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ABSTRACT

The Narmada basin is one of the major river basins of Central India. The basin frequently experiences droughts and floods due to its geogra-

phy and uneven topography. Therefore, it is important to understand the spatiotemporal variability of hydroclimatic extremes over the basin.

Large-scale climate oscillations (LSCOs) have been observed significantly affecting the patterns of hydroclimatic extremes at the basin and

continental scale. In this study, we have analysed the relative influence of LSCOs (EL Nino-Southern Oscillation (ENSO), Indian Ocean Dipole

(IOD), and Atlantic multidecadal oscillation (AMO)) over hydroclimatic extremes of the Narmada basin. Precipitation, temperature, and

streamflow extremes were analysed in stationary and nonstationary frameworks of generalized extreme value distribution. The precipitation

extremes, PRCPTOT and R95p were observed significantly influenced by ENSO, IOD, and AMO individually whereas extreme Rx5day was rela-

tively more influenced by ENSO and AMO individually and collectively. Temperature extremes, TXx was significantly more influenced by ENSO

alone (26.47% of the region), while TNx was observed to be substantially more influenced by ENSO and AMO. The upper Narmada basin was

found vulnerable to flooding and whereas the basin was projected to experience more frequent and intense heatwave-associated disasters in

long term.
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HIGHLIGHTS

• Precipitation and temperature extremes have been found to increasing historical trends over the Narmada Basin of Madhya Pradesh

(India).

• Extreme indices have exhibited significant nonstationary behaviour due to large-scale climate oscillations (ENSO, IOD, and AMO).

• The upper part of the basin was observed as vulnerable to flooding whereas the whole basin is prone to frequent and intense heat waves

in long term.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Floods and droughts have been becoming more frequent in changing patterns of climate (Hirabayashi et al. 2008). Studies on
climate model projections suggest that there will be more frequent and intense climate extremes in the projected warming

future with increasing greenhouse gases emission (Canadell et al. 2022). Therefore, an improved understanding of the
global climate system and associated extremes at the regional scale may help in reducing risk (Dai 2011; Field et al. 2012;
Rummukainen 2012; Alfieri et al. 2017; Dosio et al. 2018; Naumann et al. 2018). The implications of climate change may
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vary from local to global scale. Therefore, it becomes important to study the spatiotemporal variability of major hydroclimatic

extremes at the basin scale for a better understanding of the impact of climate change on the local water resource system and
to take consequent adaptation and mitigation measures (Panda et al. 2013; Garner et al. 2015). These hydroclimatic extremes
(droughts, heatwaves, floods, etc.) significantly affect the productivity of the agriculture-dependent economy of Madhya Pra-

desh with rainfall as a major source of irrigation (Thomas et al. 2015). Apart from local factors (urbanization, orography, etc.),
regional precipitation/temperature patterns have also been observed linked with large-scale climate oscillations (LSCOs)
(Krishna et al. 1999; Saji et al. 1999; Rose & LaRow 2016). The LSCOs or teleconnections are recognized as a known sig-
nificant connection between local hydrometeorology and large-scale oceanic-atmospheric circulation patterns, spread across

the globe (Maity et al. 2007; Bracken et al. 2018; Jha et al. 2021). Therefore, it is important to study the relative influence of
major LSCOs (EL Nino-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), and Atlantic Multidecadal Oscillation
(AMO)) over hydroclimatic extremes at the basin scale to ascertain the probable variations in them.

The ENSO, coupled oceanic-atmospheric mode of the tropical Pacific Ocean, has been studied extensively across the globe
for its strong influence over climate drivers (Sahu et al. 2012; Gao et al. 2017; Agilan & Umamahesh 2018; Khaki et al. 2018;
Naveendrakumar et al. 2019; Song et al. 2019). The positive (El Nino) and negative (La-Nina) phases of ENSO cause deficit

and excess rainfall over a major part of India. The extreme phases of ENSO have been found linked with extreme flooding
and droughts in various regions including India across the globe (Trenberth & Guillemot 1996). Likewise, El Nino and La
Nina conditions in the tropical Pacific Ocean, and the Indian Ocean also experience a physical phenomenon known as

IOD. IOD is the measure of the difference in sea surface temperature (SST) between the tropical western Indian Ocean
and the south-eastern Indian Ocean (Saji et al. 1999). The positive and negative phases of IOD represent the warming
and cooling of the surface water of the Indian Ocean. The warming (cooling) phases of the tropical western Indian Ocean
signify the excess (deficit) precipitation over India (Ashok et al. 2001; Vinayachandran et al. 2002). It has also been found

that cool SST over the south equatorial Indian Ocean had modulated the precipitation pattern over Central India during
the period 1982–2003, also the continuous warming of the tropical Indian Ocean may lead to extreme precipitation over
India in the future (AjayaMohan & Rao 2008). In reference to the Indian continent, another important teleconnection is

AMO which is related to North Atlantic decadal variability. The Indian summer monsoon rainfall has been found positively
modulated by AMO (Ratna et al. 2021). For a detailed study of AMO influence over Indian summer monsoon rainfall, several
other pieces of literature can be considered (Vittal et al. 2020; Ratna et al. 2021).

