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Increasing the number of stressors reduces 
soil ecosystem services worldwide

Matthias C. Rillig    1 , Marcel G. A. van der Heijden    2,3, Miguel Berdugo    4,5, 
Yu-Rong Liu    6, Judith Riedo    2, Carlos Sanz-Lazaro    7,8, 
Eduardo Moreno-Jiménez    1,9, Ferran Romero    2, Leho Tedersoo    10 & 
Manuel Delgado-Baquerizo    11,12 

Increasing the number of environmental stressors could decrease 
ecosystem functioning in soils. Yet this relationship has not been globally 
assessed outside laboratory experiments. Here, using two independent 
global standardized field surveys, and a range of natural and human factors, 
we test the relationship between the number of environmental stressors 
exceeding different critical thresholds and the maintenance of multiple 
ecosystem services across biomes. Our analysis shows that having multiple 
stressors, from medium levels (>50%), negatively and significantly correlates 
with impacts on ecosystem services and that having multiple stressors 
crossing a high-level critical threshold (over 75% of maximum observed 
levels) reduces soil biodiversity and functioning globally. The number of 
environmental stressors exceeding the >75% threshold was consistently 
seen as an important predictor of multiple ecosystem services, therefore 
improving prediction of ecosystem functioning. Our findings highlight the 
need to reduce the dimensionality of the human footprint on ecosystems to 
conserve biodiversity and function.

Human activities are leaving a complex footprint of impacts on ter-
restrial ecosystems associated with multiple environmental stressors 
(for example, drought, soil acidity or heavy metals), jointly affecting 
the majority of Earth’s ecosystems1–4; yet we know very little about such 
concurrent effects. This is unfortunate because ecosystems are continu-
ously subjected to a wide range of stressors, including anthropogenic 
disturbance such as pesticides, microplastics or land-use change1–7.  
A recent systematic mapping revealed that over 98% of papers published  
on global change and soils, reporting on results from experimental 
work, covered only one or two global-change stressors8. This means 

that, for a number of reasons, including logistics9, the combinato-
rial explosion problem10 and an insufficient collaboration among the 
subfields of global-change biology1, experimental work has covered 
very insufficiently what happens in reality when multiple environmen-
tal stressors co-occur and interact. Experimental work covering the 
effects of multiple stressors on biodiversity–ecosystem functioning 
has shown that just the number of factors has a large effect8. Thus, while 
single stressors by themselves had relatively minor effects (nominally 
positive, negative or neutral effects), together negative effects on soil 
functions were much stronger, that is, synergistic. Working on the 
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multiple ecosystem functions. Soil ecosystem services are defined 
from a human perspective and represent a wide range of benefits 
(carbon storage, food provision and so on). If the number of stressors 
explains a large portion of variability in biodiversity and process data, 
this can inform efforts to reduce the dimensionality of human impacts 
and aid conservation.

In this Article, we explore the relationship between the number 
of environmental stressors, including a combination of climatic, 
physico-chemical and anthropogenic stressors, exceeding critical-level 
thresholds and the maintenance of multiple ecosystem services asso-
ciated with soil biodiversity and function at a global scale. To pro-
vide independent and robust evidence for the link between multiple 
environmental stressors and ecosystem multiservices, we used two 
standardized global surveys including a total of 218 ecosystems from 
six continents and across a wide range of climatic and vegetation types 
(Supplementary Fig. 1, Global surveys #1a and #2 and Methods). Our 
study includes seven groups of climatic (aridity, maximum temperature 
and seasonality), physico-chemical (salinity, heavy metals and distance 
from neutral pH) and anthropogenic (human-influence index and ferti-
lization) factors that potentially cause stress (stressors) when passing 
high levels (determined using a threshold approach as explained in the 
following). Our Global dataset (Global #1b; n = 48) includes a subset 
of locations from Global #1a including these seven environmental 
stressors plus two additional stressors, pesticides and microplastics. 
We then determined the number of groups of environmental stressors 
simultaneously passing all possible threshold values (5–95%, based on 
the maximum observed level for each stressor) following the original 
threshold approach of ref. 20. Subsequently, it was possible to test 
whether ecosystem multiservices are reduced when a number of mul-
tiple stressors are above certain values set as thresholds. To assess 
ecosystem multiservices, we focused on 15 surrogates of ecosystem 
functions associated with six fundamental ecosystem services (Sup-
plementary Table 2 and Supplementary Figs. 2 and 3): soil biodiversity, 
organic-matter decomposition, pathogen control, plant productivity, 
water regulation and nutrient cycling. We characterize multiple ecosys-
tem services using the weighted multiservices4 approach considering 

individual organism level, other researchers studying the model plant 
Arabidopsis obtained similar results11,12. This may be the case because 
with an increasing number of stressors, an increasing proportion of 
species or component processes may be negatively affected, leading 
to an overall decrease in both biodiversity and ecosystem process rates. 
The hypothesis8 emerging from such experiments is that the number 
of global-change manifestations, in addition to their actual identity 
and magnitude, can impact the functioning of terrestrial ecosystems.

