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We exhibit examples of high-dimensional unimodal
posterior distributions arising in nonlinear regression
models with Gaussian process priors for which
Markov chain Monte Carlo (MCMC) methods can
take an exponential run-time to enter the regions
where the bulk of the posterior measure concentrates.
Our results apply to worst-case initialized (‘cold
start’) algorithms that are local in the sense that
their step sizes cannot be too large on average. The
counter-examples hold for general MCMC schemes
based on gradient or random walk steps, and the
theory is illustrated for Metropolis–Hastings adjusted
methods such as preconditioned Crank–Nicolson and
Metropolis-adjusted Langevin algorithm.

This article is part of the theme issue ‘Bayesian
inference: challenges, perspectives, and prospects’.

1. Introduction
Markov chain Monte Carlo (MCMC) methods are
the workhorse of Bayesian computation when closed
formulae for estimators or probability distributions are
not available. For this reason they have been central
to the development and success of high-dimensional
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Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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Figure 1. Two possible sources of MCMC hardness in high dimensions: multi-modal likelihoods and entropic barriers. (a) In low
dimensions (hereD= 1),MCMChardness usually arises because of a non-unimodal likelihood, creating an ‘energy barrier’, even
though themaximum likelihood is attained atθ = θ0. TheMCMC algorithm is assumed to be initialized in the setS containing
a localmaximumof the likelihood. (b) Illustration of the arising of entropic (or volumetric) difficulties, here in dimensionD= 3:
the set of points close to θ0 hasmuch less volume than the set of points far away. As D increases, this phenomenon is amplified:
all ratios of volumes of the three setsT ,W ,S scale exponentially with D. (Online version in colour.)

Bayesian statistics in the last decades, where one attempts to generate samples from some
posterior distribution Π (·|data) arising from a prior Π on D-dimensional Euclidean space and the
observed data vector. MCMC methods tend to perform well in a large variety of problems, are
very flexible and user-friendly, and enjoy many theoretical guarantees. Under mild assumptions,
they are known to converge to their stationary ‘target’ distributions as a consequence of the
ergodic theorem, albeit perhaps at a slow speed, requiring a large number of iterations to provide
numerically accurate algorithms. When the target distribution is log-concave, MCMC algorithms
are known to mix rapidly, even in high dimensions. But for general D-dimensional densities, we
have only a restricted understanding of the scaling of the mixing time of Markov chains with D
or with the ‘informativeness’ (sample size or noise level) of the data vector.

A classical source of difficulty for MCMC algorithms are multi-modal distributions. When
there is a deep well in the posterior density between the starting point of an MCMC algorithm
and the location where the posterior is concentrated, many MCMC algorithms are known to
take an exponential time—proportional to the depth of the well—when attempting to reach the
target region, even in low-dimensional settings, see figure 1a and also the discussion surrounding
proposition 4.2 below. However, for distributions with a single mode and when the dimension D
is fixed, MCMC methods can usually be expected to perform well.

In essence this article is an attempt to explain how, in high dimensions, wells can be formed
without multi-modality of a given posterior distribution. The difficulty in this case is volumetric,
also referred to as entropic: while the target region contains most of the posterior mass, its (prior)
volume is so small compared to the rest of the space that an MCMC algorithm may take an
exponential time to find it, see figure 1b. This competition between ‘energy’—here represented by
the log-likelihood �N in the posterior distribution dΠ (·|data) = exp{�N + log dπ}—and ‘entropy’
(related to the prior term π ) has also been exploited in recent work on statistical aspects
of MCMC in various high dimensional inference and statistical physics models [1–5]. These
ideas somewhat date back to the nineteenth century foundations of statistical mechanics [6]
and the notion of free energy, consisting of a sum of energetic and entropic contributions
which the system spontaneously attempts to minimize. The ‘MCMC-hardness’ phenomenon
described above is then akin to the meta-stable behaviour of thermodynamical systems, such
as glasses or supercooled liquids. As the temperature decreases, such systems can undergo
a ‘first-order’ phase transition, in which a global free energy minimum (analoguous to the
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Figure2. Illustrationof a free-energybarrier (or free-entropywell) arisingwithaunimodal posterior. Themodel is an ‘averaged’
version of the spiked tensor model, with log-likelihood �n(θ )= λ〈θ , θ0〉3/2 and uniform prior Π on the n-dimensional
unit sphereSn−1. θ0 is chosen arbitrarily on Sn−1. The posterior is dΠ (θ |Y)∝ exp{n�n(θ )} dΠ (θ ), for θ ∈ Sn−1. Up to a
constant, the free entropy F(r)= (1/n) log

∫
dΠ (θ |Y)δ(r − ||θ − θ0||2) can be decomposed as the sum of �n(θ ) (that

only depends on r = ||θ − θ0||2) and the ‘entropic’ contribution (1/n) log
∫
dΠ (θ )δ(r − ||θ − θ0||2). In the figure we

showλ = 2.1. (Online version in colour.)

target region above) abruptly appears, while the system remains trapped in a suboptimal local
minimum of the free energy (the starting region of the MCMC algorithm). For the system to go
to thermodynamic equilibrium it must cross an extensive free energy barrier: such a crossing
requires an exponentially long time, so that the system appears equilibrated on all relevant
timescales, similarly to the MCMC stuck in the starting region. Classical examples include glasses
and the popular experiment of rapid freezing of supercooled water (i.e. water that remained
liquid at negative temperatures) after introducing a perturbation.

Inspired by recent work [4,5,7], let us illustrate some of the volumetric phenomena which
are key to our results below. We separate the parameter space into three regions (see figures 1
and 2), which we name by common MCMC terminology. Firstly a starting (or initialization) region
S, where an algorithm starts, secondly a target region T where both the bulk of the posterior
mass and the ground truth are situated, and thirdly an intermediate free-entropy well1 W that
separates S from T .2 In our theorems, these regions will be characterized by their Euclidean
distance to the ground truth parameter θ0 generating the data. The prior volumes of the ε-annuli
{θ : r − ε < ||θ − θ0||2 ≤ r}, r > 0, closer to the ground truth are smaller than those further out as
illustrated in figure 1b, and in high dimensions this effect becomes quantitative in an essential
way. Specifically, the trade-off between the entropic and energetic terms can happen such that the
following three statements are simultaneously true.

(i) T contains ‘almost all’ of the posterior mass.
(ii) As one gets closer to T (and thus the ground truth θ0), the log-likelihood is strictly

monotonically increasing.
(iii) Yet S still possesses exponentially more posterior mass than W .

Using ‘bottleneck’ arguments from Markov chain theory (ch. 7 in [8]), this means that an
MCMC algorithm that starts in S is expected to take an exponential time to visit W . If the step size
is such that it cannot ‘jump over’ W , this also implies an exponential hitting time lower bound for
reaching T . This is illustrated in figure 2 for an averaged version of the model described in §2.

In the situation described above, the MCMC iterates never visit the region where the posterior
is statistically informative, and hence yield no better inference than a random number generator.

1As classical in statistical physics, we call free entropy the negative of the free energy.

2In a physical system, these regions would correspond respectively to a region including a meta-stable state, a region
including the globally stable state and a free energy barrier.
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One could regard this as a ‘hardness’ result about computation of posterior distributions in high
dimensions by MCMC. In this work we show that such situations can occur generically and
establish hitting time lower bounds for common gradient or random walk based MCMC schemes
in model problems with nonlinear regression and Gaussian process priors. Before doing this,
we briefly review some important results of Ben Arous et al. [4] for the problem of principle
component analysis (PCA) in tensor models, from which the inspiration for our work was
drawn. This technique to establish lower bounds for MCMC algorithms has also recently been
leveraged in [5] in the context of sparse PCA, and in [7] to establish connections between MCMC
lower bounds and the Low Degree Method for algorithmic hardness predictions (see [9] for an
expository note on this technique).

When the target distribution is globally log-concave, pictures such as in figure 2 are ruled
out (see also remark 4.7) and polynomial-time mixing bounds have been shown for a variety of
commonly used MCMC methods. While an exhaustive discussion would be beyond the scope of
this paper, we mention here the seminal works [10,11] which were among the first to demonstrate
high-dimensional mixing of discretized Langevin methods (even upon ‘cold-start’ initializations
like the ones assumed in the present paper). In concrete nonlinear regression models, polynomial-
time computation guarantees were given in [12] under a general ‘gradient stability’ condition
on the regression map which guarantees that the posterior is (with high probability) locally log-
concave on a large enough region including θ0. While this condition can be expected to hold under
natural injectivity hypotheses and was verified for an inverse problem with the Schrödinger
equation in [12], for non-Abelian X-ray transforms in [13], the ‘Darcy flow’ model involving
elliptic partial differential equations (PDE) in [14] and for generalized linear models in [15], all
these results hinge on the existence of a suitable initializer of the gradient MCMC scheme used.
These results form part of a larger research programme [14,16–19] on algorithmic and statistical
guarantees for Bayesian inversion methods [20] applied to problems with partial differential
equations. The present article shows that the hypothesis of existence of a suitable initializer is—at
least in principle—essential in these results if D/N → κ > 0, and that at most ‘moderately’ high-
dimensional (D = O(N)) MCMC implementations of Gaussian process priors may be preferable
to bypass computational bottlenecks.

Our negative results apply to (worst-case initialized) Markov chains whose step sizes cannot
be too large with high probability. As we show this includes many commonly used algorithms
(such as preconditioned Crank–Nicolson (pCN) and Metropolis-adjusted Langevin algorithm
(MALA)) whose dynamics are of a ‘local’ nature. There are a variety of MCMC methods
developed recently, such as piece-wise deterministic Markov processes, boomerang or zig-zag
samplers [21–24] which may not fall into our framework. While we are not aware of any rigorous
results that would establish polynomial hitting or mixing times of these algorithms for high-
dimensional posterior distributions such as those exhibited here, it is of great interest to study
whether our computational hardness barriers can be overcome by ‘non-local’ methods. There is
some empirical evidence that this may be possible. For instance, in the numerical simulation of
models of supercooled liquids [25], methods such as swap Monte Carlo [26] have been observed
to equilibrate to low-temperature distributions which were not reachable by local approaches.
Another example is given by the planted clique problem [27]: this model is conjectured to possess
a large algorithmically hard phase, and local Monte Carlo methods are known to fail far from
the conjectured algorithmic threshold [28–30]. On the other hand, non-local exchange Monte
Carlo methods (such as parallel tempering [31]) have been numerically observed to perform
significantly better [32].

2. The spiked tensor model: an illustrative example
In this section, we present (a simplified version of) results obtained mostly in [4]. First some
notation. For any n ≥ 1, we denote by Sn−1 = {θ ∈ Rn : ||θ ||2 = 1} the Euclidean unit sphere in n
dimensions. For θ , θ ′ ∈ Rn we denote θ ⊗ θ ′ = (θiθ

′
j )1≤i,j≤n ∈ Rn2

their tensor product.
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Spiked tensor estimation is a synthetic model to study tensor PCA, and corresponds to a
Gaussian Additive Model with a low-rank prior. More formally, it can be defined as follows [33].