Climate extremes pose a fundamental threat to places, species, and people’s livelihoods. Some standard methods to define
extreme events are: consideration of record-breaking events (Coumou et al. 2013; Beniston 2015), identification of extremes
from percentile-based approaches (Russo et al. 2015; Schär et al. 2016), extreme value theory (EVT). EVT has been used
extensively to interpret climate extremes at regional and global scales on the basis of various standardized indices (Trenberth

& Fasullo 2012; Katz 2013; Goswami et al. 2018; Singh et al. 2023). There are 27 indices available from ‘climdex.org’, all of
which are derived from data on daily precipitation and temperature (https://www.climdex.org/learn/indices/). The expert
team on climate change detection and indices (ETCCDI) of the World Climate Research Program (WCRP) has recommended

these standardized indices to compare results across time periods, regions, and source datasets. Here, in this study, to analyse
instantaneous and as well as cumulative responses of hydroclimatic extremes in the Narmada basin, we have taken three stan-
dard indices for precipitation (Table 1). Similar to precipitation, we have taken three indices for analysing the spatiotemporal

variability of streamflow (discharge) extremes (Table 1). Central India faces extreme heat in summer that adversely affects the
agricultural productivity of the region (Sharma & Mujumdar 2017; Singh et al. 2021). To analyse the spatiotemporal varia-
bility of extreme heat in the Narmada basin, we have also analysed three extreme indices for temperature (Table 1).

The descriptions of all nine extremes analysed in the study are mentioned in Table 1.
The spatiotemporal assessment of these indices can provide a better understanding of the risk associated with extremes

(floods, droughts, heat waves, etc.) over the Narmada basin. Analysis of this link between prominent teleconnections and
hydroclimatic extremes can give us a better understanding of floods, droughts, and heatwaves associated hazards (Ward

et al. 2014; Seo et al. 2019). Several studies have been conducted using EVT under the stationary assumption to analyse
risk due to extreme events. Under changing climate, this stationary assumption over extreme value probability distribution
induces inaccuracies in the analysis of extreme events. This assumption may lead to underestimating or overestimating the

probability distribution of extremes for the specific design period (Coles 2001). Therefore, a nonstationary framework
would be more appropriate to assess hydroclimatic extremes accurately (Parey et al. 2010; Salas & Obeysekera 2014).
Since ENSO, IOD, and AMO are major LSCOs that affect the patterns of hydroclimatic extremes over India, we have
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investigated the relative influence of individual and collective response of these teleconnections at the basin scale for better

assessment of risk associated with hazards. In this study, we analysed the nonstationary behaviour of extreme precipitation,
temperature, and streamflow over the Narmada basin considering ENSO, IOD, and AMO as covariates in the nonstationary
framework of generalized extreme value (GEV) distribution.

The specific objectives of the study are: (i) to understand the instantaneous and short-term spatiotemporal variability of
hydroclimatic extremes in the Narmada basin; (ii) to identify the region of the basin more prone to different hydroclimate
extremes; (iii) to understand the relative influence of ENSO, IOD, and AMO over hydro-climatology of Narmada basin.

2. DATA AND METHODOLOGY

2.1. Study area and data

Narmada river basin is the largest west-flowing river of peninsular India, with an area of 98,796 km2 accounting for nearly 3%
of the total country’s area (India-WRIS 2012). The majority portion of the river basin accounts for agricultural areas, account-
ing for 56.90%. Most of the basin area (82%) lies in Madhya Pradesh, around 12% in Gujrat, and some part of it lies in

Maharashtra (4%) and Chhattisgarh (2%) (Figure 1). As per the geography (topography) of the Narmada River basin, it
has been divided into five well-defined physiographic regions: (1) The upper hilly area (Shahdol, Mandla, Durg, Balaghat,
and Seoni), (2) The upper plains (Jabalpur, Narsinghpur, Sagar, Damoh, Chhidawara, Hosangabad, Betul, Raisen, and

Sehore, (3) The middle plains (Khandwa, Khargone, Dewas, Indore, and Dhar), (4) The lower hilly areas (west of Nimar,
Jhabua, Dhulia, Narmada and parts of Vadodara), and (5) The lower plains (Narmada, Bharuch, and parts of Vadodara).
The basin mainly consists of black cotton soil. The hilly areas are well forested whereas upper, middle, and lower plains

are broad and fertile. The basin experiences hydrometeorological and climatic extremes. The upper part of the catchment
gets 1,000–1,850 mm of annual precipitation whereas the lower part gets only 650–750 mm.

