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ABSTRACT

The design of more complex and powerful deep neural networks has consis-
tently advanced the state-of-the-art in a wide range of tasks over time. In
the pursuit of increased performance, computational complexity is often
severely hindered, as seen by the significant increase in the number of
parameters, the required floating-point operations, and latency. While the
great advancements of deep neural networks increase the interest in their
use in downstream applications such as robotics and augmented reality,
these applications require computationally efficient alternatives. This
thesis focuses on the design of efficient deep neural networks, specifically,
improving performance given computational constraints, or decreasing
complexity with minor performance degradation.

Firstly, we present a novel convolutional operation reparameterization
and its application to multi-task learning. By reparameterizing the
convolutional operations, we can achieve comparable performance to
single-task models at a fraction of the total number of parameters.

Secondly, we conduct an extensive study to evaluate the efficacy of
self-supervised tasks as auxiliary tasks in a multi-task learning framework.
We find that jointly training a target task with self-supervised tasks
can improve performance and robustness, commonly outperforms labeled
auxiliary tasks, while not requiring modifications to the architecture used
at deployment.

Thirdly, we propose a novel transformer layer for efficient single-object
visual tracking. We demonstrate that the performance of real-time single-
object trackers can be significantly improved without compromising la-
tency, while consistently outperforming alternative transformer layers.

Finally, we investigated the efficacy of adapting interest point detec-
tion and description neural networks for use in computationally limited
platforms. We find that mixed-precision quantization of network compo-
nents, coupled with a binary descriptor normalization layer, yields minor
performance degradations while improving the size of sparse 3D maps,
matching speed, and inference speed by at least an order of magnitude.

To conclude, this thesis focuses on the design of deep neural networks
given computational limitations. With an increasing interest and demand
for efficient deep networks, we envision the presented work will pave
the way towards even more efficient methods, bridging the gap with
better-performing alternatives.
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ZUSAMMENFASSUNG

Die Entwicklung komplexerer und leistungsfähigerer tiefer neuronaler
Netze hat den Stand der Technik bei einer Vielzahl von Aufgaben im
Laufe der Zeit immer weiter verbessert. Jedoch wird das Streben nach
höherer Leistung oft durch die Komplexität der Berechnungen stark be-
hindert, was sich in einer erheblichen Zunahme der Anzahl der Parameter,
der erforderlichen Gleitkommaoperationen und der Latenzzeit zeigt. Ob-
wohl die grossen Fortschritte der tiefen neuronalen Netze das Interesse
an ihrem Einsatz in Anwendungen wie Robotik und Augmented Reali-
ty erhöhen, erfordern diese Anwendungen recheneffiziente Alternativen.
Diese Arbeit befasst sich mit dem Entwurf effizienter tiefer neuronaler
Netze, insbesondere mit der Verbesserung der Leistung bei begrenztem
Rechenaufwand oder mit der Verringerung der Komplexität bei geringerer
Leistungseinbusse.

Zunächst stellen wir eine neuartige Umparametrisierung von Faltungs-
operationen und ihre Anwendung für das Multi-Task-Lernen vor. Durch
die Umparametrisierung der Faltungsoperationen können wir mit einem
Bruchteil der Gesamtzahl der Parameter eine vergleichbare Leistung wie
bei Single-Task-Modellen erzielen.

Zweitens führen wir eine umfassende Studie durch, um die Wirksamkeit
von selbstüberwachten Aufgaben als Hilfslernsignale in einem Multi-
Task-Lernsystem zu erfassen. Wir stellen fest, dass das gemeinsame
Training einer Zielaufgabe mit selbstüberwachten Aufgaben die Leistung
und Robustheit verbessern kann und in der Regel besser abschneidet
als gelabelte Hilfsaufgaben, ohne dass Änderungen an der verwendeten
Architektur erforderlich sind.

Drittens schlagen wir eine neuartige Transformatorschicht für das ef-
fiziente visuelle Tracking von Einzelobjekten vor. Wir zeigen, dass die
Leistung von Echtzeit-Einzelobjekt-Trackern erheblich verbessert werden
kann, ohne deren Latenz zu beeinträchtigen. Zugleich schneidet unsere
Transformatorschicht durchgehend besser ab als alternative Transforma-
torschichten.

Schließlich untersuchen wir Anpassungen von neuronalen Erkennungs-
und Beschreibungsnetzwerken für den Einsatz auf rechenschwachen Platt-
formen. Wir stellen fest, dass die Quantisierung der Netzkomponenten
mit gemischter Genauigkeit in Verbindung mit einer binären Deskriptor-
Normalisierungsschicht zu geringen Leistungseinbussen führt und gleich-
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zeitig die Größe, Anpassungsgeschwindigkeit und Inferenzgeschwindigkeit
des 3D-Modells um mindestens eine Grössenordnung verbessert.

Zusammengefasst formuliert, konzertriet sich diese Arbeit auf den
Entwurf von tiefen neuronalen Netzen bei begrenzter Rechenleistung.
Angesichts des zunehmenden Interesses und der Nachfrage nach effizienten
tiefen Netzen gehen wir davon aus, dass die vorgestellte Arbeit den Weg
zu noch effizienteren Methoden ebnen und die Lücke zu leistungsfähigeren
Alternativen schließen wird.
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1
INTRODUCTION

The automatic visual perception and understanding of the physical world,
through the use of computers, is a fundamental goal in computer vision
research. Inspired by the human visual system, computer vision research
aims to build algorithms that can utilize visual inputs, such as images, and
enable machines to gain a high-level understanding of the visual input’s
content. To that extent, research is focused on the automatic extraction,
analysis and understanding of important and useful information.

Initial attempts to computer vision date back to the work of Lawrence
Roberts [Rob63], however, it was not until the seminal work of David
Marr that the field observed significant improvements [Mar76; Mar82].
Marr’s framework follows a bottom-up approach to scene understanding,
where low-level cues, such as corners and edges, are utilized as building
blocks towards the goal of attaining higher-level information. One of the
earliest and most prominent example of this framework is the coupling
of the Canny edge detector [Can86] with the Hough transform [Bal81]
to obtain shape information, such as lines and circles. The continu-
ous success of utilizing low-level cues on a wide variety of tasks such
as stereo matching [Mor81], motion tracking [HS+88; Har93], image
matching [Zha+95] and image retrieval [SM97], sparked the interest for
more powerful and descriptive low-level features. Some of the most well
known handcrafted feature extractors include SIFT [Low04], HOG [DT05],
and SURF [BTG06]. Combining these features with machine learning
methods, like SVM [CV95], has made the more challenging high-level
task of image classification feasible [Csu+04; SWP05]. Nevertheless, the
manually designed nature of such features make them sub-optimal when
the design assumptions do not hold.

Inspired by the limitation of handcrafted feature extractors, Deep Neu-
ral Networks (DNNs) aim to jointly learn the bottom-up feature extractor
and the prediction head, such as the classifier, by directly optimizing
for the desired behaviour [LBH15]. DNNs are based on a composition
of linear functions, non-linear activation functions, and pooling opera-
tions. These models are optimized using a cost function that captures
the desired output behaviour, such as cross-entropy for classification,
and large scale datasets. The computer vision community has heavily

1



2 introduction

adopted the use of DNNs, in particular Convolutional Neural Networks
(CNNs) [LeC+89], since Krizhevsky et al. [KSH12] won the ImageNet
classification challenge [Rus+15], outperforming the methods utilizing
traditional handcrafted feature extractors by a large margin. Since then,
CNNs have not only been utilized to improve image classification [SZ15;
Sze+15; Sze+16; He+16; ZK16], but also a wide range of tasks. Such
tasks include, but are not limited to, semantic segmentation [YK16a;
Che+17; Zha+17; Yu+18; Che+18a], human pose estimation [NYD16;
Cao+17; Sun+19; Cao+19], monocular depth estimation [Zho+17; Fu+18;
God+19], object detection [Gir+14; Gir15; Ren+15; Red+16], and visual
object tracking [Ber+16; Bha+19].
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Figure 1.1: Progress on the ImageNet
classification bench-
mark [Rus+15] over time,
as reported on [PWC].
Consistent improvements
can be observed over the
years.

In an attempt to improve the
representational capabilities of
CNNs, networks became deeper
[SZ15; He+16], wider [ZK16;
Sun+19], or even replaced the con-
volutional operations with more
descriptive alternatives [Dos+21;
Tol+21]. We depict the progress
on the ImageNet classification
benchmark [Rus+15] over time in
Fig. 1.1 a. As seen, consistent
performance improvements have
been reported over the years, how-
ever, these advances often come
at the cost of increased computa-
tional complexity, such as the num-
ber of parameters (Fig. 1.2a) and
the number of FLOPs (Fig. 1.2b).
To an extent, these advances pri-
marily require high-end Graphics
Processing Units (GPUs) and Ten-
sor Processing Units (TPUs), often
found on cloud servers.

a We utilize the benchmark of [PWC], and report the best performing models that
include Top1 accuracy, number of parameters and number of Floating-Point Op-
erations (FLOPs). Specifically, we report the performance of AlexNet [KSH12],
GoogLeNet [Sze+15], ResNet50/101 [He+16], ResNeXt101 [Xie+17], PNASNet-5
[Liu+18a], AmoebaNet-A [Rea+19], FixEfficientNet-L2 [Tou+19], ViT-H/14 [Dos+21],
NFNet-F4+ [Bro+21], CoAtNet-7 [Dai+21], ViT-G/14 [Zha+22].
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Figure 1.2: We depict the change to the number of parameters, in Millions (M),
and the number of Giga (G) FLOPs over time for the models in
Fig. 1.1. As seen, in an attempt to increase the performance, the
number of parameters and FLOPs consistently increases as well.

The great advancement in DNNs has further sparked interest in their
use in robotics, Augmented Reality (AR), Virtual Reality (VR), self-
driving cars, Internet of Things (IoT), and mobile phones [Sar+22].
However, cloud computing limitations prohibit its use for inference in such
applications. Firstly, an unstable or lost internet connection makes the
use of cloud processing impossible. Secondly, the prohibition of processing
and storing sensitive data under data protection reculations, such as the
General Data Protection Regulation (GDPR) [Cus+19]. Finally, as the
number of users for any device or service increases, cloud servers are
required to address the increased data transmission to and from the
devices, as well as the increased processing demand, making it infeasible
and cost-ineffective. To alleviate these problems, the aforementioned
applications rely on on-board processing, referred to as edge computing.
The on-board processing of DNNs addresses all of the limitations of
cloud computing and has the potential to provide a deterministic and
real-time experience [DD17]. However, unlike cloud servers, mainframes
and workstations, embedded platforms have limited storage, memory,
computational power, battery life, and often require faster and smaller
software updates. These limitations can be, at part, addressed by a
combination of the following methods, depending on the device-specific
constraints:
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Topological optimizations Topological optimizations aim to improve
accuracy-per-operation or accuracy-per-parameter by changing the net-
work’s architecture. Notable examples include MobileNets [How+17;
San+18; How+19], ShuffleNets [Zha+18a; Ma+18], EfficientNets [TL19;
TL21], amongst others [Gho+18; Hua+18; Zop+18; Liu+18a; LSY18;
Rad+20]

Hardware-aware optimizations Embedded platforms commonly pro-
vide limited or even no support for Full Precision (FP) arithmetics. Fur-
thermore, they are often optimized to execute SIMD (Single Instruction,
Multiple Data) Integer (Int) arithmetics [Ign+18]. While standard deep-
learning libraries utilize 32-bit FP representations [Pas+19; Mar+15],
the need for Int representations calls for Quantized Neural Networks
(QNNs). By replacing FP with Int operands, QNNs reduce their storage
and memory requirements with respect to equivalent DNNs, while com-
plex FP arithmetic can be replaced by simpler Int arithmetics. Due to
these properties, QNNs can be executed at higher throughput (number
of operations per cycle) and arithmetic intensity (number of arithmetic
operations per memory transaction) [CBD15; KS15; Ras+16; LZP17;
Zhu+17; Liu+18b; Jac18; Nag+19; LS20].

Knowledge distillation Starting from a large model, referred to as
“teacher”, the aim is to transfer the knowledge to a smaller model, referred
to as “student”, that is more deployment friendly [HVD15]. Specifically,
this can include knowledge transfer between models of the same archi-
tecture family, from ResNet-101 [He+16] to ResNet-50 [He+16], but
also different architectures, such as from ResNet-101 [He+16] to a Mo-
bileNet [How+17]. Knowledge distillation can be seen as a function
matching between the two networks, and has demonstrated great re-
sults in practice [HVD15; Rom+15; TV17; MM18; CH19; SS20; Xie+20;
Bey+22]

Model pruning and decomposition Motivated by the over-parameteri-
zation of DNNs, pruning methods aim to identify and eliminate the redun-
dant operations from the network. This can include pruning independent
neurons [Han+15; HMD16], but often entire filters for new kernel with a
regular shape [Li+17; Gor+18; Yan+18]. Similar to pruning, decomposi-
tion methods replace the existing filters with low-rank approximations.
This can be on the two dimensional filters [Den+14; JVZ14; Zha+15],
or the CNNs weight tensors [Ose11; Nov+15; Su+18; Leb+15; Kim+16;
Gar+16; WAA17; Wan+18a].



1.1 thesis overview 5

Multi-task learning The methods discussed so far focus on learning
a single network per task. In a different direction, Multi-Task Learning
(MTL) focuses on learning multiple tasks with a single network. MTL was
originally proposed with the primary focus of improving the performance
of a target task, by utilizing the training signal of additional related
tasks as an inductive bias [Car97]. However, the bottom-up approach of
neural networks has enabled the sharing of parameters and computing
amongst different tasks, making them a great framework to not only
increase task performance [Mis+16; Xu+18; Ran+19; Hoy+21; Bru+21]
but also decrease the total number of parameters and FLOPs [Kok17;
RBV17; BV17; RPC17; RBV18; MRK19; Bru+20; Sta+20].

1.1 thesis overview

The aim of this thesis is to design computationally efficient deep neural
networks, such as improving performance given computational constraints
or decreasing complexity with minor performance degradation. Specifi-
cally, the thesis is divided into the following chapters:

Chapter 2 Devices such as mobile phones must often be capable of
making predictions for a number of different tasks. This calls for a
large number of highly specialized single-task networks, increasing the
total number of parameters to be stored. This can be alleviated by
a multi-task network, however, two common challenges in developing
multi-task models are often overlooked. First, enabling the model to
be inherently incremental, continuously incorporating information from
new tasks without forgetting the previously learned ones, referred to as
incremental learning. Second, adverse interactions amongst tasks can
significantly degrade the single-task performance in a multi-task setup.
In Chapter 2, we demonstrate that both can be achieved simply by repa-
rameterizing the convolutions of standard neural network architectures
into a non-trainable shared part (filter bank), and task-specific parts
(modulators), where each modulator has a fraction of the filter bank
parameters. Thus, our reparameterization enables the model to learn new
tasks without adversely affecting the performance of existing ones. This
enables the more efficient use of the device’s storage space. Furthermore,
it also allows for faster and smaller software updates, where new tasks can
simply be added through task-specific modulators while maintaining the
existing filter bank. The content of this chapter is based on the following
publication:
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— Menelaos Kanakis, David Bruggemann, Suman Saha, Stamatios
Georgoulis, Anton Obukhov, and Luc Van Gool, “Reparameterizing
Convolutions for Incremental Multi-Task Learning without Task
Interference”, ECCV, 2020 [Kan+20].

Chapter 3 Improving accuracy-per-operation or accuracy-per-parameter
is key when dealing with limited computational constraints. While topo-
logical optimizations aim to do so through the design of novel architectures,
MTL utilizes a fixed architecture and aims to improve model performance
and generalization on a target task by jointly optimizing it with an aux-
iliary task. However, the current practice requires additional labeling
efforts for the auxiliary task, while not guaranteeing better model per-
formance. In Chapter 3, we investigate and find that jointly training a
dense prediction (target) task with a self-supervised (auxiliary) task can
consistently improve the performance of the target task, while eliminating
the need for labeling auxiliary tasks. We refer to this joint training
as Composite Learning (CompL). Experiments of CompL on monocu-
lar depth estimation, semantic segmentation, and boundary detection
show consistent performance improvements in fully and partially labeled
datasets. Further analysis on depth estimation reveals that joint training
with self-supervision outperforms most labeled auxiliary tasks. We also
find that CompL can improve model robustness when the models are
evaluated in new domains. This enables the improvement of the accuracy-
per-operation and accuracy-per-parameter Pareto fronts without the need
of adapting the neural network architecture deployed. The content of
this chapter is based on the following publication:

— Menelaos Kanakis, Thomas E. Huang, David Bruggemann, Fisher
Yu, and Luc Van Gool, “Composite Learning for Robust and Effec-
tive Dense Predictions”, WACV, 2023 [Kan+23].

Chapter 4 Similar to Fig. 1.2, the design of more complex and powerful
neural network models has significantly advanced the state-of-the-art in
visual object tracking. However, in the pursuit of increased tracking per-
formance, runtime is often hindered, while efficient tracking architectures
have received surprisingly little attention. In Chapter 4, we introduce the
Exemplar Transformer, a transformer module utilizing a single instance
level attention layer for realtime visual object tracking. E.T.Track, our
visual tracker that incorporates Exemplar Transformer modules, runs at
47 FPS on a CPU. This is up to 8× faster than other transformer-based
models. When compared to lightweight trackers that can operate in
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realtime on standard CPUs, E.T.Track consistently outperforms all other
methods. The content of this chapter is based on:

— Philippe Blatter*, Menelaos Kanakis*, Martin Danelljan, and Luc
Van Gool, “Efficient Visual Tracking with Exemplar Transformers”,
WACV, 2023 [Bla+23]1 .

Chapter 5 Computationally limited platforms such as robots, mobile,
and AR devices rely on efficient and accurate localization and mapping in
3D space. Such systems still rely on traditional hand-crafted methods for
efficient generation of lightweight descriptors, a common limitation of the
more powerful neural network models that come with high computing
and specific hardware requirements. In Chapter 5, we focus on the
adaptations required by detection and description neural networks to
enable their use in computationally limited platforms. To that end,
we investigate and adapt network quantization techniques to accelerate
inference and enable its use on compute limited platforms. In addition,
we revisit common practices in descriptor quantization and propose the
use of a binary descriptor normalization layer, enabling the generation of
distinctive binary descriptors with a constant number of ones. ZippyPoint,
our efficient quantized network with binary descriptors, improves the
network runtime speed, the descriptor matching speed, and the size of
sparse 3D models, by at least an order of magnitude when compared
to full-precision counterparts. These improvements come at a minor
performance degradation. The content of this chapter is based on the
following pre-print:

— Menelaos Kanakis*, Simon Maurer*, Matteo Spallanzani, Ajad
Chhatkuli, and Luc Van Gool, “ZippyPoint: Fast Interest Point
Detection, Description, and Matching through Mixed Precision
Discretization”, arXiv preprint arXiv:2203.03610, 2022 [Kan+22]2 .

* Equal contribution.
1 The primary technical contributions of Kanakis M. include the idea and first
implementation of the Exemplar Attention layer.
2 The primary technical contributions of Kanakis M. include the idea and implemen-
tation of the Binary Normalization (Bin.Norm) layer, and the layer partitioning and
traversal strategy.





2
REPARAMETERIZ ING CONVOLUTIONS FOR
MULTI -TASK LEARNING

Multi-task networks are commonly utilized to alleviate the need for a
large number of highly specialized single-task networks. However, two
common challenges in developing multi-task models are often overlooked
in literature. First, enabling the model to be inherently incremental,
continuously incorporating information from new tasks without forgetting
the previously learned ones (incremental learning). Second, eliminating
adverse interactions amongst tasks, which has been shown to significantly
degrade the single-task performance in a multi-task setup (task inter-
ference). In this chapter, we show that both can be achieved simply
by reparameterizing the convolutions of standard neural network archi-
tectures into a non-trainable shared part (filter bank) and task-specific
parts (modulators), where each modulator has a fraction of the filter bank
parameters. Thus, our reparameterization enables the model to learn
new tasks without adversely affecting the performance of existing ones.
The results of our ablation study attest the efficacy of the proposed repa-
rameterization. Moreover, our method achieves state-of-the-art on two
challenging multi-task learning benchmarks, PASCAL-Context [Mot+14]
and NYUD [Sil+12], and also demonstrates superior incremental learning
capability as compared to its close competitors.

2.1 introduction

Over the last decade, CNNs have been established as the standard ap-
proach for many computer vision tasks, like image classification [KSH12;
SZ15; He+16], object detection [Gir+14; Red+16; Liu+16], semantic
segmentation [LSD15; Che+17; Zha+17], and monocular depth estima-
tion [EPF14; Lai+16]. Typically, these tasks are handled by CNNs
independently, i.e., a separate model is optimized for each task, resulting
in several task-specific models (Fig. 2.1a). However, real-world prob-
lems are more complex and require models to perform multiple tasks
on-demand without significantly compromising each task’s performance.
For example, an interactive advertisement system tasked with displaying
targeted content to its audience should be able to detect the presence

9
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Convolution for Task 2

Convolution for Task 1

(a) Single-Task setup

Shared Convolution

Shared Convolution

(b) Multi-Task setup

RCM for Task 1

RCM for Task 2

(c) RCM setup (ours)

Figure 2.1: (a) Optimizing independent models per task allows for the easy
addition of new tasks, at the expense of a multiplicative increase in
the total number of parameters with respect to a single model (green
and blue denote task-specific parameters). (b) A single backbone
for multiple tasks must be meaningful to all, thus, all tasks interact
with the said backbone (black indicates common parameters). (c)
Our proposed setup, RCM (Reparameterized Convolutions for Multi-
task learning), uses a pre-trained filter bank (depicted in black) and
independently optimized task-specific modulators(depicted in blue
or green) to adapt the filter bank on a per-task basis. New task
addition is accomplished by training the task-specific modulators,
thus explicitly addressing task interference, while the additional
parameters required are a fraction of those needed for completely
task-specific convolutions.

of humans in its viewpoint effectively, estimate their gender and age
group, recognize their head pose, etc. At the same time, there is a need
for flexible models able to gradually add more tasks to their knowledge,
without forgetting previously known tasks or having to re-train the whole
model from scratch. For instance, a car originally deployed with lane
and pedestrian detection functionalities can be extended with depth
estimation capabilities post-production.