Despite the huge importance of understanding how multiple 
environmental stressors influence the biodiversity and function of ter-
restrial ecosystems under natural conditions, the relationship between 
the number of multiple stressors and functioning has not been assessed 
globally in real-world terrestrial ecosystems across wide gradients of 
environmental conditions. Testing this hypothesis about stressor num-
ber using observational approaches may yield important knowledge on 
what is the overall actual importance of such stressors in the real world 
or whether this importance can be masked by natural variability of 
ecosystems. This knowledge is also critical to understanding the future 
of terrestrial ecosystems that are suffering from an increasing number 
of environmental stressors. In addition to experimental approaches, 
observational field studies can provide further ecological insights 
as to how multiple stressors influence ecosystem performance. This 
brings the advantages of increased realism and high external validity, 
advantages that come at the cost of mechanistic resolution, degree of 
control and, thus, the ability to demonstrate causality. Observational 
studies routinely use a wide range of predictor variables to increase 
the proportion of variance explained or to account for factors that 
are not of immediate interest but still vary across samples. Studies 
on soil biodiversity and properties of this nature have in recent years 
been increasingly carried out at a continental13,14 or global scale15–19, 
achieving broader insights by covering wide ranges in environmental 
conditions across biomes. However, such studies have not yet tested, 
at any scale of observation, the relationship between the number of 
environmental stressors exceeding critical-level thresholds, includ-
ing anthropogenically caused influences, and the maintenance of 
multiple ecosystem services associated with soil biodiversity and 
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Fig. 1 | Number of stressors simultaneously operating at high levels of stress 
decreases ecosystem multiservices. a,b, Relationships between number of 
stressors operating above a threshold (measured as % with respect to maximum 
values of each stressor) and ecosystem multiservices (a) and their standardized 
effect sizes (b) in two global surveys. The shaded areas in b correspond to the 99% 

confidence intervals of the average standardized coefficients. Global #1a (n = 131 
sites) and Global #2 (n = 87 sites) include seven environmental stressors: aridity, 
temperature, seasonality, salinity, distance from neutral pH, heavy metals and 
human influence. Global #1b (n = 48) includes a subset of locations from Global 
#1a with these seven environmental stressors plus pesticides and microplastics.
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six ecosystem services (multiservices). We hypothesized that the num-
ber of environmental stressors exceeding medium-high critical thresh-
old levels will influence multiple ecosystem services associated with 
soil biodiversity and multiple ecosystem functions.

Results and discussion
We first systematically assessed the relationship between the num-
ber of stressors exceeding all possible threshold values (5–95%) and 
ecosystem multiservices (see also Supplementary Figs. 4 and 5 for 
additional results). Using this approach, we do not presume an a priori 
level of stress-reducing function (for example, 80%), but calculate the 
effect of number of stressors on multiple ecosystem services assuming 
different scenarios iteratively; that is, each threshold is an assumption 
of the minimum level of stressor required to be detrimental for ecosys-
tem functioning. Our analyses provide new evidence that the number 
of environmental stressors crossing a high-level threshold (Fig. 1; see 
Supplementary Table 3 for P values) is negatively correlated with the 
capacity of soils to support multiple ecosystem services. Using two 

independent global surveys, we show that the higher the number of 
environmental drivers crossing a >50% stressor threshold (Fig. 1 and 
Supplementary Table 3), the lower the biodiversity and function of 
soils across the globe. Our statistical analyses suggest that even a high 
number of environmental conditions exceeding an intermediate level 
of stressor (>50%; Fig. 1 and Supplementary Table 3) is already enough 
to give rise to negative and significant correlations with multiple eco-
system services (Supplementary Table 3 for P values). Our ecosystem 
services are comparable to those in ref. 8, suggesting that laboratory 
experimental outcomes can also be found in terrestrial ecosystems at a 
global scale under natural conditions. Our framework further expands 
that in ref. 8 by explicitly considering stressor intensity levels.

