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Abstract: Visual-inertial systems rely on precise calibrations of both camera
intrinsics and inter-sensor extrinsics, which typically require manually performing
complex motions in front of a calibration target. In this work we present a novel
approach to obtain favorable trajectories for visual-inertial system calibration, using
model-based deep reinforcement learning. Our key contribution is to model the
calibration process as a Markov decision process and then use model-based deep
reinforcement learning with particle swarm optimization to establish a sequence of
calibration trajectories to be performed by a robot arm. Our experiments show that
while maintaining similar or shorter path lengths, the trajectories generated by our
learned policy result in lower calibration errors compared to random or handcrafted
trajectories. 1

Keywords: Visual-Inertial, Calibration, Model-based Deep Reinforcement Learn-
ing, Markov Decision Process, Particle Swarm Optimization

1 Introduction

In recent years visual-inertial (VI) sensors, which consist of one or more cameras and an inertial
measurement unit (IMU), have become increasingly popular for robust high frequency motion
estimation [1, 2, 3, 4, 5]. Before use, VI sensors need to be calibrated, which implies obtaining
the parameters for the camera intrinsics, the camera-IMU extrinsics, and the time offset between
the different sensors [6, 7]. The performance of VI systems is highly dependent on the quality and
accuracy of the calculated calibration parameters [8]. Precise calibrations are usually obtained offline
in controlled environments, following sophisticated motion routines ensuring observability [9, 10].
This makes the entire process non-trivial for an inexperienced operator [8, 11]. Additionally, the
motion primitives that most effectively render the best calibration results are unknown. So instead
of performing this task by hand or with a manually programmed operator, we propose the use of
model-based deep reinforcement learning (RL) to learn the best motion primitives and perform them
on a robotic arm.

Previous works in automatic calibration use trajectory optimization and reinforcement learning
to address this problem. For the class of optimization methods that maximize the observability
Gramian of the trajectories on the calibration parameters [12, 13], it remains challenging to model
and include other practical optimization objectives, such as maximizing target point coverage for
camera calibration and trajectory length minimization for efficiency. A learning-based approach was
proposed by Nobre et al. [11], where a set of trajectories were pre-defined empirically and Q-learning
was applied to choose a sequence of those trajectories that renders sufficient observability of the
∗equal contribution
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calibration problem. A disadvantage of this approach is that it remains restricted to the collection
of pre-defined trajectories and therefore the possible range of movements is not fully explored. We
conclude that there are two aspects that could be further studied based on existing previous works:

• Multiple objectives: It is not obvious whether the trajectory that renders sufficient observ-
ability of states also provides the best calibration. Besides, other empirical requirements
such as path length and camera coverage could also be included in the optimized objectives.

• Learn the trajectory: A more general learning problem could be posed, where the prede-
fined trajectories and their selection are learned jointly in a single optimization problem.

We aim to address both points by designing a RL-based method to obtain the best sequence of VI
calibration trajectories that fulfill multiple objectives, including both observability and practical
requirements. The approach will be applied separately to calibrate both camera intrinsics and camera-
IMU extrinsics, as these two steps have very different motion requirements. The trajectories are
executed by a robot arm during training in a realistic simulation for both dynamics and photorealism,
thus guaranteeing the feasibility of execution by a real robot arm. Additionally, we simulate different
VI sensor configurations to model the variability that also exists in the real world.

To solve the proposed problem, we model calibration as a Markov decision process (MDP) and use
model-based RL [14] to establish the sequence of motion trajectories that optimizes sensor calibration
accuracy. Compared with other solutions the action space of our model has fewer constraints, making
it possible to learn a more general policy for calibration. In addition, we do not only consider different
information-theoretic metrics of the trajectories, but also take camera coverage and path length into
account, in the reward of our MDP model. For the learning algorithm, we propose a sample efficient
model-based RL method using the particle swarm optimization (PSO) [15] algorithm to search for
the optimal open-loop control sequence. We adapt the PSO algorithm to RL by utilizing gradient
information and memorizing previous optimization results for initialization. This method addresses
difficulties in searching for action sequences in a high dimensional space and the high time cost of
performing a calibration at each step.