When it comes to learning multiple tasks under a single model, MTL
techniques [Car97; Rud17] have been employed in the literature. On the
one hand, encoder-focused approaches [Mis+16; Kok17; Lu+17; DZ17;
Nev+17; LJD19; Bra+19; Van+20; Bru+20] emphasize learning fea-
ture representations from multi-task supervisory signals by employing
architectures that encode shared and task-specific information. On the
other hand, decoder-focused approaches [Xu+18; Zha+18b; Zha+19d;
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VGG20; Bru+21] utilize the multi-task feature representations learned
at the encoding stage to distill cross-task information at the decoding
stage, thus refining the original feature representations. In both cases,
however, the joint learning from multiple supervisory signals (i.e., tasks)
can hinder the individual task performance if the associated tasks point
to conflicting gradient directions during the update step of the shared
feature representations (Fig. 2.1b). Formally this is known as task in-
terference or negative transfer and has been well documented in the
literature [Kok17; Zha+18c; MRK19]. To suppress negative transfer,
several approaches [Che+18b; KGC18; Sin+18; Guo+18; Zha+18c; SK18;
MRK19] dynamically re-weight each task’s loss function or re-order the
task learning, to find a ‘sweet spot’ where individual task performance
does not degrade significantly. Arguably, such approaches mainly focus
on mitigating the negative transfer problem in the MTL architectures
above, rather than eliminating it, as demonstrated in Sec. 2.3.2. At the
same time, existing works seem to disregard the fact that MTL models
are commonly desired to be incremental, i.e., information from new tasks
should be continuously incorporated while existing task knowledge is
preserved. In existing works, the MTL model has to be re-trained from
scratch if the task dictionary changes; this is arguably sub-optimal.

Recently, task-conditional networks [MRK19] emerged as an alterna-
tive for MTL, inspired by work in multi-domain learning [BV17; RBV17;
RBV18]. That is, performing separate forward passes within an MTL
model, one for each task, every time activating a set of task-specific
responses on top of the shared responses. In practice, task-conditional
networks behave similar to single task networks. Unlike single task net-
works, the addition of a new task can be accomplished with a smaller
increase in the total number of parameters since, rather than requiring
a new single task model, it instead only required the task-specific mod-
ulators. This makes task-conditional networks a candidate for use on
computational limited platforms where the available storage space cannot
hold all single task models due to a large total number of parameters.
However, the proposed architecture in [MRK19] is prone to task interfer-
ence due to the inherent presence of shared modules, which is why the
authors introduced an adversarial learning scheme on the gradients to
minimize the performance degradation. Moreover, the model needs to be
trained from scratch if the task dictionary changes, limiting its use for
Incremental Learning (IL).

Existing works primarily focus on either improving the multi-task
model’s performance, or reducing the number of parameters and compu-
tations in the MTL model. In this chapter, we take a different route and



12 reparameterizing convolutions for multi-task learning

explicitly tackle the problems of IL and task interference in MTL. We
show that both problems can be addressed simply by reparameterizing
the convolutional operations of a neural network. In particular, building
upon the task-conditional MTL direction, we propose to decompose each
convolution into a shared part that acts as a filter bank encoding com-
mon knowledge, and task-specific modulators that adapt this common
knowledge uniquely for each task. Fig. 2.1c illustrates our approach,
Reparameterized Convolutions for Multi-task learning (RCM). Unlike
existing works, the shared part in our case is not trainable to explicitly
avoid negative transfer. Most notably, as any number of task-specific
modulators can be introduced in each convolution, our model can incre-
mentally solve more tasks without interfering with the previously learned
ones. Our results demonstrate that the proposed RCM can outperform
state-of-the-art methods in MTL and IL. Furthermore, we address the
common MTL challenge of task interference by construction. Specifically,
by ensuring tasks are able to only optimize their task-specific components
and are unable to interact with the other tasks.

2.2 related work

Multi-Task Learning (MTL) aims at developing models that can
solve a multitude of tasks [Car97; Rud17]. In computer vision, MTL ap-
proaches can roughly be divided into encoder-focused and decoder-focused
ones. Encoder-focused approaches primarily emphasize on architectures
that can encode multi-purpose feature representations through super-
vision from multiple tasks. Such encoding is typically achieved, for
example, via feature fusion [Mis+16], branching [Kok17; Nev+17; Lu+17;
Van+20; Bru+20], self-supervision [DZ17], attention [LJD19], or filter
grouping [Bra+19]. Decoder-focused approaches start from the feature rep-
resentations learned at the encoding stage, and further refine them at the
decoding stage by distilling information across tasks in a one-off [Xu+18],
sequential [Zha+18b], recursive [Zha+19d], multi-scale [VGG20], or even
with the use of more powerful transformer layers [Bru+21]. Due to the
inherent layer sharing, the approaches above typically suffer from task
interference. Several works proposed to dynamically re-weight the loss
function of each task [Che+18b; KGC18; Sin+18; SK18], sort the order of
task learning [Guo+18], or adapt the feature sharing between related and
unrelated tasks [Zha+18c], to mitigate the effect of negative transfer. In
general, existing MTL approaches have primarily focused on improving
multi-task performance or reducing the network parameters and com-



2.2 related work 13

putations. Instead, in this chapter, we look at the largely unexplored
problems of incremental learning and negative transfer in MTL models
and propose a principled way to tackle them, while additionally reducing
the total number of parameters.

Incremental Learning (IL) is a paradigm that attempts to augment
the existing knowledge by optimizing on new data. IL is often used,
for example, when aiming to add new classes [Reb+17] to an existing
model, or learn new domains [LH17]. It aims to mitigate ‘catastrophic
forgetting’ [Fre99], the phenomenon of forgetting old tasks as new ones
are learned. To minimize the loss of existing knowledge, Li et al. [LH17]
optimized the new task while preserving the old task’s responses. Other
works [Kir+17; Lee+17] constrained the optimization process to minimize
the effect learning has on weights important for older tasks. Rebuffi
et al. [Reb+17] utilized exemplars that best approximate the mean of the
learned classes in the feature space to preserve performance. Note that
the performance of such techniques is commonly upper bounded by the
joint training of all tasks. More relevant to our work, in a multi-domain
setting, a few approaches [RBV17; RBV18; RT18; MDL18] utilize a
pre-trained network that remains untouched, and instead learn domain-
specific components that adapt the behavior of the network to address
the performance drop common in IL techniques. Inspired by this research
direction, we investigate the training of parts of the network, while keeping
the remaining components constant from initialization amongst all tasks.
This technique not only addresses catastrophic forgetting but also task
interference, which is crucial in MTL.

Decomposition of filters and tensors within CNNs has been explored in
the literature primarily in an attempt to compress neural networks,
or reducing their inference time. Techniques utilized include filter-
wise decomposition into a product of low-rank filters [JVZ14], filter
groups [Pen+18], a basis of filter groups [Li+19b], amongst others. In
contrast, tensor-wise examples include SVD decomposition [Den+14;
Zha+15], CP-decomposition [Leb+15], Tucker decomposition [Kim+16],
Tensor-Train decomposition [Ose11], Tensor-Ring decomposition [Zha+16],
T-Basis [Obu+20], etc. Instead, we decompose each convolutional op-
eration into two components: a shared and a task-specific part. Note
that although we utilize the SVD decomposition for simplicity, the same
principles hold for other decomposition types too.
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Figure 2.2: (a) A standard convolutional module for a given task i, with task-
specific weights W i in orange. (b) A Reparameterized Convolution
(RC) consisting of a shared filter bank Ws in black, and task-specific
modulator W i

t in orange. (c) An RC with Normalized Feature
Fusion (NFF), consisting of a shared filter bank Ws in black, and
task-specific modulator W i

t in orange. Each row wi
t of W i

t is repa-
rameterized as git · vi

t/ ∥ vi
t ∥.

2.3 reparameterizing cnns for multi-task learning

In this section, we present techniques to adapt a convolutional operation,
such that the CNN can increasingly learn new tasks in an MTL setting
while scaling more efficiently than the alternative of optimizing single-
task models. Sec. 2.3.1 introduces the problem formulation. Sec. 2.3.2
discusses the adverse effect of task interference in MTL and motivates the
importance of CNN reparameterization. Sec. 2.3.3 presents techniques to
reparameterize convolutional operations and limit the parameter increase
with respect to task-specific models.

2.3.1 Problem Formulation

Given P tasks and input tensor x, we aim to learn a function f(x;Ws,W
i
t )

= yi that holds for task i = 1, 2, . . . P , where Ws and W i
t are the

shared and task-specific parameters, respectively. Unlike existing ap-
proaches [Lu+17; Mis+16] which learn such functions f(·) on the layer
level of the network, i.e., explicitly designing shared and task-specific
layers, we aim to learn f on a block-level by reparameterizing the convo-
lutional operation, and adapting its behaviour conditioned on the task
i, as depicted in Fig. 2.2b and Fig. 2.2c. By doing so, we can explicitly
address the task interference and catastrophic forgetting problems within
an MTL setting.
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Figure 2.3: Visualization of the Representation Similarity Analysis (RSA)
on the task-specific gradients at different depths of a ResNet-26
model [MRK19]. The analysis was conducted on: human parts
segmentation (Parts), semantic segmentation (SemSeg), saliency
estimation (Sal), normals estimation (Normals), and edge detection
(Edge).

2.3.2 Task Interference

To motivate the importance of addressing task interference by construc-
tion, we analyze the task-specific gradient directions on the shared mod-
ules of a state-of-the-art MTL model. Specifically, we utilize the work of
[MRK19], who used a discriminator to enforce indistinguishable gradients
amongst tasks.

We acquire the gradients from the training dataset of PASCAL-Context
[Mot+14] for each task, using minibatches of size 128, yielding 40 mini-
batches. We then use the Representation Similarity Analysis (RSA),
proposed in [DR19] for transfer learning, as a means to quantify the
correlation of the gradients amongst the different tasks. Fig. 2.3 de-
picts the task gradient correlations at different depths of a ResNet-26
model [He+16], trained to have indistinguishable gradients in the output
layer [MRK19]. It can be seen that there is a limited gradient correla-
tion amongst the tasks, demonstrating that addressing task interference
indirectly (here with the use of adversarial learning on the gradients) is
a very challenging problem. We instead follow a different direction and
propose to utilize reparameterizations with shared components amongst
different tasks that are untouched during the training process, and each
task being able to optimize only its task-specific parameters. As such,
task interference is eliminated by construction.
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2.3.3 Reparameterizing Convolutions

We define a convolutional operation f(x;w) = y for the single-task
learning setup, depicted in Fig. 2.2a. w ∈ Rk2cin denotes the parameters
of a single convolutional layer with a kernel size k and cin channels. We
omit the bias to simplify notation. x ∈ Rk2cin is the input tensor volume
at a given spatial location, and y is the scalar response. Note that both
x and w are expressed in vector notation. Assuming cout such filters, the
convolutional operator can be rewritten in matrix notation as f(x;W ) =
y, where y ∈ Rcout provides cout responses, and W ∈ Rcout×k2cin . In a
single-task setup:

f(x;W 1) = y1, . . . , f(x;WP ) = yP (2.1)

where W i and yi are the task-specific parameters and responses for a
given convolutional layer, respectively. The total number of parameters
for this setup is Pk2cincout. Our goal is to reparameterize f(·) in Eqn. 2.1
as:

f(x;W i) = h(x;Ws,W
i
t ), ∀i = 1, . . . , P (2.2)

using a set of shared (Ws ∈ Rcout×k2cin) and task-specific (W i
t ∈ Rcout×cout)

parameters for each convolutional layer of the backbone. Our formulation
aims to retain the prediction performance of the original convolutional
layer (Eq. 2.1), while simultaneously reducing the rate in which the to-
tal number of parameters grows. The total number of parameters now
becomes (k2cin + Pcout)cout, which is less than Pk2cincout for standard
layers. We argue that this reparameterization is necessary for coping with
task interference and incremental learning in an MTL setup, in which we
only optimize for task-specific parameters W i

t , while keeping the shared
parameters Ws intact. Note that, when adding a new task i = ω, we do
not need to train the entire network from scratch as in [MRK19]. We
only optimize Wω

t for each layer of the reparameterized CNN.
We denote our reparameterized convolutional layer as a matrix multi-

plication between the two sets of parameters: W i
tWs. In order to find a

set of parameters W i
tWs that approximates the single-task weights W i a

natural choice is to minimize the Frobenius norm ∥W i
tWs−W i∥F directly.

Even though direct minimization of this metric is appealing due to its
simplicity, it poses some major caveats. Firstly, it assumes all directions
in the parameter space affect the final performance for task i in the same
way and are thus penalized uniformly. However, two different solutions
for W i

t with the same Frobenius norm can yield drastically different
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losses. Secondly, this approximation is performed independently for each
convolutional layer, neglecting the chain effect an inaccurate prediction
in one layer can have in the succeeding layers. In the remainder of this
section, we propose a different technique to address these limitations.

Reparameterized Convolution (RC) We implement the Reparam-
eterized Convolution (RC) W i

tWs as a stack of two 2D convolutional
layers without a non-linearity in between, with Ws having a spatial filter
size k and W i

t being a 1× 1 convolution (Fig. 2.2b). We optimize only
W i

t directly on the task-specific loss function using stochastic gradient
descent while keeping the shared weights Ws constanta. This ensures that
training for one task is independent of other tasks, ruling out interference
amongst tasks while optimizing the metric of interest.

Normalized Feature Fusion (NFF) One can view wi
t, a row in

matrix W i
t , as a soft filter adaptation mechanism, i.e., a modulator which

generates new task-specific filters from a given filter bank Ws, depicted in
Fig. 2.2b. However, instead of training the vector wi

t directly, we propose
its reparameterization into two terms, a vector term vi

t ∈ Rcout , and a
scalar term git as:

wi
t = git

vi
t

∥ vi
t ∥

, (2.3)

where ∥ · ∥ denotes the Euclidean norm. We refer to this reparame-
terization as Normalized Feature Fusion (NFF), depicted in Fig. 2.2c.
NFF provides an easier optimization process in comparison to an uncon-
strained wi

t. This reparametrization enforces vi
t/∥ vi

t ∥ to be unit length
and point in the direction which best merges the filter bank. The vector
norm ∥ wi

t ∥= git learns independently the appropriate scale of the newly
generated filters, and thus the scale of the activation. Directly optimizing
wi

t attempts to learn both jointly, which is a harder optimization problem.
Normalizing weight tensors has been generally explored for speeding up
the convergence of the optimization process [Dau+17; SK16; SS05]. In
our work, we use it differently and demonstrate empirically that such a
reparameterization in series with a filter bank also improves performance
in the MTL setting. As seen in Eq. 2.3, wi

t is replaces by git and vi
t, how-

ever, wi
t can be computed after training and used directly for deployment,

eliminating additional overhead.

a To ensure compliance with ImageNet [Den+09] initialization, the new architecture
is first pre-trained on ImageNet using the publicly available training script from
PyTorch [Pas+19].
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Response Initialization (RI) We build upon the findings of ma-
trix/tensor decomposition literature [Den+14; Zha+15] that network
weights/responses lie on a low dimensional subspace. We further assume
that such a subspace can be beneficial for multiple tasks, and thus good
for network initialization under a MTL setup. To this end, we identify a
meaningful subspace of the responses for the generation of a better filter
bank Ws when compared to that directly learned by pre-training Ws on
ImageNet.

Formally, let y = f(x;Wm) = Wmx be the responses for input tensor
x, where Wm ∈ Rcout×k2cin are the pre-trained ImageNet weights. We
define Y ∈ Rcout×n as a matrix containing n responses of y with the
mean vector y subtracted. We compute the eigen-decomposition of the
covariance matrix Y Y T = USUT using Singular Value Decomposition
(SVD), where U ∈ Rcout×cout is an orthogonal matrix with the eigenvec-
tors on the columns, and S is a diagonal matrix of the corresponding
eigenvalues. Using the projection to (UT ) and from (U) the latent space,
we can rewrite y = UUT (y − y) + y. Note that the centering operation
is important since SVD assuming centered responses. When introduced
in our standard convolution operation it yields,

y = Wmx = UUT (y − y) + y

y = UUT (Wmx− y) + y

y = UUTWmx+ (y − UUTy)

y = W i
tWsx+ b. (2.4)

Through this formulation, the non-trainable shared filter bank Ws is
initialized as UTWm, and implemented as a k × k convolution, with k
being the filter size of Wm. The task-specific modulators W i

t are instead
initialized with U , and implemented as a 1× 1 convolution. Finally, the
bias b can be added to the running mean of the batchnorm layer following
the convolution [IS15]. We refer to this initialization methodology as
Response Initialization (RI).

2.4 experiments

2.4.1 Datasets

We focus our evaluation on dense prediction tasks, making use of two
datasets. We conduct the majority of the experiments on PASCAL
[Eve+10], and more specifically, PASCAL-Context [Mot+14]. We address
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edge detection (Edge), semantic segmentation (SemSeg), human parts
segmentation (Parts), surface normals estimation (Normals), and saliency
(Sal). We evaluate single-task performance using optimal dataset F-
measure (odsF) [MFM04] for edge detection, mean intersection over
union (mIoU) for semantic segmentation, human parts and saliency, and
finally mean error (mErr) for surface normals. Labels for human parts
segmentation are acquired from [Che+14], while for saliency and surface
normals from [MRK19].

We further evaluate the proposed method on the smaller NYUD
dataset [Sil+12], comprised of indoor scenes, on edge detection (Edge),
semantic segmentation (SemSeg), surface normals estimation (Normals),
and depth (Depth). The evaluation metrics for edge detection, seman-
tic segmentation, and surface normals estimation are identical to those
for PASCAL-Context, while for depth we use root mean squared error
(RMSE).

2.4.2 Architecture

All of our experiments make use of the DeepLabv3+ architecture [Che+18a],
originally designed for semantic segmentation, which performs competi-
tively for all tasks of interest as demonstrated in [MRK19]. DeepLabv3+
encodes multi-scale contextual information by utilizing a ResNet [He+16]
encoder with a-trous convolutions [Che+17] and an a-trous spatial pyra-
mid pooling (ASPP) module, while a decoder with a skip connection
refines the predictions. Unless otherwise stated, we use a ResNet-18
(R-18) based DeepLabv3+, and report the mean performance of five runs
for each experiment.

2.4.3 Implementation Details

We follow closely the implementation details of [MRK19], listed below
for completeness.

Generic hyperparamaters All models are optimized using SGD with
a learning rate 0.005, momentum 0.9, weight decay 0.0001, and the “poly”
learning rate schedule [Che+17]. We use a single GPU with a minibatch
of 8 images. The input images during training are augmented with
random horizontal flips and random scaling in the range [0.5, 2.0] in
0.25 increments. The validity of these hyperparameters has already been
tested in [MRK19], and hence they are used in all our experiments too,
in order to ensure fair comparisons amongst different methods.
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Dataset specific hyperparameters PASCAL-Context [Mot+14] mod-
els are trained for 60 epochs. The spatial size of the input images is
512×512. NYUD [Sil+12] models are trained for 200 epochs. The spatial
size of the input images is 425×560. Images of insufficient size are padded
with the mean color.

Task weighting and loss functions As is common in MTL, losses re-
quire careful loss weighting [MRK19; VGG20; KGC18; SK18], where each
loss is task-dependent. For edge detection, we optimize the binary cross-
entropy (BCE) loss, scaled by 50. Due to the class imbalance between
the edge and non-edge pixels, edge pixels are penalized with a weight
0.95, while non-edge pixels with a scale of 0.05, accommodating [Kok16;
Man+17]. For evaluation, we set the maximum allowed mislocalization of
the optimal dataset F-measure (odsF) [MFM04] to 0.0075 and 0.011 for
PASCAL-Context and NYUD, respectively, using the package of [PM15].
Semantic segmentation and human parts segmentation are optimized
with cross-entropy loss, weighted by the factors of 1 and 2, respectively.
Predictions of surface normals, normalized to unit length, and depth
modalities, are penalized using the L1 loss, scaled by 10 and 1 respec-
tively. Saliency is optimized using the BCE loss, weighted by a factor of
5.

2.4.4 Evaluation Metric

We follow standard practice [MRK19; VGG20] and quantify the per-
formance of a model m as the average per-task performance drop with
respect to the corresponding single-task baseline b:

∆m =
1

P

P∑
i=1

(−1)li
Mm,i −Mb,i

Mb,i
(2.5)

where li is either 1 or 0 if a lower or a greater value indicates better
performance, respectively, for a performance measure M . P indicates the
total number of tasks.

2.4.5 Baseline

To ensure our re-implementation provides a strong baseline, Table 2.1
compares the single-task performance of our implementation using a
ResNet-18 based DeepLabv3+, the results from [VGG20] using a ResNet-
18 based FPN [Lin+17], and the results from [MRK19] who utilized a
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Figure 2.4: Total number of parameters with respect to the number of tasks for
R-18 backbone. The total number of parameters when using RCM
scale at a slower rate than the since-task alternative.

Table 2.1: We report the single-task performance of the baseline implementations
of [MRK19; VGG20] for similar architectures on PASCAL-Context.
The arrow indicates the direction for better performance. Bold
indicates the best performance. Our implementation outperforms
the others on every task.

Methods Tasks

Edge ↑ SemSeg ↑ Parts ↑ Normals ↓ Sal ↑

ASTMT [MRK19] 70.30 63.90 55.90 15.10 63.90
MTI-Net [VGG20] 68.20 64.49 57.43 14.77 66.38
Ours 71.88 66.22 59.69 13.64 66.62

ResNet-26 based DeepLabv3+. We demonstrate that our single-task base-
line outperforms both works on every task, and even though the numbers
are not directly comparable due to minor implementation differences, it
provides a strong baseline to conduct our study.

2.4.6 Analysis of network module sharing

We investigate the level of task-specific adaptation required for a common
backbone to perform competitively to single-task models, while addi-
tionally eliminating negative transfer. In other words, the necessity for
task-specific modules, i.e., convolutions (Convs) and batch normalizations
(BNs) [IS15]. To this extent, we optimize for task-specific Convs, BNs,
or both throughout the entire network. Modules that are not being
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Table 2.2: We evaluate the effect optimizing task-specific Convs and BNs (✓)
have on the performance of PASCAL-Context. The ✓ denotes mod-
ules optimized to be task-specific, while its absence indicates the
use of the original ImageNet weights. Task-specific optimization of
Convs is essential to achieve competitive performance to single-task
networks, however, it comes at the cost of an approximately equal
number of parameters. The arrow indicates the direction for better
performance.

Modules Tasks

Convs BNs Edge ↑ SemSeg ↑ Parts ↑ Normals ↓ Sal ↑ ∆m% ↓

67.32 60.37 47.86 17.40 58.39 14.98
✓ 69.80 63.93 53.22 14.78 64.44 5.76

✓ 71.72 66.00 59.05 13.78 66.31 0.62
✓ ✓ 71.88 66.22 59.69 13.64 66.62 -

optimized maintain their ImageNet pre-trained parameters. Table 2.2
presents the effect on performance, while Fig. 2.4 depicts the total number
of parameters with respect to the number of tasks. Experiments vary from
common a frozen encoder with common Convs and BNs, to task-specific
Convs and BNs, indicating the standard single-task baseline.

The model utilizing a common and unoptimized backbone pre-trained
on ImageNet, as expected, is unable to perform competitively to the
single-task counterpart, with a performance drop of 14.98%. Task-specific
BNs significantly improve performance with a percentage drop of 5.76%,
at a minimal increase in parameters, Fig. 2.4. The optimization of Convs
is essential for competitive performance to single-task, with a percentage
drop of 0.62%. However, the increase in parameters is comparable to
single-task, which is undesirable, Fig. 2.4.

