it is counted as a failure case. For each candidate position
of the electronics, the number of failure cases is plotted in Fig. 4.7. This number is used as an
indicator of the robustness of the corresponding nominal configuration.

Discussion

Note that in both Figs. 4.6 and 4.7, there is a good, relatively flat region of electronics positions
which have a similar small number of failure cases (respectively a low probability of input satu-
ration). The electronics’ position was chosen as (−0.32,−0.03, 0)m in the coordinate system
shown, based on good performance in both metrics, and on a compromise with mechanical
strength/complexity and the length of the cables required to connect the components.
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Figure 4.7: The number of failure cases of vehicles under perturbations in nonlinear simulation
for varying positions of the electronics. In the colored area, a grid search with resolution 0.02 m
both in x and y-direction is conducted. Electronics positions for which a hover solution cannot
be solved are marked with with hatching (the upper right corner of the color area). The chosen
position of the electronics is also plotted.

6 Resulting vehicle

The resulting vehicle, as shown in Fig. 4.1, has a mass of 0.208 kg and the moment of inertia
as below (calculated from a CAD-model):

IB
B =

103 15 13
15 307 4
13 4 400

× 10−5 kgm2. (4.55)

The linearized system matrices are:

Ac =



0 25.65 0 1 0 0 0 0 0 0 0 0
−25.65 0 0 0 1 0 0 0 0 0 −0.004 0

−0 0 0 0 0 1 0 0 0 0.004 0 0
0 0 0 0 25.65 0 0 9.81 0 0 0.11 −1.30
0 0 0 −25.65 0 0 −9.81 0 0 0 0 0
0 0 0 0 0 0 0 0 −0.11 0 0 4.63
0 0 0 0 0 0 0 25.65 1 0 0 0
0 0 0 0 0 0 −25.65 0 0 1 0 0
0 0 0 0 0 0 0 0 −3.41 −16.64 1.48 −8.95
0 0 0 0 0 0 0 0 19.89 0.64 10.94 −66.19
0 0 0 0 0 0 0 0 0.04 −6.78 −0.53 3.22
0 0 0 0 0 0 0 0 0 0 0 −13.33


(4.56)
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Table 4.1: Components of the Monospinner

Component Name

Propeller GEMFAN GF 8045

Motor T-Motor MN2204-28 KV:1400

Motor controller DYS SN20A

Command radio Laird RM024-S125-M-20

Flight controller Custom-made flight computer

Battery G8 Pro Lite 480mAh 3-Cell/3S 11V

Bc =
[
0 0 0 0 0 0 0 0 0 0 0 13.33

]⊤
. (4.57)

Recall that the state x is

x = (δsCx , δs
C
y , δs

C
z , δv

C
x , δv

C
y , δv

C
z , δϕ, δθ, δp, δq, δr, δfP ), (4.58)

and the input is u = fcom − f̄P .
It can be confirmed that the pair (Ac, Bc) is controllable, and the eigenvalues of the system

matrix Ac are: {±25.6i, 0,−0.9± 20.0i,−1.6,−13.3}.
The expected hover solution for this vehicle is

s̄Cx = 0.0043m, v̄Cx = 0.11m s−1 (4.59)

ω̄B
BE = (6.62,−2.04, 24.69) rad s−1 (4.60)

f̄P = 2.12N . (4.61)

Note that s̄Cx = 0.0043m implies that the vehicle’s center of mass is rotating in a circle with a
radius of 4 millimeters.

Table 4.1 lists the major components of the Monospinner.

7 Experimental results

The experiments are carried out in the Flying Machine Area, an indoor aerial vehicle testbed
at ETH Zurich [84]. An infrared motion capture system provides high-quality position and
attitude measurements of the vehicle, which are transmitted wirelessly to the Monospinner at
50 Hz. The full state control of the vehicle are run onboard at 1000 Hz. The motor’s electronic
speed controller directly measures the motor speed, and these measurements are used to estimate
the motor force state using (4.5). The attached video shows two types of experiments: take-off
from a platform and hand-launching.
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7.1 Take-off from a platform
Ideally, one would like the Monospinner to start near the equilibrium, especially in terms of
its body rates: if instead the equilibrium thrust is applied when the vehicle has zero angular
velocity (e.g. it is at rest on the ground) the vehicle would simply flip over. This is because the
cross-coupling term (i.e. the gyroscopic effect) and the airframe drag torque are second-order
terms in the angular velocity and thus negligible. Moreover, the propeller’s pitch torque is larger
than its yaw torque due to the vehicle’s geometry: the torque to thrust ratio of the propeller is of
the order of 1.5 cm, and the propeller thrust moment arm is 15 cm. Thus, a passive mechanism
is designed to allow the Monospinner achieve an angular velocity close to its equilibrium before
taking off. The mechanism consists of a platform, on which the Monospinner rests, connected
by a bearing to the ground, so that the vehicle can freely rotate about its vector na. The rotation
is achieved solely through the propeller torque τP , and the thrust is slowly ramped up from zero
to the equilibrium solution. Once sufficiently close to equilibrium, the full control is switched
on and the vehicle takes off. A representative state history during a take-off is shown in Fig. 5.3.

The equilibrium body rates of the vehicle in hover are as below, which may be compared to
the expected values in (4.60) and (4.61)

ω̄BE = (6.9,−1.2, 24.8) rad s−1 (4.62)

f̄P = 2.12N . (4.63)

7.2 Hand launch
Alternatively, the Monospinner can be launched by throwing it like a frisbee. This is a faster
method of achieving hover than the takeoff mechanism in Section 7.1, and shows that the result-
ing system’s equilibrium has a large region of attraction. A representative state history during a
hand-launch is shown in Fig. 4.9.

8 Conclusion

This paper presents the modeling, design, and control of a flying vehicle with only one moving
part and a single control input, which is able to fully control its position and may be used as
novel hobbyist platforms, toys, or low-cost flying vehicles. First, the vehicle’s coupled transla-
tional and attitude dynamics are formulated as a twelve state system for which an equilibrium
exists. This allows for analysis of the linearized system using the powerful tools from linear
system theory. Then a controllability analysis is given: It is shown that the full state system
is never stabilizable, and after removing the yaw state, the reduced state system maybe fully
controllable in position. In particular, the reduced state system is always stabilizable for a class
of vehicles that has the shape of a planar object and an offset thrust location with respect to
the center of mass. The resulting vehicle may be approximated by an instance of this class of
vehicles and its corresponding system matrix pair is shown to be indeed stabilizable. An LQR
controller for the reduced state system is designed and is shown to work reliably in the experi-
ments. A vehicle design method is also presented: it optimizes mainly over the vehicle’s shape
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Figure 4.8: Experimental results for the Monospinner’s take-off from the platform. The vehicle
takes off at 11 s and lands at 20 s. At time 15 s, a reference position change of 1m is set in the
(horizontal) y-direction. Note that at steady-state there is an offset between the vehicle’s height
z and the reference height zref . This is due to the discrepancy between the expected hover
solution and the true hover solution. and it may be readily compensated by adding an integral
term to the position control. The angular velocity is plotted as expressed in the body-fixed
coordinate system, where ωB

BE = (pB , qB , rB). The roll and pitch angles are the standard
Euler sequence (1,2,3) angles from theE-frame to theB-frame. The attached video shows such
an experiment.

and hence its mass distribution, in order to find a design that is robust against system noise and
parametric uncertainties. Finally, the resulting vehicle is shown to be capable of hovering and
its equilibrium has a large region of attraction such that the vehicle recovers to hover after being
thrown into the air like a frisbee. An area of additional investigation may be the analysis of
the presented linear controller and the determination of the region of attraction of the resulting
equilibrium.
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Figure 4.9: Experimental results for a successful hand launch of the Monospinner. Its initial
angular velocity has about 30% deviation of the equilibrium angular velocity, and its initial roll
and pitch both have about 20 degrees deviation of the equilibrium roll and pitch. The vehicle is
thrown at approximately 2 s, after which the controllers are switched on. The angular velocity
is plotted as expressed in the body-fixed coordinate system, where ωB

BE = (pB , qB , rB). The
roll and pitch angles are the standard Euler sequence (1,2,3) angles from the E-frame to the
B-frame. The attached video shows such an experiment.
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9 Equivalent controllability tests for the reduced state
system

In this appendix it will be shown that the matrices [−A11 B1], [±ω̄iI − A11 B1] and [λI −
A11 B1] with λ ∈ spec(AC

S ) have full rank if and only if the matrices U0 (4.37), Ui (4.38),
and Us(λ) (4.39) have full rank, respectively.

According to [86], the system matrix pair (A11, B1) is uncontrollable if and only if there
exists a v ̸= 0 with

v⊤A11 = λv⊤, v⊤B1 = 0, (4.64)

where λ and its associated left eigenvector v is an uncontrollable mode. Therefore, to determine
whether the test matrix [λI − A11 B1] has full rank is equivalent to solving for a non-zero
solution v in the equation v⊤[λI−A11 B1] = 0 (e.g. if there exists a non-zero v, then the test
matrix does not have full rank, and vice versa). In the following, the equation will be solved for
each eigenvalue of A11, which are 0, ±ω̄i, and the eigenvalues of the submatrix AC

S .

Eigenvalue λ = 0

Taking the transpose of the matrices on both sides of the equation yields

[−A11 B1]
⊤v = 0. (4.65)

Denote v ∈ R11 by v = [v1, v2, v3, v4] with v1, v2, v4 ∈ R3 and v3 = (v31, v32) ∈ R2. In
total, there are 12 equations.

Solving the first three equations of (4.65),

−Jω̄C
CE×Kv1 = 0, (4.66)

leads to v1 = αω̄C
CE , where α ∈ R.

The next three equations are

−v1 − Jω̄C
CE×Kv2 = 0. (4.67)

Substituting v1 = αω̄C
CE into (4.67) yields α = 0 and thus v1 = 0, and v2 = βω̄C

CE , with
β ∈ R.
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From the 7th and the 8th equations it follows that[
0 ω̄
−ω̄ 0

] [
v31
v32

]
= 0, (4.68)

yielding v3 = 0.
The last four equations are

Jv̄C×Kv2 − (AC
S )⊤v4 = 0 (4.69)

and
m−1(nC

P )⊤v2 + (BC
S )⊤v4 = 0. (4.70)

Its solution depends on the entries ofAC
S andBC

S , which are functions of the vehicle’s physical
parameters.

In summary, the existence of the solution of (4.65) is equivalent to the existence of the solu-
tion of the following equation:[

V0 −(AC
S )⊤

m−1nC
P,z (BC

S )⊤

]
︸ ︷︷ ︸

=:U0

[
v23
v4

]
= 0 (4.71)

with V0 = (v̄Cy , 0, 0) and v23 denoting the third component of v2. Thus there exists a non-zero
solution for (4.65) if and only if the matrix U0 does not have full rank.

Eigenvalue λ = ±ω̄i

As pointed out in Section 3.2, only the case of λ = ω̄i needs to be investigated. The equation
to be solved is

[iω̄I−A11 B1]
⊤v = 0. (4.72)

Solving the first three equations(
iω̄I − Jω̄C

CE×K
)
v1 = 0. (4.73)

This leads to v1 = (α,−iα, 0), with α ∈ R.
The next three equations are(

iω̄I − Jω̄C
CE×K

)
v2 − v1 = 0. (4.74)

It follows that α = 0 and thus v1 = 0, and v2 = (β,−iβ, 0), with β ∈ R.
From the 7th to the 8th equations[

0 ∥g∥
−∥g∥ 0

] [
β
−iβ

]
+

[
i 1
−1 i

]
ω̄v3 = 0. (4.75)
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The result follows as β = 0, which leads to v2 = 0, and v3 = (γ,−iγ).
The last four equations are1 0

0 1
0 0

[
γ
−iγ

]
+

(
iω̄I3 −AC

S

)⊤
v4 = 0 (4.76)

(BC
S )⊤v4 = 0, (4.77)

the solution of which depends on the parameters of AC
S and BC

S .
In summary, the existence of a non-zero solution for (4.72) is equivalent to the existence of a

non-zero solution for the following equation[
Vi ω̄iI − (AC

S )⊤

0 (BC
S )⊤

]
︸ ︷︷ ︸

Ui

[
γ
v4

]
= 0 (4.78)

where Vi = (1,−i, 0). This is the case if and only if the matrix Ui does not have full rank.

Eigenvalues of AC
S

Recall that it is assumed that the eigenvalues of AC
S are distinct from 0 and ±ω̄i (otherwise

we can check the rank of U0 or Ui). Therefore, the upper left 9 by 9 block matrix of [λI −
A11 B1] has full rank, and it suffices to investigate the rank of its lower right 3 by 4 block
matrix [λI −AC

S BC
S ] (Fact 2.11.13 [83]).

10 Controllability analysis for three special cases of the
reduced state system

In Section 3.2, controllability analysis is performed for three special cases of reduced state
system under simplifying assumptions. In this appendix, details of derivation are shown for
each case.

10.1 Controllability analysis for case 1
In this case (for assumptions see Section 3.2), we will show that the system is at least stabiliz-
able. Let ωB

BE = (pB , qB , rB). Writing out the simplified Euler equation (4.40) under the
proposed assumptions for case 1 yields

ṗB = −qBrB (4.79)

q̇B = pBrB −
l

Θy
fP (4.80)

ṙB =
Θx −Θy

Θx +Θy
pBqB −

K

Θx +Θy
r2B +

κ

Θx +Θy
fP . (4.81)
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Setting the right hand side of the above three equations to zero yields three nonlinear equa-
tions, from which the equilibrium body rates (p̄B , q̄B , r̄B) may be solved:

0 = q̄B r̄B (4.82)

0 = p̄B r̄B −
l

Θy
f̄P (4.83)

0 =
Θx −Θy

Θx +Θy
p̄B q̄B −

K

Θx +Θy
r̄2B +

κ

Θx +Θy
f̄P . (4.84)

Solving the above equations yields:

p̄B =
l

Θy

√
f̄P

κ
, q̄B = 0, r̄B =

√
κf̄P . (4.85)

Linearizing (4.79), (4.80) and (4.81) around (p̄B , q̄B , r̄B) and f̄P yields

AB
S =

 0 −r̄B 0
r̄B 0 p̄B
0 Dp̄B −2kr̄B

 , BB
S =

 0

− l
Θy
κ

Θx+Θy

 . (4.86)

where

D :=
Θx −Θy

Θx +Θy
, k :=

K

Θx +Θy
. (4.87)

From (4.83) and (4.84), BB
S can be written as

BB
S = (0,− p̄B r̄B

f̄P
,
kr̄2B
f̄P

). (4.88)

Let RBC be parametrized by the standard aeronautics Euler angle sequence with roll (ν),
pitch (µ), and yaw (η) angles such that

RBC = Rx(ν)Ry(µ)Rz(η). (4.89)

Combining (4.9), (4.13) and (4.89) yields

p̄B

ω̄
= − sinµ,

q̄B

ω̄
= cosµ sin ν,

r̄B

ω̄
= cosµ cos ν. (4.90)

Since q̄B = 0 and r̄B ̸= 0, it can be seen from (4.90) that sin ν is equal to 0, which leads to
ν = 0.

