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Abstract

Optoacoustic (OA) imaging provides a unique contrast to visualize and quantify light-ab-
sorbing tissue chromophores in living organisms. The light excitation of tissues together with
consecutive sound wave acquisition combines optical contrast with ultrasound (US) resolution
for functional and molecular imaging applications. Furthermore, multispectral optoacoustic
tomography (MSOT) can provide spectral information in multiwavelength illumination mode
by extracting the absorption properties of underlying tissues. Due to the unique contrast
generated by OA images, this biomedical imaging modality is well-established in preclinical
settings and clinical applications are introduced recently. However, wider adaptation and
application of OA imaging in research and clinical settings as a standard tool require further
improvements in contrast, spatial and temporal resolution, standardization of image pro-
cessing methods, and open-source data sharing. The rich contrast in OA images originating
from absorption and scattering in the tissues lacks the information about anatomy and elas-
tic properties. Reflection US is a well-established method in biomedical imaging to monitor
anatomical structures. Transmission US can provide information about speed of sound (SoS)
changes, acoustic attenuation, and elastic properties of the tissues. Hybridization of these
modalities in one imaging setup will benefit from the unique contrast provided by each of
them. However, the development of such a hybrid imaging system imposes different con-
straints on transducer array designs, data transfer rates, and signal acquisition methods.
These constraints can be mitigated to some extent by the development of optimized hard-
ware solutions, image acquisition methods, or signal processing methods. The scope of this
thesis is the development of new data acquisition and image processing methods to optimize
hybrid OA and US imaging systems. Therefore, automated methods to segment boundaries
of the anatomical structures in hybrid optoacoustic ultrasound (OPUS) images are proposed.
The limited view or sparse acquisition artifacts in the spatial domain are further reduced by
data-driven image processing methods for OA imaging. Signal domain limited view artifact
removal is proposed for custom designed detector array optimized for hybrid OPUS imag-
ing. US image acquisition sequences and data processing methods are developed to increase
spatial and temporal resolution in tomographic acquisition settings. In addition, the appli-
cations of the developed transmission reflection optoacoustic ultrasound (TROPUS) system
are explored for quantitative multimodal assessment of mammary tumors and non-alcoholic
fatty liver disease (NAFLD). The proposed methods are expected to expedite the adaptation
of hybrid OA and US systems in research and clinical settings.



Zusammenfassung

Die optoakustische Bildgebung (OA) bietet einen einzigartigen Kontrast zur Visualisierung
und Quantifizierung von lichtabsorbierenden Gewebechromophoren in lebenden Organismen.
Die Licht-basierte Anregung von Gewebe, zusammen mit der konsekutiven Detektierung von
Ultraschallwellen, kombiniert den optischen Absorptionskontrast mit der Auflösung von Ul-
traschall (US) für funktionelle und molekulare Bildgebungsanwendungen. Darüber hinaus
kann die multispektrale optoakustische Tomographie (MSOT) durch Extraktion der Absorp-
tionseigenschaften des Gewebes spektrale Informationen in einem Beleuchtungsmodus mit
mehreren Wellenlängen liefern. Aufgrund des einzigartigen Kontrasts der OA-Bilder, ist
diese biomedizinische Bildgebungsmodalität in präklinischen Umgebungen gut etabliert, und
klinische Anwendungen wurden kürzlich eingeführt. Eine umfassendere Anpassung und An-
wendung der OA-Bildgebung in Forschung und Kliniken als Standardinstrument erfordert
jedoch weitere Verbesserungen des Kontrasts, der räumlichen und zeitlichen Auflösung, eine
Standardisierung der Bildverarbeitungsmethoden und die gemeinsame Nutzung von Open-
Source-Daten. Der vielfältige Kontrast in OA-Bildern, der auf Absorption und Streuung
im Gewebe zurückzuführen ist, enthält keine Informationen über Anatomie und elastische
Eigenschaften. Reflexions-US ist eine bewährte Methode in der biomedizinischen Bildgebung
zur Überwachung anatomischer Strukturen. Transmissions-US kann Informationen über Än-
derungen der Schallgeschwindigkeit (engl. “speed of sound”, SoS), akustische Dämpfung und
elastische Eigenschaften des Gewebes liefern. Die Hybridisierung dieser Modalitäten in einer
Bildgebungsplattform wird von dem einzigartigen Kontrast profitieren, den jede von ihnen bi-
etet. Die Entwicklung eines solchen hybriden Bildgebungssystems bringt jedoch verschiedene
Einschränkungen in Bezug auf das Design der US-Wandleranordnung, die Datenübertra-
gungsraten und die Methoden der Signalerfassung mit sich. Diese Einschränkungen können
bis zu einem gewissen Grad durch die Entwicklung optimierter Hardware-Lösungen, Bilder-
fassungsmethoden oder Signalverarbeitungsmethoden verringert werden. Das Ziel dieser Ar-
beit ist die Entwicklung neuer Datenerfassungs- und Bildverarbeitungsmethoden zur Opti-
mierung hybrider OA- und US-Bildgebungssysteme. Daher werden automatisierte Methoden
zur Segmentierung der anatomischen Strukturen in hybriden optoakustischen Ultraschall-
bildern (engl. “optoacoustic ultrasound”, OPUS) eingeführt. Die Artefakte der begrenzten
Sicht oder der dünnbesetzter Erfassung im räumlichen Bereich werden durch datengesteuerte
Bildverarbeitungsmethoden für die OA-Bildgebung weiter reduziert. Die Beseitigung von
Artefakten bei eingeschränkter Sicht im Signalbereich wird für eine speziell entwickelte Detek-
toranordnung vorgeschlagen, die für die hybride OPUS-Bildgebung optimiert ist. Es werden
US-Bildaufnahmesequenzen und Datenverarbeitungsmethoden entwickelt, um die räumliche
und zeitliche Auflösung in tomographischen Aufnahmeeinstellungen zu erhöhen. Darüber
hinaus werden die Anwendungen des entwickelten Transmissions Reflexion optoakustischen
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Ultraschall-Systems (engl. “transmission reflection optoacoustic ultrasound”, TROPUS) für
die quantitative multimodale Bewertung von Mammatumoren und nichtalkoholischen Fet-
tlebererkrankungen (engl. “non-alcoholic fatty liver disease”, NAFLD) untersucht. Es wird
erwartet, dass die vorgeschlagenen Methoden die Anpassung von hybriden OA- und US-
Systemen in der Forschung und im klinischen Umfeld beschleunigen werden.
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Introduction

Biomedical imaging provides various tools to explore organs and tissues at different spatial
and temporal resolutions. Even though biomedical imaging modalities showed great improve-
ments in terms of technical capabilities and user experiences, there are still some challenges
and burdens to reach an ideal technology. There are tradeoffs between spatial and tempo-
ral resolution or level of invasiveness. Another consideration regarding the wide availability
of the specific systems is the cost of the required components, maintenance, and operation.
User dependency and reproducibility combined with the standardization of data formats and
processing algorithms play a key role in the wider adaptation of the proposed solutions. The
physical constraints such as penetration depth, signal attenuation, and angular coverage of
the detector arrays that can be placed around the organs are also the limiting factors in many
biomedical imaging applications. The comfort of the subjects and possible side effects need
to be considered as well when the new systems are developed. In this thesis, we focus on
developments in optoacoustic (OA) and ultrasound (US) imaging modalities and combination
of both modalities in hybrid imaging setups for preclinical research and clinical applications
by accounting for abovementioned challenges and application dependent limitations.

OA or photoacoustic (PA) imaging is based on illumination of objects with nanosecond laser
pulses and consecutive detection of US waves resulting from thermoelastic expansion of the
light-absorbing materials. The label-free OA image contrast originating from absorption
and scattering of light in the diffusing medium makes it suitable for biomedical image ap-
plications. In addition, the multispectral acquisition capabilities using various wavelengths
sequentially in visible or near infrared (NIR) spectrum make OA imaging suitable for iden-
tification of chemical composition of biological samples such as oxy-hemoglobin (HbO2) and
deoxy-hemoglobin (Hb), lipid, collagen, and melanin via spectroscopic analysis. Hence, the
spectral readings based on multi-wavelength excitation render additional information not cap-
tured by other biomedical imaging modalities. The strong optical absorption of hemoglobin
allows the visualization of vascular structures and hemodynamic responses, maintaining sub-
millimeter resolutions at depths of several centimeters within highly scattering living tissues
for visible and NIR wavelengths. This unique contrast provided by OA imaging modality at
high imaging speed increased its applications in the last decades [1, 2]. Tomographic imag-
ing capabilities and easy- to-use handheld operation mode also make this imaging modality
attractive for preclinical and clinical imaging setups [3, 4]. However, there are still bottle-
necks that need to be improved by novel hardware designs, image acquisition methods, and
reconstruction algorithms. In addition, OA imaging lacks the information about anatomical
structures and alternative validation methods to quantify tissue properties. These bottlenecks
can be complemented with the inclusion of other imaging modalities such as US in the same
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imaging setups or the development of advanced algorithms which accounts for the constraints.

US imaging is based on the transmission of sound waves to objects and the detection of
reflected waves (pulse-echo US) from objects or transmitted waves through (transmission
US) the imaged object [5]. Reflection US is a well-established method to provide anatomical
information in biomedical applications. Transmission US can provide information about elas-
ticity, acoustic attenuation, and speed of sound (SoS) changes in the tissues. OA and US are
complementary imaging modalities that can provide functional, molecular, and anatomical
information together. The nature of these two imaging modalities makes them suitable for
hybrid imaging applications. The same imaging setup can be optimized to operate in hybrid
mode to acquire different contrast and quantitative metrics [6, 7]. However, the combination
of these imaging modalities in one imaging setup is not straightforward while both impose
different constraints on transducer array designs, data transfer rates, and signal acquisition
settings. The imaging sequences, hardware designs, and reconstruction algorithms need to be
optimized to account for the different needs of both modalities. For example, while OA imag-
ing can reach high frame rates, US imaging requires compounding multiple frames to increase
contrast which reduces the frame rate. While quantitative OA imaging can be performed by
multispectral acquisition, it needs a validation method such as SoS imaging.

Objectives

This doctoral thesis intends to find efficient methods for hybridization of OA systems with
US imaging. The overall project includes optimization of hardware setup such as faster
and efficient data acquisition techniques and algorithms, improvement of OA and US recon-
struction algorithms and implementation of deep learning methods to further improve image
quality. We employed a large number of datasets from tissue phantoms, small animals, and
human volunteers using dedicated hybrid optoacoustic ultrasound (OPUS) and transmission-
reflection optoacoustic ultrasound (TROPUS) imaging systems to develop novel imaging
methods. Finally, the applications of developed imaging methods are shown for mammary
tumor progression and non-alcoholic fatty liver disease (NAFLD) characterization in vivo.

The objectives of this thesis can be summarized in four main categories:
(a) Image quality improvement by deep learning-based processing algorithms is proposed for
the reduction of limited view and sparse acquisition artifacts in signal and image domains.
(b) Automated segmentation methods are developed to increase the quantification capabili-
ties of imaging setups, to reduce inter user variability, and to enable registration of images
from different modalities.
(c) Optimized acquisition schemes are developed using OPUS and TROPUS imaging sys-
tems for increased contrast and resolution in spatial and temporal domains by considering
the tradeoffs.
(d) The developed approaches in OPUS and TROPUS systems are demonstrated for tumor
progression quantification and NAFLD assessment applications.
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In this thesis, deep learning-based image improvement algorithms are proposed to mitigate
limited view and sparse acquisition artifacts to reach objective (a) [8, 9]. The accompanying
datasets and benchmarks are released with a dataset paper which explains the details about
acquisition, use cases and developed software packages [10]. An automated segmentation
algorithm based on deep neural networks is developed to achieve the objective (b) [11]. The
automated segmentation helps to delineate mouse boundaries in preclinical imaging systems
which can be used to apply fluence correction and increase accuracy in quantitative analysis.
The automation of this process also decreases the user dependency and increases the repro-
ducibility. The new image acquisition sequences and accompanying image reconstruction
algorithms are developed to reach objective (c) [12]. Specifically, US computed tomography
acquisitions are optimized to reach higher temporal resolution which is a limiting factor in
hybrid systems due to data transfer rates. Tumor progression monitoring [13] and NAFLD
assessment [14] are demonstrated using hybrid imaging systems to reach objective (d).

There are tradeoffs in every imaging method that is aimed at increasing temporal or spatial
resolution, contrast, and energy exposures. The proposed methods are optimized for specific
imaging setups and applications. The details about imaging systems and specific applications
are included in this thesis. The researchers can optimize the proposed methods for their own
applications and hardware requirements in the future. We believe that proposed methods
will accelerate the wider adaptation of hybrid OA and US systems in preclinical and clinical
imaging settings. Moreover, they will provide available tools to explore new horizons for
future researchers.

Thesis Outline

The thesis is organized as follows.

Introduction chapter gives a concise summary of the thesis to help readers navigate the doc-
ument by introducing the OA and US imaging modalities and improvement points. It also
gives a brief explanation regarding the objectives and the outline of the thesis.

Chapter 1 (Background) introduces general aspects of currently available biomedical imaging
systems, mentions about the challenges to apply these systems for diagnosis and treatment of
various diseases and explains the physical phenomena behind OA and US imaging and con-
straints imposed by both modalities in the process of development hybrid imaging systems.
The hardware requirements are explained in detail including all components such as detector
arrays, data acquisition systems (DAQs), light sources, power supply units, and workstations.

Chapter 2 (Deep Learning for Automatic Segmentation of Hybrid Optoacoustic Ultrasound
(OPUS) Images) involves the paper published in IEEE Transactions on Ultrasonics, Ferro-
electrics, and Frequency Control in 2020 [11]. The paper proposes an automated segmentation
algorithm using convolutional neural network (CNN) for OA and US images. The algorithm
is proposed for preclinical imaging to segment outer boundaries of mouse cross sections. How-
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ever, the same method can be extended for segmentation of other anatomical structures in
hybrid OPUS images if the manual annotations become available for network training.

Chapter 3 (Expediting Image Acquisition in Reflection Ultrasound Computed Tomography)
covers the paper that is published in IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control in 2022 [12]. The paper proposes sparse acquisition methods for higher
temporal resolution in reflection ultrasound computed tomography (RUCT) using synthetic
transmit aperture (STA) image acquisition sequences. Specifically, two different approaches
(undersampling and combination of transducer elements) are compared using contrast to
noise ratio (CNR) and spatial resolution. The proposed method is expected to expedite
image acquisition and reconstruction in RUCT by mitigating the problems originating from
increasing amount of data acquired, transferred, and stored.

Chapter 4 (Signal Domain Learning Approach for Optoacoustic Image Reconstruction from
Limited View Data) includes the paper that is presented and published in Medical Imaging
with Deep Learning (MIDL) conference in 2022 [8]. The paper introduces a signal domain
processing method to remove limited view artifacts in OA images. Specifically, two different
networks are proposed to remove the domain gap between experimental and synthetic data
(style network) and reduction of limited view artifacts originating from reduced angular cov-
erage (side network) in OA imaging. The proposed methods improve the image quality and
quantification accuracy in OA imaging.

Chapter 5 (OADAT: Experimental and Synthetic Clinical Optoacoustic Data for Standard-
ized Image Processing) contains the paper that is published in Transactions on Machine
Learning Research (TMLR) in 2023 [10]. The paper introduces an open-source OA dataset
including the raw signals and reconstructed images with different imaging system configura-
tions from human forearm. The standard OA image processing algorithms and benchmark-
ing for deep learning methods are also included with the dataset. The published dataset
and benchmark algorithms are expected to help standardization and comparison of different
methods in OA imaging.

Chapter 6 (Noninvasive Multiparametric Characterization of Mammary Tumors with Trans-
mission-Reflection Optoacoustic Ultrasound) covers the paper that is published in Neoplasia
in 2020 [13]. The paper shows the successful application of TROPUS system for assessment of
mammary tumors in preclinical settings. Specifically, three different modalities (OA, RUCT
and SoS) are used to evaluate mammary tumors. The tumors are localized with RUCT
images using the anatomical information provided by pulse-echo US. Afterwards, OA im-
ages are used to assess the vessel characteristics around the tumor region. SoS maps from
transmission ultrasound computed tomography (TUCT) are used for quantitative evaluation
and validation of the same tumor regions.

Chapter 7 (Multimodal Assessment of Non-Alcoholic Fatty Liver Disease with Transmission-
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Reflection Optoacoustic Ultrasound) contains the paper that is available online in bioRxiv
and under review [14]. The paper shows the application of TROPUS imaging for character-
ization of NAFLD. Three co-registered modalities are used to acquire images from healthy
(control) and fatty liver regions. RUCT images are used to locate liver region in the mouse
cross-sections. Multispectral optoacoustic tomography (MSOT) images facilitated quantifi-
cation of lipid accumulation in liver using the spectral analysis. SoS maps quantified the
changes in the sound propagation speed due to fat accumulation in the liver tissues.

Chapter 8 (Discussion and Future Directions) discusses the results achieved by this thesis.
The scientific conclusions are drawn based on the findings of experiments and published re-
sults. As well as providing perspectives about the research directions that can be pursued
based on this thesis, the chapter also suggests improvement points for the proposed method-
ologies and discusses possible new application areas.
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1 BACKGROUND

This chapter focuses on the background information that is needed to understand projects/-
papers presented in this thesis. The first section (Overview) gives general information about
biomedical imaging, challenges in this field, and where OA and US imaging stand in this
bigger picture. The second section (Hardware) introduces each component of the imaging
systems used within the scope of this thesis in detail. The third section (Optoacoustic Imag-
ing) introduces the general principles behind the OA phenomena and how data acquisition
to image formation processes works and can be improved. The fourth section (Ultrasound
Imaging) is about the principles of US imaging, data acquisition sequences, and image forma-
tion. The fifth section (Hybrid Optoacoustic Ultrasound) explains the combination of OA and
reflection (pulse-echo) US modalities in the same imaging setup and the constraints and ben-
efits in hybridization. The sixth section (Transmission-Reflection Optoacoustic Ultrasound)
introduces working principles of triple modality imaging system combining OA tomography
together with the transmission and reflection US.



2 Background

1.1 Overview

Imaging starts with capturing different physical phenomena happening in the world with
suitable sensors. There are several imaging methods proposed in numerous technical fields.
The scope of the imaging applications and their importance are enormous for life. One of
the main application areas of imaging is the biomedical field. In this thesis, we focus on the
specific subfield of biomedical imaging, namely OA and US imaging, and we propose new
methods to pave the way toward improved imaging systems.

1.1.1 Biomedical Imaging

Biomedical imaging is an essential tool for the diagnosis and treatment of various diseases [1].
Many biomedical imaging technologies have evolved over time, each providing specific benefits
but also limitations. Innovative ideas in biomedical imaging opened new avenues for captur-
ing anatomical, functional, and molecular changes at different scales. For instance, x-ray
imaging, US, magnetic resonance imaging (MRI), and positron emission tomography (PET)
all provide a different level of specificity, sensitivity, spatial and temporal resolution for spe-
cific biomedical applications [2].

X-ray imaging is based on the excitation of tissues with ionizing radiation, and detection of
absorbed energy through penetration [3]. X-ray imaging provides high spatial resolution with
high penetration depths. The imaging technology also combined with tomographic acquisi-
tion designs by surrounding the imaged target and rotating the detector elements around it
[4]. The x-ray computed tomography (CT) can provide slices of full body scan with high
resolution. However, the imaging modality suffers from limited molecular specificity and sen-
sitivity [5]. Moreover, ionizing radiation can harm living tissues, hence, the radiation dose
and scan time of x-rays should be arranged accordingly by finding a balance between contrast
and harmfulness. Specific contrast agents are proposed to increase contrast and functional
information that can be captured with x-ray to overcome the limitations [6].

MRI is based on the generation of strong magnetic fields inside an isolated medium. The
movements of protons under this magnetic field and the gradients are used to generate the
images [7]. The images are acquired in tomographic slices which can be used to scan full body
by the movement of detectors. MRI can also provide anatomical information at high spatial
resolution. Also, MRI does not require exposure to any ionizing radiation which makes it
safer for biomedical applications. However, MRI suffers from tradeoffs between low specificity,
sensitivity, and temporal resolution [8]. The cost of required components and maintenance
in MRI is relatively high compared to the other imaging modalities.

PET imaging is based on detection of radioactive gamma rays emitted by the radiotracer
materials injected in the body [9]. The imaging system can provide high-sensitivity func-
tional and molecular information [10]. However, PET imaging suffers from low spatial and
temporal resolution. In addition, administration of radiotracers inside the body raise the
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concerns about potential effects of ionizing radiation for the patient and people around the
patient until the effects of radiotracers are eliminated [11].

The examples about biomedical imaging modalities can be augmented. However, each imag-
ing modality comes with its advantages and the drawbacks or challenges about resolution,
safety, costs and required resources.

1.1.2 Challenges in Biomedical Imaging

One of the most important aspects of the biomedical imaging systems is the safety of the
subjects and operators. The amount of injected contrast agents, dose and exposure time
for excitation of the tissues should not exceed the safety limits to avoid any harmful effects
[12]. However, the dose and time of exposure, and the amount of contrast agents limit the
contrast (increased noise levels) that can be achieved via the biomedical imaging systems.
Hence, the development of efficient hardware and software are crucial to maintain patient and
operator safety and to reduce the harmful effects. Highly parallelized hardware components
and processing algorithms constitute one of the main challenging points to achieve in most
of the biomedical imaging modalities. The costs and the storage also need to be accounted
while optimizing acquisition specific parameters.

There are also tradeoffs between achievable imaging parameters such as penetration depth,
detected frequencies, spatial and temporal resolution. Spatial resolution is crucial to re-
solve the structures requiring detection to perform diagnosis or treatment [13]. The imaging
modality properties should be chosen carefully based on the required spatial resolution. The
spatial resolution is limited by several parameters originating from imaging system or imaged
target such as the properties of the detectors, excitation source characteristics, scattering,
and signal sources generated by the excited materials.

Temporal resolution of the imaging system should be enough to capture fast-changing func-
tional or dynamic phenomena [13]. There are several factors limiting the achieved temporal
resolution such as the number of detectors and data transfer rates. The number of detectors
can be decreased to achieve higher frame rates (temporal resolution). However, this will
result in arc-shaped undersampling artifacts and reduced contrast. The number of acquired
sample points or sampling frequency of the signals can be decreased to achieve faster scans
but they will lead to reduced field of view (FOV) and spatial resolution, respectively. Data
transfer rates can be increased with the improved data acquisition hardware which in return
requires specialized devices with higher costs. In addition, parallelized or compressed sensing
signal processing algorithms need to be developed to fulfill the requirements originating from
increased imaging speed [14].

Another challenge for non-invasive imaging is the physical constraints originating from access
to different organs and tissues. The penetration depth of the employed imaging system is
not always sufficient to capture information from deeper structures [15, 16]. It is not possible
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to reach the organs or the tissues from all angles for specific penetration depths. Thus, the
design of the detector arrays should be optimized to account for tradeoffs between physical
constraints and imaging depths. The angular coverage that can be achievable based on the
physical constraints affects the accuracy of the shapes of anatomical structures. For most
of the imaging modalities, the optimal data acquisition can be performed by surrounding
the objects with detectors. However, this is not possible due to above mentioned physical
constraints and cost considerations. The costs increase with the number of detectors used,
the processing power employed, parallelized processing operations and storage.

Yet, there is no ideal biomedical imaging system that can overcome all the challenges in
the field. However, it is possible to make a choice of imaging system based on the required
spatial and temporal resolution, allocated resources, and the area of the application. The
new hardware and software designs can be developed by accounting for the tradeoffs between
imaging parameters.

1.1.3 Optoacoustic and Ultrasound Imaging Overview

OA imaging combines the advantages of both optics and US as it uses pulsed nanosecond light
radiation for the excitation of tissues and detects the US waves generated by the absorption
and following thermoelastic expansion. The imaging modality uses safe levels of non-ionizing
light radiation in the visible and NIR spectral ranges [17]. As a result, OA imaging gener-
ates contrast based on light absorption with molecular and functional detection capabilities.
Compared to other optical methods, low scattering of US provides information from deeper
structures by removing the limitations of optical diffusion. In addition, the high sensitivity,
and specificity of OA imaging for functional and molecular applications makes it an attrac-
tive tool in the biomedical imaging field. Those properties can be combined in real-time,
non-invasive, and handheld imaging setups for volumetric OA imaging. Sequential excita-
tion with changing wavelengths of light is also used for spectral analysis of structures in OA
images. MSOT exploits the advantages of spectral absorption differences among various chro-
mophores to separate and quantify the existence of specific materials in the imaged objects
[18].

OA imaging is rapidly finding its place as a preclinical and clinical imaging modality [19, 20].
Standalone applications of OA imaging for preclinical research showed promising results for
the detection and assessment of several disease conditions. Specifically, tumor progression is
monitored using the oxygenation levels and vessel structure changes at the core of the tumor
region and surrounding tissues [21–23]. Cardiovascular investigation of heart functions and ar-
rhythmias are performed with sparse acquisition sequences to reach ultrafast four-dimensional
imaging [24]. Indocyanine green (ICG) is used for monitoring functional properties of the
underlying tissues and organs [25, 26]. Functional neuroimaging is successfully shown using
three-dimensional (3D) detector arrays [27]. Localization in OA tomography is performed to
increase resolution in acquired images [28–30]. Magnetic microrobots at the nanometer scale
are tracked in 3D using the real-time imaging capabilities of OA imaging [31]. OA microscopy
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systems are proposed for monitoring skin cancer (melanoma) progression and wound healing
processes [32, 33]. Further examples of OA imaging in preclinical research are available in
the literature. Clinical translations of these applications are also an important aspect for the
adaptation of this imaging modality in hospital settings.

Clinical applications of OA imaging are suggested using commercially available systems for
patient studies or custom-engineered systems for volunteer studies. Crohn’s disease is char-
acterized in vivo using multispectral properties of OA imaging [34, 35]. Carotid arteries are
imaged with 3D handheld detector arrays [36] and carotid plaques are characterized in terms
of lipid accumulation and oxygenation with two-dimensional (2D) detector arrays [37]. Brain
imaging of humans with thin skulls is successfully performed by using a 3D detector array
and rotating the acquisition elements around the brain [38]. Multispectral imaging of human
breast cancer is performed with 2D concave detector arrays using 28 different wavelengths
[39]. A 3D system is also developed for breast imaging by combining 12 arch-shaped detector
arrays with 32 transducer elements [40, 41].

All these applications are made possible thanks to technical developments in the OA imaging
field in terms of data acquisition and signal processing methods. Improved image recon-
struction methods are developed to generate images with reduced noise levels and higher
quantification accuracy [42, 43]. A Bayesian approach is employed to solve the reconstruc-
tion problem in spectral quantitative OA imaging [44]. The compressed sensing methods are
proposed to reach higher imaging rates to monitor fast-changing dynamic properties [45, 46].
Deep learning methods are proposed to remove sparse acquisition artifacts [47, 48] and lim-
ited view artifacts resulting from reduced angular coverage [49–54]. Bandwidth enhancement
is performed in the signal domain using end-to-end neural networks [55]. Dictionary learning
is applied to OA images to recover vessel structures from undersampling acquisition scenar-
ios [56] and to enhance the structures in a light emitting diode (LED) based imaging [57].
Deep learning methods enable semantic segmentation of structures in OA images [58, 59].
Multispectral OA images are unmixed to their components by learning-based methods [60,
61]. LEDs are used to replace laser sources in OA imaging, which resulted in lower contrast
but reduced cost and higher repetition rates [62–64].

Despite the wide application areas of OA imaging as a standalone imaging modality in pre-
clinical and clinical settings, it lacks the anatomical information to localize the structures.
There is also a need to validate the quantitative findings in OA imaging with other modalities.
To address those challenges, it is possible to combine OA imaging with US modality which
uses similar detector arrays for image acquisition. This combination might help to comple-
ment the molecular and functional information provided by OA imaging with anatomical data
from reflection US and stiffness and tissue density characteristics that can be extracted from
transmission US imaging. However, integration of these modalities in one imaging device is
not straightforward as they impose different constraints on detector array designs (i.e., pitch
size, angular coverage), data acquisition rates, and image processing algorithms. For exam-
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ple, a common approach employs linear US detector arrays combined with the light sources
by fibers mounted on the probe [65, 66]. However, this geometry is better suited for reflection
US imaging than OA imaging which requires increased angular coverage and transmission
US imaging which requires the detection of transmitted waves through the imaged object.