2.4.7 Ablation study

To validate the proposed methodology from Sec. 2.3, we conduct an
ablation study, presented in Table 2.3. We additionally report the per-
formance of a model trained jointly on all tasks, consisting of a fully
shared encoder and task-specific decoders (Multi-task). This multi-task
model is not trained in an IL setup but merely serves as a reference to
the traditional multi-tasking techniques. We report a performance drop
of 3.32% with respect to the single-task setup.
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Table 2.3: Ablation experiments for the proposed Reparameterized Convolution
when utilizing Response Initialization (RI), and or Normalized Feature
Fusion (NFF) on PASCAL-Context dataset. The arrow indicates the
direction for better performance.

Tasks

Edge ↑ SemSeg ↑ Parts ↑ Normals ↓ Sal ↑ ∆m% ↓

Single-task 71.88 66.22 59.69 13.64 66.62 -
Multi-task 70.74 62.43 57.89 14.43 66.31 3.32

Reparameterized Convolution
NFF RI

71.10 64.56 56.87 13.91 66.37 2.13
✓ 71.12 64.71 56.91 13.90 66.33 2.07

✓ 71.36 65.58 57.99 13.70 66.21 1.12
✓ ✓ 71.34 65.70 58.12 13.70 66.38 0.99

Reparameterized Convolution (RC) We first develop a new baseline
for our proposed reparameterization, where we replace every convolution
with the RC (Sec. 2.3.3) counterpart. As seen in Table 2.3, RC without
NFF and RI achieves a performance drop of 2.13%, outperforming the
3.32% drop of the multi-task baseline, as well as the task-specific BNs from
Table 2.2 that yielded a performance drop of 5.76%. This observation
corroborates the hypothesis from Sec. 2.4.6 that task-specific adaptation
of the convolutions is essential for a model to perform competitively for
all tasks. This is unlike the findings observed in multi-domain learning lit-
erature [BV17]. Additionally, we demonstrate that even without training
entirely task-specific convolutions, as in Table 2.2, a performance boost
can still be observed at a moderate increase in the number of parameters,
seen in Fig. 2.4 when comparing Task-specific Convs and our reparameter-
ized convolution depicted as RCM. As such, performance improvements
from this baseline do not stem from an increase in network capacity. How-
ever, similar to [MRK19], RCM is a task-conditional multi-task model.
This entails a separate forward pass for each task of interest, just like in
the case of single-task models, but unlike the multi-task baseline that is
often employed for latency constrained applications.

Response Initialization (RI) We investigate the effect on the per-
formance when a more meaningful filter bank is utilized, RI (Sec. 2.3.3),
against the filter bank learned by directly pre-training the RC architecture
on ImageNet. The results are presented in Table 2.3. Compared to the
RC model, the performance significantly improves from a 2.13% drop to
a 1.12% drop. This observation clearly demonstrates that the filter bank
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Table 2.4: Comparison with state-of-the-art methods on PASCAL-Context. The
arrow indicates the direction for better performance. RCM outper-
forms the other methods, as indicated in bold.

Methods Tasks

Edge ↑ SemSeg ↑ Parts ↑ Normals ↓ Sal ↑ ∆m% ↓

Single-task 71.88 66.22 59.69 13.64 66.62 -

ASTMT [MRK19] 71.20 64.31 57.79 15.06 66.59 3.49(R-18 w/o SE)
ASTMT [MRK19] 71.00 64.61 57.25 15.00 64.70 4.12(R-26 w SE)
Series RA [RBV17] 70.62 65.99 55.32 14.27 66.08 2.97
Parallel RA [RBV18] 70.84 66.51 56.56 14.16 66.36 2.09
RCM (ours) 71.34 65.70 58.12 13.70 66.38 0.99

generated using our proposed RI approach is beneficial for better weight
initialization.

Normalized Feature Fusion (NFF) We replace the unconstrained
task-specific components of RC with the proposed NFF (Sec. 2.3.3). We
demonstrate in Table 2.3 that NFF improves the performance no matter
the initialization of the filter bank. Specifically, it improves the model
using RI from 1.12% to 0.99%.

The architecture used for the remaining experiments utilized NFF and
is initialized using the RI methodology. This architecture is denoted as
RCM.

2.4.8 Comparison to state-of-the-art

In this work, we focus on comparing to task-conditional methods that
can address MTL. We compare the performance of our method to Series
Residual Adapter (RA) [RBV17] and Parallel RA[RBV18]. Series and
Parallel RAs learn multiple visual domains by optimizing domain-specific
residual adaptation modules on an ImageNet pre-trained backbone. Since
both methods were developed for multi-domain settings, we optimize them
using our own pipeline, ensuring a fair comparison amongst the methods
while additionally benchmarking the capabilities of multi-domain methods
in an MTL setup. We further report the performance of ASTMT [MRK19],
which utilizes an architecture resembling that of Parallel RA [RBV18]
with Squeeze-and-Excitation (SE) blocks [HSS18] and adversarial task
disentanglement of gradients. Specifically, we report the performance of
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Table 2.5: Comparison with state-of-the-art methods on NYUD. The arrow
indicates the direction for better performance. RCM outperforms
the other methods, as indicated in bold.

Methods Tasks

Edge ↑ SemSeg ↑ Normals ↓ Depth ↓ ∆m% ↓

Single-task 68.83 35.45 22.20 0.56 -

ASTMT [MRK19] 68.60 30.69 23.94 0.60 6.96(R-18 w/o SE)
ASTMT [MRK19] 73.50 30.07 24.32 0.63 7.56(R-26 w SE)
Series RA [RBV17] 67.56 31.87 23.35 0.60 5.88
Parallel RA [RBV18] 68.02 32.13 23.20 0.59 5.02
RCM (ours) 68.44 34.20 22.41 0.57 1.48

the models using a ResNet-26 (R-26) DeepLab-V3+ with SE as reported
in [MRK19], and also optimize with the use of their codebase a ResNet-18
model without SE. The latter model uses an architecture resembling
more closely that of the other methods since SE can be additionally
incorporated in the others as well. We report the average performance
drop with respect to our single-task baseline.

The results for PASCAL-Context (Table 2.4) and NYUD (Table 2.5)
demonstrate that our method achieves the best performance, outperform-
ing the other methods that make use of RA modules. This demonstrates
that although the RA can perform competitively in multi-domain set-
tings, placing the convolution in series without non-linearity is a more
promising direction for the drastic adaptations required for different tasks
in a MTL setup. Note that the task-conditional methods ASTMT (R-
18 w/o SE) [MRK19], Series/Parllel RA [RBV17; RBV18], and RCM
(ours) have nearly identical number of parameters. This spans from the
primary difference being the location which the adaptation modules are
located, and therefore the observed performance gains are not attributed
to additional network capacity.

We visualize in Fig. 2.5 the learned representations of single-task,
Parallel RA [RBV18], and RCM across tasks and network depths. For
each task and layer combination, we compute a common PCA basis for
the methods above and depict the first three principal components as
RGB values in order to highlight similarities and differences between
them. For all tasks and layers of the network, the representations of RCM
closely resemble those of the single-task models. Simultaneously, Parallel
RA is unable to adapt the convolution behavior to the extent required
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Figure 2.5: We visualize the features of the input image (a) for the tasks of
PASCAL-Context. The first row of each sub-figure corresponds
to the responses of the single-task model (ST), the second row
those of Parallel RA (Par. RA) [RBV18] and the final row of our
proposed method (RCM). For all tasks and depths of the network,
the responses of RCM closely resemble those of ST, in contrast to
the responses of Par. RA. This is made apparent from the colours
utilized by the different methods. The RGB values were identified
from a common PCA basis across the three methods in order to
highlight similarities and differences between them.
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Table 2.6: Incremental learning experiments on PASCAL-Context using a net-
work that originally has low-level task knowledge (Edge and Normals),
in gray. The arrow indicates the direction for better performance.
RCM outperforms the other methods, as indicated in bold.

Methods Tasks

Edge ↑ Normals ↓ SemSeg ↑ Parts ↑ Sal ↑ ∆m% ↓

Single-task 71.88 13.64 66.22 59.69 66.62 -

ASTMT [MRK19] 70.70 14.84 55.32 50.49 64.34 11.77(R-18 w/o SE)
Series RA [RBV17] 70.62 14.27 65.99 55.32 66.08 2.83
Parallel RA [RBV18] 70.84 14.16 66.51 56.56 66.36 1.73
RCM (ours) 71.34 13.70 65.70 58.12 66.38 1.26

Table 2.7: Incremental learning experiments on PASCAL-Context using a net-
work that originally has high-level task knowledge (SemSeg and
Parts), in gray. The arrow indicates the direction for better perfor-
mance. RCM outperforms the other methods, as indicated in bold.

Methods Tasks

SemSeg ↑ Parts ↑ Edge ↑ Normals ↓ Sal ↑ ∆m% ↓

Single-task 66.22 59.69 71.88 13.64 66.62 -

ASTMT [MRK19] 63.91 57.33 68.67 14.12 64.43 3.76(R-18 w/o SE)
Series RA [RBV17] 65.99 55.32 70.62 14.27 66.08 2.39
Parallel RA [RBV18] 66.51 56.56 70.84 14.16 66.36 1.88
RCM (ours) 65.70 58.12 71.34 13.70 66.38 0.52

to be comparable to single-task models. This is made apparent from the
colours utilized by the different methods.

2.4.9 Incremental learning for multi-tasking

We further evaluate the methods from Sec. 2.4.8 in the IL setup. In other
words, we investigate the capabilities of the models to learn new tasks
without the need to be completely retrained on the entire task dictionary.
We divide the tasks of PASCAL-Context into three groups, (i) edge
detection and surface normals (low-level tasks), (ii) saliency (mid-level
task) and (iii) semantic segmentation and human parts segmentation
(high-level tasks). IL experiments are conducted by allowing the base
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network to initially use knowledge from either (i) or (iii), and report
the capability for the optimized model to learn additional tasks without
affecting the performance of the already learned tasks. We report the
performance drop over the new tasks that were added later on. In the
IL setup, ASTMT [MRK19] is initially trained using an R-18 backbone
without SE (a comparable backbone to the competing methods for a fair
comparison) on the subset of the tasks (either i or iii). New tasks can be
incorporated by training their task-specific modules independently. On
the other hand, Series RA, Parallel RA, and RCM, were designed to be
inherently incremental due to directly optimizing only the task-specific
modules. Consequently, their task-specific performance in the IL setup is
identical to that reported in Sec. 2.4.8.

In Tables 2.6 and 2.7 we report the performance of tasks that are
utilized to generate the initial knowledge of the model in grey, while in
black the performance of the incrementally learned tasks. As shown in
both tables, and in particular Table 2.6, ASTMT does not perform com-
petitively in the IL experiments. This observation further demonstrates
the importance of utilizing generic filter banks that can be adapted based
on task-specific needs, in particular for IL setups. We consider research
in generic multi-task filter banks to be a promising direction. Further-
more, RCM consistently outperforms the RA alternatives, attesting to
the greater adaptation capabilities of filter banks when the adaptation
takes place as a matrix multiplication rather than a residual operation.

2.5 conclusion

We have presented a novel method of a convolutional operation reparame-
terization and its application to training multi-task learning architectures.
These reparameterized architectures can be applied on a multitude of
different tasks, and allow the CNN to be inherently incremental, while ad-
ditionally eliminating task interference, all by construction. We evaluate
our model on two datasets and multiple tasks, and show experimentally
that it outperforms competing baselines that address similar challenges.
We further demonstrate its efficacy when compared to the state-of-the-art
task-conditional multi-task method, which is unable to tackle incremental
learning.



3
COMPOS ITE LEARNING FOR DENSE
PREDICT IONS

Multi-task learning promises better model generalization on a target task
by jointly optimizing it with an auxiliary task. However, the current
practice requires additional labeling efforts for the auxiliary task, while
not guaranteeing better model performance. In this chapter, we find that
jointly training a dense prediction (target) task with a self-supervised
(auxiliary) task can consistently improve the performance of the target
task, while eliminating the need for labeling auxiliary tasks. We refer
to this joint training as Composite Learning (CompL). Experiments of
CompL on monocular depth estimation, semantic segmentation, and
boundary detection show consistent performance improvements in fully
and partially labeled datasets. Further analysis on depth estimation
reveals that joint training with self-supervision outperforms most labeled
auxiliary tasks. We also find that CompL can improve model robustness
when the models are evaluated in new domains. These results demonstrate
the benefits of self-supervision as an auxiliary task, and establish the
design of novel task-specific self-supervised methods as a new axis of
investigation for future multi-task learning research.

3.1 introduction

Learning robust and generalizable feature representations have enabled
the utilization of CNNs on a wide range of tasks. This includes tasks
that require efficient learning due to limited annotations. A commonly
used paradigm to improve the generalization of target tasks is MTL, the
joint optimization of multiple tasks. MTL exploits domain information
contained in the training signals of related tasks as an inductive bias in
the learning process of the target task [Car97; Car98]. The goal is to find
joint representations that better explain the optimized tasks. MTL has
demonstrated success in tasks such as instance segmentation [DHS16]
and depth estimation [Che+19], amongst others. In reality, however,
such performance improvements are not common when naively selecting
the jointly optimized tasks [Kok17]. To complicate things further, the

29
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Figure 3.1: The generalization of target tasks can be improved by jointly opti-
mizing with a related auxiliary task. (a) In traditional multi-task
learning, one uses labeled auxiliary tasks that require manual an-
notation efforts. (b) In this chapter, we show that jointly training
a dense task with a self-supervised task can consistently improve
the performance, while eliminating the need for additional labeling
efforts.

relationship between tasks for MTL is also dependent on the learning
setup, such as training set size and network capacity [Sta+20]. As a
consequence, MTL practitioners are forced to iterate through various
candidate task combinations in search of a synergetic setting. This
empirical process is arduous and expensive since annotations are required
a priori for each candidate task.

In this chapter, we find that the joint optimization of a dense prediction
(target) task with a self-supervised (auxiliary) task improves the perfor-
mance on the target task, outperforming traditional MTL practices. We
refer to this joint training as Composite Learning (CompL), inspired by
material science where two materials are merged to form a new one with
enhanced properties. The benefits and intuition of CompL resemble those
of traditional MTL, however, CompL exploits the label-free supervision of
self-supervised methods. This facilitates faster iterations through different
task combinations, and eliminates manual labeling effort for auxiliary
tasks from the process.

We provide thorough evaluations of CompL on three dense predic-
tion target tasks with different model structures, combined with three
self-supervised auxiliary tasks. The target tasks include depth esti-
mation, semantic segmentation, and boundary detection, while self-
supervised tasks include rotations [GSK18], MoCo [He+20; Che+20b],
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and DenseCL [Wan+21d]. We find that jointly optimizing with self-
supervised auxiliary tasks consistently outperforms ImageNet-pretrained
baselines. The benefits of CompL are most pronounced in low-data
regimes, where the importance of inductive biases increases [Bax00]. We
also find that jointly optimizing monocular depth estimation with a self-
supervised objective can outperform most labeled auxiliary tasks. CompL
can additionally improve semantic segmentation and boundary detection
model robustness, when evaluated on new domains. Our experiments
demonstrate the promise of self-supervision as an auxiliary task. We
envision these findings will establish the design of novel task-specific self-
supervised methods as a new axis of investigation for future multi-task
learning research.

3.2 related work

Multi-Task Learning (MTL) MTL aims to enhance performance and
robustness of a predictor by jointly optimizing a shared representation
between several tasks [Car97]. This is accomplished by exploiting the
domain-specific information contained in the training signal of one task
(e.g., semantic segmentation), to more informatively select hypotheses for
other tasks (e.g., depth), and vice versa [RPC17; Bru+21]. For example,
pixels of class “sky” will always have a larger depth that those of class
“car ” [Sah+21]. If non-related tasks are combined, however, the overall
performance degrades. This is referred to as task-interference and has
been well documented in the literature [MRK19; Kan+20]. However,
no measurement of task relations can tell us whether performance gain
can be achieved without training the final models. Although several
works have shown that while MTL can improve performance, it requires
an exhaustive manual search of task interactions [Sta+20], and labeled
datasets with many tasks. In this chapter we also jointly optimize a
network on multiple tasks, but we instead evaluate the efficacy of self-
supervision as an auxiliary task. This enables the use of joint training
in any dataset and eliminates expensive annotation efforts that do not
guarantee performance gains. To further improve performance of a
target task, [Hoy+21; Gui+20b; BKK22; Geo+21] designed specialised
architectures for a predefined set of tasks. These architectures do not
generalize to other tasks. On the other end, Liu et al. [LDJ19] aim to
learn a sub-class labelling problem as an auxiliary task, i.e. for class
dog learn the breed subclass, however the notion of subclass does not
generalize to dense tasks like depth estimation. Instead, we conduct
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a systematic investigation using a common pipeline, applicable to any
dense target task. This enables the easy switching of different supervised
target tasks or auxiliary self-supervised tasks, without requiring any
architectural changes, enabling the wider reach of joint training across
tasks and datasets.

Transfer learning Given a large labeled dataset, neural networks can
optimize for any task, whether image-level [KSH12], or dense [HGD19].
In practice, however, large datasets can be prohibitively expensive to ac-
quire, giving rise to the transfer learning paradigm. The most prominent
example of transfer learning is the fine-tuning of an ImageNet [Den+09]
pre-trained model on target tasks such as semantic segmentation [LSD15],
or monocular depth estimation [Fu+18]. However, ImageNet models do
not always provide the best representations for all downstream tasks,
raising interest in finding task relationships for better transfer capabili-
ties [Zam+18]. In this chapter we are not interested in learning better
pre-trained networks for knowledge transfer. Rather, we start from
strong transfer learning baselines and improve generalization by jointly
optimizing the target and auxiliary tasks.

Self-supervised learning Learning representations that can effectively
transfer to downstream tasks, coupled with the cost associated with the
acquisition of large labeled datasets, has given rise to self-supervised
methods. These methods can learn representations through explicit su-
pervision on pre-text tasks [DGE15; GSK18], or through contrastive
methods [Che+20a; He+20]. Commonly, self-supervised methods aim to
optimize a given architecture, yielding better pre-training models for fine-
tuning on the target task [DGE15; GSK18; Che+20a; He+20; Ghi+21;
Wan+21d; ND20; Li+22]. We instead utilized such pre-trained models
as a starting point and fine-tune on both the target and self-superivsed
auxiliary tasks jointly, rather than just the target task, to further improve
performance and robustness. More recently, supervised tasks have been
used in conjunction with self-supervised techniques by exploiting the la-
bels to guide contrastive learning. This can be seen as a form of sampling
guidance and has been utilized in classification [Kho+20], semantic seg-
mentation [Wan+21b], and tracking [Pan+21]. These methods differ from
our work as they require target task labels to optimize the self-supervised
objective, while our self-supervised objectives are independent of the
target labels and can be applied on any set of images. Instead, Deng et al.
[DGZ21] jointly train a model for classification and rotation, but utilize
the rotation performance at test time as a proxy to the classification
performance. The goal of this work is instead to improve the target
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task’s performance and robustness. More closely to our work, Gidaris
et al. [Gid+19] and Zhai et al. [Zha+19a] jointly train classification and
self-supervised objectives under a semi-supervised training protocol. We
also perform joint training with a self-supervised task, however, we follow
a more general MTL methodology, and investigate whether self-supervised
tasks can provide inductive bias to dense tasks.

Robustness Robust predictors are important to ensure their perfor-
mance under various conditions during deployment. Recent works have
focused on improving different aspects of robustness, such as image corrup-
tion [HD19], adversarial samples [Zha+19b], and domain shifts [Yu+20].
More related to our work, Hendrycks et al. [Hen+19] jointly train clas-
sification and self-supervised rotation, demonstrating that the strong
regularization of the rotations improves model robustness to adversar-
ial examples, and label or input corruptions. Wang et al. [Wan+21c]
similarly used joint training but employed both image and video-level
self-supervised tasks and found them to improve the model’s robustness
to domain shifts for object detection. We also evaluate the effect of joint
training on robustness to unseen datasets, but focus on dense prediction
tasks.

3.3 composite learning

In this section, we introduce and motivate Composite Learning (CompL).
Specifically, Sec. 3.3.1 formalizes the problem setting, Sec. 3.3.2 describes
the self-supervised methods investigated, and Sec. 3.3.3 lists the network
structure choices in our study.

3.3.1 Joint Learning with Supervised and Self-Supervised Tasks

Multi-task learning may improve the model robustness and generalizability.
We aim to investigate the efficacy of joint training with self-supervision on
dense prediction tasks as the targets. The shared representation between
the target task t and an auxiliary task a may be more effective than
training on t alone.

In the traditional MTL setup, the label sets Yt, and Ya, are manually
labeled. In contrast, the auxiliary labels Ya in CompL are implicitly
created in the self-supervised task. Formally, CompL aims to produce
the two predictive functions ft(θs, θt) : Xt → Yt and fa(θs, θa) : Xa → Ya
that map the input space X to the label space Y , where ft and fa share
parameters θs and have disjoint parameters θ{t,a}. During inference we
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are only interested in ft, however, we hypothesize that we can learn a
more effective parameterization through the above weight sharing scheme.
In our investigation, ft and fa are trained jointly using samples (Xt, yt)
and (Xa, ya), where X represents input images and y the corresponding
labels.

The overall optimization objective therefore becomes

min
θs,θt,θa

Lt((Xt, yt); θs, θt) + λLa((Xa, ya); θs, θa), (3.1)

where Lt and La are the losses for the supervised and self-supervised
tasks respectively, and λ is a scaling factor controlling the magnitude and
importance of the self-supervised task.

The experiments in this chapter use the same dataset for both the target
and auxiliary tasks. We additionally train our models using different-sized
subsets (X ′

t, y
′
t) for the target task, where X ′

t ⊆ Xt = Xa. However, the
above is not a necessary condition for CompL, meaning the self-supervised
task could be trained on an independent dataset.

Training method We jointly optimize two objectives. We construct a
minibatch by sampling at random independently from the two training
sets. For simplicity, we sample an identical number of images from each
training set. The input images Xt and Xa are treated independently.
This enables us to apply task/method-specific augmentations to each task
input without causing task conflicts. We apply the baseline augmenta-
tions to Xt, ensuring a fair comparison with our single-task baselines. Xa

used for self-supervised training is instead processed with the proposed
task-specific augmentations for each method investigated. These aug-
mentations include Gaussian blur and rotation. They can significantly
degrade performance for dense tasks if applied on the target task, but
they are important for self-supervision. Therefore, by using distinct
augmentations on two tasks, we can minimize performance degradation
brought by training the auxiliary tasks.

3.3.2 Self-Supervised Methods in Our Study

Rotation (Rot) Gidaris et al. [GSK18] proposed to utilize 2-dimensional
rotations on the input images to learn feature representations. Specifi-
cally, they optimize a classification model to predict the rotation angles,
equally spaced in [0◦, 360◦). Joint optimization with self-supervised
rotation has demonstrated success in semi-supervised image classifica-
tion [Gid+19; Zha+19a], and enhanced robustness to input/output cor-
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ruptions [Hen+19], making it a prime candidate for further investigation
in a dense prediction setting.