With the second row of (4.14) the remaining degree of freedom η can be solved:

cos(ν) sin(µ) sin(η)− sin(ν) cos(η) = 0 (4.91)
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10 Controllability analysis for three special cases of the reduced state system

which yields

η = arctan

(
tan(ν)

sin(µ)

)
= 0. (4.92)

Therefore, the coordinate transformation from the C-frame to the B-frame is a rotation around
the y-axis of the C-frame, that is,

RBC =

cosµ 0 − sinµ
0 1 0

sinµ 0 cosµ

 (4.93)

and RBCω̄C
CE = ω̄B

BE leads to

p̄B = − sin(µ)ω̄, r̄B = cos(µ)ω̄. (4.94)

For brevity, let α = − sin(µ) > 0 (since p̄B > 0) and β = cos(µ) > 0. Note that
α2 + β2 = 1.

Substituting (4.94) intoAB
S andBB

S and applying coordinate transformationAC
S = RCBAB

S RBC

and BC
S = RCBBB

S yields

AC
S =

 −2kβα2ω̄ (−β2 −Dα2)ω̄ 2kβ2αω̄
(β2 − α2)ω̄ 0 2βαω̄
2kβ2αω̄ (−βα+Dβα)ω̄ −2kβ3ω̄

 (4.95)

and
BC

S =
[
− kβ2αω̄2

f̄P
−βαω̄2

f̄P

kβ3ω̄2

f̄P

]
, (4.96)

respectively.
Substituting nC

P,z = β, (4.25), (4.95), and (4.96) into U0 (4.71) and computing its determi-
nant yields

det(U0) = −
2kβ4ω̄3

m
(β2 + α2)2, (4.97)

which is non-zero, meaning that [−A11 B1] has full rank.
For the eigenvalues ±ω̄i, (4.78) becomes

Ui =


1 ω̄i+ 2kβα2ω̄ −(β2 − α2)ω̄ −2kβ2αω̄
−i (β2 +Dα2)ω̄ ω̄i βαω̄ −Dβαω̄
0 −2kβ2αω̄ −2βαω̄ ω̄i+ 2kβ3ω̄

0 − kβ2αω̄2

f̄P
−βαω̄2

f̄P

kβ3ω̄2

f̄P

 . (4.98)

To compute its determinant, multiply its fourth row by −2f̄P /ω̄ and add to the third row and
then compute its determinant yields

det(Ui) = −i
βαω̄4

f̄P
(−(β2 +Dα2 − 1)). (4.99)

51



Paper I: Monospinner

Assume det(Ui) = 0, then the following equation has to hold

β2 +Dα2 = 1, (4.100)

simplifying which yields

Θx −Θy = Θx +Θy , (4.101)

which is clearly a contradiction (Θy ̸= 0). Thus, [ω̄iI −A11 B1] has full rank.
For the eigenvalues of AC

S , the matrix [λI −AC
S BC

S ] has full rank for all λ is equivalent to
the controllability of the matrix pair (AC

S , B
C
S ) (the PBH test), which is then equivalent to the

full rankness of its associated controllability matrix

C =
[
BB

S AB
SB

B
S (AB

S )2BB
S

]
. (4.102)

Note that the matrix pair (AB
S , B

B
S ) with substitution from (4.94) is used instead, since coordi-

nate transformation (which is the same as change of basis) does not affect the controllability of
the linear system matrix pair, and it is easier to evaluate the controllability matrix C using the
pair (AB

S , B
B
S ).

Substituting (4.86) into C leads to

C =
βω̄2

f̄P

 0 βαω̄ −kβ2αω̄2

−α kβαω̄ αω̄2(β2 −Dα2 − 2k2β2)
kβ −(Dα2 + 2k2β2)ω̄ kβω̄2(3Dr22 + 4k2β2)

 . (4.103)

To compute its determinant, multiply the first and second column by kβω̄ and add it to the
second and third column, respectively, which yields

C =
βω̄2

f̄P

 0 βαω̄ 0
−α 0 αω̄2(β2 −Dα2 − k2β2)
kβ −(Dα2 + k2β2)ω̄ kβω̄2(2Dr22 + 2k2β2)

 . (4.104)

Again, multiply the second column by 2kβω̄ and add it to the third column

C =
βω̄2

f̄P

 0 βαω̄ 2kβ2αω̄2

−α 0 αω̄2(β2 −Dα2 − k2β2)
kβ −(Dα2 + k2β2)ω̄ 0

 . (4.105)

The determinant is then computed as

det(C) = kβ5α2ω̄9

f̄3P
(Dα2 + β2 + k2β2). (4.106)

Assume det(C) = 0, by exploiting α2 = 1− β2,

D + β2(k2 −D + 1) = 0. (4.107)
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Substituting the definition of D and k (4.87) back into the above equation yields

β2 =
Θ2

x −Θ2
y

−2Θ2
y − 2ΘxΘy −K2

. (4.108)

If Θ2
x −Θ2

y ≥ 0, clearly, the left hand side of (4.108) cannot be equal to its right hand side.
Thus, the matrix C has full rank.

If Θ2
x −Θ2

y < 0, the eigenvalues of AB
S are guaranteed to be stable. To see this, computing

the characteristic polynomial of the matrix AB
S (eigenvalues of a matrix stay invariant under

coordinate transformation) leads to

det(λI −A) = λ3 + 2kβω̄︸ ︷︷ ︸
a1

λ2 + (β2ω̄2 − α2ω̄2D)︸ ︷︷ ︸
a2

λ+ 2kβ3︸ ︷︷ ︸
a3

ω̄3 = 0. (4.109)

According to the Routh-Hurwitz stability criterion, the poles of (4.109) have strictly negative
parts if and only if the conditions a1 > 0, a2 > 0, a1a2 > a3 > 0 are fulfilled (Fact 11.17.2
[83]). This is clearly the case if Θ2

x −Θ2
y < 0 (i.e. D < 0) and recall that k > 0, β > 0, and

ω̄ > 0.
In conclusion, the system matrix pair (A11, B1) is at least stabilizable for this case.

10.2 Controllability analysis for case 2
In this case (for assumptions see Section 3.2), we will show that the system is not stabilizable.

The Euler equation simplifies to

ṗB = − J
Φ
pB

∥∥∥ωB
BE

∥∥∥ (4.110)

q̇B = − l

Θ
fP −

K

Θ
qB

∥∥∥ωB
BE

∥∥∥+
Θ− Φ

Θ
pBrB (4.111)

ṙB =
κ

Θ
fP −

K

Θ
rB

∥∥∥ωB
BE

∥∥∥+
Φ−Θ

Θ
pBqB . (4.112)

Setting the left hand side of (4.110) to zero yields p̄B = 0.
Let the components of RBC be

RBC =
[
e1 e2 e3

]
=

r1 r2 r3
r4 r5 r6
r7 r8 r9

 , (4.113)

where ei, i = 1, 2, 3 denote the column vectors of RBC , and ri, i = 1, ...9 denote the entries.
Since RBC is a coordinate transformation matrix, the column vectors satisfy the following
properties:

e1 × e2 = e3 (4.114)

e2 × e3 = e1 (4.115)
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e3 × e1 = e2. (4.116)

RBCω̄C
CE = ω̄B

BE can be written as

p̄B = ω̄r3 = 0, q̄B = ω̄r6, r̄B = ω̄r9, (4.117)

which also leads to r3 = 0.
Furthermore, by (4.14)

0 = nC
P,y =

(
RCBnB

P

)
2
= r8, (4.118)

where
(
RCBnB

P

)
2

denotes the second entry of RCBnB
P .

Linearizing (4.110)-(4.112) around (p̄B , q̄B , r̄B) yields

AB
S =

 −jω̄ 0 0
−cr̄B −kω̄ 0
cq̄B 0 −kω̄

− k

ω̄
ω̄B

BE(ω̄B
BE)⊤, BB

S =
[
0 − l

Θ
κ
Θ

]
, (4.119)

where j := J
Φ

, k := K
Θ

and c := Φ−Θ
Θ

.
Substituting (4.117) intoAB

S and applying coordinate transformationAC
S = RCBAB

S RBC

and some simplifications ((4.114), (4.115), (4.116), and (4.118)), it follows that

AC
S =

−kω̄ + cr1r2ω̄ + r21(k − j)ω̄ r22cω̄ + r1r2(k − j)ω̄ r2r3cω̄
−r21cω̄ + r1r2(k − j)ω̄ −kω̄ − cr1r2ω̄ + r22(k − j)ω̄ r1r3cω̄

0 0 −2kω̄

 .
(4.120)

Substituting (4.117) into (4.111) and (4.112) and setting their left hand side to zero yields

− l

Θ
=

1

f̄P
kr6ω̄

2 (4.121)

κ

Θ
=

1

f̄P
kr9ω̄

2. (4.122)

Substituting (4.121) and (4.122) into BB
S in (4.119) and simplifying RCBBB

S yields

BC
S =

[
0 0 kω̄2

f̄P

]
. (4.123)

Substituting the (4.120) and (4.123) into the definition of Ui and computing its determinant
leads to

det(Ui) = 0. (4.124)

This implies that the modes associated with the eigenvalues ±ω̄i are not controllable, and the
system is therefore not stabilizable.
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10 Controllability analysis for three special cases of the reduced state system

10.3 Controllability analysis for case 3
The simplified Euler equation (4.40) for this case (for assumptions see Section 3.2) has the form

ΘxṗB = (Θy −Θz)qBrB −Kd,xxpB

∥∥∥ωB
BE

∥∥∥ (4.125)

Θy q̇B = (Θz −Θx)pBrB −Kd,yyqB

∥∥∥ωB
BE

∥∥∥ (4.126)

Θz ṙB = (Θx −Θy)pBqB −Kd,zzrB

∥∥∥ωB
BE

∥∥∥+ κfP . (4.127)

Linearizing the above three equations around the equilibrium (0, 0,

√
κf̄P

Kd,zz
) yields

AB
S =

−kxω̄ ar̄B 0
br̄B −kyω̄ 0
0 0 −kzω̄

 , BB
S =

 0
0
κ
Θz

 (4.128)

where kx := Kd,xx/Θx, ky := Kd,yy/Θy , kz := Kd,zz/Θz , a := (Θy −Θz)/Θx, and
b := (Θz −Θx)/(Θy).

From (4.90) and (4.91) it can be solved that µ = ν = η = 0. Therefore, RBC is a three
dimensional identity matrix.

For the eigenvalue ±ω̄i, it is clear that det(Ui) = 0. Thus the system for this case is not
stabilizable.
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Abstract

Overactuated omnidirectional flying vehicles are capable of generating force and
torque in any direction, which is important for applications such as contact-based
industrial inspection. This comes at the price of an increase in model complexity.
These vehicles usually have non-negligible, repetitive dynamics that are hard to model,
such as the aerodynamic interference between the propellers. This makes it difficult
for high-performance trajectory tracking using a model-based controller. This paper
presents an approach that combines a data-driven and a first-principle model for the
system actuation and uses it to improve the controller. In a first step, the first-principle
model errors are learned offline using a Gaussian Process (GP) regressor. At run-
time, the first-principle model and the GP regressor are used jointly to obtain control
commands. This is formulated as an optimization problem, which avoids ambiguous
solutions present in a standard inverse model in overactuated systems, by only using
forward models. The approach is validated using a tilt-arm overactuated omnidirec-
tional flying vehicle performing attitude trajectory tracking. The results show that
with our proposed method, the attitude trajectory error is reduced by 32% on average
as compared to a nominal PID controller.
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Paper II: Learning dynamics for improving control of overactuated flying systems

Figure 5.1: Attitude tracking performance of an overactuated flying vehicle: (left) without
model learning, and (right) using our proposed learning based approach. For perfect tracking
the green frame should coincide with the red frame.

1 Introduction

Omnidirectional flying vehicles ([24], [87]–[91]) are suitable for industrial inspection or inter-
action applications due to their decoupled translational and rotational dynamics (e.g. being able
to hover at arbitrary attitudes) and the ability to exert forces and torques in arbitrary directions.

These vehicles are overactuated, resulting in a mechanical redundancy that provides the sys-
tem with the necessary control authority to achieve omnidirectionality and increases their ma-
neuverability and force/torque margin. However, the increased mechanical complexity also
poses some challenges. Unlike standard quadrotors or hexacopters, for which a simple and
accurate actuation model is available for low speed maneuvers [7], only an inaccurate and sim-
plified actuation model can be obtained for omnidirectional vehicles from first principles. The
actuation model is the mapping from the individual actuator commands to the total wrench, i.e.,
force and torque. To achieve omnidirectionality, vehicle designs often cause complex aerody-
namic effects that are hard-to-model and non-negligible, such as the aerodynamic interference
between the rotors. This is disadvantageous from a control perspective. A standard approach for
overactuated flying vehicles is that a controller first computes a desired wrench, which, based
on the inverse of the actuation model, is transformed into individual actuator commands. Due
to unmodeled effects, this typically results in a different actual wrench than the intended one.
This leads to degraded control performance and reduces the ability to accurately track desired
trajectories.

To solve the problem mentioned above, adding only integral actions in the feedback con-
troller is often not enough, as they typically decrease the damping or stability of the system
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2 Related work

and are not able to react to fast-changing modeling errors. Another solution is to treat the un-
modelled dynamics as disturbances [25] [26] and employ a disturbance observer. While being
computationally efficient, this reactive strategy introduces delay in tracking. One alternative
solution is to identify these mismatched dynamics and compute additional feedforward signals
in an attempt to cancel out the effect of modeling errors. One way to model this mismatch is
using data-driven machine learning models. Such models have recently been shown to be viable
due to their ability to learn complex and nonlinear dynamic functions [27]. Directly learning
an inverse mapping of the actuation, that is, a mapping from the wrench to the individual ac-
tuator commands, is a commonly used method. However, this approach is problematic for an
overactuated system due to its one-to-many mapping between wrench and actuator inputs. The
multi-modal nature of this mapping has the risk of producing invalid results when averaging
over multiple distinct modes with standard inverse model approaches.