The main contributions of this work are as follows:

• Our approach models the entire calibration process as a MDP and to the best of our knowl-
edge, we are the first to solve it using model-based deep reinforcement learning.

• Our proposed model-based heuristic RL algorithm with adapted PSO satisfies different
practical requirements such as the capability of solving problems with high dimensional
action space with high sample efficiency.

• The evaluation shows that the learned trajectories deliver more accurate calibrations com-
pared to handcrafted or random ones. We enable easy transferability to real scenarios by
also simulating the robot arm together with different sensor configurations.

2 Related Work

The most popular method for camera calibration during the last decades is to use a known calibration
pattern and apply nonlinear regression to obtain the parameters. This method has been successfully
used both for camera intrinsic [16] and extrinsic calibration [17]. For VI sensor calibration the most
reliable and precise approaches are also based on the use of a calibration board. A method presented
in [18] applies an Extended Kalman Filter to estimate the relative poses between sensors jointly. A
parametric method proposed in [9, 10] represents the pose and bias trajectories using B-splines and
introduces a batch estimator in continuous-time. While those methods are relatively efficient, they
still require expert knowledge to obtain the required sensor data for good accuracy. In addition, the
optimal calibration movements remain unknown, especially when aiming to increase time efficiency
and calibration accuracy. The problem of designing the best motion primitive was first addressed by
methods based on trajectory optimization to find the trajectory that renders the highest observability
of calibration parameters.

A method proposed in [13] optimizes the expanded empirical local observability Gramian of unknown
parameters based on the measurement model, to solve for the best state and input trajectories. Preiss
et al. [12] further extended the method to be obstacle-free and more balanced among multiple
objectives. Both of the approaches only optimize observability by using the observability Gramian of
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Figure 1: Overview of our calibration framework. The trajectories (actions) the agent chooses to take and
their simulated calibration performance are recorded in real-time. This data is then used to train the agent with
model-based RL.

the trajectories, where other empirical and general requirements are difficult to model and cannot
be easily included. Our framework combines different evaluation metrics of information gain for
variables in the reward design and learns to obtain the highest reward using model-based RL.

Another class of methods applies RL to get the best sequence of trajectories selected from a library
of pre-designed trajectories. Nobre et al. [11] modeled the calibration process as an MDP, where the
states are estimated parameters and the actions are choices of trajectories from the library at each step.
The MDP planning problem is solved using Q-learning. However, the method only yields suggestions
on predefined motions to choose from, rather than exploring new possible motion primitives. In
contrast, our method includes the trajectory parameters in the action design and solves the entire
calibration problem in an end-to-end fashion.

For such complex sequential decision-making problems, recent works have shown that deep RL
algorithms are capable of learning policies that render high performance [19, 20, 21, 22, 23]. Model-
based and model-free deep RL are two classes of deep RL algorithms. Model-free algorithms are
capable of learning a wide range of sequential decision problems, but they require a large number of
samples to achieve good performance [23, 24, 25]. Nagabandi et al. [14] combined neural network
model learning with sample-based model predictive control (MPC) to improve sample efficiency,
and the policy is further fine-tuned with model-free algorithms. Because of the high time cost to
perform a calibration at each training step, model-based algorithms are suitable to reduce the number
of required episodes to learn a good action sequence.

However, sample-based MPC performs relatively poorly in high dimensional action space, therefore
we substitute random sampling in [14] with a metaheuristic algorithm. PSO [15] is such a metaheuris-
tic algorithm that has been widely used in the last two decades due to its good performance in complex
high-dimensional problems, which cannot be solved using traditional deterministic algorithms. Hein
et al. [26] reformulated RL problems as optimization tasks and applied PSO to search for optimal
solutions. In this paper, we combine MPC with a modified PSO in a model-based framework to
search for optimal action sequences.

3 Method

An overview of the proposed learning framework is shown in Figure 1. Given a set of trajectory
parameters, the simulation platform executes the trajectory and records the resulting sensor data. The
estimation client then computes the calibration parameters based on the sensor data and transforms
all the results into training data according to the MDP formulation of the problem. Finally, the agent
samples from the recorded training data to learn the optimal trajectories using model-based heuristic
RL and chooses an action to execute.