Global contrastive Global contrastive methods treat every image
as its own class, while artificially creating novel instances of said class
through random data augmentations. In this work, we evaluate contrastive
methods using Momentum Contrast (MoCo) [He+20], and specifically
MoCo v2 [Che+20b]. These methods formulate contrastive learning as
dictionary look-up, enabling for the construction of a large and consistent
dictionary of size |Z| without the need for large batch sizes, a common
challenge amongst dense prediction tasks [Che+18a]. MoCo is optimized
using InfoNCE [OLV18], a contrastive loss function defined as

L = − log
exp (z+/τ)∑

z∈Z
exp (z/τ)

. (3.2)

InfoNCE is a softmax-based classifier that optimizes for distinguishing
the positive representation z+ from the |Z| − 1 negative representations.
The temperature τ is used to control the smoothness of the probability
distribution, with higher values resulting in softer distributions.

Local contrastive In dense predictions tasks, we desire a fine-grained
pixel wise prediction rather than a global one. As such, we further inves-
tigate the difference between global contrastive MoCo v2 [Che+20b], and
its variant DenseCL [Wan+21d], that includes an additional contrastive
loss acting on local representations.

3.3.3 Network Structures

Dense prediction networks are initially pre-trained on classification, and
then modified according to the downstream task of interest, e.g., by
introducing dilations [YK16b]. In our investigation, we jointly optimize
heterogeneous tasks such as a dense prediction task and image rotations.
Therefore, our networks call for special structure considerations. This
section presents the details.

Dense prediction networks Common dense prediction networks use
an encoder-decoder structure [RFB15; BKC17], maintain a constant
resolution past a certain network depth [YKF17], or even utilize both
high and low representation resolutions in multiple layers of the net-
work [Wan+20a]. Due to the large differences among networks, we opt to
treat the entire network as a single unit, and only utilize the last feature
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representation of the networks for the task-specific predictions. In other
words, we branch out at the last layer and employ a single task-specific
module for the predictions. This ensures that our findings do not depend
on network structures, and it is easy to generalize to new network designs.

We perform our experiments on DeepLabv3+ [Che+18a] based on
ResNets [He+16]. The networks demonstrated competitive performance
on a large number of dense prediction tasks, such as semantic segmenta-
tion, and depth estimation and has been used extensively when jointly
learning multiple tasks [MRK19; Bru+20]. Our investigation is primarily
on the smaller ResNet-26 architecture for easy comparison with existing
MTL results. As it is a common practice in dense prediction tasks, we
initialize the ResNet encoder with ImageNet pre-trained weights, unless
stated otherwise.

Task-specific heads The final representation of the dense prediction
networks is utilized in two task-specific modules. The first module,
consisting of a 1×1 convolutional layer, generates the predictions of the
supervised task, with the output dimension being task dependent, such
as the number of classes. The second prediction head is specific for
self-supervised tasks. Unlike the supervised prediction head, the self-
supervised prediction head is utilized only during network optimization,
and is discarded at test time. The features for Rot and MoCo are first
pooled with a global average pooling layer. Rot is then processed by a fully
connected layer with output dimensions equal to 4, number of potential
rotations, while MoCo is processed by 2-layer MLP head with output
dimensions equal to 128, feature embedding dimension. DenseCL, on the
other hand, generates two outputs. The first one is identical to MoCo for
the global representation, while for the second representation, the initial
dense features are pooled to a smaller grid size, and then processed with
two 1×1 convolutional layer to get the local feature representations.

Normalization Large CNNs are often challenging to train, and thus
utilize Batch Normalization (BN) to accelerate training [IS15]. In self-
supervised training, BNs often degrade performance due to intra-batch
knowledge transfer among samples. Workarounds include shuffling BNs
[He+20; Che+20b], using significantly larger batch sizes [Che+20a], or
even replacing BNs altogether [Hen20]. To ensure BNs will not affect
our study, and findings can be attributed to the jointly trained tasks, we
replace BNs with Group Normalization (GN) [WH18]. We chose GN as it
yielded the best performance when trained on ImageNet [WH18]. However,
other normalization layers that are not affected by batch statistics can also
be utilized, such as layer [BKH16] and instance [UVL16] normalizations.
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3.4 experiments

In this section we investigate the effects of jointly training dense predic-
tions and self-supervised tasks. To systematically assess the effect of joint
learning in label-deficient cases, we use different-sized subsets (X ′

T , y
′
t)

of the full target task data (XT , yt), i.e., (X ′
T , y

′
t) ⊆ (XT , yt). To ensure

consistent contribution from the auxiliary task, we use the full data split
(XA, ya) for the self-supervised task, unless stated otherwise.

3.4.1 Implementation details

Codebase details We base our experiments on the VIsion library for
state-of-the-art Self-Supervised Learning (VISSL) [Goy+21], released un-
der the MIT License. VISSL includes implementations of self-supervised
methods, and was adapted to enable for the joint optimization of the
existing algorithms with supervised methods, such as semantic segmenta-
tion. All experiments were conducted in our internal cluster using single
V-100 GPUs. Due to the considerable costs associated with multiple runs,
we run all experiments with a random seed of 1, the default setting of
VISSL.

Generic hyperparameters We sample 8 images at random from
each of the target and auxiliary training sets. We apply the baseline
augmentations to target samples, namely, random horizontal flipping,
random image scaling in the range [0.5, 2.0] in 0.25 increments, and then
crop or pad the image to ensure a consistent size. The auxiliary loss
is scaled by λ. We found 0.2 works best for MoCo and DenseCL, and
0.05 for Rot. The model is optimized using stochastic gradient decent
with momentum 0.9, weight decay 0.0001, and the “poly” learning rate
schedule [Che+17].

Hyperparameter λ During training, the auxiliary loss is scaled by
the hyperparameter λ, weighting the contribution of the auxiliary self-
supervised task. The hyperparameter λ was selected by performing a
logarithmic grid search, as commonly done in MTL literature, chosen
from the set {0.05, 0.1, 0.2, 0.5, 1.0}. We found the performance of the
models to be consistent when λ is in the range of 0.1 to 0.5, as seen
in Table 3.1. The performance quickly degrades for values an order of
magnitude larger as the model prioritizes the auxiliary task over the
target task, while smaller values converge to the baseline performance.
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Table 3.1: Ablation of the λ parameter for the semantic segmentation model
trained jointly with DenseCL. The model yields comparable perfor-
mance for all three values.

λ
Labeled Data

10% 50%

0.1 57.21 68.64
0.2 57.33 68.81
0.5 57.27 68.79

Memory bank MoCo [He+20] and DenceCL [Wan+21d] utilized a
memory bank to enlarge the number of negative samples observed during
training, while keeping a tractable batch size. Specifically, both methods
use a memory bank of size 65,536. All the datasets we used in our study
are of a smaller magnitude compared to that memory bank, e.g. 10,582
and 795 for PASCAL VOC 2012 (aug.) [Har+11] and NYUD-v2 [Sil+12],
respectively. We therefore set the memory bank to have the same size as
the training dataset, yielding a single positive per sample, and therefore
allowing for the direct use of the InfoNCE loss [OLV18]. A larger memory
bank can also be used, however the contrastive loss would need to be
adapted to account for multiple positives [Kho+20].

Image cropping We use nearly identical augmentations to those pro-
posed in MoCo v2 [Che+20b] for the self-supervised methods of [He+20;
Wan+21d], but found it beneficial to modify image cropping. In most
classification datasets, each image is comprised of a single object, and
thus low overlapping crops can still include the same object. In dense
tasks such as semantic segmentation, low overlapping crops can contain
different objects (Fig. 3.2). We follow the practice of [Tia+20] and find a
constant crop size and distance between the two patches for each task.
We empirically find that square crops of size 384 with a distance of 32
pixels on both axis works best for semantic segmentation, crops of size
283×373 (to maintain input size ratio) with a distance of 8 pixels worked
best for depth, and square crops of size 320 with a distance of 4 pixels
worked best for boundary estimation.

DenceCL global vs local contrastive DenseCL, as discussed in
Sec. 3.3.2, includes a global and a local contrastive term. The importance
of the local contrastive term is weighed by a constant parameter. The
original paper found that 0.7 for local contrastive and 0.3 for global
contrastive performed best for detection, but used 0.5 to strike a balance
between the downstream performance on detection and classification.
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(a) Input image

(b) Blue crop (c) Purple crop

Figure 3.2: Low overlapping crops can be semantically different. This is more
apparent in dense prediction datasets where multiple objects can be
present in each image.

In our study, we also found 0.7 for local contrastive yields the best
performance, and as such, used it for all DenseCL experiments.

3.4.2 Monocular Depth Estimation

We first evaluate CompL on monocular depth estimation. Monocular
depth estimation is a widely used dense prediction task, and is typically
casted as a regression problem.

Experimental protocol Monocular depth estimation is explored on
NYUD-v2 [Sil+12], comprised of 795 train and 654 test images from
indoor scenes, and evaluated using the root mean squared error (RMSE)
metric. All models are trained for 20k iterations, corresponding to 200
epochs of the fully labeled dataset, with an input image size of 425×560,
and are optimized with the L1 loss.

Joint optimization Table 3.2 presents the performance of the single-
task baseline, “Depth”, and the models trained jointly with different
self-supervised tasks, “Depth + Task name”. We find that joint training
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Table 3.2: Monocular depth estimation performance in RMSE on NYUD-v2.
‘→’ denote transfer learning methods, while ‘+’ denote joint training
(CompL). Initialization with DenseCL coupled with DenseCL joint
training outperforms all other methods.

Model Labeled Data

5% 10% 20% 50% 100%

Depth 0.8871 0.8120 0.7471 0.6655 0.6223

Rot → Depth 1.0830 1.0120 0.9114 0.8322 0.7822
MoCo → Depth 0.8758 0.7708 0.7113 0.6311 0.5890
DenseCL → Depth 0.8736 0.7726 0.7152 0.6321 0.5982

Depth + Rot 0.8762 0.8071 0.7298 0.6460 0.6107
Depth + MoCo 0.8501 0.7955 0.7206 0.6434 0.6000
Depth + DenseCL 0.8479 0.7866 0.7131 0.6420 0.5990

MoCo → MoCo + Depth 0.8614 0.7732 0.7008 0.6220 0.5773
DenseCL → DenseCL + Depth 0.8468 0.7641 0.6989 0.6157 0.5690
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Figure 3.3: Monocular depth estimation performance in RMSE on different
ResNet encoders. Use of CompL (orange) denotes the addition of
the best performing self-supervised objective (DenseCL). CompL
consistently outperforms the baselines in all experiments.

with any self-supervised task consistently improves the performance of the
target task, even in the fully labeled dataset. In particular, joint training
with self-supervision yields the biggest performance improvements on
the lower labeled percentages, where the importance of inductive bias
increases [Bax00]. These findings are consistent also when utilizing
stronger ResNet encoders, as depicted in Fig. 3.3 for the best performing
self-supervised DenseCL method.

DenseCL contrasts both local and global representations, yielding more
effective representations for dense task pre-training, as compared to
the image-level self-supervised tasks. We find this to also be the case
in our joint-training setup, where local representations help guide the
optimization of depth. To better understand the benefit of utilizing
DenseCL for joint training with depth, we visualize the representations
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(a) Monocular depth estimation. (b) Semantic segmentation.

Figure 3.4: t-SNE visualization of the DenseCL local representations. The repre-
sentations are depicted using their ground-truth maps. Specifically,
(a) depth values for monocular depth estimation and (b) semantic
patches for semantic segmentation. The local representations adapt
to the target task, i.e., (a) smooth depth variation for the regression
task while (b) clusters are formed for the classification task.
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Figure 3.5: Monocular depth estimation performance in RMSE on NYUD-v2
when trained with additional auxiliary tasks. CompL can improve
depth more than training with boundary or normal predictions.
Semantic segmentation can improve the depth prediction more, but
it requires expensive manual annotations.

in Fig. 3.4a using a t-SNE plot [VH08]. Specifically, we depict the
latent representations of DenseCL using their corresponding ground-truth
depth measurements. The depth values smoothly transition from larger
distances (in red) to smaller distances (in blue). This indicates that the
DenseCL objective, which is discriminative by construction, promotes a
smooth variation in the representations when combined with a regression
target objective.

Traditional MTL In order to determine how CompL compares to
traditional MTL, we evaluate and compare the effect of using labeled
auxiliary tasks. Specifically, we investigate the effect of the remaining
three tasks of NYUD-v2, that is, boundaries, normals, and semantic
segmentation, in Fig. 3.5. For fair comparisons to CompL, the auxiliary
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Table 3.3: Monocular depth estimation performance in RMSE on NYUD-v2.
Both supervised and self-supervised objectives use identical dataset
subsets. CompL denotes the addition of the best performing self-
supervised objective, DenseCL, and yields consistent improvements.

CompL Dataset Size

5% 10% 20% 50% 100%

0.8871 0.8120 0.7471 0.6655 0.6223
✓ 0.8840 0.8080 0.7305 0.6508 0.5990

tasks also use the entire dataset. CompL consistently outperforms the use
of labeled boundaries and normals as auxiliary tasks. This is particularly
pronounced in the lower data splits where the contribution of CompL
becomes more prominent, while boundaries and normals contribute less.
Surface normals, derivatives of depth maps, could be expected to boost
depth prediction due to their close relationship. However, we find it to
help only marginally. On the other hand, joint training with semantic
segmentation consistently improves the baseline performance, which aligns
with findings in the previous works [Che+19; Gui+20a; Jia+18]. These
results exemplify the importance of an arduous iteration process in search
of a synergistic auxiliary task, where knowledge of label interactions
are not necessarily helpful. This process is further complicated when
additional auxiliary task annotations are needed. Therefore, eliminating
manual labeling from auxiliary tasks opens up a new axis of investigation
for the future of multi-task learning research as it can enable faster
iterations in task interaction research.

Transfer learning The experiments have so far shown that joint training
with self-supervision can enhance performance, and in most cases outper-
forms traditional MTL practices. Notably, outperforming the baselines
even when all models are initialized with ImageNet pre-trained weights, a
strong transfer learning baseline. However, is ImageNet pre-training the
best initialization for Depth, and how does it compare to self-supervised
pre-training? In Table 3.2 we repeat the baseline experiments starting
from self-supervised pre-training, (“Initial task → Depth”). In depth
estimation, the contrastive methods gain the advantage and outperform
the joint training methods. However, our proposed method is not limited
by the initialization used. We find that initialization with MoCo or
DenseCL weights coupled with joint training (“Initial task → Initial task
+ Depth”) can increase the performance even further, giving the best
performing models.
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Joint optimization on identical dataset subsets Table 3.3 presents
the performance of the monocular depth estimation single-task baseline
and the best performing self-supervised task, DenseCL. Unlike Table 3.2,
however, Table 3.3 reports the performance when both supervised and
self-supervised objectives use the same subset for optimization. Consistent
improvements across all dataset splits are still observed.

3.4.3 Semantic Segmentation

We additionally evaluate semantic segmentation. Semantic segmentation
is representative for discrete labeling dense predictions.

Experimental protocol Semantic segmentation (Semseg) experiments
are conducted on PASCAL VOC 2012 [Eve+10], and specifically the
augmented version (aug.) from [Har+11], that provides 10,582 train and
1,449 test images. We evaluate performance in terms of mean Intersection-
over-Union (mIoU) across the classes. All models are trained for 80k
iterations, accounting for 60 epochs of the fully labeled dataset, and are
optimized with the cross-entropy loss with image input size of 512×512.

Joint optimization Table 3.4 present the performance of the single-task
baseline and the models trained jointly with different self-supervised tasks.
In contrast to findings from classification literature [Gid+19; Zha+19a],
joint training with Rot minimally affects the performance in most cases,
with lower labeled percentages even incurring a performance degradation.
On the other hand, the contrastive methods increase performance on
all labeled splits, with lower labeled percentages incurring the biggest
performance improvement. These findings are once again consistent
when utilizing stronger ResNet encoders, as depicted in Fig. 3.6 for
the best performing self-supervised method DenseCL. Similar to depth,
we further visualize in Fig. 3.4b the latent representations contrasted
by DenseCL, and depict them with their ground-truth semantic maps.
Unlike in depth regression, where the representations were smooth due
to the continuous nature of the problem, the DenseCL representations
for semantic segmentation form clusters given the discriminative nature
of semantic segmentation.

Robustness to zero-shot dataset transfer So far we have only
evaluated on the same distribution as that used for training, however,
distribution shifts during deployment are common. We therefore in-
vestigate the generalization capabilities to new and unseen datasets.
We evaluate the zero-shot capabilities of the models on the challenging
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Table 3.4: Semantic segmentation performance in mIoU on the PASCAL VOC
dataset. ‘→’ denote transfer learning methods, while ‘+’ denote
joint training (CompL). Joint training with DenseCL significantly
outperforms the “Semseg” baselines.

Model Labeled Data

1% 2% 5% 10% 20% 50% 100%

Semseg 30.82 37.66 49.95 55.17 61.30 67.38 70.42

Rot → Semseg 10.35 12.43 18.29 24.71 29.21 35.43 39.46
MoCo → Semseg 31.55 37.55 48.60 53.27 58.74 64.04 68.09
DenseCL → Semseg 34.89 39.72 50.96 55.60 61.13 65.71 69.56

Semseg + Rot 28.75 36.81 50.46 56.21 62.17 67.96 70.52
Semseg + MoCo 32.90 40.31 52.18 56.50 62.49 68.40 71.15
Semseg + DenseCL 33.51 40.91 52.76 57.33 63.22 68.81 71.16

DenseCL → Semseg + DenseCL 36.32 41.24 52.94 56.87 62.71 65.89 69.81
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Figure 3.6: Semantic segmentation performance in mIoU on different ResNet
encoders. Use of CompL (orange) denotes the addition of the best
performing self-supervised objective (DenseCL). CompL consistently
outperforms the baselines in all experiments.

BDD100K [Yu+20], a diverse driving dataset, in Fig. 3.7 and Table 3.5.
The test frames from BDD100K are therefore significantly different to
those observed during training, making zero-shot transfer particularly
interesting due to the large domain shift. We report the mIoU with
respect to the shared classes between the two datasets. Please refer to
the supplementary for the table of the BDD100K experiments.

We find that Rot often performs worse than the baseline model. This
yields dissimilar findings to classification [Hen+19] that observed increased
robustness, attributed to the strong regularization induced by the joint
training. For Semseg, such regularizations degrade the fine-grained preci-
sion required. Joint training with DenseCL significantly outperforms all
other self-supervised methods. While MoCo was comparable to DenseCL
on VOC (Table 3.4), we find that contrasting on the local level plays a
big role in improving robustness. Interestingly, when using 100% of the



3.4 experiments 45

1% 10% 100%
Percentage of Labeled Data

8

10

12

14

16

18

20

22

24

m
Io

U

Semseg +Rot +MoCo +DenseCL

Figure 3.7: Semantic segmentation performance in mIoU trained on PASCAL
VOC and evaluated on BDD100K. The local contrastive loss of
DenseCL provides significant robustness improvements.

Table 3.5: Performance of semantic segmentation in mIoU trained on PASCAL
VOC and evaluated on BDD100K. The local contrastive loss of
DenseCL provides significant robustness improvements.

Model Labeled Data

1% 2% 5% 10% 20% 50% 100%

Semseg 8.18 8.95 10.16 11.18 13.45 17.95 19.51

Semseg + Rot 9.41 8.42 10.71 12.25 13.00 18.00 17.45
Semseg + MoCo 8.56 9.28 11.8 12.28 14.56 20.79 20.45
Semseg + DenseCL 10.36 10.90 15.30 17.71 20.62 23.20 22.03

data points, performance on all methods utilizing self-supervision is lower
than when using 50% of the labels. We conjecture that, using the fully
labeled split decreases the influence of self-supervision, making the model
more prone to overfit to the training dataset and lose generalizability.

We additionally evaluate how the models trained on PASCAL VOC
from Table 3.4 (“Semseg” and “Semseg + Task name”) perform without
re-training on COCO [Lin+14] on the same classes. As seen in Table 3.6
and Fig. 3.8, joint training with the contrastive methods consistently
outperform across all percentage splits, with the lower labeled percentages
observing the biggest improvement.

Transfer learning Table 3.4 additionally reports the baseline exper-
iments starting from self-supervised pre-training (indicated by “Initial
task → Semseg”), or additionally optimized with the best performing
DenseCL method, as in the Depth experiments. Joint training with self-
supervision consistently outperforms the sequential training counterpart,
and in the majority of the cases by a significant margin. In other words,
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Figure 3.8: Performance of semantic segmentation in mIoU trained on PASCAL
VOC and evaluated on COCO. The local contrastive loss of DenseCL
provides consistent robustness improvements.

Table 3.6: Performance of semantic segmentation in mIoU trained on PASCAL
VOC and evaluated on COCO. The local contrastive loss of DenseCL
provides consistent robustness improvements.

Model Labeled Data

1% 2% 5% 10% 20% 50% 100%

Semseg 23.78 28.62 36.53 39.05 43.85 47.37 50.76

Semseg + Rot 22.05 26.92 36.29 39.64 43.93 48.01 50.70
Semseg + MoCo 25.42 30.06 37.44 40.88 44.64 48.99 51.41
Semseg + DenseCL 25.96 30.67 38.66 41.40 45.21 49.00 50.93

CompL consistently reports performance gains when initializing with
either ImageNet or DenseCL.

Joint optimization on identical dataset subsets Table 3.7 presents
the performance of the semantic segmentation single-task baseline and the
best performing self-supervised task DenseCL. Similar to Table 3.3, both
objectives use the same subset for optimization. Consistent improvements
across all dataset splits are again observed.

3.4.4 Boundary Detection

Boundary detection is another common dense prediction task. Unlike
depth prediction and semantic segmentation, the target boundary pix-
els only account for a small percentage of the overall pixels. We find
that CompL significantly improves the model robustness for boundary
detection.
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Table 3.7: Semantic segmentation performance in mIoU on PASCAL VOC. Both
supervised and self-supervised objectives use identical splits. CompL
denotes the addition of the best performing self-supervised objective,
DenseCL, and yields consistent improvements.

CompL Dataset Size

1% 2% 5% 10% 20% 50% 100%

30.82 37.66 49.95 55.17 61.30 67.38 70.42
✓ 31.59 38.85 50.87 56.45 61.92 68.06 71.15

Table 3.8: Boundary detection performance in ODS F-score on the BSDS500
dataset. ‘→’ denote transfer learning methods, while ‘+’ denotes
joint training. Performance improvements are marginal, in contrast
to the findings for other target tasks.