Definition 2.1 (Spiked tensor model). Let p ≥ 3 denote the order of the tensor. The
observations Y and the parameter θ are generated according to the following joint probability
distribution:

dQ(Y, θ ) = 1
(2π )np/2 exp

{
−1

2

∣∣∣∣Y − √
nλθ⊗p∣∣∣∣2

2

}
dΠ (θ ) dY. (2.1)

Here, dY denotes the Lebesgue measure on the space (Rn)⊗p = Rnp
of p-tensors of size n. Π is the

uniform probability measure on Sn−1, and λ ≥ 0 is the signal-to-noise ratio (SNR) parameter. In
particular, the posterior distribution Π (θ |Y) is

dΠ (θ |Y) = 1
ZY

exp(�n,Y(θ )) dΠ (θ ), (2.2)

in which ZY is a normalization, and we defined the log-likelihood (up to additive constants) as

�n,Y(θ ) = 1
2
√

nλ〈θ⊗p, Y〉. (2.3)

In the following, we study the model from definition 2.1 via the prism of statistical inference.
In particular, we will study the posterior Π (θ |Y) for a fixed3 ‘data tensor’ Y. Since such a tensor
was generated according to the marginal of (2.1), we parameterize it as Y = λ

√
nθ

⊗p
0 + Z, with

Z a p-tensor with i.i.d. N (0, 1) coordinates, and θ0 a ‘ground truth’ vector uniformly sampled in
Sn−1. The goal of our inference task is to recover information on the low-rank perturbation θ

⊗p
0

(or equivalently on the vector θ0, possibly up to a global sign depending on the parity of p) from
the posterior distribution Π (·|Y).

Crucially, we are interested in the limit of the model of definition 2.1 as n → ∞. In particular,
all our statements, although sometimes non-asymptotic, are to be interpreted as n grows. We say
that an event occurs ‘with high probability’ (w.h.p.) when its probability is 1 − On(1).4 Moreover,
by rotation invariance, all statements are uniform over θ0 ∈ Sn−1, so that said probabilities only
refer to the noise tensor Z. Finally, throughout our discussion we will work with latitude intervals
(or bands) on the sphere, with the North Pole taken to be θ0. We characterize them using inner
products (correlations) 〈θ , θ0〉 for odd p, and |〈θ , θ0〉| for even p (since in this case θ0 and −θ0 are
indistinguishable from the point of view of the observer).

Definition 2.2 (Latitude intervals). Assume that p ≥ 3 is even. For 0 ≤ s < t ≤ 1 we define:

— Ss = {θ ∈ Sn−1 : |〈θ , θ0〉| ≤ s},
— Ws,t = {θ ∈ Sn−1 : s < |〈θ , θ0〉| ≤ t},
— Tt = {θ ∈ Sn−1 : t < |〈θ , θ0〉|}.

If p is odd, we define these sets similarly, replacing |〈θ , θ0〉| by 〈θ , θ0〉.
Note that these sets can also be characterized using the distance to the ground truth, e.g. Ss =

{θ ∈ Sn−1 : min{||θ − θ0||22, ||θ + θ0||22}| ≥ 2(1 − s)} when p is even.

(a) Posterior contraction
We can use uniform concentration of the likelihood to show that as λ → ∞ (after taking the limit
n → ∞) the posterior contracts in a region infinitesimally close to the ground truth θ0. We first
show that a region arbitrarily close to the ground truth exponentially dominates a very large
starting region:

3Note that we assume here that the statistician has access to the distribution Π(·|Y) (and in particular to λ), a setting sometimes
called Bayes-optimal in the literature.
4Often the On(1) term will be exponentially small, but we will not require such a strong control.
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Proposition 2.3. For any K > 0 there exists λ0 > 0 and functions {s(λ), t(λ)} ∈ [0, 1) such that s(λ) <

t(λ), {s(λ), t(λ)} → 1 as λ → ∞ and for all λ ≥ λ0:

lim sup
n→∞

1
n

log
Π (Ss(λ)|Y)
Π (Tt(λ)|Y)

≤ −K, almost surely. (2.4)

Posterior contraction is the content of the following result:

Corollary 2.4 (Posterior contraction). There exists λ0 > 0 and a function s(λ) ∈ [0, 1) satisfying
s(λ) → 1 as λ → ∞, such that for all λ ≥ λ0:

lim
n→∞ Π [Ts(λ)|Y] = 1, almost surely. (2.5)

The proofs of proposition 2.3 and corollary 2.4 are given in appendix A.

Remark 2.5 (Suboptimality of uniform bounds). Stronger than corollary 2.4, it is known that
there exists a sharp threshold λ
(p) such that for any λ > λ
(p) the posterior mean, as well as
the maximum likelihood estimator, sit w.h.p. in Ts(λ), with s(λ) > 0, while such a statement is
false for λ ≤ λ
(p) [34–36]. The λ0 given by corollary 2.4 is, on the other hand, clearly not sharp,
because of the crude uniform bound used in the proof. This can easily be understood in the p = 2
case, corresponding to rank-one matrix estimation: uniform bounds such as the ones used here
would show posterior contraction for λ = ω(1), while it is known through the celebrated BBP
transition that the maximum likelihood estimator is already correlated with the signal for any
λ > 1 [37]. With more refined techniques from the study of random matrices and spin glass theory
of statistical physics it is often possible to obtain precise constants for such relevant thresholds.

(b) Algorithmic bottleneck for MCMC
Simple volume arguments, associated with an ingenious use of Markov’s inequality due to Ben
Arous et al. [4] and of the rotation invariance of the noise tensor Z, allow us to get a computational
hardness result for MCMC algorithms, even though the posterior contracts infinitesimally close
to the ground truth as we saw in corollary 2.4. In the context of the spiked tensor model, these
computational hardness results can be found in [4] (see in particular §7). We will state similar
results for general nonlinear regression models in §3: in this context we will not need to use the
Markov’s inequality-based technique of Ben Arous et al. [4], and will solely rely on concentration
arguments.

Recall that by §2(a), we can find s(λ) such that s(λ) → 1 as λ → ∞ and for all λ large enough
Π (Ts(λ)|Y) = 1 − On(1). Here, we show that escaping the ‘initialization’ region of the MCMC
algorithm is hard in a large range of λ (possibly diverging with n). In what follows, the step
size of the algorithm denotes the maximal change ||xt+1 − xt||2 allowed in any iteration.5 We first
state this bottleneck result informally.

Proposition 2.6 (MCMC bottleneck, informal). Assume that λ = O(n(p−2)/4+η) for all η > 0.
Then any MCMC algorithm whose invariant distribution is Π (·|Y), and with a step size bounded by
δ =O([nλ2]−1/p), will take an exponential time to get out of the ‘initialization’ region.

Note that the step size condition of proposition 2.6 is always meaningful, since our hypothesis
on λ implies [nλ2]−1/p = ω(n−1/2), and many MCMC algorithms (e.g. any procedure in which a
number O(1) of coordinates of the current iterate are changed in a single iteration) will have a
step size O(n−1/2).

Remark 2.7. The results of Ben Arous et al. [4] are stated when considering for the invariant
distribution of the MCMC a more general ‘Gibbs-type’ distribution Gβ,Y(dx) ∝ eβH(x) dΠ (x),
with H(x) = (

√
n/2)〈x⊗p, Y〉. The case we consider here is the ‘Bayes-optimal’ β = λ, for which

Gλ,Y = Π (·|Y). For the general distribution Gβ,Y the conditions of proposition 2.6 become

5As we will detail in the following sections, see assumption 3.1, the statements remain true if the change is allowed to be
higher than the required maximum with exponentially small probability.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 A

pr
il 

20
23

 



7

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220150

...............................................................

βλ = O(n(p−2)/2+η) and δ =O[(nβλ)−1/p]. The authors of Ben Arous et al. [4] usually consider
β =O(1), so that they show the bottleneck under the condition λ = O(n(p−2)/2+η).

More generally, λ  n(p−2)/4 is conjectured to be a regime in which all polynomial-time
algorithms fail to recover θ0 [33,38–41]. On the other hand, ‘local’ methods (such as gradient-
based algorithms [42–46], message-passing iterations [35] or natural MCMC algorithms such as
the ones of previous remark) are conjectured or known to fail in the larger range λ  n(p−2)/2.
Proposition 2.6 shows that ‘Bayes-optimal’ MCMC algorithms fail for λ  n(p−2)/4. To the best
of our knowledge, analysing this class of algorithms in the regime n(p−2)/4  λ  n(p−2)/2 is still
open.

Let us now state formally the key ingredient behind proposition 2.6. It is a rewriting of the
‘free energy wells’ result of Ben Arous et al. [4].

Lemma 2.8 (Bottleneck, formal). Assume that λ = O(n(p−2)/4+η) for all η > 0, and let
δ =O([nλ2]−1/p). Let r(ε) = n−1/2+ε . Then for any ε > 0 small enough, there exists c, C > 0 such that
for large enough n, with probability at least 1 − exp(−cn2ε) we have:

Π (Sr(ε)|Y)
Π (Wr(ε),r(ε)+δ |Y)

≥ exp{Cn2ε}. (2.6)

Note that by simple volume arguments, Π (Sr(ε)) = 1 − On(1), so that Sr(ε) contains ‘almost all’
the mass of the uniform distribution.

One can then deduce from lemma 2.8 hitting time lower bounds for MCMCs using a folklore
bottleneck argument—see Jerrum [8]—that we recall here in a simplified form (see also [5], as
well as proposition 4.4, where we will detail it further along with a short proof).

Proposition 2.9. We fix any Y and n, and let any 0 < s < t < 1. Let θ (0), θ (1), . . . be a Markov chain on
Sn−1 with stationary distribution Π (·|Y), and initialized from θ (0) ∼ ΠSs (·|Y), the posterior distribution
conditioned on Ss. Let τt = inf{k ∈ N : θ (k) ∈ Tt} be the hitting time of the Markov chain onto Tt. Then, for
any k ≥ 1,

Pr(τt ≤ k) ≤ k
Π (Ws,t|Y)
Π (Ss|Y)

. (2.7)

Remark 2.10 (MCMC initialization). Note that lemma 2.8, combined with proposition 2.9,
shows hardness of MCMC initialized in points drawn from ΠSr(ε) (·|Y). In particular, it is easy to
see that this implies (via the probabilistic method) the existence of such ‘hard’ initializing points.
While one might hope to show such negative results for more general initialization, this remains
an open problem. On the other hand, Ben Arous et al. [4] shows that there exists initializers in Sr(ε)
for which vanilla Langevin dynamics achieve non-trivial recovery of the signal even for λ = Θn(1)
(a phenomenon they call ‘equatorial passes’).