Streamflow extreme indices were calculated using daily observed discharge data from 10 discharge stations (Mohggaon,

Manot, Patan, Gadarwara, Sandia, Hoshangabad, Chhidgaon, Handia, Mandleshwar, Garudeswar) for the period of 37
years from 1979 to 2015 (Table 2). Rest stations at Narmada basin sites were discarded because of the unavailability of
data for the concerned period. The discharge data have been obtained from Central Water Commission (India, WRIS).
The daily rainfall data have been obtained from Indian Meteorological Department (IMD) at 0.25° resolution. The daily temp-

erature dataset for the basin has been obtained from the Global Meteorological forcing dataset (GMFD) at 0.25° resolution.
SST anomalies over the Nino 3.4 region (17° E-120° W, 5° S-5° N) of the Central Pacific are considered as one of the poten-

tial indicators for ENSO. The monthly SST-Nino 3.4 index data were obtained from National Oceanic and Atmospheric

Administration (NOAA) Centre for Weather and Climate Prediction (https://www.cpc.ncep.noaa.gov/data/indices/). IOD
also referred to as Indian Nino, is an irregular oscillation of SST of the western and the eastern Indian Ocean. IOD, rep-
resented as Dipole mode Index (DMI), is the difference of SST anomalies between the tropical western Indian Ocean and

Table 1 | Precipitation, temperature, and streamflow indices used in the study

Indicator Description/Definition

Precipitation extreme

1. Rx5day Maximum consecutive 5-day precipitation

2. R95p Annual total rainfall from days .95th percentile

3. PRCPTOT Total annual precipitation

Temperature extreme

1. TXx Maximum value of daily maximum temperature

2. TNx Maximum value of daily minimum temperature

3. TX90p Percentage of days when daily maximum temperature .90th percentile

Streamflow extreme

1. Qx1day Daily maximum discharge

2. Qx5day Maximum consecutive 5-day discharge

3. Q95p Annual total discharge from days .95th percentile
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tropical south-eastern Indian Ocean. The monthly DMI data were obtained from Physical Science Laboratory,
NOAA (https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/). Similarly, AMO data were taken from NOAA Physical Science
Laboratory (https://psl.noaa.gov/data/timeseries/AMO/). These indices data have been obtained for the same period of 37

years from 1979 to 2015. As the Narmada basin receives the majority of its rainfall in the summer monsoon season,

Figure 1 | Geographical location of the Narmada Basin (located majorly in Madhya Pradesh state of India and discharge stations (in red
colour). Please refer to the online version of this paper to see this figure in colour: https:///dx.doi.org/10.2166/aqua.2023.219.

Table 2 | Description of considered discharge stations of Narmada Basin

S. No. Station Station name Lat Lon

1 S1 Mohggoan 22.7658 80.6228

2 S2 Manot 22.7356 80.5122

3 S3 Patan 23.3117 79.6628

4 S4 Gadarwara 22.9239 78.7917

5 S5 Sandia 22.9158 78.3475

6 S6 Hoshangabad 22.7561 77.7342

7 S7 Chhidgaon 22.4058 77.3078

8 S8 Handia 22.4903 76.9936

9 S9 Mandleshwar 22.1717 75.6608

10 S10 Garudeswar 22.265 73.7272
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June–July–August–September (JJAS). Therefore, the mean values for JJAS season of LSCOs (ENSO, IOD, and AMO) were

taken to analyse various extremes in the monsoon season.

2.2. Methodology

Precipitation extremes (Rx5day, PRCPTOT, R95p) and temperature extremes (TXx, TNx, TX90p), were calculated using
‘climdex.pcic’ package in R studio (https://cran.r-project.org/web/packages/climdex.pcic/index.html). Similar to precipi-

tation indices, streamflow indices (Qx1day, Qx5day, and Q95p) were also estimated using daily streamflow data collected
from all 10 stations of the Narmada basin. The trend, variability, and mean distribution of precipitation, temperature extreme,
and streamflow extreme indices were discussed in the Results and discussion section. These extreme indices were further

investigated with the various combinations of LSCOs (ENSO, IOD, and AMO) in a nonstationary framework of EVT
(Figure 2). The relative influence of these LSCOs over hydroclimatic extremes in the Narmada basin was analysed and com-
pared from a stationary scenario.

2.2.1. Trend analysis

As discussed above, changing climate invalidates stationary assumptions and thus, affects the traditional methods of fre-
quency analysis as well as the definitions of the return period, risks, and reliability (Pechlivanidis et al. 2017). Trend
analysis has been carried out to understand the spatiotemporal variability of hydroclimatic extremes in the Narmada basin
(Ouarda & Charron 2019). A nonparametric modified Mann Kendall (MK) trend test has been carried out using ‘modifiedmk’
package of R studio to analyse monotonic trends in the data. The null hypothesis (H0) of the test is that there is no trend in the
data and the alternative hypothesis (H1) is that the data follow a monotonic trend. The outputs from MK test are MK Z-stat-
istic, Sen’s slope, MK S statistics, Variance of S statistics, MK p-value, and MK’s tau. The MK Z-statistics represent the level of
confidence in the results of the test and Sen’s slope represents the average rate of trend in the data, which have been discussed
more elaborately. The statistics of the test were analysed at 5% level of significance.

Figure 2 | Flowchart for nonstationary analysis of extreme indices with large-scale climate oscillations.
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2.2.2. Nonstationary modelling

GEV distribution is popularly adopted for analysing hydroclimatic extremes. These extremes were modelled as continuous
random variables in GEV distribution. The cumulative probability distribution function of the GEV distribution is given

by the following equation (Katz 2013; Jha et al. 2021).