Model Labeled Data

10% 20% 50% 100%

Boundaries 71.10 73.50 75.90 76.80

Rot → Boundaries 60.20 62.80 66.00 67.70
MoCo → Boundaries 71.00 73.40 75.60 76.40
DenseCL → Boundaries 68.90 71.70 75.40 75.90

Boundaries + Semseg 70.60 73.30 75.60 76.90

Boundaries + Rot 69.70 73.00 75.70 76.60
Boundaries + MoCo 71.30 73.80 76.20 76.90
Boundaries + DenseCL 71.30 73.90 76.00 76.20

Experimental protocol We study boundary detection on the BSDS500
[Arb+10] dataset, consisting of 300 train and 200 test images. Since the
ground truth labels of BSDS500 are provided by multiple annotators, we
follow the approach of [XT15] and only count a pixel as positive if it was
annotated as positive by at least three annotators. Performance is evalu-
ated using the Optimal-Dataset-Scale F-measure (ODS F-score) [MFM04].
All models are trained for 10k iterations on input images of size 481×481.
Following [XT15], we use a cross-entropy loss with a weight of 0.95 for
the positive and 0.05 for the negative pixels.

Joint optimization Table 3.8 presents the performance of the single-task
baseline and the models trained jointly with different self-supervised tasks.
Compared to the previous two tasks, boundary detection is marginally
improved by CompL. Since convolutional networks are biased towards
recognising texture rather than shape [Gei+18], we hypothesize that the
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Figure 3.9: Boundary detection performance in ODS F-score trained on BSDS
and evaluated on NYUD. The additional local contrast of DenseCL
increases robustness to zero-shot dataset transfer.

supervisory signal of contrastive learning interferes with the learning of
edge / shape filters essential for boundary detection. To investigate this
hypothesis further, we jointly train boundary detection with a labeled
high-level semantic task. Specifically, we jointly train boundary detection
with the ground-truth foreground-background segmentation maps for
BSDS500 [Arb+10] from [EH10]. As seen in Table 3.8, the incorporation
of semantic information once again does not enhance the single-task
performance of boundaries, and even slightly degrades at lower percentage
splits.

While CompL yielded performance improvements for monocular depth
estimation and semantic segmentation as target tasks, boundary estima-
tion does not observe the same benefits. This further demonstrates the
complexity of identifying a universal auxiliary task for all target tasks.
Instead, it demonstrates the importance of co-designed self-supervised
tasks alongside the downstream task.

Robustness to zero-shot dataset transfer We evaluate the zero-
shot dataset transfer capabilities of the BSDS500 [Arb+10] models from
Table 3.8 on NYUD-v2 [Sil+12]. Interestingly, even though CompL did
not significantly improve the performance in Table 3.8, we find that the
robustness experiments in Fig. 3.9 paint a different picture. While MoCo
often outperformed DenseCL in Table 3.8, and most methods perform
comparatively to the baseline, the additional local constrast of DenseCL
significantly improves the robustness experiments. This can be seen from
DenseCL consistently outperforming the baseline, as well as all other
methods.
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Table 3.9: Performance of a multi-task model for monocular depth estimation in
RMSE and semantic segmentation in mIoU on NYUD-v2. ‘+’ denote
joint training. The multi-task model combined with CompL yields
consistent improvements in both tasks.

Model Depth Labeled Data ↓ Semseg Labeled Data ↑

5% 10% 20% 50% 100% 5% 10% 20% 50% 100%

Depth + Semseg 0.997 0.904 0.794 0.665 0.606 10.46 14.99 19.41 26.24 31.66

Depth + Semseg + DenseCL 0.902 0.806 0.744 0.641 0.590 10.72 15.29 20.08 28.18 33.48

Transfer learning Table 3.8 also reports the performance of the bound-
ary detection transfer learning experiments. All three transfer learning
approaches fare worse than ImageNet initialization, corroborating our
hypothesis that boundary detection requires representations which are
fairly unrelated to the features learned through self-supervision.

3.4.5 Multi-Task Model (Semseg and Depth)

Both semantic segmentation (Semseg) and monocular depth estimation
(Depth) observed improvements when trained under CompL. In this
section, we further investigate the applicability of CompL on MTL models
optimized jointly for Depth and Semseg (Depth + Semseg).

Experimental protocol We explore joint training on NYUD-v2 [Sil+12],
which provides ground-truth labels for both tasks. We maintain the exact
same hyperparameters as the models in Sec. 3.4.2, however, we expect
an explicit search could yield additional improvements. No additional
task-specific scaling of the losses is used, following [MRK19]. For self-
supervised tasks, we only evaluate DenseCL [Wan+21d], as it performed
the best for both tasks independently.

Joint optimization Table 3.9 and Fig. 3.10 present the performance of
the baseline multi-task model (Depth + Semseg) and the model trained
jointly with DenseCL (Depth + Semseg + DenseCL). As in the single-task
settings, training under CompL enhances the performance of both Semseg
and Depth. Specifically, we again observe a performance gain in every
labeled percentage. This demonstrates that, even in the traditional multi-
task setting, the additional use of CompL has the potential of yielding
further performance gains. In the current setting, Depth observes a notice-
able gain over Semseg in low data regimes. This can be attributed to the
DenseCL hyperparameters being optimized directly for the improvement
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Figure 3.10: Performance of (a) monocular depth estimation (Depth) and (b)
semantic segmentation (Semseg) on NYUD-v2 for their multi-
task model. The multi-task model combined with CompL yields
consistent improvements in both tasks.

of Depth. More advanced loss balancing schemes [Che+18b] could yield
a redistribution of the performance gains, however, such investigation is
beyond the scope of our work.

3.5 conclusion

In this chapter, we introduced CompL, a method that exploits the induc-
tive bias provided by a self-supervised task to enhance the performance of
a target task. CompL exploits the label-free supervision of self-supervised
methods, facilitating faster iterations through different task combinations.
We show consistent performance improvements in fully and partially
labeled datasets for both semantic segmentation and monocular depth
estimation. While our method eliminated the need for labeling the aux-
iliary task, it commonly outperforms the traditional MTL with labeled
auxiliary tasks on monocular depth estimation. Additionally, the seman-
tic segmentation models trained under CompL yield better robustness on
zero-shot cross dataset transfer. We envision our contribution to spark
interest in the explicit design of self-supervised tasks for their use in joint
training, opening up a new axis of investigation for future multi-task
learning research.



4
EFF IC IENT VISUAL TRACKING WITH
EXEMPLAR TRANSFORMERS

The design of more complex and powerful neural network models has
significantly advanced the state-of-the-art in visual object tracking. These
advances can be attributed to deeper networks, or the introduction of
new building blocks, such as transformers. However, in the pursuit of
increased tracking performance, runtime is often hindered. Furthermore,
efficient tracking architectures have received surprisingly little attention.
In this chapter, we introduce the Exemplar Transformer, a transformer
module utilizing a single instance level attention layer for realtime visual
object tracking. E.T.Track, our visual tracker that incorporates Exemplar
Transformer modules, runs at 47 FPS on a CPU. This is up to 8× faster
than other transformer-based models. When compared to lightweight
trackers that can operate in realtime on standard CPUs, E.T.Track
consistently outperforms all other methods on the LaSOT [Fan+19],
OTB-100 [WLY13], NFS [Kia+17], TrackingNet [Mul+18], and VOT-
ST2020 [Kri+20] datasets.

4.1 introduction

Estimating the trajectory of an object in a video sequence, referred to as
visual tracking, is one of the fundamental problems in computer vision.
Deep neural networks have significantly advanced the performance of
visual tracking methods with deeper networks [Ber+16], more accurate
bounding boxes [Li+18], or with the introduction of new modules, such
as transformers [Yan+21a; Che+21; Wan+21a]. However, these advances
often come at the cost of more expensive models. While the demand
for realtime visual tracking on applications such as autonomous driving,
robotics, and human-computer-interfaces is increasing, efficient deep
tracking architectures have received surprisingly little attention. This
calls for visual trackers that, while accurate and robust, are capable of
operating in realtime under the hard computational constraints of limited
hardware.

51
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Figure 4.1: Comparison of tracker performance in terms of AUC score (Success
in %) on LaSOT vs. tracking speed in FPS on a standard CPU.
Our Exemplar Transformer Tracker (E.T.Track) outperforms all
other realtime trackers. It achieves a 7% higher AUC score than
LT-Mobile [Yan+21b]. Furthermore, our approach achieves up to 8×
faster runtime on a CPU compared to previous Transformer-based
trackers.

Transformers [Vas+17], proposed for machine translation, have also
demonstrated superior performance in a number of vision based tasks,
including image [Bel+19] and video [Wan+18b] classification, object de-
tection [Car+20], and even multi-task learning [Bru+21]. The field of
visual tracking has also observed similar performance benefits [Yan+21a;
Sun+20; Wan+21a]. While transformers have enabled the trackers to
improve accuracy and robustness, they severely suffer from high computa-
tional cost, leading to decreased runtime operation, as depicted in Fig. 4.1.
In this work, we set out to find a transformer module, capable increasing
tracking accuracy and robustness while not compromising runtime.

In this work we propose Exemplar Attention, a single instance-level
attention layer for visual tracking. Our attention module exploits domain
specific knowledge to improve the tracker’s performance, while maintain-
ing a comparable runtime. Specifically, we build upon two hypotheses.
Firstly, one global query value is sufficiently descriptive when tracking
a single object. Secondly, a small set of exemplar values can act as a
shared memory between the samples of the dataset. Thus, our constrained
instance-level Exemplar Attention captures more explicit information
about the target object, compared to conventional attention modules.
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We develop the Exemplar Transformer Tracker (E.T.Track) by integrat-
ing our Exemplar Transformer layer into a Siamese tracking architecture.
Specifically, we replace the convolutional layers in the tracker heads with
the Exemplar Transformer layer. The additional expressivity from the
Exemplar Transformer layer significantly improves the performance of
the models based on regular convolutional layers. The added perfor-
mance gain comes at an insignificant cost in runtime, as seen in Fig. 4.1
when comparing it to the LightTrack-Mobile (LT-Mobile) [Yan+21b].
We further compare our transformer layer for single object tracking to
other generic transformer layers. We find that Exemplar Transformer
consistently outperforms competing methods, attesting to the benefits of
explicitly designing attention layers for the task of visual tracking.

We validate our approach on six benchmark datasets: LaSOT [Fan+19],
OTB-100 [WLY13], UAV-123 [MSG16], NFS [Kia+17], TrackingNet
[Mul+18] and VOT-ST2020 [Kri+20]. Our proposed tracker runs at
46.8 Frames Per Second (FPS ) on a CPU, while setting a new state-of-
the-art among realtime CPU trackers by achieving 59.1% AUC on the
challenging LaSOT dataset.

In summary, our contributions are:

— We introduce the Exemplar Transformer layer, a transformer layer
based on a single instance-level attention layer referred to as Exem-
plar Attention.

— We develop a transformer-based tracking architecture that uses our
Exemplar Transformer layer.

— Our tracker runs in realtime on a CPU, while outperforming previous
realtime trackers on 5 benchmarks.

4.2 related work

Siamese Trackers In recent years, Siamese trackers have gained signifi-
cant popularity due to their performance capabilities and simplicity. The
Siamese-based tracking framework formulates visual object tracking as a
template matching problem, utilizing cross-correlation between a search
and an image patch. The original work of Bertinetto et al. [Ber+16] in-
troduced SiamFC, the first model incorporating feature correlation into a
Siamese framework. Li et al. [Li+18] introduced region proposal networks
to increase efficiency and obtain more accurate bounding boxes. More
recent advances on the Siamese tracker front include the use of additional
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branches [Wan+19], refinement modules for more precise bounding box
regression [Yan+21c], and various model update mechanisms [GZX19;
Guo+17; YC18; Zha+19c]. Unlike previous Siamese trackers, we propose
the Examplar Transformer module that is incorporated into the prediction
heads, and improves the tracker’s performance at an insignificant runtime
increase.

Transformers in Tracking The Transformer [Vas+17] was introduced
as a module to improve the learning of long-range dependencies in neural
machine translation, by enabling every element to attend to all others.
In computer vision, transformers have been used in image [Bel+19] and
video [Wan+18b] classification, object detection [Car+20], and even multi-
task learning of dense prediction tasks [Bru+21]. More related to our
work, transformers have also been utilized to advance the performance
of visual trackers. STARK [Yan+21a] utilizes transformers to model the
global spatio-temporal feature dependencies between target object and
search regions. This is achieved by integrating a dynamically updated
template into the encoder, in addition to the regular search and template
patch. [Wan+21a] introduced a transformer architecture that improves
the standard Siamese-like pipeline by additionally exploiting temporal
context. The encoder model mutually reinforces multiple template fea-
tures by leveraging self-attention blocks. In the decoder, the template
and search branch are bridged by cross-attention blocks in order to prop-
agate temporal contexts. [Che+21] also improve Siamese-based trackers
by replacing the regular correlation operation by a Transformer-based
feature fusion network. The Transformer-based fusion model aggregates
global information, providing a superior alternative to the standard linear
correlation operation. ToMP [May+22], on the other hand, utilizes a
transformer to predicts the weights of a convolutional kernel in order to
localize the target in the search region and template patches. In this work,
we also design transformer architecture for tracking. Unlike the previous
transformers for tracking, Exemplar Transformer is lightweight and can
be utilized in computationally limited hardware running at realtime.

Efficient Tracking Architectures With an increase in demand for
realtime visual tracking in applications such as autonomous driving,
and human-computer-interfaces, efficient deep tracking architectures are
essential. Surprisingly, however, little attention has been provided on
efficient trackers that can operate on computationally limited hardware.
KCF [Hen+14] and fDSST [Dan+16] employ hand-crafted features to
enable realtime operation on CPUs. While fast, their reliance on hand
crafted features significantly hinders their performance compared to
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newer and more complex methods. In contrast, we present an efficient
deep tracker that operates at a comparable runtime but performs on
par with the more expensive deep trackers. More related to our work,
LightTrack [Yan+21b] employs Neural Architecture Search (NAS) to find
a lightweight and efficient Siamese tracking architecture. We instead
propose an efficient transformer layer that can complement existing
architecture advances such as LightTrack. Specifically, our transformer
layer can act as a drop in replacement for convolutional layers, increasing
performance with negligible effects on runtime.

Efficient Transformers The immense interest in transformer archi-
tectures [Dos+21; Par+18; Car+20; Wan+18b] resulted in the devel-
opment of various efficient model variants that can be grouped in 4
major categories [Tay+20]. Low Rank/ Kernel methods assume and
leverage low-rank approximations of the self-attention matrix [Kat+20;
Cho+20]. Memory/ Downsampling methods learn a side memory module
to access multiple tokens simultaneously, or simply reduce the sequence
length [Tan+22; ZY21; Liu+21]. Fixed/ Factorized/ Random Patterns
limit the field of view of the self-attention, such as using block pat-
terns [Ryo+21; ZY21; Liu+21; Ram+19]. Learnable Patterns replace the
fixed pattern, as in standard transformers, with dynamic patterns [VKF20;
Wan+20b; KKL20]. Our work falls in the intersection of Memory/ Down-
sampling and Fixed/ Factorized/ Random Patterns. Unlike the afore-
mentioned works that aim to design generic attention layers, Exemplar
Attention is instead designed for the task of single object visual tracking
by exploiting domain specific knowledge.

4.3 efficient tracking with transformers

Striking a balance between well performing object trackers and runtime
speeds that fall in the realtime envelope, is a challenging problem when de-
ploying on computationally limited devices. In this section, we introduce
the Exemplar Transformer, a transformer architecture based on single in-
stance level attention layers for single object tracking. While lightweight,
our Exemplar Transformer significantly closes the performance gap with
the computationally expensive transformer-based trackers [Yan+21a;
Che+21; Wan+21a]. Sec. 4.3.1 first presents the original Transformer of
Vaswani et al. [Vas+17], followed by our Exemplar Transformer formula-
tion. Sec. 4.3.2 introduces our E.T.Track. Specifically, it first outlines
the overall architecture, and presents how Exemplar Transformers are
utilized within the tracker.
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Figure 4.2: Comparison of the standard scaled dot-product attention mod-
ule [Vas+17] (left) with our Exemplar Attention module (right).
The matching blocks are indicated by identical colours. The line
thickness is indicative of the tensor size.

4.3.1 Exemplar Transformers

Standard Transformer The Transformer [Vas+17], introduced for
machine translation, receives a one dimensional input sequence x ∈ RN×D

with N feature vectors of dimensions D. The input sequence is processed
by a series of transformer layers defined as

T (x) = f(A(x) + x). (4.1)

The function f(·) is a lightweight Feed-Forward Network (FFN) that
projects independently each feature vector. The function A(·) represents
a self-attention layer that acts across the entire sequence. Specifically,
the authors used the “Scaled Dot-Product Attention” depicted on the left
of Fig. 4.2, and defined as

A(x) = softmax

(fQ(x)︷︸︸︷
Q

fK(x)︷︸︸︷
KT√
dk︸︷︷︸

constant

) fV (x)︷︸︸︷
V

= softmax

( fQ(x)︷ ︸︸ ︷
(xWQ)

fK(x)︷ ︸︸ ︷
(W T

KxT )√
dk︸︷︷︸

constant

) fV (x)︷ ︸︸ ︷
(xWV ) .

(4.2)
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The queries Q ∈ RN×DQK , keys K ∈ RN×DQK , and values V ∈ RN×DV

represent projections of the input sequence, while
√
dk is a normalization

constant. The self attention, therefore, computes a similarity score be-
tween all representations, linearly combines the feature representations,
and accordingly adapts the input representation x in Eq. 4.1. The com-
putational complexity of Eq. 4.2 is O(N2D), i.e. it scales quadratically
with the length of the input sequence.

Exemplar Attention We now introduce Exemplar Attention, the key
building block of the Exemplar Transformer module. We hypothesize that,
while the direct connection between all features is essential in machine
translation and some vision tasks, this design choice can be sub-optimal
when attending to the single object being tracked. We describe the
required modifications of the individual components below.

The standard Query function fQ projects every spatial location of the
feature map independently to a query space. Unlike machine translation
where every feature represents a specific word or token, adjacent spatial
representation in vision tasks often correspond to the same object. Conse-
quently, we aggregate the information of the feature map X ∈ RH×W×D,
where H ×W represents the spatial dimensions. Specifically, we use
a 2D adaptive average pooling layer with an output spatial dimension
S × S, followed by a flattening operation. The operation is denoted
ΨS(X), decreasing the output spatial dimension to S2. The compressed
representation of X is then projected to a query space as in the standard
self-attention formulation.

Q = ΨS(X)WQ ∈ RS2×DQK (4.3)

We hypothesize that for single instance tracking, one global query value
is sufficient to identify the object of interest, while also decreasing the
computational complexity of the module. To this extent, we set S = 1.
This design choice is further supported by the success of global pooling in
classification architectures [He+16], as well as transformer based object
detection [Car+20].

The keys and values, as presented in Eq. 4.2, are per spatial location
linear projections of the input. The self-attention layer then enables the
learning of spatial correlations, at the cost of every feature attending
to all others. This eliminates spatial biases built into convolutional
layers. Rather than requiring a fine grained feature map and relying
solely on intra-sample relationships, we instead learn a small set of
exemplar representations. The exemplar representations encapsulates
dataset information in order to dynamically adapt the attention layer
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Figure 4.3: E.T.Track - a Siamese tracking pipeline that incorporates Exemplar
Transformers in the tracker head.

given the global query token and the captured information. To this end,
we optimize a small set of exemplar keys K = WK ∈ RE×DQK that, unlike
the formulation in Eq. 4.2, are independent of the input. The similarity
matrix therefore associates the global query, Eq. 4.3, to exemplars. Our
attention layer then refines the input representation on the local level by
replacing the projection fV (·) with a convolutional operation

V = WV ⊛X ∈ RE×H×W×DV , (4.4)

where WV ∈ RE×Z×Z can be of any spatial dimension Z, while the
number of exemplars E can be chosen arbitrarily. We use E = 4 in our
experiments, which is significantly smaller than the dimensions H ×W ,
maintaining comparable runtime.

Our efficient Exemplar Attention is therefore defined as,

A(x) = softmax

( fQ(x)︷ ︸︸ ︷
(ΨS(X)WQ)

fK(·)︷ ︸︸ ︷
(W T

K)√
dk︸︷︷︸

constant

) fV (x)︷ ︸︸ ︷
(WV ⊛X), (4.5)

but can also be written as,

A(x) =

[
softmax

(
(ΨS(X)WQ)(W

T
K)√

dk

)
WV

]
⊛X. (4.6)

Exemplar Attention, while inspired by the scaled dot-product attention,
is conceptually very different. In self-attention (4.2), f{Q,K,V } act as
projections to their corresponding feature spaces, with the similarity
function learning the relationships between all spatial locations. In
other words, self-attention relies solely on intra-sample relationships, and
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Algorithm 4.1 Pseudocode of the Exemplar
Attention layer, Eq. 4.6.
function ExemplarAttention(X):

Q← ΨS(X)WQ Eq. 4.3
K ←WK

V ←WV

sim← softmax(Q ·KT )
sim← sim/

√
dk

WA = sim · V
A(X)←WA ⊛X

return A(X)
end

therefore requires fine-grained representations. Instead, the Exemplar
Attention layer enforces the attending over a single instance through
the use of a global query token. The global query encapsulated the
representation of the object, is dynamically generated from the input
image, and applied locally on the feature map using a convolutional
operation. To enable the use of a single query token, we exploit dataset
information to form the exemplar representations through end-to-end
optimization, eliminating the need of the intra-sample similarity function.
A visual comparison between the two attention mechanisms is depicted in
Fig. 4.2, while the pseudocode for the Exemplar Attention layer (Eq. 4.6)
can be seen in Algorithm 4.1.

4.3.2 E.T.Track Architecture

In this section we introduce the base tracking architecture used throughout
our work. While Exemplar Transformers can be incorporated into any
tracking architecture, we evaluate its efficacy on lightweight Siamese
trackers. An overview of the E.T.Track architecture can be seen in
Fig. 4.3.

Our model employs the lightweight backbone model of Yan et al.
[Yan+21b], LT-Mobile. The model was identified by NAS on a search
space consisting of efficient and lightweight building blocks. The feature
extracting backbone consists of 3 × 3 convolutional layers, depthwise
separable convolutional layers and mobile inverted bottleneck layers with
squeeze and excitation modules.
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The Exemplar Transformer layer can act as a drop in replacement
for any convolution operation of the architecture. We replace all the
convolutions in the classification and bounding box regression branches,
while keeping the lightweight backbone architecture untouched. This
eliminates the need for retraining the backbone on ImageNet [Den+09].

Search and template frames are initially processed through a backbone
network. The similarity between the representations is computed by a
pointwise cross-correlation. The resulting correlation map is then fed into
the tracker head, where it is processed by a classification branch and a
bounding box regression branch in parallel. The bounding box regression
branch predicts the distance to all four sides of the bounding box. The
classification branch predicts whether each region is part of the foreground
or the background. During training, the bounding box regression branch
considers all the pixels within the ground truth bounding box as training
samples, therefore, the model is able to determine the exact location of
the object even when only small parts of the input image are classified as
foreground. The model is trained by optimizing a weighted combination
of the binary cross-entropy (BCE) loss and the IoU loss [Yu+16] between
the predicted and ground-truth bounding boxes. For more details, as well
as more information on the data preprocessing, we refer the reader to
[Zha+20].