Because the effect of multiple stressors could be masked by the 
intensity of individual stressors, we then used multimodel inference to 
evaluate whether the number of multiple stressors exceeding different 
critical thresholds (>25%, >50% and >75%) was always selected among 
the best models (those with a combination of predictors able to maxi-
mize variance absorbed with the minimum set of predictors possible). 
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Fig. 2 | The number of stressors operating above high levels is an important 
independent factor for multiservices when compared with individual 
stressors. The relative importance of the multistressors index (number of 
stressors surpassing a given threshold) compared with individual factors 
to assess multiservices. a, A qualitative assessment of variable importance 
by showing results from a multimodel inference approach. Lists of the best 
generalized linear models out of all potential combinations of environmental 
stressors are given for Global #1a and Global #2. The R2s of the saturated models 
(those from which variable importance was calculated) were 0.3834 for Global 
#1 and 0.5905 for Global #2. If the variable (columns) was included in the model 
(is significant), this is shown with a coloured box (green for multistressors, red 

for climatic individual stressors, blue for soil-related stressors and yellow for 
other forms of human influence). Effect sizes of each variable can be seen in 
Supplementary Table 6. The Bayesian information criterion (BIC) indicates the 
suitability of the model (the lower the better) and delta indicates the difference of 
BIC with respect to the best model (<4 indicates similar performance to the best 
model). The weight of the models is also represented in the table and indicates 
how each of the best models would contribute to an average model (results in 
Supplementary Table 7). b, A quantitative assessment of variable importance 
using a variance partitioning scheme. The pie charts indicate the percentage of 
explained variance of multiservices (R2) that is associated with each predictor.
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This analysis tested more thoroughly whether the importance of the 
number of multiple stressors exceeding a threshold level was consist-
ent even after controlling for individual stressors. We conducted these 
analyses in Global surveys #1a and #2, supporting the largest number 
of sites. We found that the number of stressors exceeding the >75% 
threshold together with human influence were the most consistently 
selected factors in all the best models predicting the distribution 
of multiple ecosystem services in two independent global surveys  
(Fig. 2). Heavy metals were also selected in many of the best models 
from both global surveys, highlighting their importance for explain-
ing multiservices (Fig. 2). The number of stressors exceeding the >75% 
threshold (also >25 and >50%, depending on the dataset examined) was 
maintained in the models even when enforcing individual stressors to 
be kept in the model (Supplementary Table 7).

In general, multiple individual ecosystem services such as the 
biodiversity of soil tardigrades, Platyhelminthes and mycorrhizal fungi, 
potential infiltration rates, net primary productivity and soil-borne 
pathogen control had consistent responses to multiple environmen-
tal stressors, declining in response to a high number of stressors; 
however, other individual services gave rise to database-dependent 
responses (Fig. 3 and Supplementary Fig. 3). Thus, increases in the 
number of stressors had different influence on the diversity of annelids, 
Arthropoda and fungal decomposers and glucose and lignin respira-
tion in Global Survey #1 versus Global Survey #2 (Fig. 3). The negative 
influence of multiple stressors on the diversity of nematodes was 
especially important when considering stressors such as microplastics 
and pesticides in Global Survey #1b. This may be related to the fact 
that Global Survey #1 includes multiple urban areas, which are known 
to be exposed to multiple additional environmental stresses, many of 
which have not been measured here; thus, some of these unmeasured 
stressors may have contributed to this observed effect. Also of interest 
was the consistent negative response of potential infiltration to mul-
tiple stressors in Global Surveys #1 and #2, even when these stressors 

occurred at a relatively low level of intensity (>25%; Fig. 3). Finally, the 
number of multiple stressors was consistently positively correlated 
with the availability of phosphorus in soil, which is probably associated 
with human-driven fertilization processes.

With the analyses performed so far, we could investigate the 
overall importance for ecosystem services of the number of stressors 
crossing a given threshold. However, we also wanted to explore the 
possibility that the effects of multiple stressors could depend on the 
individual climatic stressors. Thus, the response of multiple ecosys-
tem services to climate change (individual climatic stressors) could 
be additionally impacted (if effect is additive) by multiple environ-
mental stressors, including human multidimensional disturbances, 
or directly modulated by them (if effect is interactive). We built linear 
models using as the response variable multiple ecosystem services 
and, as predictors, climatic groups of variables and their interac-
tion with the multistressor index at the 75% threshold (MS75). We 
chose MS75 because this threshold showed a clear effect in the mul-
timodel inference approach compared with MS25 and MS50 (Fig. 2).  
Apart from assessing the significance of such interactive effects (Sup-
plementary Table 6), we also plotted them for visual inspection. To do 
so, we divided the data according to the number of functions surpass-
ing 75% of their maximum and provided a plot of the ones with a high 
number of functions surpassing this threshold and another of those 
with a low number of functions surpassing this threshold (Fig. 4).  
We found that, in general, in both global surveys, increases in maxi-
mum temperature and aridity can have important additive negative  
influences on the maintenance of multiple ecosystem services in ter-
restrial ecosystems when interacting with multiple environmental 
stressors, including human influence and soil stressors. This pattern 
was not observed, however, for maximum temperature in Global 
Survey #2. This finding supports the notion that climate change 
impacts on soil biodiversity and function could be larger than previ-
ously expected as there are additional pressures from other human 
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influences and abiotic factors that need to be simultaneously consid-
ered when evaluating the impacts of climate change on biodiversity 
and ecosystem services.

