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Abstract— We formulate a general mathematical framework
for self-tuning network control architecture design. This problem
involves jointly adapting the locations of active sensors and
actuators in the network and the feedback control policy to
all available information about the time-varying network state
and dynamics to optimize a performance criterion. We propose
a general solution structure analogous to the classical self-
tuning regulator from adaptive control. We show that a special
case with full-state feedback can be solved in principle with
dynamic programming, and in the linear quadratic setting the
optimal cost functions and policies are piecewise quadratic
and piecewise linear, respectively. For large networks where
exhaustive architecture search is prohibitive, we describe a
greedy heuristic for joint architecture-policy design. We demon-
strate in numerical experiments that self-tuning architectures
can provide dramatically improved performance over fixed
architectures. Our general formulation provides an extremely
rich and challenging problem space with opportunities to
apply a wide variety of approximation methods from stochastic
control, system identification, reinforcement learning, and static
architecture design.

I. INTRODUCTION

Emerging complex dynamical networks present tremendous
challenges and opportunities to fundamentally reimagine
their control architectures and algorithms. In large-scale
networks, the structure of the control architecture – the
locations of sensors, actuators, and their communication
pattern – is crucial to performance and robustness properties
and an important design consideration. Much of control theory
operates with fixed control architectures, with the design
focused almost entirely on the control policy rather than
the architecture. There is a long history in adaptive control
and reinforcement learning of adapting policy parameters
online to measured data and/or identified models, but these
ideas have never been applied to the architecture itself in
a feedback loop with measured data. Here we propose self-
tuning network control architectures that jointly adapt the
policy and architecture online to measured data, in analogy
to the classical self-tuning regulator in adaptive control [1].

Such self-tuning architectures are compelling for emerging
large infrastructure networks and complex, high-dimensional
networks with time-varying phenomena. This includes, for
example, power grids with massive penetration of inverter-
based resources, mixed-mode transportation networks, epi-
demic/information spread in social networks, and economic
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activity in large economies. New sensing and actuation tech-
nologies are being rapidly integrated and offer an increasingly
large number of points from which to estimate and control
complex dynamic phenomena. However, resource and budget
constraints may limit the number of sensors and actuators
that are active at a given time. When the network state and/or
dynamics evolve to conditions that limit the effectiveness of a
fixed set of sensors and actuators, self-tuning architectures can
provide significantly improved performance and robustness.

There is a vast and rapidly growing literature in adaptive
control [1] and reinforcement learning (RL) [2], [3] that
focuses on adapting policy parameters based on measured
data. The self-tuning regulator [1] is a prototypical adaptive
control approach where model parameters related to the
system dynamics are estimated online from data and then used
to adapt the parameters of a feedback policy through a control
design procedure. This approach can flexibly accommodate
many combinations of parameter estimation and control
design methodologies. There are several other approaches in
adaptive control and RL of indirect and model-free flavors
that adapt policy parameters through estimation of other
quantities, such as value functions and policy gradients.
However, most work in adaptive control and RL focuses
on individual systems, and work in a network context utilizes
architectures with fixed locations for sensors and actuators.

Designing network control architecture to optimize control-
lability and observability metrics has received considerable
attention in recent years [4]–[10]. However, the architecture
design is largely treated as a single static design problem.
Some works have studied time-varying actuator scheduling
[11]–[15], but the architecture, while time-varying, remains
in open-loop and does not adapt to changing network state
or dynamics. Very recent work has considered selecting
actuators for uncertain systems based on data measured from
the system in limited settings with linear systems and specific
controllability metrics [16], [17].

Here we aim to bring together in a broad way network
control architecture design with feedback, adaptive control,
and RL. Our main contributions are as follows:

1) We formulate a general mathematical framework for self-
tuning network control architecture design and propose
a general solution structure analogous to the classical
self-tuning regulator from adaptive control.

2) For a special case with full-state feedback and known
dynamics, we show that dynamic programming can solve
the problem in principle, which couples feedback policy
design with a search over architecture combinations.

3) In the linear quadratic setting, we show that the optimal
cost functions and policies are piecewise quadratic and
affine, respectively. We also propose a computationally



tractable greedy heuristic for self-tuning LQR architec-
tures.

4) We demonstrate in numerical experiments that self-
tuning architectures can provide dramatically improved
performance over fixed architectures.