4.4 experiments

We first present implementation details of our tracker in Sec. 4.4.1. The
comparison to state-of-the-art is presented in Sec. 4.4.2, followed by an
ablation study in Sec. 4.4.5. Code and trained models will be released on
publication.

4.4.1 Implementation Details

Architecture We adopt the LT-Mobile architecture of Yan et al.
[Yan+21b] as our baseline due to its performance versus efficiency trade-
off. LT-Mobile is comprised of a small encoder, and later branches to the
classification and regression heads. The classification head is comprised
of 6 convolutional modules, while the regression head is comprised of
8. Each convolutional module consists of a Depthwise Separable Con-
volution [How+17], a Batch Normalization layer [IS15] and a Rectified
Linear unit. E.T.Track replaces each decoder convolutional module with
an Exemplar Transformer Layer, introduced in Sec. 4.3.1. The learn-
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able “value” parameters of the attention module are initialized using
kaiming initialization [He+15], while the learnable “keys” parameters are
initialized using a normal distribution. The FFN consists of 2 linear
layers with a ReLU activation, dropout [Sri+14] with a ratio of 0.1, and
LayerNorm [BKH16].

Training All models have been trained using an Nvidia GTX TITAN
X, and evaluated on an Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz.
The training of our E.T.Track architecture is based on the training
framework used in LightTrack [Yan+21b] which, in turn, is based on
OCEAN [Zha+20]. As is common practice, we initialize the backbone
with ImageNet pre-trained weights. The models are optimized using
stochastic gradient decent [Rud16] with a momentum of 0.9, and a weight
decay of 1e-4 for 50 epochs. During the first 10 epochs, the backbone
parameters remain frozen. We use a step learning rate scheduler during
a warmup period of 5 epochs, increasing the learning rate from 2e-2 to
1e-1, followed by a logarithmically decreasing learning rate from 1e-1 to
2e-4 for the remainder. We utilize 3 GPUs and sample 32 image pairs
per GPU for each batch. The sampled image pairs consist of a 256× 256
search frame and a 128 × 128 template frame, sampled from training
splits of LaSOT [Fan+19], TrackingNet [Mul+18], GOT10k [HZH19] and
COCO [Lin+14]. Specifically, the two frames are sampled within a range
of 100 frames for LaSOT [Fan+19] and GOT10k [HZH19], 30 frames for
TrackingNet [Mul+18], and 1 frame for COCO [Lin+14]. Both patches
are further shifted and scaled randomly.

4.4.2 Comparison to State-of-the-Art

We compare our proposed E.T.Track to state-of-the-art methods on 7
benchmarks: OTB-100 [WLY13], NFS [Kia+17], UAV-123 [MSG16],
LaSOT [Fan+19], TrackingNet [Mul+18], VOT-ST2020 [Kri+20], and
VOT-RT2020 [Kri+20]. Specifically, we evaluate transformer-based track-
ers [Che+21; Wan+21a; Yan+21a], realtime CPU trackers [Dan+17;
Yan+21b], as well as additional seminal trackers [Dan+19; Li+19a;
Bha+19; DGT20; Voi+20]. We benchmark runtimes on CPU due to
their wide incorporation on computationally limited platforms, and report
them in FPS. However, both E.T.Track and the other methods do not
rely on CPU specific modules and can therefore be used on light weight
GPUs for further latency improvements, such as the NVIDIA Jetson.

LaSOT [Fan+19] The LaSOT dataset is highly challenging, and
includes very long sequences with an average of 2500 frames per sequence.
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Figure 4.4: Success plot on the LaSOT dataset. The CPU realtime trackers
are indicated by continuous lines in warmer colours, while the non-
realtime trackers are indicated by dashed lines in colder colours.
E.T.Track significantly outperforms the other realtime trackers,
and even outperforms some of the more established trackers such as
DiMP [Bha+19]. Furthermore, it significantly closes the performance
gap with the more expensive transformer trackers.

Therefore, robustness is essential to achieving a high score. The success
plot in Fig. 4.4 depicts the CPU realtime trackers with warmer colour
continuous lines, while the non-realtime trackers are indicated by dashed
lines in colder colours. Unlike online-learning methods such STARK
that utilize a dynamically updated template, our model only uses the
features of the template patch extracted in the first sequence of the
frames. Even so, our model is very robust and reaches an AUC score
of 59.1%, outperforming the popular DiMP tracker [Bha+19] by 2.2%.
Compared to the lightweight mobile architecture of LT-Mobile [Yan+21b],
our model improves the success score by an astonishing 7% while achieving
a comparable speed.

NFS [Kia+17] We additionally evaluate our approach on the NFS
dataset that contains fast-moving objects. The results are presented
in Table 4.1 and Fig. 4.5a. E.T.Track reaches an AUC score of 59%,
outperforms all realtime trackers by at least 3.7%.

OTB-100 [WLY13] OTB-100 contains 100 sequences. As shown in
Table 4.1 and Fig. 4.5b, the current state-of-the-art is achieved by the
recently introduced TrDiMP [Wan+21a] with an AUC score of 71.1%.
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Our model achieves an AUC score of 67.8%, marking it as the best
performing realtime tracker.

UAV-123 [MSG16] UAV-123 contains a total of 123 sequences from
aerial viewpoints. The AUC results are shown in Table 4.1 and Fig. 4.5c.
Unlike the other datasets, E.T.Track performs comparably to LT-Mobile,
with a performance of 62.3%.

TrackingNet [Mul+18] We further evaluate the trackers on the 511
sequences of the TrackingNet test set, and report the results in Table 4.2.
Similarly to the other datasets, E.T.Track outperforms all other realtime
trackers. Specifically, E.T.Track improves LT-Mobile precision by 1.05%,
normalized precision by 2.42%, and AUC by 2.48%. Comparing E.T.Track
to more complex transformer-based trackers such as TrSiam [Wan+21a],
our model is only 2.2% worse in terms of precision, 2.32% in terms of
normalized precision, and 3.12% in terms of AUC while running almost
8× faster on a CPU. This further demonstrates that, while transformers
have the capability to significantly improve performance, transformer
modules do not need to be prohibitively expensive for computationally
constrained devices to achieve most of the performance gains.

VOT-ST2020 [Kri+20] We also evaluate bounding box predicting
trackers on the anchor-based short-term tracking dataset of VOT-ST2020.
Unlike other tracking datasets, VOT2020 contains various anchors that
are placed ∆anc frames apart. The trackers are evaluated in terms of
Accuracy, Robustness and Expected Average Overlap (EAO). Accuracy
represents a weighted combination of the average overlap between the
ground truth and the predicted target predictions on subsequences defined
by anchors. Robustness indicates the percentage of frames before the
trackers fails on average. Finally, EAO is a measure for the overall
tracking performance and combines accuracy and robustness. The results
are shown in Table 4.3. While our model outperforms the lightweight
convolutional baseline model introduced in [Yan+21b] by 1− 2% in terms
of accuracy and robustness, the largest performance increase can be noted
in terms of robustness, where the performance is increased by 5.2%. We
find that learning exemplar representations from the dataset coupled with
an image-level query representation significantly increase the tracker’s
robustness compared to its convolutional counterpart.

VOT-RT2020 [Kri+20] Finally, similar to VOT-ST2020, we also
evaluate VOT-RT2020 of Kristan et al. [Kri+20]. The results are presented
in Table 4.4. While the performance of our model is comparable to
LT-Mobile [Yan+21b] in terms of accuracy, our model is nearly 6%
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(a) Success plot on the NFS dataset. Our
tracker outperforms LT-Mobile by a
significant margin.
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(b) Success plot on the OTB-100 dataset.
Our tracker outperforms LT-Mobile
by a small margin.
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(c) Success plot on the UAV-123 dataset.
The performance of our tracker is com-
parable to the performance of LT-
Mobile.

Figure 4.5: Success plots. The CPU realtime trackers are indicated by con-
tinuous lines in warmer colours, while the non-realtime track-
ers are indicated by dashed lines in colder colours. For efficient
trackers, we limited our comparison to LT-Mobile [Yan+21b], as
SiamRPN++ [Li+19a] and SiamFC [Ber+16] were consistently out-
performed by a large margin.

better in terms of robustness. Similarly to VOT-ST2020, we find that
learning exemplar representations from the dataset coupled with an image-
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Table 4.3: Comparison of bounding box predicting trackers on the VOT-ST2020
dataset. We report the Expected Average Overlap (EAO), the Ac-
curacy and Robustness. The best score is highlighted in blue while
the best realtime score is highlighted in red. We additionally report
CPU runtime speeds in FPS.

non-realtime realtime

SiamFC ATOM DiMP SuperDiMP STARK-ST50 KCF LT-Mobile E.T.Track
[Ber+16] [Dan+19] [Bha+19] [Dan+] [Yan+21a] [Hen+14] [Yan+21b] (Ours)

EAO 0.179 0.271 0.274 0.305 0.308 0.154 0.242 0.267
Accuracy 0.418 0.462 0.457 0.477 0.478 0.407 0.422 0.432

Robustness 0.502 0.734 0.740 0.786 0.799 0.432 0.689 0.741

CPU Speed 6 20 15 15 9 95 47 47

Table 4.4: Comparison of bounding box predicting trackers on the VOT-RT2020
dataset. We report the Expected Average Overlap (EAO), the Ac-
curacy and Robustness. The best score is highlighted in blue while
the best realtime score is highlighted in red. We additionally report
CPU runtime speeds in FPS.

non-realtime realtime

SiamFC ATOM DiMP SuperDiMP KCF LT-Mobile E.T.Track
[Ber+16] [Dan+19] [Bha+19] [Dan+] [Hen+14] [Yan+21b] (Ours)

EAO 0.172 0.237 0.241 0.289 0.154 0.217 0.227
Accuracy 0.422 0.440 0.434 0.472 0.406 0.418 0.418

Robustness 0.479 0.687 0.700 0.767 0.434 0.607 0.663

CPU Speed 6 20 15 15 95 47 47

level query representation significantly increase the tracker’s robustness
compared to its convolutional counterpart.

4.4.3 Attributes Analysis

Table 4.5 presents the results of various trackers on different sequence
attributes of the LaSOT dataset [Fan+19]. We consistently outper-
form the other realtime trackers by a significant margin in every at-
tribute. The attribute with the largest performance gains compared
to LT-Mobile [Yan+21b] are Full Occlusion with 10.4%, Motion Blur
with 9.7%, Background Clutter with 8.5%, and Fast Motion with 7.5%.
These attributes are either known limitation of the tracking pipeline
utilized [Zha+20], as discussed in Sec. 4.4.4, or can benefit from increased
network capacity. We find that the incorporation of our Exemplar Trans-
former layers increases robustness and improves attributes that are even
known limitations of the overall framework.
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Table 4.6: Direct per-sequence comparison of E.T.Track and LT-
Mobile [Yan+21b] on various sequences in terms of Average
Overlap (AO). The best performance is highlighted in blue.

Dataset LT-Mobile E.T.Track
[Yan+21b] (Ours)

person8-2 UAV-123 [MSG16] 0.889 0.915
Human7 OTB [WLY13] 0.813 0.883
boat-9 UAV-123 [MSG16] 0.483 0.803
basketball-3 NFS [Kia+17] 0.259 0.707
drone-2 LaSOT [Fan+19] 0.192 0.887

When comparing our model to the non-realtime state-of-the-art STARK [Yan+21a],
our model observes an average performance drop of −7.3%. The most
challenging attributes are Viewpoint Change, Full Occlusion, Fast Motion,
Out-of-View, and Low Resolution. This analysis paves the path for future
research in the design of novel modules for efficient tracking, specifically
tackling the identified challenging attributes.

4.4.4 Video Visualizations

We additionally provide sequence comparisons between E.T.Track and LT-
Mobile [Yan+21b]. Table 4.6 lists the sequences compared, and reports
their performance. The videos can be found in the supplementary folder
of the associated paper [Bla+23].

person8-2 The person8-2 sequence of the UAV-123 dataset [MSG16] of
a man running on grass nicely demonstrates that our tracker does not
lose track of the target even when he partially moves out of the frame.
Specifically, E.T.Track is able to completely recover when the target
moves back into the frame. LT-Mobile [Yan+21b] yields comparable
results.

Human7 Human7 from the OTB dataset [WLY13] films a woman
walking. Even though the video appears to be jittery, the appearance and
shape of the target object changes only marginally. Our model achieves
an average overlap of 88% which is 7% higher than LT-Mobile [Yan+21b].

boat-9 The boat-9 from the UAV-123 dataset [MSG16] depicts a target
which not only changes appearance, but also significantly decreases in
size due to an increasing distance to the camera. We find that E.T.Track
can still handle such scenarios, and unlike LT-Mobile, it maintains track
of the boat even after a 180-degree turn. E.T.Track is therefore more
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robust than LT-Mobile, attributed to the increased capacity introduced
by the Exemplar Transformer layers.

basketball-3 In the basketball-3 sequence of NFS [Kia+17], the increased
robustness introduced by the Exemplar Transformer layer enables the
separation between the player’s head and the basketball, unlike LT-Mobile.

drone-2 The drone-2 sequence of LaSOT [Fan+19] shows a target
that shortly moves completely out of the frame, and later re-enters the
scene with a different appearance to the initial frame. Furthermore, the
target object’s location deviates from the tracker’s search range when
re-entering the scene. These two aspects pose a challenge both for our
model, as well as LT-Mobile [Yan+21b], and are inherent limitations
of the tracking inference pipeline used in both approaches [Zha+20].
Specifically, the tracking pipeline contains a post-processing step in which
the predicted bounding boxes are refined. Changes in size, as well as
changes in the bounding box aspect ratios, are therefore penalized. In
addition, both models search only within a small image patch around the
previously predicted target location. This challenge can potentially be
addressed by integrating our Exemplar Transformer layer into trackers
that directly predict bounding boxes without any post-processing. We
did not investigate this further, but consider this an interesting direction
for future research.

4.4.5 Ablation Study

To further understand the contributions of the different components, we
conduct a number of controlled experiments on three datasets. Specif-
ically, we report AUC on OTB-100 [WLY13], NFS [Kia+17], and La-
SOT [Fan+19].

Baseline We commence our ablation study from the mobile architecture
of [Yan+21b], LT-Mobile, due to its performance versus efficiency trade-off.
We refer to LT-Mobile, our baseline Siamese tracker, as the Convolutional
(Conv) baseline. In LT-Mobile, the similarity of the search and template
patch features is computed by a pointwise cross-correlation. The feature
map is then passed to the tracker head consisting of two branches, the
classification and the bounding box regression branches, as explained in
Sec. 4.4.1. The performance of the baseline model, Conv, is reported in
Table 4.7.

Exemplar Attention We first evaluate the efficacy of the Exemplar
Attention as a drop in replacement for the convolutional layer. We
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Table 4.7: Ablating the different components of the Exemplar Transformer
module in terms of AUC on NFS, OTB, and LaSOT datasets. Conv
refers to LT-Mobile [Yan+21b] that acts as our convolutional baseline.
We evaluate the Exemplar Attention (Att) module, Feed-Forward
Network (FFN), and Template Conditioning (T-Cond). The best
score is highlighted in blue. The final model, depicted in Fig. 4.3
includes the Att and FFN modules.

Components Tasks
Conv Att FFN T-Cond. NFS OTB-100 LaSOT

✓ 55.3 66.2 52.1
✓ 56.6 65.8 53.6
✓ ✓ 58 67.3 59.1
✓ ✓ ✓ 59.0 66.9 57.9

replace the convolutional layers with the Exemplar Attention, followed by
a residual connection and a normalization layer. In other words, setting
the FFN (f(·)) in Eq. 4.1 to identify. We report the performance of the
Attention (Att) module in Table 4.7. The performance on NFS increases
by 1.3%, and on LaSOT by 1.5%, demonstrating the effectiveness of our
Exemplar Attention module. We note that this performance increase
is without the use of the FFN, a key design choice in the transformer
architectures [Vas+17].

FFN Similar to the original Transformer architecture [Vas+17], we
evaluate the effect of additionally using a lightweight FFN followed by
a LayerNorm layer. We find that the additional expressivity introduced
by the FFN improves the performance on all three datasets, as seen in
Table 4.7. The highest performance increase is achieved on LaSOT, where
the AUC score increases by 5.5%. This yields our final E.T.Track model,
depicted in Fig. 4.3.

Template conditioning The queries used in the Exemplar Transformer
so far are solely based on a transformed version of the initial correlation
map. We further explore the impact of incorporating template infor-
mation into our Exemplar Attention module. Specifically, we average
pool the feature map corresponding to the template patch, and sum the
representation to each layer’s input. As seen from the Template Condi-
tioning (T-Cond) experiments in Table 4.7, the richer queries lead to an
improvement on NFS. However, on OTB-100 and LaSOT, the model did
not benefit from the additional information. To this extend, we decide to
not use the T-Cond module in our final module, keeping our final model
simpler.
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Table 4.8: Effect of the number of exemplars (-Ex) in terms of AUC on NFS,
OTB, and LaSOT datasets. Conv refers to LT-Mobile [Yan+21b]
that acts as our convolutional baseline. The best score is highlighted
in blue. The final model makes use of four exemplars.

Conv 1-Ex 4-Ex 16-Ex

NFS 55.3 57.6 58.0 58.0
OTB-100 66.2 66.5 67.3 66.1
LaSOT 52.1 57.2 59.1 57.4

Number of Exemplars Table 4.8 reports the performance given the
number of Exemplars. While more Exemplars increases the overall ca-
pacity of the model, and as such, one would expect further performance
gains, our experiments yield different results. Specifically, 4 Exemplars
yield consistently better results across all the datasets. We hypothesize
that, while training a model with a larger number of experts can increase
performance, modifications in the optimization process are required to
ensure the selection of the appropriate exemplar. The efficient implemen-
tation of the Exemplar Attention module, Eq. 4.6, ensures a comparable
runtime even with a larger number of exemplars.

Interestingly, while single Exemplar Attention is mathematical equiv-
alent to a regular convolution with a residual operation, the additional
FFN layer following the Exemplar Attention increases considerably the
performance. Specifically, we observe a performance increase of 2.3% on
NFS, 0.3% on OTB-100, and 5.1% on LaSOT.

Number of Query Vectors As discussed in Sec. 4.3.1, we set S = 1
in our experiments based on the assumption that one global token encap-
sulates sufficient information for the task of single object tracking. To
further evaluate this hypothesis, we ablate the parameter S. Specifically,
the input feature map is divided into S×S patches, for which we compute
individual query vectors. Table 4.9 presents the results of our experiments
and validates our assumption that utilizing a single token as a global
representation yields the best results.

Backbone Alternatives All experiments reported so far utilize the LT-
Mobile encoder. To demonstrate the flexibility of Exemplar Transformers,
as well as their independence to the encoder architecture, we evalu-
ate the use of different encoder architectures. Specifically, we compare
the performance of the two tracker head module variants (Convolution,
Exemplar Transformer) in combination with ShuffleNet [Zha+18a], Mo-
bileNetV3 [How+19], ResNet-18 [He+16], and LT-Mobile [Yan+21b]. The
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Table 4.9: Ablation experiment of the different values for S reported in terms
of AUC on NFS, OTB, and LaSOT datasets. The best score is
highlighted in blue. The final model makes use of a single global
query vector.

S=1 S=2 S=4

NFS 59.0 46.6 46.7
OTB-100 67.8 55.5 57.5
LaSOT 59.1 43.7 42.6

Table 4.10: Comparison of Exemplar Transformer (E.T.) and Convolutional
(Conv) modules on different backbone models in terms of AUC
on NFS, OTB, and LaSOT datasets. Conv refers to LT-
Mobile [Yan+21b] that acts as our convolutional baseline. The
best score is highlighted in blue. The E.T. consistently outperforms
the Conv models, independently of the backbone used.

ShuffleNet MobileNetV3 ResNet-18 LT-Mobile
[Zha+18a] [How+19] [He+16] [Yan+21b]

Conv ✓ ✓ ✓ ✓
E.T. (Ours) ✓ ✓ ✓ ✓

NFS 54.9 56.2 56.8 56.8 55.8 57.3 55.3 59.0
OTB-100 61.3 61.8 64.5 65.3 65.3 65.7 66.2 67.8
LaSOT 48.6 49.8 52.1 52.7 55.9 56.5 52.1 59.1

results presented in Table 4.10 demonstrate consistent performance gains
independent of the encoder architecture, highlighting the superiority of
our Exemplar Transformer to its convolutional counterpart.

Comparison of Alternative Transformer Layers To validate the
design choices and hypothesis that lead to the Exemplar Transformer
module, we additionally compare to other Transformer Layer variants.
All Transformer layers evaluated can also act as drop-in replacements to
standard convolutions. Specifically, we evaluate the Standard [Vas+17],
Clustered [VKF20], Linear [Kat+20], Local [Ram+19], and Swin [Liu+21]
Transformers. The selection ensures at least one method from every
transformer category defined in Sec. 4.2, while using their official public
implementations ensures a fair comparison. The results in Table 4.11
demonstrate that our Exemplar Transformer (E.T.) consistently outper-
forms all other attention variants across all the datasets. These findings
further validate our hypothesis that one global query and a small set
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Table 4.11: Comparison of the convolutional baseline (Conv) and the different
attention modules in terms of AUC on NFS, OTB, and LaSOT
datasets. The best score is highlighted in blue. E.T.Track consis-
tently outperforms all other transformer variants.
Conv Standard Clustered Linear Local Swin E.T.Track

[Yan+21b] [Vas+17] [VKF20] [Kat+20] [Ram+19] [Liu+21] (Ours)

NFS 55.3 55.3 57.5 55.8 55.8 55.4 59.0
OTB-100 66.2 65.3 67.5 65.4 64.8 64.2 67.8
LaSOT 52.1 54.2 56.5 53.5 53.4 56.9 59.1

of exemplar representations are sufficiently descriptive when tracking a
single object.

4.5 conclusion

We propose a novel Transformer layer for single-object visual tracking,
based on Exemplar Attention. Exemplar Attention utilizes a single query
token of the input sequence and jointly learns a small set of exemplar
representations. The proposed transformer layer can be used throughout
the architecture, e.g. as a substitute for a convolutional layer. Having a
comparable computational complexity to standard convolutional layers
while being more expressive, the proposed Exemplar Transformer layers
can significantly improve the accuracy and robustness of tracking models
with minimal impact on the model’s overall runtime. E.T.Track, our
Siamese tracker with Exemplar Transformer, significantly improves the
performance compared to the convolutional baseline and other transformer
variants. E.T.Track is capable of running in realtime on computationally
limited devices such as standard CPUs.