This paper presents an approach aiming to improve the control of overactuated flying systems.
First, the actuation modeling error is learned offline using a Gaussian process (GP) regressor.
To overcome the challenge arising due to the above-mentioned one-to-many mapping, we for-
mulate the task of finding a suitable wrench command as an iterative optimization problem.
We obtain a wrench by optimizing the commanded wrench using the analytical forward model
and its learned error model. This yields in expectation the desired behaviour of the system,
necessitating no inverse models.

This paper makes the following contributions:

• Proposal of a GP-based model to capture the model-plant mismatch common among
overactuated omnidirectional flying vehicles.

• Introduction of an optimization-based method using a first-principles model and a learned
GP error model to select a signal correcting for the model-plant mismatch, necessitating
only forward models.

• Experimental validation of the proposed approach on a tilt-arm overactuated flying vehi-
cle called Omav [24] (Fig. 6.2), with a reduction of the attitude tracking error of 32% on
average.

2 Related work

Optimal control such as the model predictive controller is shown to work well for standard mul-
ticopters [92]. However, it is shown in [58] that the model predictive controller has comparable
performance to a standard PD controller in case of insufficient model knowledge.

In this section, we focus mainly on the review of approaches that learn the nonlinear, non-
negligible model-plant-mismatch, which is then used to improve control performance. A broader
review of model learning for control can be found in [93]. We categorize the related work by
the types of model being used: forward models and inverse models. A forward model could be
a static mapping (e.g. an actuator mapping from individual actuator commands to the resulting
wrench in case of neglecting its dynamics) or a dynamics model (the mapping from the state
and the control inputs to the derivative of the state), which are uniquely defined. The inverse
model is the inverse of the forward model.
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Inverse model approach

The inverse model approach aims to find a mapping that maps from the robot state to a feedfor-
ward control command. Several approaches [94]–[98] use a GP regression approach to model
the inverse dynamics. The implied assumption of these approaches is that there is a unique map-
ping between the input and output data so that a direct regression is well-defined. Unfortunately,
for an overactuated platform this is not the case.

Forward model approach

Forward model learning has been combined with iterative linear quadratic Gaussian algorithm
[99], or model predictive control [100]–[102]. These methods use rollouts of the learned dy-
namics in an optimization-based framework to find a sequence of control actions in real-time.
In [100]–[102], the model-plant mismatches are modeled using GPs and embedded into a model
predictive controller. These methods are computationally expensive and thus they typically use
approximation techniques to propagate the state distribution in the rollout. They experimentally
validated these approaches ([100], [101]) on autonomous mobile vehicles. In [102] the authors
demonstrated the proposed approach in the simulation of a quadrocopter. One of the aims of
our work is to validate the proposed approach on a real system.

Model-based reinforcement learning control may also be employed with a learned forward
model. Among these approaches, the control policy is either found through experiments [103],
which needs to make sure that the system does not damage the robots, or through simulation
[27], [104], [105]. More specifically, the complete actuator model [27] or the residual dynamics
([104], [105]) are first learned using either a neural network or a GP and then embedded into
the simulation. A high-performance control policy is then obtained in the simulation through
reinforcement learning. These approaches typically require a large amount of training data.

Another approach is given a desired state, the control inputs are solved in an equation that
includes the forward model. In [106], in order to improve the tracking performance of a quadro-
copter, an acceleration error model is learned using the linear regression. It is then embedded
into the acceleration model equation, in which the body angular acceleration command is solved
for in real-time as the control inputs. It does not take uncertainty into consideration.

3 Platform description

The Omav (Fig. 6.2) is an overactuated omnidirectional flying vehicle with six tiltable arms in
a hexagonal arrangement. A coaxial rotor configuration is rigidly attached to the end of each
arm. The propellers spin in the opposite direction, which helps to reduce the gyroscopic effects
introduced by the rotation of the arm and thus the tilt motor efforts. The rotation of each arm
can be actively controlled by a servo motor, which results in a total of 18 actuators. This setup
allows for force- and pose omnidirectionality for almost all configurations and an improved
hover efficiency when compared to fixed tilt omnidirectional vehicles.
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4 Modeling

This section describes the dynamics of the flying vehicle and presents its actuation model.

4.1 Dynamic model
The position of the vehicle’s center of mass with respect to a point fixed in the inertial coordinate
system is denoted as p ∈ R3. Boldface symbols are used throughout the paper to denote
vectors. Two types of coordinate systems are used for the modeling: an inertial coordinate
systemE, a body-fixed coordinate systemB. A vector expressed in a specific coordinate system
is indicated by a superscript, for example pE expresses p in coordinate system E. The vehicle
rotates at an angular velocity ωBE . The subscript BE in ωBE denotes the relative velocity of
coordinate system B with respect to E.

Using a simplified physical model, the dynamics model can be written as follows [24]:

ẋ = f(x) + v (5.1)

where x = [ṗE ,ωB
BE ] and v = [FE/m, (IB

B)−1MB ] with m being the vehicle mass and
IB
B being the vehicle inertia matrix. The translational drag forces and rotational drag torques

are neglected, as it is assumed that the vehicle travels at low translational and angular velocities.
We assume no model-plant mismatches in (5.1) as the rigid body dynamics are typically known
and the parameters such as mass or inertia can be precisely obtained through CAD model.

4.2 Approximate actuation model
The design of the Omav leads to complicated aerodynamic effects (e.g. coaxial rotor config-
urations and interaction between the adjacent propeller flows), which are hard to model using
first-principles. Therefore, the following assumptions are made to approximate the actuation
model: 1). It is assumed that the force and torque produced by a stationary propeller are pro-
portional to its angular velocity squared, independent of the vehicle’s translational and angular
velocity. The resulting force and torque vectors are also assumed to be parallel with each other
and perpendicular to the rotor disk. 2). Every rotor has the same torque and force coefficient.
3). The rotors do not interfere with each other, therefore the total force and torque produced by
the rotors are the sum of individual force and torque vectors. 4) Body drag forces and torques
are neglected due to the low translational and angular velocity of the flying vehicle. 5). It is
assumed that the actuators have no temporal dynamics, that is, the past wrench commands do
not affect the current wrench.

Based on the above assumptions, a nonlinear approximate mapping h(·) : R18 → R6 be-
tween the individual actuator commands and the total wrench command WB

cmd = [FB
cmd,M

B
cmd]

expressed in the body coordinate system B may be established [24]. That is

WB
cmd = h(ucmd) (5.2)

where ucmd ∈ R18 contains the twelve propeller thrusts and the six tilt arm angles. For the
sake of brevity, the mapping h(·) is not described in detail as it does not affect the subsequent
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derivation.
This approximate modeling of the actuation introduces modeling errors, this results in a WB

which differs from the intended WB
cmd:

WB = h∗(ucmd) = h(ucmd) + η(ucmd) (5.3)

where h∗(·) is the true unknown actuation function and η(·) is an additive nonlinear modeling
error function.

Note that this additive error modeling implies that η(·) and h(·) do not need to have the
same parametric structure, which allows for more flexibility in the modeling. On the other
hand, misidentification of η(·) can result in a physically implausible prediction of the generated
wrench.

In addition, the functions h(·), h∗(·), and η(·) are surjective, that is, for each achievable
wrench there are possibly more than one set of feasible inputs.

5 Approach

The problem we are addressing in this report is formulated as follows: Given the system dynam-
ics (5.1), the actuation model (5.2), the unknown modeling error η(ucmd), and a given desired
wrench WB

des which is the output of a given model-based nominal controller, find the actuator
commands ucmd such that the WB

des is achieved. We distinguish between WB
des, which is the

output of the controller, and WB
cmd, which is the input to the allocation.

The proposed solution aims to find a compensation signal at the wrench level which, when
applied to the nominal controller’s command, results in the desired wrench being executed by
the system. This reduces the problem to six dimensions since we do not search compensa-
tion signals for individual actuator commands ucmd, as they are typically computed on a low-
level flight computer that is computationally limited. Furthermore, more training data would
be needed for a higher dimensional input space. The approach is summarized as follows and
illustrated in Fig. 5.2: the nominal controller computes a desired wrench WB

des according to
the reference trajectory and the state estimate. The discrepancy between the model and the
plant is modeled using GPs. The regressed model is input into an optimization framework to
obtain an additive compensation signal to the desired wrench, which in case of high prediction
uncertainty is filtered towards zero. The resulting command wrench WB

cmd is then sent to the
control allocation, which outputs individual actuator commands ucmd.

This approach has the advantage that the GP and optimization block is modular and there-
fore can be added to the nominal controller. Furthermore, an important point in our proposed
solution is that the uncertainty information provided by the GP is used to prevent uncertain pre-
dictions from destabilizing the system. This is a key for safely deploying the proposed controller
in a physical system.

5.1 Nominal controller and control allocation
Let ep denote the position error of the vehicle (i.e, the difference between the actual position
p and the desired position pdes) and ėp its time-derivative. Let D denote the reference body
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Figure 5.2: A block diagram of the proposed solution. The model-plant mismatch is modeled
using GPs and regressed offline using flight data. The model is then fed into an optimization to
find a compensation signal ∆W so that the generated wrench WB is equal to WB

des.

frame and define the attitude error terms as follows:

eR =
1

2
(RDB −RBD)∨ (5.4)

eω = ωB
BD (5.5)

where RDB is the coordinate transformation matrix from the coordinate system D to B. The
mapping ∨ maps a skew-symmetric matrix to its R3 space.

Similar to the position control in [57], the desired wrench WB
des = [FB

des,M
B
des] is calcu-

lated such that

ëEp = −2ζpωn,pė
E
p − ω2

n,pe
E
p (5.6)

ėBω = −2ζaωn,ae
B
ω − ω2

n,ae
B
R (5.7)

where (ζp, ωn,p) and (ζa, ωn,a) are a set of damping ratios and natural frequencies for the
translational dynamics and attitude dynamics, respectively.

From (5.4) and (5.5) we can see that to first order, eω is the time-derivative of eR. This means
that if the desired wrench is tracked perfectly, the translation deviation ep and the rotational
deviation eR will behave like a damped second order system. This makes the parameter tuning
more intuitive.

Recall that the actuator dynamics are neglected, thus the wrench and the individual actuators
are a static mapping. The wrench command then gets allocated through a chosen mapping
n(·) : R6 → R18 [24] and a saturation function sat(·) : R18 → R18 in the inner loop

ucmd = sat(n(WB
cmd)) (5.8)

Again, we omit the details of the allocation for brevity. This allocation is essentially a pseudo-
inverse mapping of h(·). The mapping n(·) is injective, that is, each set of actuation has at most
one corresponding wrench.
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5.2 Learning model-plant mismatch

We first derive the model-plant mismatch as a function of the wrench command. Substituting
(5.2) and (5.8) into (5.3) yields

WB = h(ucmd) + η(sat(n(WB
cmd))) (5.9)

= WB
cmd + g(WB

cmd), (5.10)

where g(·) : R6 → R6 is the composition of the injective mapping n(·), sat(·) and the
surjective mapping η(·). It may therefore be a surjective mapping. This means that for each
WB there may be more than one set of possible WB

cmd that achieves it. This leads to the
problem mentioned in Section 1: an inverse mapping from WB to WB

cmd is a one-to-many
mapping and may not directly be learned.

The unknown error function g(·) is modeled as six independent GPs. We make the assump-
tion that the outputs of these GPs are uncorrelated. A GP is a collection of random variables,
any finite number of which have a joint Gaussian distribution [107], and can be viewed as a dis-
tribution over functions. It is characterized by a mean function m(·) and a covariance function
k(·, ·), which is a positive-definite kernel function parametrized by a set of hyperparameters.

A GP-based representation was chosen because it handles stochasticity (e.g. measurement
noise) naturally, its nonparametric property offers flexibility in the modeling, and gives us in-
formation about the uncertainty of predictions made. On the other hand, it is known that the GP
prediction does not scale well with data (it has a computational complexity of O(N3), where
N is the number of data samples). Reducing the computational complexity is beyond the scope
of this work. We are currently exploring the use of local GPs to handle the large state space.

We may apply Gaussian process regression to approximate the error function gl(WB
cmd)

according to (5.10), with the subscript l denoting the l-th entry of the function g(·):

z = gl(ξ) + ϵ (5.11)

where z ∈ R denotes the observation of the l-th entry of WB − WB
cmd, ϵ ∈ R is the

measurement noise with Gaussian distribution N (0, σ2) with σ2 being the variance, and ξ ∈
R6 denotes WB

cmd for brevity for the remaining of this section.
Let (ξi, zi) denote one observed data point and X ∈ R(N+1)×6,Z ∈ RN+1 denote the

stacked version of (ξ0, ..., ξN ), (z0, ..., zN ) fromN +1 data points. Conditioned on this data
set and a query input ξ∗, the expected value and variance of the l-th GP is:

µl(ξ
∗) = m(ξ∗) + k(ξ∗, X)(K + σ2I)−1Z (5.12)

σ2
l (ξ

∗) = k(ξ∗, ξ∗) + σ2 − k(ξ∗, X)(K + σ2I)−1k(X, ξ∗) (5.13)

where K is a (N + 1)× (N + 1) kernel matrix with Kij = k(ξi, ξj).
In this work we use the squared exponential covariance as the kernel

k(ξp, ξq) = σ2
f exp(−1

2
(ξp − ξq)

TΣ(ξp − ξq)). (5.14)
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where ξp and ξq are any two inputs, Σ is the lengthscale matrix which indicates the relevance
between two data points and σ2

f is the signal variance which is a scale factor. The hyperpa-
rameters (σ, σf ,Σ) for a particular data set can be selected by maximum likelihood estimation,
which maximizes the likelihood of the observed outputs given hyperparameters [107].

5.3 Finding compensation signal using optimization

From (5.10) it can be seen that if WB
cmd is set equal to the controller output WB

des, the actual
resulting wrench WB deviates from WB

des by the error function g(WB
des).