In this thesis, we develop efficient hardware and software solutions for hybrid OA and US
imaging systems. The imaging systems are optimized to capture the rich contrast provided
by each modality. Novel algorithms are proposed to eliminate the constraints imposed by
different modalities. Further, the applications of the proposed systems are shown in tumor
and liver disease characterization. We hope that the proposed methods will help to mitigate
the challenges in the biomedical imaging field.
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1.2 Hardware

Hybrid OA and US imaging systems are composed of light sources, power supply units,
detector arrays, DAQs, and workstations. The objects are excited by two different methods:
light sources (for OA imaging) or US waves (for reflection or transmission US imaging).
The nanosecond pulsed light sources are used to excite objects by sequentially switching
wavelengths in OA imaging. The thermoelastic expansion caused by the light-absorbing
materials creates US waves which are captured by detector arrays and converted into OA
images by algorithms running on the workstations. The US waves can be also generated
and transmitted by the transducer elements on the detector arrays for reflection and/or
transmission US imaging. Reflection US can be performed by collecting the US waves reflected
by the objects. Transmission US imaging is performed by attenuation of US waves during the
transmission through the objects. So, the detector arrays are used as source and receiver in
US imaging. Transducer elements on the detector arrays convert the US pressure waves into
electrical signals. DAQ digitizes the acquired signals simultaneously for each channel of the
detector array. The digitized signals are transferred to workstations for real time visualization
using graphics processing unit (GPU) accelerated image reconstruction algorithms. The raw
signals are stored by the workstations for offline processing. Each of these components is
explained in detail in the following subsections.

1.2.1 Light Sources

Short-duration pulsed light sources are utilized for OA imaging. The pulsed excitation of
the objects with ultrafast (nanosecond) light sources causes heating by absorption and scat-
tering. The sudden increase in the temperature results in the expansion and vibration of
the structures in the excited objects. This effect is called thermoelastic expansion which
generates the emission of US waves as a point source. The excitation light is delivered with
the optical coupling by fiber bundles designed for specific illumination methodologies. The
illumination pattern in this thesis is arranged to deliver planar focusing (multisegment array)
or cylindrical focusing (circler arrays) depending on the detector geometry.

Lasers: Nanosecond pulsed laser sources are used to excite the imaged objects by sequen-
tially switching the illumination wavelengths. Specifically, tunable optical parametric oscilla-
tor (OPO) lasers in visible and NIR wavelength ranges are utilized to generate OA signals by
thermoelastic expansion. The repetition rate of the lasers has a direct impact on the imaging
speed and the laser energy. The laser repetition frequency can be optimized for the targeted
applications. The lasers between 10 Hz and 100 Hz repetition rates are used in this thesis
(InnoLas Laser GmBH, Krailling, Germany).

Light Emitting Diodes: LEDs are used in OA imaging setups as an alternative to lasers.
This choice of LED light source reduces the cost of the overall system and increases safety [62,
67]. The main disadvantage of LED-based excitation is the reduced energy delivery on the
objects. The reduced energy comes with the cost of decreased contrast in OA images. The
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problem of reduced energy delivery can be mitigated by increasing the repetition rate of LED
pulses. Then, multiple image frames can be combined to create final high-contrast images.
However, this method cannot be applied to fast-moving objects and dynamic processes. The
use of LEDs increases the safety of the OA imaging systems by decreasing the risk of accidental
laser damage by extreme energy level exposure and wrong usage of eye protection goggles.

1.2.2 Power Supply Units

US waves are generated by transmitting bipolar pulses in different combinations with indi-
vidually assigned delay parameters to create desired wave shapes. The power supply units
provide the required energy for DAQ to form US pulses by activating transducer elements.
The voltage and the current of the power supply units are limited to 40 Vpp and 20 Ampere,
respectively, to avoid damaging the transducer elements and imaged objects. Principally,
the main sources of excitation are the light sources and power supply units in OA and US
imaging, respectively.

1.2.3 Detector Arrays

The detector arrays are used to collect pressure waves generated by the OA effect, reflection,
and transmission of US waves. The collected pressure signals are converted into electrical
signals by the piezoelectric transducer elements in the detector arrays. The transducer ele-
ments are combined in various geometrical shapes for optimized OA and US imaging designs
for specific applications.

Circle Array: The custom-engineered circular transducer array (Imasonic Sas, Voray,
France) was designed for full-body preclinical tomographic imaging (Fig. 1.1a). It contains
512 transducer elements that are distributed on the two half circles (174°) equidistantly.
Each element on the detector array can transmit and receive US signals sequentially. The
two half circles of the circular detector array are combined in a 2D plane to create 348°
tomographic coverage around the imaged object. The combined full-circle array has 40 mm
of the radius of curvature. The transducer elements are cylindrically focused at a 38 mm
distance. Each element has dimensions of 0.37 mm x 15 mm. The interelement pitch size
is 0.47 mm. The array has a 5 MHz peak central frequency with a bandwidth of 60% at -6 dB.

Semi-Circle Array: The circle array can be separated into two semi-circles to perform
handheld imaging in clinical applications (Fig. 1.1b). The semi-circle array has the same
physical properties as the circle array except for the angular coverage and number of trans-
ducer elements. The semi-circle array can reach 174° angular coverage with 256 transducer
elements. This specific array geometry in which transducer elements are distributed on an
arc equidistantly helps to reduce artifacts generated by the discontinuity in the transducer
element organization i.e., multisegment array. Hence, the semi-circle array can be used as an
alternative to a multisegment array to reduce artifacts in OA images for handheld acquisi-
tions. However, semi-circle array design is not optimized for planar pulse-echo US imaging.
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Figure 1.1: Representative drawings for detector arrays. (a) Circle array with 348° tomographic
coverage including 512 transducer elements. (b) Semi-circle array formed by one half
of the circle array including 256 transducer elements. (c) Multisegment array designed
as a combination of linear and concave parts including 128 transducer elements on the
linear part and 64 transducer elements on the concave parts (256 elements in total). (d)
Virtual circle array to mimic 360° tomographic coverage with 1024 transducer elements.

Multisegment Array: The custom-engineered multisegment detector array (Imasonic Sas,
Voray, France) is formed by the combination of two different geometries, namely, linear, and
concave parts (Fig. 1.1c). The linear part is located at the center of the detector array with
128 transducer elements aligned on a straight line. The interelement pitch size of the linear
part is 0.25mm. The linear geometry is optimized for reflection US data acquisition, but it is
also used for OA imaging. There are two concave parts merged into the linear part from both
sides with 64 transducer elements. The interelement pitch size of concave parts is 0.6 mm.
The overall detector array is composed of 256 transducer elements focusing at 40 mm through
the center of the imaging plane. The array has a 7.5 MHz peak central frequency with 70% de-
tection bandwidth at -6 dB. 170° angular coverage is achieved with the specified array design.

Virtual Circle Array: The virtual circle detector array is simulated by mimicking 1024
elements distributed on a circle equidistantly (Fig. 1.1d). The virtual circle has the same
radius (40 mm) with a circle array manufactured for hybrid OPUS and TROPUS acquisitions.
In contrast to the circle detector array, there is no gap between the two semi-circles of virtual
detector array. The number of transducer elements (1024) is doubled compared to the circle
detector array (512). The virtual circle array was used in simulations to mimic the cases with
increased angular coverage and spatial sampling.

1.2.4 Data Acquisition Systems

The detected pressure (US) waves are converted into electrical signals by piezoelectric trans-
ducer elements. The continuous electrical signals transferred from detector arrays need to
be digitized by a DAQ. A custom-engineered DAQ (Falkenstein GmbH, Munich, Germany)
is used in this thesis for the digitization of the acquired signals. The DAQ can digitize a
maximum of 512 channels simultaneously. The transfer rate of the digitized signals is limited
to 1 Gbit/s by DAQ. The sampling frequency and the number of samples can be optimized
for required imaging frame rates (i.e., 24 or 40 mega samples per second (MSPS)). The
DAQ is also responsible for the transmission of US waves with specified delays to perform
US imaging applications with custom waveforms.
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1.2.5 Work Stations

Data transfer, synchronization, storage, and image processing are performed by the worksta-
tions with the GPUs. DAQs are connected to workstations with 1 Gbit/s ethernet connection
to transfer the transmission and reception commands and the acquired signals. A Matlab
package is used to synchronize the trigger events between light sources or function generators
and DAQs. The same Matlab package with a custom-designed graphical user interface (GUI)
reconstructs the images in real-time with GPU support using the OpenCL library. The ac-
quired signals are saved in Matlab-compatible files for offline processing. Matlab and Python
libraries are used for the offline processing of the acquired signals.
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1.3 Optoacoustic Imaging

OA imaging relies on the principle of excitation of objects with nanosecond light pulses and
acquisition of generated US waves by transducer arrays that surround the imaged object. The
main components used in OA imaging include nanosecond pulsed laser or LED arrays, US
transducer array, DAQ, and processing workstation (see chapter 1.2 for details). The light
excitation creates US (pressure) waves that propagate in a 3D imaging medium. OA wave
equation for a short duration (less than stress and thermal relaxation time) pulsed excitation
can be written as follows

∂2p(r, t)
∂t2 − c2∇2p(r, t) = ΓH(r, t)∂δ(t)

∂t
(1.1)

where p(r, t) is the pressure wave that depends on spatial (r) and temporal (t) variables.
c is the SoS in the imaging medium. Γ stands for the Grüneisen constant [68]. H(r, t) is
the absorbed energy field relative to the same spatial (r) and temporal (t) changes. δ(t)
represents the temporal (t) laser light intensity change based on illumination. Initial value
of the above equation can be written as

∂2p(r, t)
∂t2 − c2∇2p(r, t) = 0 (1.2)

with the initial conditions
p(r, t)|t=0 = ΓH(r) (1.3)

and
∂p(r, t)

∂t
|t=0 = 0. (1.4)

The Poisson solution of the above OA pressure wave equation can be written as

p(r, t) = Γ
4πc

∂

∂t

∫
S′

H(r′)
|r − r′|

dS′(r, t) (1.5)

where S′ is the temporal spherical surface defined by |r − r′| = ct in 3D. The constant terms
outside of the integral can be neglected. After dropping the constant terms, the pressure, in
arbitrary units, can be expressed as

p(r, t) = ∂

∂t

∫
S′

H(r′)
|r − r′|

dS′(r, t) (1.6)

for 3D volumetric model of pressure waves. The same equation can be defined on a curve L′

for 2D imaging medium as

p(r, t) = ∂

∂t

∫
L′

H(r′)
|r − r′|

dL′(r, t). (1.7)

These equations represent the OA forward model in 3D and 2D space. The inverse problem
of given equations can be solved to reconstruct OA images using backprojection [69] (see
chapter 1.3.3 for details). Alternatively, the inversion of the discretized version of forward
model can be used for model-based reconstruction [43] (see chapter 1.3.3 for details).
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Figure 1.2: Example optoacoustic (OA) images from healthy mouse cross-sections using circle detec-
tor array with 1 mm step size in elevational direction. The images starting from the liver
region (cross-section 1) to the kidney and spleen region (cross-section 10) are shown in
the examples. Conventional image enhancement methods (see chapter 1.3.4 for details)
are applied on all cross sections.

The example images from OA imaging systems after the reconstructions are shown above.
Fig. 1.2 shows cross-sectional images acquired with the circler transducer array by moving
the detector in vertical direction to acquire different anatomical regions of the mouse body.
The images are generated by using two different SoS values for mouse body and surrounding
medium (water). The conventional image enhancement methods, namely fluence correction,
adaptive histogram equalization, Frangi filtering, and background suppression by masking,
(see chapter 1.3.4 for details) are applied to increase the visibility of anatomical structures.

Handheld transducer arrays are used in clinical OA applications to acquire cross-sectional
images from humans similar to clinically available US transducers. Fig. 1.3 shows exam-
ple OA images from the human forearm acquired by semi-circle, multisegment, and linear
detector arrays (see chapter 1.2.3 for details). The images are reconstructed by a standard
backprojection algorithm using a single SoS algorithm. No image enhancement method is
applied to the images after the reconstruction.

1.3.1 Signal Acquisition

Time domain signals of US waves generated by thermoelastic expansion are acquired by the
custom- engineered detector arrays. The design (interelement pitch size, focusing, element
size, and sensitivity) and angular coverage of the transducer arrays vary depending on the ap-
plication (see chapter 1.2.3 for details). The piezoelectric transducer elements on the detector
arrays convert the mechanical pressure waves into electrical signals. Then, acquired electrical
signals are digitized by DAQ. The signal acquisition rate is limited by a 1 Gbit/s ethernet
interface between the workstation and DAQ. For example, 494 samples from 512 transducer
elements can be acquired with a maximum frame rate of 100 Hz using this interface [45]. The
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Figure 1.3: Example optoacoustic (OA) images from human forearms using semi-circle, multiseg-
ment, and linear (central part of multisegment) detector arrays. (a) Semi-circle array
acquisition with 256 transducer elements and 174° angular coverage. (b) Multisegment
detector array acquisition with 256 transducer elements and 170° angular coverage. (c)
Linear (central part of multisegment) detector array acquisition with 128 transducer
elements.

sampling frequency of DAQ, number of acquired samples, and activated transducer elements
can be adjusted to specific values based on the desired sampling/discretization resolution.

Signal domain data provided with the projects presented in this thesis is stored in the following
format in terms of dimensions: time points (number of samples) x detector array channels x
frames (repetitions). The number of samples is restricted by the presets of the DAQ. Also,
the sampling frequency of the time points can be adjusted to specific values predefined by
the DAQ. The number of channels equals to transducer elements on the detector array, but
the unused channels can be deactivated by DAQ for desired application (compressed sensing,
sparse sampling) to speed up the signal acquisition. Frames (repetitions) are dependent on the
duration of the acquisition and repetition frequency of the trigger events. MSOT acquisitions
contain the frames acquired at different wavelengths for a defined number of repetitions. The
raw signals from DAQ are saved without any processing. However, bandpass filtering and
normalization around 0 mean are applied for each channel separately before feeding them
into image reconstruction algorithms.

1.3.2 Simulations

Simulations of OA images are performed to test the implemented algorithms and to generate
training datasets to apply learning-based image processing methods. The following steps are
applied to generate simulated OA images: i) The geometrical shapes that mimic vessels and
skin lines are simulated in 2D. ii) Forward OA model [43] is applied to generate correspond-
ing raw signals for different detector array designs. iii) Backprojection or model-based image
reconstruction algorithms are applied to create final OA images using the transducer element
positions.

The simulations used in this thesis assume that the absorbed energy in the simulated struc-
tures is already known at single-wavelength excitation. The modelling of light illumination
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Figure 1.4: Simulated human forearm optoacoustic (OA) images using virtual circle, multisegment,
and linear detector arrays. The circler high-intensity regions represent the vessels and
parabolic line represents the skin line. (a) Simulation by virtual circle array with 360°
angular coverage. (b) Simulation by multisegment array including linear and concave
parts with 170° angular coverage. (c) Simulation by linear (central part of multisegment)
detector array including 128 transducer elements.

and assignment of structure-specific absorption coefficients are not employed for the sim-
ulations. The simulations do not involve the multispectral acquisition capabilities of OA
imaging. So, there is no MSOT data simulated in the scope of this thesis. Vessel structures
are simulated using elongated and round shapes to mimic parallel and perpendicular vessels
to the imaging plane. Specifically, a random number of ellipses with different intensity profiles
are generated. The skin line is generated by fitting a second-degree polynomial function to 3
points that are defined in the specific height range from the top and the bottom of the images
based on observations from experimental data. The generated curve after polynomial fitting
is smoothed by Gaussian filtering. Finally, non-structured uniform noise is included under
the skin line with exponential decay. Fig. 1.4 shows one cross-section of a simulated human
forearm image using different transducer arrays, namely, virtual circle, multisegment, and
linear (central part of multisegment) detector arrays. The simulations show artifacts similar
to experimental data which originate from a limited view (Fig. 1.4c) and sparse acquisitions.
The simulation of artifacts and noise structures is as important as simulating anatomical
structures to test the efficiency of the proposed algorithms or to train learning-based meth-
ods.

Human forearm dataset is generated by assuming that vessels are positioned perpendicular
to the imaging plane which is the case for experimental data acquired with multisegment and
semi-circle array (Fig. 1.3). However, scanning with different orientation of detector array
can generate structures that are not available in the presented simulation and experimental
data. The scripts to generate simulations, to read the experimental and simulated data,
and to try image processing algorithms are available online with the accompanying paper
[70]. The simulations should be further modified if different vessel and skin geometries are
preferred.
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1.3.3 Image Reconstruction

Image reconstruction refers to the algorithms that are utilized for the formation of images
from acquired raw electrical signals by US detectors in the scope of this thesis. There are
two main image reconstruction algorithms used in the OA imaging studies mentioned here.
These are backprojection and model-based image reconstruction methods. Different versions
of these image reconstruction algorithms are utilized based on the needs of specific applica-
tions. Two different signal preprocessing steps are applied before any type of image recon-
struction algorithm. First, raw signals are bandpass filtered for the specific central frequency
of the detector array used in the data acquisition. Then, the filtered signals are normalized
around 0 mean for each individual channel. After these preprocessing steps following image
reconstruction algorithms are utilized to generate OA images:

Backprojection: Standard backprojection algorithm creates a discrete grid in the FOV
based on the desired resolution. Then, the time of flight (TOF) between each point on the
grid and each transducer element on the detector array is calculated based on the defined SoS
value. So, the electrical signals in the time domain are summed up based on their TOF from
the discretized grid to US detectors to generate the final image. Theoretically, OA images
are reconstructed by the absorbed energy field H(r′) at a specific location depending on the
measured pressure waves. H(r′) at surface S for 3D or at curve L for 2D is calculated by the
following equation (see chapter 1.3 for details)

H(r′) = 1
Γ

∫
Ω

dΩ
Ω [2p(r, t) − 2t

∂p(r, t)
∂t

]
t= r−r′

c

(1.8)

where the constants in the equation can be omitted. After removing the constants, the
equation can be discretized as

H(r′
j) =

∑
[p(ri, tij) − tij

∂(ri, tij)
∂t

] (1.9)

where ri is the position of i-th transducer on the detector array, r′
j is the j-th point on the

reconstruction grid and tij = |ri − r′
j |/c. Overall, the backprojection equations summarize

the summation of the signals for the calculated TOF between the specific location of the grid
and transducer element.

In a standard backprojection algorithm, the medium is considered to have homogenous char-
acteristics with the same SoS everywhere. However, the homogenous SoS assumption for
imaging medium and different tissue types do not yield accurate image reconstructions. The
SoS is changing based on the medium that the US waves travel in. The quality of the recon-
structed image by backprojection algorithm depends on the accurate assignment of SoS for
changing mediums. To account for heterogenous SoS in the medium, we developed backpro-
jection algorithm that uses two different values for tissues inside the body and the background
imaging medium. This algorithm improves the quality of OA images, but it requires access
to the segmentation of the outer boundaries of the imaged object. Thus„ accurate segmen-
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tation should be obtained to assign SoS values. The segmentation can be performed by
manual annotations or automated methods [58, 59]. The same algorithm can be extended
for the assignment of specific SoS values for each tissue type. However, this will require
the segmentation of each organ or tissue type separately which increases the processing time
substantially. Another approach to increase the performance of backprojection is to use the
weighting of signals based on the distance from the surface. The signals can be weighted with
linear or exponential models to account for light attenuation during the penetration.

Model-Based: The model-based reconstruction algorithm first discretizes the forward OA
equation in finite space. The point sources on a 2D or 3D grid can be expressed as sparse
matrix by this discretization. Then, the reconstruction is performed by minimizing the dis-
tance (loss or error function) between calculated values and experimental measurements for
the same points. The calculation of discrete forward model has computational complexity.
However, once the model matrix is calculated for a given detector array geometry and the
size of the grid defined by users for specific FOV, the minimization takes relatively shorter
time, especially when performed on GPU.

The 2D pressure wave function described in OA forward model (see chapter 1.3 for details)
can be discretized as

p(r, t) ≈ I(r, t + ∆t) + I(r, t − ∆t)
2∆t

(1.10)

for specific location (r) on the grid for time (t) where I(t) is

I(r, t) =
∫

L′

H(r′)
|r − r′|

dL′(t). (1.11)

Then, the integral can be solved for M points on the curve L′(t) for positions r′
l as follows

I(r, t) = 1
2

M−1∑
l=1

[ H(r′
l)

|r − r′
l|

−
H(r′

l+1)
r − r′

l+1
]dl,l+1 (1.12)

or the same equation can be expressed as

I(r, t) ≈ 1
2

M−1∑
l=1

H(r′
l)

|r − r′
l|

(dl−1,l + dl,l+1) (1.13)

where d0,1 = dM,M+1 = 0. After the discretization, the pressure wave can be written for
position ri and time point tj as

p(ri, tj) =
N∑

k=1
aij

k H(r′
k) (1.14)

where N is the number of pixels in the image. The equation describes the linear combination
of absorbed energy for spatial location (ri) defined by the pixels in the FOV. Then, the
pressure wave equation is calculated for each transducer position on the detector array and
for each discretization point on the mesh grid. The overall equation for the combination of
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all discrete points and transducer elements can be expressed as

p = AH (1.15)

where p is the theoretical pressure values, A is the model matrix and H is the reconstructed
matrix. Then, the solution is achieved by minimizing the difference between measured values
and theoretical values as

Hsolution = argminH ||pmeasured − AH||2. (1.16)

Different optimization techniques and distance functions can be employed for the minimiza-
tion of above-defined function. Regularization parameters can be added to the equation for
imposing image intensity priors.

1.3.4 Image Enhancement

Conventional post processing methods are applied to improve image quality in OA imag-
ing. The image enhancement steps with conventional methods include fluence correction
[71], adaptive histogram equalization [72], Frangi or vesselness filtering [73] and masking for
background suppression [74]. The fluence correction maps fit a mathematical model (i.e.,
linear, or exponential) from the surface to the deeper structures of the object by assuming
the light attenuation during the propagation. Then, the images are multiplied with this map
to increase the contrast in deep structures (Fig. 1.5b). Histogram equalization stretches the
contrast in the defined range to achieve better visualization (Fig. 1.5c). Frangi filter detects
the vessel structures and boundaries of the tissues. The contrast from vessels and anatomical
structures can be enhanced by applying Frangi filter after histogram equalization (Fig 1.5d).
After the application of these steps output of the Frangi filter are combined with histogram
equalized image (Fig. 1.5e). The segmentation map is applied on the combined image to
suppress background which includes only noise from imaging medium (Fig. 1.5e). Fig. 1.5
visualizes the changes in every step applied on the OA images.

Figure 1.5: Image enhancement steps for optoacoustic (OA) images. (a) Image reconstruction with
heterogenous backprojection algorithm by assigning different speed of sound (SoS) values
for the background (water) and the mouse body. (b) Fluence correction using modified
Bessel function approximation to account for light attenuation. (c) Adaptive histogram
equalization. (d) Frangi filter to emphasize vessels. (e) Application of manual segmenta-
tion mask and the combination of histogram equalized image with Frangi filtered image.

In addition to conventional image enhancement methods, data-driven methods are also em-
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ployed to improve image quality and temporal resolution in OA imaging. These methods
can be grouped under four main categories, namely, removal of undersampling artifacts, seg-
mentation for fluence correction, removal of limited view artifacts, and spatial resolution
improvement. The following subsections focus on the presented papers in this thesis and
already available methods in the literature for data-driven image enhancement methods in
OA imaging.

Removal of Undersampling Artifacts: The temporal resolution in OA imaging can be
improved by reducing the number of channels in the detector array used for data acquisition.
However, a reduced number of channels (increased temporal resolution) results in inferior
image quality by causing reduced CNR, insufficient angular coverage, and undersampling
artifacts (Fig. 1.6a). Data-driven methods were proposed to map the images reconstructed
with channel undersampling to images with full sampling [47, 48]. At its core, CNN takes the
spatially sparse sampled images as input. The network extracts the features in the images by
passing them through the convolutional layers. The last layer of the network generates the
same size of images as the input. After the last layer of the networks, the modified output
images by layers are compared with the ground truth or target images. The distance between
the output images of the networks and target images is calculated by loss functions (error
metrics). The loss function is minimized iteratively using optimization methods and back-
propagating the gradients of the losses. By following these steps, the layers of the networks
are trained to adjust the weights of the features extracted from sparse sampling artifacts
and anatomical structures. Finally, the trained network adjusts the weights to keep signals
coming from tissue structures and to remove the artifacts from sparse sampling. The residual
connections are also proposed to learn only the differences between input and target images
by adding the input image to the output of the network before the calculation of loss [75].
We also performed a supervised training of CNN to remove sparse sampling artifacts in a
semi-circle and multisegment detector array acquisitions. Fig. 1.6 shows examples of OA
images with arc-shaped sparse sampling artifacts (Fig. 1.6a), predictions of CNN trained to
remove artifacts (Fig. 1.6b), and target (ground truth) images used to train, validate, and
test the network (Fig. 1.6c). The trained network can remove arc-shaped artifacts originat-
ing from undersampling and keep the artifacts originating from discontinuity of linear and
concave parts of the multisegment array (thick arcs around the vessels). Also, the skin lines
and vessel shapes are preserved by the network regardless of the thickness of the skin line
and the size of the vessels. The dataset, trained network weights, training, and test scripts
can be accessed with the accompanying paper presented in chapter 5 [70].

Segmentation for Fluence Correction: Light attenuation or light fluence map of the im-
aged objects is not uniform in OA excitation while the material or tissue characteristics affect
the amount of light that is absorbed and scattered. In addition, the amount of light energy
reaching the structures decreases with the depth. The fluence correction helps to improve
OA images qualitatively and quantitively by accounting for light attenuation through the
propagation path [76]. However, the application of fluence correction methods requires the
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Figure 1.6: Removal of undersampling artifacts resulting from the sparsity of transducer elements
with data-driven image enhancement algorithm. (a) Input images given to convolutional
neural network (CNN) with sparse acquisition artifacts. (b) Output images (predictions)
by CNN with removed sparse acquisition artifacts. (c) Target (ground truth) images
acquired without sparsity in transducer elements.

segmentation of structures to assign tissue-specific characteristics. After the delineation of the
tissue borders, specific attenuation values can be assigned to each region separately [71]. The
segmentation can be performed by conventional methods such as the active contour method
[77]. However, these methods require manual interaction or initialization points. With the
wide use of data-driven methods in imaging, segmentation methods are also proposed to
delineate the structures in biomedical images [78, 79]. In this thesis, we performed segmen-
tation of mouse boundaries in preclinical hybrid OPUS images using CNNs and compared
the results with manual and active contour segmentation methods (Fig. 1.7) [59]. Fig. 1.7a
and 1.7d show manual annotation of mouse boundaries in OA and US images, respectively,
which is user-dependent and time-demanding. active contour edge detection (ACED) is also
performed by the circle contour initialization (Fig. 1.7b and 1.7e). Fig. 1.7c, and Fig. 1.7f
show an example of mouse boundary segmentation using a CNN architecture which success-
fully delineates the mouse boundaries even in low contrast images. The vessel and the skin
line segmentations are also performed in simulated OA images using data-driven methods [70].

After the segmentation of structures in OA images, fluence maps can be created using sev-
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Figure 1.7: Segmentation of mouse boundaries using manual annotation, active contour edge de-
tection (ACED), and convolutional neural network (CNN) for hybrid optoacoustic ul-
trasound (OPUS) images. (a) Manual segmentation of mouse boundary in optoacous-
tic (OA) images. (b) ACED segmentation method for OA images. (c) CNN segmenta-
tion method for automated delineation of mouse boundaries in OA images. (d) Manual
segmentation of mouse boundary in ultrasound (US) images. (e) ACED segmentation
method for US images. (f) CNN segmentation method for automated delineation of
mouse boundaries in US images. [80]

eral theoretical methods including linear and exponential decay [76]. The more sophisticated
fluence maps require the segmentation of all organs and different tissue types which is a more
challenging task than segmenting vessels and skin lines. However, generating manual annota-
tions for each structure in biomedical images including OA imaging modality is a challenging
or time-demanding task. The availability of such datasets might help to create more accurate
segmentation results and fluence models for OA imaging.

Removal of Limited View Artifacts: OA is a tomographic imaging modality by its
nature. Generated US waves by the OA effect (thermoelastic expansion of light absorbing
materials) propagate in the 3D imaging medium in every direction. Detection of these US
waves from different angles with wide angular coverage increases the image quality in OA
imaging [81, 82]. However, full tomographic coverage of the tissues is not always possible due
to physical constraints (tissue/organ is not accessible from every angle) and detector array
design considerations (cost and design parameter requirements for different applications).
The reduced angular coverage generates so-called limited view artifacts [83] which result in
the elongation of round vessels (Fig. 1.8a). These limited view artifacts can be removed by
supervised or unsupervised learning-based methods as proposed in the literature [49–54]. We
also proposed to remove limited view artifacts using domain adaptation between simulated
and experimental data in signal domain [84]. Since the limited view artifacts can be mitigated
with simulations, the networks are trained to learn to remove these artifacts from the simu-
lated images. However, the application of networks that are trained with simulated data on
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Figure 1.8: Removal of limited view artifacts resulting from reduced angular coverage of detector
array by data-driven image enhancement algorithm. (a) Input images are given to
convolutional neural network (CNN) with limited view artifacts. (b) Output images
(predictions) by CNN with removed limited view artifacts. (c) Target (ground truth)
images acquired with increased angular coverage.

the experimental data is not straightforward because the intensity distributions vary between
these two types of datasets. Also, the simulations cannot replicate the same noise patterns
originating from the background and electrical (intrinsic) noise of the system accurately [85].
In our proposed method, two different neural networks are trained to remove limited view
artifacts. First, a style transfer network is used to reduce the gap between simulated and
experimental data. Then, the second network which is trained on simulated data is applied
to the experimental data to complete limited view projections in experimental data [84]. We
also trained a network in a supervised method to remove limited view artifacts for linear
array acquisitions from the central part of the multisegment detector array [70]. The input
images that are acquired with a linear detector array clearly show the elongation of round
vessel structures (Fig. 1.8a). The trained CNN with multisegment detector array acquisitions
as ground truth images (Fig. 1.8c) can remove limited view artifacts and correct the vessel
shapes (Fig. 1.8b).