3. Main results for nonlinear regression with Gaussian priors
We now turn to the main contribution of this article, which is to exhibit some of the phenomena
described in §2 in the context of nonlinear regression models. All the theorems of this section are
proven in detail in §4.

Consider data Z(N) =iid (Yi, Xi)N
i=1 from the random design regression model

Yi = G (θ )(Xi) + εi, εi ∼N (0, 1), i = 1, . . . , N, (3.1)

where G : Θ → L2
μ(X ) is a regression map taking values in the space L2(X ) = L2

μ(X ) on some
bounded subset X of Rd, and where the Xi ∼iid μ are drawn uniformly on X . For convenience,
we assume that X has Lebesgue measure

∫
X dx = 1. The law of the data dPN

θ (z1, . . . , zN)
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=∏N
i=1 dPθ (zi) is a product measure on (R × X )N, with associated expectation operator EN

θ . Here
θ varies in some parameter space

Θ ⊆ RD,
D
N

� κ ≥ 0,

and θ0 ∈ Θ is a ‘ground truth’ (we could use ‘mis-specified’ θ0 and project it onto Θ). We will
primarily consider the case where κ > 0 and Θ = RD, and consider high-dimensional asymptotics
where D (and then also N) diverge to infinity, even though some aspects of our proofs do not rely
on these assumptions. We will say that events AN hold with high probability if PN

θ0
(AN) → 1 as

N → ∞, and we will use the same terminology later when it involves the law of some Markov
chain.

Let Π be a prior (Borel probability measure) on Θ so that given the data Z(N) the posterior
measure is the ‘Gibbs’-type distribution

dΠ (θ |Z(N)) = e�N(θ) dΠ (θ )∫
Θ e�N(θ) dΠ (θ )

, θ ∈ Θ , (3.2)

where

�N(θ ) = −1
2

N∑
i=1

|Yi − G (θ )(Xi)|2, �(θ ) = EN
θ0

�N(θ ), θ ∈ Θ .

(a) Hardness examples for posterior computation with Gaussian priors
We are concerned here with the question of whether one can sample from the Gibbs’ measure
(3.2) by MCMC algorithms. The priors will be Gaussian, so the ‘source’ of the difficulty will arise
from the log-likelihood function �N . On the one hand, recent work [10–14] has demonstrated that
if �N(θ ) is ‘on average’ (under Eθ0 ) log-concave, possibly only just locally near the ground truth θ0,
then MCMC methods that are initialized into the area of log-concavity can mix towards Π (·|Z(N))
in polynomial time even in high-dimensional (D → ∞) and ‘informative’ (N → ∞) settings. In the
absence of such structural assumptions, however, posterior computation may be intractable, and
the purpose of this section is to give some concrete examples for this with choices of G that are
representative for nonlinear regression models.

We will provide lower bounds on the run-time of ‘worst case’ initialized MCMC in settings
where the average posterior surface is not globally log-concave but still unimodal. Both the log-
likelihood function and posterior density exhibit linear growth towards their modes, and the
average log-likelihood is locally log-concave at θ0. In particular, the Fisher information is well
defined and non-singular at the ground truth.

The computational hardness does not arise from a local optimum (‘multi-modality’), but from
the difficulty MCMC encounters in ‘choosing’ among many high-dimensional directions when
started away from the bulk of the support of the posterior measure. That such problems occur in
high dimensions is related to the probabilistic structure of the prior Π , and the manifestation of
‘free energy barriers’ in the posterior distribution.

In many applications of Bayesian statistics, such as in machine learning or in nonlinear inverse
problems with PDEs, Gaussian process priors are commonly used for inference. To connect to such
situations we illustrate the key ideas that follow with two canonical examples where the prior on
RD is the law

(a) θ ∼N
(

0,
ID

D

)
, or (b) θ ∼N (0, Σα), (3.3)

where Σα is the covariance matrix arising from the law of a D-dimensional Whittle–Matérn-
type Gaussian random field (see §4(d)(i) for a detailed definition). These priors represent widely
popular choices in Bayesian statistical inference [47,48] and can be expected to yield consistent
statistical solutions of regression problems even when D/N ≥ κ > 0, see [48,49]. In (b), we can also
accommodate a further ‘rescaling’ (N-dependent shrinkage) of the prior similar to what has been
used in recent theory for nonlinear inverse problems [12,13,18], see remark 4.6 for details.
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We will present our main results for the case where the ground truth is θ0 = 0. This streamlines
notation while also being the ‘hardest’ case for negative results, since the priors from (a) and (b)
are then already centred at the correct parameter.

To formalize our results, let us define balls

Br = {θ ∈ RD : ||θ ||RD ≤ r}, r > 0, (3.4)

centred at θ0 = 0. We will also require the annuli

Θr,ε = {θ ∈ RD : ||θ ||RD ∈ (r, r + ε)}, (3.5)

for r, ε > 0 to be chosen. To connect this to the notation in the preceding sections, the sets Θr,ε

will play the role of the initialization (or starting) region S, while Bs (for suitable s) corresponds
to the target region T where the posterior mass concentrates. The ‘intermediate’ region W = Θs,η

representing the ‘free-energy barrier’ is constructed in the proofs of the theorems to follow.
Our results hold for general Markov chains whose invariant measure equals the posterior

measure (3.2), and which admit a bound on their ‘typical’ step sizes. As step sizes can be
random, this assumption needs to be accommodated in the probabilistic framework describing
the transition probabilities of the chain. Let PN(θ , A), N ∈ N, (for θ ∈ RD and Borel sets A ⊆ RD),
denote a sequence of Markov kernels describing the Markov chain dynamics employed for the
computation of the posterior distribution Π (·|Z(N)). Recall that a probability measure μ on RD is
called invariant for PN if

∫
RD PN(θ , A)dμ(θ ) = μ(A) for all Borel sets A.

Assumption 3.1. Let PN(·, ·) be a sequence of Markov kernels satisfying the following:

(i) PN(·, ·) has invariant distribution Π (·|Z(N)) from (3.2).
(ii) For some fixed c0 > 0 and for sequences Q = QN > 0, η = ηN > 0, with PN

0 -probability
approaching 1 as N → ∞,

sup
θ∈BQ

PN

(
θ ,
{
ϑ : ||θ − ϑ ||RD ≥ η

2

})
≤ e−c0N , N ≥ 1.

This assumption states that typical steps of the Markov chain are, with high probability (both
under the law of the Markov chain and the randomness of the invariant ‘target’ measure),
concentrated in an area of size η/2 around the current state θ , uniformly in a ball of radius Q
around θ0 = 0. For standard MCMC algorithms (such as pCN, MALA) whose proposal steps are
based on the discretization of some continuous-time diffusion process, such conditions can be
checked, as we will show in the next section.

Theorem 3.2. Let D/N � κ > 0, consider the posterior (3.2) arising from the model (3.1) and a
N (0, ID/D) prior of density π , and let θ0 = 0. Then there exists G and a fixed constant s ∈ (0, 1/3) for
which the following statements hold true.

(i) The expected likelihood �(θ ) is unimodal with mode 0, locally log-concave near 0, radially
symmetric, Lipschitz continuous and monotonically decreasing in ||θ ||RD on RD.

(ii) For any fixed r > 0, with high probability the log-likelihood �N(θ ) and the posterior density
π (·|Z(N)) are monotonically decreasing in ||θ ||RD on the set {θ : ||θ ||RD ≥ r}.

(iii) We have that Π (Bs|Z(N))
N→∞−−−−→ 1 in probability.

(iv) There exists ε > 0 such that for any (sequence of) Markov kernels PN on RD and associated chains
(ϑk : k ≥ 1) that satisfy assumption 3.1 for some c0 > 0, Q = 1 + ε, sequence ηN ∈ (0, s) and all
N ≥ 1 large enough, we can find an initialization point ϑ0 ∈ Θ2/3,ε such that with high probability
(under the law of Z(N) and the Markov chain), the hitting time τBs for ϑk to reach Bs (with s as in
(iii)) is lower bounded as

τBs ≥ exp (min{c0, 1}N/2) .

The interpretation is that despite the posterior being strictly increasing in the radial
variable ||θ ||RD (at least for ||θ ||RD > r, any r > 0—note that maximizers of the posterior density
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may deviate from the ‘ground truth’ θ0 = 0 by some asymptotically vanishing error, cf. also
proposition 4.1), MCMC algorithms started in Θ2/3,ε will still take an exponential time before
visiting the region Bs where the posterior mass concentrates. This is true for small enough step
size independently of D, N. The result holds also for ϑ0 drawn from an absolutely continuous
distribution on Θ2/3,ε as inspection of the proof shows. Finally, we note that at the expense of more
cumbersome notation, the above high probability results (and similarly in theorem 3.3) could be
made non-asymptotic, in the sense that for all δ > 0 all statements hold with probability at least
1 − δ for all N ≥ N0(δ) large enough, where the dependency of N0 on δ can be made explicit.

For ‘ellipsoidally supported’ α-regular priors (b), the idea is similar but the geometry of
the problem changes as the prior now ‘prefers’ low-dimensional subspaces of RD, forcing the
posterior closer towards the ground truth θ0 = 0. We show that if the step size is small compared
to a scaling N−b for b > 0 determined by α, then the same hardness phenomenon persists. Note
that ‘small’ is only ‘polynomially small’ in N and hence algorithmic hardness does not come from
exponentially small step sizes.

Theorem 3.3. Let D/N � κ > 0, consider the posterior (3.2) arising from the model (3.1) and a
N (0, Σα) prior of density π for some α > d/2, and let θ0 = 0. Define b = (α/d) − (1/2) > 0. Then there
exists G and some fixed constant sb ∈ (0, 1/2) for which the following statements hold true.

(i) The expected likelihood �(θ ) is unimodal with mode 0, locally log-concave near 0, radially
symmetric, Lipschitz continuous and monotonically decreasing in ||θ ||RD on RD.

(ii) For any fixed r > 0, with high probability �N(θ ) is radially symmetric and decreasing in ||θ ||RD

on the set {θ : ||θ ||RD ≥ rN−b}.
(iii) Defining s = sbN−b, we have Π (Bs|Z(N))

N→∞−−−−→ 1 in probability.
(iv) There exist positive constants ε, C > 0 and ν = ν(κ , α, d) > 0 such that for any (sequence of)

Markov kernels PN on RD and associated chains (ϑk : k ≥ 1) that satisfy assumption 3.1 for some
c0 > 0, Q = QN = C

√
N, sequence η = ηN ∈ (0, sbN−b) and all N ≥ 1 large enough, we can find

an initialization point ϑ0 ∈ ΘN−b,εN−b such that with high probability (under the law of Z(N) and
the Markov chain), the hitting time τBs for ϑk to reach Bs is lower bounded as

τBs ≥ exp
(

min{c0, ν}N/2
)
.

Again, (iv) holds as well for ϑ0 drawn from an absolutely continuous distribution on ΘN−b,εN−b .
We also note that ε depends only on α, κ , d and the choice of G but not on any other parameters.