Our global study presents an important advance in current knowl-
edge on the role of multistressors in driving soil ecosystem services by 
explicitly considering the concepts of number of stressors and stressor 
intensity in real-world ecosystems. Previous experimental work inevi-
tably included a limited suite of factors (up to ten for soil microcosms8 
and up to six for a model plant system11, with two fixed levels of each 
factor). More complexity is difficult to achieve within the confines 
of experimental design and logistics, and the necessary number of 
replicates, at least in ecology. By contrast, the work presented here 
fundamentally reflects a naturally occurring continuity of factor levels 
that we converted into numbers of factors by means of a threshold 
approach. In addition, all other influences were in effect, and the study 
thus spans a very wide range of climate and soil types, as well as vegeta-
tion feedbacks. In addition, by using two independent global surveys, 
we provide robust evidence that the number of multiple stressors can 
negatively influence multiple ecosystem services across environmental 
gradients. Finding a similar pattern for both surveys lends substantial 
additional credibility to the ‘number of factors’ hypothesis.

It will be important to develop policy instruments or approaches 
that take into account the overall dimensionality of human-caused 
factors8. Currently, much policy work focuses on individual factor 
types, for example, microplastics (for example, EU-level initiatives to 
restrict microplastic pollution) or the complex suite of climate impacts 
including drought and warming (Intergovernmental Panel on Climate 
Change, https://www.ipcc.ch/). Our findings indicate that a growing 
number of human-induced stress factors such as pesticides, microplas-
tics and general human influence/disturbance can further exacerbate 
the negative impacts of climate change on ecosystem performance. A 
recent study demonstrated that fungicide application impairs the abil-
ity of beneficial soil fungi to supply nutrients to their host plants21. It is 
important to assess whether such effects would be even stronger when 

these fungi are simultaneously exposed to drought, microplastics, 
heavy metals and other soil stressors. Moreover, our findings indicate 
that ecosystems supporting a high number of environmental stress-
ors passing high levels of stress could result in important declines in 
biodiversity and function. Thus, our findings strongly suggest that to 
protect and conserve terrestrial ecosystems and their contributions 
to people, there needs to be a shift in focus towards entire suites of 
influences, in terms of both work conducted in environmental sci-
ences and relevant policy regulations. Our study suggests that the 
number of stressors largely shapes the soil multiservices worldwide, 
which needs to be considered in future soil macroecology studies. 
This knowledge is critical to anticipate reductions in soil biodiversity 
and function in response to global change and across terrestrial eco-
systems, which could be overlooked when global change drivers are 
considered individually.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41558-023-01627-2.
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Methods
The analyses in this study22 are based on two independent global field 
surveys: Global Survey #1 and Global Survey #2. These databases were 
selected because they include a wide range of similar soil biodiversity 
and ecosystem functions measured in the same samples. This is critical 
when exploring multifunctionality indices and not very common in the 
global-scale literature.

Global Survey #1
Three composite soil samples from five soil cores (top 5 cm) were 
collected from the most common microsites (under vegetation and 
in open areas between plant canopies) in 131 ecosystems across 6 
continents (Supplementary Fig. 1) ranging from deserts and polar 
areas to tropical and temperate forests. This sampling was conducted 
between 2017 and 2019. This survey targeted 59 well-established urban 
parks and large residential gardens (urban forests and lawns) and 72 
relatively undisturbed natural ecosystems. A subset of the locations in 
this survey has been previously used to investigate global homogeniza-
tion patterns in soil biodiversity23.

Global Survey #2
Five composite soil samples from five soil cores (top 10 cm) were col-
lected from the most common microsites (under vegetation and in 
open areas between plant canopies) in 87 terrestrial ecosystems located 
in 9 countries on 6 continents ranging from deserts and polar areas to 
tropical and temperate forests (Supplementary Fig. 1). This sampling 
was conducted between 2016 and 2017. A subset of the locations in this 
global survey is available from the literature and has been previously 
used to investigate linkages between soil biodiversity and ecosystem 
function4.

Ecosystem services and functions
Our study includes 15 ecosystem variables included in 6 ecosystem ser-
vices: organic-matter decomposition (soil respiration and lignin- and 
glucose-induced respiration), soil biodiversity (diversity of annelids, 
arthropods, nematodes, Platyhelminthes, tardigrades, mycorrhizal 
fungi and fungal decomposers), pathogen control, plant productivity 
(net primary productivity), water regulation (potential infiltration) 
and nutrient cycling (available nitrogen (N) and phosphorus (P)) (Sup-
plementary Table 2). These ecosystem services were selected for two 
reasons: (1) they constitute good surrogates of multiple ecosystem ser-
vices associated with plant production, organic-matter decomposition 
and soil biodiversity, and (2) they are directly comparable to services 
in ref. 8, for which experimental evidence exists on the role of multiple 
stressors in driving soil biodiversity and function.