F(x, m, s, j) ¼
exp { � 1þ j(x� m)

s

� ��1
j

}, s . 0, 1þ j(x� m)
s

. 0, j = 0

{ n odd

exp � exp � (x� m)
s

� �� �
, s . 0, j ¼ 0

8>>>>><
>>>>>:

(1)

here x is the time series of extreme indices, and μ, σ, and ξ represents the location, scale, and shape parameters of the GEV
distribution, respectively. Thus, F(x; μ, σ, ξ) represents the cumulative distribution function (CDF) of the extreme x with par-
ameters μ, σ, and ξ.

A total of 26 linear combinations (models) of location and scale parameters of GEV distribution were prepared using
covariates ENSO, IOD, and AMO termed as C1, C2, and C3, respectively. Models formulated through various combi-
nations of these covariates (M0, M1, M2, …) can be found in Table 3. Where M0 is the stationary model with constant
parameters of GEV distribution; hence, independent of the LSCOs. However, total 26 nonstationary models (Table 3),

starting from M1 to M26, in which scale and location parameters of GEV distribution have been represented as a function
of covariates, are incorporated in this study. The shape parameter of the GEV distribution has been kept constant to avoid
complexity in modelling (Coles 2001; Katz 2013; Yilmaz & Perera 2014; Das et al. 2020). The maximum-likelihood esti-

mation (MLE) approach was used for parameter estimation from GEV distribution. Through MLE approach, the value of
θ¼ [μ, σ, ξ] has been obtained at which maximum likelihood functions attain their maximum value. Let X¼ x1, x2, x3, ….,
x(n� 1), x(n) be the series of any selected extreme with n number of observations. Then, the log-likelihood can be defined

as (Katz 2013; Bracken et al. 2018):

L(u) ¼ �nlog� 1þ 1
j

� �Xn
i¼1

log 1þ j(xi � m)
s

� �
�

Xn
i¼1

log 1þ j(xi � m)
s

� � �
1
j

� �
, 1þ j(xi � m)

s
. 0 (2)

Here, L(θ) is the likelihood function of a particular parameter vector θ. The likelihood function is the measure of how
likely the dataset represents as a function of unknown parameters of distribution (GEV, in the present case) and MLE
gives the values of parameters that maximize the likelihood function (Katz 2013).

The likelihood ratio test (LR test) has been used to compare the significance of the stationary and nonstationary models
(Coles 2001). The hypothesis testing is carried out by comparing the minimized negative log-likelihood (nllh) of the stationary
model with the nonstationary model at any particular significance level, α (0.05). Twice the difference between nllh-stationary
GEV and nllh-nonstationary GEV is supposed to have an approximate Chi-squared distribution (Katz 2013). The statistics can

be mathematically represented as (Jha et al. 2021).

2[nllhS � nllhNS] . ca (3)

where cα is the (1� α) quantile of the Chi-square distribution. The best fit nonstationary model has been obtained based on the

minimum p-value. The parameters related to the best fit model are estimated through MLE and further investigation has been
carried out for the best fit model. The methodology has been presented through flowchart in Figure 2.

3. RESULTS AND DISCUSSION

3.1. Variability and trend of extreme climatic variables

Results from modified MK tests (z-statistics and Sen’s slope) along with mean and standard deviation (SD) of precipitation,
streamflow, and temperature extremes were analysed for the trend analysis. The Z-statistics of MK test indicate the signifi-
cance in the monotonic trend of the time series of data whereas Sen’s slope gives the rate of change of that time series of
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data. We have interpreted the results of Z-statistics in four categories at 5% level of significance. It was considered signifi-
cantly decreasing at Z,�1.96, decreasing at �1.96,Z, 0, increasing at 0,Z, 1.96 and significantly increasing at Z.

1.96. The rest of the three parameters (mean, SD, and Sen’s slope) have been analysed into three categories based on the
observation.

The spatial distribution of precipitation extreme, PRCPTOT shows that the upper part of the basin gets more precipitation

and SD is also found higher in total annual precipitation at the upper half of the basin. The trend is found almost increasing
over the whole basin, most importantly the lower part of the basin (Z-statistics) with an increasing (but not significantly) rate
of more than 4 mm per year in the lower part of the basin. As of PRCPTOT, Rx5day and R95p were also found slightly increas-
ing but non-significantly throughout the basin (Figure 3(a)).

A total of 10 stations (Mohggoan,Manot, Patan, Gadarwara, Sandia, Hoshangabad, Chhidgaon, Handia,Mandleshwar, Gar-
udeswar) were taken into consideration for the streamflow and were represented as S1, S2, S3, S4, S5, S6, S7, S8, S9, and S10,
respectively (Table 1). The stations have spread along the Narmada basin starting from the upper part to the tail of the river

basin (Figure 1). Streamflow extremes, Qx1day, Qx5day, and Q95p for any of the stations were not found with any significant
trend. Due to the contribution from various tributaries in the downstream, the streamflowof downstream stationswas compara-
tively higher (Table 4). Q90p is the cumulative streamflow in a year from days when streamflow was more than the 90th

Table 3 | List of total 27 models (1 stationary (M0) and 26 nonstationary) analysed in the study

Model ID Description
Combinations of LSCOs (For location (μ) & scale (σ)
parameters of GEV distribution)

