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1. Introduction
The continuing decline in the diversity and biomass of insects and other arthro-
pods has caused great concern not only among scientists, but also among
society, policymakers and stakeholders. A major reason for this is that many eco-
system services depend on diverse insect communities. Despite numerous studies
on the dynamics of insect communities [1,2], their causes are still not fully under-
stood [3]. Rather than focusing on additional evidence of population declines, this
special feature addresses the causes and consequences of population and diversity
trends, aiming at a better mechanistic understanding of the observed dynamics.

The special feature includes two opinion papers, 10 time-series analyses
spanning 10 to 120 years and two studies using space-for-time substitution.
The studies cover freshwater and terrestrial insect taxa across five biomes.
The approaches are manifold, linking population trends to species-specific func-
tional traits and examining spatial variation in population trends and their
underlying drivers. Three of the major drivers of insect declines [1] are covered:
climate change, land-use change and invasive species. Across the studies,
one worrying pattern emerges: communities tend to become more homo-
geneous, i.e. lose beta diversity. This homogenization will likely have drastic
consequences for ecosystem functioning and stability (figure 1).
2. Drivers of community change
(a) Climate change
The warming climate influences both community composition and population
dynamics of single species through changes in average or extreme tempera-
tures. Among North American bumblebees, 37 of 46 studied species showed
greater declines or lower increases in site occupancy under observed tempera-
ture changes than would have occurred if temperatures remained constant [5],
suggesting that species have already reached their physiological limits in many
regions. In addition, changes in precipitation patterns can alter population
dynamics. For example, ant species that proliferated during the last decades
in Denmark were associated with wet habitats, while declining ant species
occurred in dry, open habitats [6]. In the same time span, average and frequency
of precipitation had increased. The opposite effect was observed for two
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Figure 1. Overview of the relations between drivers of insect population trends and their effects on communities and ecosystems as described in this special feature.
The aspects in grey are described in the literature but were not covered in this feature. The ant in the background is the invasive Wasmannia auropunctata ( photo
credit: Alexander Wild), which features in [4].
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Orthoptera species in Germany, which severely decreased in
wet and mesic grasslands over the study period (1988, 2004
and 2019), possibly due to summer droughts and increased
evaporation [7].

As insects are ectotherms, their metabolism and develop-
ment are driven by temperature, with warming typically
resulting in faster development and higher metabolic rates
[8,9]. However, extreme temperatures outside a species’ opti-
mum thermal range can slow development and thus reduce
population growth rates [10,11]. This is especially relevant for
tropical insects, which usually live closer to their upper thermal
limit than their temperate counterparts [12,13]. Hence, global
warming may be the main driver of tropical insect declines
[4], favouring species that thrive under warmer conditions.
Concerning species-specific climate-sensitivity traits, this was
found in tiger moths in the field [14], but also in a warming
experiment with ants [15], both in a Panamanian rainforest.
In the temperate zone, similarly positive effects on thermo-
philous species were observed for orthopterans [7] and for
stream-dwelling mayflies, stoneflies and caddisflies [16]. The
shift to warm-adapted species thus appears as a more general
global phenomenon confirmed by many other studies on indi-
vidual species trends [17] and likely will result in an overall
thermophilization of communities across many taxa [18,19].
In turn, cold-adapted species will migrate toward the poles
or higher elevations [20,21], which can reduce their effective
habitat area [22,23], thus increasing their extinction risk [24],
ultimately accelerating biodiversity loss.
(b) Land-use change
Land-use change and land-use intensification were identified
decades ago as major causes of global biodiversity loss [25]
and confirmed in several recent publications [2,26,27]. The
papers in this special feature provide further evidence
and highlight complex indirect effects that can cause insect
declines. For example, as burning North American tallgrass
prairie—traditionally used as a conservation measure—
became less frequent over the last 34 years, grasshoppers
needed more time for maturation [28]. This in turn contribu-
ted to declines in abundance as adults had less time to build
egg mass before reproducing. Land-use changes in Denmark
(1900–2019) challenged ant communities in several ways [6].
Three specialist species of dry, open habitats declined due to
habitat decreases, attributed to conversion into agriculture
and forest. In forest ecosystems, increased monocultures of
coniferous plantations caused population declines in three
species, while one species benefited from this change [6]. In
German grasslands, fertilization contributed to species loss
and an additive homogenization of grasshopper communities
[7]. In Brazilian freshwater ecosystems, dam and hydroelec-
tric power plant construction was pointed out as the main
driver of abundance and richness declines in freshwater
insects due to lower water turbidity and nitrogen increase
[29]. Moreover, nutrient and pesticide inputs affected insect
population dynamics in Swiss freshwater ecosystems [16].
All this underscores that land-use intensification is negatively
impacting many species across taxa [1,26] resulting in hom-
ogenized communities [30,31] composed of species with
distinctive traits that enable them to cope with increasing
anthropogenic disturbances.
(c) Invasive species
Biological invasions have increased massively in recent dec-
ades due to increased global trade and human movement
[32,33] and are considered an important cause of biodiversity
loss. Many invasive species negatively interact with or even
displace native species [34], but the impacts on ecosystems
can be complex and often indirect. In a Canadian forest,
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invasive earthworms directly and indirectly affect higher
trophic levels mediated by plants, herbivores and detritivores
[35]. Total arthropod abundance, biomass and species richness
decreased significantly even at low levels of invasion. Another
example comes from the subtropical freshwater ecosystems in
Brazil, where the invasion of non-native insectivorous fishes
appears as a major cause of freshwater insect declines over
the last 20 years [29]. Overall, the impact of invasive species
on ecosystems will probably keep increasing, which could
particularly challenge species with low competitiveness.