In order to achieve the desired wrench WB
des, we propose to add a compensation element

∆W ∈ R6 to the WB
des when setting WB

cmd, that is,

∆W := WB
cmd −WB

des (5.15)

A ∆W is to be found such that when (5.15) is substituted into (5.10), the produced wrench
WB is equal to the desired wrench WB

des:

WB
des

!
= WB = (WB

des +∆W ) + g(WB
des +∆W ). (5.16)

With g(·) modeled as GPs, we obtain

∆W + µ(WB
des +∆W ) = 0 (5.17)

with µ(·) being the mean vector function of the GPs.
An online optimization problem is formulated to approximately solve (5.17):

minimize
∆W

∥∥∥µ(WB
des +∆W ) + ∆W

∥∥∥2
2

(5.18)

We optimize this in real time using gradient-based optimization. If the optimal function value is
smaller than 1e-4, then we approximately find the compensation according to the mean function
of the GP model. Otherwise, we compare the optimal value with the cost function value with
∆W = 0, and pick the corresponding signal that yields a smaller cost.

Remark: Formulating the problem as an optimization problem has several advantages. Firstly,
assuming the update rate is high enough, the previous solution is close to the current iteration
solution, which is ideally suited as a warm start for the next iteration. Secondly, the search
is local, therefore avoiding the jump between feasible solutions that are far away from each
other. Due to the saturation function it is possible that the cost function has locally zero gradi-
ents. For this, a regularization term ||Wcmd||22 can be added to the cost function. Finally, the
cost function is easy to manipulate and tune. We can add wrench command constraints to the
optimization problem or add costs that smoothen the adjacent wrench commands.
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5.4 Utilize posterior uncertainty prediction
Since we are using a nonparametric method to learn the dynamics, this might lead to incorrect
predictions for inputs that are far outside of the training data and thus destabilize the system.
To address this issue we make use of the uncertainty information provided by the GP. After we
obtained the optimal solution ∆W ∗ from the optimization, the compensation signal is filtered
towards zero in case of high uncertainty of the prediction

∆W ← aβ∆W prev + (1− β)∆W ∗ (5.19)

where a ∈ (0, 1), ∆W prev is the previously computed compensation signal,

β =
1

1 + e−κ(σ−σth)
(5.20)

where σ = max {σl(WB
des +∆W ∗), l = 0, . . . , 5} and with some constants σth ∈ R and

κ ∈ R.
For small prediction uncertainty β is near zero and thus the compensation signal directly

takes in the optimal value ∆W ∗. For σ larger than the threshold σth, β is near one. a deter-
mines how fast the compensation signal ∆W should be filtered towards zero. κ determines the
rapidness of changing of β near σth.

Once the compensation signal is obtained, it is added to the output of the controller W des.
The resulting actuator command ucmd is obtained through the allocation mapping n(·).

5.5 Comparison with disturbance observer approaches
An alternative approach is to employ an observer to estimate the unmodelled dynamics in real
time and inform the controller to reject it. This approach is computationally efficient and has
been shown to work well in practice. However, the approach introduces delay into tracking
due to its nature of being a filter and furthermore requires expert knowledge to handcraft a
disturbance model. The presented approach does not introduce delay and is less dependent
on expert knowledge as it uses a data driven approach. The trade-off for this is the increased
computational complexity and inability to compensate for unobserved disturbances. A good
comparison of the properties of these two methods is presented in [108].

6 Experimental results

The experiments are carried out at an indoor aerial vehicle testbed at Autonomous System Lab,
ETH Zurich. A motion capture system provides pose estimates at 100 Hz. The experimental
vehicle platform Omav has a diameter of about 80 cm and a weight of 4 kg. The vehicle
is also equipped with an onboard NUC i7 computer, which runs computationally expensive
modules, and a PixHawk flight controller that takes care of the low-level, low latency tasks.
Using this configuration the vehicle is able to run all the necessary algorithms onboard. For a
more complete description see [24].

The proposed framework is implemented as a ROS node and evaluated by the performance
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of attitude trajectory tracking both in simulation and on a real platform. In simulation, the
framework is evaluated on a figure-8 trajectory with the vehicle tilting up to 63 degrees in the
RotorS Gazebo simulator [109]. For the real experiments, the vehicle follows a smooth feasible
reference pitching trajectory from 0 to 60 degrees and back, while remaining stationary with
zero roll and yaw. The maximal reference angular acceleration is 1 rad s−2. These trajectories
were chosen as from experience the most prominent model-plant mismatch occurs on the torque
level, especially when the produced force vector is close to the body xy plane, corresponding
to the vehicle attitude with high roll or pitch.

6.1 GP model-plant mismatch modeling and learning

This section shows the details of the model-plant mismatch using GP in real experiments and
demonstrates its prediction performance on a validation trajectory. As mentioned before, the
most prominent model-plant mismatch occurs on the torque level, three single-output GPs are
therefore used to model the torque model-plant-mismatch in the experiments and the force
model-plant-mismatch is neglected. For the GP regression, the inputs are the wrench command
WB

cmd and the outputs are the components of (MB
meas−MB

cmd), where MB
meas is obtained

from a high-quality ADIS16448 IMU sensor [110]. The training data is collected while the
vehicle tracks a test trajectory with a nominal controller. Sinusoidal excitation is added to the
reference trajectory to collect diverse training data. This increases the probability of the learned
model covering the output space during validation flight with the proposed strategy. Data points
are subsampled from the experimental data offline using the k-medoids algorithm where the
Euclidean squared distance between the inputs is used as the distance metric. Through em-
pirical validation we found a hundred subsampled data points are sufficient for this trajectory.
The hyperparameters of the GPs are fixed after being estimated using the maximum likelihood
methods, as we assume the model-plant-mismatch characteristics along the reference trajec-
tory are repeatable. The GPs are implemented using GPy [111], the optimization uses L-BFGS
implemented from nlopt [112], and the k-medoids algorithm is taken from the PyClustering
[113]. The learned model is then embedded into the online optimization framework, whose
performance is then evaluated and presented in the following.

Fig. 5.3 shows the command torque Mcmd, the measured torque Mmeas, and the predicted
torque Mpred of a 10 seconds trajectory. Mpred is µM (W cmd) + Mcmd, where µM (·)
denotes the torque outputs of the GPs. Table 5.1 shows the mean and standard deviation of the
absolute differences between the prediction and the measurement on the same trajectory (that
is, |Mcmd −Mmeas| and |Mpred −Mmeas|). It can be observed from Table 5.1 that the
prediction error on the torque has been reduced by 62%, 70%, and 74% on the body x, y and
z axis, respectively. In addition, the mean of the prediction error using the learned model on
the body x and y axis are comparable (0.08 and 0.067 Nm), while the error on the body z axis
is much larger (0.13 Nm). This is expected as the torque around the body z-axis is mainly
generated by tilting the motor arms (especially during hover), while the torque around the body
x- and y-axis is mainly induced by the sum of the propeller thrust times the motor arm length.
While both servo dynamics and motor dynamics are neglected during the model learning, the
prediction around the body z-axis is more affected since the servo dynamics are much slower
than the motor dynamics.
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Figure 5.3: Measurement, prediction (our model), and command of the torque vector (nominal
model) of a 10 s trajectory. The 3 sigma confidence region of the GP prediction is shaded in
blue.

Table 5.1: Prediction performance

[Nm] body x error body y error body z error

nominal mean ± std 0.21 ± 0.16 0.23 ± 0.16 0.50 ± 0.17

learned mean ± std 0.08 ± 0.06 0.07 ± 0.05 0.13 ± 0.09

6.2 Trajectory tracking
Real experiments

The experiments demonstrated in this section compare the trajectory tracking performance be-
tween the cases with and without compensation signals. Fig. 5.4 shows a box plot of the absolute
values of the attitude tracking errors |eR| from two experiments. In the first experiment the ve-
hicle tracks the pitch trajectory 10 times consecutively using the control strategy without the
compensation, whereas the second experiment repeats the same trajectory using the proposed
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framework. Running onboard a NUC i7 computer, it takes on average 7.5 ms and maximally
24.0 ms for solving one optimization problem in the proposed framework.

In both cases, an integral term is added to the attitude controller (5.7). The gains of the nom-
inal controller are tuned such that both approaches result in a stable flight in both experiments
for the sake of comparison. They are (ζp, ωn,p) = (0.707, 3.5) and (ζa, ωn,a) = (1.3, 3.5)
and (0.74, 3.5), where the former gain is tuned for roll and pitch axis and the latter gain tuned
for the yaw axis. The integral attitude gain is 0.3.

It can be seen that the medians of the absolute attitude tracking errors around the body x and
y axis have reduced from 0.07, 0.087 to 0.04, 0.03, respectively, corresponding to a reduction of
43% and 65%. Their box ranges are also reduced from 0.114 and 0.10 to 0.050 to 0.040. On the
other hand, there are no improvements shown on the body z axis. The median increases from
0.051 to 0.058 and the box range decreases from 0.066 to 0.054. The tracking in body z-axis
has not been improved mainly due to the following two reasons: firstly, it can be seen in Fig. 5.3
that the model-plant mismatch is mostly a constant offset. In the nominal controller, this offset
is already mitigated by the integrator term around the body-z axis. Secondly, as mentioned in
the previous section, the servo dynamics and the motor dynamics are not learned using the GP.
To further improve the tracking performance in body z axis, the input space of the GP could be
augmented to include the past history of the wrench commands.

Simulation

A simulation is conducted to demonstrate the generalizability of the learned model. The training
data is obtained by tilting the flying vehicle along various body axes up to 70 degrees (with
sinusoidal excitation around all three body axes). 200 data points are subsampled to train the
GP model. A figure 8 trajectory with the vehicle tilting up to 63 degrees is then flown to evaluate
the approach. A comparison of tracking performance with and without compensation signal is
shown in Fig. 5.5. The controller gains are again the same in both cases. Although this time
the integral gains are set to zero. The tracking errors along 3 body axes have been reduced by
94.5%, 87.9%, and 83.7%, respectively. Similar to the real experiments, the key to having a
good model is to excite all body axes during the fight. This ensures that the model can provide
informative predictions for all required states.

6.3 Incorporation of prediction uncertainty

The experiment presented in this section aims to demonstrate that even in face of highly uncer-
tain predictions, the system is still robust thanks to the uncertainty provided by the model. Two
experiments using the learned model are conducted, one with the uncertainty check (that is, with
performing (5.19)) and the other one without. In both cases the vehicle in hover is given a step
reference of 40 degrees roll. Since the training data consists of smooth pitching trajectories, the
wrench command for a step input in roll is far away from the training data. Fig. 5.6 shows the
experiment with the controller with uncertainty check. The standard deviation of the prediction
uncertainty in body z direction increases from 0.27 to 0.5. The compensation signal is then fil-
tered towards zero and the flying vehicle is able to remain stable. The parameters Σth, κ, a are
heuristically chosen. In another experiment with the controller without the uncertainty check,
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Figure 5.4: A box plot comparison of the tracking performance for a pitching trajectory with
and without the compensation signal. In both experiments, the same reference trajectory is
executed consecutively 10 times. Note that by small angle approximation eR corresponds to
the Euler angles (roll, pitch, yaw from the reference frame to the body frame) in radian.
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the system becomes unstable due to the unreliable compensation signal1. In this case, it can
be expected that the tracking performance of the approach with the uncertainty check cannot
be better than the approach without compensation. GP will not predict well in region where no
data is available.
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Figure 5.6: This figure shows that for a step input (around 1.0 s) around body-x direction.
The desired wrench command is far away from the training data and GP prediction is uncertain
at this query input. Therefore the compensation signals (∆WMx ,∆WMy ,∆WMz ) get
filtered towards zero according to (5.19) and the vehicle remains stable. Note that by small
angle approximation eR corresponds to the Euler angles (roll, pitch, yaw from the reference
frame to the body frame) in radian.

7 Conclusion and outlook

This paper presented an approach that addresses the control challenges caused by the model-
plant mismatches of an overactuated flying vehicle. Specifically, our approach learns a well-
defined forward model using a GP and avoids the multi-valued mapping of the inverse model
of the overactuated systems. It finds a compensation signal through an optimization, which
then cancels out the effect caused by the model-plant mismatch. In addition, the uncertainty
prediction from the GP is exploited to prevent uncertain predictions from destabilizing the flying
vehicle. Experiments on a real platform show that the proposed approach reduces the tracking
error by 43% and 65% around body x- and y-axis and could prevent destabilizing the system in
case of highly uncertain prediction of the model.

1For a visualization of the behaviors, please see the attached video
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Abstract

Model-based controllers on real robots require accurate knowledge of the system dy-
namics to perform optimally. For complex dynamics, first-principles modeling is not
sufficiently precise, and data-driven approaches can be leveraged to learn a statisti-
cal model from real experiments. However, the efficient and effective data collection
for such a data-driven system on real robots is still an open challenge. This paper
introduces an optimization problem formulation to find an informative trajectory that
allows for efficient data collection and model learning. We present a sampling-based
method that computes an approximation of the trajectory that minimizes the predic-
tion uncertainty of the dynamics model. This trajectory is then executed, collecting
the data to update the learned model. We experimentally demonstrate the capabilities
of our proposed framework when applied to a complex omnidirectional flying vehi-
cle with tiltable rotors. Using our informative trajectories results in models which
outperform models obtained from non-informative trajectory by 13.3% with the same
amount of training data. Furthermore, we show that the model learned from informa-
tive trajectories generalizes better than the one learned from non-informative trajecto-
ries, achieving better tracking performance on different tasks.
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1 Introduction

Model-based controllers have shown to be useful in various robotics applications. Especially
when accurate models are available, these controllers can exhibit impressive performance [114],
[115]. Compared to model-free methods such as reinforcement learning, there is no need of
training samples to train a control policy. On the other hand, it can be hard to obtain a good
dynamical model for complex systems such as humanoid robots [116], race cars on uneven
terrains [101], soft robots [117], and novel fully actuated multi-rotor flying vehicles [24] like
the one considered in this work (see Fig. 6.2).