Our general formulation provides an extremely rich and
challenging problem space with opportunities to apply a
wide variety of approximation methods from stochastic
control, system identification, reinforcement learning, and
static architecture design.

II. SELF-TUNING NETWORK CONTROL ARCHITECTURES

We first formulate a general mathematical framework
for self-tuning network control architectures. Consider a
dynamical network with underlying graph G = (V,E(t)),
where V = {1, ...,n} is a set of nodes and E(t) ⊆ V ×V
is a time-varying set of edges connecting nodes over a
discrete time horizon t ∈ [0, . . . ,T ]. We associate a state
variable xi(t) ∈ Xi with node i ∈ V . The network state
is x(t) = [x1(t),x2(t), ...,xn(t)] ∈ X = Πn

i=1Xi. The edges
represent dynamical interactions between nodal states.

state: x(t1)

dynamics: ✓t1
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state: x(t2)

dynamics: ✓t2
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state node
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Fig. 1: Illustration of a Self-Tuning Network Control Archi-
tecture with sensor and actuator locations adapting to the
time-varying network state and dynamics.

We define a finite set of possible actuator locations in the
network U = {u1,u2, ...,uM}, each of which corresponds to
an input signal ui(t) ∈Ui that affects the state dynamics in a
distinct way. Similarly, we define a finite set of possible sensor
locations Y = {y1,y2, ...,yP}, each of which corresponds to a
distinct output measurement yi(t) ∈Yi related to the network
state. For a subsets of actuators St ⊂ U and sensors Tt ⊂
Y that are active at time t and specify input and output

signals uSt (t) ∈ Πi∈St Ui and yTt (t) ∈ Πi∈Tt Yi, respectively,
the network dynamics are given by

x(t +1) = f St
θt
(x(t),uSt (t),w(t)) (1)

yTt (t) = hTt
θt
(x(t),v(t)), (2)

where w(t) is a stochastic disturbance iid from a distribution
function Pθt

w , v(t) is measurement noise iid from a distribution
function Pθt

v , and θt is a (generally) unknown and time-varying
dynamics parameter specifying the dynamics map f St

θt
and

measurement map hTt
θt

. Broadly, the goal is to jointly adapt
the active sensors and actuators and the control inputs to
all available information about the time-varying network
state and dynamics parameter to optimize a performance
objective. Certain network states and dynamics may render a
fixed network control architecture ineffective, which motivates
adapting not just the input signal, but also the architecture.
When the dynamics parameter is unknown, this may involve
a combination of statistical estimation/identification of θt and
control design based on an estimate for θt and a representation
of the estimation uncertainty.

A. A Cardinality-Constrained Architecture Design Problem

Let UK = {S ∈ 2U | |S|= K} and YL = {T ∈ 2Y | |T |= L}
denote all possible actuator and sensor subsets of cardinality K
and L, respectively. Let y0:t = [yT0(0),yT1(1), ...,yTt (t)] ∈Y0:t
and u0:t−1 = [uS0(0),uS1(1), ...,uSt−1(t− 1)] ∈ U0:t−1 denote
the output and input histories, respectively. We define an
architecture-policy πt : Y0:t ×U0:t−1 → YL×UK ×Πi∈St Ui
with St ∈ UK as a mapping from the input-output history to
sensor and actuator subsets and the next input and output,
so that uSt (t) = π̄t(y0:t ,u0:t−1) and yTt+1(t +1) = hTt+1

θt+1
(x(t +

1),v(t +1)). Thus, an architecture-policy specifies both a set
of active sensors and actuators at each time and a feedback
policy specifying the control input for active actuators at
each time; i.e., πt defines the triple (St ,Tt+1, π̄t) specifying
which actuators to utilize next, which measurements to collect
next, and which input values to apply based on all available
information. Each component of (St ,Tt+1, π̄t) depends on the
available information. For a finite time horizon of length T ,
we define π = [π0,π1, ...,πT −1].

For a given architecture-policy π with uSt (t) =
π̄t(y0:t,u0:t−1), we define a cost function for initial state
x(0) = x

Jπ(x) = Ew,v

T −1

∑
t=0

ct(x(t),uSt (t))+ cT (x(T )), (3)

where ct : X × Πi∈St Ui → R is a stage cost function,
cT : X → R is a terminal cost function, and expectation
is taken with respect and disturbance and measurement
noise sequences. The self-tuning network architecture design
problem is then to find an optimal architecture-policy, i.e.