Spatial Resolution Improvement: Spatial resolution in OA imaging is limited by the
diffraction limit of the acoustic waves. The US transducer arrays with higher bandwidths
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can reach the diffraction limit and generate high-resolution OA images, but they suffer from
the loss of FOV. Specifically, there is a trade-off between the bandwidth of the US transducer
array and FOV that can be imaged with the same detector array. CNN architectures are
proposed to enhance the bandwidth of transducers in the signal domain instead of the image
domain for OA imaging [55]. We proposed a data-driven method to map low-resolution
images acquired by the transducers with narrow bandwidths (Fig. 1.9a) to high-resolution
images acquired by the wide bandwidth transducers (Fig. 1.9c). The CNN designed for
the resolution improvement task receives low-resolution images as input and generates high-
resolution images as the output of the network (Fig. 1.9b). Three different networks (SRCNN
[86], UNet [78], and Attention UNet [87]) are trained and compared in performance for this
specific task. The results from UNet are shown in Fig. 1.9b.

Figure 1.9: Low-resolution to high-resolution image enhancement using a convolutional neural net-
work (CNN). (a) Input images given to CNN with low-resolution. (b) Output images
(predictions) by CNN with increased resolution. (c) Target (ground truth) images with
high spatial resolution.
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1.3.5 Spectral Unmixing

MSOT is an efficient tool for spectral analysis that uses visible and NIR light excitation ranges
with consecutive pulses of tunable lasers. Spectral unmixing is the method to identify the
tissue content (concentrations of absorbers) using the varying absorption coefficients of chro-
mophores at different illumination wavelengths [88]. The generated wavelength dependent
pressure waves are expressed by the following equation

p(r, λ) = ΓH(r, λ) (1.17)

where Γ stands for the Grüneisen constant [68] and H(r, λ) represents the absorbed energy
at spatial location (r) for the illumination wavelength (λ). H(r, λ) can be expressed as the
multiplication of light fluence with the absorption coefficient µ(λ) and concentration C(r) of
each absorber

H(r, λ) = Φ(r, λ)[µ1(λ)C1(r) + µ2(λ)C2(r) + ... + µi(λ)Ci(r) + ... + µm(λ)Cm(r)] (1.18)

where Φ(r, λ) is the light fluence, that depends on spatial (r) and wavelength (λ) variables.
µi(λ) is the absorption coefficient of the i-th element dependent on the wavelength (λ). Ci(r)
is the spatially dependent (r) concentration of the i-th element. The Grüneisen constant Γ
can be neglected and light fluence is considered as constant for the fixed spatial location (r)
and wavelength (λ) at specific pixel of the image for each absorber. Then, one linear equation
can be written for each pixel as

Hk = µkCk (1.19)

where Hk is the column vector containing pixel intensities for each illumination wavelength.
µk contains absorption coefficients for each absorber and wavelength. Ck is the unknown
quantity of each absorber that needs to be calculated for spectral unmixing. For instance,
Hb, HbO2, lipid, and melanin content of the different tissues can be extracted by solving the
above equations for the concentration of each component by using the image intensities from
MSOT.
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1.4 Ultrasound Imaging

US imaging is performed by the circle detector array in the scope of this thesis. The square
US waves from single or multiple transducer elements are emitted to perform US imaging.
The reflected waves are used for the reconstruction of reflection (pulse-echo) US images.
Reflection US tomography is mentioned as RUCT in the remaining of this thesis. In addition,
the transmitted signals through the imaged object are acquired at the opposite side of the
transducer array to reconstruct transmission US images. TUCT imaging can be used for the
generation of SoS or acoustic attenuation maps [74]. We only use and explore SoS imaging
capabilities of TUCT in this thesis.

1.4.1 Signal Acquisition

The emission of US waves and acquisition of reflected and/or transmitted waves are performed
with the circle detector array. The circle detector array requires the STA [89] technique to
complete full tomographic acquisition and to perform RUCT and SoS imaging [74]. The STA
technique uses emission of signals with a single or group of elements to create an emission
window. Then, reflected, or transmitted waves are acquired with a group of neighboring
elements (for RUCT) or elements at the opposite side of the transducer array (for SoS imag-
ing). The circle detector array has 512 transducer elements that can transmit US waves
sequentially or simultaneously. The sequential transmission with each individual transducer
element results in 512 transmission events to complete a full tomographic acquisition. Then,
all the transducer elements can be used in reception mode simultaneously to receive reflected
and transmitted waves at different locations. The transmitted US waveform is adjusted by
assigning the specific delay for each transducer element by DAQ. The sampling frequency
and the number of acquired samples are also adjusted by DAQ based on the required FOV
and frame rate for specific applications.

1.4.2 Reflection Ultrasound Computed Tomography

The image formation in RUCT is based on delay and sum (DAS) beamforming after the
acquisition of signals using the STA method. The DAS method calculates the TOF between
the emission of US wave by transducer and detection of the reflected signals with the receiv-
ing elements. The image (mesh grid) with the initial value of 0 is created before assigning
the acquired values to each pixel. Then, the signal values are assigned to pixels by finding
the corresponding time point on the signal based on the calculated TOF for each individual
pixel and reception channel pair. After repeating this process for each pixel on the image,
the DAS algorithm generates RUCT image from the single transmission event. Single trans-
mission event results in low contrast RUCT images after the DAS beamforming. The STA
includes transmission and reception of US signals from different angles with sequential trans-
mission events to complete a full tomographic acquisition. The individual images resulting
from single transmission events from different angles are then compounded (added up) to
form final high-contrast RUCT images.
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Figure 1.10: Example images from the reflection ultrasound computed tomography (RUCT). (a)
Cross- sectional image of healthy nude mouse lower abdominal. (b) Three 6 mm circler
insertions of 50 µm reflective microparticles (Cospheric BKPMS-1.2 45-53µm) in 20
mm agarose phantom. (c) Hex key-shaped insertion of 50 µm reflective microparticles
(Cospheric BKPMS-1.2 45-53µm) in 20 mm agarose phantom. (d) 20 mm diameter
circular insertion of 50 µm reflective microparticles (Cospheric BKPMS-1.2 45-53µm).
(e) Copper wires with 0.1 mm aligned perpendicular to the imaging plane.

Cross-sectional RUCT images of a healthy mouse and phantoms with different geometries
are shown in Fig. 1.10. The raw signal data and DAS beamforming algorithms implemented
in Python are available in the accompanying paper (see chapter 3 for details) [90]. The raw
signal data from the healthy mouse is available with consecutive 1, 2, 3, and 4 transducer
element transmissions to test in vivo imaging capabilities of the system. The same raw signals
are also available for three circles, hex key, and circle phantoms to test wave focusing, FOV
changes, and contrast. The raw signals from copper wires that are aligned perpendicular to
the imaging plane are also included in the dataset to test the resolution changes based on
different acquisition sequences or image reconstruction techniques.

Consecutive Element Data Acquisition Methods: Consecutive transducer elements are
combined in transmit and receive modes to acquire RUCT images with the STA acquisition
method. The goal of combining consecutive transducer elements was to mimic US detector
arrays with a bigger element size and a reduced number of channels. This geometry increases
the frame rate by reducing the required number of transmission events to complete full to-
mographic acquisition and data load resulting from the simultaneous acquisition in reception
mode.

First, the effects of consecutive element transmission are investigated separately. The circle
phantom is used to visualize the beam focusing for consecutive element transmission. Trans-
mitting US waves with consecutive elements of the circle detector array results in focused
beam directivity (Fig. 1.11). The directivity of the emitted US waves increases with the
increasing number of combined consecutive transducer elements (Fig. 1.11a to 1.11d).

Then, the consecutive element transmission and reception were combined for in vivo acqui-
sitions of the mouse lower abdominal region (Fig. 1.12). The same number of transducer
elements (1, 2, 3, 4) are combined in the array for the emission and reception of US waves.
This imaging sequence results in the preservation of contrast at the center of the image while
causing the blurring at the peripheral regions (Fig. 1.12a to 1.12d). The consecutive element
acquisition sequence can be preferred for applications with small FOV (i.e., 10 mm x 10 mm).
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Figure 1.11: The effects of consecutive element transmission on beam focusing and field of view
(FOV). (a) Transmission with 1 consecutive channel which is equal to synthetic
transmit aperture (STA) with single elements. (b) Transmission with 2 consecutive
transducer elements simultaneously. (c) Transmission with 3 consecutive transducer
elements simultaneously. (d) Transmission with 4 consecutive transducer elements si-
multaneously.

Sparse Data Acquisition Methods: Subsampling of emission and reception channels were
performed uniformly and randomly in RUCT imaging. Subsampling in transducer elements
corresponds to skipping a fixed number of emission and reception channels of the detector
array. This imaging sequence results in an increased frame rate by reducing the number of
transmission events and the transferred data by decreasing the number of reception channels.
However, an increased frame rate comes with the cost of reduced contrast and increased noise
levels originating from reduced angular coverage in transmission events and decreased spatial
sampling in reception.

First, uniform sparsity for transmission and reception is tested in vivo (Fig. 1.13). Uniform
sparsity means skipping a fixed number of transducer elements that are distributed uniformly
among emitting and receiving elements. For example, uniform sparsity 1 corresponds to using
every element among emitting and receiving channels which is equal to full tomographic
acquisition (Fig. 1.13a). Similarly, uniform sparsity 2 means performing the acquisition by
emitting and receiving with every second element among the channels (Fig. 1.13b). The
increased noise levels and reduced contrast are validated qualitatively and quantitatively.

Figure 1.12: Combined effects of consecutive element transmission and reception were assessed in
vivo. (a) In vivo mouse cross-section without consecutive element transmission or
reception (individual element transmission and reception). (b) In vivo mouse cross-
section with 2 consecutive element transmission and reception. (c) In vivo mouse
cross-section with 3 consecutive element transmission and reception. (d) In vivo mouse
cross-section with 4 consecutive element transmission and reception.
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Figure 1.13: Combined effects of uniform sparsity in transmission and reception were assessed in
vivo. (a) In vivo mouse cross-section without uniform sparsity in transmission or re-
ception (all individual elements are used in transmission and reception) (b) In vivo
mouse cross-section with uniform sparsity level of 2 in transmission and reception. (c)
In vivo mouse cross-section with uniform sparsity level of 3 in transmission and recep-
tion. (d) In vivo mouse cross-section with uniform sparsity level of 4 in transmission
and reception.

Then, random sparsity in transmission and reception is tested in vivo (Fig. 1.14). Ran-
dom sparsity means undersampling of the transducer elements randomly for emitting and
receiving channels by a fixed sparsity factor. For example, random sparsity 1 corresponds
to using every element among emitting and receiving channels which is equal to full tomo-
graphic acquisition (Fig. 1.14a). Random sparsity 2 means performing the acquisition by
emitting and receiving with half of the transducer elements in full acquisition (Fig. 1.14b).
The increased noise levels and reduced contrast are validated qualitatively and quantitatively.

The effects of consecutive element and sparse data acquisitions are quantified and discussed
in chapter 3 in the accompanying paper [90]. The performance analysis includes RUCT image
quality validation based on contrast and resolution quantification with phantom images and
in vivo mouse cross-sections.

Figure 1.14: Combined effects of random sparsity in transmission and reception were assessed in
vivo. (a) In vivo mouse cross-section without random sparsity in transmission or re-
ception (all individual elements are used in transmission and reception) (b) In vivo
mouse cross-section with random sparsity level of 2 in transmission and reception. (c)
In vivo mouse cross-section with random sparsity level of 3 in transmission and recep-
tion. (d) In vivo mouse cross-section with random sparsity level of 4 in transmission
and reception.
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1.4.3 Speed of Sound Imaging

TUCT is based on the transmission of US waves from one side of the detector array and the
collection of the transmitted waves through the object on the opposite side. In the scope of
this thesis, TUCT is implemented with the circle detector array that is used to reconstruct
SoS images of phantoms and mouse cross-sections. The STA imaging sequence with individ-
ual elements is performed for the acquisition of US signals (see chapter 1.4.1 for details). The
consecutive element and sparse data acquisition methods are not evaluated for SoS imaging
modality. Three different algorithms are tested for image reconstruction in SoS imaging,
namely, straight ray, Bezier curves, and full wave inversion (FWI). The signals from 171
receiving transducer elements at the opposite side of the detector array are considered for
each transmitting element for three different reconstruction techniques.

Straight ray: Straight ray reconstruction algorithm assumes a linear path between emit-
ting and receiving transducer elements which is an oversimplified assumption of the US wave
propagation [91] (Fig. 1.15a). The shortest linear paths are simulated between each emitting
and receiving pair at the opposite side of the transducer array based on the predefined initial
SoS in the propagation medium. After the paths are simulated between the pairs, the cost
function between simulated TOF and measurements is minimized using convex optimiza-
tion methods. The challenging part for calculating the TOF between the transducer pairs
is the detection of US wave arrival at the receiving elements. TOF picker algorithms that
are already available in the literature are used to estimate US wave arrival [92, 93]. Median
filtering and reciprocal pair comparison methods are used to remove outliers from TOF picker
algorithm [94].

Bezier curves: Bezier curve reconstruction assumes bent rays between emitting and re-
ceiving transducer element pairs [74, 95]. This method uses a similar approach with straight
rays to calculate SoS in the medium. The path between transducer pairs is discretized and
the TOF is calculated by assuming that US waves follow a curved path while traveling in
the medium. The cost function between measured and calculated values is minimized by
optimizing for SoS. The same TOF picker algorithm and postprocessing methods to remove
outliers in the straight ray reconstruction are used for this method. Bezier curve assumption
between transducer pairs is more accurate than the straight ray approach but it is less accu-
rate than modeling the complete wave propagation (i.e., FWI) (Fig. 1.15).

Full wave inversion: FWI method simulates the wave propagation in the imaging medium
[96, 97]. Multiple paths are simulated between each emitter and receiver pair using GPU.
The initial waveforms are extracted from the water measurements without placing any ob-
ject between the transducer pairs. In addition, initial SoS values are estimated based on
the arrival times. The waveforms and estimated SoS values are convolved for each simulated
path. Then, the distance between calculated values from simulations and experimental values
from measurements is minimized similar to the other SoS image reconstruction methods. A
gradient descent algorithm is used to iteratively minimize the mean squared error between
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simulations and measurements by optimizing for SoS values.

The complexity of the US propagation model increases from straight ray to FWI, while the
contrast and resolution of the SoS predictions also increase (Fig. 1.15). The increased im-
age quality (contrast and resolution) enables accurate quantification of SoS changes in vivo.
However, increased complexity in reconstruction algorithms and accurate modeling bring the
accompanying computing costs. FWI algorithm can reconstruct one cross-section in 5 minutes
using GPU. While the increased reconstruction time is not a problem for offline processing,
the trade-off between temporal resolution and quantification accuracy should be evaluated
for desired real-time applications. The results are validated in vivo by reconstructing the
same mouse cross-section with three different proposed algorithms (Fig. 1.15).

Figure 1.15: Speed of sound (SoS) maps of one mouse cross-section in vivo using different image
reconstruction techniques. (a) Straight ray reconstruction method. (b) Bezier curves
reconstruction method. (c) Full wave inversion (FWI) reconstruction method.
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1.5 Hybrid Optoacoustic Ultrasound

The different contrasts provided by OA and US imaging can be complemented using the
simultaneous acquisition of both modalities. The missing information on the anatomical
properties of the imaged object in OA images can be obtained by US imaging. The molecu-
lar and functional properties obtained by OA imaging can be overlaid on US images for the
quantification of localized responses. To this end, a hybrid OPUS system is implemented in
this thesis for preclinical imaging using the circle detector array. As described in the OA
and US imaging chapters (see chapters 1.3 and 1.4 for details), there are different considera-
tions for the implementation of these systems. Specifically, different constraints are imposed
by both imaging modalities on data transfer rate, probe designs, and image reconstruction
algorithms. So, the combination of these two modalities for simultaneous acquisition is not
straightforward. The image enhancement methods (see chapter 1.3.4 for details) for OA
imaging and image acquisition sequences (see chapter 1.4.2 for details) for US imaging are
proposed to increase image quality and acquisition speed.

1.5.1 Signal Acquisition

The signal acquisition in OPUS imaging can be performed sequentially using both OA and
US modalities or a combination in one signal acquisition instance. Sequential acquisition
can be performed separately as defined by OA (see chapter 1.3.1 for details) and US (see
chapter 1.4.1 for details) imaging. When the acquisition is performed in the same imaging
instance/trigger, the delays of US transmission, laser trigger, US wave reception, and OA
signal reception should be synchronized. In our simultaneous acquisitions, we triggered US
transmission and laser pulses in a close time point window. So, the OA signals can arrive
before the reflected US waves to avoid interference as light propagates faster than US waves
in the imaging medium.

1.5.2 Image Reconstruction

A hybrid OPUS imaging system requires the reconstruction of OA and US images separately
as the governing physics behind each modality is different. The image reconstruction for OA
images is performed by backprojection or model-based algorithms as explained in chapter
1.3.3. RUCT images acquired by the STA method are reconstructed by the DAS algorithm
as explained in chapter 1.4.2. The OA image reconstruction is faster than RUCT images since
the latter requires the compounding of multiple frames. Still, the RUCT image reconstruc-
tion can also be performed in real-time using GPUs. The final images after reconstructions
can be overlaid without the need for any registration algorithms (Fig. 1.16).

Fig. 1.16 shows co-registered hybrid OPUS images from different cross-sections of a healthy
mouse that were acquired simultaneously using the circle detector array. The applications of
hybrid OPUS imaging can be augmented for the assessment and characterization of several
diseases. For example, localized accumulation of lipid in the tissues can be obtained from OA
images after spectral unmixing (see chapter 1.3.5 for details) and overlaid on US images (see
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chapter 7 for details). The vessel structures and oxygenation in tumor areas can be investi-
gated by OA images with the help of anatomical information from US images (see chapter 6
for details).

Figure 1.16: Optoacoustic ultrasound (OPUS) images of mouse cross-sections in vivo. (a) Optoa-
coustic (OA) images from different mouse cross-sections in vivo. (b) Corresponding
reflection ultrasound computed tomography (RUCT) images from the same mouse
cross-sections in vivo.



32 Background

1.6 Transmission Reflection Optoacoustic Ultrasound

TUCT can provide complementary information on top of the hybrid OPUS imaging systems.
SoS and acoustic attenuation maps can be generated using the signals acquired at the opposite
side of the transmitting element by TUCT. To this end, we devised the TROPUS preclinical
imaging system that combines OA imaging with both reflection and transmission US [74].
Only SoS imaging capabilities of TUCT are used, validated, and quantified in this thesis. The
simultaneous or consecutive acquisition of OA and US signals using TROPUS system results
in co-registered images from three modalities (OA, RUCT and SoS). In vivo mouse imaging
experiments revealed fine details on vascularization, tissue reflectivity, density, and stiffness.
The constraints imposed by the TUCT on the data acquisition are similar to RUCT system
as they use the same US imaging sequences. However, their image reconstruction algorithms
differ from each other as they quantify different physical phenomena.

1.6.1 Signal Acquisition

TROPUS imaging is performed using only the circle detector array as it requires collection
of transmitted US waves at the opposite side of the imaged object. The signal acquisition
for OA imaging is performed as described in chapter 1.3.1 using all transducer elements on
the detector array. US imaging is performed by the STA method (see chapter 1.4.1 and 1.5.1
for details) using single or group of elements for transmission events. The signals reflected
from and transmitted through the imaged object are recorded at two opposite sides of the
transducer array. Effects of consecutive element or sparse acquisitions are not quantified for
SoS images in the scope of this thesis.

Figure 1.17: Simultaneous acquisition of one co-registered mouse cross-section with transmission-
reflection optoacoustic ultrasound (TROPUS) system in vivo. (a) Optoacoustic (OA)
image from a cross -section of the mouse in vivo. (b) Reflection ultrasound computed
tomography (RUCT) image from the same cross-section of the mouse in vivo. (c) Full
wave inversion (FWI) reconstruction of the speed of sound (SoS) image from the same
cross-section of the mouse in vivo.
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1.6.2 Image Reconstruction

TROPUS system requires the reconstruction of images from each modality separately. OA
images are reconstructed using backprojection or model-based algorithms as explained in
chapter 1.3.3. RUCT images are reconstructed using the DAS algorithm as explained in
1.4.2. SoS maps are created by reconstruction algorithms that are explained in chapter 1.4.3.
The resulting co-registered images from three different modalities (OA, RUCT, SoS) are
shown in Fig. 1.17. Specifically, FWI reconstruction method is used for the reconstruction
of SoS image (Fig. 1.17c) as it generates more accurate maps compared to the other methods.
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Abstract

The highly complementary information provided by multispectral optoacoustics and pulse-
echo ultrasound have recently prompted development of hybrid imaging instruments bringing
together the unique contrast advantages of both modalities. In the hybrid optoacoustic ul-
trasound (OPUS) combination, images retrieved by one modality may further be used to
improve the reconstruction accuracy of the other. In this regard, image segmentation plays
a major role as it can aid improving the image quality and quantification abilities by facili-
tating modeling of light and sound propagation through the imaged tissues and surrounding
coupling medium. Here we propose an automated approach for surface segmentation in whole-
body mouse OPUS imaging using a deep convolutional neural network (CNN). The method
has shown robust performance, attaining accurate segmentation of the animal boundary in
both optoacoustic and pulse-echo ultrasound images, as evinced by quantitative performance
evaluation using Dice coefficient metrics.
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2.1 Introduction

Optoacoustic (OA) is gaining maturity as a high performance biomedical imaging technique.
Both clinical and small animal multispectral optoacoustic tomography (MSOT) scanners are
being employed by a steadily growing number of groups in various fields including cancer
research [1–3], cardio-vascular and inflammatory diseases [4, 5], neuroscience [6, 7] and drug
development [8, 9]. The unique advantages of MSOT for biological investigations stem from
its inherent capacity for spectroscopic differentiation of light-absorbing substances (chro-
mophores) with high resolution deep in scattering mammalian tissues [10, 11]. The func-
tional and molecular imaging capabilities of MSOT can greatly benefit from hybridization
with pulse-echo ultrasound (US), which can provide additional information on tissue anatomy
and blood flow [12, 13]. Efficient hybrid optoacoustic ultrasound (OPUS) imaging was re-
cently implemented with concave arrays of cylindrically-focused transducers, which allowed
mitigating limited-view and side-lobe effects in both MSOT and pulse-echo US reconstruc-
tions [14]. By implementing a full-ring array tomographic imaging geometry, it was further
possible to render speed of sound and attenuation maps from transmission US measurements
[15].

Image formation in both US and MSOT is commonly based on coherent summation of the
detected acoustic waveforms. Sequential transmission from each transducer element and
subsequent image formation based on the synthetic transmit aperture (STA) method has
been shown suitable for pulse-echo US beamforming with the concave array systems used in
MSOT [14]. Speed of sound variations in the imaged object may lead to misplacement of
the compounded images and subsequent loss of spatial resolution. Due to its shared acoustic
propagation path, MSOT reconstructions are challenged by a similar problem since assump-
tion of uniform speed of sound in the imaged tissue and the surrounding medium has been
shown to result in significant distortions, blurring and loss of contrast in the images [16].
Thereby, proper segmentation of the tissue surface and assignment of correct acoustic prop-
erties are essential for rendering high quality MSOT reconstructions [17, 18]. Knowledge of
the object’s boundaries can also aid proper modelling of the excitation light distribution [19,
20], thus further contribute to easier interpretation and quantification of the reconstructed
images.

Image segmentation is often challenged by low contrast, noise, and other experimental fac-
tors. In pulse-echo US images, common artifacts are related to attenuation, speckle noise or
shadowing, which may result in missing boundaries [21]. Efficient segmentation of MSOT
images is similarly hampered by the relatively low intrinsic contrast of large anatomical struc-
tures and tissue boundaries [22]. One potential solution consists in the application of active
contour models for the segmentation of MSOT images, which was further used for enhancing
imaging performance by accounting for differences in speed of sound and light fluence atten-
uation [20]. Methods based on deep learning (DL) have been increasingly utilized for medical
image processing over the last two decades owing to their good performance in classification
and function approximation, particularly, in the case of pre-processing (e.g. construction and
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restoration), segmentation, registration and recognition [23]. The advent of DL methods con-
sisting of more hidden layers and providing higher level of abstraction has further enhanced
the performance of convolutional neural networks (CNNs) for medical image analysis.

Herein, we propose a CNN based on the U-Net architecture [24] for segmenting images ac-
quired with a hybrid OPUS imaging scanner. A large number of manually-segmented OA
images was employed for efficient training of the network, whose performance was then eval-
uated on images rendered with both modalities by calculating Dice coefficient metrics [25] of
the difference between the automatically segmented and ground truth (manually segmented)
images. The network performance was further compared with those of active contour seg-
mentation and of a CNN trained with both OA and US images.

2.2 Materials And Methods

The key system components and the general workflow are schematically depicted in Fig. 2.1.
In short, pulse-echo US and OA images were acquired from living mice non-invasively with a
small-animal OPUS scanner. The outer boundaries were manually segmented (labelled) from
the reconstructed images and served as ground truth for training a CNN based on the U-Net
architecture. The performance of the CNN was subsequently compared with that of the
active contour segmentation method by quantifying differences in the segmentation results
with the ground truth approach using Dice coefficient metric. A more detailed description of
the methods is provided below.

Figure 2.1: Key components and workflow of the conducted study. Images were acquired by mul-
tispectral optoacoustic tomography (MSOT) small animal scanners (Models inVision
256-TF and inVision 512-echo, iThera Medical GmbH, Munich, Germany) and manu-
ally segmented to create ground truth data. Deep learning (DL)-based segmentation
method or active contour method are applied on the acquired images. The results are
evaluated by comparing the output of the segmentation algorithms with manually seg-
mented images using Dice coefficient.

2.2.1 Convolutional Neural Network

CNNs use image kernels to extract image features and learn the optimal kernels by updat-
ing them during training for a specific task. Kernel combinations using different sizes and
interconnections lay the foundation of the CNN architectures [26]. The CNN architecture
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used in this work was first proposed in [24] and referred to as the U-Net architecture. U-
Net architecture features a combination of encoders and decoders, where every encoder layer
contains convolutional kernels followed by steps of batch normalization and rectified linear
unit (ReLU) [27]. In our case, the network used 256x256 pixel image with one channel as
input, increased the channel size of the image and downscaled the image in the encoder part.
In the decoder part, the network up-sampled and concatenated the image while the channel
size was reduced. The network was further adapted to the input image sizes and layers using
the PyTorch framework, as shown in Fig. 2.2. After the application of two convolutional
layers having 3x3 kernels with stride 1, a max pooling layer having 2x2 kernels with stride
2 was applied. The decoder layers first applied transposed convolution with kernel size 3x3,
stride 1 and up-sampled the input with a factor of 2 using bilinear interpolation. Then, the
same sized encoder layer was concatenated with the decoder layer. After concatenation, the
convolutional layer with 3x3 kernels on inputs that have the stride value of 1 was applied
followed by the batch normalization and ReLU.

Augmentation methods were further applied in order to increase the amount of training data
and ensure variability in the dataset. Specifically, this was done by random scaling, rotation
and shifting of the images. The network used a loss function combined in different ratios
(0.25-0.75, 0.5-0.5, 0.75-0.25) of binary cross entropy and soft Dice loss. The loss function
was optimized by stochastic gradient descent (SGD) with learning rate 0.01 and momentum
0.99. The training was done with batch size 5 over 100 epochs. The initialization of the
weights was done by the Xavier uniform initializer [28].

2.2.2 Ground Truth Manual Segmentation

Manual segmentation still remains a common practice in image analysis applications to obtain
ground truth data for evaluating the performance of image segmentation approaches [29, 30]
or providing data for CNN training [31]. In this work, manual segmentation of all OA
and US images was done under supervision of an experienced biologist well trained in the
imaging field. It was performed by drawing polygons around the structures followed by spline
interpolation of the polygon for smooth contour appearance. The final ground truth data
contained binary 300x300 pixels images, where “1” and “0” corresponds to pixels located
inside and outside the mouse, respectively.

2.2.3 Active Contour by Edge Detection

The CNN-based segmentation performance was evaluated and compared with the active con-
tour edge detection (ACED) method, an automatic segmentation approach widely employed
in medical image analysis [32–34]. Specifically, we used the implementation of active contour
model introduced by Li et al. [35] combined with an automatic initialization method by edge
detection and circle fitting algorithm. Automatic initialization facilitated the application of
active contour segmentation as an automatic method not affected by user-dependent inputs.
This ensured a fair comparison with the CNN, which is also an automatic segmentation
method. The algorithm steps as well as intermediate outputs are shown in Fig. 2.3.
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Figure 2.2: The U-Net convolutional neural network (CNN) architecture used for image segmenta-
tion. The network uses 256x256 pixel image with one channel as an input, increases the
channel size of the image and downscales the image in the encoder part (left). In the
decoder part, the network up-samples and concatenates the image while the channel size
is reduced (right).