Remark 3.4. As opposed to theorem 3.2, due to the anisotropy of the prior density π , the
posterior distribution is no longer radially symmetric in the preceding theorem, whence part
(ii) differs from theorem 3.2. But a slightly weaker form of monotonicity of the posterior
density π (·|Z(N)) still holds: the same arguments employed to prove part (ii) of theorem
3.2 show that π (·|Z(N)) is decreasing on {θ : ||θ ||RD ≥ rN−b} (any r > 0) along the half-lines
through 0, i.e.

PN
0
(
π (ve|Z(N)) ≤ π (v′e|Z(N)) for all v ≥ v′ ≥ r, e ∈ RD, ||e||RD = N−b) N→∞−−−−→ 1. (3.6)

We note that this notion precludes the possibility of π (·|Z(N)) having extremal points outside of the
region of dominant posterior mass, and implies that moving toward the origin will always increase
the posterior density. As a result, many typical Metropolis–Hastings would be encouraged to
accept such ‘radially inward’ moves, if they arise as a proposal. Thus, crucially, our exponential
hitting time lower bound in part (iv) arises not through multi-modality, but merely through
volumetric properties of high-dimensional Gaussian measures.

Remark 3.5 (On the step size condition). One may wonder whether larger step sizes can
help to overcome the negative result presented in the last theorem. If the step sizes are ‘time-
homogeneous’ and � N−b on average, then we may hit the region where the posterior is
supported at some time. This would happen ‘by chance’ and not because the data (via �N) would
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suggest to move there, and future proposals will likely be outside of that bulk region, so that the
chain will either exit the relevant region again or become deterministic because an accept/reject
step refuses to move into such directions. In this sense, a negative result for (polynomially)
small step sizes gives fundamental limitations on the ability of the chain to explore the precise
characteristics of the posterior distribution. We also remark that the Lipschitz constants of ∇�(θ )
are of order D or D1+b in the preceding theorems, respectively. A Markov chain obtained from
discretizing a continuous diffusion process (such as MALA discussed in the next section) will
generally require step sizes that are inversely proportional to that Lipschitz constant in order to
inherit the dynamics from the continuous process. For such examples, assumption 3.1 is natural.
But as discussed at the end of the introduction, there exists a variety of ‘non-local’ MCMC
algorithms for which this step size assumption may not be satisfied.

(b) Implications for common MCMCmethods with ‘cold-start’
The preceding general hitting time bounds apply to commonly used MCMC methods in high-
dimensional statistics. We focus in particular on algorithms that are popular with PDE models
and inverse problems, see, e.g. [50,51] and also [14] for many more references. We illustrate this for
two natural examples with Metropolis–Hastings adjusted random walk and gradient algorithms.
Other examples can be generated without difficulty.

(i) Preconditioned Crank–Nicolson

We first give some hardness results for the popular pCN algorithm. A dimension-free
convergence analysis for pCN was given in the important paper by Hairer et al. [52] based on
ideas from Hairer et al. [53]. The results in the present section show that while the mixing bounds
from Hairer et al. [52] are in principle uniform in D, the implicit dependence of the constants on the
conditions on the log-likelihood-function in [52] can re-introduce exponential scaling when one
wants to apply the results from Hairer et al. [52] to concrete (N-dependent) posterior distributions.
This confirms a conjecture about pCN made in Section 1.2.1 of Nickl & Wang [12].

Let C denote the covariance of some Gaussian prior on RD with density π . Then the pCN
algorithm for sampling from some posterior density π (θ |Z(N)) ∝ e�N(θ)π (θ ) is given as follows. Let
(ξk : k ≥ 1) be an i.i.d. sequence of N (0, C) random vectors. For initializer ϑ0 ∈ RD, step size β > 0
and k ≥ 1, the MCMC chain is then given by

1. PROPOSAL: pk ∼ √
1 − βϑk−1 + √

βξk,
2. ACCEPT–REJECT: Set

ϑk =
{

pk w.p. min
{
1, e�N(pk)−�N(ϑk−1)},

ϑk−1 else.
(3.7)

By standard Markov chain arguments one verifies (see [52] or Ch.1 in [14]) that the (unique)
invariant density of (ϑk : k ≥ 1) equals π (·|Z(N)).

We now give a hitting time lower bound for the pCN algorithm which holds true in the
regression setting for which the main theorems 3.2 and 3.3 (for generic Markov chains) were
derived. In particular, we emphasize that the lower bounds to follow hold for the choice of
regression ‘forward’ map G constructed in the proofs of theorems 3.2 and 3.3. As for the general
results, we treat the two cases of C = ID/D or C = Σα separately.

Theorem 3.6. Let ϑk denote the pCN Markov chain from (3.7).

(i) Assume the setting of theorem 3.2 with C = ID/D, and let G be as in theorem 3.2. Then there exist
constants c1, c2, ε > 0 such that for any β ≤ c1, there is an initialization point ϑ0 ∈ Θ2/3,ε such
that the hitting time τBs = inf{k : ϑk ∈ Bs} (for Bs as in (3.4)) satisfies with high probability (under
the law of the data and of the Markov chain) as N → ∞ that τBs ≥ exp(c2D).
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(ii) Assume the setting of theorem 3.3 with C = Σα for α > d/2, and let G be as in theorem 3.2.
Then there exist constants c1, c2, ε > 0 such that if β ≤ c1N−1−2b there is an initialization point
ϑ0 ∈ ΘN−b,εN−b such that the hitting time τBs = inf{k : ϑk ∈ Bs} satisfies with high probability that
τBs ≥ exp(c2D).

(ii) Gradient-based Langevin algorithms

We now turn to gradient-based Langevin algorithms which are based on the discretization of
continuous-time diffusion processes [10,50]. A polynomial time convergence analysis for the
unadjusted Langevin algorithm in the strongly log-concave case has been given in [10,11] and
also in [54] for the Metropolis-adjusted case (MALA). We show here that for unimodal but not
globally log-concave distributions, the MCMC scheme can take an exponential time to reach the
bulk of the posterior distribution. For simplicity we focus on the Metropolis-adjusted Langevin
algorithm which is defined as follows. Let (ξk : k ≥ 1) be a sequence of i.i.d. N (0, ID) variables, and
let γ > 0 be a step size.

1. PROPOSAL: pk = ϑk−1 + γ∇ log π (ϑk−1|Z(N)) +√
2γ ξk.

2. ACCEPT–REJECT: Set

ϑk =

⎧⎪⎨
⎪⎩

pk w.p. min

{
1,

π(pk|Z(N)) exp
(
−||ϑk−1−pk−γ∇ log π(pk|Z(N))||2

)
π(ϑk−1|Z(N)) exp

(
−||pk−ϑk−1−γ∇ log π(ϑk−1|Z(N))||2

)
}

,

ϑk−1 else.

(3.8)

Again, standard Markov chain arguments show that Π (·|Z(N)) is indeed the (unique) invariant
distribution of (ϑk : k ≥ 1). We note here that for the forward G featuring in our results to follows,
∇ log π may only be well-defined (Lebesgue-) almost everywhere on RD due to our piece-wise
smooth choice of w, see (4.6) below. However, since all proposal densities involved possess a
Lebesgue density, this specification almost everywhere suffices in order to propagate the Markov
chain with probability 1. Alternatively one could also straightforwardly avoid this technicality by
smoothing our choice of function w in (4.6), which we refrain from for notational ease.

Theorem 3.7. Let ϑk denote the MALA Markov chain from (3.8).

(i) Assume the setting of theorem 3.2, with N (0, ID/D) prior, and let G also be as in theorem 3.2.
There exists some c1, c2, ε > 0 such that if the step size of (ϑk : k ≥ 1) satisfies γ ≤ c1/N, then there
is an initialization point ϑ0 ∈ Θ2/3,ε such that the hitting time τBs = inf{k : ϑk ∈ Bs} (for Bs as
in (3.4)) satisfies with high probability (under the law of the data and of the Markov chain) as
N → ∞ that τBs ≥ exp(c2D).

(ii) Assume the setting of theorem 3.3, with a N (0, Σα) prior, and let G also be as in theorem 3.3.
Then there exist some constant c1, c2, ε > 0 such that whenever γ ≤ c1N−1−b−2α , there is an
initialization point ϑ0 ∈ ΘN−b,εN−b , such that the hitting time τBs = inf{k : ϑk ∈ Bs} satisfies with
high probability (under the law of the data and of the Markov chain) that τBs ≥ exp(c2D).

As mentioned in remark 3.5, a bound on the step size that is inversely proportional to the
Lipschitz constant of ∇� is natural for algorithms like MALA that arise from discretization of
a continuous-time Markov process, see e.g. [11,54]. We emphasize again that these Lipschitz
constants are D- and N-dependent, so that the required bounds on γ are not unnatural. ‘Optimal’
step size prescriptions for MALA [54–57] derived for Gaussian and log-concave targets or, more
generally, mean-field limits (in which the posterior distribution possesses a product or mean-field
structure, unlike in the models considered here) would need to be adjusted to our model classes
to be comparable.
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4. Proofs of the main theorems
We begin in §4a by constructing the family of regression maps G underlying our results from
§3. Section 4b,c reduce the hitting time bounds from theorems 3.2 and 3.3 (for general Markov
chains) to hitting time bounds for intermediate ‘free energy barriers’ that the Markov chain needs
to travel through. Subsequently, theorems 3.3 and 3.2 are proved in §4d,e, respectively. Finally, the
proofs for pCN (theorem 3.6) and MALA (theorem 3.7) are contained in §4f.

(a) Radially symmetric choices of G
We start with our parameterization of the map G . In our regression model and since Eε2 = 1,

�(θ ) = −N
2

E1
θ0

|Y − G (θ )(X)|2 = −N
2

||G (θ0) − G (θ )||2L2 − N
2

, θ ∈ RD. (4.1)

We have θ0 = 0 and by subtracting a fixed function G (0) from G (θ ) if necessary we can also assume
that G (θ0) = 0. In this case, since vol(X ) = 1,

�(θ ) = −N
2

||G (θ )||2L2 − N
2

. (4.2)

Take a bounded continuous function w : [0, ∞] → [0, ||w||∞) with a unique minimizer w(0) = 0 and
take G of the ‘radial’ form

G (θ ) =
√

w(||θ ||RD ) × g(x), θ ∈ RD, x ∈X ,

where

g : X → [gmin, gmax], 0 < gmin < gmax < ∞, ||g||L2
μ(X ) = 1.