M0 X ̴̴̴ GEV[ μ, σ, ξ] NA

M1 X ̴̴̴ GEV[ μ0þ μ1c1, σ, ξ] ENSO

M2 X ̴̴̴ GEV[ μ0þ μ2c2, σ, ξ] IOD

M3 X ̴̴̴ GEV[ μ0þ μ3c3, σ, ξ] AMO

M4 X ̴̴̴ GEV[ μ0þ μ1c1þ μ2c2, σ, ξ] ENSO, IOD

M5 X ̴̴̴ GEV[ μ0þ μ2c2þ μ3c3, σ, ξ] IOD, AMO

M6 X ̴̴̴ GEV[ μ0þ μ3c3þ μ1c1, σ, ξ] AMO, ENSO

M7 X ̴̴̴ GEV[ μ0þ μ1c1þ μ2c2þ μ3c3, σ, ξ] ENSO, IOD, AMO

M8 X ̴̴̴ GEV[(μ0þ μ1c1), (σ0þ σ1C1), ξ] ENSO & ENSO

M9 X ̴̴̴ GEV[(μ0þ μ1c1), (σ0þ σ2C2), ξ] ENSO & IOD

M10 X ̴̴̴ GEV[(μ0þ μ1c1), (σ0þ σ3C3), ξ] ENSO & AMO

M11 X ̴̴̴ GEV[(μ0þ μ2c2), (σ0þ σ1C1), ξ] IOD & ENSO

M12 X ̴̴̴ GEV[(μ0þ μ2c2), (σ0þ σ2C2), ξ] IOD & IOD

M13 X ̴̴̴ GEV[(μ0þ μ2c2), (σ0þ σ3C3), ξ] IOD & AMO

M14 X ̴̴̴ GEV[(μ0þ μ3c3), (σ0þ σ1C1), ξ] AMO & ENSO

M15 X ̴̴̴ GEV[(μ0þ μ3c3), (σ0þ σ2C2), ξ] AMO & IOD

M16 X ̴̴̴ GEV[(μ0þ μ3c3), (σ0þ σ3C3), ξ] AMO & AMO

M17 X ̴̴̴ GEV[(μ0þ μ1c1þ μ2c2), (σ0þ σ1C1þ σ2C2), ξ] ENSO, IOD & ENSO, IOD

M18 X ̴̴̴ GEV[(μ0þ μ1c1þ μ2c2), (σ0þ σ2C2þ σ3C3), ξ] ENSO, IOD & IOD, AMO

M19 X ̴̴̴ GEV[(μ0þ μ1c1þ μ2c2), (σ0þ σ3C3þ σ1C1), ξ] ENSO, IOD & AMO, ENSO

M20 X ̴̴̴ GEV[(μ0þ μ2c2þ μ3c3), (σ0þ σ2C2þ σ1C1), ξ] IOD, AMO & IOD, ENSO

M21 X ̴̴̴ GEV[(μ0þ μ2c2þ μ3c3), (σ0þ σ2C2þ σ3C3), ξ] IOD, AMO & IOD, AMO

M22 X ̴̴̴ GEV[(μ0þ μ2c2þ μ3c3), (σ0þ σ3C3þ σ1C1), ξ] IOD, AMO & AMO, ENSO

M23 X ̴̴̴ GEV[(μ0þ μ3c3þ μ1c1), (σ0þ σ1C1þ σ2C2), ξ] AMO, ENSO & ENSO, IOD

M24 X ̴̴̴ GEV[(μ0þ μ3c3þ μ3c1), (σ0þ σ2C2þ σ3C3), ξ] AMO, ENSO & IOD, AMO

M25 X ̴̴̴ GEV[(μ0þ μ3c3þ μ1c1), (σ0þ σ3C3þ σ1C1), ξ] AMO, ENSO & AMO, ENSO

M26 X ̴̴̴ GEV[(μ0þ μ1c1þ μ2c2þ μ3c3), (σ0þ σ1C1þ σ2C2þ σ3C3), ξ] ENSO, IOD, AMO & ENSO, IOD, AMO

AQUA — Water Infrastructure, Ecosystems and Society Vol 72 No 4, 527

Downloaded from http://iwaponline.com/aqua/article-pdf/72/4/520/1211270/jws0720520.pdf
by ETH ZURICH BIBLIOTHEK (CORRECT)  user
on 09 May 2023



percentile (cumulative contribution from very high streamflow) of daily streamflow data at a station, therefore as per the defi-

nition, the magnitude of Rx5day will always be more than Rx1day and Q90p will be comparatively too high than Rx1day and
Rx5day and hence the mean and Sen’s slope was comparatively higher in case of Q90p (Table 4). The streamflow magnitude
and consequent extremes (Qx1day,Qx5day, andQ95p) from the station (S7) installed in the tributary of themain river have also

been noted with a lesser magnitude of mean and MK test statistics.
The temperature indices (TXx, TNx, and TX90p) were analysed in a similar way. There was also not any significant trend in

the past in temperature extreme, TXx and TNx in the basin, i.e., the daily maximum temperature in the day and night were not
significantly increasing or decreasing in the past. Another temperature extreme, TX90p, a potential indicator of heatwaves,

has shown increasing throughout the basin whereas significantly increasing trend at the uppermost and lowermost parts
of the basin (Figure 3(b)).