J∗(x) = min
π

Jπ(x), π
∗ ∈ argmin

π
Jπ(x). (4)

This problem is extremely challenging, as it combines
already challenging (stochastic, nonlinear, output-feedback,
data-driven) feedback control design with a combinatorial



architecture search. Generally this of course will require
approximation and heuristics for both control and architecture
design. Nevertheless we believe this general formulation
provides an extremely rich problem space with many exciting
possibilities to apply a wide variety of approximation methods
from stochastic control, system identification, reinforcement
learning, and static network control architecture design.

network
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model uncertainty  
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Fig. 2: A Self-Tuning Network Control Architecture.

B. Self-Tuning Architectures

A block diagram illustrating a general self-tuning network
control architecture is shown in Figure 2, which is analogous
to the classical self-tuning regulator from adaptive control.
The architecture can be viewed as a pair of coupled loops.
An inner loop features the dynamical network in closed-loop
with a feedback controller. An outer loop estimates model
parameters θt and a model uncertainty representation (e.g.,
a probability distribution or an uncertainty set) based on
input-output data, which are then fed into a joint architecture-
controller design module that computes sensor and actuator
subsets together with a feedback policy. Our formulation
adapts the architecture and policy parameters at the same
rate, but it is possible (and potentially computationally
advantageous) to use different rates for each of the model
estimation, policy parameter adaptation, and architecture
adaptation. For example, architecture adaptation may occur at
a (much) slower rate than model estimate or policy parameter
updates while still providing substantial performance benefits.
This approach can also be viewed as maintaining a data-
driven “digital twin” of the network and adapting both the
architecture and policy as the digital twin evolves [18].

The self-tuning architecture structure is highly flexible in
terms of the underlying methods for system identification,
feedback control design, and network control architecture

design. Many combinations have been explored in the
literature in the fixed architecture setting. But to our best
knowledge, no prior work has considered adaptation of the
control architecture.

III. DYNAMIC PROGRAMMING FOR SELF-TUNING
ACTUATORS WITH FULL STATE FEEDBACK

We consider a special case where the exact network state
is available for feedback, and the architecture design problem
consists of selecting only actuator subsets at each time
based on the current state and dynamics parameter (or an
estimate thereof). Let x0:t = [x(0),x(1), ...,x(t)]∈X0:t denote
the network state history. An architecture-policy πt defines
an active actuator set and feedback policy (St , π̄t) such that
uSt (t) = π̄t(x0:t ,u0:t−1). In general, the self-tuning architecture
involves using the available state-input data (x0:t ,u0:t−1) to
estimate the dynamics parameter θt , and then selecting an
architecture-policy through a control design method.

When the dynamics parameter θt is known, the Markovian
structure allows consideration of architecture-policies of the
current state uSt (t) = π̄t(x(t)). This then permits a dynamic
programming solution to the problem stated in the following
result.

Theorem 1: Consider the optimal control problem

minπ Ex0,w ∑
T −1
t=0 ct(x(t),uSt (t))+ cT (x(T ))

subject to x(t +1) = f St
θt
(x(t),uSt (t),w(t))

(5)

The optimal cost function J∗(x) defined in (4) is obtained
from the last step of the dynamic programming recursion

JT (x) = cT (x) (6)

Jt(x) = min
(St ,u)∈UK×Πi∈St Ui

Ew

[
ct(x,uSt )+ Jt+1( f St

θt
(x,uSt ,w))

]
,

(7)

and corresponding optimal architecture-policies are obtained
via

π
∗
t (x) ∈ argmin

(St ,u)∈UK×Πi∈St Ui

Ew

[
ct(x,uSt )+ Jt+1( f St

θt
(x,uSt ,w))

]
.

(8)
Proof: The proof follows the same inductive argument

as in standard dynamic programming [19], except that the
minimization step is performed jointly over architectures
and policies. For each time t ∈ [0,T − 1], we define the
tail architecture-policy π t = [πt ,πt+1, ...,πT −1], where πt
specifies (St , π̄t) with uSt (t) = π̄t(x(t)). We then define the
optimal cost-to-go functions at time t for state x(t) = x

J∗t (x) = min
πt

E[
T −1

∑
τ=t

cτ(x(τ), π̄τ(x(τ)))+ cT (x(T ))]

with expectation with respect to tail disturbance sequences.
We define J∗T (x) = cT (x), establishing the inductive base
case.