One approach to solve the modeling problem is to rely on learning techniques: Through
interaction with the real-world and data collection a statistical dynamics model is trained, which
is either directly fed into a model-based controller, e.g. [54], [100], [101], [118], or used in
simulation to train a control policy [27]. One challenge for these approaches is that often the
training data has a different distribution than the test data due to several reasons: first, model
uncertainties and feedback controller might lead the system to a state not encountered in a
previous data collection routine. Secondly, given partial model knowledge, the region of the
data that leads to the best performance is a-priori unknown. Finally, the closed-loop dynamics
change as the model used by the controller is updated. One could perform a large number
of experiments to cover as much of the input space as possible during training. However, for
robotic systems with high-dimensional and continuous state space, the search space typically
is too large to be searched exhaustively. Furthermore, the dynamics can change significantly
during consecutive experiments, e.g., the crash of a flying vehicle could damage its motors and
invalidate the previous training data. Even when considering a specific task, a good model is
required in the working area of the state and input spaces, which still might be large. Thus, it
is desirable to have an efficient scheme to collect training data locally around the desired task
if a precise enough first-principle parametric model is not available or hard to obtain. As these
learning techniques are nonparametric, common tools from parametric system identification
[28], e.g., persistence of excitation, are not applicable.

One idea is to use the statistical information learned from training data to infer the region
where to sample data, thus improving sampling efficiency. This is a well-known approach in
machine learning called active learning [119]. In this paper we exploit such an idea: we rely
on the previously learned statistical model to get an estimate of the region of interest. We then
generate an informative trajectory that reduces the overall uncertainty in the estimated region.
This trajectory is then executed in the real world to collect data.

More specifically, in a first step, possible informative locations are inferred in simulation
from the previously learned model. Then, different informative trajectories are sampled and
evaluated according to a cost metric, which is defined as the integral of the predictive uncertainty
over these possible locations. The most informative trajectory is then selected and executed on
the real robot to collect the data. As a result, the model learned from this informative trajectory
should result in improved control performance and a better generalization. The latter is achieved
because the informative trajectory reduces the uncertainty over a large region of state and input
space.

The contributions of this paper are summarized as follows:

• A formal mathematical formulation of the problem of efficient data collection for learning
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dynamics model.

• A practical strategy to efficiently collect task-relevant data that improves the model-based
control performance when used to update the learned model.

• Real experimental results conducted on a complex overactuated omnidirectional flying
system with nonlinear dynamics and 18 actuators. For a figure-8 trajectory, two runs of
trajectory flight lead to an angular acceleration tracking error reduction of 54.4%

1.1 Related work

Active learning in robotics is mostly defined in a regression setting: a regression mapping be-
tween an input and an output space is to be learned while the sample complexity is minimized.
The exploration of the sample space is typically driven by some metric often consisting in vari-
ants of the expected informational gain.

Considering active dynamics model learning, existing work includes the use of information
gain on parameter estimates ([120], [121]), Gaussian processes ([122]–[124]), and neural net-
works [125]. They typically generate trajectories that minimize a defined metric, trading off
between exploration and exploitation. Aside from the parameter estimates approach, little work
is done on real robots.

We can also distinguish approaches depending whether the trajectory generation is performed
online or offline. The online approaches are often done in a receding horizon fashion [126],
where trajectories are regenerated at a certain frequency on the fly during experiments. This
constant update helps reducing the distance between the desired inputs and achieved ones. How-
ever, this approach is computationally intensive. While exploring a state of interest, the robot
cannot always stay stationary waiting for a new planned trajectory. Up to date, this method
exists only in theoretical works validated in simulation [122], [123], [127].

The offline approach has the shortcoming that the planned trajectory has a larger distance
to the executed one, but applicable on real robots. In [125], the trajectory generation is for-
mulated as a variable-constrained problem and validated on a simulated overactuated robotic
spacecraft. In [124], the input trajectories are parametrized by consecutive trajectory sections
and the most informative and safe trajectory is then executed. Their formulation did not take into
account closed-loop control. The method is applied on a high-pressure fluid injection system.
Our investigation belongs to this approach: we make use of the previously learned model and
simulations to reduce the deviation of the executed trajectory to the desired one. In this work,
we demonstrate that this approach works for complex robots and efficiently improve control
performance.

2 Modeling and Problem Statement

We consider a generic system whose dynamics in the discrete time domain are described by:

x[k + 1] = f(x[k],u[k]), (6.1)
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where f(·, ·) is a Lipschitz-continuous function1 and represents the true dynamics. x[k] ∈
X ⊂ Rn and u[k] ∈ U ⊂ Rm describes the state and the control input of the dynamical
system at time k ∈ N≥0. To simplify the notation, x[k] denotes x(kT ) where T ∈ R>0 is the
sampling time. We remark that a perfect knowledge of f(·, ·) is in general not available. We
might have only an estimation of it denoted by f̂(·, ·).

The considered task consists in a trajectory tracking problem. A desired task state trajectory
is defined by the sequence of state values Xr

t = (xr
t [0], . . . ,x

r
t [N ]) in the time horizon

N ∈ N>0. Throughout this paper, we use a capitalized letter to indicate a sequence of vectors
with a time horizon of N . The subscript ⋆t is used to denote the quantities related to the task
trajectory tracking problem, while the superscript ⋆r denotes reference state or input. We first
introduce the following assumption

Assumption 1. A model-based controller π(·, ·, ·) that is a function of a reference state xr[k],
a state x[k], and an estimated dynamics model f̂ is provided

u[k] = π(xr[k],x[k], f̂). (6.2)

Furthermore, if x[0] = xr
t [0], and f̂(x,u) = f(x,u) for every (x,u) ∈ Z = X × U , then

xt[k + 1] = f(xt[k], π(x
r
t [k],xt[k], f̂)) = xr

t [k + 1], (6.3)

for every k = 0, . . . , N − 1.

This condition describes a perfect tracking of the desired trajectory given a perfect modeling.
We further remark that the given task state trajectory is feasible, so that there exists at least one
task input trajectory to achieve it We define the sequence of inputs that provides perfect tracking
as Ur

t = (ur
t [0], . . . ,u

r
t [N ]), called task input trajectory.

Objective 1. Considering the closed-loop system (6.1) and (6.2), our objective is to define an
active learning method aiming at optimizing the data collection process to

• make it more efficient (less experiments and data points),

• improve the precision of the learned model,

• improve the generalizability of the learned model,

• minimize the tracking error.

We shall show how the learning problem can be reformulated to address such objectives.
Without loss of generality, we can decompose the true dynamics into two components:

f(x[k],u[k]) = h(x[k],u[k]) + g(x[k],u[k]), (6.4)

where h(·, ·) is called first principles dynamics, corresponding to the model reflecting physical
laws. We consider h(·, ·) to be known. g(·, ·) is called residual dynamics, corresponds to all

1This is a common assumption that does not limit the validity of the work since most of the considered robotic systems have
Lipschitz-continuous dynamics.
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other elements not modeled by h. g is assumed unknown and we only have an estimation
denoted by ĝ.

This modeling allows to exploit the knowledge we already have about the system, reducing
the learning effort and making it possible to employ several model-based controllers.

Once again, it is clear that, considering the control law (6.2) with f̂ = h + ĝ, the closed
loop system achieves perfect tracking if ĝ(z) = g(z) for every z := (x,u) ∈ Z . For
simplicity we use z to denote the state-input pair (x,u). We assume that a Bayesian prior
model [128] over the residual dynamics is given. That is, for a given test point z, the belief
of the value of g(z) follows a Gaussian probability distributionNz

(
µ(z), σ2(z)

)
. We denote

the mean and variance of Nz(·, ·) as µ(z) ∈ Rn and σ2(z) ∈ Rn×n
≥0 , respectively. Note

that the distribution is a function of the test point z. We consider the estimation of the residual
dynamics as ĝ(z) = µ(z), which brings to f̂(z) = h(z) + µ(z).

Let Z denote the state and input trajectory pair (X,U). The prior model can be updated to
a posterior model from trajectory data subsampled from Z. In particular, the updated model is
described by the posterior mean µ(z|Z) and posterior variance σ2(z|Z).

We then introduce the following assumption for the Bayesian model:

Assumption 2. Given two sets of data from trajectory Z1 and Z2, for all z ∈ Z and
j = 0, . . . , n, σ2

j (z|Z1) < σ2
j (z|Z2) leads to |µj(z|Z1)− gj(z)| < |µj(z|Z2)− gj(z)|.

Furthermore, if σ2
j (z|Z1) approaches zero, |µj(z|Z1) − gj(z)| approaches zero. The sub-

script ∗j is used to denote the j-th vector element or j-th diagonal element.

The intuition behind this practical assumption is that a high-quality observation (which is
possible in robotic applications) near the test point reduces the uncertainty at the test point and
therefore reduces the estimation error.

To improve the knowledge of ĝ, suitable data must be collected. A possible solution is to
simply run the task trajectory, over and over, until sufficient data is collected to obtain a good
model around (Xr

t , U
r
t ), orZr

t . However, this would require many trials to ensure the collected
data is informative enough.

Departing from this basic approach, here we aim to design an algorithm that automatically
derives reference state trajectories Xr

i , called informative state trajectories. These trajectories
aim to efficiently collect data to improve the prior model, thus reducing the task trajectory
tracking error when using the control law (6.2). Let xi[k] and ui[k] denote the inputs and
states obtained letting the closed-loop system evolve usingXr

i as reference trajectory. In details

xi[k + 1] = f(xi[k],ui[k])

ui[k] = π(xr
i [k],xi[k], f̂), (6.5)

with xi[0] = xr
i [0]. The subscript ∗i is used to denote quantities related to the informative

trajectory tracking problem.
The following problem is then formulated:
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Problem 1. Find Xr
i as solution of:

min
Xr

i

N∑
k=0

∥xr
t [k]− xt[k]∥22

s.t. xt[k + 1] = f(xt[k],ut[k])

ut[k] = π(xr
t [k],xt[k], f̂posterior)

f̂posterior = h+ ĝ

ĝ(z) = µ(z|Zi), Zi as in (6.5).

(6.6)

3 Generation of Informative Trajectories

This section introduces an optimization problem aiming at minimizing an informative cost met-
ric, the solution of which is equivalent to the solution of (6.6). The problem is solved by practical
approximations leading to a sampling-based trajectory generation algorithm.

3.1 Minimization of the informative cost
Solving (6.6) is definitely not a trivial problem, even using sampling-based methods. In fact,
since we do not know f , solving (6.6) would require to run two experiments for every sampled
informative state trajectory Xr

i , using as reference firstly Xr
i and then Xr

t .
In order to make the problem feasible from a practical point of view, let us recall that using the

model-based controller (6.2), we can achieve perfect tracking by having the perfect knowledge
of ĝ for all z ∈ Zr

t where

Zr
t ={z ∈ Z | ∃ k ∈ (0, . . . , N) s.t. z = zr

t [k]}, (6.7)

contains the pairs state/input that achieve perfect tracking of the task trajectory.
According to Assumption 2, a possible idea is to improve the model by minimizing the

uncertainty of the prior model, i.e., σ2(z) for all z ∈ Zr
t . Thus, we reformulate (6.6) as

min
Xr

i

∑
Zr

t

σ2(z|Zi). (6.8)

Recall that Zi are computed as in (6.5). Note that the solution of (6.8) allows to minimize
the modeling error (Assumption 2) which in turns leads to the minimization of tracking error
(Assumption 1). Therefore, the solution of (6.8) is also the solution of Problem 1.

Notice that we focus on reducing the informative cost on the space relevant to the task instead
of the entire state/input space Z . However, from experimental considerations, we remark that
improving the model only in Zr

t is not enough to achieve good tracking performance. In fact,
initial errors, noisy measurements, and external disturbances might make the system deviate
from Zr

t , visiting pairs input/state not included in Zr
t for which the model could be imprecise.

Therefore, to achieve good tracking also in these non-ideal and more realistic conditions, we
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propose to improve the learning of the model by solving (6.8) not only for the points in Zr
t , but

also for the ones that are sufficiently close, i.e., for all z ∈ Z∆r
t

where

Z∆r
t
={z ∈ Z | ∃zr

t ∈ Zr
t s.t. ∥z − zr

t ∥ ≤ ϵ}, (6.9)

with2 ϵ ∈ R≥0 being a heuristic that can be tuned to control the exploratory behavior of the
informative trajectory. Problem (6.8) becomes:

min
Xr

i

∫
Z∆r

t

σ2(z|Zi)dz (6.10)

From now on, we refer to the objective function to be minimized as informative cost.
The problem cannot be solved in a closed-form way. Thus, we propose to use a sampling-

based optimization method [129] that consists in sampling different informative state trajecto-
ries Xr

i and choose the one that shows the smallest informative cost. However, this approach
cannot be directly employed due to some practical issues:

1. To compute the informative cost for every sampled informative trajectory we should the-
oretically run an experiment. This is clearly time consuming and does not meet the goals
of Objective 1.

2. We do not know Ur
t . From its definition, we should know f to compute Ur

t given Xr
t .

Therefore, we cannot directly compute Z∆r
t

.

3. It is not straightforward how we can compute the integral of the posterior variance over
Z∆r

t
.

4. It is not straightforward how we can efficiently sample informative trajectories.

Each of these four problems are individually addressed below proposing a few approximations
that make (6.10) solvable from a practical point of view. This allows for deploying the method
on real robots.

3.2 Approximations of the optimization problem
Approximation of the dynamical constraints

During the search for the optimal informative state trajectory, given a candidate informative state
trajectory Xr

i,cand, instead of computing the posteriori variance based on the data collected
from a real experiment, Zi, we compute it based on the data collected from a simulation of the
system, Z̄i. In details, Z̄i is the output of the simulated closed-loop system using Xr

i,cand as

2With an abuse of notation, we consider ∥z − z⋆∥ =
∥∥∥[x⊤ u⊤]⊤ − [x⊤

⋆ u⊤
⋆ ]⊤

∥∥∥. A weighted norm can also be
used to normalize the components of state and input vectors.
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reference trajectory, i.e.,

x̄i[k + 1] = h(x̄i[k], ūi[k]) + g′(z̄j
i [k])

ūi[k] = π(xr
i,cand[k], x̄i[k], f̂),

(6.11)

where g′(z̄j
i [k]) is a sample of the Bayesian model of the residual dynamics, using the proba-

bility distribution N
z̄
j
i [k]

(·, ·). The bar ∗̄ is used to denote quantities related to the simulation

throughout this paper.

Approximation of Z∆r
t

Since we do not know f , we cannot compute Ur
t , and therefore neitherZ∆r

t
. In this section we

show how we can get an estimation ofZ∆r
t

, denoted by Ẑ∆r
t

, exploiting the current estimation
of f .