(d) Interactions among drivers
Drivers of insect decline may interact, such that combination
effects on insect populations and communities can be more
severe than the sumof single factors [36–38]. This special feature
alsoprovides evidenceof such interactions. Interactionsbetween
land use and climate, and between land use and species inva-
sions appear to be important drivers of declines across
Brazilian biomes [39]. A decrease in vegetation cover through
intensified landuse, for instance, can reduce a habitat’s potential
tomitigate climate change-relateddrought (e.g. in an urban con-
text [40]) or extreme temperatures (e.g. through deforestation,
[41]).As another interaction, climate change can facilitate species
invasions by favouring generalized, heat-tolerant species with
invasive potential [15]. Often however, these interactive effects
are hard to disentangle, which is why they are still poorly
studied. For example, declines in freshwater insects were associ-
ated both with nutritional shifts in the water and with fish
invasions [29], but it is hard to pinpoint the more important
cause. In addition, other drivers of insect decline (e.g. light pol-
lution [42]) have increased in impact over the past decades,
making it even harder to disentangle such interactions.
3. Consequences for communities
Insect population trends are highly idiosyncratic, depending
on taxonomic and functional groups. However, among the
species within each group, certain traits were often associated
with increasing or decreasing population trends. Winning
species were usually warm-adapted or moderately heat-toler-
ant [7,14–16], tolerant to pesticides and disturbances [6,16],
had invasive traits [15] and/or a broad dietary spectrum
[16,43]. Decreasing species, in contrast, preferred dry,
nitrogen-poor habitats [7] and open forests [6] or had a
protein-rich diet [6]. This matches previous studies, which
additionally identified high rates of dispersal and habitat reco-
lonization after disturbance as traits associated with winners
(e.g. [44]). Notably, climate change can select for different
traits: depending on the region, species preferring wet con-
ditions could be losers (Germany: [7]) or winners (Panama:
[14]; Denmark: [6]). In addition, climate change could select
for high migratory ability (i.e. dispersal rate) [24] and high
thermal plasticity [45]. Genetically diverse species could also
be at an advantage due to higher adaptability [46].

These trait changes combined with an increase of general-
ists likely increases the risk of homogenization. Thorn et al. [7]
observed increasing homogenization of insect communities
over time, i.e. a loss in alpha and beta diversity. Other studies
find homogenizing effects on bumblebee and grasshopper
communities [5,28]. Gebert et al. [16] argue that common
taxa which are already less sensitive to extreme temperatures,
become even more common in times of climate change,
resulting in further homogenization. If generalist taxa also
exhibit invasive traits (e.g. [15,16]), interspecific competition
and species displacement becomes more likely especially as
invasion rates are strongly accelerated both by global trade
and climate change [47–50].