3.1 Visual-Inertial Calibration

Our estimator follows the Kalibr framework [9, 10], where the Levenberg-Marquardt algorithm is
applied to minimize the loss between the obtained and predicted measurements to maximize the
likelihood of the unknown parameters Pr(X, θ|D,L). Here, X is the estimated pose trajectory, θ
depicts the calibration parameters, D are the measurements of a VI sensor consisting of images
and inertial measurements and L is the known position of landmarks on the calibration target. As
explained in detail in [27], the covariance matrix of the known parameters ΣXθ can be obtained from
the Jacobian of all error terms and the stacked error covariances. The covariance of the calibration
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parameters Σθ can be extracted from ΣXθ and further normalized to Σθ. The information gain can
then be evaluated with the following metrics:

• A-Optimality: HAopt = trace(Σθ)

• D-Optimality: HDopt = det(Σθ)

• E-Optimality: HEopt = max(eig(Σθ))

Minimizing these H metrics leads to the maximization of information gain and furthermore can be
used for the reward design of our proposed method.

3.2 MDP Model for Learning to Calibrate

The whole calibration process is modeled as an MDP. The process description includes a state
St, action At, transition model St+1 = f(St, At), and reward Rt at each time step t. We define
the action At at each time as a looped parameterized trajectory with the same start and terminal
pose. Each action represents a trajectory subsequence, and these subsequences are concatenated
to form the final calibration trajectory. At each step, the calibration process needs to be rerun
over the entire sequence and cannot be run only over the newly acquired measurements. The
trajectory poses {[xj , yj , zj , αj , βj , γj ]>}j=1:J are parameterized by {

∑
q=1,2,4 aq(1− cos 2qπj

J ) +

bq sin 2qπj
J }j=1:J , where J is the number of waypoints inside one action. aq and bq are 6×1 vectors.

Thus, for one trajectory 36 parameters are needed, which is the action space dimension of the MDP.
The reason to choose sin and cos as basis functions is that they are capable of representing many
good empirical trajectories for calibration.

Let Dt be the measurements acquired with action At, and Yt be the vector that stacks all the
calibration parameters and their information gain status, then Yt = [θ∗t , Ot]

T = Cal(
⋃t−1
i=0Di),

where Cal represents the calibration process that returns the predicted calibration parameters θ∗ and
their respective information gain status Ot. For camera calibration Ot contains the progress of the
coverage of the horizontal axis, the vertical axis, size and skew. For camera-IMU calibration, Ot is
composed of the eigenvalues of the covariance matrix for extrinsics, used in the optimization process
of the calibration tool.

Ignoring the sensor noise, we assume the action history sequence together with the calibration
status determine the measurement sequence:

⋃t−1
i=0Di = h(A0:t−1, Y0:t−1), where h represents

an unknown mapping. In this way, the state St is defined as the concatenation of all actions and
calibration results of previous time steps: St = [A0:t−1, Y0:t]. The state transition satisfies the
Markov property and the transition model becomes

St+1 = A0:t ∪ Y0:t+1 = A0:t−1 ∪ Y0:t ∪ Yt+1 ∪At = St ∪ Cal(h(A0:t, Y0:t)) ∪At (1)
where the right hand side of (1) only depends on St and At.

Finally, the reward at each step is composed of four parts: empirical reward et, information gain
for the calibration parameters ot, trajectory length lt and relative calibration error dt. The empirical
reward encodes intuitive requirements such as image view coverage with target observations. The
information gain includes different evaluation metrics such as the determinant, trace, and eigenvalues
of the aforementioned covariance matrix for the extrinsics. The trajectory length l is computed by
summing up the position and Euler angle distances between each two neighboring waypoints

l =

J∑
j=1

(‖xj − xj−1, yj − yj−1, zj − zj−1‖2 + C‖αj − αj−1, βj − βj−1, γj − γj−1‖2), (2)

where C is a tuneable weighting factor to balance the importance between rotation and translation.
The calibration errors are defined as the Euclidean distance between the calibration result θ∗ and
ground truth θ. The relative calibration error is further normalized by the norm of the ground truth. In
a real world scenario, where the ground truth calibration parameters are not available, this reward term
can instead be computed using the reprojection error of the calibration process, as it directly measures
how close to the ground truth calibration we currently are. Finally, the reward is the weighted sum of
increments of each term at each time step