The ACED algorithm received as input OA or US images as a square array of 256x256 pixels
(Fig. 2.3a). The images were first downscaled to 150x150 pixels to reduce the computation
time whereas the pixel intensities were converted to 8-bit range between 0 and 255. Edge
detection was implemented to overcome any dependency of the initial guess upon the user.
For this, the Canny edge detector [36] was applied after smoothing the image using Gaussian
filter with kernel size 3 and sigma 0.5. A binary image was then created with the pixels
on the edges labelled as “1” and the background labelled as “0” (Fig. 2.3b). The outliers
and the non-connected components in the pixels erroneously detected as edges were removed
by applying morphological operations of dilation and erosion with a disc-shaped structuring
element of 3-pixel size (Fig. 2.3c). A circle that has the minimum radius of all possible circles
enclosing all the edge pixels was then selected (Fig. 2.3d). This circle was subsequently fed
into the active contour function along with the number of iterations (20) and step size (1
pixel). The optimal number of iterations and step size that maximize Dice coefficient for
the entire dataset was selected heuristically. The deformable spline contour evolves based on
the minimization of an energy function with a distance regularization term and an external
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Figure 2.3: Algorithmic steps of the active contour edge detection (ACED) segmentation approach.
(a) The originally reconstructed optoacoustic (OA) image. (b) Output of Canny edge
detector. (c) Image after morphological operations of dilation/erosion. (d) Fitted circle
on pixels detected in the previous step. (e) The final result of the active contour seg-
mentation.

energy that drives the motion of the contour toward desired locations (Fig. 2.3e) [35].

2.2.4 Experimental Data Sets

All images were acquired with the commercial small animal imaging systems inVision 256-TF
and inVision 512-echo (iThera Medical GmbH, Munich, Germany). All procedures involving
animal care and experimentation were conducted in full compliance with the animal han-
dling guidelines and with approval from the institutional review board. The detected OA
signals for 800 nm excitation wavelength were band-pass filtered with 50 kHz and 6.5 MHz
cut-off frequencies and deconvolved with the electrical impulse response of the transducer
to account for its limited bandwidth and phase distortions [10]. A two-dimensional filtered
back-projection algorithm [16] was subsequently used to reconstruct cross-sectional images
from the OA pressure signals with a pixel size and field of view (FOV) set to 100 µm and
30x30 mm2, respectively.

The US signals were acquired using STA by repeating transmission events for every single
element of the ring-shaped detection array operating at 5 MHz central frequency. Signals
from every transmission event were then beamformed using delay and sum (DAS) method
to generate low-resolution images. The final high-resolution US images were then rendered
by compounding low-resolution images that were generated by the individual transmission
events. Overall, STA with sub-aperture size of 128 elements in combination with spatial com-
pounding were applied, as described elsewhere [15, 37]. The final US images were generated
in a 30x30 mm2 FOV with a pixel size of 100 µm. Details on the training and test datasets
for OA and US images are provided below.

Training Data Sets: The dataset was carefully selected by assigning all acquired images
to either training or test sets based on the mouse ID. This represents a standard procedure
that avoids accidental use of images from the same mouse for both training and testing, thus
prevents network from overfitting the data. Training was first performed using exclusively
OA images. Subsequently, a combination of OA and US images was used for training. Note
that the number of available US images was lower. In total, the OA training data contained
174 images (12 mice) for the brain region, 97 images (13 mice) for the kidney region and
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108 images (14 mice) for the liver region. The US training data contained 98 images (13
mice) and 78 images (13 mice) from liver and kidney regions, respectively. The brain, kidney
and liver data sets were subsequently combined to generate training dataset, i.e., training
was eventually performed using 379 OA and 176 US images in total for brain, kidney and
liver regions. A fragment of the training data was further separated for validation purposes
during the training process. The ratio between training and validation sets was chosen as 0.80.

Test Data Sets: The datasets used for evaluation of segmentation methods included both
OA and US images, as summarized in Table 2.1.

Anatomical Region
Number of Images

OA Mode US Mode

Brain 28 (4 mice) 9 (2 mice)

Liver 38 (5 mice) 16 (5 mice)

Kidney 33 (5 mice) 30 (5 mice)

Total 99 55

Table 2.1: Summary of the test data sets.

Test datasets further included 5 brain, 4 kidney and 4 liver images with artifacts and 19
liver images acquired with mouse positioned off-center in the imaging chamber that are
included in Table 2.1. Those data sets were included in order to test the performance of
different segmentation algorithms under sub-optimal data acquisition conditions. Presence
of prominent reflection artifacts in the OA images of the brain region can be ascribed to
air-filled cavities or bones [38], while the off-center positioning of the animal in the imaging
chamber may occur due to operation by unexperienced users.

2.2.5 Evaluation Criteria

Final evaluation was done using the Dice coefficient, also called the overlap index [25]. The
Dice coefficient can be calculated by pixel-wise comparison based on the true positive (TP),
false positive (FP) and false positive (FN) ratios as follows

Dice = 2TP

2TP + FP + FN
.

2.3 Results

The segmentation performance of the CNN trained exclusively with OA data and the ACED
algorithm for exemplary test datasets of the brain (Fig. 2.4a-c), liver (Fig. 2.4d-f), and
kidney (Fig. 2.4g-i) cross-sections is shown. It can readily be observed that the CNN method
outperformed the ACED approach in all representative anatomical regions. It was further
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Figure 2.4: Segmentation results for optoacoustic (OA) images obtained with manual segmentation
(left), active contour edge detection (ACED) (middle) and convolutional neural network
(CNN) (right) for cross-sections from the brain (a-c), liver (d-f), and kidney (g-i) regions.
The corresponding Dice coefficients are also shown.

possible to accurately segment the mouse surface in images containing indistinct boundaries
(Fig. 2.4c, i) or non-circular shapes (Fig. 2.4f). This observation is quantitatively confirmed
by the higher Dice coefficients obtained using CNN. The poorer performance of the ACED al-
gorithm may be attributed to the step of circle initialization, when high-intensity regions may
erroneously be classified as edges (Fig. 2.4b), or to the step of the active contour evolution,
subject to over-fitting caused by low-contrast regions in the image (Figs. 2.4e,h). Manual
initialization and parameter optimization on a per-image basis may yet recover some of the
ACED performance to the detriment of the loss of an automated approach. A robust analysis
was ensured by empirically optimizing the parameters to provide an optimal performance for
the entire dataset rather than for individual images.
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Figure 2.5: Segmentation results for optoacoustic (OA) images obtained with manual segmenta-
tion, active contour edge detection (ACED) and convolutional neural network (CNN)
for mouse cross-sections through brain (a-c), liver (d-f), and kidney (g-i) regions that
showcase sub-optimal (non-centered) animal positioning (kidney) and artifacts (liver,
brain). The corresponding Dice coefficients are also shown.

The superior performance of the CNN trained exclusively with OA data over ACED was
corroborated with sub-sets of images whose quality was compromised by sub-optimal data
acquisition conditions, which resulted in image artifacts and/or diminished resolution with
the animal positioned off-center in the imaging chamber (Fig. 2.5). Specifically, images of
the brain and liver regions (first and second row in Fig. 2.5) with arc-shaped artifacts as
well as an image of the kidney region (third row of Fig. 2.5) with sub-optimal positioning
of animal (off-center) are shown. The performance of the CNN was barely affected in those
cases (Figs. 2.5c, f, and i), whereas the performance of the ACED algorithm drastically dete-
riorated. For two out of the three analyzed anatomical regions, circle initialization failed as
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the “arc”-shape reflection artefacts at the periphery of the FOV were classified as edges. This
has led to selecting a larger initial circle and erroneous inclusion of pixels lying outside the
mouse body into the segmented region (Fig. 2.5b, e). The CNN-based algorithm performed
equally well also when the mouse was positioned off-center (Fig. 2.5i), with yielded Dice
score of 0.98 versus 0.81 for the ACED method (Fig. 2.5h).

The applicability of the CNN trained exclusively on OA images for US image segmentation
is exemplified in Fig. 2.6. Good segmentation performance was observed in the liver and
kidney cross-sections (Fig. 2.6f, i), attaining Dice coefficients of 0.95 and 0.95, respectively.
However, the CNN was less efficient when segmenting brain cross-sections (Fig. 2.6c). This

Figure 2.6: Segmentation results for ultrasound (US) images obtained with manual segmentation,
active contour edge detection (ACED) and convolutional neural network (CNN) (trained
on optoacoustic (OA) images) for mouse cross-sections through brain (a-c), liver (d-f),
and kidney (g-i) regions with the corresponding Dice coefficients.
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may be attributed to the presence of high-contrast features from the acoustically reflecting
but optically transparent protective waterproof membrane (Fig. 2.6a), not present in the
OA training images. In all cases, the ACED algorithm performed poorly owing to the failed
initialization step in the presence of reflections outside the mouse body, erroneously classified
as edges.

The overall performance of both algorithms for all the test datasets is summarized in Fig.
2.7. The CNN algorithm that was trained with a loss function ratio with 0.5-0.5 of binary
cross entropy and soft Dice loss outperformed ACED for segmentation of OA images with a
corresponding Dice score of 0.95±0.04 and a very narrow range of outliers, versus 0.78±0.11
for the ACED method. Both methods showed inferior performance for segmentation of US
images, in particularly with respect to the number of outliers, whereas CNN still yielded
better results than ACED with Dice score of 0.80±0.08 versus 0.55±0.10.

Figure 2.7: Boxplots illustrating the Dice coefficient variability for the segmented optoacoustic (OA)
and ultrasound (US) images obtained with active contour edge detection (ACED), con-
volutional neural network (CNN) trained with only OA images and CNN trained with
combination of OA and US images.
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Different types of noise (Gaussian, salt & pepper and speckle) was further added to OA
images to demonstrate robustness of the proposed algorithm. The network achieved Dice
scores of 0.94±0.03 in the presence of Gaussian noise (0 mean, 0.1 variance) for OA images
and 0.78±0.10 for US images. The salt and pepper noise (0.004 noise density) decreased the
mean Dice scores to 0.94±0.02 for OA images and 0.76±0.09 for US images compared to
noise free images. The network showed an inferior performance for OA images in the pres-
ence of speckle noise, i.e when randomly generated numbers between 0 and 255 were added.
Specifically, it achieved Dice scores of 0.93±0.03 for OA images and 0.81±0.06 for US images.

We further analyzed the effects of loss functions on training. For this, the network was trained
with different combinations of binary cross entropy and soft Dice loss. It achieved Dice score
of 0.96±0.02 for OA images and 0.83±0.08 for US images for a 0.25-0.75 ratio of binary cross
entropy and soft Dice loss ratio. On the other hand, it achieved Dice score of 0.95±0.02 for
OA images and 0.80±0.11 for US images when considering a ratio 0.75-0.25 of binary cross
entropy and soft Dice loss ratio. As expected, it appears that a higher weight in the soft Dice
loss results in an increased Dice score on the test images.

The CNN was further trained by additionally including the available 176 US images from the
kidney and liver cross sections. In this case, no improvement in the overall performance for
OA image segmentation was observed. In fact, the measured Dice coefficient was 0.95±0.4,
approximately the same as previously measured when training exclusively with the OA images
(Fig. 2.7). In addition, the number of outliers increased in OA test images. On the other
hand, the performance of US image segmentation degraded when including US images into
training. The network trained with both OA and US images reached a Dice coefficient of
0.76±0.09, i.e. lower than the network trained only with OA images. We ascribe the inferior
performance of the CNN trained with a combination of OA and US data to the relatively
low number of available US images. We believe that the fact that the network trained with
OA data can additionally accurately segment US images represents an important advantage
of the suggested processing approach for hybrid OPUS imaging.

2.4 Conclusion and Discussion

This work reports on a new methodology for automatic segmentation of the dual-modality
images acquired with hybrid OPUS imaging systems by means of the U-Net CNN architec-
ture. It has shown robust performance in accurate segmentation of mouse boundary in both
OA and pulse-echo US images, as evinced by quantitative evaluation of the CNN performance
using Dice coefficient metrics based on the difference between the automatically segmented
and ground truth images. In contrast, performance of the active contour based segmentation
approach is severely compromised by image artifacts, contrast variations as well as off-center
positioning of the mouse. However, the ultimate goal of medical image segmentation is elim-
ination of user dependency without sacrificing segmentation accuracy. In this respect, the
proposed CNN approach has shown great promise in accurate segmentation in cross-sections
corresponding to the mouse brain, liver and kidney regions. Better performance of the net-
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work may potentially be achieved by separating brain, kidney and liver datasets for every
training process [39]. However, the data from three different anatomical regions was mixed
to demonstrate the robustness of the network for different contrast and shapes. As accu-
rate labeling of large amount of data is generally a time-consuming process, in this work we
concentrated on showcasing performance in three selected anatomical regions. However, the
CNN approach could be seamlessly applied to whole-body mouse segmentation as well as
segmentation of distinct organs.

We further demonstrated applicability of the CNN trained on OA images for segmentation of
pulse-echo US images, although this approach may have limitations due to different contrast
exhibited by the two modalities. However, our results indicate that additional training with
the US data did not improve the segmentation accuracy, although larger amount of datasets
may need to be taken into account to draw unequivocal conclusions. In future studies, we
will explore the possibility of feeding matching pairs of OA and US in the same network to
increase the training performance. For this, a hybrid imaging system enabling simultaneous
image acquisition in both modalities is required. The suggested approach can potentially
be applied to hybrid images acquired by other types of OPUS imaging systems. For in-
stance, multi-segment arrays consisting of concave and linear parts have been recently shown
to provide an outstanding performance for multi-modal imaging [12, 40]. This particular
embodiment employs different parts of the array for OA and pulse-echo US imaging, which
may imply separate CNN training. The OPUS modality has also been extended to mapping
the speed of sound and acoustic attenuation in tissues by using a transmission US approach
[15], which may equally be used to facilitate more efficient segmentation. Three-dimensional
systems providing both OA and US images have also been suggested for both small animal
tomography and hand-held scanning in humans [41, 42]. Much like in the two-dimensional
case, accurate segmentation of the tissue boundary can be used to improve spatial resolution
and facilitate image co-registration.

The advent of DL methods represents a major shift from traditional machine learning ap-
proaches [43]. In addition to showing unprecedented performance in computer vision tasks,
DL networks have been applied for processing of images from different modalities in the field
of medical imaging, including computed tomography (CT) [44], magnetic resonance imag-
ing (MRI) [45], positron emission tomography (PET) [46] and US [47–50]. The proposed
CNN approach for automatic OPUS image segmentation can be used to more accurately
compensate for image artifacts originating from light attenuation in deep tissues as well
as speed of sound heterogeneities. Apart from image segmentation, DL methods have been
shown to significantly enhance other signal and image processing steps, including tomographic
reconstructions from sparse OA data [51–53], image artifact removal [54, 55] and quantitative
analysis of OA images [56]. Considering the generally high complexity of the OA image re-
construction pipeline, in particular for multispectral methods like MSOT, the DL approaches
are expected to play a major role in facilitating accurate image reconstruction and analysis.
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Abstract

Reflection ultrasound computed tomography (RUCT) attains optimal image quality from
objects that can be fully accessed from multiple directions, such as the human breast or small
animals. Owing to the full-view tomography approach based on compounding of images taken
from multiple angles, RUCT effectively mitigates several deficiencies afflicting conventional
pulse-echo ultrasound (US) systems, such as speckle patterns and inter-user variability. On
the other hand, the small inter-element pitch required to fulfill the spatial sampling criterion
in the circular transducer configuration used in RUCT typically implies the use of an excessive
number of independent array elements. This increases the system’s complexity and costs and
limits the achievable imaging speed. Here we explore acquisition schemes that enable RUCT
imaging with reduced number of transmit/receive elements. We investigated the influence of
the element size in transmission and reception in a ring array geometry. Performance of a
sparse acquisition approach based on partial acquisition from a sub-set of the elements has
been further assessed. A larger element size is shown to preserve contrast and resolution at
the center of the field of view (FOV), while a reduced number of elements is shown to cause
uniform loss of contrast and resolution across the entire FOV. The trade-offs of achievable
FOV, contrast to noise ratio, temporal and spatial resolution are assessed in phantoms and
in vivo mouse experiments. The experimental analysis is expected to aid the development of
optimized hardware and image acquisition strategies for RUCT, thus result in more affordable
imaging systems facilitating wider adoption.
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3.1 Introduction

Biomedical pulse-echo ultrasound (US) relies on acoustic impedance variations, giving rise to
back-scattered or reflected acoustic waves, in order to visualize deeply embedded structures
in biological tissues [1]. The portable and affordable nature of pulse-echo US based on linear
or convex array transducers has led to its widespread use in clinical practice as a hand-held
diagnostic imaging tool [2, 3]. The inter-element spacing (pitch) of US imaging arrays is
typically designed to be around half the acoustic wavelength. In this manner, the emitted
US beam can be efficiently shaped along arbitrary directions [4, 5]. Traditional pulse-echo
US imaging is based on steering the transmitted beam generated by constructive interference
of the waves emitted by individual elements [6], while more recent ultrafast US schemes are
based on beamforming with unfocused beams (e.g. plane waves) along different directions [7].
In both cases, the aperture (size) of the array along with its central frequency (and thus the
pitch) defines the lateral resolution, so that the number of elements is determined accordingly.

US-based imaging methods can further provide additional information beyond the conven-
tional pulse-echo readings. For example, transmission ultrasound computed tomography
(TUCT) maps the speed of sound and acoustic attenuation within the imaged sample en-
closed by an US array, which have been shown to provide valuable information for diagnosis
of breast cancer in patients [8, 9]. TUCT imaging can be performed by placing several linear
transducer arrays around the imaged object [10]. Optoacoustic tomography (OAT) capitalizes
instead on US generation via absorption of light in biological tissues, thus synergistically com-
bines rich optical contrast and acoustic resolution unaffected by light scattering and renders
high-resolution functional and molecular information complementing anatomical pulse-echo
US readings [11–13]. Both TUCT and OAT are inherently tomographic imaging modalities
that commonly rely on inverse scattering [14–16] or model-based [17–19] reconstruction al-
gorithms to render accurate and quantitative results. For those methods, US signals must
then be collected at different locations surrounding the imaged sample, so that the angular
coverage provided by the US array is of key importance for rendering accurate tomographic
reconstructions. Pulse-echo US has also been implemented with circular arrays enclosing the
object. This approach, termed reflection ultrasound computed tomography (RUCT), has re-
cently been combined with TUCT and OAT to result in a multimodal transmission-reflection
optoacoustic ultrasound (TROPUS) imaging platform [20, 21]. Pulse-echo US with concave
arrays have also been suggested e.g. for ophthalmic imaging [22], or for monitoring high-
intensity focused ultrasound (HIFU) [23]. Combinations of linear and concave arrays have
also been used for hybrid OAT and pulse-echo US [24, 25]. Typically, a very large number of
elements is required for conforming with an optimal inter-element pitch when using concave
arrays, particularly when employing high-frequency circular arrays having a large diameter
implied by the design constraints. In practice, the number of elements of the array and asso-
ciated electronic channels are constrained by the design complexity and cost of the system as
well as the required imaging frame rate per given data throughput capacity. These trade-offs
could be somewhat mitigated by applying a compressed sensing approach, which was recently
explored with synthetically generated data for TUCT [26].
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Figure 3.1: Imaging setup and transmit/receive schemes. (a) Schematic diagram of the circular
array (top view). The animal position is indicated. (b) Active array elements for trans-
mission and/or reception. Different colors indicate independent signals. Top row – all
array elements are driven independently. Second row – consecutive elements are driven
simultaneously in transmission or grouped (combined) in reception. Third row – Uni-
form undersampling acquisition scheme with only a few equidistant elements activated in
transmission and reception. Bottom row – Sparse undersampling with randomly chosen
transmission and reception elements.

In this work, we investigated practical strategies for effective reduction of the number of
transmitting/receiving channels in RUCT without compromising the resulting image quality.
Specifically, three different approaches are considered for reducing the number of required
transmit and receive channels: i) Simultaneous transmission and reception using consecutive
transducer elements, ii) Uniform undersampling of transmission and reception channels, iii)
Random undersampling of transmission and reception channels. The effects of reducing
transmission and reception channels were first investigated separately. Then, the combination
of transmission and reception channel reduction was further attempted. Performance of the
different acquisition schemes was experimentally validated with tissue phantoms and in vivo
mouse RUCT data recorded by a 512-channel full-ring US array system. The ultimate goal
is to define the optimal approach for reducing the complexity of the array and the number
of acquired channels, which in turn will result in less expensive systems and also enable
achieving higher frame rates.

3.2 Materials And Methods

3.2.1 Imaging System

RUCT data acquisition was performed with a 40 mm radius full-ring custom-engineered
piezocomposite array transducer (Imasonic SAS, Voray, France) (dimensions: 200 mm x 190
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mm x 25 mm). It consists of 512 elements distributed with 0.47 mm inter-element pitch
along two identical sub-arrays, each covering 174° around the imaged object (Fig. 3.1a).
The individual 0.37 mm × 15 mm elements lie on a concave surface, resulting in cylindrical
(toroidal) focusing at 38 mm distance, i.e. close to the center of the ring array geometry.
The array has central frequency of 5 MHz and 60% transmission/reception bandwidth (at
-6 dB) with each element having 0.76 mm beam width at the focus and 13.5 mm focal
zone. The sensitivity field and acoustic beam profile of single element was characterized
in previous works for an equivalent array [27, 28]. The array is driven by a custom-made
data transmission-acquisition system (DAQ, Falkenstein Mikrosysteme GmbH, Taufkirchen,
Germany). The DAQ can independently drive all the elements with defined digital waveforms
and arbitrary transmission delays. In receive mode, it can perform simultaneous parallel
digitization of all the signals collected by the array elements at 12, 24, or 40 mega samples
per second (MSPS), which are then transmitted via Ethernet at a maximum transmission
rate of 1 Gbit/s to a personal computer for storage and post-processing. In each transmission
event, a bipolar 38 Vpp voltage pulse centered at 5 MHz was transmitted to the individual
elements. For all experiments, the transducer and the imaged objects (phantoms and mice)
were immersed in a water tank to ensure acoustic coupling. The array was aligned by means
of a stage system with four degrees of freedom (x, y, z translation and rotation) to ensure
the sample is positioned around the center of the full-ring array (Fig. 3.1a).

3.2.2 Image Formation

The synthetic transmit aperture (STA) image acquisition method was used to achieve high
contrast and resolution [29, 30]. This approach is based on driving each element of the
array successively in transmission while receiving simultaneously with neighboring elements.
Images from every transmission event were reconstructed individually using the standard
delay-and-sum beamforming algorithm [31], rendering low contrast to noise ratio (CNR)
images with specular appearance. Pulse-echo US images are generated with the delay-and-
sum algorithm by calculating the total travel time (time of flight (TOF)) it takes for each
transmitted wave to return back to the transducer after being reflected by the sample. The
individual images are then compounded (added up) to form a final RUCT image with high
CNR and reduced speckle patterns, whereas the number of compounded images determines
the achievable frame rate. Prior to reconstruction, the acquired signals were band-pass filtered
between 2.5 and 6 MHz cut-off frequencies. The compounded images are displayed in a
logarithmic (dB) scale, namely, 20log10(I), being I the final RUCT image. The image CNR
is subsequently calculated via

CNR = Īsignal − Īnoise

std(̄Inoise)

where Īsignal is the mean value of the image intensity for a region within the sample, Īnoise is
the mean value of the image intensity in a region with background noise and std(̄Isignal) is
the standard deviation of the image intensity in a region with background noise.
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3.2.3 Channel Grouping in Transmission

We first investigated on the effects of simultaneously driving consecutive elements of the
array in transmission, which effectively corresponds to using larger (wider) elements (Fig.
3.1b). This enables increasing the transmitted wave energy hence enabling higher CNR of
the beamformed images for each transmission, which in turn results in a reduced number
of compounded transmissions and (potentially) a higher effective frame rate. For instance,
transmission with NCT = 1, 2, 3, 4 consecutive elements implies 512, 256, 171, 128 transmis-
sion events, respectively, in order to complete the full (360°) tomographic acquisition, i.e., the
acquisition time is reduced by a factor of NCT. However, the diffraction-associated directivity
of the US beam increases with NCT, consequently reducing the effective field of view (FOV)
within the sample.

3.2.4 Channel Grouping in Reception

We also investigated on the effects of using larger (wider) elements for detecting US echoes.
For this, an increasing number of transducer elements were grouped in reception. Specifically,
NCR = 1 (full reception, Fig. 3.1b, top) and, 2, 3 and 4 consecutive elements (Fig. 3.1b,
second row) were considered. The reception aperture was fixed, corresponding to an angle of
45° in all cases. A 45° reception aperture was used in all cases – since pulse-echo US is mainly
based on back-scattered signals, larger reception angles have not resulted in substantial image
quality improvement. The received signals from NCR consecutive elements were averaged to
emulate a single integrated waveform detected by a larger element to be used for delay-
and-sum beamforming. To analyze the effects resulting only from changes in the size of
the receiving transducer (i.e. number of consecutive reception channels NCR), a maximum
number of transmission events (512) and a minimum number of consecutive transmission
elements (NCT = 1) were considered. The frame rate before compounding is ultimately
limited by the data transfer rate. Therefore, by grouping NCR channels in reception, it can
be increased by a factor of NCR for a given data throughput capacity of the DAQ. However,
much like for transmission, element’s directivity is affected by diffraction, thus the effective
FOV is expected to decrease with increasing NCR.

3.2.5 Channel Grouping in Both Transmission and Reception

To further accelerate the data acquisition, we also investigated a configuration where the
same number of consecutive transducer elements (NCT = NCR = NCTR) were used both
at transmission and reception. Specifically, NCTR = 1, 2, 3 and 4 were considered. This
approach combines the effects resulting from consecutive element transmission and reception.
Therefore, considering full tomographic coverage (360°) in transmission and an amount of
data in reception limited by the data throughput capacity of the DAQ, the frame rate can
be increased by a factor of NCTR

2, i.e. by 1, 4, 9 and 16 accordingly.
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3.2.6 Sparse Data Acquisitions

The feasibility to form RUCT images with a reduced number of elements was also analyzed
by considering sparse (either uniform or random) distribution of elements. For the uniform
undersampling case, a certain number of consecutive elements was skipped in transmission
and reception (Fig. 3.1b, third row), i.e., only one out of NSTR = 1, 2, 3 or 4 was used. In
contrast, random undersampling assigns random single elements for transmission events (Fig.
3.1b, fourth row). Then, reception elements around the transmitting channel were assigned
randomly by keeping the reception aperture fixed at 45°. The elements for transmission
and reception were selected based on uniform random distributions. The sparse acquisition
schemes result in the number of channels reduced by a factor of NSTR, both for transmis-
sions and receptions. Therefore, much like in the alternative approach based on consecutive
elements, the frame rate can be increased by a factor of NSTR

2 = 1, 4, 9 or 16 per given data
throughput capacity of the DAQ. The sparse acquisition schemes preserve the small size of
individual elements and hence are not expected to be affected by diffraction. Instead, the
resulting images are afflicted by spatial undersampling artifacts. Furthermore, the reduced
intensity of the emitted signals and the reduced sensitivity in reception is expected to lead
to a lower signal-to-noise ratio (SNR) of the acquired signals.

3.2.7 Phantom Experiments

Phantoms were used to evaluate the effects of the element size in transmission and reception
as well as to test performance of the proposed RUCT imaging approaches with a reduced
number of elements. The first phantom, used to test the effects of US emission with consec-
utive elements, consisted of a 20 mm cylinder made of agar (1.3% w/v agar powder). 50µm
microparticles (Cospheric BKPMS-1.2 45-53µm) were embedded uniformly within the phan-
tom, thus mimicking an approximately constant back-scattering background. The second
phantom, used to test the effects of signal acquisition with consecutive and sparse acquisition
schemes, was formed with parallelly oriented 0.1 mm diameter copper wires lying perpen-
dicular to the imaging plane. The wires are distributed across 20 mm x 20 mm FOV whose
dimensions are comparable with the intended in vivo experiments. They were attached to
two rigid rods located above and below the array and fully immersed in water. The third
phantom, used to test the imaging performance, consisted of a 20 mm cylinder made with
agar (1.3% w/v agar powder) in which three 6 mm cylindrical insertions were included. 50µm
microparticles (Cospheric BKPMS-1.2 45-53µm) were embedded uniformly within these three
insertions.

