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Abstract
Given a statistical functional of interest such as the mean or median, a (strict) iden-
tification function is zero in expectation at (and only at) the true functional value.
Identification functions are key objects in forecast validation, statistical estimation
and dynamic modelling. For a possibly vector-valued functional of interest, we fully
characterise the class of (strict) identification functions subject to mild regularity
conditions.
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1 Introduction and informal statement of main result

Consider a statistical functional T of the random variable Y ∼ F , that is, a mapping
F �→ T (F), such as the mean or the median. In the theory of forecast validation, a
corresponding strict identification function V (x, y) takes the forecast x and the reali-
sation y of Y as arguments and its expectation with respect to Y ∼ F is zero if and only
if x equals the true functional value T (F). This defining property makes identifica-
tion functions a central tool in forecast validation through calibration tests (Nolde and
Ziegel 2017), often referred to as backtests in finance, and to forecast rationality (or
optimality) tests in economics (Elliott et al. 2005; Dimitriadis et al. 2021b). Further-
more, these functions are fundamental to zero (Z) or generalised method of moments
(GMM) estimation (Huber 1967; Hansen 1982; Newey and McFadden 1994), where
they are often called moment functions or moment conditions. However, their statis-
tical applications go much beyond these two fields and among others, they influence
dynamic modelling through generalised autoregressive score (GAS) models (Creal
et al. 2013), isotonic regression estimates (Jordan et al. 2022), or the derivation of
anytime valid sequential tests (Casgrain et al. 2022). A complete understanding of the
full class of (strict) identification functions for a given functional is crucial in these
applications. Our main contribution, Theorem 4, provides such a full characterisation
result.

In the jargon of decision theory (Gneiting 2011), the quantity of interest Y attains
values in an observation domainO ⊆ R

d , which is equippedwith the Borel-σ -algebra.
The class of potential probability distributions F of Y is denoted by F . Forecasts are
elements of an action domain A ⊆ R

k . Formally, the functional of interest T is a
potentially set-valued mapping from F to A, denoted by T : F � A, where the
notation � indicates that the values of T are subsets of A, with the convention that
we identify point-valued functionals such as the mean with the singleton containing
this value. For O = A = R, prime examples for T are the mean or the α-quantile
qα(F) = {x ∈ R | limt↑x F(t) ≤ α ≤ F(x)}, α ∈ (0, 1), where the latter is interval-
valued. Prime examples for multivariate functionals are the mean-functional in case
of multivariate observations (O = A = R

k). For univariate observations, examples are
multiple quantiles at different levels, the pair (mean, variance) with the natural action
domainA = R×[0,∞) or the pair consisting of the quantile and theExpectedShortfall
(ES) at the same level with natural action domain A = {(x1, x2) ∈ R

2 | x1 ≥ x2},
see Examples 2 and 3 for details. To present the formal definition of an identification
function V : A×O → R

k , let us introduce the convention that V is calledF-integrable
if for each of its components Vi the integral

∫
O Vi (x, y) dF(y) exists and is finite for all

x ∈ A and F ∈ F .Moreover, we shall use the shorthand V̄ (x, F) = ∫
O V (x, y) dF(y)

for any x ∈ A, F ∈ F , where the integral is understood componentwise.

Definition 1 (Identification function and identifiability)

(i) An F-integrable map V : A × O → R
k is an F-identification function for a

functional T : F � A ⊆ R
k if for all x ∈ A and for all F ∈ F

x ∈ T (F) �⇒ V̄ (x, F) = 0.
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(ii) An F-integrable map V : A × O → R
k is a strict F-identification function for a

functional T : F � A ⊆ R
k if for all x ∈ A and for all F ∈ F

x ∈ T (F) ⇐⇒ V̄ (x, F) = 0.

(iii) A functional T : F � A ⊆ R
k is called F-identifiable if there exists a strict

F-identification function for it.

On the class of distributions onRwith a finitemean,F1(R), themean is identifiable
with strict F1(R)-identification function V (x, y) = x − y. Likewise, the τ -expectile,
τ ∈ (0, 1), possesses a strict F1(R)-identification function V (x, y) = 2|1{y ≤
x} − τ |(x − y). On the class Fα(R) of distributions on R such that there exists
an x with F(x) = α, the α-quantile admits the strict Fα(R)-identification function
V (x, y) = 1{y ≤ x}−α. Functionals failing to be identifiable on practically relevant
classes of distributions are the variance and Expected Shortfall. On such classes F ,
both of them violate the selective convex level sets property, which is necessary for
identifiability (Osband 1985; Fissler et al. 2021).1 However, the pairs (mean, variance)
and (quantile, ES) turn out to be identifiablewith corresponding two-dimensional strict
identification functions, see Examples 2 and 3.