Rt = η1∆et + η2∆ot − η3∆dt − η4∆lt, (3)
where η1, · · · , η4 are positive weights that can be manually tuned separately.
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Figure 2: Network architecture of the dynamics model (top) and reward model (bottom).

3.3 Model-based Heuristic Reinforcement Learning with PSO

Neural network dynamics and reward functions: We parameterize both the dynamics model and
reward model as neural networks. The network structures are shown in Figure 2. Each model contains
a recurrent neural network [28] to encode a hidden state to compress the information acquired so
far, given the action history sequence A0:t−1 and the calibration status sequence Y0:t as inputs. The
reward model then feeds the hidden state and current action input At to a fully-connected network
to predict the current reward R̂t = gψ(A0:t−1, Y0:t, At). With the same input, the dynamics model
predicts the next calibration status Ŷt+1 = fφ(A0:t−1, Y0:t, At), where ψ and φ are the weights of
the two neural networks. Given a batch of training data {Y i0:t, Ai0:t−1, Ait, Y it+1, R

i
t}Ni=1, both models

are trained using stochastic gradient decent (SGD) to minimizing the mean squared dynamics and
reward errors

εdyn =
1

N

N∑
i=1

‖Y it+1 − Ŷ it+1‖2, (4)

εreward =
1

N

N∑
i=1

‖Rit − R̂it‖2 (5)

respectively. A higher model prediction accuracy is fundamental to the performance of the learned
action sequence.

Model-based open-loop optimization: With the learned reward and dynamics model, we use a
model predictive control (MPC) to control the agent. In the MPC framework, an open-loop action
sequence A∗t:T from the current time step t to the end time T is first optimized to maximize the
predicted future sum of rewards. Then only the first action At is executed and the corresponding new
states and rewards are obtained. The optimal action sequence until the endA∗t+1:T is then recalculated
and the next action is executed. For our problem, the open-loop optimization to solve the optimal
future action sequence A∗t:T at each time step t is formalized as

A∗t:T = arg max
At:T

T∑
τ=t

gψ(A0:τ−1, Y0:t, Ŷt+1:τ , Aτ ), (6)

where Ŷt+1:τ is predicted using the dynamics model fφ for each time step.

This non-linear optimization problem is solved using a modified version of the PSO algorithm. For a
particle swarm with M particles in total, each particle position P ti∈{1,2,··· ,M} represents a potential
solution of actions Ait:T . For the position update, the velocities v of particles of the original PSO
algorithm include 3 components: social component, cognitive component, and inertia [15]. In our
method, the cognitive component is modified to be the gradient of the optimization function, rather
than the direction towards the local best position the particle has ever visited. This is because the
gradients are more informative to indicate the local optimal position. Furthermore, the gradients can
be obtained from the learned model as µi = ∇At:T

∑T
τ=t gψ(A0:τ−1, Y0:t, Ŷt+1:τ , Aτ )|At:τ=P ti . In
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Figure 3: Particle initialization and action selection in subsequent episodes.

this way, the particles move according to the following rules at each optimization iteration ι
ιvi = ω0

ι−1vi + c1(Gbest − ι−1P ti) + c2
ι−1µi (7)

ιP ti = ι−1P ti + ιvi, (8)

where Gbest represents the global best position all the particles have covered. The first two terms in
Equation (7) represent the inertia and social components, the last one is the modified cognitive com-
ponent. The parameters ω0, c1, c2 are coefficients that can be tuned to trade-off between exploration
and exploitation.