3.2.8 Animal Experiments

A female athymic nude mouse (8 weeks old, Janvier Lab, France) was used for testing
the imaging performance in vivo. The animal was housed in a ventilated cage inside a
temperature-controlled room under a 12-hour dark/light cycle. Pelleted food and water were
provided ad-libitum. The mouse was anesthetized with isoflurane (4% v/v for induction
and 1.5% for maintenance, Abbott, Cham, Switzerland) in an oxygen/air mixture (100/400
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mL/min) during the experiment. The animal was placed in up-right position in the water
tank using a custom-made animal holder. The head of the mouse was kept outside the water,
and anesthesia was maintained throughout the experiment via a breathing mask. The water
temperature was kept stable at 34°C during the experiment with an electrical heater. The
imaging array was moved by an electronically-controlled stage in four-dimensional (4D) (x, y,
z, and rotation axis) so the mouse was positioned around the center of the circular array ge-
ometry. Cross-sectional RUCT images were acquired from the intestinal region of the mouse.
Animal experimentation was conducted in accordance with the Swiss Federal Act on Animal
Protection and was approved by the Cantonal Veterinary Office Zürich.

3.3 Results

We first explored the effects of using consecutive elements for transmission and/or recep-
tion, which is equivalent to increasing the size (width) of the elements. RUCT images re-
constructed using a single transmission event (no compounding) with increasing numbers of
emitting channels (NCT = 1, 2, 3, 4) and with NCR = 1 for a 45° angular aperture in reception
are presented in Fig. 3.2a. Considering the uniform distribution of acoustic back-scatterers
within the phantom, these images basically resemble the emitted US beam shape, whose
diffraction-associated directivity increases with the number of consecutive transmission el-
ements. Directivity of the emitted beam affects the maximum FOV that can be acquired
without losing the information in the region of interest. The number of consecutively trans-
mitting elements (NCT) was limited to 4 as larger number resulted in an inadequately small
FOV. The enhanced directivity along with the larger sub-aperture contributes to higher
acoustic energy density within a region surrounding the center of the phantom. This is man-
ifested by higher CNR of the RUCT images achieved with a higher number of consecutive
transmitting elements (Fig. 3.2b). The directivity of the US beam was further quantified by
considering a section of the RUCT images (indicated in green in the fourth column of Fig.
3.2a). The averaged 20 horizontal profiles within this region are shown in Fig. 3.2c. The
width of this profile is clearly reduced with increased number of consecutive transmitting
channels, which results in a contracted FOV.

The enhanced directional sensitivity of larger elements further affects the detected signals.
The effects of using consecutive elements for reception were analyzed with a phantom con-
sisting of wires aligned perpendicularly to the imaging plane. Fig. 3.3a shows the recon-
structed RUCT images with a group of NCR consecutive channels (indicated by the same
color) compounded from 512 transmission events with reduced number of reception events.
The reduction in reception events results in a lower amount of data being transferred, which
in turn increases the achievable frame rate by the factor of NCR. It is shown that the CNR
remains constant for the central wire (circular data points in Fig. 3.3b) when using con-
secutive reception channels. However, for a wire distant from the central part (triangular
data points in Fig. 3.3b), the CNR decreases from 61 (for NCR = 1) to 48 (for NCR = 4).
Horizontal image profiles for the selected wires are also shown in Figs. 3.3c and 3.3d. The
profile corresponding to the central line does not change significantly when increasing the
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Figure 3.2: Effects of element size in transmission analyzed by varying the number of simultane-
ously transmitting consecutive elements (NCT). (a) Schematic representation of the
transmission configuration with the positions of transmitting elements of the circular
array shown in red. These elements (NCT = 1, 2, 3, 4) are driven simultaneously in
one transmission event. Reflection ultrasound computed tomography (RUCT) images
from a circular phantom with uniformly distributed microspheres show the effects of
increasing the element size on the directivity of the transmitted ultrasound beam. (b)
Contrast to noise ratio (CNR) of the RUCT images as a function of the number of con-
secutive transmitting elements (NCT). The signal and background regions for the CNR
calculation are indicated in (a) with blue and red squares, respectively. (c) Averaged 20
horizontal profiles within the rectangular region indicated in green in (a) as a function
of lateral distance for NCT = 1, 2, 3, 4.

number of consecutive reception elements. However, the profile corresponding to a laterally
shifted location shows a significant increase in the side lobe intensities and in the full width
at half maximum (FWHM) of the main lobe for a higher number of consecutive elements in
reception. This leads to a loss of resolution and contrast in peripheral regions of the FOV.

Next, we evaluated the possibility of speeding up acquisitions by uniform undersampling with
one out of NSR equally spaced reception channels. The images reconstructed with different
levels of sparsity in reception (NSR), compounded from 512 transmission events, are displayed
in Fig. 3.4a. The reduction in number of reception channels results in a NSR-fold increase in
frame rate due to the reduced amount of data acquired for each transmission event. The CNR
at central and peripheral regions of the reconstructed images is shown to clearly decrease with
increased sparsity level (Fig. 3.4b). The CNR at the central region diminishes with respect
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Figure 3.3: Effects of varying the number of consecutive reception elements (NCR). (a) Groups of
reception channels (NCR = 1, 2, 3, 4) are indicated with different colors. Compounded
(512 transmission events) reflection ultrasound computed tomography (RUCT) images
of wires aligned perpendicular to the imaging plane. (b) Contrast to noise ratio (CNR)
dependence on NCR. (c) Horizontal image profile through the central wire as a function
of NCR. d) Horizontal image profile through a peripheral wire as a function of NCR.

to what has previously been achieved with consecutive channels in reception. The increased
sparsity level in reception (NSR) also causes side-lobe artifacts with a defined pattern to ap-
pear in the images. Horizontal image profiles at the center and peripheral data points (green
dashed lines in Fig. 3.4a) were analyzed to quantify the side lobes corresponding to individual
wires. Approximately the same level of side lobe intensity increase was observed in central and
peripheral profiles (Figs. 3.4c and 3.4d, respectively). The fact that both the CNR and image
profiles remain nearly identical at central and peripheral regions indicates that the imaging
performance achieved with this sparse acquisition approach is uniform across the entire FOV.

The effects of reducing the number of reception channels via randomized undersampling were
further analyzed (Fig. 3.5). For this, images from the wire phantoms were formed by us-
ing the reception sequence corresponding to the random reception element assignments (Fig.
3.5a). Similar to the other acquisitions, the compounded transmission event number was kept
constant at 512 by only reducing the number of reception channels. This acquisition scheme
resulted in NSR-fold increase in frame rate by reducing the transferred data volume. The
CNR decreased with increasing sparsity level (NSR) in both central and peripheral regions
(Fig. 3.5b), albeit at a slower pace as compared to the uniform undersampling case. We
ascribe this slight increase in CNR with respect to the uniform undersampling case to the
lack of pattern noise in the background. Side-lobe artifacts are still present in the images, but
random sampling appears to more uniformly distribute these across the background. As a
result, no significant increase in side lobes corresponding to individual wires was observed in
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Figure 3.4: Effects of uniform undersampling in reception. (a) Different acquisition schemes were
evaluated with increasing level of sparsity, i.e., NSR = 1, 2, 3, 4. The corresponding com-
pounded reflection ultrasound computed tomography (RUCT) images of wires aligned
perpendicular to the imaging plane are shown. (b) Contrast to noise ratio (CNR) as a
function of NSR. (c) Horizontal image profile through the central wire as a function of
NSR. (d) Horizontal image profile through the peripheral wire as a function of NSR.

the selected horizontal profiles for central and peripheral wires (Figs. 3.5c and 3.5d). On the
other hand, much like for the case of uniform undersampling, a similar performance across
the entire FOV was observed in terms of CNR and resolution.

To explain the difference between the uniform and random undersampling approaches, one
should distinguish between two effects: a global CNR decrease when the number of elements
decreases (occurs for both undersampling methods) and the appearance of grading lobes,
which increase in size and move towards the center in the case of uniform undersampling
only. The latter effect is particularly visible in Figs. 3.4c and 3.4d: small humps progres-
sively appear in the profiles; and in Fig 3.4a, for NSR = 3 and 4: high intensity regions appear
and move towards the center, increasing in intensity for higher NSR. This effect is not visible
for random sampling - only an increase of the general background level can be seen without
appearance of grading lobes.

The RUCT imaging performance with a reduced number of elements was then tested in a
more realistic tissue phantom configuration consisting of three circular insertions with embed-
ded microspheres to mimic various levels of scattering. The RUCT images reconstructed with
increasing number of consecutively grouped elements (NCTR = 1, 2, 3, 4) enable increasing
the frame rate by 1, 4, 9 and 16 fold, respectively, for a given data throughput capacity of
the DAQ (Fig. 3.6a). Also, the CNR inside the phantom is preserved with increased number
of grouped elements due to increased energy delivered with one transmission event and the



72 Expediting Ultrasound Acquisition

Figure 3.5: Effects of random undersampling in reception. (a) Illustration of the various random
undersampling schemes having NSR = 1, 2, 3, 4 with the corresponding compounded
reflection ultrasound computed tomography (RUCT) images of wires aligned perpendic-
ular to the imaging plane. (b) Contrast to noise ratio (CNR) as a function of NSR. (c)
Horizontal image profile through the central wire as a function of NSR. d) Horizontal
image profile through the peripheral wire as a function of NSR.

enhanced detection sensitivity (circular data points in Fig. 3.6d). Note, however, that the
image contrast diminishes in the peripheral regions of the phantom when grouping several
consecutive elements. For the sparse acquisition methods (Figs. 3.6b and 3.6c), the increase
in sparsity level NSTR resulted in diminished CNR (triangular and asterisk data points in Fig.
3.6d), which was more pronounced in the uniform undersampling case. However, contrary
to the consecutive element grouping approach that results in non-uniform CNR across the
imaged FOV, good image contrast uniformity was observed throughout the entire phantom
volume with the sparse acquisition approach (Fig. 3.6e). The speckle patterns in the images
obtained with random undersampling appears to be lower as compared to uniform undersam-
pling, thus resulting in an enhanced CNR. This indicates that speckle patterns are minimized
with random undersampling similarly to the side-lobe pattern artifacts corresponding to iso-
lated wires.

The RUCT imaging performance with a reduced number of elements was then tested in
vivo by acquiring cross-sectional images of the intestinal region of a healthy female athymic
nude mouse. The images reconstructed with consecutively grouped elements (Fig. 3.7a) and
sparse acquisition sequences (Fig. 3.7b and 3.7c) were compared per given frame rate (data
throughput). CNR values were calculated by measuring the signal around the transverse
colon area (blue square in Fig. 3.7a) with the background noise calculated in a region outside
the mouse (red square in Fig. 3.7a). Much like for the phantom images, the CNR values
remained relatively stable when using consecutive elements, dropping from 28 for NCTR = 1,
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Figure 3.6: Reflection ultrasound computed tomography (RUCT) phantom images acquired with
consecutive elements and with sparse acquisitions as a function of the number of consec-
utive elements grouped in transmission/reception (NCTR) and the sparsity level (NSTR).
The test phantom consisted of a 20 mm diameter cylinder made of agar (1.3% w/v agar
powder) embedded with three 6 mm diameter cylindrical insertions filled with a uni-
form distribution of 50µm-sized microparticles (Cospheric BKPMS-1.2 45-53µm). The
increase in frame rate for a given data throughput capacity is shown in the bottom right
corner of the images. (a) Compounded images as a function of the number of consecutive
elements (NCTR = 1, 2, 3, 4). (b) Compounded images from uniform undersampling
as a function of the sparsity level (NSTR = 1, 2, 3, 4). (c) Compounded images from
random undersampling as a function of the sparsity level (NSTR = 1, 2, 3, 4). (d) Con-
trast to noise ratio (CNR) of the images as a function of NCTR and NSTR. The signal
and background regions for the CNR calculations are indicated in panel a with blue and
red squares, respectively. (e) Standard deviation of image intensity across the FOV as
a function of NCTR and NSTR.
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Figure 3.7: Comparison between in vivo reflection ultrasound computed tomography (RUCT) im-
ages acquired with the consecutive and undersampling schemes. A female athymic nude
mouse (8 weeks old) was imaged in vivo. The achievable increase in frame rate for a given
data throughput capacity of the data transmission-acquisition system (DAQ) is shown in
upper left corner of the images. (a) RUCT images acquired with simultaneously driven
consecutive elements (NCTR = 1, 2, 3, 4). (b) RUCT images acquired with uniform
sparse acquisition as a function of sparsity levels (NSTR = 1, 2, 3, 4, respectively). (c)
RUCT images acquired with random sparse acquisition as a function of sparsity levels
(NSTR = 1, 2, 3, 4, respectively). (d) Change in contrast to noise ratio (CNR) calculated
on the transverse colon using consecutive element and sparse acquisition methods. (e)
Difference between minimum and maximum values of line profile of descending colon
(P1) for the consecutive and undersampling acquisition schemes. (f) Difference between
minimum and maximum values of line profile of vertebral column (P2) for the consec-
utive and undersampling acquisition schemes. Signal profiles through the descending
colon (P1) and vertebral column (P2) are shown under the images in panels a-c.
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2, 3 to 23 for NCTR = 4 (circular data points in Fig. 3.7d). On the contrary, increasing the
undersampling levels has seen the CNR decreasing substantially, from 28 for NSTR = 1 to 12
for NSTR = 4 (Fig. 3.7d – triangular data points). Likewise, the CNR dropped from 28 to
14 for the random undersampling approach (Fig. 3.7d – asterisk data points). The observed
CNR changes further lead to loss of resolution, as evinced from the one-dimensional (1D)
signal profiles plotted under the images in Fig. 3.7. The difference between maximum and
minimum values of signal profiles P1 and P2 are shown in Fig. 3.7e and 3.7f, respectively,
to better visualize the change in contrast. The shape of the descending colon as well as con-
trast of its boundaries (P1 in Figs. 3.7a and 3.7e) remain well preserved when imaging with
increasing number of consecutive elements (NCTR). On the contrary, uniform and random
sparse acquisitions result in loss of resolving capacity with increased sparsity level (NSTR).
The image quality is affected differently when analyzing signal profile through the vertebral
column located peripheral from the center (P2 in Fig. 3.7a). Here consecutive element acqui-
sition results in substantial loss of resolving power (P2 in Figs. 3.7a and 3.7f), which remains
less affected for the undersampling acquisition schemes (Figs. 3.7b, 3.7c and 3.7f). In the in
vivo example presented here, the two structures P1 and P2 remain visible and undistorted
for undersampling levels as high as NCTR = 3 or NSTR = 2, which respectively correspond to
170 or 256 independent channels. These numbers are compatible with commercially available
preclinical scanners, such as the Vantage-256TM from Verasonics. Note that the vertebral
column (P2) appears to be distorted when considering random undersampling. This appears
to corroborate that random undersampling contributes to removing speckle patterns, which
is undesirable in the present case as these may correspond to actual structures in the images.

3.4 Discussion

In this work, different strategies to reduce the number of transmit/receive elements in RUCT
were investigated. Optimal trade-off between number and size of array elements and RUCT
imaging performance for the given target size and resolution have been determined. Two
main performance metrics were considered, namely, the image contrast, primarily driven by
the total active area of the transducer, and the FOV, which is chiefly influenced by the di-
rectivity of individual elements. Note that the spatial resolution is mainly determined by the
detection bandwidth rather than by the number of active elements. Overall, it was found
that the CNR is maintained in a region close to the center of the array when consecutive
elements are grouped together mimicking a dense array with a lower number of elements. In-
deed, a lower number of emission and reception events is compensated with a higher acoustic
energy density due to the enhanced directivity and increased sub-aperture size. The resolu-
tion in peripheral regions can be restored by employing advanced algorithms such as pulse
compression and Golay approaches [32–35]. On the other hand, channel undersampling (both
uniform and random) resulted in a reduced CNR but a more uniform performance in central
and peripheral regions, which contributes to a larger effective FOV. It was observed that
random undersampling appears to contribute to removing speckle patterns in the images.
This scheme was thus shown to enhance CNR by minimizing side-lobe pattern artifacts and
speckle patterns but also resulted in distortion of actual structures in the images. Channel
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undersampling can be further optimized by employing advanced randomization schemes [36].

The optimal approach for expediting image acquisition in RUCT must then be defined ac-
cording to the application of interest. For instance, tomographic imaging of the human breast
requires a large FOV attained with a dense circular array of detectors located in close proxim-
ity to the skin surface. In this case, an optimal imaging speed acceleration is achieved with a
randomized sparse undersampling method. On the contrary, a typical mouse imaging RUCT
scanner features a much larger ratio between the array diameter and the effective FOV, thus
an acquisition scheme with a reduced number of large-sized elements is arguably preferred
to maximize the CNR. Note that the FOV also scales with the frequency bandwidth of the
elements, which is generally lower for arrays designed to image larger samples. The final
number of independently driven channels must then be selected by maximizing the various
imaging performance aspects pertaining contrast, resolution and FOV but also an overall
system’s cost and its anticipated image acquisition time (imaging speed).

A low number of independent channels contributes to reducing the complexity of both the
US array and the accompanying data transmission/acquisition electronics, making the sys-
tem more portable and affordable thus facilitating its dissemination among biologists and
clinicians. For a given limit of the data throughput capacity, reducing the number of active
transducer elements and of compounded transmission events in each frame further enhances
the temporal resolution of the system, thus facilitating visualization of dynamic events such
as blood flow and contrast agent perfusion [37]. High-frame-rate imaging is also essential
in super-resolution imaging where tracking of individual microbubbles has been shown to
massively enhance the spatial resolution of US-based angiography [38, 39]. The tracking ac-
curacy and maximum admissible velocity of a given microbubble (e.g. to measure blood flow)
is directly related to the frame rate. A higher imaging rate would thus allow the propagation
of RUCT to many more promising applications, especially if the loss in image quality can be
compensated for with advanced reconstruction methods.

Finally, the full-ring array configuration used in RUCT is particularly attractive for TROPUS
imaging combining RUCT, TUCT and OAT in a single system [20, 21]. Such multimodal
integration provides unique capabilities for anatomical, functional and molecular imaging of
various disease models, e.g. in the context of multi-parametric tumor detection and charac-
terization [21, 40]. Previous studies have shown that the overall considerations pertaining
the size and number of transducer elements in OAT are analogous to what was observed
herein for RUCT. For instance, the element directivity similarly confines the FOV in OAT
while decreasing the contrast and resolution in peripheral regions [17, 41]. The reduction
in the effective FOV is slightly lower in OAT due to the uni-directional propagation of US
waves. On the other hand, the tomographic inversion in TUCT is very similar to the exten-
sively studied X-Ray computed tomography (CT) problem where spatial undersampling is
known to result in so-called streak artifacts reducing the quality and resolution of the images
[42]. Much like for X-Ray CT, the use of model-based image reconstruction methods based
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on total variation (TV) regularization has facilitated rendering accurate TUCT images with
randomized transmissions [26].

The results presented in this work were based on delay-and-sum beamforming. Yet, the
derived conclusions are expected to hold for other image formation methods, such as more
advanced model-based reconstruction methods commonly employed for reducing undersam-
pling artifacts in OAT [17–19]. Recently, model-based methods have also been suggested for
improving image quality in pulse-echo US [43, 44], hence their deployment for RUCT may
potentially further enhance the achievable FOV, resolution and contrast. Such methods are
for instance expected to perform particularly well when exploiting the image-domain sparsity
for implementing accurate compressed-sensing-based methods [45].

3.5 Conclusion

In this work, we have experimentally analyzed and established the trade-offs between number,
distribution and size of array elements and performance of RUCT imaging for the given
target size and resolution. Specifically, it was shown that a reduced number of large elements
facilitates preserving imaging performance at the central part of the image to the detriment
of resolution and contrast at peripheral regions. On the other hand, a sparse (either uniform
or random) distribution of small elements results in a more uniform performance across the
field of view with reduced contrast. The experimental analysis is expected to aid in the
development of optimized hardware and image acquisition strategies for RUCT, thus result
in more affordable imaging systems and facilitate a wider adoption of RUCT as an imaging
tool.
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Abstract

Multispectral optoacoustic tomography (MSOT) relies on optical excitation of tissues with
subsequent detection of the generated ultrasound waves. Optimal image quality in MSOT
is achieved by detection of signals from a broad tomographic view. However, due to physi-
cal constraints and other cost-related considerations, most imaging systems are implemented
with probes having limited tomographic coverage around the imaged object, such as linear
array transducers often employed for clinical ultrasound (US) imaging. MSOT image recon-
struction from limited-view data results in arc-shaped image artifacts and disrupted shape of
the vascular structures. Deep learning methods have previously been used to recover MSOT
images from incomplete tomographic data, albeit poor performance was attained when train-
ing with data from simulations or other imaging modalities. We propose a two-step method
consisting of i) style transfer for domain adaptation between simulated and experimental
MSOT signals, and ii) supervised training on simulated data to recover missing tomographic
signals in realistic clinical data. The method is shown capable of correcting images recon-
structed from sub-optimal probe geometries using only signal domain data without the need
for training with ground truth (GT) full-view images.
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4.1 Introduction

Multispectral optoacoustic tomography (MSOT) is a hybrid biomedical imaging modality
based on optical excitation (thermal expansion) of biological tissues followed by detection of
the generated ultrasound (US) waves. Interpretation and quantification of the MSOT data is
often hampered by poor tomographic coverage provided by the common clinical imaging sys-
tem implementations. Optimal tomographic inversion in MSOT implies recording sufficient
information from the generated ultrasonic wave field with broad angular tomographic cover-
age [1]. Yet, full tomographic coverage is generally not possible due to physical constraints
and other cost-related considerations.

The potential value of MSOT as a clinical imaging tool can be further enhanced when com-
bined with pulse-echo (reflection) US imaging, which provides important reference anatomical
information [2, 3]. However, such combination is not straightforward cause MSOT and US
imaging impose different, often contradictory, constraints on the transducer array design,
such as the pitch size or element directivity in transmission and reception. Linear arrays
are frequently used in commercial hand-held US scanners and have further been suggested
for implementation of hybrid optoacoustic ultrasound (OPUS) scanners [4, 5]. Linear arrays
are easy to manufacture and well-established guidelines exist for the interpretation of the
generated US images, offering clear advantages in the clinical setting. On the other hand,
acquisition of MSOT images with linear arrays typically results in elongated vessel structures
and arc-shaped limited-view artifacts, thus making image interpretation and quantification
difficult [6].

Recently, specialized transducer geometries have been suggested for optimal implementation
of hybrid OPUS scanners, such as multisegment transducer arrays incorporating both linear
and concave array segments. In this way, the limited-view MSOT problem can be partially
mitigated with image quality restored to a certain degree (Fig. 4.1A) [7]. In the multisegment
configuration, the linear part renders standard US images while all elements contribute to
an increased angular coverage for MSOT image reconstruction [8]. While providing optimal
image quality in both MSOT and US modes, the manufacturing process of an array of this
type is relatively complex. Furthermore, hand-held scanning of certain parts of the human
body is also hampered with this array geometry due to the need for a customized water
coupling approach [9].

A possible approach to resolve these unavoidable trade-offs is to make use of the optimized
multisegment array configuration for the development of learning-based methods toward im-
proving image quality in both MSOT and US imaging modes. In this work, we approach
the hybrid image reconstruction problem by considering the raw signal domain data instead
of dealing directly with the reconstructed images. With this, we aim to capture spatial and
temporal correlations between the transducer array elements in latent space. A learning-
based method trained on simulated data may be used to complete the missing view angles
in the linear array recordings. To this end, deep learning methods have been used to par-
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Figure 4.1: Handheld multispectral optoacoustic tomography (MSOT) imaging with linear and mul-
tisegment array configurations. A) Schematic diagram of the array geometries. The
excitation light beam and generated ultrasound (US) waves are represented with red
arrows and dashed circles, respectively. B) Raw data (time-resolved signals) along with
the reconstructed MSOT images corresponding to a hand-held scan of the human arm at
1064 nm excitation wavelength with the linear and multisegment arrays, respectively. C)
Simulated signals along with the reconstructed images for the linear and multisegment
arrays, respectively.

tially restore quality of the MSOT images reconstructed from incomplete tomographic data.
However, poor performance was achieved when training with data from simulations or other
imaging modalities, which appears to be a result of the large domain gap between simulated
and experimental data [10]. Thereby, we propose a two-step approach consisting of i) style
transfer for domain adaptation between simulated and experimental MSOT signals, and ii)
semi-supervised training on simulations from multisegment array geometry and experimental
data from linear array to recover missing signals in experimental multisegment array data.
We formulate the domain adaptation problem as an unpaired image translation between
simulated and experimental signals. Signals detected by elements of the concave segments
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are then estimated from the data provided by the linear part of the array using only simu-
lated data after domain adaptation. Once the missing parts have been recovered, the MSOT
image reconstruction can be performed with standard methods such as back-projection or
model-based algorithms [11–13]. The main contributions of this paper with respect to prior
art are summarized as follows: i) the MSOT limited-view problem is tackled in the signal
domain instead of the image domain, ii) a method to reduce domain gap between simulated
and experimental data is proposed, and iii) a learning-based method is used for estimating
the signals from missing detection elements without the need for ground truth (GT) data
from sophisticated and costly array configurations (e.g. multisegment array). To the best
of our knowledge, this work constitutes the first attempt to address the limited-view MSOT
problem in the raw signal domain using simulated data.

4.2 Methodology

4.2.1 Style Transfer Network

The first step of the proposed method represents the key component to reduce the domain
gap between simulated and experimental data. The main differences between simulated
and experimental domains result from difficulties in mimicking complicated acoustic pressure
wavefields corresponding to actual anatomical structures and from the lack of realistic noise
components in simulated data. Herein, we use a style transfer network to reduce the distance
between simulated and experimental datasets. The simulated and experimental domains are
denoted as X and Y, respectively. The corresponding training samples are denoted as {xi}N

i=1,
{yi}M

i=1 where N and M are the number of samples from simulated and experimental data,
respectively. The signals from both domains are combined into one dataset alongside their
labels, so that each signal is represented by a pair D = {(si, li)}N+M

i=1 , where si is the signal
itself and li is a label indicating if the signal belongs to the simulated (li = 0) or experimental
(li = 1) domains.

An encoder-decoder architecture was used with domain-adversarial training on the latent
space from fader networks [14] after minor modifications. As demonstrated in Fig. 4.2A, the
model consists of two convolutional neural networks; an encoder Eθenc and a decoder Dθdec ,
a latent space discriminator and an additional fully connected discriminator network Dθdisc

for the adversarial training to ensure domain alignment. The encoder Eθenc takes as input
the signal two-dimensional (2D) representation si and produces the latent representation
zi = Eθenc(si). The decoder Dθdec takes as input the latent invariant representation zi and
corresponding label of the input domain li to produce the reconstructed signal ŝi. We use
mean absolute error (MAE) as the reconstruction error as it is more suitable for medical
imaging problems since it produces sharper images:

ℓMAE = 1
N + M

∑
(s,l)∈D

∥Dθdec(Eθenc(s), l) − s∥1. (4.1)

The decoder takes as an input latent representation and a label. If the label is “experimental”,
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a latent vector is sampled from a Gaussian distribution with mean and variance parametrized
by embedding layers in the decoder, and then a convolutional network is applied to it. If the
label is “simulated”, another convolutional network is applied directly to the latent represen-
tation without sampling.

The latent discriminator Dθdisc is trained to make this representation zi invariant to the do-
main via an adversarial loss as in generative adversarial networks (GANs) [15]. In particular,
this is achieved by a two-player game; the discriminator is trained between two domains with
a classification loss:

ℓlatent_disc = − Ex∼Pexp [log Dθdisc(Eθenc(x))] − Ey∼Psim [log(1 − Dθdisc(Eθenc(y)))], (4.2)

and the parameters of the encoder are optimized through an additional adversarial loss:

ℓadv_latent = − Es∼Ps [log Dθdisc(Eθenc(s))], (4.3)

where Pexp and Psim are the experimental and simulated data distributions, and Ps is the
joint distribution of both experimental and simulated data.

Since adversarial training can be unstable [16–18], we additionally add feature matching to
stabilize adversarial training [17]:

ℓFM = 1
2∥Ex∼Pexp [Eθenc(x)] − Ey∼Psim [Eθenc(y)]∥2

2. (4.4)

We opt for patchGAN discriminator [19] as proposed by Lample et al. [14] to improve the
quality and sharpness of the reconstructions where the discriminators are trained by updating
following two loss functions:

ℓsim = − Es∼Pexp [log Dθdisc_sim(Dθdec(Eθenc(s), l = sim))], (4.5)

ℓexp = − Es∼Psim [log Dθdisc_exp(Dθdec(Eθenc(s), l = exp))]. (4.6)

Patch discriminators Dθdisc_sim and Dθdisc_exp are trained by minimizing the following losses
respectively:

ℓsim_disc = − Ex∼Psim [log Dθdisc_sim(x)] − Ey∼Pexp [log(1 − Dθdisc_sim(Dθdec(Eθenc(y), l = sim)))],
(4.7)

ℓexp_disc = − Ex∼Pexp [log Dθdisc_exp(x)] − Ey∼Psim [log(1 − Dθdisc_exp(Dθdec(Eθenc(y), l = exp)))].
(4.8)

The overall training procedure consists in iteratively updating the generator networks via
minimization of the total loss

ℓtotal = ℓMAE + ℓadv_latent + ℓCycle + ℓFM + ℓsim + ℓexp, (4.9)

where ℓCycle is cycle consistency loss [20] and the discriminators are updated every n epochs
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Figure 4.2: Summary of the proposed network architectures. A) Style network architecture with
loss functions defined by red labels. Mean absolute error (MAE), cycle consistency loss
(CCL), feature matching loss (FM), latent discriminator loss (LDL), style discriminator
loss (SDL). B) Training of side network with simulated data. C) Training of side network
using only experimental data from the linear part of the array.

via minimizing losses from equations 4.3, 4.7, 4.8 separately. This combination of losses was
originally proposed in Lample et al. [14], except the cycle loss, which was proposed for domain
adaptation in Hoffman et al. [21]. Such a particular combination of losses is important for
a good quality of predictions for domain adaptation task. We will refer to this network as
style network in the rest of this manuscript. The fully trained style network will be denoted
as SθStyle

with si,lin linear parts of a signal i and si,mul multisegment array detection of this
signal.