Soil respiration rates (basal respiration and glucose- and 
lignin-induced respiration) were determined using a composite sam-
ple per plot using Microresp at 25 °C and 60% water-holding capacity. 
The biodiversity of soil invertebrates (richness of soil invertebrates; 
amplicon sequence variants (ASVs)) was obtained from all composite 
soil samples using Miseq Illumina sequencing analyses by charac-
terizing a portion of the eukaryotic (invertebrates) 18S ribosomal 
RNA genes using the Euk1391f/EukBr (https://earthmicrobiome.org/
protocols-and-standards/18s/) primer sets. The diversity of myc-
orrhizal fungi (arbuscular and ectomycorrhizal fungi) and fungal 
decomposers was obtained from PacBio sequencing analyses (all soil 
samples for Global Survey #1 and a composite sample per plot for 
Global Survey #2). Molecular analysis of the full-length internal tran-
scribed spacer (ITS) region for fungi was performed using ITS9mun/
ITS4ngsUni primer24. Bioinformatic processing was performed using 
USEARCH25 and UNOISE326. Phylotypes (ASVs) were identified at the 
100% identity level. The ASV abundance tables were rarefied to 5,000 
(18S) and 1,000 (ITS) sequences per sample. FungalTraits was used to 
characterize different fungal functional groups (decomposers, mycor-
rhizal and potential plant pathogens) in our ASV relative abundance 

ITS table. Pathogen control (inverse of proportion of fungal plant 
pathogen as defined in ref. 4) was also determined from the PacBio ITS 
ASV table27. PacBio technology supports enough resolution to deter-
mine potential soil-borne plant pathogens. Net primary productivity 
was estimated from the normalized difference vegetation index using 
satellite imagery (Moderate-Resolution Imaging Spectroradiometer) 
at 250 m resolution. Potential water infiltration was determined in 
the lab in a composite sample per plot using a method similar to that 
described in ref. 4. In Global Survey #1, available N and P were estimated 
in all composite soil samples using root simulators in the lab and a 
mix of soil and water (1 h extraction). In the case of Global Survey #2, 
a salt-extraction (potassium sulfate 0.5 M) was used to extract soil 
inorganic N, and sodium bicarbonate was used to extract inorganic 
P. In both cases, soil N and P were determined colourimetrically using 
the methods described in ref. 4.

Plot estimates of environmental factors and ecosystem 
services
Before statistical analyses, within-plot information on all environmen-
tal factors (for example, heavy metals, pH and salinity), functions and 
soil biodiversity (richness of soil organisms) metrics, derived from 
three (Global Survey #1) or five (Global Survey #2) composite soil 
samples per plot, was averaged to obtain plot-level estimates. This 
approach allowed us to work at the site level, matching with environ-
mental factors such as climate and human influence. This was not 
needed for those analyses including a single composite soil sample 
per plot.

Weighted ecosystem multiservices
We used average weighted ecosystem multiservices. To determine this 
measurement of multiservices, we first standardized our functions 
between 0 and 1 as done in ref. 28. We averaged all functions within six 
ecosystem services and then calculated the average of six services 
as our metric of multiservices. By doing so, we aim to ensure that all 
services equally contribute to our multiservices index and that the 
number of functions within each service is not influencing our results.

Groups of natural and human-based environmental stressors
In this study, we worked with seven groups of stressors (instead of 
multiple individual factors within each group) for two reasons. First, 
individual factors within each group (for example, within heavy metals) 
are highly correlated with each other, suffering from multicollinear-
ity. Second, different groups of environmental stressors comprise 
a different number of individual factors (for example, from one to 
six). These seven groups of stressors were selected on the basis of 
two criteria: their well-known importance and data availability in the 
used databases. Our groups of seven stressors do not suffer from sta-
tistical multicollinearity presenting different types of stressors, and 
they reflect largely independent statistical entities (Supplementary 
Table 4 and Supplementary Figs. 2 and 3). In addition, working at the 
individual factor level would not allow a fair and weighted assessment 
of the influence of the number of environmental stressors exceeding 
different stressor thresholds, which could result in groups having more 
individual variables also giving rise to larger and overrepresented 
impacts. The selected groups of stressors showed relatively low levels 
of correlation, suggesting that they represent different dimensions of 
environmental impact (Supplementary Fig. 2).