Due to high computational costs, at each time step, only a small number I of iterations are used
for PSO. A good solution cannot be guaranteed with a limited number of iterations and random
initialization, but the performance can be improved by using previous optimization results to initialize
new particles. Although the optimization problems are different between different time steps in the
same episode (the lengths of open-loop action sequences to optimize are different), they are similar
between the same time step of different episodes. Therefore, we save the positions of the top K
particles after each time step as P tbest, for initialization of new particles of the same time step in
subsequent episodes. The other M −K new particles are randomly initialized to enable exploration
and avoid local minima.

Model predictive control: After I iterations and obtaining the final position of all particles P t1:M =
{Ait:T }Mi=1 at each time step, a particle A∗t:T is selected as the open-loop control solution. Different
policies are applied to select the particle for training and testing in our method. For training episodes,
in order to encourage exploration, the action sequence is randomly selected from the top W particles
with the the highest predicted reward sum, rather than always selecting the globally best particles. To
prevent the top W particles from converging to the same point, W > K should be satisfied. In this
way, the W particles contain not only the K particles that have been optimized continuously among
episodes but also some new particles that are initialized randomly in the current episode. For testing,
only the particle with the highest predicted sum of rewards is selected. Following the MPC rule, we
only extract the first action A∗t from A∗t:T for execution. An overview of the particle initialization and
action selection framework is shown in Figure 3. The entire algorithm is summarized in Algorithm 1.

4 Implementation

We evaluate our method by performing experiments in a simulation platform based on Gazebo [29].
This includes a checkerboard, and a VI sensor consisting of a pinhole camera and an IMU mounted on
the end-effector of a FRANKA EMIKA Panda robot arm. To increase robustness and generalization,
both the camera intrinsics and camera-IMU extrinsics are sampled from Gaussian distributions
in every episode. Each interaction episode is an independent calibration process without sharing
measurement with other episodes. However, the training process is off-policy so that all recorded
interaction data is utilized to update the model to improve sample efficiency. For the camera intrinsic
calibration, we limit the maximum time step size T to be 4 (run at most 4 looped trajectories) in each
training episode. The empirical reward is the coverage of the image view with target observations.
The accuracy reward is computed by dividing the decrease in Euclidean distance from the ground
truth by the norm of the ground truth. The reward and dynamic models for intrinsic calibration are
trained in total for 1000 episodes.

6



Algorithm 1 Model-based Heuristic Reinforcement Learning
1: set T , M , K, W and I , where K,W < M
2: initialize gψ , fφ and randomly initialize {P tbest}Tt=0

3: gather dataset DRL with random trajectories
4: for each episode do
5: reinitialize the MDP
6: for t=0 to T do
7: train gψ and fφ by applying SGD to (4)-(5) with DRL
8: update Y0:t, A0:t−1

9: initialize P t1:M by assigning P t1:M = {P tbest, randomly sampling P tK+1:M}
10: for ι=0 to I do
11: update P t1:M using (7)-(8)
12: end for
13: sort P t1:M descendingly by the predicted reward sum
14: update the best K particles P tbest = P t1:K
15: randomly select A∗t:T from P t1:W
16: execute A∗t and obtain Yt+1, Rt
17: add {Y0:t, A0:t−1, At, Yt+1, Rt} to DRL
18: end for
19: end for
20: return gψ and fφ

For the camera-IMU extrinsic calibration, each training episode contains 3 time steps. The empirical
reward includes the entropy of IMU measurement data in 6 dimensions and number of target
observations captured per image. The model for extrinsic calibration is first trained for 900 episodes.
Subsequently, we fine-tune the agent for another 650 episodes by integrating Kalibr [9, 10] into
the framework. Two items are added to the reward. One is the information gain reward, which is
the negative A-optimality HAopt computed based on the covariance matrix. The other one is the
calibration accuracy itself. For PSO, we use M = 15, K = 5, W = 5 and I = 5. Finally, it
should be noted that when training on real systems, the ground truths are not available. In this case
calibration error could be replaced by the reprojection error given from the calibration process (see
Appendix C).

5 Experiments

In this section, we conduct two groups of experiments to evaluate the learned trajectories for camera
intrinsic calibration and camera-IMU extrinsic calibration. The learned trajectories are extracted
from the result actions using an MPC framework on the final reward model and dynamics model.
We compare our learned trajectories with empirically handcrafted trajectories and ones with random
parameters as baselines. The path lengths and calibration errors are computed as stated in Section 3.
In addition, we also verified that a favorable policy can be learned when calibration error is substituted
by the reprojection error. These results are shown in Appendix C.