Now assume for some t that J∗t+1(x) = Jt+1(x). We have

J∗t (x) = min
πt

Ew[ct(x, π̄t(x))+ [min
πt+1

E[
T −1

∑
τ=t+1

cτ(x(τ), π̄τ(x(τ)))]]



= min
πt

[Ewct(x, π̄t(x))+ J∗t+1(x
+)]

= min
πt

[Ewct(x, π̄t(x))+ J∗t+1( f St
θt
(x, π̄t(x),w))]

= min
πt

[Ewct(x, π̄t(x))+ Jt+1( f St
θt
(x, π̄t(x),w))]

= min
(St ,u)∈UK×Πi∈St Ui

Ew

[
ct(x,uSt )+ Jt+1( f St

θt
(x,uSt ,w))

]
= Jt(x),

where the first step follows from the Principle of Optimality
and Markovian structure of the dynamics, the second by
definition of J∗t+1, the third by the state update equation, the
fourth by the induction hypothesis, and the fifth by definition
of the architecture-policy. This establishes the induction step,
and the proof is complete.

A. Self-Tuning LQR Architectures

We now consider a further special case with linear
dynamics and convex quadratic costs. The nodal states are
real-valued vectors xi(t) ∈Xi = Rni , and the network state
is then x(t) ∈X = RN with N = ∑i ni. The inputs are also
real-valued vectors ui(t) ∈Ui = Rmi . In this setting the set
of possible actuator locations can be identified with a set of
columns that can be used to construct an input matrix. In
particular, we can set U = {b1,b2, ...,bM}, where bi ∈ RN .
For St ⊂ U, we form the input matrix

BSt =

 | | · · · |
bi1 bi2 · · · bik
| | · · · |

 ∈ RN×|St |, (9)

For |St | = K, there are
(n

K

)
possible input matrices, up to

permutation of the columns. We can identify this set with UK
so that UK = {BSt ∈ RN×|St | | St ⊂ U, |St |= K}. The system
dynamics with active input matrix BSt at time t ∈ {0, . . . ,T −
1} is given by

x(t +1) = Ax(t)+BSt uSt (t)+w(t), (10)

where w(t) is an iid RN-valued zero mean random vector
with covariance matrix W . The following result establishes
a more explicit structure for the optimal cost functions and
architecture-policies.

Theorem 2: Consider the linear quadratic optimal control
problem over state-feedback architecture policies π

minπ Ex0,w

[
∑

T −1
t=0 xT

t Qtxt +uT
t Rtut

]
+ xT (T )QT x(T )

subject to x(t +1) = Ax(t)+BSt uSt (t)+w(t),
BSt ∈ UK .

(11)

The optimal cost-to-go functions and policies obtained
from the dynamic programming recursion (6), (7), (8) for
problem (11) are piecewise quadratic and piecewise linear,
respectively, defined over a finite partition of the state space
RN .

Proof: The dynamic programming recursion for (11) is

JT (x) = xT QT x (12)
Jt(x) = min

(u,BSt )∈RK×UK

E
[
xT Qtx+uT Rtu+ Jt+1(x+)

]
, (13)

where x+ = Ax+BSt u+w. To lighten notation we denote the
architecture optimization variable Bt :=BSt . The recursion one
timestep backwards from T can be split into a minimization
over u and over BT −1 as,

JT −1(x) = min
BT −1∈UK

min
u∈RK

E
[
x⊤QT −1x+u⊤RT −1u (14)

+(Ax+BT −1u+w)⊤QT (Ax+BT −1u+w)
]
.

Evidently, the inner minimization over u yields,

u∗T −1(x) =−
(

BST −1⊤QT BT −1 +R
)−1

BST −1⊤QT Ax.
(15)

Substituting (15) into (14) yields that, for a given BT −1, the
function inside the minimum over BT −1 is quadratic. Since
there are a finite number of choices of BT −1, each depending
on x, it follows that JT −1(x) is piecewise quadratic, and
u∗T −1(x) piecewise linear.