We considered seven common environmental factors that can 
result in environmental stress when passing high levels: aridity (inverse 
of aridity index), temperature (maximum temperature), seasonal-
ity (precipitation and temperature seasonality and diurnal tempera-
ture range), salinity, distance from neutral pH, levels of heavy metals 
(soil As, Cd, Cr, Cu, Ni, Pb and Zn) and human influence (for example, 
human-influence index and fertilization). See Supplementary Table 1 
for details. These data were available for Global Survey #1a and Global 
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Survey #2 (Supplementary Fig. 1). We also considered level of pesti-
cides and microplastics, for which data were available for a subset 
of locations in Global Survey #1 (Global Survey #1b; Supplementary 
Fig. 1 and Supplementary Table 1). This information was included in 
our manuscript to account for the potential influence of well-known 
stressors such as pesticides and microplastics when data were available.

In both global surveys, aridity Index was obtained from ref. 29 (v.2). 
Temperature and seasonality variables were obtained from WorldClim 
(v.2) (http://www.worldclim.com/version2). Electrical conductivity 
was measured in all soil samples as a surrogate of soil salinity as done 
in ref. 30. Soil pH was measured with a pH meter in a soil/water solution 
(1/10). The concentration of As, Cd, Cr, Cu, Ni, Pb and Zn was meas-
ured as surrogates of heavy metals using inductively coupled plasma 
optical-emission spectrometry with Thermo ICP 6500 Duo equipment 
(Thermo Fisher Scientific) before a microwave digestion. In the case of 
Global Survey #1, human influence includes information on city influ-
ence (natural = 0; urban = 1), fertilization (0 = no; 1 = yes) and mowing 
(0 = no; 1 = yes) collected in the field. In the case of Global Survey #2, 
we collected information on nitrogen fertilization in manure31 and via 
direct human application32. For both databases, we also considered the 
human-influence index33. This index aggregates important information 
on eight factors: major roadways, navigable waterways, railways, crop 
lands, pasture lands, the built environment, light pollution and human 
population density. The concentration of microplastics was measured 
using RAMAN spectroscopy ( Jasco NRS-5100) with laser excitation 
frequency and intensity 784.79 nm and 11.8 mW, respectively, following 
a density extraction of the microparticles with a saturated NaCl solu-
tion. The RAMAN spectra of the analysed particles were compared with 
reference polymers from the spectral library Open Specy34.

Number of environmental stressors over a threshold
We then calculated the number of stressors passing three thresholds 
(for example, 25%, 50% and 75%) of maximum stressor levels (see ref. 21 
for a similar approach in a different context). This approach assumes 
that when a high number of environmental groups of factors (for exam-
ple, heavy metals and seasonality) pass high levels (for example, >75%; 
versus maximum values), this can have negative impacts on both bio-
diversity and function. Before we determined the number of stressors 
passing over these three thresholds, we standardized all individual 
environmental stressors between 0 and 1 (within each dataset) and 
averaged all environmental stressors (for example, maximum tem-
perature) within each group of stressors (that is, temperature) (Sup-
plementary Table 1). By doing so, we aimed to have different groups of 
stressors equally contributing to our multistressor indexes, avoiding 
an over-influence of stressor groups with multiple environmental 
variables. We then determined the number of stressors exceeding the 
thresholds for each location (5–95%), as done in ref. 20, and used this 
number for further analyses as the explanatory variable. For Fig. 1, we 
used the same approach, but we did not restrict the number to 25%, 
50% and 75% thresholds; we spanned the range of 1%–99% thresholds 
in unitary steps. Our analyses are based on seven measured environ-
mental stressors in the cases of Global #1a and Global #2 and nine 
environmental stressors measured in the case of Global #1b (Supple-
mentary Table 1).

Statistical analyses
We first used linear regressions and Spearman correlations to evaluate 
the link between the number of stressors passing the three thresholds 
and ecosystem multiservices, the 6 ecosystem services and the 15 
ecosystem functions.

To assess the relationship of multiple stressors acting together on 
ecosystem multiservices, we correlated the number of stressors pass-
ing a given threshold value (from 5% to 95% iteratively increasing by 
1%) with the multiservices index. This yielded a total of 91 regressions, 
each associated with a threshold value. Each of these regressions was 

bootstrapped 100 times, and the slopes were obtained to be plotted 
against the threshold for testing their significance (when confidence 
intervals at 95% of the bootstrapped slopes do not intersect the value 
of 0, they are significant; see Fig. 1b).

By increasing the threshold level in this analysis, we were able to 
see whether multiservices respond mostly to critical levels of stressors. 
For example, a relationship turning significant when a threshold of 20% 
is reached means that the variance of number of stressors performing 
at 20% of their standardized values can exert a significant effect on 
ecosystem functioning. Moreover, this stress level is not associated 
with one stressor in particular, but with several acting synergistically 
(one stressor can have high values and the multistressor index be very 
low if other stressors are mild).