5.1 Camera Intrinsic Calibration

Camera Intrinsic Calibration Camera-IMU Extrinsic Calibration
Mean error Path length Mean error Path length Mean A-optimality

Random trajectory 0.560% 9.627m 0.396% 7.331m 4.16 · 10−08

Handcrafted trajectory 0.196% 11.116m 0.340% 3.306m 1.97 · 10−07

Learned trajectory 0.159% 11.037m 0.265% 4.367m 5.83 · 10−08

Fine-tuned trajectory — — 0.214% 3.241m 9.83 · 10−08

Table 1: Comparison of mean relative calibration error, path length, and A-optimality between random, hand-
crafted, learned, and fine-tuned trajectories. Note that the handcrafted and learned trajectories are different
for intrinsic and extrinsic calibration. The means are averaged over all intrinsics and extrinsics settings for
evaluation. The path lengths are computed by Equation 2 where C = 1m/rad.

We evaluate our policy on cameras with the same image size (640 px× 480 px) but different FoVs.
The relative errors of the intrinsic calibration results w.r.t. the ground truth in different settings of
horizontal FoVs are reported in Table 1 and Figure 4. For smaller FoVs, the handcrafted trajectory
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Figure 4: Relative errors of the intrinsic calibration results w.r.t. the ground truth for cameras with different
horizontal field of views (FoVs). For each pair of camera setting and policy, we perform the calibration
experiments 5 times and calculate the average relative calibration errors w.r.t the ground truth.

renders slightly higher calibration accuracy than learned trajectories. This may be because, with
smaller FoVs, the target appears larger in the image view, which makes it easier for both the learned
and handcrafted trajectories to achieve high calibration accuracy. However, with larger FoVs which
make the target smaller in the image view and harder to achieve a high image coverage with target
observations, the learned trajectory shows better performance. Table 1 shows that under similar path
lengths, our framework could learn how to perform favorable motion trajectories and collect enough
measurements efficiently that yield the desired camera intrinsic parameters.

5.2 Camera-IMU Extrinsic Calibration

In this experiment, we train an agent to learn a policy for camera-IMU extrinsics calibration. As
shown in Figure 5 and Table 1, the trajectories generated by our learned policy without fine-tuning
can achieve higher calibration accuracies compared with the random and handcrafted trajectories. The
low mean A-optimality of learned trajectories can be interpreted as a confidence of Kalibr about the
calibration results. The fine-tuned trajectories perform the best as they achieve the lowest mean error
and the shortest path length. The higher mean A-optimality of the fine-tuned trajectory compared
with the learned trajectory is possibly caused by the lower path length. A lower path length provides
less data, which results in Kalibr being less confident about the calibrations.

Figure 5: The distribution of the relative errors of extrinsic calibration results w.r.t. the ground truth. Each
trajectory is tested with 9 different pairs of camera intrinsic and VI extrinsic configurations.

6 Conclusion

In this work, we introduced a novel framework that uses model-based deep RL with an adapted
version of PSO for sampling, to generate trajectories for efficiently collecting measurements to
calibrate both camera intrinsic and VI extrinsic parameters. Our experiments show that under similar
or even shorter path lengths, the trajectories generated by our learned policy can lead to more accurate
results and a higher calibration confidence. While the proposed model-based RL framework is able to
achieve state of the art performance in our MDP model for VI calibration, an interesting avenue for
further improvement is to integrate our approach with model-free learners. Additionally, model-free
RL can also be applied for further fine-tuning the learned policies.
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7 Appendix