The assumption G(θ0) = 0 implies Yi = 0 + εi under PN
θ0

, so that we have

�N(θ ) = −1
2

N∑
i=1

|εi −
√

w(||θ ||)g(Xi)|2

= −w(||θ ||RD )
2

N∑
i=1

g2(Xi) − 1
2

N∑
i=1

ε2
i +

√
w(||θ ||)

N∑
i=1

εig(Xi), (4.3)

and the average log-likelihood is

�(θ ) = EN
θ0

�N(θ ) = −N
2

w(||θ ||RD ) − N
2

, θ ∈ RD. (4.4)

Define ε-annuli of Euclidean space

Θr,ε = {
θ ∈ RD : ||θ ||RD ∈ (r, r + ε)

}
, r ≥ 0. (4.5)

We then also set, for any s ≥ 0, ε > 0,

w−(r, ε) = inf
s∈(r,r+ε)

w(s), w+(r, ε) = sup
s∈(r,r+ε)

w(s).

For our main theorems the map w will be monotone increasing and the preceding notation w−, w+
is then not necessary, but proposition 4.2 is potentially also useful in non-monotone settings (as
remarked after its proof), hence the slightly more general notation here.

The choice that G is radial is convenient in the proofs, but means that the model is only
identifiable up to a rotation for θ �= 0. One could easily make it identifiable by more intricate
choices of G , but the main point for our negative results is that the function � has a unique mode
at the ground truth parameter θ0 and is identifiable there.
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(i) A locally log-concave, globally monotone choice of w

Define for t < L and any r > 0 the function w : [0, ∞) → R as

w(r) = 4(Tr)21[0,t/2)

+ [(Tt)2 + T(r − t/2)]1[t/2,t)(r)

+ [(Tt)2 + (Tt/2) + ρ(r − t)]1[t,L)(r)

+ [(Tt)2 + (Tt/2) + ρ(L − t)]1[L,∞)(r),

w
(r

)

0 t /2 t

r

L

(4.6)

where T > ρ, are fixed constants to be chosen. Note that w is monotone increasing and

||w||∞ = (Tt)2 +
(

Tt
2

)
+ ρ(L − t) < ∞. (4.7)

The function w is quadratic near its minimum at the origin up until t/2, from when onwards it
is piece-wise linear. In the linear regime it initially has a ‘steep’ ascent of gradient T until t, then
grows more slowly with small gradient ρ from t until L, and from then on is constant. The function
w is not C∞ at the points r = t/2, r = t, r = L, but we can easily make it smooth by convolving with
a smooth function supported in small neighbourhoods of its breakpoints r without changing the
findings that follow. We abstain from this to simplify notation.

The following proposition summarizes some monotonicity properties of the empirical log-
likelihood function arising from the above choice of w.

Proposition 4.1. Let w be as in (4.6). Then there exists C > 0 such that for any r0 > 0 and N ≥ 1, we
have

PN
0

(
sup

r0≤r<s≤L
sup

||θs||=s,||θr||=r

�N(θs) − �N(θr)
w(s) − w(r)

≤ −N
4

)
≥ 1 − C

N
− C

Nw(r0)
.

In particular, if r0 < t/2 is such that (Tr0)2N → ∞ as N → ∞ then the r.h.s. is 1 − o(1).

Proof. Recalling (4.4), (4.3) and since w is monotonically increasing, we bound

PN
0

(
�N(θs) − �N(θr) >

(
N
4

)
(w(r) − w(s))

)

= PN
0

(
�N(θs) − �N(θr) − (�(θs) − �(θr)) > −N

4
(w(r) − w(s))

)

= Pr

(
(w(r) − w(s))

2

N∑
i=1

(g2(Xi) − 1) + (√
w(s) −

√
w(r)

) N∑
i=1

εig(Xi) >
N
4

(w(s) − w(r))

)

= Pr

(
−

N∑
i=1

(g2(Xi) − Eg2(X))/2 + 1√
w(s) +√

w(r)

N∑
i=1

εig(Xi) >
N
4

)

≤ Pr

(∣∣∣∣
N∑

i=1

(g2(Xi) − Eg2(X))
∣∣∣∣> N

4

)
+ Pr

(
|

N∑
i=1

εig(Xi)| >
2N
√

w(r0)
8

)

=O
(

1
N

)
+ O

(
1

Nw(r0)

)
,

using Chebyshev’s inequality in the last step. Since the events in the penultimate step do not
depend on r < s ∈ [r0, L], the result follows. �

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 A

pr
il 

20
23

 



15

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220150

...............................................................

(b) Bounds for posterior ratios of annuli
A key quantity in the proofs to follow will be to obtain asymptotic (N → ∞) bounds of the
following functional (recalling the definition of the Euclidean annuli Θr,ε from (4.5)),

FN(r, ε) = 1
N

log
∫
Θr,ε

e�N(θ) dΠ (θ ), r ≥ 0, ε > 0, (4.8)

in terms of the map w. As a side note, we remark that this functional has a long history in the
statistical physics of glasses, in which it is often referred to as the Franz–Parisi potential [7,58].

Proposition 4.2. Consider the regression model (3.1) with radially symmetric choice of G from §4a
such that ||w||∞ ≤ W for some fixed W < ∞ (independent of D, N), and let Π = ΠN denote a sequence of
prior probability measures on RD.

(i) Suppose that for some radii 0 < s < σ , constants ε, η, ν > 0 and for all N ≥ 1 large enough, we
have

1
N

log
Π (Θs,η)
Π (Θσ ,ε)

≤ −2ν − (w+(σ , ε) − w−(s, η))
2

. (4.9)

Then the posterior distribution Π (·|Z(N)) from (3.2) arising in the model (3.1) satisfies that with
high PN

0 -probability as N → ∞,

Π (Θs,η|Z(N))
Π (Θσ ,ε|Z(N))

≤ e−νN . (4.10)

(ii) If in addition w is monotone increasing on [0, ∞) and if for some Q > 1 + ε,

1
N

log
Π (Bc

Q)

Π (Θσ ,ε)
≤ −2ν, (4.11)

then the posterior distribution Π (·|Z(N)) also satisfies (with high probability as N → ∞) that

Π (Bc
Q|Z(N))

Π (Θσ ,ε|Z(N))
≤ e−νN . (4.12)

Remark 4.3 (The prior condition for w from (4.6)). If σ > s > t, for w from (4.6), the ‘likelihood’
term in proposition 4.2 is

w+(σ , ε)
2

− w−(s, η)
2

≤ ρ(σ + ε − t) − ρ(s − t)
2

= ρ

2
(σ + ε − s) > 0, (4.13)

so that if we also assume

Tt + ρL = O(
√

N), (4.14)

to control ωN , ω′
N in the proof that follows, then to verify (4.9) it suffices to check

1
N

log
Π (Θs,η)
Π (Θσ ,ε)

≤ −2ν − ρ

2
(σ + ε − s), (4.15)

for all large enough N.
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Proof. Proof of part (i). From the definition of �N in (4.3) we first note that for all r ≥ 0, ε > 0,

inf
θ∈Θr,ε

�N(θ ) ≥ −1
2

N∑
i=1

ε2
i − 1

2
w+(r, ε)

N∑
i=1

g2(Xi) −
√

w+(r, ε)

∣∣∣∣∣
N∑

i=1

εig(Xi)

∣∣∣∣∣
and

sup
θ∈Θr,ε

�N(θ ) ≤ −1
2

N∑
i=1

ε2
i − 1

2
w−(r, ε)

N∑
i=1

g2(Xi) +
√

w+(r, ε)

∣∣∣∣∣
N∑

i=1

εig(Xi)

∣∣∣∣∣ .

We can now further bound, for our G ,

1
N

log
∫
Θr,ε

e�N(θ) dΠ (θ ) ≤ − 1
2N

N∑
i=1

ε2
i

− w−(r, ε)
2N

N∑
i=1

g2(Xi) +
√

w+(r, ε)
N

∣∣∣∣
N∑

i=1

εig(Xi)
∣∣∣∣+ log Π (Θr,ε)

N

and

1
N

log
∫
Θr,ε

e�N(θ)dΠ (θ ) ≥ − 1
2N

N∑
i=1

ε2
i

− w+(r, ε)
2N

N∑
i=1

g2(Xi) −
√

w+(r, ε)
N

∣∣∣∣
N∑

i=1

εig(Xi)
∣∣∣∣+ log Π (Θr,ε)

N
.

We estimate
√

w+(r, ε) ≤ w̄(r, ε) = max(w+(r, ε), 1), and noting that

Eε2
i = 1 = Eg2(Xi) and Eεig(Xi) = 0,

we can use Chebyshev’s (or Bernstein’s) inequality to construct an event of high probability such
that the functional FN from (4.8) is bounded as

FN(r, ε) ≤ −1
2

− w−(r, ε)
2

+ log Π (Θr,ε)
N

+ ωN(s, η) (4.16)

and

FN(r, ε) ≥ −1
2

− w+(r, ε)
2

+ log Π (Θr,ε)
N

+ ω′
N(r, ε), (4.17)

where

ωN(r, ε) =O
(

1 + w−(r, ε) + w̄(r, ε)√
N

)
, ω′

N(s) =O
(

1 + w+(r, ε) + w̄(r, ε)√
N

)
, (4.18)

and this is uniform in all (r, ε) since ||w||∞ ≤ W is bounded. Using the above with (r, ε) chosen as
(s, η) and (σ , ε) respectively, we then obtain

1
N

log
Π (Θs,η|Z(N))
Π (Θσ ,ε|Z(N))

= FN(s, η) − FN(σ , ε)

≤ −w−(s, η)
2

+ log Π (Θs,η)
N

+ w+(σ , ε)
2

− log Π (Θσ ,ε)
N

+ ωN(s, η) − ω′
N(σ , ε)

= −w−(s, η)
2

+ w+(σ , ε)
2

+ 1
N

log
Π (Θs,η)
Π (Θσ ,ε)

+ ωN(s, η) − ω′
N(σ , ε), (4.19)

with high PN
θ0

-probability. The result now follows from the hypothesis (4.9) and since the terms
ωN , ω′

N are O(1).
(Proof of part ii). The proof of part (ii) follows from an obvious modification of the previous

arguments. �

In the case where Π (Θs,η) and Π (Θσ ,ε) are comparable (so that the l.h.s. in (4.9) converges to
zero), a local optimum at σ in the function w away from zero can verify the last inequality for
‘intermediate’ s such that w(s) − w(σ ) ≤ −2ν. This can be used to give computational hardness
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results for MCMC of multi-modal distributions. But we are interested in the more challenging
case of ‘unimodal’ examples w from (4.6). Before we turn to this, let us point out what can be said
about the hitting times of Markov chains if the conclusion (4.10) of proposition 4.2 holds.

(c) Bounds for Markov chain hitting times
(i) Hitting time bounds for intermediate setsΘs,η

In (4.10), we can think of Θσ ,ε as the ‘initialization region’ (further away from θ0) and Θs,η for
intermediate s is the ‘barrier’ before we get close to θ0 = 0. The last bound permits the following
classic hitting time argument, taken from Ben Arous et al. [5], see also [8].