4.2.2 Side Network

After reducing the domain gap between simulated and experimental data, a second (side) net-
work of auto-encoders is suggested to overcome limited-view-associated problems and yield
geometrically corrected images. The main goal of this side network is to impute virtual signals
at the concave parts of the multisegment array (Fig. 4.1A) using side decoders. Specifically,
one encoder and three decoders are used in the auto-encoder architecture for simulated sig-
nals Fig. 4.2B. It is important to note that only the central part of the network (encoder
and center decoder) is used in the training phase when the observation corresponds to an
experimental signal. By training the network on simulated data, this is optimized to complete
the concave sides of the imaging array. Accordingly, experimental signals are included in the
dataset for optimization of the encoder and center decoder. Training on linear experimental
signals helps to adapt network for experimental data distribution.
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In a similar manner as in the style network, we propose an encoder-decoder architecture.
As in SθStyle

, the encoder takes the signal matrix corresponding to linear array from either
simulated or experimental images. The decoder, in contrast to SθStyle

, consists of three
convolutional networks, where the goals of each networks are to produce signals from i) linear
array (“center decoder”), ii) left concave segment, and iii) right concave segment. During
training, the network only sees linear parts of experimental signals and whole multisegment
array signals for simulated data. We use MAE loss to train the networks:

ℓsides = 1
N

∑
(slin,smul)∈Dsim

∥Dθdec
(Eθenc(SθStyle

(slin))) − smul∥1+

1
M

∑
slin∈Dexp

∥Dθdec
(Eθenc(SθStyle

(slin))) − slin∥1. (4.10)

4.3 Experiments and Results

4.3.1 Datasets Description

The datasets used in this study include two main parts. The simulated dataset contains
a curved structure mimicking the skin surface and circular shapes similar to round vessel
structures in the human forearm. It has 5500 cross-sectional images with different positioning
of structures and number of vessels. The simulations were drawn as acoustic pressure maps in
the spatial domain. Then, the corresponding signals were generated using the MSOT forward
model for the multisegment array geometry [22]. 32 images were hold out for testing. The
rest of the images were split into training and validation via 70/30 split. The second dataset
was acquired from volunteers using a multisegment ultrasound transducer array as shown
in Fig. 4.1A and described in detail in [8]. The corresponding simulated and experimental
signals and images from the linear and all parts of the multisegment arrays are shown in Fig.
4.1B and 4.1C, respectively. In total, 5565 cross-sectional experimental images were collected
from 22 forearms. 5501 images were allocated for training, 32 images for validation and 32
images for testing.

4.3.2 Results

The experimental signals acquired with the linear part were first processed with the style
network to generate their virtual simulated counterparts in order to reduce the domain gap
with actual simulated data. Then, these simulated signals were fed into the side network to
impute the missing concave parts. The signals from the side network and the GT multiseg-
ment acquisitions were reconstructed using filtered back-projection and elastic-net algorithms
[11, 22, 23] to generate the corresponding images. The comparison was made in the image
domain because some of the samples from signal domain are not used in reconstruction as
they stay out of the field of view (FOV) or otherwise modified/filtered by pre-processing al-
gorithms before reconstruction. Another reason to evaluate the results in the image domain
is that the main goal of this work is to enhance MSOT images by eliminating limited-view.
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Figure 4.3: Results in the signal and image domains. A) Signal domain representation of a test
image. Left to right: multisegment ground truth (GT) signals, linear GT signals, mul-
tisegment signals after style and side networks, multisegment signals after style and
side network with real center (RC). B) Images reconstructed with back-projection and
model-based elastic-net approach. Benchmark UNet result is added for comparison.

One example from test set is shown in Fig. 4.3. The third column in Fig. 4.3 shows the
output of both networks after style network and side network. We refer to this output as
“Sides impute” further in the paper. The linear part of this “Sides impute” output is further
replaced with experimental linear part (Fig. 4.3A - 4th column). We refer to it further in the
text as “Sides impute with RC” (RC stands for real center). The corresponding reconstructed
images for each signal are displayed in the same column. The network results (side impute
and side impute with RC) show clear improvement in round vessel structures which are the
most important features visualized in MSOT images. In contrast, benchmark UNet is not
able to correct the vessel shapes while further creating additional vessel-like structures.

The quantitative results calculated on the test set are summarized in Table 4.1 and a com-
plete ablation study in Supplementary Tables 4.2, 4.3. Four different metrics were used to
evaluate the proposed networks, namely structural similarity index (SSIM), mean squared
error (MSE), Pearson correlation coefficient (Pearson) and peak signal to noise ratio (PSNR).
The linear GT represents the images reconstructed from cropped multisegment signals; i.e.,
excluding concave parts. Hence, the linear GT may outperform some of the metrics. How-
ever, when the results are compared with the benchmark UNet, the proposed method becomes
superior in each evaluation metric.
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Table 4.1: Reconstruction scores with respect to ground truth (GT) multisegment reconstructions
for elastic net (EN) with α = 1e−5 and backprojection (BP) methods. Best score is in
bold.

SSIM MSE Pearson PSNR
EN BP EN BP EN BP EN BP

Linear GT 0.85 0.67 0.0019 0.0013 33.75 35.37 75.86 77.48
Ours 0.90 0.64 0.0013 0.0014 35.28 35.11 77.39 77.22
Unet 0.57 0.49 0.0026 0.0036 30.92 32.14 74.25 73.03

4.4 Conclusion

This work is the first to pursue a signal domain solution to overcome limited-view reconstruc-
tion artifacts in MSOT imaging. Style transfer network was shown to reduce the domain gap
between simulations and experimental signals, thus significantly improving quality of the
reconstructed images versus conventional learning-free methods, such as back-projection or
regularized model-based reconstruction. Previously-suggested methods trained exclusively
with simulated data in the image domain (e.g. benchmark UNet) have shown inferior perfor-
mance as compared to the domain adaptation networks proposed here. It was additionally
demonstrated that, once the domain gap is reduced, training with simulated data can be
used for imputing missing signals over a broader tomographic angle, thus leading to reduc-
tion of limited-view artifacts in backprojection-based reconstructions. However, the proposed
method yields slight improvements in backprojection reconstructions. The results can be im-
proved by using different architectures for the similar signal domain approach. Future work
will make use of different training invariant architectures or other reconstruction methods.
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APPENDIX A. Related Work

A.1. Domain Generalization and Adaptation

Domain adaptation and generalization address the problem of domain shift for settings where
the distribution of observations for training and testing differ substantially. A popular ap-
proach to address the co-variate shift problem is to minimize the domain gap between two
distributions in the latent space by minimizing maximum mean discrepancy [24–27], and
adversarial feature alignment [28–32]. Recently, several methods based on image-level trans-
lation for domain adaptation and reduction of style bias have been proposed [21, 33, 34]. In
particular, Hoffman et al. [21] proposed using core concepts from CycleGan [19]. Nam et al.
[34] used style-agnostic networks to reduce domain shift by disentangling style encoding from
class categories. Lample et al. [14] originally proposed using adversarial auto-encoder to swap
attributes in the images, and later Lotfollahi et al. [35] demonstrated how a similar idea based
on disentangling information from different domains could be applied for out-of-distribution
predictions of unseen drug combinations. The method proposed herein combines aspects of
these works in order to find a fast and easy way to train networks on simulated data that
can be subsequently applied to experimental data.

A.2. Deep Learning in Optoacoustic Imaging

Several deep-learning-based methods have been used to enhance the MSOT imaging per-
formance. For example, densely-sampled data was recovered from sparse signal acquisitions
using supervised learning [10, 36, 37]. The inverse reconstruction problem has been tackled
by learning the optimal regularization in iterative methods [38]. A semantic segmentation
network was applied to hybrid OPUS images for delineating the mouse boundaries in pre-
clinical data [39]. MSOT images are also segmented using convolutional neural networks
[40, 41]. Multi-modal images from MSOT and magnetic resonance imaging (MRI) systems
were registered using segmentation and spatial transformer networks [42]. Spectral unmixing
between different wavelengths in MSOT images was performed using deep learning methods
[43, 44]. Speed of sound values that are used in MSOT image reconstruction was corrected by
a learning based method [45]. Noise caused by electromagnetic interference in MSOT imag-
ing setups could be removed by means of signal domain learning approach [46]. Bandwidth
enhancement was also proposed in the signal domain using supervised learning methods [47].
MSOT image and signal domain data were combined in hybrid networks to reduce limited-
view artifacts [48, 49], although signal data was only used as complementary information
for the image domain learning. The two-step method proposed herein solely operates in the
signal domain to solve limited-view-associated problems.

APPENDIX B. Image Reconstruction Methods

Two different methods were used in this study to generate images from time domain signals,
namely back-projection and elastic-net [23]. Back-projection is a simple and widely used
method based on delaying and summing the US signals according to their time of flight from
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the pixels on the reconstruction grid [11]. It is applied as follows: i) the signals are first
band-pass filtered between 0.1 and 6 MHz, ii) the filtered signals are normalized around zero
mean, iii) the pre-processed signals are summed up based on their time of flights. The FOV
was set to 25.6 mm (256x256 pixels). The elastic-net method was also used for reconstructing
the images [23]. It is based on regularized inversion considering conventional model-based
reconstruction [50]. This regularization approach was chosen as it allows removing some
artifacts from the non-regularized version of the model-based algorithm and further enables
computationally comparing the effect of geometry correction in the signal domain. We used
a fixed parameter for the elastic net, α = 10−5. This value was empirically established for
providing an optimal quality of the reconstructed images with simulated and experimental
multisegment array data.

APPENDIX C. Benchmark UNet

For comparison purposes, we trained a UNet model on the simulated image domain that
learns how to map from MSOT reconstructions obtained with the linear part of the array to
those achieved with the full multisegment geometry. For this, an Adam optimizer and MAE
loss was used. As opposed to the original UNet [51], we use batch normalization [52] with
zero padded convolutional layers in order to keep resolution constant within a convolutional
block. In addition, benchmark UNet has a single residual connection from input to final
model output [53] such that only residual mapping needs to be learned, and start with
32 convolutional kernels at full resolution instead of 64, going up to 512 instead of 1024
convolutional kernels at the coarsest level, consisting of a total of four max pooling layers.
Below, we show that this baseline does not generalize well to experimental data.

APPENDIX D. Training

Two different network architectures were trained to reduce limited-view artifacts in the signal
domain. The networks were implemented in pyTorch (v1.9) using CUDA (v11) and cuDNN
(v8) libraries. Two NVIDIA Titan X GPUs were used in parallel for training. Both networks
were trained for 200 epochs using batch size of 16. Adam optimizer with learning rate of
0.001 and weight decay of 10 were used for loss minimization. Style network was trained by
leveraging the combination of six different losses as described in methodology section. The
loss functions were weighted heuristically to arrange the effects of each loss. Specifically,
weights ℓadv_Latent, ℓpatch_sim and ℓpatch_exp were set to 0.001. ℓF M and ℓCycle were weighted
with 0.1. ℓMAE was directly added with weight of 1. All discriminators are trained with
gradient clipping penalty proposed in Arjovsky, Chintala, and Bottou [18] to mitigate the
potentially too strong of discriminator and poor convergence of the adversarial losses.
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APPENDIX E. Supplementary Results

Multi GT Linear GT ImpSide ImpSide-RC Unet       BM-1     BM-2       BM-3 Multi GT Linear GT ImpSide ImpSide-RC Unet       BM-1     BM-2       BM-3

BackProjection ElasticNet 1e-5

Figure 4.4: Example of reconstructions on the test set (sample number 1-16). Each row corresponds
to a different input signal. Each column corresponds to a different method (best viewed
digitally). “BM-1” - our sides network applied without prior style transfer network and
trained with both synthetic data and linear parts of experimental data, “BM-2” - our
sides network applied without prior style transfer network trained only on synthetic
data, “BM-3” - supervised sides network which predicts from linear part array signal of
concave parts.



97

Multi GT Linear GT ImpSide  ImpSide-RC  Unet       BM-1       BM-2       BM-3

BackProjection ElasticNet 1e-5

Multi GT Linear GT ImpSide  ImpSide-RC  Unet       BM-1       BM-2       BM-3

Figure 4.5: Example of reconstructions on the test set (sample number 17-32). Each row corresponds
to a different input signal. Each column corresponds to a different method (best viewed
digitally). “BM-1” - our sides network applied without prior style transfer network and
trained with both synthetic data and linear parts of experimental data, “BM-2” - our
sides network applied without prior style transfer network trained only on synthetic
data, “BM-3” - supervised sides network which predicts from linear part array signal of
concave parts
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Table 4.2: Reconstruction scores with respect to ground truth (GT) multisegment reconstruction
using Elastic Net (α = 10−5). “BM-1” - our sides network applied without prior style
transfer network and trained with both synthetic data and linear parts of experimental
data, “BM-2” - our sides network applied without prior style transfer network trained
only on synthetic data, “BM-3” - supervised sides network which predicts from linear
part array signal of concave parts. Name of our main proposed method is in bold.

Dataset/Metrics SSIM MSE Pearson PSNR
Linear GT 0.85 ± 0.06 0.0019 ± 0.0010 33.75 ± 2.22 75.86 ± 2.22
Side impute 0.89 ± 0.04 0.0018 ± 0.0008 33.89 ± 1.93 76.00 ± 1.93
Side impute RC 0.90 ± 0.03 0.0013 ± 0.0006 35.28 ± 2.17 77.39 ± 2.17
Unet 0.57 ± 0.10 0.0026 ± 0.0009 32.14 ± 1.73 74.25 ± 1.73
BM-1 0.86 ± 0.05 0.0019 ± 0.0011 33.92 ± 2.26 76.03 ± 2.26
BM-2 0.85 ± 0.06 0.0025 ± 0.0014 32.76 ± 2.40 74.87 ± 2.40
BM-3 0.84 ± 0.05 0.0025 ± 0.0011 32.50 ± 2.02 74.61 ± 2.02

Table 4.3: Reconstruction scores with respect to ground truth (GT) multisegment reconstruction
using backprojection (BP). “BM-1” - our sides network applied without prior style
transfer network and trained with both synthetic data and linear parts of experimen-
tal data,“BM-2” - our sides network applied without prior style transfer network trained
only on synthetic data,“BM-3” - supervised sides network which predicts from linear part
array signal of concave parts. Name of our main proposed method is in bold.

Dataset/Metrics SSIM MSE Pearson PSNR
Linear GT 0.67 ± 0.11 0.0013 ± 0.0007 35.37 ± 2.39 77.48 ± 2.39
Side impute 0.51 ± 0.13 0.0025 ± 0.0012 32.45 ± 2.02 74.56 ± 2.02
Side impute RC 0.64 ± 0.11 0.0014 ± 0.0008 35.11 ± 2.52 77.22 ± 2.52
Unet 0.49 ± 0.13 0.0036 ± 0.0018 30.92 ± 2.15 73.03 ± 2.15
BM-1 0.53 ± 0.13 0.0022 ± 0.0017 33.43 ± 2.74 75.54 ± 2.74
BM-2 0.50 ± 0.12 0.0025 ± 0.0024 32.93 ± 2.67 75.04 ± 2.67
BM-3 0.54 ± 0.13 0.0022 ± 0.0015 33.33 ± 2.75 75.44 ± 2.75
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Abstract

Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-
duration laser pulses followed by subsequent detection of ultrasound waves generated via
light-absorption-mediated thermoelastic expansion. OA imaging features a powerful com-
bination between rich optical contrast and high resolution in deep tissues. This enabled
the exploration of a number of attractive new applications both in clinical and laboratory
settings. However, no standardized datasets generated with different types of experimental
set-up and associated processing methods are available to facilitate advances in broader ap-
plications of OA in clinical settings. This complicates an objective comparison between new
and established data processing methods, often leading to qualitative results and arbitrary
interpretations of the data. In this paper, we provide both experimental and synthetic OA
raw signals and reconstructed image domain datasets rendered with different experimental
parameters and tomographic acquisition geometries. We further provide trained neural net-
works to tackle three important challenges related to OA image processing, namely accurate
reconstruction under limited view tomographic conditions, removal of spatial undersampling
artifacts and anatomical segmentation for improved image reconstruction. Specifically, we
define 44 experiments corresponding to the aforementioned challenges as benchmarks to be
used as a reference for the development of more advanced processing methods.
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5.1 Introduction

Optoacoustic (OA) imaging is being established as a powerful method with increasing appli-
cation areas in clinical [1, 2] and preclinical settings [3, 4]. Using nanosecond-duration pulsed
lasers operating in the visible and near infrared (NIR) optical wavelength range, biological
tissues are thermoelastically excited. This excitation yields ultrasound (US) waves, from
which OA images are tomographically reconstructed (Fig. 5.1a). The rich optical contrast
from endogenous tissue chromophores such as blood, melanin, lipids and others are combined
with high US resolution, i.e., tens of micrometers. This unique feature makes OA partic-
ularly suitable for molecular and functional imaging. Other important advantages such as
the feasibility of hand-held operation, the fast acquisition performance (real time feedback)
and the non-invasive safe contrast (i.e., non-ionizing radiation) further foster the wide use
of OA in multiple biomedical studies. OA imaging has been shown to provide unique capa-
bilities in studies with disease models e.g., of breast cancer [5–7], as well as for the clinical
assessment of Crohn’s disease [8], atherosclerotic carotid plaques [9] or skin cancer [10]. As
the range of applications of OA imaging gets broader, the need for different data processing
pipelines increases in parallel. Also, new methods are continuously being developed to pro-
vide an enhanced OA performance. Specific examples include increased temporal resolution
with compressed/sparse data acquisitions [11], accurate image reconstruction algorithms [12],
light fluence correction by segmenting the tissue boundaries [13] or enhanced spectral unmix-
ing algorithms from multispectral data [14].

Three major challenges suitable for data-driven approaches in clinical OA imaging are sum-
marized below:

Sparse acquisition: OA imaging provides a unique potential to monitor fast-changing
events such as cardiac arrhythmias [15], neuronal activity [16] or indocyanine green clear-
ance [17] in vivo. For this, ultra-fast imaging systems capable of capturing changes in living
organisms occurring at up to millisecond temporal scales are required. The main limiting
factor affecting the achievable frame rate is the data transfer capacity. This limitation can
be eliminated by reducing the number of acquired channels (signals). Therefore, sparse or
compressed sensing methods have been proposed both using conventional methods [11] and
deep learning algorithms [18].

Limited view reconstruction: OA is inherently a tomographic imaging modality. Ac-
quisition of pressure signals from different angles is essential to capture the information
encoded in US waves traveling in a three-dimensional (3D) medium in order to render ac-
curate tomographic reconstructions. This further increases the image contrast, resolution
and quantitativeness. However, tomographic coverage of the samples is often hindered by
physical restrictions. Thereby, new image processing pipelines have been suggested to im-
prove limited-view-associated challenges in OA imaging by using data-driven algorithms in
the image domain [19], signal domain [20] and combination of both domains [21, 22].
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Segmentation: Optimal OA reconstruction algorithms need to account for different optical
and acoustic properties in biological tissues and in the coupling medium (water). For ex-
ample, the speed of sound (SoS) depends on the elastic properties of the medium. Proper
assignment of SoS values in tissues and in water requires accurate delineation of the tissue
boundaries. Thereby, segmentation of structures [13, 23] in OA images has been shown to
enhance the image reconstruction performance. Additionally, the optical fluence (intensity)
also varies with depth across different tissues. This issue remains as one of the main factors
affecting quantification in OA images [24] and can also be corrected with tissue segmenta-
tion [25].

As an emerging method, OA imaging requires standardization, open source code publica-
tion and data sharing practices to expedite the development of new application areas and
data processing pipelines. Particularly, the aforementioned challenges associated to high data
throughput, limited angular coverage, SoS assignment and fluence corrections require coordi-
nated efforts between experimental and data science communities. Initial efforts to standard-
ize data storage formats and image reconstruction algorithms have been undertaken [26].
However, Gröhl et al. [26] focus on standard reconstruction algorithms and propose data
storage formats for acquisition related metadata. Data-driven image and signal processing
methods require additional initiatives on fast access to large bulks of OA image and signal
data and benchmarks for learning-based methods.

Here, we provide experimental data and simulations of forearm datasets as well as benchmark
networks aiming at facilitating the development of new image processing algorithms and
benchmarking. These “Experimental and Synthetic Clinical Optoacoustic Data (OADAT)”
include, (i) large and varied clinical and simulated forearm datasets with paired subsampled
or limited view image reconstruction counterparts, (ii) raw signal acquisition data of each
such image reconstruction, (iii) definition of 44 experiments with gold standards focusing on
the aforementioned OA challenges, (iv) pretrained model weights of the networks used for
each task, and (v) user-friendly scripts to load and evaluate the networks on our datasets.
The presented datasets and algorithms will expedite the research in OA image processing.

5.2 Background

For OA imaging, the objects are excited with the nanosecond-duration laser pulses in visible
or NIR light wavelengths which result in thermoelastic expansion of the structures. This
expansion generates pressure waves (US signals) that are detected by transducer arrays.
Corresponding images are reconstructed by solving the OA inverse problem on the acquired
signals. Below, we explain the transducer arrays used for data acquisition, the reconstruction
algorithm used to generate images from acquired signals and the sampling/acquisition tech-
niques. Detailed explanation about OA imaging and used tools can be found in Appendix
5.7.
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Figure 5.1: Experimental data acquisition, transducer arrays and resulting images. (a) Experimen-
tal setup for optoacoustic (OA) forearm imaging. (b) Semi circle array along with an
example of acquired images. (c) Multisegment array along with an example of acquired
images. (d) Uniform subsampling for the semi circle array (128, 64 and 32 elements) and
limited view acquisition for the semi circle array with reduced angular coverage (128 ele-
ments). (e) Uniform subsampling for the multisegment array (128, 64 and 32 elements),
and linear array acquisition for the multisegment array (128 elements). Transducer ele-
ments are shown as actively receiving (red) or off (white).
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5.2.1 Transducer Arrays

Semi circle array contains 256 transducers elements distributed equidistantly over a semi
circle (concave surface, Fig. 5.1b). Multisegment array is a combination of linear array in
the center and concave parts on the right and left sides, designed to increase angular coverage,
as shown in Fig. 5.1c. The linear part contains 128 elements and each of the concave parts
consist of 64 elements, totaling to 256. Linear array is the central part of the multisegment
array with 128 elements (Fig. 5.1c). The array geometry is optimized for US data acquisitions
with planar waves. Hence, it produces OA images with limited view artifacts due to reduced
angular coverage which is a limiting factor for OA image acquisitions. Virtual circle array
is generated to simulate images with 360 degree angular coverage and yields artifact free
reconstructions (Fig. 5.2a). It contains 1,024 transducer elements distributed over a full
circle with equal distance. We also have a virtual multisegment array that correspond to its
physical counterpart. Additional geometric and technical details are listed in Appendix 5.7.

5.2.2 Reconstruction Method

We use backprojection algorithm in this study to generate OA images from the acquired
signals1. This algorithm is based on delay and sum beamforming approach [27] (see Appendix
5.7 for details). First, a mesh grid is created to represent the imaged field of view. Then,
the distance between the points of the mesh grid and array elements are calculated based on
the known locations of the transducers. Time of flight is obtained through dividing distance
by the SoS values that are assigned based on the temperature of the imaging medium and
tissue properties. The clinical and simulated data are reconstructed with SoS of 1,510 m/s in
this study as the simulations and the experiments were done at the corresponding imaging
medium temperature. Unlike more sophisticated model-based reconstruction approaches [12],
backprojection is parameterized using only SoS, making it a stable choice across all imaged
scenes.

5.2.3 Sparse Sampling

Sparse sampling yields streak artifacts on reconstructed images due to large inter-element
pitch size. For a given angular coverage, i.e., transducer array geometry, using less transducer
elements for reconstruction causes stronger artifacts due to increased inter-element pitch size.
We define sparse sampled semi circle array acquisitions semi circle sparse 128, semi circle
sparse 64 and semi circle sparse 32 when using 128, 64 and 32 elements out of the 256
of semi circle array (Fig. 5.1d first three columns), respectively. Similarly, we define sparse
sampled virtual circle array acquisitions virtual circle sparse 128, virtual circle sparse
64 and virtual circle sparse 32 when using 128, 64 and 32 elements out of 1,024 of virtual
circle array (Fig. 5.2c first three rows), respectively. In addition, we also define sparse sampled
multisegment array acquisitions multisegment sparse 128, multisegment sparse 64 and
multisegment sparse 32 when using 128, 64 and 32 elements out of the 256 elements of
the multisegment array (Figs. 5.1e and 5.2d first three columns), respectively. All items

1Python module for OA reconstruction: github.com/berkanlafci/pyoat.

https://github.com/berkanlafci/pyoat


109

correspond to uniform and hence equidistant subsampling of the corresponding transducer
array signals.

Figure 5.2: Overview of the simulated data. (a) Virtual circle array and an image reconstructed
using 1,024 transducer elements. (b) Multisegment array and the corresponding image
reconstructed using combined linear and concave parts of the transducer array. (c)
Uniform subsampling of virtual circle array with 128, 64 and 32 elements and limited
view acquisition with reduced angular coverage (128 elements). (d) Uniform subsampling
of multisegment array with 128, 64 and 32 elements and linear array acquisition (128
elements). (e) Vessel size distribution (pixels per vessel), number of vessels per image,
and peak signal-to-noise ratio of full sampling compared to other reconstructions (x
axis naming conventions are explained in Sec. 5.3.3). Transducer elements are shown as
actively receiving (red) or off (white).

5.2.4 Limited View

Limited view acquisitions lead to distorted geometry (e.g., elongated vessels) due to the
reduced angular coverage (Figs. 5.1d,e & 5.2c,d last column, limited 128 and linear 128). To
mimic commonly occurring limited view settings, we use a continuous subset of elements for
a given transducer. This corresponds to retaining inter-element pitch size while reducing the
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angular coverage. We define a limited view acquisition for each transducer array as follows:
(i) Linear array is the common practice in clinical settings for US data acquisition [28, 29].
Typically, the same linear geometry is combined with OA imaging to provide complementary
information [30]. To model this clinically realistic scenario, we use the linear part of the
multisegment array for OA image reconstruction. (ii) Semi circle limited 128 uses half
of the semi circle array; 128 transducer elements, yielding a quarter circle. The differences
between linear and semi circle limited view array acquisitions are the inter-element pitch
size, focusing and geometry of the active area. (iii) Virtual circle limited 128 uses 128
consecutive elements (one eighth of a circle) out of 1,024.

5.3 Datasets

We present four datasets 2 3 (two experimental, one simulated, one fully annotated subset)
where each has several subcategories for the purpose of tackling different challenges present
in the domain. Raw signal acquisition data that is used to reconstruct all images are also
provided with the datasets. Experimental datasets also include details about the volunteer
Fitzpatrick skin phototype [31], which relates to the amount of melanin pigment in the
skin (see Appendix 5.7 for distribution and further details). We also display a comparative
overview of publicly available and our proposed OA datasets in Table 5.1. Please refer to
Tables 5.5, 5.6, 5.7, 5.8, and 5.9 for summaries of the file contents of the datasets in the
Appendix.

Table 5.1: Publicly available OA datasets, supported tasks, provided data format(s), size, and con-
tent. Davoudi et al. [18] contains 274 mice and 469 phantom slices. Huang et al. [32] has
10 mice with 10 frames (100 slices) at 27 different wavelengths and 20 phantom slices.

Dataset tasks image
reconstruction

raw
signal

size
(>5k instances)

clinical
datalimited

view
sparse

sampling
pixel

annotations

Davoudi et al. [18] ✗ ✓ ✗ ✓ ✗ ✗ ✗
Huang et al. [32] ✗ ✗ ✗ ✗ ✓ ✗ ✗
MSFD (ours) ✓ ✗ ✗ ✓ ✓ ✓ ✓
SWFD (ours) ✓ ✓ ✗ ✓ ✓ ✓ ✓
SCD (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✗
OADAT-mini (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✗ ∪ ✓

5.3.1 Multispectral Forearm Dataset

Multispectral forearm dataset (MSFD) is collected using multisegment array (Sec. 5.2.1) from
nine volunteers at six different wavelengths (700, 730, 760, 780, 800, 850 nm) for both arms.
Selected wavelengths are particularly aimed for spectral decomposition aiming to separate
oxy- and deoxy-hemoglobin [33]. All wavelengths are acquired consecutively, yielding almost
identical scene being captured for a given slice across different wavelengths with slight dis-
placement errors. For each of the mentioned category 1,400 slices are captured, creating a

2Link to our datasets: doi.org/10.3929/ethz-b-000551512
3Repository for accessing and reading datasets: github.com/berkanlafci/oadat

https://doi.org/10.3929/ethz-b-000551512
https://github.com/berkanlafci/oadat
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sum of 9 × 6 × 2 × 1, 400 = 151, 200 unique signal matrices.