Regarding the flexibility of the class of identification functions, the following obser-
vation is immediate: If V (x, y) is a strict F-identification function for T : F � A ⊆
R
k , it can be multiplied with any Rk×k-valued function h(x) of full rank and remains

a strict identification function for T . Intriguingly, Theorem 4 formally states that, sub-
ject to mild regularity conditions, the reverse is also true, and the entire class of strict
identification functions is given by

{
h(x)V (x, y) | h : A → R

k×k, det(h(x)) �= 0 for all x ∈ A
}
. (1)

Besides its theoretical appeal, this characterisation result opens the way for diverse
applications. First, it can be used to optimise power of (conditional) calibration (fore-
cast rationality or optimality) tests studied in Nolde and Ziegel (2017). It is further
related to efficient Z- or GMM-estimation based on conditional moment conditions in
the sense of Chamberlain (1987) and Newey (1993), where the matrix h is submerged
in the choice of an optimal instrument matrix; see Theorem 3.1 and especially Remark
3.2 in Dimitriadis et al. (2021a) for details. Based on the choice of an identification
function (called score by these authors) as their forcing variable, dynamicGASmodels
of Creal et al. (2013) determine an autoregressive model structure for a corresponding
functional of interest that nests classical ARMA andGARCHmodels for themean and
variance. In these models, the so-called scaling matrix takes the place of the matrix h
and, as already called for by Creal et al. (2013, p. 779), this choice “warrants separate
inspection”.

The following examples discuss interesting applications of our characterisation
result in (1) to vector-valued functionals.

1 T satisfies the selective convex level sets property of F if for any F,G ∈ F and for any λ ∈ (0, 1) such
that (1 − λ)F + λG ∈ F it holds that T (F) ∩ T (G) ⊆ T ((1 − λ)F + λG).
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Example 2 (Mean and variance) The pair (mean, variance) is identifiable on the class
F2(R) of distributions with finite variance with the two-dimensional strict F2(R)-
identification function

V (x1, x2, y) =
(

x1 − y
x2 − (y − x1)2

)

.

One can use the characterisation result (1) to produce a multitude of other strict
F2(R)-identification functions. Motivated by the decomposition of the variance into
the difference of the second moment the squared expectation, a comparably intuitive
one is

V ′(x1, x2, y) =
(

x1 − y
x2 + x21 − y2

)

, (2)

which arises by choosing the full rank matrix h(x1, x2) =
(

1 0
2x1 1

)

.

Example 3 (Quantile and ES) In financial mathematics, Value-at-Risk at level α ∈
(0, 1) (VaRα) denotes the lower α-quantile, VaRα(F) = inf qα(F) = inf{x ∈ R | α ≤
F(x)}. Then, the ES at level α ∈ (0, 1) of a distribution F is formally defined as

ESα(F) = 1

α

∫ α

0
VaRβ(F) dβ = 1

α

∫
y1{y ≤ VaRα(F)} dF(y)

− VaRα(F)

α

(
F(VaRα(F)) − α

)
. (3)

On any subclass of Fα(R) where ESα is finite, e.g. on Fα(R) ∩ F1(R), there is the
following strict identification function for (qα,ESα)

V (x1, x2, y) =
(

1{y ≤ x1} − α

x2 − y
α
1{y ≤ x1}

)

,

where the second component naturally corresponds to a truncated expectation. Apply-

ing (1) with the full rank matrix h(x1, x2) =
(

1 0
x1/α 1

)

, one obtains the alternative

strict identification function

V ′(x1, x2, y) =
(

1{y ≤ x1} − α

x2 − y
α
1{y ≤ x1} + x1

α
(1{y ≤ x1} − α)

)

. (4)

The advantage of V ′ over V is that when evaluating V ′ on a discontinuous distribution
with F(VaRα(F)) > α, even though the first components of V and V ′ fail to be an
identification function forqα ,2 the second component ofV ′ still vanishes in expectation