3.2. Nonstationary extreme value analysis

The distribution of extremes at all the grids/stations were checked for the nonstationarity caused by ENSO, IOD, and AMO
in the extremes. LR test revealed that there was a significant amount of nonstationarity caused by LSCOs present in the
extremes. Statistics of the LR test with minimum p-value were used to find the best combination of LSCOs influencing

most of the distribution of the extremes. Rx5day shows significantly more nonstationary behaviour in majority of the basin
due to LSCOs in comparison with PRCPTOT and R95p (see Supplementary Material, Figure S1) The results from the best
combination of LSCO(s) (nonstationary model(s)) and stationary model were discussed in terms of return levels (RLs) of
extremes at 10, 20, 50, and 100 years.

Figure 3 | (a) Mean, standard deviation, and statistics of modified MK trend test (Z-statistics and Sen’s slope) for precipitation indices:
PRCPTOT, Rx5day, and R95p (b) Mean, standard deviation, and statistics of modified MK trend test (Z-statistics and Sen’s slope) for temp-
erature indices (TXx, TNx, and TX90p). (continued.).
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Since precipitation extreme R95p and PRCPTOT signify the cumulative response of precipitation amount, the spatiotem-

poral variability in these extremes was found relatively more influenced by ENSO (M1), IOD (M2), and AMO (M3)
individually and have almost similar kinds of distribution in rest of the basin collectively by ENSO, IOD, and AMO
(Figure 4(b) and 4(c)). In case of Rx5day, ENSO and AMO individually (M1 & M3) and collectively (M25 & M26) influence

relatively more the spatiotemporal variability of the extremes in the basin (Figure 4(a)). In case of temperature extreme, the
TXx in most of the Narmada basin (26.47% of the region) were found relatively more influenced by ENSO individually
(Figure 4(d)) whereas TNx was found relatively more influenced by ENSO (M1) and AMO (M2) (Figure 4(e)). The tempera-

ture extreme TX90p, a potential indicator of the heatwave, was relatively more influenced by collectively ENSO with IOD
and AMO (M18 & M25) (Figure 4(f)).

Since the upper half of the Narmada basin receives more precipitation, the RLs for all the extremes, PRCPTOT, Rx5day,

and R95p were higher in the upper half of the basin and were found to increase (RLs) with increasing return periods
(Figure 5(i)). The middle plains of the Narmada basin were experiencing a higher magnitude of precipitation extremes at
high return periods and could make the region prone to flooding in the future (Figure 5(i)).

The streamflow extreme indices (Qx1day, Qx5day, and Q95p) for the basin have also been increasing with increasing

return periods. The downstream stations are more sensitive because they have been influenced by the upstream tributaries
(Figure 5(ii)). Also, the variance in the instantaneous streamflow extremes (Qx1day and Qx5day) of the basin was observed
high in comparison with Q95p (Figure 5(ii)). The variance in Qx1day extreme of discharge for station S7, located at one of the

tributaries of the main river was observed maximum (Figure 5(ii)(a)). For given streamflow extremes in almost all stations, we
have found nonstationarity due to LSCOs (see Supplementary Material, Table S1).

Figure 3 | Continued.
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Table 4 | Mean, standard deviation, and statistics of modified MK trend test (Z-statistics and Sen’s slope) for streamflow indices (Qx1, Qx5, Q95p)

Stn No.
Indices

Qx1day Qx5day Q95p

Station name Mean SD Trend (Z ) Sen’s Slope Mean SD Trend (Z) Sen’s Slope Mean SD Trend (Z) Sen’s Slope