From this data, using backprojection algorithm, we reconstruct (i) linear array images MSFDlinear,
(ii) multisegment array images MSFDms, (iii) multisegment sparse 128 images (Sec.5.2.3),
MSFDms,ss128, (iv) multisegment sparse 64 images (Sec.5.2.3), MSFDms,ss64, and (v) multi-
segment sparse 32 images (Sec.5.2.3), MSFDms,ss32, where each dataset has 151,200 images
of 256 × 256 pixel resolution; totaling to 756,000 image instances.

5.3.2 Single Wavelength Forearm Dataset

Single wavelength forearm dataset (SWFD) is collected using both multisegment and semi
circle arrays (Sec. 5.2.1) from 14 volunteers at a single wavelength (1,064 nm) for both arms.
The choice of the wavelength is based on maximizing penetration depth for excitation light
source (laser) [34]. Out of the 14 volunteers, eight of them have also participated in the
MSFD experiment and their unique identifiers match across the dataset files. For each array,
volunteer, and arm, we acquired 1,400 slices, creating a sum of 2 × 14 × 2 × 1, 400 = 78, 400
unique signal matrices. It is important to note that despite the data being acquired from
the same volunteers, signals between multisegment array and semi circle array are not paired
due to physical constraints.

From this data, using backprojection algorithm, we reconstruct (i) linear array images,
SWFDlinear, (ii) multisegment array images, SWFDms, (iii) semi circle array images, SWFDsc,
(iv) semi circle array limited 128 images (Sec.5.2.4), SWFDsc,lv128, (v) semi circle sparse 128
images (Sec.5.2.3), SWFDsc,ss128, (vi) semi circle sparse 64 images (Sec.5.2.3), SWFDsc,ss64,
(vii) semi circle sparse 32 images (Sec.5.2.3), SWFDsc,ss32, (viii) multisegment sparse 128 im-
ages (Sec.5.2.3), SWFDms,ss128, (ix) multisegment sparse 64 images (Sec.5.2.3), SWFDms,ss64,
and (x) multisegment sparse 32 images (Sec.5.2.3), SWFDms,ss32, where each dataset has
39,200 images of 256 × 256 pixel resolution; totaling to 392,000 image instances.

5.3.3 Simulated Cylinders Dataset

Simulated cylinders dataset (SCD) is a group of synthetically generated 20,000 forearm acous-
tic pressure maps that we heuristically produced based on a range of criteria we observed in
experimental images. The acoustic pressure maps are generated with 256 × 256 pixel reso-
lution where skin curves and afterwards a random amount of ellipses with different intensity
profiles are generated iteratively for a given image (see Fig. 5.2). We explain details for the
simulation algorithm4 for generating acoustic pressure map in Appendix 5.7.

Based on the acoustic pressure map, we generate its annotation map with three labels, corre-
sponding to background, vessels, and skin curve. For each acoustic pressure map, we generate
signal matrices for the geometries of linear, multisegment and virtual circle arrays. Using
linear and multisegment array signals, we use backprojection algorithm to reconstruct (i) lin-
ear array images, SCDlinear, and (ii) multisegment array images, SCDms, (iii) multisegment

4Python module for acoustic map simulation: renkulab.io/gitlab/firat.ozdemir/oa-armsim.

https://renkulab.io/gitlab/firat.ozdemir/oa-armsim
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sparse 128 images (Sec.5.2.3), SCDms,ss128, (iv) multisegment sparse 64 images (Sec.5.2.3),
SCDms,ss64, and (v) multisegment sparse 32 images (Sec.5.2.3), SCDms,ss32. From virtual
circle array signals, we use backprojection algorithm to reconstruct (vi) virtual circle images,
SCDvc, (vii) virtual circle limited 128 images (Sec.5.2.4), SCDvc,lv128, (viii) virtual circle
sparse 128 images (Sec.5.2.3), SCDvc,ss128, (ix) virtual circle sparse 64 images (Sec.5.2.3),
SCDvc,ss64, and (x) virtual circle sparse 32 images (Sec.5.2.3), SCDvc,ss32, where each dataset
has 20,000 images of 256 × 256 pixel resolution; totaling to 200,000 image instances. All ten
image reconstruction variations of SCD have corresponding pairs for each of the 20k image;
i.e., produced from the same acoustic pressure map.

5.3.4 OADAT-mini Dataset

Using a subset of 100 signal and corresponding reconstruction instances from each of the
previously mentioned datasets, we also present OADAT-mini, which is a fragment of OADAT
that is significantly smaller yet comprehensive for understanding the contents of OADAT. In
addition, OADAT-mini contains manual annotation maps for vessels in the reconstructed
images.

5.4 Tasks

Based on the datasets presented in Sec. 5.3, we define a list of experiments related to image
translation to overcome (i) sparse sampling and (ii) limited view artifacts, and semantic
segmentation of images.

5.4.1 Image Translation

Through a list of permutations of our datasets, we can define several pairs of varying difficulty
of image translation experiments where the target images are also available (see Table 5.2).
We present sparse sampling and limited view reconstructions of SWFD, MSFD and SCD
for all transducer arrays. Sparse sampling correction experiments learn mapping functions
listed in Table 5.2, where the function notations denote the dataset used, the task of sparse
sampling (ss) correction from the given number of elements used for image reconstruction
and the array that is used to generate the input. Limited view correction experiments learn
mapping functions, listed in Table 5.2, where the function notations denote the dataset used,
the task of limited view (lv) correction from the given number of elements used for image
reconstruction and the array that is used to generate the input.

5.4.2 Semantic Segmentation

SCD includes pixel annotations for skin curve, vessels and background. In addition to seg-
mentation of these structures on the ideal reconstructions SCDvc, we define this task on sparse
sampling and limited view reconstructions that contain the relevant artifacts encountered in
experimental data. Accordingly, we compose the nine segmentation experiments listed in
Table 5.2, where the function notations denote the task segmentation (seg), type of the re-
constructed input being used (virtual circle (vc), limited view (lv), and sparse sampling (ss))
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Table 5.2: List of tasks and experiments we define on MSFD, SWFD, and SCD. Experiment names
are built of (i) dataset name for translation tasks or seg for segmentation task, (ii) input
data and corresponding number of active array elements; sparse sampling (ss), limited
view (lv), virtual circle (vc), and (iii) input array type; semi circle (sc), virtual circle (vc),
linear (li), multisegment (ms). Image data and annotation maps are represented with x
and y, while predicted image and annotations are shown as x∗ and y∗.

Limited view correction Semantic segmentation

fMSFD_lv128,li: x ∼ MSFDlinear → x∗ ∼ MSFDms fseg_vc,vc: x ∼ SCDvc → y∗ ∼ labels
fSWFD_lv128,li: x ∼ SWFDlinear → x∗ ∼ SWFDms fseg_lv128,li: x ∼ SCDlinear → y∗ ∼ labels
fSWFD_lv128,sc: x ∼ SWFDsc,lv128 → x∗ ∼ SWFDsc fseg_lv128,vc: x ∼ SCDvc,lv128 → y∗ ∼ labels
fSCD_lv128,li: x ∼ SCDlinear → x∗ ∼ SCDvc fseg_ss128,vc: x ∼ SCDvc,ss128 → y∗ ∼ labels
fSCD_lv128,vc: x ∼ SCDvc,lv128 → x∗ ∼ SCDvc fseg_ss64,vc: x ∼ SCDvc,ss64 → y∗ ∼ labels
fSCD_lv256,ms: x ∼ SCDms → x∗ ∼ SCDvc fseg_ss32,vc: x ∼ SCDvc,ss32 → y∗ ∼ labels

Sparse sampling correction fseg_ss128,ms: x ∼ SCDms,ss128 → y∗ ∼ labels

fSWFD_ss128,sc: x ∼ SWFDsc,ss128 → x∗ ∼ SWFDsc
fseg_ss64,ms: x ∼ SCDms,ss64 → y∗ ∼ labels

fSWFD_ss64,sc: x ∼ SWFDsc,ss64 → x∗ ∼ SWFDsc
fseg_ss32,ms: x ∼ SCDms,ss32 → y∗ ∼ labels

fSWFD_ss32,sc: x ∼ SWFDsc,ss32 → x∗ ∼ SWFDsc
fseg_MSFD_lv128,ms: x ∼ MSFDlinear → y∗ ∼ labels

fSCD_ss128,vc: x ∼ SCDvc,ss128 → x∗ ∼ SCDvc
fseg_MSFD_ss128,ms: x ∼ MSFDms,ss128 → y∗ ∼ labels

fSCD_ss64,vc: x ∼ SCDvc,ss64 → x∗ ∼ SCDvc
fseg_MSFD_ss64,ms: x ∼ MSFDms,ss64 → y∗ ∼ labels

fSCD_ss32,vc: x ∼ SCDvc,ss32 → x∗ ∼ SCDvc
fseg_MSFD_ss32,ms: x ∼ MSFDms,ss32 → y∗ ∼ labels

fSWFD_ss128,ms: x ∼ SWFDms,ss128 → x∗ ∼ SWFDms
fseg_SWFD_lv128,ms: x ∼ SWFDlinear → y∗ ∼ labels

fSWFD_ss64,ms: x ∼ SWFDms,ss64 → x∗ ∼ SWFDms
fseg_SWFD_lv128,sc: x ∼ SWFDsc,lv128 → y∗ ∼ labels

fSWFD_ss32,ms: x ∼ SWFDms,ss32 → x∗ ∼ SWFDms
fseg_SWFD_ms,ms: x ∼ SWFDms → y∗ ∼ labels

fSCD_ss128,ms: x ∼ SCDms,ss128 → x∗ ∼ SCDvc
fseg_SWFD_sc: x ∼ SWFDsc → y∗ ∼ labels

fSCD_ss64,ms: x ∼ SCDms,ss64 → x∗ ∼ SCDvc
fseg_SWFD_ss128,sc: x ∼ SWFDsc,ss128 → y∗ ∼ labels

fSCD_ss32,ms: x ∼ SCDms,ss32 → x∗ ∼ SCDvc
fseg_SWFD_ss64,sc: x ∼ SWFDsc,ss64 → y∗ ∼ labels

fMSFD_ss128,ms: x ∼ MSFDms,ss128 → x∗ ∼ MSFDms
fseg_SWFD_ss32,sc: x ∼ SWFDsc,ss32 → y∗ ∼ labels

fMSFD_ss64,ms: x ∼ MSFDms,ss64 → x∗ ∼ MSFDms
fseg_SWFD_ss128,ms: x ∼ SWFDms,ss128 → y∗ ∼ labels

fMSFD_ss32,ms: x ∼ MSFDms,ss32 → x∗ ∼ MSFDms
fseg_SWFD_ss64,ms: x ∼ SWFDms,ss64 → y∗ ∼ labels
fseg_SWFD_ss32,ms: x ∼ SWFDms,ss32 → y∗ ∼ labels

and the array that is used to generate the input. All data is generated from SCD and the
objective is to match the ground truth annotations of the acoustic pressure map. Different
than SCD, experimental datasets under OADAT-mini include pixel annotations for vessels
and consist of 14 segmentation experiments, also listed in Table 5.2.

5.5 Experiments and Results

c3- BN relu c3-

c1-

BN relu

Figure 5.3: Residual convolutional block with batch nor-
malization (BN). ci-j conv. layer have i × i ker-
nels and j filters.

For all experiments we standard-
ize the architecture that we based
on UNet [35]. Specifically, we
adopt the five spatial feature ab-
straction levels and use skip con-
nections to concatenate with fea-
tures of matching spatial dimension
along the upsampling path. How-
ever, we make several distinct design choices that vary from vanilla UNet. First, we use
attention gates [36] at the end of each skip connection. Second, we opt for residual con-
volutional blocks with batch normalization [37] at each level, shown in Fig. 5.3. Third, we
use two-dimensional (2D) bilinear upsampling instead of deconvolutions. Finally, we use half
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the number of convolutional kernels at each layer; e.g., start with 32 convolutional filters
as opposed to 64. Full schematic as well as other implementation details are discussed in
Appendix 5.7. We refer to our modified UNet architecture as modUNet hereon.

5.5.1 Data Split and Preprocessing

We standardize how we split each dataset into training and test sets regardless of the task
in order to ensure consistency in our and future experiments. Out of the nine volunteers in
MSFD, we use five for training (IDs: 2, 5, 6, 7, 9), one for validation (ID: 10) and three for
testing (IDs: 11, 14, 15). Out of the 14 volunteers in SWFD, we use eight for training (IDs:
1, 2, 3, 4, 5, 6, 7, 8), one for validation (ID: 9) and five for testing (IDs: 10, 11, 12, 13, 14).
Out of the 20k slices in SCD, we use the first 14k for training, following 1k for validation, and
the last 5k for testing. For each experiment conducted on OADAT-mini, we use the first 75
samples for training, next 5 for validation and the last 20 for quantitative evaluation. This
translates to six times the numbers for MSFD-mini, where there are 100 samples for each
of the six wavelengths. As before, we conduct the MSFD-mini segmentation experiments
as a single modUNet attempting segment any of the given six wavelength samples. As a
preprocessing step, all data instances (except for annotation maps) are independently scaled
by their maximum and then clipped at a minimum value of −0.2 [38].

5.5.2 Results

We evaluate modUNet performance on the test sets using standard metrics. Namely, we
report mean absolute error (MAE), root mean squared error (RMSE), structural similar-
ity index (SSIM), and peak signal to noise ratio (PSNR) for image translation experiments
between modUNet predictions and targets. Segmentation task performance is reported us-
ing Dice coefficient (F1-score), intersection over union (IoU) (i.e., Jaccard index) and 95-
percentile Hausdorff distance (HD95) metrics between modUNet predictions and annotation
maps for vessels and skin curves. HD95 is calculated in several steps: First, the set of pixels
along the contour for each predicted (set A) and annotated (set B) target structures are
found. For each set point, the closest point from the other set is determined based on l2

distance. Different from the standard Hausdorff distance, the 95-percentile distance value is
taken as the directional distance from set A to B (and vice versa) instead of the maximum
distance. Then the maximum of these two values is calculated as the symmetric HD95 for a

Figure 5.4: Distribution of modUNet structural similarity index (SSIM) performance on simulated
cylinders dataset (SCD)(left), single wavelength forearm dataset (SWFD) (middle) and
multispectral forearm dataset (MSFD) (right) image translation experiments, sorted in
ascending median test sample performance.
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Table 5.3: Image translation results of the proposed modUNet model reported as mean ±std. Each
row corresponds to the results of the experiment where input data is identified through (i)
the input data and corresponding number of active transducer elements; sparse sampling
(ss), limited view (lv) and (ii) the array type used for input; semi circle (sc), virtual
circle (vc), linear (li), multisegment (ms).

MAE RMSE SSIM PSNR

SCD

Limited view
lv128,li 0.005 ±1.3e-3 0.012 ±3.3e-3 0.978 ±7.2e-3 39.909 ±2.15
lv128,vc 0.005 ±1.3e-3 0.013 ±3.4e-3 0.978 ±6.2e-3 39.853 ±2.18
lv256,ms 0.005 ±1.2e-3 0.009 ±3.0e-3 0.984 ±6.1e-3 42.459 ±2.52

Sparse view

ss128,vc 0.004 ±1.1e-3 0.008 ±2.0e-3 0.985 ±6.1e-3 44.068 ±2.12
ss64,vc 0.005 ±1.3e-3 0.011 ±2.9e-3 0.981 ±6.9e-3 41.402 ±2.25
ss32,vc 0.006 ±1.5e-3 0.013 ±3.7e-3 0.973 ±8.7e-3 39.309 ±2.23
ss128,ms 0.005 ±1.1e-3 0.010 ±3.0e-3 0.984 ±6.1e-3 42.345 ±2.39
ss64,ms 0.005 ±1.2e-3 0.010 ±3.0e-3 0.982 ±6.7e-3 41.525 ±2.19
ss32,ms 0.005 ±1.3e-3 0.011 ±3.0e-3 0.979 ±7.3e-3 40.678 ±2.10

SWFD

Limited view lv128,li 0.028 ±1.6e-2 0.039 ±2.0e-2 0.613 ±1.4e-1 29.397 ±4.75
lv128,sc 0.016 ±1.2e-2 0.021 ±1.5e-2 0.811 ±1.3e-1 36.791 ±5.30

Sparse view

ss128,sc 0.015 ±1.2e-2 0.019 ±1.5e-2 0.863 ±1.0e-1 38.233 ±5.35
ss64,sc 0.019 ±1.5e-2 0.024 ±1.8e-2 0.769 ±1.6e-1 35.605 ±5.22
ss32,sc 0.021 ±1.6e-2 0.028 ±2.0e-2 0.693 ±2.0e-1 33.852 ±5.37
ss128,ms 0.023 ±1.5e-2 0.028 ±1.9e-2 0.784 ±9.7e-2 33.764 ±4.53
ss64,ms 0.029 ±1.9e-2 0.037 ±2.3e-2 0.636 ±1.5e-1 31.311 ±4.80
ss32,ms 0.033 ±2.1e-2 0.042 ±2.5e-2 0.521 ±1.8e-1 29.813 ±5.11

MSFD
limited view lv128,li 0.023 ±1.1e-2 0.035 ±1.4e-2 0.640 ±1.4e-1 29.731 ±3.97

Sparse view
ss128,ms 0.017 ±9.7e-3 0.022 ±1.2e-2 0.839 ±8.1e-2 35.798 ±3.84
ss64,ms 0.022 ±1.2e-2 0.029 ±1.5e-2 0.719 ±1.4e-1 33.104 ±4.02
ss32,ms 0.026 ±1.4e-2 0.036 ±1.7e-2 0.608 ±1.8e-1 30.873 ±4.22

given image. In OADAT-mini experiments, only vessel annotation maps are available. Since
OADAT-mini consist of subsets of the other three datasets, we do not repeat image transla-
tion tasks. In Tables 5.3 & 5.4 we report modUNet results for mean and standard deviations
aggregated over the corresponding test set images.

Using SSIM, we show performance across all our datasets in Fig. 5.4. Upon exploring the
reason behind the long tails, we notice that most of the lower scores occur when acquisition
noise and/or artifacts are more pronounced. Depending on the sample, this can imply either
modUNet reduced the noise present in the target, or both input/output pair in the test set
had low signal-to-noise ratio (SNR). Nevertheless, modUNet successfully corrects geometric
distortions for limited view experiments. Given the low mean and standard deviations in
MAE and RMSE, we can comment that modUNet can generalize well to previously unseen
volunteer data. This is further corroborated with the narrow SSIM interquartile range in
Fig. 5.4 violin plots.

Similarly, we plot the segmentation performance for IoU across different experiments on SCD
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Figure 5.5: Distribution of modUNet intersection over union (IoU) performance on simulated cylin-
ders dataset (SCD) semantic segmentation experiments for vessel (left) and skin curve
(right) labels, sorted in ascending median test sample performance.

in Fig. 5.5 for vessel and skin curve labels. While skin curve segmentation performance al-
most never drops below IoU of 0.80 for SCD, one can see that IoU can be drastically lower
for vessel segmentation. We observed that this only happens when the size of vessel is small.
For example, there are examples with ground truth vessels having as low as four pixels while
the prediction has six, leading to an IoU of 0.6. As for experiments with OADAT-mini, vessel
segmentation performance in experimental datasets are worse. Specifically, the worst scores
are observed for MSFD-mini experiments. This is due to the movement artifact between
different wavelengths of a given slice. All MSFD-mini instances have expert annotations for
800 nm wavelength. Slight movement across different wavelengths can yield poor quantita-
tive metrics, particularly exacerbated when the observed vessels are small. Given the limited
training and test sizes of OADAT-mini experiments, we believe that the quantitative results
should be taken as a reference. The qualitative results in the Appendix can be more informa-
tive for gaining insight for modUNet performance when trained with a very limited amount
of data. We provide qualitative results as well as conduct further analysis for all tasks in
Appendix 5.7.

5.6 Discussion

Major differences exist between simulated and experimental datasets. Even if the content
is different, training and test samples of the simulated dataset are inherently sampled from
the same distribution. On the other hand, experimental datasets feature shifts due to differ-
ent volunteers being imaged, inherent noise from data acquisition system, and difference in
directional sensitivity resulting from transducer alignment and positioning of the hand-held
probe. Furthermore, despite the efforts to avoid corrupted acquisitions during the data col-
lection, experimental datasets still contain samples with relatively low signal-to-noise ratio.
Such samples are expected to yield reduced performance metrics for image translation tasks
due to significant mismatch between the predicted and noisy target images. In a clinical
setting, a medical expert typically repeats an acquisition if they deem the signal quality is
significantly lower than expected. However, beyond this subjective filtering step, one needs
to make sure that even the worst results are either sufficiently good or their poor performance
can be attributed to a cause. Accordingly, we further analyze some of the worst samples in
the Appendix and believe that this should be a standard for future work. Provided dataset
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Table 5.4: Segmentation results of our proposed modUNet model reported as mean ±std. Each row
corresponds to the results of the experiment where input data is identified through (i) the
input data and corresponding number of active transducer elements; sparse sampling (ss),
limited view (lv), virtual circle (vc), semi circle (sc), multisegment (ms) and (ii) the array
type used for input; virtual circle (vc), semi circle (sc), multisegment (ms), and linear (li).
single wavelength forearm dataset (SWFD)- and multispectral forearm dataset (MSFD)-
mini correspond to experiment conducted on OADAT-mini dataset.

Dice IoU HD95

vessels skin curve vessels skin curve vessels skin curve

SCD
Full view vc,vc 0.996 ±9.8e-3 0.999 ±8.7e-4 0.993 ±1.8e-2 0.999 ±1.7e-3 0.792 ±1.0e+0 0.164 ±2.0e+0

Limited view lv128,li 0.963 ±3.4e-2 0.988 ±7.3e-3 0.931 ±5.5e-2 0.976 ±1.4e-2 2.734 ±2.9e+0 2.196 ±7.4e+0
lv128,vc 0.933 ±5.8e-2 0.978 ±1.1e-2 0.878 ±8.6e-2 0.957 ±2.1e-2 4.310 ±8.9e+0 7.372 ±1.4e+1

Sparse view

ss128,vc 0.980 ±2.3e-2 0.990 ±4.7e-3 0.961 ±4.0e-2 0.980 ±9.1e-3 2.499 ±5.2e+0 3.897 ±1.0e+1
ss64,vc 0.967 ±2.8e-2 0.965 ±1.5e-2 0.937 ±4.6e-2 0.933 ±2.8e-2 2.738 ±3.0e+0 9.634 ±1.5e+1
ss32,vc 0.938 ±3.9e-2 0.946 ±2.3e-2 0.886 ±6.0e-2 0.899 ±4.1e-2 3.074 ±3.1e+0 12.220 ±1.6e+1
ss128,ms 0.983 ±2.4e-2 0.994 ±2.9e-3 0.968 ±4.1e-2 0.989 ±5.6e-3 2.289 ±2.4e+0 5.311 ±1.3e+1
ss64,ms 0.984 ±2.4e-2 0.993 ±3.1e-3 0.969 ±4.1e-2 0.985 ±6.1e-3 2.772 ±8.2e+0 2.668 ±8.5e+0
ss32,ms 0.971 ±2.8e-2 0.985 ±4.8e-3 0.945 ±4.5e-2 0.971 ±9.2e-3 3.026 ±7.0e+0 6.795 ±1.5e+1

SWFD-mini

Full view sc,sc 0.857 ±5.7e-2 N/A 0.755 ±8.5e-2 N/A 17.225 ±2.8e+1 N/A
ms,ms 0.842 ±5.9e-2 N/A 0.732 ±8.6e-2 N/A 17.218 ±2.6e+1 N/A

Limited view lv128,li 0.794 ±6.4e-2 N/A 0.662 ±8.3e-2 N/A 28.685 ±3.9e+1 N/A
lv128,sc 0.843 ±5.5e-2 N/A 0.732 ±7.8e-2 N/A 24.444 ±2.6e+1 N/A

Sparse view

ss128,sc 0.864 ±4.3e-2 N/A 0.763 ±6.5e-2 N/A 23.146 ±3.0e+1 N/A
ss64,sc 0.841 ±1.1e-1 N/A 0.737 ±1.3e-1 N/A 20.216 ±2.8e+1 N/A
ss32,sc 0.864 ±4.1e-2 N/A 0.762 ±6.3e-2 N/A 26.832 ±3.0e+1 N/A
ss128,ms 0.836 ±5.8e-2 N/A 0.722 ±8.3e-2 N/A 17.909 ±2.8e+1 N/A
ss64,ms 0.837 ±5.6e-2 N/A 0.723 ±8.0e-2 N/A 15.811 ±2.3e+1 N/A
ss32,ms 0.809 ±6.0e-2 N/A 0.684 ±8.2e-2 N/A 20.603 ±3.1e+1 N/A

MSFD-mini
Limited view lv128,li 0.474 ±1.3e-1 N/A 0.320 ±1.2e-1 N/A 20.134 ±3.3e+1 N/A

Sparse view
ss128,ms 0.563 ±1.0e-1 N/A 0.400 ±1.1e-1 N/A 14.312 ±1.9e+1 N/A
ss64,ms 0.572 ±1.2e-1 N/A 0.411 ±1.3e-1 N/A 19.716 ±2.1e+1 N/A
ss32,ms 0.639 ±1.4e-1 N/A 0.485 ±1.5e-1 N/A 11.499 ±1.7e+1 N/A

is limited to one body part of volunteers without any known health issues. The image recon-
struction methods for OA imaging can be applied on any other body part or imaging setup
as they solve the same physical inverse problem. The image translation algorithms for sparse
acquisition and limited view problems can be adapted for different devices and acquisitions
by another clinician/technician at another center, as the streak artifacts originating from
sparse acquisition and limited view follow the same pattern.

We envision that future research will tackle additional challenges such as unsupervised or
weakly supervised domain adaptation across the datasets provided in this work. There are
initial studies to correct limited view artifacts in OA using transfer learning between sim-
ulated and experimental datasets after domain adaptation [20]. Similarly, transfer learning
between simulated and experimental domains can enhance segmentation performance of the
vessels and skin curve in clinical images. Using properties of the detected tissues for fluence
correction and heterogeneous SoS image reconstructions would then yield more accurate and
quantitative images [39]. We anticipate additional contributions in the field of representation
learning using OADAT, e.g. through self-supervised learning, could allow overcoming bottle-
necks for specialized downstream tasks with limited amount of task-specific available data.
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The multispectral datasets with paired images across multiple wavelength acquisitions are
expected to facilitate the investigation of generative modeling of multispectral signals from
a given wavelength. We also anticipate future work to explore novel multispectral unmix-
ing approaches using MSFD, enabling more accurate quantification of oxygenation, melanin
and lipid content of the tissues. Finally, the provided raw signal data, not available in com-
mercial devices, has a high value for data-driven research. For example, it can serve to
benchmark methodologies in image reconstruction e.g., based on variational networks with
loop unrolling [40], as well as ultra-fast imaging through adaptive channel sampling.

5.7 Conclusion

In this work, we provide experimental and synthetic clinical OA data covering a large variety
of examples to be used as common ground to compare established and new data processing
methods. The datasets correspond to samples from volunteers of varying skin types, different
OA array geometries, and several illumination wavelengths. A subset of this experimen-
tal data is annotated by an expert. The dataset is supplemented with simulated samples
containing ground truth acoustic pressure maps, annotations, and combine pairs of samples
reconstructed with different OA array geometries. We define a set of 44 experiments tack-
ling major challenges in the OA field and provide reconstructions of the images under these
scenarios along with their corresponding ground truths. We propose and release 44 5 trained
neural networks that achieve a good performance for all these examples which can be used as
baselines for future improvements. Additional problems can further be defined with the data
provided, such as the effects of random sparse sampling or the presence of noise in the signal
matrices prior to reconstruction. We believe that these datasets and benchmarks will play a
significant role in fostering coordinated efforts to solve major challenges in OA imaging.

5Pretrained model weights and various scripts to train and evaluate modUNet are available at
https://renkulab.io/gitlab/firat.ozdemir/oadat-evaluate.

https://renkulab.io/gitlab/firat.ozdemir/oadat-evaluate
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APPENDIX A. Optoacoustic imaging background

OA imaging setups contain light source, transducer array, data acquisition system and work-
station PC. Usually, nanosecond-duration pulsed lasers are used as light sources. Alterna-
tively, light emitting diodes (LEDs) can be used with high repetition rates (shorter pulses)
as cheaper alternatives to lasers. The excitation of objects/tissues with short, pulsed light
sources results in heating and expansion (thermoelastic expansion) of the materials. This ex-
pansion generates OA signals (US waves) that propagate to various directions in a 3D imaging
medium (see 5.7 for detailed explanation of pressure waves). Transducer arrays are used to
capture the propagating waves in the imaging medium. Piezocomposite elements in these
arrays convert mechanical pressure waves into electrical signals (see 5.7 for transducer array
specifications). After the detection and conversion, the electrical signals are digitized by the
data acquisition systems at the defined sampling rate. The signals are acquired and digitized
by all the elements in a transducer array simultaneously. The OA acquisition generates time
domain (raw) signals acquired from each transducer element. Image reconstruction is per-
formed by solving the inverse problem of signal to image domain conversion. In this study, we
used backprojection method to reconstruct OA images (see 5.7 for the detailed explanation of
the method and used algorithms). Overall data acquisition system and experimental design
are explained in 5.7.