2 To obtain a better understanding of identifiability for the possibly set-valued α-quantile and its lower
endpoint VaRα , one can distinguish three cases. First, if F is strictly increasing and continuous at its α-
quantile, the latter is singleton-valued and V (x, y) = 1{y ≤ x} − α is a strict identification function both
for qα and for VaRα . Second, if F is flat at its set-valued α-quantile, V is still a strict identification function
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when plugging in the correct values for qα(F) and ESα(F) for x1 and x2. Intuitively,
the second component of V ′ adds a correction term corresponding to the one in the
lower line of (3). The choice (4) is already utilised by Dimitriadis and Bayer (2019,
Eq. (4)) for Z-estimation of a joint quantile and ES regression model and naturally
shows up in consistent scoring functions for (qα,ESα), see Fissler and Ziegel (2016,
Corollary 5.5). Finally notice that the ESα(F) is sometimes also defined as the upper
average quantile over VaRβ with β ∈ (α, 1). Then, our results applymutatis mutandis.

2 Formal statement of main result

The assertion of Theorem 4, and in particular its proof, parallels Osband’s principle for
consistent scoring functions Fissler and Ziegel (2016, Theorem 3.2), see also Osband
(1985), Gneiting (2011). Up to our knowledge, the assertion has first been stated in
the PhD thesis Fissler (2017, Proposition 3.2.1). We need the following assumptions.

Assumption 1 Let F be a convex class of distributions on O such that for
every x ∈ int(A) ⊆ R

k there are F1, . . . , Fk+1 ∈ F satisfying 0 ∈
int

(
conv

({V̄ (x, F1), . . . , V̄ (x, Fk+1)}
))

, where for any set B ⊆ R
k , int(B) denotes

the interior of B and conv(B) denotes the convex hull of B.

Assumption 2 For every y ∈ R
d there exists a sequence (Fn)n∈N of distributions

Fn ∈ F that converges weakly to the Dirac-measure δy and a compact set K ⊂ R
d

such that the support of Fn is contained in K for all n.

Assumption 3 Suppose that for Lebesgue almost all x ∈ int(A) the maps V (x, ·) and
V ′(x, ·) are locally bounded. Moreover, suppose that the complement of the set

C := {(x, y) ∈ int(A) × O | V (x, ·) and V ′(x, ·) are continuous at the point y}

has (k + d)-dimensional Lebesgue measure zero.

Assumptions 1, 2, and 3 basically correspond toAssumptions (V1), (F1), and (VS1)
in Fissler and Ziegel (2016), respectively. Assumption 1 ensures that the class F is
sufficiently rich, implying in particular the surjectivity of T onto int(A) and the fact
that there are no redundancies in V in the sense that all its components are needed;
see Remark 5 for some further comments. Assumptions 2 and 3 ensure that V (x, y)
can be approximated by a sequence of integrals V̄ (x, Fn).

Theorem 4 Let T : F � A ⊆ R
k be a functional with a strict F-identification

function V : A × O → R
k . Then the following two assertions hold:

(i) If h : A → R
k×k is a matrix-valued function with det(h(x)) �= 0 for all x ∈ A,

then V ′(x, y) = h(x)V (x, y) is also a strict F-identification function for T .

for the set-valued qα , but it is only a (non-strict) identification function for the singleton-valued VaRα .
Third, if F is discontinuous at VaRα(F) such that F(VaRα(F)) > α (that is, if F /∈ Fα(R)), neither qα

nor VaRα are identified by V .
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(ii) Let V satisfy Assumption 1 and let V ′ : A × O → R
k be an F-identification

function for T . Then there is a matrix-valued function h : int(A) → R
k×k such

that

V̄ ′(x, F) = h(x)V̄ (x, F)

for all x ∈ int(A) and for all F ∈ F .
If V ′ is a strict F-identification function for T and it also satisfies Assumption 1,
then additionally det(h(x)) �= 0 for all x ∈ int(A). If the integrated identification
functions V̄ (·, F) and V̄ ′(·, F) are continuous, then also h is continuous, which
implies that either det(h(x)) > 0 for all x ∈ int(A) or det(h(x)) < 0 for all
x ∈ int(A).
Moreover, ifF satisfies Assumption 2 and V , V ′ satisfy Assumption 3 it even holds
that

V ′(x, y) = h(x)V (x, y) (5)

for Lebesgue almost all (x, y) ∈ int(A) × O.