1 Mohggoan 3,141.1 2,464.7 �1.01 �23.03 5,474.63 3,029.15 �0.60 �20.05 12,697.35 7,502.65 �0.28 �39.46

2 Manot 3,239.9 1,715.2 �1.3 �39.8 6,388.5 3,107.74 �1.38 �71.03 16,259.28 10,373.93 �2.22 �364.81

3 Patan 1,104.6 542.7 �0.99 �12.02 3,748.1 2,288.25 �0.34 �17.29 10,703.03 8,468.27 �0.83 �99.87

4 Gadarwara 1,972.3 1,188.71 �1.56 �30 3,947.02 3,016.87 �1.12 �38.46 10,126.06 7,813.64 �0.26 �22.2282

5 Sandia 9,741.7 5,766.1 �1.17 �102.9 31,06.94 20,882.9 �1.098 �345.6 75,537.08 73,474.2 �1.25 �801.43

6 Hoshangabad 13,811.3 6,673.2 �2.08 �234.3 43,347.78 28,296.03 �1.80 �693.83 110,925.1 102,214 �1.93 �2,232.26

7 Chhidgaon 2,488.5 2,117.9 �0.75 �13.46 3,842.135 2,742.72 �0.52 �15.145 7,077.02 5,668.85 0.10 3.45

8 Handia 15,419.06 6,852.1 �1.76 �224.9 48,249.92 27,497.2 �1.98 �663.6 124,598 111,568.8 �1.93 �2,062.91

9 Mandleshwar 20,838.7 11,984.5 �2.23 �349.2 59,776.26 34,705.7 �2.69 �1,252.2 151,346.1 135,844.9 �1.67 �2,758.57

10 Garudeswar 19,339.02 13,267.9 �2.47 �373.12 56,368.48 34,580.61 �3.06 �1,323.5 142,154.7 133,471.8 �2.14 �3,194.88
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Figure 4 | Spatial extent (% of grids showing agreement in temporal variability and GEV distribution of extremes with combinations of LSCOs)
of various combinations of LSCOs influencing hydroclimatic extreme (a) Rx5day, (b) PRCPTOT, (c) R95p, (d) TXx, (e) TNx, (f) TX90p.

Figure 5 | (i) RLs from one of the best fit combinations of LSCOs in GEV distribution of extreme: (a) PRCPTOT; (b) Rx5day; (c) R95p at 10, 20,
50, and 100 years of return period. (ii) RLs from one of the best fit combinations of LSCOs in GEV distribution of extreme: (a) Qx1day; (b)
Qx5day; (c) Q95p at 10, 20, 50, and 100 years return periods. [10y RLs refers to return level (magnitude) of extreme at 10-year return period]
(iii) RLs from one of the best fit combinations of LSCOs in GEV distribution of extremes: (a) TXx; (b) TNx; (c) TX90p at 10, 20, 50, and 100 years
return periods. (continued.).
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Figure 5 | Continued.
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The temperature extremes, TXx, TNx, and TX90p were noticed with significant nonstationary behaviour due to
LSCOs throughout the basin (see Supplementary Material, Figure S1). The central upper part of the basin experiences a com-
paratively higher magnitude of maximum and minimum daily temperature (Figure 5(iii)(a),(b)). The lower part of the basin

experiences more number of days with temperatures more than the 90th percentile of daily maximum temperature (T90p)
(Figure 5(iii)c).

Figure 5 | Continued.

Figure 6 | (i) Difference between return level estimates of stationary (ST) and nonstationary (NS) for precipitation indices: (a) PRCPTOT; (b)
Rx5day; and (c) R95p. (ii) Difference between return level estimates of stationary (ST) and nonstationary (NS) for streamflow indices at each
station: (a) Q95p; (b) Qx1day; (c) Qx5day. (iii) Difference between return level estimates of stationary (ST) and nonstationary scenario (NS) for
temperature indices: (a) TXx; (b) TNx; and (c) TX90p. (continued.).
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Figure 6 | Continued.

AQUA — Water Infrastructure, Ecosystems and Society Vol 72 No 4, 534

Downloaded from http://iwaponline.com/aqua/article-pdf/72/4/520/1211270/jws0720520.pdf
by ETH ZURICH BIBLIOTHEK (CORRECT)  user
on 09 May 2023



3.2.1. Evaluation of influence of LSCOs

LSCOs either intensify or reduces the magnitude of extremes over various regions of the world. Analysing extremes without

considering the effect of LSCOs, either underestimates or overestimates the magnitude of extremes. The possible governing
factors in spatiotemporal variability of extremes can be natural variability and anthropogenic forcing (Dai & Bloecker n.d.;
Marvel et al. 2017). To quantify the degree of influence of LSCOs, we have estimated the differences between extremes in

nonstationary scenarios (influenced by the individual or collective response of LSCOs) and stationary scenarios (not getting
influenced by LSCOs). The RLs were increasing in magnitude in the case of nonstationary as well as stationary analysis with
increasing return periods. We observed that at many grids, the returns levels were either overestimated or underestimated
with reference to a stationary framework (Figure 6(i)–6(iii). Conventionally to meet the future requirements of proposed

hydraulic structures, the estimation of design capacity is carried out assuming the stationary behaviour of hydroclimatic
extremes over a basin. Since the statistical analysis of these extremes as per the available past observations show agreement
with significant nonstationary behaviour, the magnitude of these extremes also varies depending on the phases of these

LSCOs in many regions. On this ground, the design analysis based on a nonstationary framework makes more realistic
sense and hence the projected magnitude of these hydroclimatic extremes in the stationary framework (without getting influ-
enced by LSCOs) gives either underestimated or overestimated value. The underestimation of precipitation and streamflow

extremes may lead to under design (capacity) of the hydraulic structure and thus will make it more prone to floods and con-
sequent failure of the structure whereas overestimation of projected magnitude of precipitation and streamflow extremes may
lead to overdesign (capacity) of hydraulic structure and this increased projected capacity will increase the cost of the project.

Based on the differences in estimates of RLs of both frameworks for all four return periods, the analysis has been carried into
four categories: (a) highly underestimated, (b) underestimated, (c) overestimated, and (d) highly overestimated. This classifi-
cation is based on the concept that if the RLs in the stationary framework give a lesser (higher) value than nonstationary, it
means the RLs have been underestimated (overestimated).