A Implementation Details

Simulation settings: We use Gazebo [29] for dynamics and sensor simulation. Our simulation
environment includes a checkerboard, and a VI sensor consisting of a pinhole camera and an IMU
mounted on the end-effector of a FRANKA EMIKA Panda robot arm2. For the robot arm, the mass
of the links is computed according to the total mass of the robot with a uniform density assumption.
The physical parameters for materials are set by the values for aluminum. A typical PID controller is
set for each joint. The exact configuration of the nominal VI-sensors is shown in Figure 6a, which
can be modified by changing the camera-IMU extrinsics. The detailed sensor settings are shown in
Table 2 and 3. We include noise and drift for the IMU and distortion for the camera to achieve more
realistic simulation. During training, the parameters for camera intrinsics and camera-IMU extrinsics
are re-sampled from Gaussian distributions after each episode, to ensure that the model learns to
generalize well also to other similar sensors. The parameters for the Gaussian distributions are shown
in Table 4. Our target board is a 7× 6 checkerboard with 6 cm× 6 cm squares. The distance from
the target to the robot arm’s initial pose is 2 m.

(a) (b) (c)

Figure 6: The position of sensors mounted on the end-effector and example image views. (a): positions of the
camera (left finger) and IMU (right finger). (b)-(c): example image views from the camera, where (b) is the
initial pose, (c) is for a different pose that changes the image view.

update rate acceleration drift acceleration noise augular velocity drift angular velocity noise
200 Hz 0.006m/s2 0.004m/s2 0.000038785 rad/s 0.0003394 rad/s

Table 2: Simulation settings for the IMU.

update rate width height norminal horizon FOV camera model
10 Hz 640 px 480 px 1.0 rad pinhole

Table 3: Simulation settings for the camera.

Intrinsics Extrinsics
Parameters Horizontal FOV [rad] X [m] Y [m] Z [m] Roll [rad] Pitch [rad] Yaw [rad]

Mean 1.00 0.06 0.00 -0.10 0.00 0.00 1.5708
Std. 0.05 0.01 0.01 0.01 0.10 0.10 0.10

Table 4: Gaussian distribution settings for intrinsics and extrinsics parameters during training.

Estimation: First, our camera intrinsic calibration is based on the OpenCV [30] calibration toolbox.
The image samples are recorded from the Gazebo camera sensor data. Not all samples are included in
the database in practice to avoid processing redundant data and unbalancing the calibration. Instead,
given a new sample, the OpenCV calibration toolbox compares the variety of this sample with all the
samples in the database and judges whether the motion speed is sufficiently low between this frame
and the previous frame. Furthermore, if this sample is different enough from others and the movement
speed is not too high, it would be added to the database. The algorithm also judges if the samples

2https://erdalpekel.de/?p=55
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Hyperparameter Value

Intrinsic reward

empirical weight η1 1.0
relative error weight η3 1.0
path length weight η4 0.2

accuracy bonus 5.0
reprojection error weight η′3 2.0

Extrinsic reward

empirical weight η1 1.0
information gain weight η2 1× 108

relative error weight η3 1.0
path length weight η4 1.0

reprojection error weight η′3 2.0

Network training reward model learning rate 1× 10−4

dynamics model learning rate 1× 10−4

PSO settings

social component weight c1 1× 10−5

cognitive component weight c2 1× 10−4

inertia weight ω0 1× 10−5

max iterations I 5
number of particles M 15

number of top particles for initialization K 5
number of top particles to select for action execution W 5

Table 5: Hyperparameter settings for reward design, network training and PSO.

in the database provide good coverage and variation of target observations to do the calibration by
computing how much progress has been made toward adequate variation. The coverage of target
observations in the image view is computed by the sum of ‘X’, ‘Y’, ‘size’, and ’skew’ coverage
progress. When exceeding a certain threshold, the calibration procedure is triggered and the camera
parameters are estimated.

On the other hand, our camera-IMU extrinsic calibration is based on the Kalibr [9, 10, 31] toolbox.
The data input for calibration are camera and IMU measurements from Gazebo, which are recorded
as ROS-bag files. The information gain is computed based on the covariance matrices extracted
from the linear solver of the Kalibr framework. During training, the maximum step of optimization
for Kalibr is limited to 1 to reduce time cost, while during testing it is set to 10 to achieve accurate
calibrations.