We firstly uniformly sample the state and input spaces, X and U , creating the sets X ′ ⊂ X
and U ′ ⊂ U , respectively. We then simulate the closed-loop system M times using Xr

t as
reference, We obtain M state and input trajectories Z̄j

t where

x̄j
t [k + 1] = h(x̄j

t [k], ū
j
t [k]) + g′(z̄j

t )

ūj
t [k] = π(xr

t [k], x̄
j
t [k], f̂).

(6.12)

Finally, we compute Ẑ∆r
t

as

Ẑ∆r
t
= {z ∈ X ′ × U ′ | ∃ k ∈ (0, . . . , N) and

j ∈ (1, . . . ,M) s.t.
∥∥∥z − z̄j

t [k]
∥∥∥ ≤ ϵ}. (6.13)

Similar to (6.9), the threshold ϵ is a heuristic that controls the exploration of the informative
trajectory. With large ϵ, the optimal trajectory should show a more exploratory behavior.

Approximation of the informative cost

We replace Z∆r
t

with Ẑ∆r
t

in (6.10) and this integral can be approximately solved using nu-
merical integration such as Monte-Carlo integration: we uniformly sample S pairs zj in Z∆r

t
,

where j = 1, . . . , S, creating the set Z′
∆r

t
. We then approximate the informative cost in (6.10)

as
V

S

∑
zj∈Ẑ′

∆r
t

σ2(zj |Zi), (6.14)

where V is the volume
∫
Ẑ∆r

t

dz. Notice that for the different sampled informative trajectories,

V and S remain constant and therefore can be omitted in the optimization.
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Parametrization of the informative trajectory

Since we want to improve the knowledge of the model in Z∆r
t

, it is natural to think that the
informative state trajectory Xr

i should be “close” to the task state trajectory Xr
t . Therefore,

given a generic k, we define xr
i [k] such that

xr
i [k] = xr

t [k] + δx[k]. (6.15)

Now, sampling informative state trajectories means sampling “deviations” from the task state
trajectory. To reduce the sampling space, which has the same dimension of X , we parametrize
δx using the Discrete Fourier Transform (DFT)

δx[k] =
1

P

P−1∑
p=0

Θ⊤
x epe

j 2πp
P

k, (6.16)

where P ∈ N>0, j is the complex operator, ep ∈ RP is a vector with 1 in place p and 0
elsewhere, and Θx ∈ Ox ⊂ Rn×P is the state parameter matrix.

From sampling every state of the informative trajectory, we now samples only fewer param-
eters. Furthermore, the rationale behind the use of DFT parametrization is that it gives us a
more intuitive control of the frequencies of excitation. We can use fewer parameters to gener-
ate excitation signals that are spread through frequencies of interest. Intuitively, the deviation
signal can be seen as an excitation signal added around the task state trajectory. As a result, the
algorithm inherently explores locally around the task trajectory.

3.3 Sampling-based optimization algorithm
Considering the previous simplifications, (6.10) becomes

min
Θx

∑
zj∈Ẑ′

∆r
t

σ2(zj |Z̄i)

s.t. Ẑ∆r
t

as in (6.13), zj as in (6.12),

xr
i [k] = xr

t [k] + δx[k], δx[k] as in (6.16).

(6.17)

Practically, to solve (6.17) we used a Monte-Carlo sampling-based method. The algorithm
follows the next steps which require the simulation of the system only:

1. Uniformly sample a set of parameters Θx ∈ Ox and compute several informative state
trajectories as in (6.15) and (6.16);

2. Simulate multiple times the system with the sampled residual model g′ according to the
prior model. Each informative state trajectories computed at step 1 is used as reference;

3. For every simulation, collect the data relative to the performed trajectory, Z̄i, and update
the Bayesian model of the residual dynamics;
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4. Compute Ẑ∆r
t

as explained in 3.2;

5. Evaluate the information cost in Ẑ∆r
t

according to (6.14) associated to every new up-
dated model;

6. Select the informative state trajectory corresponding to the minimum information cost.

Once the informative state trajectory supposed to provide the best model update is selected, it
is used as reference in a real experiment. The relative collected data, Zi, is then employed
to update the prior model. The full process can be repeated from step 1), to find a new state
informative trajectory that would allow to further improve the model accuracy, and in turn to
reduce the tracking error.

Remark: Note that the quality of the approximate solution depends on the quality of the prior
model. Therein lies the purpose of this algorithm: Within each iteration, the quality of the
prior model improves, and the solution to the approximated problem converges towards the true
optimum. Consequently, this helps improving the prior model.

4 Application to an aerial robot: the Omav

This section shows how the above framework is applied on an omnidirectional flying vehicle,
called Omav [24]. The Omav (Fig. 6.2) is an overactuated omnidirectional flying vehicle with
six tiltable arms in a hexagonal arrangement. A coaxial rotor configuration is rigidly attached
to the end of each arm. The rotation of each arm can be actively controlled by a servo motor,
which results in a total of 18 actuators. Although the setup enhances the motion and interaction
capabilities, aerodynamic disturbances among the rotors, unknown servo dynamics, backlashes,
and other mechanical inaccuracy are difficult to be modeled and included in standard model-
based controller. This makes Omav a suitable testbed to validate the proposed method for active
model learning.

The state of the Omav is given by x = [p⊤ η⊤ ṗ⊤ ω⊤]⊤ ∈ X ⊂ R12. In order, x
includes the position, attitude (expressed in Euler angles), linear velocity, and angular velocity
of the vehicle. As input of the system we consider the commanded wrench, i.e., the total force
and moment commanded to the vehicle3, u = [f⊤

cmd τ⊤
cmd]

⊤ ∈ U ⊂ R6. We assume that an
allocation policy is implemented to transform u into low level commands for the servos and the
motors [24]. Finally, the dynamics of the Omav can be written as in (6.4), where h is derived
using standard Newton-Euler equations. Notice that h is linear with respect to the input and can
be written as

h(z) = l(x) + u, (6.18)

where l(x) includes all the terms that do not depend on u.
On the other hand, g includes all previously mentioned unmodeled dynamic behaviors that

cannot be easily captured with first principles. Considering the last six row of the dynamics
(the linear and angular accelerations), we can consider g(z) as the mismatch between the com-
manded wrench and the actuated one.

3For simplicity, we consider force and moment scaled by mass and inertia, respectively.
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5 Experimental results

The controller tries to implement a feedback linearization control law with a PID action
on the position and attitude errors. In particular, given a reference task trajectory, Xr

t , and a
priori model for g, the controller π(xr

t [k],x[k], f̂) tries to find the input u[k] that solves the
following optimization problem

min
u[k]
∥x⋆[k]− l(x[k])− u[k]− ĝ(u[k])∥ , (6.19)

where x⋆[k] = K(xr
t [k] − x[k]) + KI

∑k
j=0(x

r
t [j] − x[j]) is the PID action, with

K,KI ∈ R12×12 positive definite matrices. For the details about the implementation of
such an optimization, we refer the interested reader to [54].

From experimental observations, we remark that the residual dynamics regarding the dif-
ferential kinematics and linear acceleration (first nine rows) is almost negligible with respect
to the one regarding the angular acceleration (last three rows). In other words, the mismatch
between commanded and actual force is much smaller than the one between commanded and
actual torque. For this reason, in this first work, we focus on the attitude dynamics, applying the
proposed active dynamics learning only on the last three rows of the system dynamics. These
mismatches are modeled as three independent single-output Gaussian processes with u as the
training input and the torque model mismatch as training output. We neglect the rotational drag
torque acting on the vehicle since the vehicle is mostly operating with low angular velocities,
thus ĝ is modeled independent of the state.

5 Experimental results

The experimental platform is the omnidirectional aerial vehicle in Fig. 6.2: the Omav. The
Omav weighs 4 kg and is equipped with a NUC i7 computer and a PixHawk flight controller.
This configuration allows to run all the necessary algorithms onboard implemented in a ROS
framework. A motion capture system provides pose estimates at 100Hz. For a more complete
description of the testbed see [24].

As stated in Section 4, the proposed method has been implemented and evaluated focusing on
the rotational dynamics. For the learned Gaussian process model, data points are subsampled
from the experimental data using the k-medoids [130] algorithm where the Euclidean squared
distance between the inputs is used as the distance metric. Throughout the experiments, squared
exponential kernels are used. The deviation δx[k] is sampled around x, y, z-axis on the angular
acceleration level, constraining to be below 2 Hz. Note that this is equivalent to giving δx[k]
on the angular velocity. For simplicity, we limit the number of frequencies P to 2 and allow the
frequency locations to be sampled along with its magnitude. This yields a total of 12 coefficients
to be sampled. The simulation framework is set up using RotorS Gazebo simulator [109]. In this
section we use “non-informative trajectory” to describe the case where only the task trajectory
is used to collect the data to update the model.
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Figure 6.1: Comparisons of tracking performance.

5.1 Correlation between informative cost and tracking error
An experiment is conducted to investigate whether the tracking error defined in problem (6.6)
is correlated to the informative cost defined in (6.17). The Omav is asked to follow a pitching
trajectory up to 60 degrees in pitch and 1 rad/s2 in pitch angular acceleration, similar to previ-
ous work [54]. A prior model is built by collecting the data from executing the task trajectory.
Next, five sampled candidate informative trajectories and the task trajectory are executed and
six learned models are built accordingly. They are then evaluated on the test data generated by
the prior model. ϵ is heuristically tuned by simulation computing the average distance between
the commanded wrench and the achieved wrench. The tracking performance of the angular
acceleration4 along the y-axis using these models are shown in Fig. ??. It can be seen that there
is a clear correspondence between the informative cost and the tracking error. Furthermore, the
model learned from the task trajectory does not yield the best tracking performance.

5.2 Comparison between informative and task trajectory
To compare the efficiency of the informative and non-informative trajectory, a figure-8 in atti-
tude (with roll and pitch up to 26 degrees) with constant position is given as a task trajectory
(see Fig. 6.3). We compute the prior model running the task trajectory for the first time. Then
20 trajectories are randomly generated and evaluated in simulation as explained in Section 3.3
using the prior model. The most informative trajectory (lowest informative cost) and the task
trajectory are then executed and the data are recorded for both trajectories. We subsampled 20,

4Notice that evaluating the angular acceleration tracking is equivalent to evaluate the error between actual and commanded
torque which strongly depends on the model accuracy.
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5 Experimental results

Figure 6.2: The omnidirectional flying vehi-
cle (Omav) used to experimentally validate our
method.
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40, 60, 80 data points from the experiments running each trajectory and built a model for each
of these combinations by augmenting the prior model with these data points. The hyperparam-
eters of the Gaussian processes are reoptimized. The models are then used in the controller to
track the task trajectory in real experiments for validation. Tracking performance are evaluated
in Fig. ?? as the average of the absolute angular acceleration over all three axes. It can be
noted that for the same amount of data points, the informative trajectory always outperforms
the non-informative trajectory in term of both mean tracking error and corresponding variance.
On average the performance5 of informative trajectories outperforms the non-informative one
by 13.3%.

5.3 Comparison of the model generalizability

To test the generalizability of the model learned from the informative trajectory, a modified
figure-8 trajectory with higher pitch and roll reference angles (up to 43 degrees) is used. As
can be seen in the phase plot in Fig. 6.4, the state input pairs of the modified figure-8 extend up
to twice of the original one. In this case, both models from the informative trajectory and the
non-informative trajectory have 100 data points. It can be seen from Table 6.1 that the model
learned from informative trajectory yields better tracking performance, especially around the
z-axis.

5By performance of a trajectory we mean the tracking performance using the updated controller with the data collected from
that trajectory.
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Figure 6.4: Phase plots of the task trajectory and modified task trajectory. It can be observed
that although the modified trajectory extend beyond the task trajectory, the model learned from
the informative trajectory helps to reduce the tracking.

x-axis y-axis z-axis

non-informative 38.4% 41.7% 23%

informative 43.2% 57.9 % 62%

Table 6.1: Angular acceleration tracking error reduction with respect to the case without model
learning in percentage.

6 Conclusion

This work presents a practical framework that effectively and efficiently collects data points for
the learning of models used at the control level to significantly improve tracking performance
on real robots. We experimentally demonstrate the validity of the method on an overactuated
aerial robot, the Omav, whose dynamics is complex and difficult to learn. Experimental results
show that the learned model from informative trajectories is efficient in data points collection
and generalizes on modified trajectories.
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Paper IV
Learning Variable Impedance Control for
Aerial Sliding on Uneven Heterogeneous
Surfaces by Proprioceptive and Tactile

Sensing

Weixuan Zhang, Lionel Ott, Marco Tognon, and Roland Siegwart
Abstract

The recent development of novel aerial vehicles capable of physically interacting with
the environment leads to new applications such as contact-based inspection. These
tasks require the robotic system to exchange forces with partially-known environ-
ments, which may contain uncertainties including unknown spatially-varying friction
properties and discontinuous variations of the surface geometry. Finding a solution
that senses, adapts, and remains robust against these environmental uncertainties re-
mains an open challenge. This paper presents a learning-based adaptive control strat-
egy for aerial sliding tasks. In particular, the gains of a standard impedance controller
are adjusted in real-time by a neural network policy based on proprioceptive and tac-
tile sensing. This policy is trained in simulation with simplified actuator dynamics in a
student-teacher learning setup. The real-world performance of the proposed approach
is verified using a tilt-arm omnidirectional flying vehicle. The proposed controller
structure combines data-driven and model-based control methods, enabling our ap-
proach to successfully transfer directly and without adaptation from simulation to the
real platform. We attribute the success of the sim-to-real transfer to the inclusion of
feedback control in the training and deployment. We achieved tracking performance
and disturbance rejection that cannot be achieved using fine-tuned state of the art in-
teraction control method.
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Paper IV: Learning variable impedance control for aerial sliding

Figure 7.1: A tilt-arm omnidirectional flying vehicle is sliding along surfaces with different
friction properties and geometries. The end effector is in contact with a double-sided tape while
sliding on a rock like papier-mâché.