The remainder of the proof can be done by induction on a
standard ansatz, as follows. Suppose Jt(x) = x⊤Pt(Bt(x))x+
qt(Bt(x)), where Pt(Bt(x)) =: PBt

t and qt(Bt(x)) depend on
the choice of Bt at time t, which in turn depends on x; in
other words that Jt(x) is piecewise quadratic. We can write,

Jt−1(x) = min
Bt−1∈UK

min
u∈RK

[
tr(PBt

t W )+qt(Bt(x+))+[
x
u

]⊤ [A⊤PBt
t A+Qt−1 A⊤PBt

t Bt−1
B⊤t−1PBt

t A B⊤t−1PBt
t Bt−1 +Rt−1

][
x
u

]] (16)

= min
Bt−1∈UK

qt(Bt(x+))+ tr(PBt
t W )+ x⊤

[
A⊤PBt

t A+Qt−1

−A⊤PBt
t Bt−1

(
Bt−1PBt

t Bt−1 +Rt−1
)−1 B⊤t−1PBt

t A
]
x

(17)

= min
Bt−1∈UK

[
x⊤PBt−1

t−1 x
]
+qt−1(Bt−1(x)), (18)

where E[wT
t Pt+1(Bt(x))wt ] := tr(PBt

t W ), tr(PBt
t W ) +

qt(Bt(x+)) := qt−1(Bt−1(x)), and where the problem in the
last display can be solved by exhaustive search over the

(n
K

)
elements of UK . It follows that (18) is piecewise-continuous
in x, and piecewise quadratic.

We show a numerical example where we highlight the
‘partition’ of RN formed by the piecewise continuity of the
value function. Consider the system,

A =

[
−2.2639 0.6379
−0.2619 0.6383

]
, B ∈

{[
1
0

]
,

[
0
1

]}
, (19)

with cost matrices Q = blkdiag{1,2} and R = 1, and a time
horizon of |T |= 5. By exhaustive search over all trajectories
of length 5, we find the optimal actuator assignment given a
starting point x(0) ∈ [−4,4]2. The optimal actuators given a
point x(t) for t ∈ [0, . . . ,3] are highlighted in Figure 3.

This result provides an exact algorithm to construct
the optimal cost-to-go functions and policies. However,
the exhaustive search over architectures is computationally
intractable for all but the smallest actuator set cardinalities.
This motivates approximation algorithms for joint architecture-
policy optimization.



Fig. 3: 10000 points x(t) ∈ R2 of (19) sampled in [−4,4]2

over T = [0, . . . ,4] with the optimal actuator highlighted at
times [0, . . . ,3]. Magenta denotes actuator 1, blue actuator 2.

B. A Greedy Heuristic for Self-Tuning LQR Architectures

We now present a simple greedy heuristic to approximate an
architecture-policy. For concreteness, we focus on self-tuning
LQR architectures with a system identification component
for a static dynamics matrix. The network dynamics are

x(t +1) = Aθ x(t)+BSt uSt (t)+w(t), (20)

where w(t) is iid zero mean with covariance W . Based on
the state-input history (x0:t ,u0:t−1) the dynamics parameter θ

is identified using least-squares estimation, and then a greedy
algorithm is used to select a subset of actuators of cardinality
K to optimize the infinite-horizon LQR control performance
associated with the network model estimated. In particular,
the approximate architecture-policy is

uSgreedy
t (t) = KSgreedy

t x(t), (21)

where the computation of KSgreedy
t is described in Algorithm 1.

Although this greedy algorithm is suboptimal, it renders the
joint architecture-policy design computationally tractable and,
as we will see next, can still provide dramatically improved
performance compared to fixed architectures.

IV. NUMERICAL EXPERIMENTS

A. A Simple Example

We begin with a simple example that clearly demonstrates
the potential benefits of a self-tuning network control archi-
tecture over a fixed architecture. Consider the system

x(t +1) = Aθt x(t)+BSt u(t)+w(t), (22)

where the dynamics matrix switches occasionally (the ex-
act nature of the switching is not needed to qualitatively
illustrate the basic benefits) between two possible values

Aθt ∈
{[

1 0.5
0.5 1

]
,

[
1 −0.5
−0.5 1

]}
, the control archi-

tectures consist of two possible actuator locations U = {b1 =

Algorithm 1 Greedy Self-Tuning Architecture-Policy Ap-
proximation

Input: State-input history (x0:t ,u0:t−1) at time t, actuator
location set U = {b1,b2, ...,bM}, cost matrices Q, R,
actuator set cardinality K

1: Identify dynamic parameter:
θ̂ = argminθ ∑

t−1
τ=0 ∥x(τ +1)− (Aθ x(τ)+BSτ uSτ (τ))∥2.