Proposition 4.4. Consider any Markov chain (ϑk : k ∈ N) with invariant measure μ = Π (·|Z(N)) for
which (4.10) holds. For constants η < σ − s, suppose ϑ0 is started in Θσ ,ε , μ(Θσ ,ε) > 0, drawn from the
conditional distribution μ(·|Θσ ,ε), and denote by τs the hitting time of the Markov chain onto Θs,η, that is,
the number τs of iterates required until ϑk visits the set Θs,η. Then

Pr(τs ≤ K) ≤ K e−νN , K > 0.

Similarly, on the event where (4.12) holds we have that

Pr(τBc
L
≤ K) ≤ K e−νN , K > 0.

Proof of proposition 4.4. We have

Pr(τs ≤ K) = Pr(ϑk ∈ Θs,η for some 1 ≤ k ≤ K|ϑ0 ∈ Θσ ,ε)

= Pr(ϑ0 ∈ Θσ ,ε , ϑk ∈ Θs,η for some 1 ≤ k ≤ K)
μ(Θσ ,ε)

≤
∑

k≤K Pr(ϑk ∈ Θs,η)

μ(Θσ ,ε)

≤ K
μ(Θs,η)
μ(Θσ ,ε)

≤ K e−νN .

The second claim is proved analogously. �

The last proposition holds ‘on average’ for initializers ϑ0 ∼ μ(·|Θσ ,ε), and since Pr = Eμ(·|Θσ ,ε) Prϑ0

where Prϑ0 is the law of the Markov chain started at ϑ0, the hitting time inequality holds at least
for one point in Θσ ,ε since infϑ0 Prϑ0 ≤ Eμ(·|Θσ ,ε) Prϑ0 .

(ii) Reducing hitting times for Bs to ones forΘs,η

We now reduce part (iv) of theorems 3.2 and 3.3, i.e. bounds on the hitting time of the region Bs

in which the posterior contracts, to a bound for the hitting time τs for the annulus Θs,η, which is
controlled in proposition 4.4. To this end, in the case of theorem 3.2, we suppose that propositions
4.2 and 4.4 are verified with ν = 1σ = 2/3 some ε > 0 and Q, s, η as in the theorem, and in the case
of theorem 3.3, we assume the same with choice σ = N−b and ν > 0 given after (4.27) below. For
c0 from assumption 3.1, define the events

AN :=
{
∀k ≤ e(ν∧c0)N/2 : ||ϑk+1 − ϑk||RD ≤ η

2

}
.

We can then estimate, using assumption 3.1, that on the frequentist event on which proposition
4.4 holds (which we apply with K = e(ν∧c0)N/2 ≤ eνN/2), under the probability law of the Markov
chain we have

Pr(τBs ≤ e(ν∧c0)N/2) ≤ Pr(τBs ≤ e(ν∧c0)N/2, AN) + Pr(Ac
N)

≤ Pr(τs ≤ e(ν∧c0)N/2) + Pr(Ac
N , τBc

Q
> e(ν∧c0)N/2) + Pr(τBc

Q
≤ e(ν∧c0)N/2)

≤ 2 e−νN/2 + e(ν∧c0)N/2 sup
θ∈BQ

PN

(
θ ,
{
ϑ : ||θ − ϑ ||RD ≥ η

2

})

≤ 2 e−(ν∧c0)N/2 + e(ν∧c0)N/2−c0N ≤ 3 e−(ν∧c0)N/2,
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where in the second inequality we have used that on the events AN , the Markov chain ϑk, when
started in Θ2/3,ε , needs to pass through Θs,η in order to reach Bs.

(d) Proof of theorem 3.3
In this section, we use the results derived in the previous part of §4 to finish the proof of theorem
3.3. Parts (i) and (ii) of the theorem follow from proposition 4.1 and our choice of w in (4.6). We
therefore concentrate on the proofs of part (iii) and (iv). We start with proving a key lemma on
small ball estimates for truncated α-regular Gaussian priors.

(i) Small ball estimates forα-regular priors

Let us first define precisely the notion of α-regular Gaussian priors. For some fixed α > d/2, the
prior Π arises as the truncated law Law(θ ) of an α-regular Gaussian process with RKHS H=
Hα , a Sobolev space over some bounded domain/manifold X , see e.g. section 6.2.1 in [14] for
details. Equivalently (under the Parseval isometry) we take a Gaussian Borel measure on the
usual sequence space �2 � L2 with RKHS equal to

hα =
{

(θi)
∞
i=1 :

∞∑
i=1

i2(α/d)θ2
i = ||θ ||2Hα < ∞

}
, α >

d
2

.

The prior Π is the truncated law of θD = (θ1, . . . , θD), D ∈ N.

Lemma 4.5. Fix z > 0, α > d/2 and κ > 0, and set

b = α

d
− 1

2
, τ = 1

b
= 2d

2α − d
.

Then if D/N � κ > 0, there exist constants c̄0 > c0 (depending on b, κ) such that for all N (≥ N0(z, b))
large enough:

c0(z + κ−α/dz−τ/2)−τ ≤ − 1
N

log Π (||θ ||RD ≤ zN−b) ≤ c̄0z−τ . (4.20)

Proof of lemma 4.5. Note first that the L2-covering numbers of the ball h(α, B) of radius B in Hα

satisfy the well-known two-sided estimate

logN (δ, || · ||L2 , h(α, B)) �
(

AB
δ

)d/α

, 0 < δ < AB (4.21)

for equivalence constants in � depending only on d, α. The upper bound is given in proposition
6.1.1 in [14] and a lower bound can be found as well in the literature [59] (by injecting Hα(X0)
into H̃α(X ) for some strict sub-domain X0 ⊂X , and using metric entropy lower bounds for the
injection Hα(X0) → L2(X0)).

Using the results about small deviation asymptotics for Gaussian measures in Banach space
[60]—specifically theorem 6.2.1 in [14] with a = 2d/(2α − d)—and assuming α > d/2, this means
that the concentration function of the ’untruncated prior’ satisfies the two-sided estimate

− log Π (||θ ||L2 ≤ γ ) � γ −(2d/(2α−d)) = γ −τ , γ → 0. (4.22)

Here, restricting to γ ∈ (0, 1), the two-sided equivalence constants depend only on α, d. Setting

γ = zN−b, z > 0, (4.23)

and noting that bτ = 1, we hence obtain that for some constants cl, cu > 0,

e−clz−τ N ≤ Π (||θ ||L2 ≤ zN−b) ≤ e−cuz−τ N , any z > 0. (4.24)

We now show that as long as D/N ≈ κ > 0, one may use the above asymptotics to derive the
desired small ball probabilities for the projected prior on RD.
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We obviously have, by set inclusion and projection,

Π (||θ ||RD ≤ zN−b) ≥ Π (||θ ||L2 ≤ zN−b),

and hence it only remains to show the first inequality in equation (4.20). The Gaussian
isoperimetric theorem (theorem 2.6.12 in [61]) and (4.24) imply that for m ≥ 4

√
cl and some c > 0,

we have that (with Φ denoting the c.d.f. for N (0, 1))

Π
(
θ = θ1 + θ2, ||θ1||L2 ≤ zN−b, ||θ2||hα ≤ mz−τ/2

√
N
)

≥ Φ
(
Φ−1(Π ({θ : ||θ || ≤ zN−b}))+ mz−τ/2

√
N
)

≥ Φ
(−

√
2clz

−τ/2
√

N + mz−τ/2
√

N
)≥ 1 − e−cz−τ N ,

(see also the proof of lemma 5.17 in [19] for a similar calculation). Then if the event in the last
probability is denoted by I we have

Π (||θD||RD ≤ zN−b) ≤ Π (||θD||RD ≤ zN−b, I) + e−cz−τ N .

On I, if D/N → κ > 0 and by the usual tail estimate for vectors in hα , we have for some c′ > 0 the
bound

||θ − θD||L2 ≤ ||θ1||L2 + c′D−α/dz−τ/2
√

N ≤ zN−b + c′κ−α/dz−τ/2N−b,

so that for any z > 0,

Π (||θD||RD ≤ zN−b) ≤ Π (||θ ||L2 ≤ zN−b + ||θ − θD||L2 , I) + e−cz−τ N

≤ Π (||θ ||L2 ≤ (2z + c′κ−α/dz−τ/2)N−b) + e−cz−τ N

≤ e−cu(2z+c′κ−α/dz−τ/2)−τ N + e−cz−τ N ,

and hence the lemma follows by appropriately choosing c0 > 0. �

Remark 4.6. For statistical consistency proofs in nonlinear inverse problems, often rescaled
Gaussian priors are used to provide additional regularization [12,13,19]. For these priors a
computation analogous to the previous lemma is valid: specifically if we rescale θ by

√
NδN ,

where δN = N−α/(2α+d) so that
√

NδN = N(d/2)/(2α+d) = Nk, then we just take N−β+k = N−b in the
above small ball computation, that is −b = −β + k or b = β − k, and the same bounds (as well as
the proof to follow) apply.

(ii) Proof of theorem 3.3, part (iv)

Lemma 4.5 and the hypotheses on η immediately imply

Π (θ ∈ Θs,η) = Π
(||θ ||RD ∈ (sbN−b, sbN−b + η)

)
≤ Π

(||θ ||RD ≤ 2sbN−b)≤ e−c0N(2sb+κ−α/d(2sb)−τ/2)−τ

.

To lower bound Π (ΘN−b,εN−b ), we choose ε large enough such that

c̄0(1 + ε)−τ < c0(1 + κ−α/d)−τ ,

which implies for all N large enough that

Π
(||θ ||RD ∈ (N−b, (1 + ε)N−b)

)= Π (||θ ||RD ≤ (1 + ε)N−b) − Π (||θ ||RD ≤ N−b))

≥ e−c̄0(1+ε)−τ N − e−c0(1+κ−α/d)−τ N

≥ e−2c̄0(1+ε)−τ N . (4.25)

Now, for w from (4.6), we set

t = tbN−b, ρ ∈ (0, 1], 0 < tb < sb <
1
2

< L < ∞, T = TbNb, (4.26)
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for Tb to be chosen and ρ, L, sb, tb fixed constants, so that ||w||∞ is bounded (uniformly in N) by a
constant which depends only on Tb, L, ρ, whence (4.14) holds. Now the key inequality (4.15) with
s = sbN−b and with our choice of η, ε, σ = N−b will be satisfied if

c0(2sb + κ−α/d(2sb)−τ/2)−τ ≥ 2c̄0(1 + ε)−τ + 2ν + ρ

2
N−b(1 + ε − sb). (4.27)

We define ν to equal to 1/3 of the l.h.s. so that (4.27) will follow for the given sb, κ , α, d by choosing
ε large enough and whenever N is large enough.

Finally, let us note that with Q = C
√

N for some C ≥ 2E[||θ ||�2 ], where θ is the infinite Gaussian
vector with RKHS hα , we can deduce from theorem 2.1.20 and exercise 2.1.5 in [61] that

Pr(||θ ||RD ≥ Q) ≤ 2 exp(−c C2N/2), some c > 0.