Proof of Theorem 4 Part (i) is a direct consequence of the linearity of the expectation.
For (ii), the proof of the existence of h follows along the lines of Theorem 3.2 in Fissler
and Ziegel (2016). One just needs to replace ∇ S̄(x, F) with V̄ ′(x, F). If V ′ satisfies
Assumption 1 as well, one directly obtains that h must have full rank on int(A) by
exchanging the roles of V and V ′. If the expected identification functions are both
continuous, the continuity of h follows again exactly like in the proof of Theorem 3.2
in Fissler and Ziegel (2016).
For the pointwise assertion (5), consider (x, y) ∈ int(A) × O such that both V (x, ·)
and V ′(x, ·) are continuous at y. (Due to Assumption 3, this holds for Lebesgue almost
all (x, y).) Let (Fn)n∈N ⊆ F be a sequence as specified in Assumption 2. That is,
(Fn)n∈N converges weakly to δy and the supports of all Fn are contained in some
compact set K ⊂ R

d . We claim that V̄ (x, Fn) and V̄ ′(x, Fn) converge to V (x, y)
and V ′(x, y), respectively, providing the arguments for the former convergence only.
By Skorohod’s theorem, there is a sequence of random variables (ξn)n∈N on some
probability space with distributions Fn , such that ξn converges to y almost surely. By
the continuous mapping theorem, V (x, ξn) converges to V (x, y) almost surely. Since
V (x, ·) is assumed to be locally bounded and since ξn ∈ K almost surely, V (x, ξn) is
bounded almost surely. Hence, we can apply the dominated convergence theorem to
conclude that V̄ (x, Fn) = EV (x, ξn) → V (x, y). ��
Remark 5 For part (i) of Theorem4, no surjectivity assumption is necessary. In fact, the
identification functions at (2) and (4) are also strict identification functions for (mean,
variance) and (qα,ESα), respectively, when considering the action domain A = R

2.
However, it is obvious that part (ii) of Theorem 4 cannot hold without a surjectivity
assumption. In fact, V ′′(x1, x2, y) = V ′(x1, x2, y)1{x2 ≥ 0}+1{x2 < 0} would also
be a strict identification function for (mean, variance) on the action domain R

2.
On the other hand, also the richness, in particular, the convexity ofF are needed. Just

recall that on the class of symmetric distributions with strictly increasing distribution
function, the mean and the median coincide. Hence, both V (x, y) = x − y and
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Osband’s principle for identification functions 1131

V ′(x, y) = 1{y ≤ x} − 1/2 are strict identification functions, but do not fulfil (5).
The reason is that the class of symmetric distributions fails to be convex, unless all
distributions have the same mean, in which case the interior of the action domain
would be empty under surjectivity.

Remark 6 One may wonder about the flexibility concerning the dimension of an
identification function. Suppose that V (x, y) is a strict F-identification function for
some functional T , which takes values in Rk . Clearly, for any matrix-valued function
h(x) ∈ R

	×k where possibly 	 �= k, the product V ′(x, y) = h(x)V (x, y) is an F-
identification function for T . If 	 > k and the rank of h(x) is k for all x , V ′ is still
a strict F-identification function. However, V ′ will not satisfy Assumption 1, thus
containing redundancies (in fact, the easiest way to construct such a V ′ is by simply
copying some components of V ). On the other hand, if 	 < k, the proof of Theorem 4
(ii) implies that V ′ cannot be a strict F-identification function.

The latter statement can be exemplified by considering the systemic risk mea-
sure CoVaRα|β , which, given a two-dimensional observation (Y1,Y2), it is defined
as the VaRα of the conditional distribution of Y2, given that Y1 exceeds its VaRβ .
Then, the pair (VaRβ,CoVaRα|β) is identifiable on the class of absolutely continuous
distributions with positive density on R

2 with a corresponding strict identification
function

V (x1, x2, y1, y2) =
(

1{x1 ≤ y1} − β

1{x1 > y1}
(
1{x2 ≤ y2} − α

)
)

,

see Fissler and Hoga (2022, Theorem 4.2). Due to the argument above, the one-
dimensional identification function

V ′(x1, x2, y1, y2) = 1{x1 > y1}1{x2 > y2} − (1 − α)(1 − β)

suggested in Banulescu-Radu et al. (2021) cannot be a strict identification function for
(VaRβ,CoVaRα|β) on the class of absolutely continuous distributions with positive
density, see Fissler and Hoga (2022, Remark 4.3).
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