All these factors ultimately lead to ‘novel communities’
composed of introduced species and the surviving native
ones [19]. New species may be beneficial for ecosystem func-
tioning if they can substitute decreasing native species.
However, a loss of species from the local or regional pool
could result in lower functional redundancy and response
diversity, thus reducing ecosystem stability and resilience to
climatic variation or disturbance [51]. Besides, homogeniz-
ation may directly lead to reduced functional performance,
e.g. for interaction partners relying on specialists [30]. For
example, a climate change-induced homogenization of
alpine bumblebee communities led to a concomitant decline
in plants specialized on long-tongued bumblebee pollinators
[52,53].
4. Future directions
This special feature confirms that insect population trends
vary a lot across taxa, regions and realms [39,54]. This may
be because drivers differ in importance between regions. In
addition, interconnections between realms or habitats make
the effect of drivers context-dependent [55,56]. In one study,
only 60% of co-occurring arthropod taxa at order level
showed trends in the same direction [54]. Temporal trends
in biomass, abundance and/or diversity are so variable that
using only selected ‘bioindicator’ taxa, as commonly done
in conservation, might not be sufficient to understand this
variation and to develop effective conservation strategies. In
addition, monitoring should consider abundances of species
rather than those of entire taxonomic groups, as changes in
community composition may go unnoticed if increases of
one species mask decreases of others in the same group. Stan-
dardized ‘biodiversity monitoring stations’ skilfully selected
across biomes and realms with broad taxonomic and trophic
coverage will be useful here.

Beside population trends, we should concomitantly moni-
tor how they affect insect-mediated ecosystem functions such
as pollination, decomposition, food for higher trophic levels
and biocontrol. This way, we can also identify key species for
particular functions [57] and understand how population
dynamics will affect ecosystem functioning and stability
alike. To identify vulnerable species and predict community
changes, trait-based approaches will be useful, considering
species-specific physiological traits (e.g. drought resistance,
nutritional needs, ability to mature or diapause under chan-
ging climate) [58]. An important complement here is research
on the plasticity and adaptive potential (e.g. genetic diversity)
in different species [46,59]. In this context, we must keep in
mind that abiotic and biotic conditions are dynamic and that
the functional importance of a species may vary over time.

Despite the need for further research, there is already
sufficient knowledge on how to mitigate species loss and pro-
mote biodiversity through political and individual actions
[60–65]. The two opinion pieces in this special feature high-
light the potential of approaches in addition to long-term
monitoring. Weisser et al. [66] argue that we can already
identify the most important drivers from quantitative
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analyses of already existing trend data, which should then be
confirmed by driver-specific experiments. With an even
shorter timeframe necessary, Blüthgen et al. argue that we
can already conclude a lot from space-for-time approaches
[67]. Both approaches provide scientific evidence for effective
and targeted conservation or restoration measures. However,
multiple approaches should be combined to avoid known
issues inherent to each [3,68].

This special feature shows that there are complex inter-
actions between major drivers of insect population dynamics
and that effects vary between taxa, functional groups or ecosys-
tems. Any implemented conservation measures should hence
be accompanied scientifically to ensure their success [69,70].
But the main practical lesson from this is that we must
manage habitats in a foresightful and adaptive way, anticipat-
ing unexpected developments. This may include habitat
connectivity to allow the migration of species with climate
change and enhancing local diversity to increase functional
redundancy and thereby ecosystem stability. A network of
well-selected protected areas designed for insect conservation,
combined with integrative elements in managed landscapes
can be valuable here [71]. Moreover, we need to put more
effort into preventing and mitigating human-induced species
invasions. Rather than only ‘more research’, we urgently need
to realise conservation and habitat restoration measures
known to effectively promote and protect insect populations
and diverse communities to avoid further homogenization.
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