1 Introduction

Aerial interaction tasks such as contact-based inspections [29]–[31] require the flying vehicle to
slide a sensor along the surface and maintain contact. These surfaces vary in spatial geometry
and friction properties. This poses two challenges: Firstly, the surface friction property cannot
be directly measured and may change discontinuously if the surface consists of different materi-
als (i.e., heterogeneous surface). In addition, the perception of the surface geometry tends to be
impaired by sensor noises, occlusions, and low spatial resolution, especially when the geometry
is discontinuous (e.g. steps or holes). Secondly, from the control perspective, the presence of
these unknown environment features introduces uncertainties in contact forces. The induced
interaction wrench disturbance may cause large abrupt changes in the robot dynamics, which
easily destabilizes the system. Existing approaches show interactions with simple continuous
surfaces (e.g., planes, cylinders, etc), where the geometry is assumed to be known and fric-
tion properties are assumed to be identical everywhere (i.e., homogeneous) [32]–[34]. These
approaches also require expert knowledge to perform manual tuning for each environment to
achieve optimal performance. How to design a solution that senses, adapts and remains robust
to the environmental uncertainties remains an open challenge.

This work presents a method to overcome these challenges. More specifically, a variable
impedance controller that uses proprioceptive and tactile sensing to adjust controller gains ac-
cording to environmental changes.

There exists literature on sliding on partially-known and uneven surfaces in the manipulation
community, using passivity [35] or adaptive force control [36], [131]. They do not directly
extend to aerial robots, as force control introduces safety challenges when aerial robots transi-
tion from contact flight to free flight. One could also employ disturbance observer-based robust
control [38]. Such an approach has the disadvantage of being slow to react, especially in the
presence of noisy measurements and inaccurate process models. Consequently, the flying vehi-
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cle will struggle to handle abrupt changes in the environment. Finally, another option is to use
mechanical compliance at the flying machine’s end effector [39]. However, this increases the
mechanical complexity and cost while further decreasing the system’s payload.

An alternative approach to address the aforementioned sensing challenge is to use propri-
oceptive measurements and tactile sensing to react to changes in the geometry and friction
properties of the environment. This type of approach can be found in quadrupedal robots like
the MIT Cheetah [40] and Anymal [41]. These robots use either control signals to infer a leg
touchdown event or use IMU signals, robot states, and control commands to implicitly infer
the surface properties. Compared to visual sensing, these two sensing modalities are more di-
rect in measuring the contact and are more suitable in sensing the discontinuous features of the
environment. However, they were never exploited in the field of aerial manipulation to face
unknown environments.

From a control perspective, impedance control [132] introduces algorithmic compliance and
has shown success for aerial sliding tasks on homogeneous surfaces [34]. Selection of the
impedance gains is a trade-off between controller tracking performance and system compli-
ance. Depending on the task and environment, different impedance parameters may perform
optimally [133]. A variable impedance controller [44], [134] is thus an attractive solution and
has shown promising results in aerial manipulation [135] and [32]. To sense and adapt to the
environmental uncertainties during aerial sliding tasks, one can vary the impedance parameters
using the previously mentioned two sensing modalities. This nonlinear mapping may also be
learned using deep reinforcement learning (RL) techniques [136], which have become a popular
tool to generate highly nonlinear and effective control policies using neural networks. Exam-
ples combining reinforcement learning with variable impedance control can be found in legged
robots [50] and manipulator [47]–[49], [137]. For flying vehicles, learning from simulation
instead of real-world is the preferred approach, since a failure typically leads to a crash. In par-
ticular, student teacher setups [42] are prosmising to improve learning efficiency, since a teacher
policy can use privileged information from simulation to guide the student policy.

Considering the problem of aerial physical interaction with heterogeneous and uneven sur-
faces, taking inspiration from different robotic domains, this paper presents a novel control
method that combines the benefits of proprioceptive and tactile sensing, variable impedance
control and reinforcement learning. A neural network policy is learned to adapt the stiffness
gains of a standard impedance controller according to proprioceptive and tactile sensing. The
intuition is that these two sensing modalities jointly capture the interaction environmental prop-
erties and the learned policy can therefore adjust the controller to be robust against these dis-
turbances. The training of this policy is conducted entirely in simulation in a student-teacher
setup. This solution allows for a direct transfer of the learned policy from a simplified closed-
loop simulation to an omnidirectional aerial vehicle (Omav as shown in Fig. 7.1 and described
in [24]), significantly improving its robustness and control performance during interaction and
outperforming fine-tuned impedance controller.

Our contributions are as follows:

• A learning-based solution for aerial sliding tasks that senses, adapts, and remains ro-
bust against challenging interaction environment uncertainties in surface geometry and
friction properties.

• An approach to address sim-to-real transfer by including a closed-loop controller to sup-
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Figure 7.2: Omav in interaction, showing some of the symbols and quantities required to model
the system.

press model uncertainty, which allows for learning from simplified actuator dynamics.

The above contributions have been validated experimentally using an Omav with a rigid single-
body end effector for the task of sliding along surfaces with different friction properties and
uneven geometry.

2 Preliminaries

In this section we provide a brief overview of the models used to represent robot dynamics and
environment interactions before describing the basics of impedance control.

2.1 Robot dynamics

It is assumed that the flying vehicle has a single-body end effector rigidly attached to its body
(see Fig. 7.2). The robot is modeled as a single rigid body and its dynamics are expressed using
Newton-Euler method in free flight and interaction are given by the following equation

M ˙̃v +Cṽ + g = wact +wdist, (7.1)

where M ∈ R6×6 is the symmetric positive definite inertia matrix and C ∈ R6×6 contains
the centrifugal and Coriolis terms, and g ∈ R6 is the gravity. The generalized velocity ṽ ∈ R6

represents the center of mass velocity and body rates of the system. The generalized acceleration
vector are denoted as ˙̃v. The terms wact and wdist ∈ R6 are both stacked force and torque
vectors acting on the system generated by rotor actuation and disturbance sources (e.g., contact
or wind disturbances), respectively.
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2.2 Interaction with the environment
When the robot is sliding along the surface with its end effector, the force disturbance fdist has
three sources: 1. environmental aerodynamic effects, e.g. ground effects, wall effects, and wind
gusts, 2. actuation modeling errors, and 3. the contact force fcon. Both 1) and 2) are assumed
to be negligible as they are at least an order of magnitude smaller than that of the contact force
[54], [138]. The treatment of wind gust disturbance is referred to future work.

During interaction flights, the robot is assumed to have a single contact point with the uneven
surface atC (Fig. 7.2). A local contact frameFT is attached to the contact point such that its x-
axis is normal to the tangent plane at C. The contact force acting on the end effector expressed
in the body frame FB is modeled as follows:

fB
dist = fB

con = RBT (F⊥nT
⊥ + F∥n

T
∥ ), (7.2)

where F⊥ is the scalar normal force and F∥ is the scalar friction force. The coordinate trans-
formation matrix RBT transforms a vector from FT to FB . The unit normal vector nT

⊥ is
perpendicular to the tangent plane at C and nT

∥ is the sliding force direction parallel to the

tangent plane at C. The relative orientation RBT is assumed to be partially known due to
imperfect map. In addition, the end effector and the contact force creates a torque around the
vehicle’s center of mass with the lever arm length denoted as l.

When the end effector is sliding with nonzero velocity on the surface, a Coulomb friction
model is assumed, i.e.:

F∥ = µ(pC)F⊥, (7.3)

where µ(pC) is the friction coefficient that can vary spatially across the surface, depending the
position of contact pC .

2.3 Impedance controller with constant gains
An impedance controller with constant control gains is a common approach used for aerial
sliding tasks [24] and used in this paper as the baseline approach.

Given a desired sliding path on the surface, a reference pose trajectory is designed based on
the given surface map . This reference trajectory consists of a desired center of mass position
which results in a end effector position that is always behind the sliding surface by a constant
distance δ ∈ R (Fig. 7.2), also denoted as the penetration level. For the attitude part of the
trajectory, the vector along the tool arm should align with the contact frame x-axis.

Given this desired reference trajectory, an impedance controller with constant control gains
has the following form:

wact = Cṽ + g + (MM−1
des − I6)wdist

−MM−1
des(−M ˙̃vref +Ddesẽv +Kdesẽs),

(7.4)

with ẽs ∈ R6, containing the position and attitude tracking error as shown in [24].
Mdes,Ddes,Kdes ∈ R6×6 are the desired inertia, damping, and stiffness matrices, re-

spectively.
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Figure 7.3: Variable impedance learning controller. It augments the control strategy depicted
in [24] by adding a control gain adaptation policy, which takes as input the state, control error
and the wrench measurements from the wrench sensor and map them to impedance gain.

Plugging (7.4) into (7.1) results in

Mdes
˙̃ev +Ddesẽv +Kdesẽs = wdist. (7.5)

This implies that an impedance controller shapes the closed-loop system as a second-order
system. Note that there will be inevitable pose error due to the contact wrench acting on the
flying vehicle. The wrench command wact is then allocated through a chosen mapping and a
saturation function to individual actuator commands (for more details see [24]).

3 Methodology

3.1 Problem statement
The goal is to enable a flying vehicle to accurately follow a trajectory planned based on an
imperfect map while remaining stable and staying in contact with an uneven surface which has
unknown discontinuities in geometry and unknown friction properties µ(pC). Given a task-
space reference trajectory, we assume the robot has access to contact wrench measurements
wmeas via a force torque sensor, and it is controlled by an impedance controller with a gain-
adjusting policy πθ , which is parametrized by θ. To achieve the above goal, we propose a
strategy to find a deterministic policy πθ that adjusts the controller’s gains to fulfill the following
criteria: 1. minimize the tracking error ∥ẽv∥2+∥ẽs∥2 where ∥·∥ denotes the Euclidean norm,;
2. ensure fB

con > 0; 3. ensure the platform stability.

3.2 Variable impedance learning controller
The proposed approach adds a control gain adaptation policy to the standard impedance con-
troller (7.4). The policy adapts the impedance controller gains based on the proprioceptive
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measurements and the tactile feedback via the adaptive unit described in Fig. 7.3. In particu-
lar, the desired stiffness Kdes(z) ∈ R6×6 is a function of the m-dimensional measurements
z ∈ Rm:

Kdes(z) = Kmin + (Kmax −Kmin) diag{π(z)} (7.6)

where m is the dimension of the measurements, Kmin and Kmax are diagonal positive
semidefinite matrices, and π : Rm → R6 where 0 < π(·) < 1 with vector 0 and 1 of
dimension 6. These constraints on the mapped value make sure the adaptive gains have lower
and upper bounds. The lower bound Kmin ensures a minimum tracking performance while
the upper bound Kmax prevents the system from instabilities caused by actuator saturation and
system delay. These limits are both derived empirically through experiments. For brevity, in the
following we use π instead of πθ .

To obtain a damped second-order system, we impose a fixed relationship between Ddes and
Kdes(z). The desired damping Ddes is varied with the square root of the diagonal components
of Kdes(z):

Ddes = 2ζ
√

Kdes(z), (7.7)

where ζ is a damping ratio. While we assume that the desired stiffness and damping can be well
tracked, the desired inertia is in practice challenging to track as it requires an accurate actuation
control [34]. We therefore set Mdes equal to M and the adaptation of Mdes is deferred to
future works.

With M = Mdes and (7.7) inserted into (7.4), the following adaptive controller command
can be obtained,

wact = M ˙̃vref − 2ζ
√

Kdes(z)ẽv −Kdes(z)ẽs +Cṽ + g. (7.8)

With (7.8) plugged into (7.1), the closed-loop error dynamics are shaped as a second-order
system,

Mdes
˙̃ev + 2ζ

√
Kdes(z)ẽv +Kdes(z)ẽs = wdist. (7.9)

Note that changing the stiffness Kdes(z) affects the interaction wrench wdist. To see this,
consider (7.9) at steady state ˙̃ev = ẽv = 0 and projected along the surface normal direction.
We obtain

k⊥(z)δ = F⊥, (7.10)

where k⊥(z) is the position stiffness gain in the surface normal direction. Assuming the end
effector is in contact with the surface, which results in a constant position tracking error δ,
F⊥ is thus proportional to k⊥(z). This is the intuition of why we adapt the stiffness gain to
counteract surface disturbances.

3.3 Reinforcement learning of gain adaptation policy
We assume that the mapping π can be modeled as a discrete-time continuous Markov decision
process (MDP). An MDP is defined by a state space S, an action space A, a scalar reward
function R, and the transition probability P that dictates the stochastic system dynamics. A
learning agent selects an action a from its policy π and receives a reward r. The objective of
the RL framework is to find an optimal policy π∗ that maximizes the discounted sum of rewards
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over an infinite time horizon:

π∗ = argmax
π

Eτ(π)

∞∑
t=0

γtr[t] (7.11)

where γ ∈ (0, 1) is the discount factor, and τ(π) is the trajectory distribution under policy π,
with t denoting the discretized time indices. The reward r[t] at k is

r[t] = −leR ∥eR[t]∥2 − lp ∥ep[t]∥2 − ld ∥d[t]∥2

− lω ∥ω[t]∥2 − la
∥∥∥∥ a[t]

∥a[t]∥ −
a[t− 1]

∥a[t− 1]∥

∥∥∥∥2 (7.12)

l⋆ with subscripts ⋆ denotes the corresponding weight chosen such that all individual reward
terms are at the same order of magnitude. eR[t] and ep[t] denotes the attitude and translational
tracking error. d[t] = (pT + rT

end − pT
C) · eTx denotes the scalar distance along the x-

axis of the local contact frame between the end effector and the surface and · denotes the dot
product between two vectors. The purpose of this term is to make sure that the policy keeps
the end effector in contact with the surface. ω[t] denotes the angular velocity. We penalize
large angular velocities to avoid instabilities. The action a[t] is the output of the policy π(z)
at time t. The associated term is to make sure that the control inputs are smooth. The loss
components are designed to reduce the tracking error while keeping contact with the surface
without causing discontinuities in the actions and thus the actuator commands. These terms
are in line with the problem statement in Sec. 3.1. Note that since the simulation of each
individual actuator dynamics is omitted. The energy consumption of the flying vehicle can only
be indirectly inferred and is therefore not included in the reward function.

The policy π is a fully connected neural network with three hidden layers of 32 units, its
activation functions being leaky ReLu, and its last layer being a Sigmoid layer which guarantees
to map to a bounded interval. For training we use the off-the-shelf RL algorithm proximal policy
optimization (PPO) [139], a policy gradient algorithm that has been demonstrated to work for
variable impedance control in contact tasks with a manipulator [140].