Because significance of a multistressor indicator does not neces-
sarily imply that the multistressor is a better predictor than the isolated 
stressors, we then conducted a multiple linear regression using all 
stressors in isolation and the multistressor index for 25, 50 and 75% 
thresholds for the database of Global #1a and Global #2. Analysis of 
variance inflation factor (VIF < 5) revealed a lack of multicollinearity 
between these predictors, which was also confirmed by overall low cor-
relations between the individual stressors (Supplementary Figs. 2 and 3 
and Supplementary Table 5). The (saturated) model for Global #2 had a 
term with VIF > 5, namely, M25; we thus reran the model, excluding this 
term, and still found the overall result to hold. To test the importance 
of the multistressor indices, we performed two evaluations using this 
multiple regression as a baseline.

First, we measured the proportion of variance explained by each 
of the predictors (multistressor indices plus individual stressors) using 
a variance partitioning scheme with the package relaimpo35 in R. The 
results of this analysis inform about the corresponding proportion of 
the variance explained by each predictor of the model. Usually, predic-
tors absorbing large amounts of variance from the response variables 
are considered more important.

Second, we performed a multimodel inference diagnosis using the 
package MuMIN36 in R. This analysis conducts model fitting of all pos-
sible combinations of predictors in a given multiple regression model 
and extracts the Bayesian information criterion (BIC) of each combi-
nation to be used for ranking the models according to the principle of 
maximum parsimony. BIC informs about a trade-off on the variance 
explained by the model and the number of parameters required for 
its fitting, penalizing models that are too complex. The best model 
(lowest BIC) is ranked first, and the rest of the models are ordered on 
the basis of the deviation of their BIC. In general, models with a differ-
ence in BIC lower than 2 are considered as having similar performance. 
To use a more conservative criterion, we focused on models with BIC 
difference up to 4. The examination of which variables are included 
within the selected best models informs about the importance of such 
variables. This approach is complementary to variance partitioning 
because it is less dependent on the amount of variance absorbed and 
more on whether this variance is absorbed exclusively by a particular 
predictor (an important variable, able to explain a unique proportion 
of the variance, even if that variance amount is very little, is usually not 
dropped from the best models).

We additionally performed a canonical correspondence analysis 
(using vegan37 R package) that confronted the values of our individual 
functions with contrasting levels of multistressor thresholds (from 5 to 
95 taken each 5%). Canonical correspondence analysis is able to order 
the six functions measured in our study in a canonical two-dimensional 
space characterized by the combination of multistressor levels that 
best separates functions from each other. The result can represent 
functional trade-offs emerging when considering the linear effects of 
multistressors on the functions (for example, separating functions that 
respond mostly to high thresholds of multistressors from functions 
that respond to lower thresholds).

All analyses were done with R38.
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Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The database used in this manuscript is available at Figshare.com 
(https://figshare.com/s/e58852c4ffe5c3553a42)22.

Code availability
The R codes used in this manuscript are available at Figshare.com 
(https://figshare.com/s/e58852c4ffe5c3553a42)22.

References
22. Rillig, M. C. et al. Increasing the number of stressors reduces soil 

ecosystem services worldwide. Figshare https://doi.org/10.6084/
m9.figshare.20227107 (2022).

23. Delgado-Baquerizo, M. et al. Global homogenization of 
the structure and function in the soil microbiome of urban 
greenspaces. Sci. Adv. 7, eabg5809 (2021).

24. Tedersoo, L. et al. Global patterns in endemicity and vulnerability 
of soil fungi. Glob. Change Biol. 28, 6696–6710 (2022).

25. Edgar, R. C. Search and clustering orders of magnitude faster 
than BLAST. Bioinformatics 26, 2460–2461 (2010).

26. Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S 
and ITS amplicon sequencing. Preprint at bioRxiv https://doi.
org/10.1101/081257 (2016).

27. Põlme, S. et al. FungalTraits: a user-friendly traits database of 
fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 
(2020).

28. Wang, L. et al. Diversifying livestock promotes multidiversity and 
multifunctionality in managed grasslands. Proc. Natl Acad. Sci. 
USA 116, 6187–6192 (2019).

29. Global Aridity Index and Potential Evapotranspiration Climate 
Database Version 2 (CGIAR-CSI, 2019); https://cgiarcsi.community/ 
2019/01/24/ global-aridity-index-and-potential-evapotranspiration- 
climate-database-v2/

30. Delgado-Baquerizo, M. et al. Changes in belowground 
biodiversity during ecosystem development. Proc. Natl Acad. Sci. 
USA 116, 6891–6896 (2019).