5
FAST INTEREST POINT DETECTION ,
DESCR IPT ION , AND MATCHING

Efficient detection and description of geometric regions in images is a
prerequisite in visual systems for localization and mapping. Such systems
still rely on traditional hand-crafted methods for efficient generation of
lightweight descriptors, a common limitation of the more powerful neural
network models that come with high compute and specific hardware
requirements. In this chapter, we focus on the adaptations required by
detection and description neural networks to enable their use in com-
putationally limited platforms such as robots, mobile, and augmented
reality devices. To that end, we investigate and adapt network quanti-
zation techniques to accelerate inference and enable its use on compute
limited platforms. In addition, we revisit common practices in descriptor
quantization and propose the use of a binary descriptor normalization
layer, enabling the generation of distinctive binary descriptors with a
constant number of ones. ZippyPoint, our efficient quantized network
with binary descriptors, improves the network runtime speed, the de-
scriptor matching speed, and the size of sparse 3D maps, by at least an
order of magnitude when compared to full-precision counterparts. These
improvements come at a minor performance degradation as evaluated on
the tasks of homography estimation, visual localization, and map-free
visual relocalization.

5.1 introduction

The detection and description of geometric regions in images, such as
salient points or lines, is one of the fundamental components in visual local-
ization and mapping pipelines – essential prerequisites for AR and robotic
applications. Achieving such detection and description efficiently with
handcrafted algorithms [Rub+11; LCS11] has produced successful robot
localization methods [MMT15; MT17; End+12; GT12; Leu+15]. On the
other hand, DNNs have significantly advanced the representational capa-
bility of descriptors by learning on large scale natural images [DMR18],
using deeper networks [Dus+19], or introducing new modules to learn

75
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Figure 5.1: Learned detection and description methods,
e.g. SuperPoint [DMR18], significantly outperform hand-crafted
methods, in orange, on challenging day-night scenarios [Sat+18;
Sat+12]. This, however, comes at the cost of slower image matching
(top left), slower keypoint detection and description (bottom right),
larger sparse 3D maps (bottom left), and therefore slow localization
within a 3D space (top right). Speeds are reported in FPS on a
CPU. In this chapter we present ZippyPoint, a learned detection and
description network that improves the above limitations by at least
an order of magnitude while providing competitive performance,
enabling its use on-board computationally limited platforms.

feature matching [Sar+20]. However, these advances often come at the
cost of more expensive models with slow run times and large memory
requirements for representation storage, making them unsuitable for
computationally limited platforms. While the demand for real-time ap-
plications such as robotics and AR is increasing, efficient DNN methods
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that can operate in real-time on computationally limited platforms have
received surprisingly little attention.

A key component for the successful deployment of mobile robots in
large-scale applications is the real-time extraction of binary descriptors.
This not only enables efficient storage of the detected representation, e.g.
the map in Simultaneous Localization and Mapping (SLAM) or Structure-
from-Motion (SfM) pipelines, but also accelerated descriptor matching. In
particular, matching computations in localization scale non-linearly with
the number of images or map size. Therefore, improved two-view matching
speed can translate to very high gains in real applications. Fast and light
weight descriptor methods include BRISK [LCS11], BRIEF [Cal+10] and
ORB [Rub+11], however, their matching capability is often inferior to
standard hand-crafted features such as SIFT [Low04] and SURF [BTG06],
as presented by Heinly J. et al. [HDF12]. In challenging scenarios, however,
hand-crafted feature extractors are outperformed significantly by learned
representations [Sat+18]. While the performance gains of learned methods
are highly desired, embedded platforms are limited in storage, memory,
providing limited or no support for FP arithmetic, thus limiting the use
of learned methods.

Motivated by the desire for improving the performance of feature points
on low-compute platforms, we explore DNN quantization to enable the
real-time generation of learned descriptors under such challenging con-
straints. However, the quantization of a DNN is not as straightforward
as selecting the discretization level of convolutional layers. Quantized
DNNs often require different levels of discretized precision for different
layers [Ras+16; Liu+18b]. Operations such as max-pooling favour satura-
tion regimes [Ras+16], while average pooling is affected by the required
rounding and truncation operations. Moreover, prior works often focus
on image-level classification tasks, with findings that do not necessarily
transfer to new tasks [Bet+19]. To render the search for a Quantized
Neural Network (QNN) tractable, we propose a layer partitioning and
traversal strategy, a heuristic algorithm that divides the network com-
ponents into blocks, and independently finds the optimal quantization
configuration for each block, significantly reducing the architecture search
complexity. While most research considers homogeneous quantization
precision across all layers [Nag+19], we find Mixed-Precision (MP) quan-
tization yields superior performance. In addition, we find that replacing
standard pooling operations with learned alternatives can further improve
QNN performance.

Besides the need for real-time inference, DNNs need to additionally
generate binary local descriptors for storage efficiency and fast feature
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matching. This adds further challenges as the discretization of the
output layer draws less precise boundaries in the feature domain [LS20],
making the network optimization more challenging. Furthermore, prior
works focus on global feature description and present findings that do
not trivially transfer to our task [She+18; Lai+15]. To this extent, we
introduce a Binary Normalization (Bin.Norm) layer that constrains the
representation to a constant pre-defined number of ones. Bin.Norm is
therefore analogous to the L2 normalization, a staple and key component
in FP metric learning [MBL20].

In summary, our contributions are:

— We propose a heuristic algorithm, named layer partitioning and
traversal strategy, to investigate the topological changes required
for the quantization of a state-of-the-art detection and description
network. We find that with a MP quantization architecture, and by
replacing max-pooling with a learned alternative, we can achieve
a speed-up by an order of magnitude with minor performance
degradation. Our analysis reveals that the common QNN practices
of using a single discretization level or standard pooling operations
can be sub-optimal.

— We propose the use of a normalization layer for the end-to-end
optimization of binary descriptors. Incorporating the Bin.Norm
layer yields consistent improvements when compared to the common
practices for descriptor binarization.

— We provide a detailed analysis of ZippyPoint, our proposed QNN
with binary descriptors, on the task of homography estimation. We
further demonstrate the generality of ZippyPoint on the challenging
applications of Visual Localization (VisLoc) and Map-Free Visual
Relocalization. ZippyPoint consistently outperforms all real-time
alternatives and yields comparable performance to a full precision
counterpart while addressing its known limitations of large sparse
maps, slow image matching speed and slow network inference,
illustrated in Fig. 5.1.

5.2 related work

Hand-crafted feature extractors The design of hand-crafted sparse
feature extractors such as SIFT [Low04] and SURF [BTG06] has been
undoubtedly very successful in practice, still widely used in applications
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such as SfM [SF16]. However, the time needed for detection and descriptor
extraction, coupled with their FP representation, limits them from being
used on compute-limited platforms, such as light-weight unmanned aerial
vehicles. Motivated by this limitation, methods like BRISK [LCS11],
BRIEF [Cal+10], and ORB [Rub+11], aimed to provide compact features
targeted for real-time applications [MMT15; MT17; Leu+15]. While
fast and lightweight, they lack the representational strength to perform
well under a wide variety of viewing conditions such as large viewpoint
changes [HDF12; SF16] or times of day and year [Sat+18].

Learned feature extractors Advances in DNNs have enabled the
learning of robust, (pseudo-)invariant, and highly descriptive image fea-
tures, pushing the boundaries of what was previously possible through
hand-crafted methods. While hand-crafted local features [Low04; BTG06;
LCS11; Cal+10; Rub+11; TLF09] have not evolved much, systematic
incremental progress can be seen in the learned local features [Cho+16;
DMR18; Fat+18; Ono+18; Rev+19; Tan+20; Dus+19]. Improvements
have been achieved using contrastive learning [Cho+16], self-supervised
learning [DMR18], improved architectures [Rev+19; Tan+20] and outlier
rejection [Tan+20], to name a few approaches. Nevertheless, time and
memory inefficiency remain major drawbacks of the learned methods.

In the same vein, large scale descriptor matching calls for light-weight
representations. Binary descriptors enable efficient matching with moder-
ate performance drops while significantly decreasing the storage require-
ments. Yet, the existing literature on binary representations focuses on
image retrieval [Lin+16; She+18; Lai+15; She+15; Wan+17; NFS12],
neglecting the detection and description of local features. For descriptor
binarization, [She+18; She+15; Lin+16] rely on multiple distinct steps
for the successful binarization of the descriptors. More similar to our
work, [NFS12] defines a differentiable objective for the hamming dis-
tance, [Lai+15] uses sigmoids to soften the optimization objective, while
[Tan+19] rely on a hard sign function and gradient approximations. In
the same spirit, we also optimize the network in a single optimization step.
However, we argue that the lack of normalization layer in these methods,
a staple in metric learning [MBL20], greatly hinders the descriptor per-
formance. To address this limitation, we propose a normalization layer
for binary descriptors. Bin.Norm provides a more stable optimization
process, avoids mode collapse and enables end-to-end optimization with-
out requiring the use of gradient approximations or multiple optimization
stages.
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Efficient Neural Networks Several solutions have been proposed to
deploy neural networks in constrained scenarios. These solutions can be
partitioned in topological optimizations, aiming at increasing accuracy-
per-operation or accuracy-per-parameter [HS15; How+19; Bla+23], soft-
ware optimizations such as tensor decomposition and parameter prun-
ing [Zha+15; Obu+20; Obu+21], and hardware-aware optimizations
[Ras+16].

Amongst hardware-aware optimizations, quantization plays a central
role [Ras+16; Liu+18b]. By replacing FP with Int operands, a QNN can
reduce its storage and memory requirements with respect to an equivalent
DNN. In addition, complex FP arithmetics can be replaced by simpler
Int arithmetics. Due to these properties, QNNs can be executed at
higher throughput (number of operations per cycle) and arithmetic inten-
sity (number of arithmetic operations per memory transaction) [Jac18].
When operand precision is extremely low, e.g. Binary (Bin), standard
instruction set architectures can be exploited to increase these metrics
even further [Ras+16]. Unlike mainframes and workstations, embedded
platforms have limited storage and memory, limited or no support for
FP arithmetics, and are optimized to execute SIMD (Single Instruction,
Multiple Data) Int arithmetics. These considerations make QNNs an
ideal fit for embedded applications, such as robots and mobile devices.

However, QNNs have limited representational capacity compared to
their FP counterparts. Specifically, linear operations using discretized
weights draw less precise boundaries in their input domains. In addi-
tion, discretized activation functions lose injectivity with respect to their
FP counterparts, making quantization a lossy process [LS20]. To strike
a balance between throughput and performance, practitioners require
to identify a single Int precision [Nag+19], or alternative linear lay-
ers [Liu+18b], that achieve the desired performance. These design choices
are applied homogeneously across the entire network. We instead hypoth-
esize that a single set of hyperparameters across the entire network can
be suboptimal. We, therefore, investigate the use of heterogeneous layers
throughout the network, e.g. different Int precision at different depths of
the network, made possible through the proposed layer partitioning and
traversal strategy.

5.3 mixed precision discretization

Efficiently identifying salient points in images and encoding them with
lightweight descriptors is key to enabling real-time applications such as
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robot localization. In this chapter, we explore the efficacy of learning-
based descriptor methods under two constraints: minimizing run-time
latency and using binary descriptors for accelerating keypoint matching
and efficient storage. In Sec. 5.3.1 we introduce the baseline architecture
we initiate our investigation from. In Sec. 5.3.2 we propose a strategy
to explore structural changes to the network’s topology. In Sec. 5.3.3
we introduce a standard formulation of metric learning, which we use to
then define our Bin.Norm descriptor layer.

5.3.1 Baseline Architecture

We initiate our investigation from the state-of-the-art KP2D [Tan+20]
network, which exploits outlier filtering to improve detections. The
KP2D model maps an input image I ∈ RH×W×3 to keypoints p ∈ RN×2,
descriptors x ∈ RN×M , and keypoint scores s ∈ RN , where N represents
the total number of keypoints extracted and M the descriptor size. The
model is comprised of an encoder with 4 VGG-style blocks [SZ15], followed
by a three-headed decoder for keypoints, keypoint scores, and descriptors.
The encoder is comprised of 8 convolutional operations, the keypoint
and keypoint score branches of 2, and the descriptor branch of 4. All
convolutional operations, except for the final layers, are followed by batch
normalization and leaky ReLUs [MHN+13]. The model is optimized
through self-supervision by enforcing consistency in predictions between
a source image Is and a target image It = H(Is), related through a known
homography transformation H and its warping function H.

We chose KP2D as the starting point for our investigation due to
its standard architecture design choices: a VGG style encoder [DMR18;
Chr+19; Dus+19; Rev+19], encoder-decoder structure [DMR18; Chr+19],
and the detection and description paradigm [DMR18; Chr+19; Dus+19;
Rev+19]. We expect that the investigated quantization strategy can be
utilized by other similar models, such as the ones listed above, due to
their architectural similarities.

5.3.2 Network Quantization

For the quantization of a convolutional layer, several design choices are
required. These include weight precision, feature precision, and whether
to use a high precision residual. When considering independently each
layer of a DNN, it leads to a combinatorially large search grid, rendering
an exhaustive search of the ideal quantization policy prohibitive.
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To simplify the search space, we propose the layer partitioning and
traversal strategy, depicted in Fig. 5.2. First, we partition the operations
of our target architecture into macro-blocks. For each macro-block, we
define a collection of candidate quantized configurations, such as weight
precision. We then traverse through the macro-blocks and identify the
optimal configuration for each, one at a time. This heuristic algorithm
terminates once we have reached the most downstream network layer,
the prediction heads. This strategy ensures that when a macro-block is
optimized on features with given representation capabilities, it will not
degrade due to optimization of a different macro-block upstream. Note
that, while we maintain the macro-block configurations the same once
selected, the architecture is always optimized end-to-end. By dividing
the architecture into macro-blocks, we reduce the search complexity from
combinatorial (the product of the number of configurations for each
macro-block) for the greedy search, to linear (the sum of the number of
configurations for each macro-block). We detail our choice of macro-blocks
and their configurations in the experiments section.

5.3.3 Binary Learned Descriptors

Preliminaries When describing an image or a local region, the learned
mapping aims to project a set of data points to an embedding space,
where similar data are close together and dissimilar data are far apart.
A fundamental component to the success of learned descriptors is the
advancement of contrastive losses [HCL06; WS09; Den+19]. To ensure
stable optimization and avoiding mode collapse, descriptors are often
normalized [MBL20]. A common selection is L2 normalization, defined as

y =
1

||x||2
x. (5.1)

While the solution, and hence gradients, can be expressed in closed-form,
it assumes FP representation spaces x and y. However, Bin descriptors
can only take discrete values {0,1}. In search for a normalization layer
applicable for Bin descriptors, we instead view and rewrite Eq. (5.1) as
the generalized optimization objective

y = argmin
z∈RM

d(z;x)

subject to constr(z),
(5.2)

where we search for the vector z that minimizes a distance function
to x under a normalization constraint constr(z). Eq. (5.2) is therefore
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equivalent to Eq. (5.1) when d(z;x) = 1
2 ||z−x||22 and constr(z) is ||z||2 =

1. This enables the definition of optimization objectives that can be
utilized where L2 normalization does not provide the required behaviour.
While constrained optimization problems are not differentiable, their
use in DNNs is made possible through advances in deep declarative
networks [GHC21].

Normalization for Binary Descriptors We hypothesize that normal-
ization for binary descriptors is equivalent to having a constant number of
ones in each descriptor. To this end, we take inspiration from multi-class
classification problems [AKK19; MA16] and view the Bin.Norm as a
projection of the descriptors living in an M-dimensional hypercube on
a k-dimensional polytope [AKK19]. In other words, an M -dimensional
descriptor has entries that sum to k. This trivially yields the constraint
from Eq. (5.2) to constr(z) = 1⊤z = k, where 1 is a vector of 1s of the
same dimension as z.

We define the new optimization objective as

y = argmin
z∈[0,1]M

− x⊤z−H(z)

subject to 1⊤z = k

(5.3)

where H(z) is the binary entropy function applied on the vector z for
entropy based regularization.

To optimize the objective, we introduce a dual variable ν ∈ R for the
constraint of Eq. (5.3). The Lagrangian then becomes

−xT z−H(z) + ν(k − 1⊤z). (5.4)

Differentiating with respect to z, and solving for first-order optimality
gives

−x+ log
z∗

1− z∗
− ν∗ = 0, (5.5)
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after some manipulation

−x− ν∗ = − log
z∗

1− z∗

−x− ν∗ = log
1− z∗

z∗

e−(x+ν∗) =
1− z∗

z∗

z∗e−(x+ν∗) = 1− z∗

z∗(1 + e−(x+ν∗)) = 1

z∗ =
1

1+ e−(x+ν∗)

(5.6)

it yields

y ≈ z∗ = σ(x+ ν∗), (5.7)

where σ denotes the logistic function. We identify the optimal ν∗ by
using the bracketing method of [AKK19] that is efficiently implemented
for use on GPUs, and backpropagate using [AK17].

The selection of the optimization objective in Eq. (5.3) is two-fold.
The entropy regularizer helps prevent sparsity in the gradients of the
projection. In addition, the forward pass in Eq. (5.7) can be seen as an
adaptive sigmoid that ensures the descriptor entries sum up to a specific
value. This enables the direct comparison with the common practice of
approximating binary entries using the sigmoid function.

5.4 experiments

We first present the implementation details in Sec. 5.4.1. In Sec. 5.4.2 we
investigate the effect of network quantization using the layer partitioning
and traversal strategy, as well as evaluate the proposed Bin.Norm layer
for descriptor binarization. We then combine the two contributions into
ZippyPoint and evaluate its performance on the task of homography
estimation. We evaluate the generalization capabilities of ZippyPoint
on fundamental tasks in robotic and AR pipelines, namely VisLoc in
Sec. 5.4.3, and Map-Free Visual Relocalization in Sec. 5.4.4. Code and
trained models will be released upon acceptance. We envision our work
can both spark further research in the design of binary descriptors and
quantized networks, as well as promote the incorporation of ZippyPoint
in robotic systems.
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Figure 5.2: (a) Starting from [Tan+20], we partition the operations in macro-
Blocks, depicted in (b) with different colors. From the first upstream
macro-Block, in blue, we identify the optimal quantization setting
that maintains functional performance while improving the network’s
throughput. We then traverse to the next block, green, and repeat.
The strategy is complete once we have reached the most downstream
network layer, the prediction heads.

5.4.1 Implementation Details

We implement our models in TensorFlow [Mar+15], and use the Larq [GT20]
library for quantization. Our models are trained on the COCO 2017
dataset [Lin+14], comprised of 118k training images, following [DMR18;
Chr+19; Tan+20]. The models are optimized using ADAM [KB15] for
50 epochs with a batch size of 8, starting with an initial learning rate
of 10−3 while halving it every 10 epochs. To ensure robustness in our
results, we optimize each model configuration three times and report the
mean and standard deviation.

To enable self-supervised training, spatial and non-spatial augmen-
tations for the homography transformation are required. For spatial
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transformations, we utilize crop, translation, scale, rotation, and sym-
metric perspective. Non-spatial transformations applied are per-pixel
Gaussian noise, Gaussian blur, color augmentation in brightness, contrast,
saturation, and hue. Finally, we randomly shuffle the color channels and
convert images to gray scale. Please refer to [Tan+20] for more details.

5.4.2 Designing ZippyPoint

We conduct our DNN quantization investigation on the task of homogra-
phy estimation, a commonly used task for the evaluation of self-supervised
learned models [DMR18; Chr+19; Tan+20]. Homographic transforma-
tions largely eliminates domain shifts due to the elimination of the third
dimension, minimizing the adverse effects caused from known challenges
such as occlusions, providing a good benchmark for ablation studies.

We evaluate our method on image sequences from the HPatches
dataset [Bal+17]. HPatches contains 116 scenes, separated in 57 il-
lumination and 59 viewpoint sequences. Each sequence is comprised
of 6 images, with the first image used as a reference. The remaining
images are used to form pairs for evaluation. As is common practice, we
report Repeatability (Repeat.), Localization Error (Loc), Matching Score
(M.Score), and Homography Accuracy with thresholds of 1, 3 and 5 pixels
(Cor-1, Cor-3, Cor-5). We additionally benchmark and report the CPU
speeds in Frames Per Seconds (FPS) on an Apple M1 ARM processor,
since Larq currently only provides the optimized inference engine that
exploits Bin convolutions for ARM processors.

Baseline We initiate our investigation in Table 5.1 from a re-implementation
of KP2D with minor modifications to enable a structured search with
minimal macro-block interference. Specifically, KP2D uses a shortcut
connection between the encoder and decoder macro-blocks. We remove
this skip-connection to constrain the interaction between two macro-
blocks to a single point. Furthermore, we replace the leaky ReLUs with
hard-swish [How+19], a comparable but faster alternative. The functional
performance of Baseline is comparable to KP2D while slightly improving
the throughput.

We then partition our baseline architecture into macro-blocks. These
include the first encoder convolution, the remaining encoder convolutions,
spatial reduction layers, the non-head decoder convolutions, and the head
decoder convolutions, as depicted in Fig. 5.2 by the different colours.

Macro-Block I: First Encoder Convolution For macro-block I, we
considered two configurations: FP and Int8. Although [Ras+16; Liu+18b]
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suggest that keeping the first convolution in FP has a negligible effect
on application throughput while degradation of functional performance,
our findings suggest otherwise. Specifically, we find that using an Int8
convolution improves throughput by as much as 3 FPS, while having
no detectable impact on functional performance. We ascribe this to
the fact that the input images are also represented in Int8. Therefore,
discretization of the input sequence does not cause a loss of information,
while enabling the use of a more efficient Int8 convolution.

Macro-Block II: Encoder Convolutions For the encoder convolu-
tions, we considered three configurations: Int8, Bin, and Binary with
a high-precision Residual (Bin-R). While using Bin convolutions in the
encoder significantly improves application throughput, functional perfor-
mance is severely hindered, as measured by the halving of the correctness
metrics. This drop is consistent with findings in the literature for semantic
segmentation [Zhu+19] while conflicting with image-level classification
experiments [Ras+16]. This further supports our arguments for the
importance of task-specific investigations.

To alleviate such drastic performance drops, we introduce high precision
Int8 representations in the form of a residual operation. For convolutional
operations with a mismatch in the number of input and output channels,
we introduce additional Int8 1×1 convolutions on the residual path. This
ensures the high-precision paths maintain their Int8 precision, while
matching the channel dimensions. The additional high-precision Int8
residuals improve performance significantly. This again advocates for the
redundancy of FP representation in the encoder, as the encoder is now
bottlenecked by Int8 precision.

Macro-Block III: Spatial Reduction For the spatial reduction layers,
we considered four configurations: max-pooling (Max), average-pooling
(Aver.), sub-sampling (Sub.S.) and a learned projection (Learn). As is com-
mon in DNNs, our baseline utilizes max-pooling. However, max-pooling
has been found to favour saturated regimes and therefore eliminates
information when applied on low-precision features like those found in
QNNs [Ras+16]. Average pooling further degrades the performance, at-
tributed to the errors introduced due to the roundings and truncations
which are essential for integerized arrays. To further highlight this error,
a simple Sub.S. that only uses information from a quarter of the kernel
window yields comparable performance to Aver.