Thus, using also (4.25), choosing C large enough verifies (4.11). Since (4.25) and the a.s.
boundedness of supθ |�N(θ )| for �N from (4.3) imply that Π (ΘN−b,εN−b |Z(N)) > 0 a.s., proposition
4.2 and then also proposition 4.4 apply for this prior, and the arguments from §4c(ii) yield the
desired result.

(iii) Proof of theorem 3.3, part (iii)

We finish the proof of the theorem by showing point (iii) . We use the setting and choices from the
previous section. Let us write G(A) = ∫

A e�N(θ) dΠ (θ ) for any measurable set A. Recall the notation
Br = {θ : ||θ ||RD ≤ r}, r > 0. Repeating the argument leading to (4.17) with Bt/2 in place of Θr,ε , and
using lemma 4.5, we have with high probability

1
N

log G(Bt/2) ≥ −1
2

−
supr≤tbN−b/2 w(r)

2
− c̄0

(
tb

2

)−τ

+ ω′
N(t/2),

where ω′
N(t/2) =O(||w||∞/

√
N) = O(1) . Likewise, we also have

1
N

log G(Bc
s) ≤ −1

2
− infr≥sbN−b w(r)

2
+ 1

N
log Π (Bc

s) + ω′′
N(s),

where ω′′
N(s) =O(||w||∞/

√
N) = O(1). We can assume that G(Bc

s) > 0. Hence, since Π (Bc
s) → 1 in

view of lemma 4.5,

1
N

log
G(Bt/2)
G(Bc

s)
≥ − (Tt)2

2
− c0

( tb

2

)−τ + (Tt)2 + (Tt/2) + ρ(s − t)
2

+ 1
N

log Π (Bc
s) + O(1)

≥ Tbtb

4
− c0

(
tb

2

)−τ

+ O(1). (4.28)

Now, for tb < sb fixed we can choose Tb large enough such that the last quantity exceeds 1 with
high probability (in particular this retrospectively justifies the last O(1) as then ||w||∞ =O(1) for
our choice of Tb). Therefore, again with high probability

G(Bt/2)
G(Bc

s)
≥ eN × (1 + O(1)). (4.29)

For Mt,s = {θ : t/2 < ||θ ||RD ≤ s} this further implies that with high probability

G(Bt/2) + G(Mt,s)
G(Bc

s)
≥ eN × (1 + O(1)),

and then,

Π (Bs|Z(N)) = G(Bt/2) + G(Mt,s)
G(Bt/2) + G(Mt,s) + G(Bc

s)

= G(Bt/2) + G(Mt,s)
(G(Bt/2) + G(Mt,s))(1 + (G(Bc

s)/G(Bt/2)) + G(Mt,s))
→ 1,

again with high probability, which is what we wanted to show.
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Remark 4.7. If the map w is globally convex, say w(s) = Ts2/2 for all s > 0, then a ‘large enough’
choice of ε after (4.27) is not possible. It is here where global log-concavity of the likelihood
function helps, as it enforces a certain ‘uniform’ spread of the posterior across its support via
a global coercivity constant T. By contrast the above example of w is not convex, rather it is very
spiked on (0, t/2) and then ‘flattens out’.

(e) Proof of theorem 3.2
The proof of theorem 3.2 proceeds along the same lines as that of theorem 3.3, with scaling
t, L, ρ, s, η constant in N, corresponding to b = 0 in N−b, and replacing the volumetric lemma 4.5
by the following basic result.

Lemma 4.8. Let θ ∼N (0, ID/D). Let a ∈ (0, 1/2). Then for all D ≥ D0(a) large enough,

− 1
D

log Π (||θ ||RD ≤ z) ≥ 1
2

(
z2

2
− log z − 1

2

)
, any z ∈ (0, 1 − a). (4.30)

A proof of (4.30) is sketched in appendix B. As a consequence of the previous lemma

1
N

log Π (Θs,η) ≤ 1
N

log Π (B2s) ≤ κ

2

(
log 2s − 2s2 + 1

2

)
.

Moreover, to lower bound Π (Θ2/3,ε), we choose ε > 2/3. Then, using theorem 2.5.7 in [61] as well
as E||θ || ≤ E(||θ ||2)1/2 = 1, and then also (4.30) with z = 2/3, we obtain that

Π (Θ2/3,ε) ≥ Π

(
|||θ ||RD − 1| ≤ 1

3

)

≥ 1 − Π

(
||θ ||RD ≥ E||θ ||RD + 1

3

)
− Π

(
||θ ||RD ≤ 2

3

)

≥ 1 − exp(−D/18) − exp(−cD),

for some fixed constant c > 0 given by (4.30), whence Π (Θ2/3,ε) → 1 and also N−1 log Π (Θ2/3,ε) →
0. Therefore, the key inequality (4.15) with σ = 2/3, ν = 1 holds whenever we choose s = s0 small
enough such that

− log 2s0 > 2κ−1
[

2 + ρ

2

(
s0 − 2

3
− ε

)]
+ 2s2

0 + 1
2

.

The rest of the detailed derivations follow the same pattern as in the proof of theorem 3.3
and are left to the reader, including verification of (4.11) via an application of theorem 2.5.7 in
[61]. In particular, the proof of part (iii) follows the same arguments (suppressing the N−b scaling
everywhere) as in theorem 3.3.

(f) Proofs for §3b
In this section, we prove the results of §3b which detail the consequences of the general theorems
3.2 and 3.3 for practical MCMC algorithms.

(i) Proofs for pCN

Theorem 3.6 is proved by verifying the assumption 3.1 for suitable choices of η and L, and for
c0 = κ/2 > 0.

Lemma 4.9. Let PN denote the transition kernel of pCN from (3.7) with parameter β > 0.

(i) Suppose Π =N (0, ID/D) as in theorem 3.2, and let Q, η > 0. Then for all β ≤
min{1/2, η/4Q, η2/64} and all D ≥ 1, we have (with PN

0 -probability 1)

sup
θ∈BQ

PN

(
θ ,
{
ϑ : ||θ − ϑ ||RD ≥ η

2

})
≤ e−D/2.
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(ii) Suppose Π =N (0, Σα) as in theorem 3.3, and let Q, η > 0. There exists some c > 0 such that for
all β ≤ min{1/2, η/(4Q), cη2/D} and all D ≥ 1, we have (with PN

0 -probability 1)

sup
θ∈BQ

PN

(
θ ,
{
ϑ : ||θ − ϑ ||RD ≥ η

2

})
≤ e−D/2.

Proof of lemma 4.9. We begin with the proof of part (ii). Let ||ϑk||RD ≤ Q. Then using the
definition of pCN and that |√1 − β − 1| ≤ β for any β ∈ [0, 1] (Taylor expanding

√· around 1),
we obtain that for any β ≤ min{1/2, η/4Q},

Pr
(
||ϑk+1 − ϑk||RD ≥ η

2

)
≤ Pr

(
||pk+1 − ϑk||RD ≥ η

2

)
≤ Pr

(
||(
√

1 − β − 1)ϑk||RD +
√

β||ξk||RD ≥ η

2

)

≤ Pr
(

||ξk||RD ≥ (η/2 − βQ)√
β

)

≤ Pr
(

||ξk||RD ≥ η

4
√

β

)

= Pr
(

||ξk||RD − E||ξk||RD ≥ η

4
√

β
− E||ξk||RD

)
.

The variables ξk are equal in law to a vector with components (i−α/dgi : i ≤ D) for gi iid N(0, 1)
and hence E||ξk||RD ≤ (E||ξk||2RD )1/2 ≤ C(α, d) < ∞ for α > d/2. Then, for β ≤ cη2/D with some
sufficiently small c > 0 (noting that then also β ≤ cη2), it holds that

Pr
(
||ϑk+1 − ϑk||RD ≥ η

2

)
≤ Pr

(
||ξk||RD − E||ξk||RD ≥ η

8
√

β

)

≤ exp

(
− η2

64β

)
≤ exp

(−D
2

)
, (4.31)

using, e.g. theorem 2.5.8 in [61] (and representing the || · ||RD -norm by duality as a supremum).
This completes the proof of part (ii).

The proof of part (i) is similar, albeit simpler, whence we leave some details to the reader.
Arguing similarly as before, we obtain that for any β ≤ min{1/2, η/64Q},

Pr
(
||ϑk+1 − ϑk||RD ≥ η

2

)
≤ Pr

(
||ξk||RD ≥ (η/2 − βL)√

β

)
≤ Pr

(
||gk||RD ≥ η

√
D

4
√

β

)
,

where gk is a N (0, ID) random variable. The latter probability is bounded by a standard
deviation inequality for Gaussians, see, e.g. theorem 2.5.7 in [61]. Indeed, noting that E||ξk||RD ≤
(E[||ξk||2RD ])1/2 = √

D, and that the one-dimensional variances satisfy E〈gk, v〉2 = ||v||2
RD = 1 for any

||v||RD = 1, we obtain

Pr(||gk||RD ≥ η
√

D
4
√

β
) ≤ Pr

(∣∣||ξk||RD − E||ξk||RD

∣∣≥ √
D
(

η

4
√

β
− 1

))

≤ exp

(
− D

2

(
η

4
√

β
− 1

)2
)

≤ exp

(
− D

2

)
.

�

Proof of theorem 3.6. We begin with part (ii). Let sb be as in theorem 3.3 and set η = ηN = sbN−b/2
as well as Q = QNC

√
N, where C is as in theorem 3.3. With those choices, lemma 4.9 (ii) implies
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that assumption 3.1 is fulfilled with c0 = κ/2, so long as β satisfies

β ≤ min

{
1
2

,
sbN−b

8C
√

N
,

cs2
bN−2b

4D

}
� N−2bD−1 � N−1−2b.

Hence, the desired result immediately follows from an application of theorem 3.3 (iv).
Part (i) of theorem 3.6 similarly follows from verifying assumption 3.1 with s ∈ (0, 1/3), Q from

theorem 3.2, η = s/2 and for small enough β < c1 (with c1 determined by lemma 4.9 (i)), and
subsequently applying theorem 3.2 (iv). �

(ii) Proofs for MALA

Theorem 3.7 is proved by verifying the hypotheses of theorems 3.2 and 3.3, respectively. A key
difference between pCN and MALA is that the proposal kernels for MALA, not just its acceptance
probabilities, depend on the data Z(N) itself. Again, we begin by examining part (ii) which regards
N(0, Σα) priors.

Proof of theorem 3.7, part (ii). We begin by deriving a bound for the gradient ∇ log π (·|Z(N)). For
Lebesgue-a.e. θ ∈ RD, recalling that vol(X ) = 1, we have that

EN
0 [∇�N(θ )] = −N

2
w′(||θ ||) θ

||θ || ||g||2L2

and

∇�N(θ ) = 1
2

N∑
i=1

(
εi −

√
w(||θ ||)g(Xi)

) w′(||θ ||)
2
√

w(||θ ||)
θ

||θ ||g(Xi),

= w′(||θ ||)
4
√

w(||θ ||)
θ

||θ ||
N∑

i=1

εig(Xi) − w′(||θ ||)
4

θ

||θ ||
N∑

i=1

g2(Xi).