Trajectory planning and execution: We use the Move-It! manipulation software for planning
and execution of trajectories of the end-effector. To enable sequential trajectory execution, at the
beginning and end of each loop trajectory (action) at each time step, the end-effector returns to a
predefined initial pose. The pose is selected to render high controllability so that the end-effector is
able to move freely in a larger space around this pose. At this pose, the target board is also centered
in the image view as is shown in Figure 6b. Given the current action parameters, poses of a sequence
of waypoints are first computed based on the expression of the trajectory. Then the Move-It! planner
computes a Cartesian path that follows all those waypoints and executes the trajectory with joint
controllers. To reduce the possibility of getting stuck while executing the trajectories, we limit the
maximum absolute value of each element of action to be 0.015. The trajectory parameters for roll,
pitch, and yaw angle are multiplied by 2.5, 2.5, and 5 respectively to obtain reasonable scales.

Training: We use TensorFlow as our deep learning framework. For camera calibration, we train the
reward and dynamics model for 900 episodes. For the camera-IMU calibration, we first train the
reward and dynamics model with only empirical and path length rewards for 1000 episodes. This
training is relatively fast as there is no need for interfacing with the Kalibr toolbox. Then, the model
is fine-tuned for another 650 episodes by including information gain and accuracy reward obtained
from Kalibr. In both cases, we directly extract the action sequence chosen by the MPC controller
for the learned model as final resulting trajectories. All models were trained on a single desktop
computer (Intel i7-9750H CPU @ 2.60GHZ) with an NVIDIA GTX 1660 Ti GPU.

B Hyperparameters

As is shown in Table 5, our reward design for the intrinsic and extrinsic calibration is slightly different.
For the intrinsic camera calibration, we give an extra bonus for accurate calibration if the relative error
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Camera Intrinsic Calibration Camera-IMU Extrinsic Calibration
Mean error Path length Mean error Path length Mean A-optimality

Random trajectory 0.560% 9.627m 0.396% 7.331m 4.16 · 10−08

Handcrafted trajectory 0.196% 11.116m 0.340% 3.306m 1.97 · 10−07

Learned trajectory 0.159% 11.037m 0.265% 4.367m 5.83 · 10−08

Fine-tuned trajectory — — 0.214% 3.241m 9.83 · 10−08

Learned with reproj error 0.155% 9.319m 0.268% 4.333m 8.39 · 10−08

Table 6: Comparison of mean relative calibration error, path length, and A-optimality between random, hand-
crafted, learned, and fine-tuned trajectories when calibration error is substituted by reprojection error for
training.

is less than 1 %. For the extrinsic camera-IMU calibration, as we limit the maximum optimization
step of Kalibr, obtaining accurate results is not realistic. Therefore, the reward for accuracy only
includes the calibration error. The weights are chosen to make the scales of different parts of the
reward comparable. We use the same training setup and PSO hyperparameters for both intrinsic and
extrinsic calibration. For the PSO settings, we set a low weight for the social component to avoid
too early convergence. In this way, the particles will focus on exploiting their local regions, which
benefits searching for the global optimum.

C Additional Experimental Results

The result outputs by the Kalibr toolbox for the handcrafted, initial learned, and fine-tuned trajectories
are shown in Figure 7. High noise and drifts are imposed on the simulated IMU sensor, as can be
shown in Figure 7a-7c, which causes deviation of the measurements from the predicted trajectories.
Regarding re-projection errors shown in Figure 7g-7i, the fine-tuned trajectories achieve smaller and
more symmetric error distribution compared to both hand-crafted and fine-tuned trajectories.

Additionally, we extend the result in the main paper by conducting experiments on using reprojection
error instead of calibration error during training, as would be done in a real world setup. The
result is shown in the table 6. For the camera intrinsic calibration, we achieved similar results. For
camera-IMU extrinsic calibration, the trajectories using reprojection error outperform the handcrafted
trajectories while being only slightly worse than the trajectories using the calibration error.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Extrinsic calibration results from the Kalibr toolbox. (a), (d), (g): Results for handcrafted trajectories.
(b), (e), (h): Results for learned trajectories without fine-tuning. (c), (f), (i): Results for fine-tuned trajectories.
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