2: Initialize: St = /0, BSt = [].
3: while |St |< K do
4: s∗ = argmins∈U x(t)T Psx(t) where Ps = Q+AT

θ̂
PsAθ̂

−
AT

θ̂
PsBs(R+B⊤s PsBs)

−1B⊤s PsAθ̂
and Bs = [BS1 bs]

5: St ← St ∪{s∗}, BSt = [BSt bs∗ ]
6: P = Q+AT

θ̂
PA

θ̂
−AT

θ̂
PBSt (R+BSt⊤PBSt )−1BSt⊤PA

θ̂

7: KSgreedy
t =−(R+BSt⊤PBSt )−1BSt PA

θ̂

Output: uSgreedy
t (t) = KSgreedy

t x(t)

[1,1]T ,b2 = [1,−1]T}, and the disturbance is zero-mean
Gaussian w(t)∼N (0,σ2I). We compare a fixed architecture
with BSt = b1 ∀t and a self-tuning architecture that allows
switching between the two actuators (with only 1 active at
each time) based on the current state and (an estimate of)
which dynamics matrix is active.

A close examination reveals that the pair (A2,b1) is
unstabilizable, so under the fixed architecture the state grows
without bound when A2 is active. It is not difficult to define
a switching signal where A2 is active sufficiently often and
the closed-loop is unstable, resulting in infinite cost. With
such a fixed architecture, no feedback controller, adaptive
or otherwise, can possibly stabilize the network dynamics.
On the other hand, the pair (A2,b2) is stabilizable. If it is
known (or can be identified sufficiently fast) which dynamic
matrix is active during certain time intervals, obviously it
is highly advantageous to activate actuator b2 whenever
dynamics matrix A2 is active. With a self-tuning architecture,
the network can be easily stabilized with near optimal cost,
even when only one actuator is activated at each time step.

This simple example demonstrates the significant potential
value of self-tuning architectures. More generally, self-tuning
architectures will be valuable whenever the network state
and/or dynamics change in ways that render an existing set
of sensors and actuators ineffective, and alternative, more
effective sets are available to activate. The challenges lie
in detecting or estimating such changes from data as the
network evolves and employing effective heuristics for joint
architecture and feedback control design.

B. A Self-Tuning LQR Example

In this section, we describe a larger self-tuning LQR
example. A simple greedy actuator selection heuristic for
joint architecture and control design enables a self-tuning
architecture to provide dramatically improved performance
over a fixed architecture. This improvement is realized even
with known linear time-invariant dynamics, with the actuator
set selected at each time based on the current state.

We consider 50-node network with a scalar state for each



node and a randomly generated unstable dynamics matrix.
The set of possible actuators consists of the standard unit
basis vectors U = {e1, ...,e25}, so each actuator can inject an
input signal at each node. The cost matrices are Qt = In and
Rt = I|St |, i.e., the input cost matrix is identical for every set
of actuators. The disturbance is iid with w(t)∼N (0,1e−4).
We randomly generated in initial state x0 ∼N (0,25). The
number of actuators available at each time is limited to K = 2.
We simulated the network dynamics with a fixed architecture
B = [e1 e2] using the optimal LQR policy, and we simulated
with a self-tuning architecture using a greedy heuristic as
described above. Figure 4 shows a comparison of typical costs
for each architecture, and Figure 5 shows corresponding state
trajectories. The cost of the fixed architecture is far worse, a
factor 80x more, than the cost of the self-tuning architecture.
Code and problem data for implementing the algorithm can
be found at [20].
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Fig. 4: Cost comparison, fixed vs. self-tuning architecture.
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Fig. 5: State trajectories, fixed vs. self-tuning architecture.

V. CONCLUSIONS AND FUTURE WORK

We formulated a general mathematical framework for self-
tuning network control architecture design and proposed a
general solution structure analogous to the classical self-
tuning regulator from adaptive control.

We have barely scratched the surface and believe there are
many opportunities to apply a wide variety of approxima-
tion methods from stochastic control, system identification,
reinforcement learning, and static architecture design.
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