To alleviate the challenges highlighted above, we propose the use of a
learned pooling operation (Learn). The learned pooling comes in the form
of an Int8 convolutional operation with the same kernel size and stride
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as the other pooling operations. We select Int8 so as to maintain the
representational precision of the network, defined by the macro-block I
and the high precision residuals. While operating at a comparable run-
time to max pooling, the performance significantly improved. This further
corroborates our hypothesis that learned pooling can address both the
aforementioned challenges. Finally, we investigate the effect of the pooling
placement (E.Learn). Specifically, we change the location of the pooling
operations from the end to the beginning of each convolutional block.
While with FP convolutional layers this would cause a 4× speedup for each
convolution, in quantized convolutions the gain is even greater [GT20].

Macro-Block IV: Decoder Convolutions For the decoder convo-
lutions, we considered two configurations: Int8, and Bin-R. We do not
investigate Bin due to the large performance drop observed in macro-
block II. Unlike the findings from macro-block II, our decoder experiments
demonstrate the importance of Int8, highlighting the benefits of MP net-
works. Specifically, utilizing Int8 for the entire network would not yield
the best throughput, as seen in macro-block II, while Bin-R for the entire
network would not yield the best performance.

Macro-Block V: Final Decoder Convolutions For the final convo-
lutions, we evaluated FP and Int8 for the score, location and descriptor
heads independently. We find that score and location heads require FP
representations, with models often failing to optimize otherwise. On the
other hand, the descriptor branch can be optimized with Int8, significantly
improving the throughput.

Network Quantization Findings Network latency can be significantly
improved when quantizing the first convolutional layer and the last
descriptor head to Int8, while having an insignificant effect on functional
performance. This is contrary to findings from prior works that observed
significant degradation in performance while claiming insignificant latency
improvements [Ras+16; Liu+18b]. In addition, enhanced performance
can be achieved through MP QNNs. In other words, a network comprised
of only Bin-R or Int8 convolutional operations would yield sub-optimal
results. This observation suggests that good quality and general-purpose
features can be extracted using low-precision convolutions when coupled
with higher precision residuals. Furthermore, it suggests that the dense
task predictor heads benefit from higher Int8 precision to accurately
reconstruct the target information from the encoded features. Finally, we
observe that the prediction heads for regression tasks (score and location)
cannot be quantized and should be left in FP, while the descriptor head
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can be quantized to Int8. This further drives the importance of the
structured investigation, like the layer partitioning and traversal strategy.

Binarizing descriptors We initiate the descriptor exploration from the
common practice of utilizing sigmoid as a soft approximation for every
bit [Lai+15; Liu+12], and the hamming triplet loss proposed by Lai et al.
[Lai+15]. While some works use a hard sign function [Tan+19], we found
it unable to optimizate the network to a meaningful degree. Table 5.2
demonstrates a significant performance drop and large variance compared
to the baseline, especially in the correctness metrics. We conjecture that
this spans from the saturation of the sigmoids, yielding uninformative gra-
dients. We hypothesize that the aforementioned limitation can be partly
addressed by the use of a normalization layer, and test this assumption
by appending an ||L2|| normalization layer after the element-wise sigmoid
operation. This constrains the activations and dramatically improves
performance and reduces the variance, as seen experimentally, leading to
a more stable optimization process.

In this chapter, we hypothesize that analogous to ||L2|| normalization,
we can optimize the network using a Bin normalization layer by constrain-
ing the descriptor to a constant number of ones. Using the proposed
Bin.Norm layer, the functional performance gap is significantly decreased
when compared to the FP descriptors. Note that, during inference the
binary descriptor optimization strategy in Eq. (5.3) can be replaced by a
thresholding function that sets the top-k logits of each descriptor to 1,
enabling faster processing.

Comparison to state-of-the-art We compare ZippyPoint with state-
of-the-art methods in Table 5.3. For a fair comparison, we group methods
given the descriptor precision. When utilizing FP descriptors, ZippyPoint
performs on par with other methods. In particular, it consistently out-
performs SuperPoint and performs on par with KP2D. Meanwhile, the
throughput gain is higher than an order of magnitude.

The benefits of ZippyPoint, the combination of the fast QNN architec-
ture from Table 5.1 and the binary optimization strategy from Table 5.2,
become apparent when comparing binary descriptor methods. We consis-
tently outperform ORB [MMT15] by a large margin in all metrics. We
additionally outperform BRISK [LCS11] in all metrics and even report
double the matching score, a crucial metric for adaptation of these meth-
ods in downstream tasks like VisLoc. Here on, we refer to ZippyPoint as
our QNN with binary descriptors.
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Figure 5.3: Comparison of the average visual localization accuracy vs descriptor
matching speed between two images on the AachenV1.1 Day-Night
datasets. ZippyPoint consistently outperforms all other binary meth-
ods.

5.4.3 Visual Localization

Camera localization is one of the key components in several robotic and
mapping applications. Both relative [Nis04] and absolute [KSS11] camera
localization require good local feature point descriptors to match, and are
key building blocks in seminal pipelines [MMT15; MT17; End+12; GT12;
Leu+15; Dav+07]. To further demonstrate the potential of ZippyPoint,
we assess its generalization capability on the task of absolute camera
localization, where the pose of a query image is estimated with respect
to a 3D map.

We utilize the hloc framework [Sar+19], similar to prior works [Rev+19;
Sar+20], and evaluate the performance on the challenging real-life Aachen
V1.1 Day-Night datasets from the VisLoc benchmark [Sat+18; Sat+12].
More precisely, we reconstruct the 3D map using ZippyPoint features
instead of SIFT [Low04]. For each query image, we perform a coarse
search of the map and retrieve the 30 closest database images based
on their global descriptors, representing candidate locations. The query
image is then localized within the 3D map by utilizing the candidate
locations. Please refer to [Sar+19] for more details.

Table 5.4 presents the performance breakdown for both the day and
night datasets. In addition, we report the size of the 3D map (Map)
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in megabytes, the localization speed (Loc.) for descriptor extraction
and matching in the hloc framework [Sar+19], the inference speed for
the extraction of the descriptors (Inf.), and the matching speed for two
images (Match.). These results are additionally depicted Fig. 5.1, by
reporting the average performance score for both day and night query
sets. Furthermore, the day and night results are presented in Fig. 5.3
with respect to the FPS speed for matching two images. Note that, the
inference speed reported in Table 5.4 is lower than that of Table 5.1. This
is attributed to the fact that the inference speed for learned methods
scales linearly with the number of spatial dimensions in the input image.
The image resolution used in Table 5.1 was 240×320, following [Tan+20],
while in Table 5.4 the largest image dimension was rescaled to 1020,
following [Sar+19].

While ZippyPoint performs comparably to SuperPoint during day time,
we decrease the 3D map size, query localization time, and model inference
speed by at least an order of magnitude. This is attributed to the
lightweight binary descriptors, the more efficient similarity comparison
between the descriptors, and the network quantization. Localization with
ZippyPoint at night is slightly inferior to SuperPoint, however, we expect
optimization of the image transformations during training can close this
gap further.

On the binary descriptor front, ZippyPoint consistently outperforms
ORB by a significant margin at a comparable matching speed. BRISK
on the other hand is competitive to ours on the day dataset, with the
slower run-time of BRISK attributed partly to the larger descriptor size,
twice that of ZippyPoint, and the increased number of detected keypoints.
However, the more challenging night dataset paints a different picture,
with ZippyPoint outperforming BRISK by 42.9% and ORB failing to
localize. This further attests to the need for efficient learned detection
and description networks, in particular for more challenging and adverse
conditions.

5.4.4 Map-free Visual Relocalization

Absolute camera localization, such as the task presented in Sec. 5.4.3,
require an accurate 3D scene-specific map. This entails hundreds of
images and large storage space, prerequisites that do not often hold in AR
applications. These limitations have given rise to the more challenging
Map-free Visual Relocalization benchmark [Arn+22]. The aim of Map-
free Visual Relocalization is to predict the metric pose of a query image
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with respect to a single reference image that is considered representative
of the scene of interest.

We evaluate interest point detection and description networks on the
challenging Map-free Visual Relocalization benchmark. Specifically, as in
[Arn+22], we first compute the Essential matrix [HZ03] between the query
and the reference image using the 5-point solver [Nis04] of [Bar+20]. We
then recover the scale using the estimated depth generated from a DPT
model [RBK21] that has been fine-tuned on the KITTI dataset [GLU12].
We report the Area Under the Curve (AUC) and precision for pose error
(Err) under the threshold of 25cm and 5-degree. In addition, we report
AUC and Err for Virtual Correspondence Reprojection Error (VCRE) at
an offset threshold of 10%, 90 pixels, simulating the placement of AR
content in the scene [Arn+22]. The performances are reported in Fig. 5.4,
Fig. 5.5, and Table 5.5 with respect to the latency for keypoint extraction
and matching. For Fig. 5.4 and Fig. 5.5, we identify Pareto curves by
rescaling the input images at ratios of 0.4 to 1.0 in 0.2 increments, a
common practice to accelerate inference post-training, and also increase
the ratio to 1.2 in order to evaluate if performance can improve further, as
commonly done in VisLoc [Sar+19]. We also investigated larger ratios but
found they often degraded the performance of the hand-crafted methods,
such as SIFT, while the performance quickly plateaued for the DNNs.

We find that ZippyPoint yields comparable performance to SuperPoint
while being an order of magnitude faster for feature extraction and
matching. Additionally, ZippyPoint consistently outperforms the binary
methods, BRISK and ORB, by a large margin. When compared to
SIFT [Low04], however, ZippyPoint yields comparable results at a slight
increase in latency. This is attributed to the nature of the dataset and
task. Specifically, the Map-free Visual Relocalization benchmark presents
a wide baseline benchmark without challenging long-term changes, the
scenario under which SIFT shines. We expect similar benchmarks with
long-term changes, similar to VisLoc, would better showcase the benefits
of ZippyPoint, and the learned methods in general. Furthermore, while
SIFT’s keypoint matching is slower than ZippyPoint’s, matching only
takes place between a single pair of images for each scene in this experiment
and therefore does not aggregate to a significantly large delay, unlike in
VisLoc and SLAM where matching speed is often the bottleneck due to
the required matching within a large map.
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Figure 5.4: Comparison of the different detection and description networks
on the Map-free Visual Relocalization benchmark [Arn+22]. We
report the Area Under the Curve (AUC) and precision under the
Virtual Correspondence Reprojection Error (VCRE) with respect
to the feature extraction and image matching speed. ZippyPoint
consistently outperforms all binary descriptor methods and achieves
comparable performance to SuperPoint at a significant speedup.
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Figure 5.5: Comparison of the different detection and description networks on
the Map-free Visual Relocalization benchmark [Arn+22]. We report
the Area Under the Curve (AUC) and precision under the pose error
(Err) with respect to the feature extraction and image matching
speed. ZippyPoint consistently outperforms all binary descriptor
methods and achieves comparable performance to SuperPoint at a
significant speedup.
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5.5 conclusion

In this chapter, we investigated efficient detection and description of
learned local image points through mixed-precision quantization of net-
work components and binarization of descriptors. To that end, we followed
a structured investigation, we refer to as layer partitioning and traversal
for the quantization of the network. In addition, we proposed the use of a
binary normalization layer to generate binary descriptors with a constant
number of ones.

We obtained an order of magnitude throughput improvement with
minor degradation of performance. In addition, we find that the binary
normalization layer allows the network to operate on par with full-precision
networks, while consistently outperforming hand-crafted binary descriptor
methods. The results show the suitability of our approach on visual
localization and map-free visual relocalization, challenging downstream
tasks and essential prerequisites for robotic applications, while significantly
decreasing the 3D model size, matching, and localization speed. We
believe ZippyPoint can spark further research towards bringing learned
binary descriptor methods to mobile platforms, as well as promote its
incorporation in both new and established robotic pipelines.





6
DISCUSS ION

6.1 summary of contributions

In this thesis, we discussed the importance of efficient DNNs and their
impact in the fields of robotics, AR, and self-driving cars, amongst others.
We presented four works that aim to increase the capabilities of DNNs
while respecting common limitations of computationally constrained de-
vices. Specifically, we show that (a) new dense prediction tasks can be
incrementally learned with only a moderate increase in the total number
of parameters. (b) Self-supervised tasks can be used as auxiliary tasks in
MTL to increase performance and robustness, while also eliminating the
need for additional labeling efforts. (c) Designing efficient transformer
modules can significantly improve performance without compromising
latency. Finally, (d) mixed precision discretization of DNNs and bi-
narization of descriptors can improve efficiency without compromising
performance.

In Chapter 2 we presented RCM, a method to reparameterize convolu-
tions for MTL. By reparameterizing convolutional operations of standard
neural network architectures into a non-trainable shared filter bank and
task-specific modulators, we address two main challenges of MTL, namely,
incremental learning and task interference. We evaluate RCM on two
challenging benchmarks, PASCAL-Context [Mot+14] and NYUD [Sil+12],
and find RCM can achieve comparable results to single-task models at
a significant decrease in total parameters. Furthermore, we find RCM
outperforms the standard MTL practice, as well as other state-of-the-art
task-conditional MTL models.

In Chapter 3 we introduced CompL, a method that exploits the induc-
tive bias provided by a self-supervised task to enhance the performance
and robustness of a target task for an identical architecture. CompL
exploits the label-free supervision of self-supervised methods, facilitating
faster iterations through different task combinations. We show consistent
performance improvements in fully and partially labeled datasets for
both semantic segmentation and monocular depth estimation. While our
method eliminated the need for labeling the auxiliary task, it commonly

101
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outperforms the traditional MTL practice with labeled auxiliary tasks
on monocular depth estimation. Additionally, the semantic segmenta-
tion models trained under CompL yield better robustness to zero-shot
cross-dataset transfer.

In Chapter 4 we presented Exemplar Transformer, a novel transformer
layer for single-object visual tracking based on Exemplar Attention that
can improve performance at an insignificant increase in model runtime.
Exemplar Attention utilizes a single query token of the input sequence
and jointly learns a small set of exemplar representations. The proposed
transformer layer can be used throughout the architecture, e.g. as a
substitute for a convolutional layer. Having a comparable computational
complexity to standard convolutional layers while being more expressive,
the proposed Exemplar Transformer layers can significantly improve
the accuracy and robustness of tracking models with minimal impact
on the model’s overall runtime. E.T.Track, our Siamese tracker with
Exemplar Transformer, significantly improves the performance compared
to the convolutional baseline and other transformer variants. E.T.Track
is capable of running in realtime on computationally limited devices such
as standard CPUs.

Finally, in Chapter 5 we investigated efficient detection and description
of learned local image points through mixed-precision quantization of
network components and binarization of descriptors. We presented a
structured investigation, which we refer to as layer partitioning and traver-
sal, for the quantization of the network. In addition, we proposed the
use of a binary normalization layer to generate binary descriptors with a
constant number of ones. We obtained an order of magnitude throughput
improvement with minor degradation of performance. Furthermore, we
find that the binary normalization layer allows the network to operate
on par with full-precision networks, while consistently outperforming
hand-crafted binary descriptor methods. The results show the suitability
of our approach on visual localization and map-free visual relocalization,
challenging downstream tasks and essential prerequisites for robotic ap-
plications, while significantly decreasing the 3D model size, matching,
and localization speeds.

6.2 discussion, limitations, and future research

This section discusses numerous limitations of the contributions presented
in this thesis and aims to highlight directions for future research.
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6.2.1 Reparameterizing Convolutions for Multi-Task Learning

Incremental task, but not class RCM enables the easy addition of
new tasks, simply by optimizing new task-specific modulators. However,
adding new classes in an already optimized task, e.g. adding the class
cat on the task of semantic segmentation requires the retraining of the
task-specific parameters. We expect that RCM can be easily combined
with existing works on incremental class learning [Fre99; Reb+17; Kir+17;
Lee+17; LH17; Wu+19], however, this has not been evaluated. This
direction opens up the possibility of joint research in incremental task
and class learning.

Elimination of task interactions is not always desired While
jointly optimizing a large number of tasks can lead to performance
degradation, jointly optimizing related tasks can lead to performance
improvements [LDJ19; Sta+20; Bru+20]. This opens up opportunities for
identifying task pairs that can be jointly optimized so as to both improve
performance and decrease further the total number of parameters.

Improved filter bank In Chapter 2 we found that an ImageNet-
optimized filter bank is sufficiently descriptive to enable comparable
performance to single-task models. We hypothesize that the advancements
in self-supervised learning [He+20], and in particular those acting on the
local level [Wan+21d; Hen20], open up opportunities to learn more general-
purpose features for dense tasks, and therefore improve performance
further.

RCM was not designed for separable convolutions Efficient neural
networks used on edge devices often make use of separable convolu-
tions [JVZ14; How+17; San+18; TL19], however, RCM was evaluated on
architectures using the standard convolutional operations. We hypoth-
esize that both methods can be utilized in conjunction, however, this
needs to be evaluated to better understand the tradeoffs in performance
and parameters.

6.2.2 Composite Learning for Dense Predictions

Utilize CompL for state-of-the-art improvements In Chapter 3
we conducted a systematic study of CompL on a number of target tasks,
such as semantic segmentation and monocular depth estimation. For
this study, we follow the standard practice of MTL research and utilized
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generic settings such as architectures and augmentations. Future research
can focus on utilizing CompL in conjunction with state-of-the-art target
task models to further improve benchmark performance. Furthermore,
additional target tasks can be evaluated, such as human pose estima-
tion [NYD16; Cao+17; Sun+19; Cao+19], object detection [Gir+14;
Gir15; Ren+15; Red+16], and visual object tracking [Ber+16; Bha+19].

CompL self-supervised task design In Chapter 3 we focused on an
extensive evaluation to demonstrate and motivate the benefits of jointly
optimizing a supervised target task with existing self-supervised auxiliary
tasks. Self-supervised tasks for pre-training often aim to learn image-level
semantics, such as MoCo, however, tasks like boundary detection require
self-supervised tasks that further enforce the meaning of a boundary. Such
knowledge can be used to better guide the design of target task specific
self-supervised tasks for joint training. Future research can therefore focus
on practices that can enable the efficient design of novel self-supervised
tasks for joint training with target tasks. Furthermore, the automation
of these practices would be ideal if CompL is to be utilized out of the box
for any target task since no single auxiliary task can improve all target
tasks, as demonstrated in MTL literature [Sta+20].

6.2.3 Efficient Visual Tracking with Exemplar Transformers

Optimization challenges Throughout our experiment section, our
E.T.Track utilized 4 exemplars. While increasing the number of exem-
plars should also increase the performance due to increased network
capacity, similar to increasing a convolutional layer’s width, we found
the performance degraded. We attribute this performance degradation
to optimization challenges, specifically, (a) insufficient optimization for
all exemplars, and (b) inefficient use of the additional capacity. We
expect optimization tricks, such as the stochastic dropping of exemplars,
would enforce a more uniform update of the exemplars and minimize
the strong reliance on a small subset of the available exemplars. Similar
optimization tricks have been found to work for neuron dropout in fully
connected layers [Sri+14], as well as entire modules along the network’s
depth [Hua+16].

Evaluate the efficacy of Exemplar Transformers on other tasks
Chapter 4 focused on the design of an efficient single instance-level atten-
tion layer for realtime visual object tracking. We hypothesize that our
efficient transformer layer can be beneficial to other tasks that require
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the detection of a single instance, and can therefore assist in improving
the state-of-the-art of such methods further. This includes, but is not
limited to, image-level tasks such as image classification, dense predic-
tion tasks like visual saliency segmentation [Ull+20], or even in specific
parts of the network, such as the mask head in instance segmentation
architectures [He+17].

6.2.4 Fast Interest Point Detection, Description, and Matching

Improve inference speed further ZippyPoint, our efficient QNN
with binary descriptors, was built on the work of Tang et al. [Tan+20].
While inference speed has been improved by an order of magnitude, the
latency might still be prohibitive for some applications. We recommend
expanding our investigation by commencing the layer partitioning and
traversal strategy from more efficient architectures [How+17; San+18;
TL19]. Efficient architectures, however, rely on depthwise separable convo-
lutions, whose appropriate method of quantization is still underexplored
in the literature and could therefore cause challenges during network
optimization.

Incorporate ZippyPoint in robotic and AR pipelines We have
demonstrated the superior performance of ZippyPoint when compared
to binary hand-crafted alternatives on three tasks, namely, homography
estimation, visual localization, and map-free visual relocalization. We
envision ZippyPoint can be used as a core building block in both new
and established AR and robotic pipelines, amongst others. However,
this requires substantial engineering effort on the pipeline front since
existing pipelines are often overengineered for the descriptors at hand,
and therefore the utilization of ZippyPoint is not as simple as plug and
play.

6.3 open-sourced contributions

One of the reasons the fields of machine learning and computer vision
are advancing at a very high pace is that, alongside most papers, their
corresponding codebases are released to the public. This ensures repro-
ducible research and allows future works to make use of, and build, upon
existing works. Inspired by the community’s transparency, we open-source
accompanying codebases for every publication presented in this thesis to
help advance research further. Specifically:
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— All resources for the paper “Reparameterizing Convolutions for
Incremental Multi-Task Learning without Task Interference” (Chap-
ter 2) are publicly available at
https://github.com/menelaoskanakis/RCM

— All resources for the paper “Composite Learning for Robust and
Effective Dense Predictions” (Chapter 3) are available at
https://github.com/menelaoskanakis/CompL

— The model and inference code for the paper “Efficient Visual Track-
ing with Exemplar Transformers” (Chapter 4) are publicly available
at https://github.com/pblatter/ettrack

— The model and accompanying demo for the paper “ZippyPoint: Fast
Interest Point Detection, Description, and Matching through Mixed
Precision Discretization” (Chapter 5) are available at
https://github.com/menelaoskanakis/ZippyPoint

6.4 broader impact statement

The majority of this thesis is focused on the design of efficient neural
networks, however, it is also as important to reflect on the potential
societal impact the conducted research can have. More efficient deep
neural networks can enable realtime applications, such as robots and AR
applications, to utilize more powerful models and therefore significantly
improving their capabilities. This is highly desirable in a large number of
applications, such as healthcare robots and AR guided surgeries, where
mistakes can cause people to lose their lives. However, just like any
other technological advancement, there is a risk of such models being
used maliciously. This can include applications such as unmanned aerial
vehicles for military purposes, or mass surveillance system to illegally track
and locate individuals. Nevertheless, such negative impact is primarily
associated to the application, rather than the specific technology and
content presented in this thesis. We believe that proper legislation
need to take into consideration the harmful use cases, and through strict
supervision, ensure the elimination of such applications while still enabling
their use in scenarios where they can help advance humanity.

https://github.com/menelaoskanakis/RCM
https://github.com/menelaoskanakis/CompL
https://github.com/pblatter/ettrack
https://github.com/menelaoskanakis/ZippyPoint
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