3.4 Simulation using simplified dynamics

To allow for efficient evaluation and training of the policy π, a simplified dynamics simulation is
used. The flying vehicle is simulated as a single rigid body and the simulation of the individual
actuator dynamics are approximated collectively as a single process. A saturation function on
the wrench command is implemented, the output of which is delayed and set as external force
and torque directly acting on the robot. Both the saturation threshold and the system delay
are a conservative estimate of the empirically obtained actuation limits. This ensures that the
actuator limits are well respected and the closed-loop system behaves like a delayed second-
order system as designed. The inertia and mass are obtained from CAD. Although the actuator
dynamics are simplified, special attention is paid to identify the correct center of mass position
and the relative position of the end effector in the body frame (rcom and rend in Fig. 7.2).
They together determine the induced torque disturbance from a given contact force, which is
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Figure 7.4: This block diagram shows the main steps in the student-teacher learning of the
control gain adaptation policy.

essential for the simulation to learn the correct disturbance rejection strategy.
To simulate the interaction environment, surfaces that have different friction coefficients1 are

generated and concatenated together. Therefore, when the robot’s end effector slides across
the border between two surfaces with different friction properties, it experiences discontinuous
changes in interaction forces. Furthermore, each surface can have a different height that leads
to an uneven surface as a whole.

3.5 Learning from simulaiton
To efficiently learn an optimal policy that determines the adaptive stiffness Kdes(z) (see (7.6)),
a student teacher learning approach [42] is deployed.

Fig. 7.4 provides an overview of this approach: Firstly, we design a teacher with access to
privileged (ground-truth) information to dynamically select the desired stiffness in the variable
impedance controller. Then a policy is learned to emulate the teacher and may be further im-
proved using RL. The policy can be directly transferred to real-world without any additional
sim-to-real adaptation..

The intuition behind the student teacher learning is that the teacher has access to the privileged
information is much easier to design or train in an RL setting. We can also embed empirical
tuning experience or other adaptive variable impedance strategies into the teacher. This is help-
ful for challenging tasks, as we find out empirically a direct reinforcement learning always lead
to instabilities of the flying vehicle and prevents successful learning.

Teacher design

The teacher πt serves as a guidance policy for the student policy. It makes use of the privileged
information zgt. Compared to z, it contains additional information from the simulation, to
which the student policy does not have access in real deployment.

In this work, we employ either a simple handcrafted policy πt or a neural network learned
from simulation using reinforcement learning as the teacher. Upon a rough surface, the hand-

1The same material was used for the end effector throughout this paper. Thus, for the sake of brevity, we only talk about
surface friction coefficients when it would be more accurate to talk about friction pairs between the end effector and the
surface.
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crafted policy decreases the translational stiffness gain to reduce the normal forceF⊥ (see (7.10))
and therefore the torque disturbance, while the angular stiffness gain is also increased to better
reject the torque disturbance. For reinforcement learning of the teacher, the teacher is learned
from scratch using the privelged information, including friction coefficient at contact point and
the surface normal vector in the vicinity of the contact.

Student learning

The control gain adaptation policy π∗(z) is bootstrapped via supervised learning with the fol-
lowing loss function

π∗ = argmin
π
∥πt(zgt)− π(z))∥2 . (7.13)

where the feature z contains control signal, state estimate, IMU signals and interaction wrench
measurements, with the first three signals being propprioceptive sensing and the last one be-
ing tactile sensing. They indirectly provide the information about the interaction between the
environment and the robot.

Training data is collected by rolling out the simulation using the teacher. For each rollout,
the robot first approaches the surface, gets into contact and starts sliding following the desired
trajectory. The policy π∗(z) can be further refined using RL.

Data processing

Noisy observations (especially the interaction wrench measurements) are first-order low-pass
filtered before they are input to the student policy. To have a smooth change in the stiffness
gain Kdes(z), the output of the student policy is also low-pass filtered before they are used to
compute Kdes(z).

3.6 Remark
Stability We remark that the stability using RL may be ensured using the concept of passivity
[141], or Lyapunov methods [142]. This is left as future work. Instead we discuss here practical
measures to face possible causes of the instability. Those are mainly twofold: actuator saturation
due to the rapid changes in the control gains or high gains and low gains which is incapable
of stabilizing this open-loop unstable system. Thus we implemented the following strategies:
1. Lower and upper bounds on the stiffness gain as shown in (7.6); 2. Slew rate limit on the
gains are empirically determined and only applied in deployment as precaution ; 3. The output
of the policy π∗

s (z) is filtered for a smooth control signal in training and deployment.

Sim-to-real transfer The sim-to-real gap, i.e., the mismatch between simulation and real-
ity, is a challenging problem when learning from simulation, and can limit the transferability of
the learned policy. Frequent causes of sim-to-real gaps are inaccurate modeling of the actuator
dynamics and delays in the system [27]. This is especially a problem for end-to-end learning ap-
proaches. Without feedback controller in the loop the learning procedure relies on the accuracy
of the open-loop dynamics simulation and the sim-to-real gap can diverge exponentially. How-
ever, given a well-designed feedback controller (e.g., the one one presented in Fig. 7.3), which
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shapes the system to a desired second-order system (7.9) and suppresses model uncertainty, the
gap between the reality and the simulation is kept small. This is particularly advantageous for
a complicated system like the Omav, where a large amount of training data is required for an
accurate model learning of the whole body dynamics (18 actuators and 6 degrees of freedom).
As a comparison, a million samples are required for the modeling of a single one degree of
freedom actuator of quadrapedal walking robot [27]. What is worse, if the Omav crashes or
if its configuration changes, training data needs to be recollected again for an accurate model
learning. Our approach does not require such a meticulous effort.

4 Experiments

4.1 Experimental setup

The experimental set-up and the platform are shown in Fig. 7.1 and Fig. 7.6. The experiments
are carried out at the indoor aerial robotic testbed of the Autonomous System Lab, ETH Zurich.
The Omav weighs 4.5 kg and is equipped with an NUC i7 computer and a PixHawk flight con-
troller. For a more complete description of this platform see [24]. A pole end effector is rigidly
attached to the vehicle and points outwards for a sufficient margin between the propellers and
the surface. A ping pong ball is attached at the pole tip to ensure a single contact during sliding
movements. A force torque sensor from Rokubi, mounted to the end effector, measures the
interaction wrench. There are three interaction environments for real experiments: sand pa-
per on a flat white board to investigate interaction with heterogeneous surface, a step of 2 cm
on a white board (Fig. 7.6) to investigate interaction with discontinuous surface geometry, and
finally, a rock-like structure (Fig. 7.1) which combines both traits to form a challenging envi-
ronment typically seen in real applications. A motion capture system provides pose estimates
for both the robot and the whiteboard/rock at 100Hz. The robot is unaware of their surface
properties and the local unevenness on the surface. The task trajectory is to follow a straight
line trajectory parallel to the gravity vector with zero pitch and roll while sliding on the verti-
cal surface. The penetration level δ is set to 0.07m, which leaves sufficient margin to ensure
contact under the state estimate uncertainty.

For the simulation we use RaiSim [143], a cross-platform multi-body physics engine for
robotics. During training in the simulation, for each rollout, the robot approaches the surface
and starts sliding along the surface for 15 seconds, which emulates a task trajectory from the
real-world experiments. During each rollout, the Omav reaches a speed of 0.2m s−1 and slides
across surfaces with different friction coefficients. For each interaction environment, we set up
a different interaction environment in the simulation and learn a different policy to treat each
problem separately. Find a single policy that tackles different environments can be studied in
the context of continual learning and is planned for future work.

To train the teacher or student policy using RL, a hundred simulation instances are spawned
with slightly perturbed vehicle and environment properties. In each epoch, these instances are
simultaneously simulated to obtain a batch of rewards for stochastic gradient policy optimiza-
tion. The policy was trained on a single NVIDIA 3060Ti GPU, which takes from 2 to 8 hours
depending on the interacting environment.

Since there is only a straight line to follow, the dimension of the measurement vector z is
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reduced to six: filtered pitch velocity, pitch error, position control error in the sliding direction,
linear velocity, friction force filtered, normal force filtered. The output to the action space are
the linear gain in the surface normal direction and the angular gain in the pitch direction, i.e.
the axis of torque disturbance. The rest of the controller gains is kept constant.

4.2 Sim-to-real transfer
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Figure 7.5: Comparison between baseline and our approach while the robot approaches and
slides across two surfaces with different friction coefficients, both in simulation (dashed line)
and real-world (solid line). ka and kl denote the angular stiffness gain and translation stiffness
gain, respectively.

Fig. 7.5 demonstrates the policy transfer from simulation to reality. It compares four exper-
iments completing the same sliding task with different controllers (baseline or our approach)
and different set-ups (simulation or real experiment). The plots are aligned using the measured
force impact when the Omav enters from free flight into contact with the whiteboard.

For evaluation, the Omav must slide across three concatenated surfaces: the first is the white-
board with low friction, then a sand paper with high friction, and finally the whiteboard again.
The friction coefficients are empirically estimated through force torque sensor measurements,
with which three surfaces are generated in the simulation that replicate the experimental eval-
uation set-up. The approach in evaluation is a policy π∗ defined in the (7.13) (without further
refinement using RL) and a baseline impedance controller with constant control gains. The pol-
icy is trained in a simulation environment with six different surface friction coefficients (0.05,
0.15, 0.25, 0.45, 0.55, 0.62) that covers a range of friction coefficients. During collection of
data using the teacher, each surface is randomly assigned one of the six friction coefficients to
robustify the learned policy.

Fig. 7.5 demonstrates that the learned adaptive control strategy can be successfully transferred

102



4 Experiments

from simulation to the real-world. Given the same controller (either baseline or our approach),
the simulation and the real-world experiments result in a close similarity of the respective robot
state (the pitch angle) and controller gains (the angular stiffness gain ka and translational stiff-
ness gain kl). The pitch angle is shown since it has the most obvious correlation with the surface
friction coefficient given the baseline controller.

4.3 Sliding across a heterogeneous flat surface
Fig. 7.5 also showcases the performance of the regressed student policy on heterogenous sur-
faces. In this subsection, we only evaluate the real experimental data. While sliding on the
surface, the contact force unavoidably leads to a tilted angle of the Omav. With the baseline
controller, the vehicle tilts on average 4.9◦ after encountering a high friction surface (from
199 s to 202 s), whereas with our approach, the tilt of the vehicle only increases to about 1.3◦

on average. This shows that the Omav is able to keep a almost constant tilt angle when slid-
ing across different surfaces, thus improve the attitude tracking performance and reducing the
chance of a crash at the transition of difference surfaces.

4.4 Sliding over a surface with discontinuous geometry
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Figure 7.6: The end effector is blocked by a step of 2 cm made out of foam while sliding on a
slippery whiteboard.

The experiment (Fig. 7.6) presented in this section aims to investigate the ability to reject the
disturbance caused by surface discontinuity and remain stable (criteria 3 in Sec. 3.1 ). For the
real experiment, a piece of foam is taped to the whiteboard and creates a step of about 2 cm
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along the sliding trajectory. During sliding, the step blocks the end effector, which leads to
an increase of the pitch angle. The end effector then detachs from the surface and the sudden
disappearance of the contact force presents as a large disturbance to the robot.

Our approach is trained as follows: Initially an even surface with randomly generated friction
coefficients as described in Sec. 4.3 is used to bootstrap the policy. Then a piece of uneven
surface with 1 cm steps is created by setting each neighbouring surface to have a height differ-
ence of 1 cm . The policy is refined and trained for 900 epochs. The height difference is then
changed to 2 cm with another 700 epochs of training. Training was terminated early when the
reward stopped increasing for 300 epochs.

The behaviour exhibited by our approach when a step is encountered is to adapt the control
gain to be more compliant. Compared to the baseline approach,this leads to less oscillations in
pitch velocity when the Omav’s end effector slips and is out of contact (the yellow region in
Fig. 7.6).

4.5 Sliding across a challenging surface

A challenging rock-like papier-mâché surface (Fig. 7.1) is set up to compare our approach
with baseline controllers. The surface of this rock is uneven and heterogeneous. Double-sided
tapes (high friction) and plastic surface with lubricant (low friction) are added to the surface to
emulate heterogeneous surface in extreme situations. Two trajectories (trajectory red and blue
as the color in Fig. 7.7 indicates) were tested for more variety. For the training environment, we
use procedurally generated terrain maps that have similar surface variations to the rock. During
rollout, the fricition coefficients are randomly selected from six friction coefficients (0.1, 0.15,
0.45, 0.6, 0.75, 0.9) every four seconds. Note that the evaluation and training environments are
distinct and demonstrated the generalizability of our approach.

As shown in Fig. 7.7, our approach consistently outperforms the baseline controller with nine
combinations of low, middle and high angular and translational gain. These different combina-
tions represent a tuning process that is often practiced in real-world. Each data point represents
the average tracking performance over the sliding of the same trajectory for the three times with
the same controller. Several interesting observations can be made: firstly, among the baseline
approaches, a good tracking performance is generally achieved by high stiffness controller but
the converse is not true. It is observed in the experiment that a high gain controller (kl = 20
and ka = 100 for trajectory blue) can lead to instability. However, we never experienced in-
stability issues with our policy throughout the experiments. This indicates that our approach
adapts the controller to be more compliant when necessary. Secondly, for each trajectory, the
optimal set of constant gains are different. For example, to achieve best tracking performance
in pitch, trajectory red and trajectory blue have different optimal gains (upper left in the plot).
This means that in reality, the engineer have to tune the parameters for each specific trajectory
and surface to gain optimal performance. However, our approach always performs well for both
trajectories. The tracking data points of our approach are both located in the lower left of the
plot, which means good tracking performance in both position and orientation. This implies
that our policy adapts to the different surface unevenness and varying friction coefficients.
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An time history plot of partial inputs and outputs of the policy in plot Fig. 7.8 provides an
intuition on the adaptiveness of our policy. Note that when the pitch error increases from 194
s to 195.5 s, the angular gain ka is also increased to maximum to reduce the tracking error.
However, around 195.5, the end effector detaches from the surface and causes oscillations on
pitch rate, the angular gain is decreased to be more compliant and the vehicle remains stable.

5 Conclusion

This paper presented an approach that senses, adapts and remains robust against disturbances
caused by discontinuous surface variations in geometry and friction during aerial sliding tasks
for fully actuated flying vehicles. When the environmental property changes, an adaptation pol-
icy adjusts the control gains of a standard impedance controller to reject these disturbances. Ex-
perimental results demonstrated that the policy learned in simulation can be directly transferred
to the aerial vehicle without adaptation. The learned policy is able to slide on a challenging
rock-like surface and outperform state-of-art interaction controllers.
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