31. Potter, P., Ramankutty, N., Bennett, E. M. & Donner, S. D. Global 
Fertilizer and Manure, Version 1: Nitrogen in Manure Production 
(2012); https://doi.org/10.7927/H4KH0K81

32. Potter, P., Ramankutty, N., Bennett, E. M. & Donner, S. D. Global 
Fertilizer and Manure, Version 1: Nitrogen Fertilizer Application 
(2012); https://doi.org/10.7927/H4Q81B0R

33. Wildlife Conservation Society and Center for International Earth 
Science Information Network, Columbia University. Last of the 
Wild Project, Version 2, 2005 (LWP-2): Global Human Influence 
Index (HII) Dataset (Geographic) (2005); https://doi.org/10.7927/
H4BP00QC

34. Cowger, W. et al. Microplastic spectral classification needs an 
open source community: open specy to the rescue! Anal. Chem. 
93, 7543–7548 (2021).

35. Groemping, U. Relative importance for linear regression in R: the 
package relaimpo. J. Stat. Softw. 17, 1–27 (2007).

36. Bartón, K. MuMIn: Multi-Model Inference. R package version 1.47.1 
(2022).

37. Oksanen, J. et al. vegan: Community Ecology Package (2022).
38. R: The R Project for Statistical Computing (2022); https://

www.r-project.org/

Acknowledgements
This project received funding from the British Ecological Society 
(agreement no. LRA17\1193; MUSGONET). M.D.-B. acknowledges 
support from the Spanish Ministry of Science and Innovation 
for the I+D+i project PID2020-115813RA-I00 funded by MCIN/
AEI/10.13039/501100011033. M.D.-B. is also supported by a project 
of the Fondo Europeo de Desarrollo Regional (FEDER) and the 
Consejería de Transformación Económica, Industria, Conocimiento y 
Universidades of the Junta de Andalucía (FEDER Andalucía 2014-2020 
Objetivo temático ‘01 - Refuerzo de la investigación, el desarrollo 
tecnológico y la innovación’) associated with the research project 
P20_00879 (ANDABIOMA). E.M.-J. thanks the Alexander von Humboldt 
Foundation for supporting his research stay in Germany (Fellowship 
for Experienced Researchers). M.C.R. acknowledges support from an 
ERC Advanced Grant (694368). M.G.A.H. acknowledges funding from 
the Swiss National Science Foundation (grant 310030_188799). M.B. 
is supported by Spanish Ministry of Science and Innovation through a 
Ramón y Cajal Fellowship (# RYC2021-031797-I).

Author contributions
M.C.R., M.D.-B. and M.G.A.H. contributed to the conceptualization of 
the study, and methods were contributed by M.D.-B., M.C.R., M.G.A.H., 
M.B., Y.-R.L., J.R., C.S.-L., E.M.-J., F.R. and L.T. Visualization was done by 
M.D.-B. and M.B. Funding for surveys was acquired by M.D.-B., Y.-R.L, 
C.S.-L. and L.T., and project administration was handled by M.D.-B. 
M.C.R. and M.D.-B. jointly supervised this study, and the original draft 
was written by M.C.R. and M.D.-B. The following authors contributed 
to reviewing and editing: M.C.R., M.D.-B., M.G.A.H., M.B., Y.-R.L., J.R., 
C.S.-L., E.M.-J., F.R. and L.T.

Funding
Open access funding provided by Freie Universität Berlin.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary 
material available at https://doi.org/10.1038/s41558-023-01627-2.

Correspondence and requests for materials should be addressed to 
Matthias C. Rillig or Manuel Delgado-Baquerizo.

Peer review information Nature Climate Change thanks Lea 
Beaumelle, Sam Macaulay, Ron Mittler and the other, anonymous, 
reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/natureclimatechange
https://figshare.com/s/e58852c4ffe5c3553a42
https://figshare.com/s/e58852c4ffe5c3553a42
https://doi.org/10.6084/m9.figshare.20227107
https://doi.org/10.6084/m9.figshare.20227107
https://doi.org/10.1101/081257
https://doi.org/10.1101/081257
https://cgiarcsi.community/2019/01/24/global-aridity-index-and-potential-evapotranspiration-climate-database-v2/
https://cgiarcsi.community/2019/01/24/global-aridity-index-and-potential-evapotranspiration-climate-database-v2/
https://cgiarcsi.community/2019/01/24/global-aridity-index-and-potential-evapotranspiration-climate-database-v2/
https://doi.org/10.7927/H4KH0K81
https://doi.org/10.7927/H4Q81B0R
https://doi.org/10.7927/H4BP00QC
https://doi.org/10.7927/H4BP00QC
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1038/s41558-023-01627-2
http://www.nature.com/reprints