For any r ∈ (0, t/2) ∪ (t/2, t) ∪ (t, L) ∪ (L, ∞), recalling the choices for T, t, ρ in (4.26) we see that

w′(r)√
w(r)

= 8Tr
2Tr

1(0,t/2)(r) + T√
w(r)

1(t/2,t)(r) + ρ√
w(r)

1(t,L)(r),

� 1 + Nb + 1, (4.32)

where, to bound the second and third term, we used that
√

w(r) ≥ Tt = tbTb > 0 is bounded away
from zero uniformly in N on (t/2, ∞). Similarly, we have

||w′||∞ ≤ Tt
2

+ T + ρ � Nb.

Combining the above and using Chebyshev’s inequality, it follows that

sup
θ∈RD

||∇�N(θ )||RD � Nb

(∣∣∣∣∣
N∑

i=1

εig(Xi)

∣∣∣∣∣+
N∑

i=1

g2(Xi)

)

≤ Nb

(
||g||∞

∣∣∣∣∣
N∑

i=1

εi

∣∣∣∣∣+
N∑

i=1

(g2(Xi) − ||g||2L2 ) + N||g||2L2

)

≤ Nb(OP(
√

N) + O(N))

=O(N1+b) + O(N1+b).

Thus, the event

A := { sup
θ∈RD

||∇�N(θ )||RD ≤ C′N1+b},
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for some large enough C′ > 0, has probability PN
0 (A) → 1 as N → ∞. We also verify that

∇ log π (θ ) = −1
2
∇θTΣ−1

α θ = −Σ−1
α θ , (4.33)

so that with Q = QN = C
√

N (for C as in theorem 3.3) and recalling that Σα = diag(1, . . . , D−2α),
we obtain

sup
||θ ||≤Q

||∇ log π (θ )||RD = sup
||θ ||≤Q

||Σ−1
α θ ||RD � D2α

√
N � N2α+1.

Now, let sb also be as in theorem 3.3 and set η = ηN = (1/2)sbN−b (note that this is a permissible
choice in theorem 3.3). Furthermore, for a small enough constant c > 0, let γ ≤ cN−1−2α−b. Then
since α > b, we also have that

γ � min{N−1−2α−b, N−1−2b, N−1/2−b}. (4.34)

Hence, on the event A and whenever ||θ ||RD ≤ Q,

γ ||∇ log π (ϑk|Z(N))||RD � γ (N1+b + N1+2α) � η.

Using this, (4.34) and choosing c > 0 small enough, conditional on the event A the probability Pr(·)
under the Markov chain satisfies

Pr
(
||pk+1 − ϑk|| ≥

η

2

)
≤ Pr

(
γ ||∇ log π (ϑk|Z(N))||RD ≥ η

4

)
+ Pr

(√
2γ ||ξk+1||RD ≥ η

4

)

≤ Pr

(
||ξk+1||RD ≥ η

4
√

2γ

)

≤ Pr
(||ξk+1||RD − E||ξk+1||RD ≥

√
N
)≤ exp

(
−N

2

)
,

where the last inequality is proved as in (4.31) above, using theorem 2.5.8 in [61]. Thus,
assumption 3.1 is satisfied with c0 = 1 and the proof is complete. �

Proof of theorem 3.7, part (i). The proof of part (i) proceeds along the same lines, except that (4.32)
and (4.33) are replaced with the bound∣∣∣∣

∣∣∣∣ w′
√

w

∣∣∣∣
∣∣∣∣ s∞ + ||w′||∞ < C,

for some constant C independent of N, as well as the bound

∇ log π (θ ) = −D
2

∇||θ ||2 = −Dθ , sup
||θ ||≤Q

||∇ log π (θ )||RD � NQ.

Then letting s ∈ (0, 1/3) and Q > 0 be as in theorem 3.2, and fixing an arbitrary η ∈ (0, s/2), the
above implies that for sufficiently small constant c > 0 and for any γ ≤ c/N, it holds that

Pr
(
||pk+1 − ϑk|| ≥

η

2

)
≤ Pr

(
γ ||∇ log π (ϑk|Z(N))||RD ≥ η

4

)
+ Pr

(√
2γ ξk+1 ≥ η

4

)

≤ Pr

(
ξk+1 ≥ η

4
√

2γ

)

≤ Pr

(
ξk+1 ≥ η

√
κD

4
√

2c

)
.

Thus, choosing c > 0 small enough and arguing exactly as in the last step of the proof of theorem
3.6, part (i), assumption 3.1 is satisfied with c0 = 1 and the proof is complete. �

Data accessibility. This article has no additional data.
Authors’ contributions. R.N.: conceptualization, writing—original draft; A.S.B.: conceptualization, writing—
original draft; A.M.: conceptualization, writing—original draft; S.W.: conceptualization, writing—original
draft.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 A

pr
il 

20
23

 



25

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220150

...............................................................

All authors gave final approval for publication and agreed to be held accountable for the work performed
therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. RN was supported by the EPSRC programme grant on Mathematics of Deep Larning, project:
EP/V026259.
Acknowledgements. R.N. would like to thank the Forschungsinstitut für Mathematik (FIM) at ETH Zürich for
their hospitality during a sabbatical visit in spring 2022 where this research was initiated.

Appendix A. Proofs of §2
Proof of corollary 2.4. We fix K = 1 and place ourselves under the event of proposition 2.3, and

we denote s = s(λ) and t = t(λ). We can decompose, since Π [Ss|Y] = 1 − Π [Ts|Y]:

Π (Ts|Y) =
[

1 + Π (Ss|Y)
Π (Ts|Y)

]−1

.

Moreover, Π (Ss|Y)/Π (Ts|Y) = Π (Ss|Y)/[Π (Tt|Y) + Π (Ws,t|Y)] ≤ Π (Ss|Y)/Π (Tt|Y). Using proposition
2.3, for n ≥ n0(λ, Y) we have Π (Ss|Y)/Π (Ts|Y) ≤ exp{−n}. Therefore, Π [Ts|Y] ≥ (1 + exp{−n})−1,
which ends the proof. �

Proof. The rest of this section is devoted to proving proposition 2.3. We use a uniform bound on
the injective norm of Gaussian tensors:

Lemma A.1. For all p ≥ 3 there exists a constant Cp, such that:

lim sup
n→∞

{
n−1/2 max

x∈Sn−1
|〈x⊗p, Z〉|

}
≤ Cp, almost surely. (A 1)

This lemma is a very crude version of much finer results: in particular the exact value of
the constant μp such that (w.h.p.) maxx∈Sn−1 |〈x⊗p, Z〉| = √

nμp(1 + On(1)) has been first computed
non-rigorously in [62], and proven in full generality in [63] (see also discussions in [33,34]). In the
rest of this proof, we assume to have conditioned on equation (A 1). For any 0 ≤ s < t ≤ 1, we have
for n ≥ n0(Y):

Π (Ss|Y)
Π (Tt|Y)

=
∫
Ss

exp(�Y(x)) dΠ (x)∫
Tt

exp(�Y(x)) dΠ (x)

≤ enλCp

∫
Ss

exp((n/2)λ2〈x, x0〉p) dΠ (x)∫
Tt

exp((n/2)λ2〈x, x0〉p) dΠ (x)
,

≤ exp

(
nλCp + nλ2

2
[sp − tp]

)
Π (Ss)
Π (Tt)

. (A 2)

We upper bound Π (Ss) ≤ Π (Sn−1) = 1. To lower bound Π (Tt), we use the elementary fact (which
is easy to prove using spherical coordinates):

Π (Tt) = cpI(1−t)/2

[
(n − 1)

2
,

(n − 1)
2

]
, (A 3)

in which Ix(a, b) = ∫x
0 ua−1(1 − u)b−1 du/

∫1
0 ua−1(1 − u)b−1 du is the incomplete beta function, and

cp = 1 for odd p and cp = 2 for even p. It is then elementary analysis (cf. e.g. [34]) that

lim
n→∞

1
n

log Π (Tt) = 1
2

log(1 − t2), (A 4)

uniformly in t ∈ [0, 1). Coming back to equation (A 2), this implies that we have, for any s < t < 1:

lim sup
n→∞

1
n

log
Π (Ss|Y)
Π (Tt|Y)

≤ λCp + λ2

2
[sp − tp] − 1

2
log(1 − t2). (A 5)
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Let K > 0. It is then elementary to see that it is possible to construct 0 ≤ s(λ) < t(λ) < 1 with
limλ→∞{s(λ), t(λ)} = 1, and such that the right-hand side of equation (A 5) becomes smaller than
−K as λ → ∞. �

Appendix B. Small ball estimates for isotropic Gaussians
Let Π =N (0, ID/D). In this section, we prove equation (4.30), more precisely we show:

Lemma B.1. Let a ∈ (0, 1). Then for all D ≥ D0(a) large enough, one has for all z ∈ (0, 1 − a):

− 1
D

log Π (||θ ||2 ≤ z) ≥ 1
2

(
z2

2
− log z − 1

2

)
. (B 1)

Proof of lemma B.1. Let f (x) = −x2/2 + log x + 1/2, so that f reaches its maximum in x = 1, with
f (1) = 0. By decomposition into spherical coordinates and isotropy of the Gaussian measure, one
has directly:

Π (||θ ||2 ≤ z) = vol(SD−1)
(2π/D)D/2

∫ z

0
dr e−(Dr2/2)+(D−1) log r. (B 2)

Recall that vol(SD−1) = 2πD/2/Γ (D/2), so one reaches easily:

cD = 1
D

log
vol(SD−1)
(2π/D)D/2 − 1

2
= log D

2D
+ O

(
1
D

)
. (B 3)

In particular, one has for all D large enough (not depending on z):

1
D

log Π (||θ ||2 ≤ z) ≤ 1
D

log
∫ z

0
dr e−(r2/2)+(D−1)f (r) + cD. (B 4)

Since f is increasing on (0, 1), we have for large enough D:

1
D

log Π (||θ ||2 ≤ z) ≤
(

1 − 1
D

)
f (z) + cD + 1

D
log

∫∞

0
dr e−r2/2, (B 5)

≤
(

1 − 1
D

)
f (z) + log D

D
. (B 6)

Since f (1 − a) < 0, let D ≥ D0(a) large enough such that f (1 − a) ≤ −2 log D/(D − 2). Then for all
z ≤ 1 − a, one has f (z) ≤ −2 log D/(D − 2). Plugging it in the inequality above, we reach that for all
z ∈ (0, 1 − a):

1
D

log Π (||θ ||2 ≤ z) ≤ 1
2

f (z). (B 7)

�
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