Observing the spatiotemporal variation in PRCPTOT, if RLs in the stationary scenario were 100 mm or more amount of
deficit in precipitation amount, we have considered as highly underestimated whereas a surplus of 100 or more would be
highly overestimated. In case the surplus or deficit of PRCPTOT was lesser than 100 mm, as overestimated and underesti-

mated. From plots (Figure 6(i)(a)), we found that the spatial trend of overestimated or underestimated magnitude of
PRCPTOT is similar but increasing with the return period. In the case of Rx5day and R95p, the limit of overestimation
and underestimation is taken as 50 and 25 mm, respectively. For all the three precipitation indices, the central part of the

Figure 6 | Continued.
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basin experiences underestimated the magnitude of RLs whereas the upper and lower part of the basin experience overesti-

mated RLs.
The difference in RLs of the stationary and nonstationary was plotted for all 10 discharge gauging stations at 10, 20, 50, and

100 return periods (Figure 6(ii)). Qx1day and Qx5day are comparatively instantaneous responses of a river basin whereas

Q95p is the comparatively long-term behaviour of a river basin. Therefore, the limits for underestimation/overestimation,
in this case, are 1,000, 5,000, and 10,000 m3/s for Qx1day, Qx5day, and Q95p, respectively. In case of Q95p, for discharge
gauging stations, S6 and S10, we got overestimated discharge values, whereas for S6 and S8 RLs were highly overestimated,
and at S9, streamflow was highly underestimated. For station S7, Qx1day and Qx5day were highly underestimated for higher

return periods whereas, for station S6 and station S5, Qx1day and Qx5day were highly overestimated, respectively, in the
stationary framework.

TXx was considered underestimated/overestimated with a decrease/increase by 1 °C/0.5 °C whereas in case of TNx and

TX90p a decrease/increase by 0.5 °C/0.5 °C and by 0.5 °C/1 °C, respectively. In case of TXx, RLs were consistently underes-
timated for some regions and overestimated for others at different return periods. The TNx and TX90p have been found
overestimated and highly overestimated in the stationary framework (Figure 6(iii)(b),(c)). This magnitude of overestimated

RLs has been found to increase with the return periods (see Supplementary Material, Figure S3).

4. CONCLUSIONS

Hydroclimatic extremes have a significant impact on the hydrological cycle of the basin, such as floods, droughts, or intense
precipitation. These events are often caused by complex interactions between atmospheric and hydrological processes and
can have severe consequences for water resources and human activities in the affected area. For a major part of the basin,

extreme precipitation indices (PRCPTOT, Rx5day, and R95p) were observed to increase but not with any significant trend
in the past. The mean values of these precipitation extremes were of higher magnitude at the upper part of the basin whereas
the lower part of the basin was showing an increasing trend. In the case of temperature extremes also, the daily maximum

temperature was decreasing whereas the daily minimum temperature at annual scale was increasing at the uppermost and
lowermost parts of the basin. The temperature extreme, TNx was increasing through the basin whereas in the regions
where the daily minimum temperature in a day was increasing, TX90p has been found significantly increasing trend in the

past. For streamflow extreme indices (Qx1, Qx5, and Q95p), Z-statistics and Sen’s slope from the MK test have been
found to decrease for all the 10 discharge gauging stations.

It becomes essential in changing climate to assess the role of local and global factors associated with spatiotemporal varia-
bility of hydroclimatic extremes. In this study, we have included major climate oscillations (ENSO, IOD, AMO) in reference

to Indian climatology to understand their association with the hydroclimatic extremes at the Narmada basin. The results have
been interpreted in two ways: (i) Stationary framework (no influence of LSCOs) and (ii) nonstationary framework (significant
influence of LSCOs). The results from the GEV distribution of hydroclimatic extreme indices based on the likelihood ratio

test show a significant amount of nonstationarity caused by LSCOs. The precipitation extremes, PRCPTOT and R95p
were observed significantly influenced by ENSO, IOD, and AMO individually whereas extreme Rx5day was relatively
more influenced by ENSO, and AMO individually and collectively. In terms of temperature extremes, it was shown that

TXx in the majority of the Narmada basin (26.47% of the region) was significantly more influenced by ENSO alone, while
TNx was observed to be substantially more influenced by ENSO and AMO. Combined with IOD and AMO, ENSO had a
considerably greater influence on the temperature extreme TX90p, a potential indicator of heatwaves in a region, and has

been noticed with an increasing trend. This linkage may give rise to more frequent and intense heatwaves in the regions
which consequently may affect production adversely. By ignoring spatiotemporal variability of extremes caused by ENSO,
IOD, and AMO may lead to underestimating and overestimating the magnitude of hydroclimatic extremes of the Narmada
basin. The overestimation of RLs will increase the cost of hydraulic projects whereas underestimation may lead to disaster

(failure of hydraulic structure) in long term. Some other global and regional factors can also be included in a linear and non-
linear combination of covariates of GEV distribution to better understand the spatiotemporal variability of hydroclimatic
extremes. The upper Narmada basin was experiencing a high magnitude of precipitation extremes, hence could be vulnerable

to flooding and whereas the basin was projected to experience more frequent and intense heatwave-associated disasters at
high return periods. Appropriate adaption and mitigation measures can also be taken to reduce the climate risk in the vul-
nerable region of the basin.
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