A.1. Optoacoustic wave equations

OA imaging is based on thermoelastic expansion of the tissues which results in propagation
of pressure waves in imaging medium depending on spatial and temporal changes. The OA
wave equation can be written as follows

∂2p(r,t)
∂t2 − c2∇2p(r, t) = ΓH(r, t)∂δ(t)

∂t

where r and t are the spatial and temporal variables, respectively. Γ is the Grüneisen constant
[41]. c stands for speed of sound. H(r, t) is the absorbed energy field based on the location
and time of the sample. δ(t) stands for temporal laser light intensity change based on the
illumination. p(r, t) represents the pressure wave dependent on spatial and temporal variables.
The Poisson solution of OA wave equation for pressure wave can be written as

p(r, t) = Γ
4πc

∂
∂t

∫
S′

H(r′)
|r−r′|dS′

where S′ is the time dependent spherical surface defined by |r − r′| = ct. This equation
represents OA forward model which inverse problem of reconstruction can be derived. OA
images are reconstructed by absorbed energy field H(r′) at specific location based on mea-
sured pressure waves. H(r′) is calculated from detected pressure waves at the surface S as
follows

H(r′) = 1
Γ

∫
Ω

dΩ
Ω

[
2p(r, t) − 2t∂p(r,t)

∂t

]
t= r−r′

c

.

The constants at this equation can be omitted. After omitting the constants in the formula,
the equation is discretized as
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H(r′
j) =

∑ [
p(ri, tij) − tij

∂p(ri,tij)
∂t

]
where r′

j is the j-th point on the defined reconstruction grid, ri is the position of i-th trans-
ducer and tij = |ri − r′

j |/c. In summary, the equation calculates the distance between a point
on the defined grid and an element of the transducer array. Then, it finds the corresponding
wave intensity in signal (or defined as surface) based on the time of flight calculated using
speed of sound in the imaging medium.

A.2. Transducer array details

Semi circle: The array contains 256 piezocomposite transducers distributed over a semi
circle (concave surface) equidistantly with the radius of 40 mm (Fig. 5.1b, main manuscript).
The single transducer elements have dimensions of 0.37 mm × 15 mm with inter-element dis-
tance of 0.10 mm. This configuration of transducer elements results in cylindrical (toroidal)
focusing at 38 mm (close to the center of the array). The central peak frequency of array is
5 MHz with 60% bandwidth at -6 dB.

Multisegment: The array is formed by the combination of a linear detector array and con-
cave parts on the right and left sides as shown in Fig. 5.1c (main manuscript). The linear
part contains 128 elements distributed on a linear surface with inter-element pitch size of 0.25
mm. Both of the concave parts include 64 elements which make the total number of elements
equal to 256 (128 linear + 128 concave). The inter-element pitch size of concave part is 0.6
mm with 40 mm radius of curvature. The height of all elements are equal to 10 mm. Concave
parts are designed to increase angular coverage in OA imaging. This configuration results
in a cylindrical focusing at 38 mm close to the center of the array. The array has 7.5 MHz
central frequency with 70% bandwidth at -6 dB.

Linear array: The array is central part of the multisegment array with 128 transducer ele-
ments distributed over a line with pitch size of 0.25 mm (Fig. 5.1c, main manuscript). Similar
to concave parts, the linear array has 7.5 MHz central frequency with 70% bandwidth at -6
dB. The linear array is optimized for US data acquisitions with planar waves. Hence, the
array produces OA images with limited view artifacts due to reduced angular coverage which
is a limiting factor for OA image acquisitions.

Virtual circle: The array is generated to simulate images with 360 degree angular coverage
which results in artifact free reconstructions (Fig. 5.2a, main manuscript). It contains 1,024
transducer elements distributed over a full circle with equal distance. The radius of the
transducer array is kept equal to semi circle array (40 mm) to allow comparison between
simulations and experimental acquisitions.

A.3. Optoacoustic image reconstruction

A Python package “pyoat” is presented with the datasets to reconstruct images from raw
signals. The library uses “pip” package manager to install and use the functions. The

https://github.com/berkanlafci/pyoat
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package provides functions to bandpass filter and normalize raw signals as preprocessing step.
Implementation of backprojection algorithm is also included in the package (Sec. 5.2.2, main
manuscript). The forward model operator is implemented to simulate signals from acoustic
pressure maps. Data readers and savers are integrated into the package for loading the raw
data and saving the reconstructed images, respectively. The package provides examples to
use different functions. The examples are easy to use Python scripts which require only raw
signal data paths as input. Positions of elements in all transducer arrays used in this study
are included in the library to enable reconstruction from raw signals.

A.4. Experimental data acquisition setup

Signal acquisition is performed with OA imaging setup that combines four main components,
namely, transducer arrays, nanosecond pulsed lasers, data acquisition system and workstation
PC (Fig. 5.1, main manuscript). SWFD dataset was acquired with multisegment and semi
circle transducer arrays (Sec. 5.2.1, main manuscript) using a nanosecond laser at 1,064 nm
with repetition rate of 10 Hz. MSFD dataset was acquired with only multisegment array at
six different wavelengths (700, 730, 760, 780, 800, 850 nm) using the laser with repetition
rate of 50 Hz. The increased repetition rate guarantees that displacement within the scene
between the frames of different wavelengths are minimal. Data acquisition system is used to
digitize signals acquired by the transducer arrays. A sampling rate of 40 mega samples per
second (MSPS) was used in all experiments. Then, digital signals are sent to workstation PC
to store the data and display both raw signals and reconstructed images in real time with lower
resolution. The high resolution images presented in this work were reconstructed after the
acquisition (offline) using the backprojection method (Sec. 5.2.2, main manuscript). The real
time feedback helps to position the transducer arrays. The workstation PC also synchronizes
all the imaging setup components by setting delays for data acquisition system and triggers
for laser pulses. Imaging medium was filled with water to increase coupling efficiency between
the transducer arrays and the skin. Water has low attenuation at the wavelengths used in
this study. Hence, the signal attenuation in the medium was low enough to be neglected.
Transducer arrays are held orthogonal to the forearm surface throughout acquisition and
swiftly moved from elbow towards wrist. All participants joined the experiments voluntarily
and were informed about details of the experiments.

APPENDIX B. Fitzpatrick skin phototype in experimental datasets

Figure 5.6: Fitzpatrick skin pho-
totype [31] distribu-
tion of volunteers in
datasets.

Fitzpatrick skin phototype is a metric to quantify the
amount of melanin pigment in the skin of a subject [31].
The metric ranges from one to six, going from pale white
skin to black skin color. This is relevant for various OA
applications due to different skin types (melanin concen-
tration) lead to varying amount of contrast (absorption) at
skin surfaces in the acquired images. Accordingly, the dis-
tribution of the skin types of the volunteers across SWFD
and MSFD are shown in Fig. 5.6.



123

APPENDIX C. Architecture and implementation details

CB32 MP CB64 MP CB128 MP CB256 MP

CAT

AG

c1- CB32 CB64UPCAT CB128UPCAT CB256UPCAT UP

CB512AGAGAG

Figure 5.7: Schematic of the proposed modUNet architecture. CBj represents the residual two-
dimensional (2D) convolutional block with batch normalization shown in Fig. 5.3 (main
manuscript) where each convolution has j filters. Other abbreviations correspond to
2D-maxpooling (MP) of poolsize 2, 2D bilinear upsampling (UP) by a factor of 2,
concatenation (CAT), and attention gates (AGs) [36]. Finally, c1-j represents a con-
volutional layer of j filters (1 for image translation and 3 for semantic segmentation
experiments) and 1 × 1 kernels without activation.

We show the schematic of the proposed modUNet architecture in Fig. 5.7.

We use categorical cross entropy loss and mean squared error (MSE) loss for segmentation
and image translation experiments, respectively. We add an additional l1 = l2 = 0.01 regu-
larization weight for each learned model parameter.

For all experiments, we use Adam optimizer and scale the learning rate with exponential
decay (decay rate of 0.98 and decay steps of 1,000) from a peak of 0.0001 following a linear
warmup of 10,000 steps. Except for experiments on OADAT-mini, all models are trained
for 150 epochs with a mini-batch size of 25 and best validation set loss is used as the early
stopping criteria for which test set performance metrics are presented. Experiments done
on OADAT-mini are optimized for 10,000 epochs. For each experiment, we used an Nvidia
P100 or Titan X GPU with 12 GB memory to train the model. We do not augment data
during training. Experiments on MSFD, SWFD, and SCD took about, 61, 32 and 15 hours,
respectively. The training time variation across datasets is due to the difference in size of the
datasets.

APPENDIX D. Qualitative results

Despite the impressive performance of the modUNet, there is a long tail in almost all taks for
SSIM or IoU distributions as seen in Figs. 5.4 and 5.5 (main manuscript). Accordingly, we
qualitatively examine some of the worst samples at the bottom of these tails for each task.

D.1. Image translation

We showcase and analyze a selection of the worst performing samples from the most chal-
lenging limited view and sparse sampling reconstruction experiments on SWFD and report
SSIM for these samples with respect to the target sample.

In Figs. 5.8 & 5.9 (experiments fSWFD_lv128,li and fSWFD_lv128,sc) one can see that some of
the worst samples based on SSIM correspond to images with little to no signal content. The
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remaining sample from the 10th percentile in Fig. 5.8 suggests that low SSIM in multiseg-
ment array images can be deceiving due to different set of artifacts that appear on the target
(multisegment) array. In Fig. 5.9, where the target is the semi circle array, the artifacts are
not as intense. Nevertheless, given the accurate vessel geometry correction, low SSIMs in 1st,
5th and 10th percentiles can be attributed to other local noise patterns, such as the circular
noise that exist on the target image. Thanks to the majority of samples in our datasets
having high SNR, most of the undesirable artifacts that seldomly occur in test samples are
removed. For example, in Figs. 5.9 & 5.10, columns with relatively higher signal content are
either very close to the target or even more artifact-free.

In Figs. 5.11 & 5.12, we show some of the samples with the worst SSIM from the experi-
ments fSWFD_ss32,sc and fSWFD_ss32,ms, respectively. The samples in the left two columns for
both experiments have very poor SNR. For all other samples, modUNet predictions from
the heavily subsampled image reconstructions indicate higher SNR than the target samples
thanks to removing most of the noise pattern (especially visible within the water medium
prior to/above the forearm) while keeping all soft tissue structures intact and faithful to their
counterparts in the target image. Unfortunately, mismatch of the noise patterns causes low
SSIM for such samples with low SNR target images.

For completeness, we show the worst performing samples for SSIM in image translation ex-
periments using SCD in Fig. 5.13. One can see that the rounded SSIM already reaches 1.0 by
the 1st- (right figure) or 5th- (left figure) percentile performing sample in the test set. In the
left figure 2nd column, one can see that the strong artifact passing through the small vessel
caused modUNet to separate the vessel into two pieces, shown with a red arrow.

In addition, we also showcase some of the best performing samples for SSIM in Figs. 5.14,
5.15, 5.16, 5.17 & 5.18. Beyond correcting distorted vessel geometry, it can be seen in some
samples that certain vessels that are barely visible get accurately redrawn to match the target
(e.g., Fig. 5.9 3rd and 4th columns, Fig. 5.11 2nd, 3rd and 4th column, Fig. 5.12 3rd and 4th
columns, and Fig. 5.18 4th column).



125

Figure 5.8: We showcase the worst (1st column),1st- (2nd column), 5th- (3rd column), and 10th-
percentile (4th column) structural similarity index (SSIM) samples based on modUNet
predictions for experiment fSWFD_lv128,li with input (1st row), modUNet prediction (2nd
row), and target (3rd sample) pairs. Red arrows indicate some of the distorted vessel
geometries at input getting corrected at modUNet predictions.

Figure 5.9: We showcase the worst (1st column), 1st- (2nd column), 5th- (3rd column), and 10th-
percentile (4th column) structural similarity index (SSIM) samples based on modUNet
predictions for experiment fSWFD_lv128,sc with input (1st row), modUNet prediction
(2nd row), and target (3rd sample) pairs. Red arrows indicate some of the distorted
vessel geometries at input getting corrected at modUNet predictions.
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Figure 5.10: We showcase the worst (1st column), 1st- (2nd column), 5th- (3rd column), and 10th-
percentile (4th column) structural similarity index (SSIM) samples based on modUNet
predictions for experiment fMSFD_lv128,li with input (1st row), modUNet prediction
(2nd row), and target (3rd sample) pairs. Red arrows indicate some of the distorted
vessel geometries at input getting corrected at modUNet predictions.

Figure 5.11: We showcase the worst (1st column), 1st- (2nd column), 5th- (3rd column), and 10th-
percentile (4th column) structural similarity index (SSIM) samples based on modUNet
predictions for experiment fSWFD_ss32,sc with input (1st row), modUNet prediction
(2nd row), and target (3rd sample) pairs.
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Figure 5.12: We showcase the worst (1st column), 1st- (2nd column), 5th- (3rd column), and 10th-
percentile (4th column) structural similarity index (SSIM) samples based on modUNet
predictions for experiment fSWFD_ss32,ms with input (1st row), modUNet prediction
(2nd row), and target (3rd sample) pairs. Red arrows indicate some of the nearly
invisible vessels at input getting corrected at modUNet predictions.

Figure 5.13: We showcase the worst (1st column), 2nd worst (2nd column), 1st- (3rd column),
and 5th-percentile (4th column) structural similarity index (SSIM) samples based on
modUNet predictions for experiments fSCD_ss32,vc (left) and fSCD_lv128,li (right) with
input (1st row), modUNet prediction (2nd row), and target (3rd sample) pairs.
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Figure 5.14: We showcase 95th- (1st column), 98th- (2nd column), 99th-percentile (3rd column), and
the best (4th column) structural similarity index (SSIM) samples based on modUNet
predictions for experiment fSWFD_lv128,sc with input (1st row), modUNet prediction
(2nd row), and target (3rd sample) pairs.

Figure 5.15: We showcase 95th- (1st column), 98th- (2nd column), 99th-percentile (3rd column), and
the best (4th column) structural similarity index (SSIM) samples based on modUNet
predictions for experiment fSWFD_lv128,li with input (1st row), modUNet prediction
(2nd row), and target (3rd sample) pairs. Red arrows indicate some of the distorted
vessel geometries at input getting corrected at modUNet predictions.
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Figure 5.16: We showcase 95th- (1st column), 98th- (2nd column), 99th-percentile (3rd column), and
the best (4th column) structural similarity index (SSIM) samples based on modUNet
predictions for experiment fMSFD_lv128,li with input (1st row), modUNet prediction
(2nd row), and target (3rd sample) pairs. Red arrows indicate some of the distorted
vessel geometries at input getting corrected at modUNet predictions.

Figure 5.17: We showcase 95th- (1st column), 98th- (2nd column), 99th-percentile (3rd column), and
the best (4th column) structural similarity index (SSIM) samples based on modUNet
predictions for experiment fSWFD_ss32,sc with input (1st row), modUNet prediction
(2nd row), and target (3rd sample) pairs.
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Figure 5.18: We showcase 95th- (1st column), 98th- (2nd column), 99th-percentile (3rd column),
and the best (4th column) SSIM samples based on modUNet predictions for experiment
fSWFD_ss32,ms with input (1st row), modUNet prediction (2nd row), and target (3rd
sample) pairs.

D.2. Semantic segmentation

Similar to image translation task, we look at some of the samples from SCD with the worst
vessel segmentation performance with respect to IoU metric in Figs. 5.19 & 5.20 (experiments
fseg_lv128,li and fseg_ss32,vc). As a result of SCD having flawless ground truth annotations,
modUNet can achieve near perfect segmentation performance for all classes in all experiments
of both tasks. The decrease of IoU seems to be exclusive for under- or over-segmenting little
vessels by a handful of pixels. Despite most vessels being small (see Fig. 5.2e in the main
manuscript, distribution of number of pixels per vessel), low IoU is limited to only a handful of
extreme cases. This is also corroborated by the fact that skin curve segmentation distribution
(see Fig. 5.5 right in the main manuscript) having a significantly shorter tail, barely falling
below an IoU of 0.95 in most experiments. In order to understand the single experiment
with a considerable performance drop, we look at experiment fseg_ss32,vc in Fig. 5.21. It
can be observed that under heavy sparse sampling, the skin curve often gets ambiguous,
rarely leading to suboptimal segmentation performance in these cases. Nevertheless, for most
such subsampled reconstructions having intense duplicates of skin curve (Fig. 5.20 first row),
modUNet successfully segments the right curve. Considering OADAT-mini segmentation
experiments, in Fig. 5.22, we show the worst performing four samples from the test set of
MSFD-mini. In Fig 5.23, it can be seen that such poor IoU is not observed in the worst
performing samples for SWFD-mini experiments.
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Figure 5.19: We showcase the worst (1st column), 2nd worst (2nd column), 1st- (3rd column),
and 5th-percentile (4th column) vessel intersection over union (IoU) samples based
on modUNet predictions for experiment fseg_lv128,li with input (1st row), modUNet
prediction (2nd row), and ground truth (3rd sample) pairs.

Figure 5.20: We showcase the worst (1st column), 2nd worst (2nd column), 1st- (3rd column),
and 5th-percentile (4th column) vessel intersection over union (IoU) samples based
on modUNet predictions for experiment fseg_ss32,vc with input (1st row), modUNet
prediction (2nd row), and ground truth (3rd sample) pairs.
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Figure 5.21: We showcase the worst (1st column), 2nd worst (2nd column), 1st- (3rd column), and
5th-percentile (4th column) skin curve intersection over union (IoU) samples based
on modUNet predictions for experiment fseg_ss32,vc with input (1st row), modUNet
prediction (2nd row), and ground truth (3rd sample) pairs.

Figure 5.22: We showcase the worst (1st column), 2nd- (2nd column), 3rd- (3rd column), and 4th-
worst (4th column) intersection over union (IoU) samples based on modUNet predic-
tions for experiment fseg_MSFD_ss64,ms with input (1st row), modUNet prediction (2nd
row), and target (3rd sample) pairs.



133

Figure 5.23: We showcase the worst (1st column), 2nd- (2nd column), 3rd- (3rd column), and 4th-
worst (4th column) intersection over union (IoU) samples based on modUNet predic-
tions for experiments fseg_SWFD_ss64,sc (left) and fseg_SWFD_ss128,ms (right) with input
(1st row), modUNet prediction (2nd row), and target (3rd sample) pairs.

APPENDIX E. Simulated cylinder dataset generation

Our proposed simulated dataset, SCD, follows a group of heuristics we derived from obser-
vations on experimental images. For any given sample, we first generate an acoustic pressure
map, from which we also generate ground truth annotations. We then apply certain post
processing steps to imitate other phenomena such as patterns under the skin surface and
different vessel textures. Given the geometry of the transducers we want to simulate, we
then apply forward transform that gives the raw signals. Finally, we reconstruct these signals
using backprojection algorithm to generate the images used in various SCD experiments in
this manuscript.

The acoustic pressure map generation consists of initially drawing the curve that represents
the laser pulse absorption on the skin surface mainly due to melanin. Given that experimental
data is acquired with making sure that forearm is roughly at a certain distance range from the
arrays, we also limit the drawn skin curve distance. We define the skin curve as a 2nd degree
polynomial that is fitted to three points randomly sampled at the two horizontal edges and the
center of the image at varying heights. As a post-processing step to mimic experimental data,
the curve is first smoothed with a Gaussian filter. Then, an exponential decay of randomized
length is applied under the curve along vertical axis. Finally, a non-structured uniform normal
noise is multiplied with the aforementioned exponential decay region. For vessel generation,
the number of cylinders to be drawn is sampled based on a coin flip. Based on the outcome,
either two cylinders drawn or the number of cylinders is sampled from Poisson distribution
(see Fig. 5.2e, distribution of number of vessels per image, main manuscript). Each vessel
is initially represented by a cylinder orthogonal to the image plane (z-axis) with a randomly
sampled radius. We then randomly rotate the cylinder around x- and y- axes. The vessel is
determined as the cross-section of the cylinder at the imaging plane, yielding ellipses based
on the final angle of the cylinders. As a post-processing step, we flip a coin to determine
whether the vessel has a homogeneous intensity profile or has a linearly decreasing intensity
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from its center. We then apply a Gaussian filter on the vessel to smooth its edges. Finally,
based on a coin flip, we decide whether or not to multiply the intensity profile of the vessel
with uniform normal noise. The same process is iteratively repeated until desired number of
non-overlapping vessels are generated. All parameters used for the aforementioned steps are
empirically selected based on our observations on the experimental datasets. We provide the
script to simulate acoustic pressure maps that we used for SCD.

APPENDIX F. Organization of datasets

The datasets and required algorithms to read raw signals and reconstructed images are sum-
marized in Fig. 5.24 along with the codes to rerun and evaluate all the presented experiments.
All datasets are stored as HDF5 files and corresponding indices across datasets within an
HDF5 file have the same scene as raw signal or reconstructed image. Similarly, metadata
such as patientID, side (i.e., left vs right arm), skin type, and sliceID contain the information
for the corresponding indices. Some of these metadata such as patientID, which corresponds
to the unique anonymized identifier of the volunteer, only exists in experimental datasets.
Matching identifiers across experimental datasets (MSFD and SWFD) correspond to the
same volunteer.

Each sample (raw signal or image reconstruction) is chunked in a single piece for optimal
compression/decompression overhead when reading individual images and storing datasets.
For example, for a given HDF5 dataset of shape (number of instances, height, width), each
block of (1, height, width) is compressed individually. In our experiments, this ensured zero
additional idle GPU time reading random training sample from a compressed HDF5 file when
compared with its non-compressed HDF5 counterpart.

Raw signal datasets have the shape of (number of instances, temporal acquisition axis, re-
ceiving element axis). Temporal acquisition axis is fixed to 2,030 sampling points across all
transducer arrays. Receiving element axis depends on the number of transducer elements
that is used for signal acquisition. For sparse sampling and limited view reconstructions,

Figure 5.24: Pipeline figure to summarize data storage and algorithms.



135

Table 5.5: Contents of the MSFD file.
Name Shape Content Name Shape Content

patientID (25200,) (2, 5, 6, 7, 9, 10, 11, 14, 15) ms_ss64_BP_w700 (25200, 256, 256) image reconstructions
side (25200,) (left, right) ms_ss64_BP_w730 (25200, 256, 256) image reconstructions
skin_type (25200,) (1, 2, 3, 4) ms_ss64_BP_w760 (25200, 256, 256) image reconstructions
sliceID (25200,) (1, ..., 1400) ms_ss64_BP_w780 (25200, 256, 256) image reconstructions
linear_BP_w700 (25200, 256, 256) image reconstructions ms_ss64_BP_w800 (25200, 256, 256) image reconstructions
linear_BP_w730 (25200, 256, 256) image reconstructions ms_ss64_BP_w850 (25200, 256, 256) image reconstructions
linear_BP_w760 (25200, 256, 256) image reconstructions ms_ss128_BP_w700 (25200, 256, 256) image reconstructions
linear_BP_w780 (25200, 256, 256) image reconstructions ms_ss128_BP_w730 (25200, 256, 256) image reconstructions
linear_BP_w800 (25200, 256, 256) image reconstructions ms_ss128_BP_w760 (25200, 256, 256) image reconstructions
linear_BP_w850 (25200, 256, 256) image reconstructions ms_ss128_BP_w780 (25200, 256, 256) image reconstructions
ms_BP_w700 (25200, 256, 256) image reconstructions ms_ss128_BP_w800 (25200, 256, 256) image reconstructions
ms_BP_w730 (25200, 256, 256) image reconstructions ms_ss128_BP_w850 (25200, 256, 256) image reconstructions
ms_BP_w760 (25200, 256, 256) image reconstructions ms_ss32_raw_w700 (25200, 2030, 256) raw signals
ms_BP_w780 (25200, 256, 256) image reconstructions ms_ss32_raw_w730 (25200, 2030, 256) raw signals
ms_BP_w800 (25200, 256, 256) image reconstructions ms_ss32_raw_w760 (25200, 2030, 256) raw signals
ms_BP_w850 (25200, 256, 256) image reconstructions ms_ss32_raw_w780 (25200, 2030, 256) raw signals
linear_raw_w700 (25200, 2030, 256) raw signals ms_ss32_raw_w800 (25200, 2030, 256) raw signals
linear_raw_w730 (25200, 2030, 256) raw signals ms_ss32_raw_w850 (25200, 2030, 256) raw signals
linear_raw_w760 (25200, 2030, 256) raw signals ms_ss64_raw_w700 (25200, 2030, 256) raw signals
linear_raw_w780 (25200, 2030, 256) raw signals ms_ss64_raw_w730 (25200, 2030, 256) raw signals
linear_raw_w800 (25200, 2030, 256) raw signals ms_ss64_raw_w760 (25200, 2030, 256) raw signals
linear_raw_w850 (25200, 2030, 256) raw signals ms_ss64_raw_w730 (25200, 2030, 256) raw signals
ms_raw_w700 (25200, 2030, 256) raw signals ms_ss64_raw_w760 (25200, 2030, 256) raw signals
ms_raw_w730 (25200, 2030, 256) raw signals ms_ss64_raw_w780 (25200, 2030, 256) raw signals
ms_raw_w760 (25200, 2030, 256) raw signals ms_ss64_raw_w800 (25200, 2030, 256) raw signals
ms_raw_w780 (25200, 2030, 256) raw signals ms_ss64_raw_w850 (25200, 2030, 256) raw signals
ms_raw_w800 (25200, 2030, 256) raw signals ms_ss128_raw_w700 (25200, 2030, 256) raw signals
ms_raw_w850 (25200, 2030, 256) raw signals ms_ss128_raw_w730 (25200, 2030, 256) raw signals
ms_ss32_BP_w700 (25200, 256, 256) image reconstructions ms_ss128_raw_w760 (25200, 2030, 256) raw signals
ms_ss32_BP_w730 (25200, 256, 256) image reconstructions ms_ss128_raw_w780 (25200, 2030, 256) raw signals
ms_ss32_BP_w760 (25200, 256, 256) image reconstructions ms_ss128_raw_w800 (25200, 2030, 256) raw signals
ms_ss32_BP_w780 (25200, 256, 256) image reconstructions ms_ss128_raw_w850 (25200, 2030, 256) raw signals
ms_ss32_BP_w800 (25200, 256, 256) image reconstructions
ms_ss32_BP_w850 (25200, 256, 256) image reconstructions

we retain the shape of the raw signal data, however, we switch off the receiving elements
that are not active, hence they are padded with zeros. This convention also allows for direct
compatibility with the pyoat reconstruction package.

We provide a header dataset file “OADAT.h5” as a convenient access point to each other
HDF5 dataset file. For convenience, we also provide a header dataset file “OADAT_v2.h5”
that allows more intuitive access to addendums of MSFD, SWFD, and SCD with multi-
segment sparse sampling datasets. Additionally, a header dataset file “OADAT-mini.h5” is
provided as an access point to reach all relevant OADAT-mini HDF5 files. These header files
also contain metadata module of the Dataset Nutrition Label, which should help making the
dataset self explanatory.

F.1. MSFD

Contents of MSFD are listed in Table 5.5. The contents of the dataset are stored in the files
“MSFD_multisegment_RawBP.h5” and “MSFD_multisegment_ss_RawBP.h5”. Provided
sliceID corresponds to the time index of the slice acquired from a given volunteer for a
given acquisition. For example, sliceID i + 1 is recorded right after i for a given patientID
and side. This information can be relevant for future work that does not treat each slice
independently, but exploit correlations from consecutive slice acquisitions. Nevertheless, a
sliceID i ∈ [1, ..., 1400] does not necessarily correspond to the same position on the forearm
across the volunteers.

F.2. SWFD

Contents of SWFD are split into two separate HDF5 files with contents listed in Tables 5.6 & 5.7
(“SWFD_semicircle_RawBP.h5” and “SWFD_multisegment_RawBP.h5”). Despite having
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Table 5.6: Contents of SWFD semi circle file.
Name Shape Content Name Shape Content

patientID (39228,) (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14) sc,lv128_raw (39228, 2030, 256) raw signals
side (39228,) (left, right) sc,ss128_raw (39228, 2030, 256) raw signals
skin_type (39228,) (1, 2, 3, 4) sc,ss32_raw (39228, 2030, 256) raw signals
sliceID (39228,) (100, ..., 1500) sc,ss64_raw (39228, 2030, 256) raw signals
sc,lv128_BP (39228, 256, 256) image reconstructions sc_raw (39228, 2030, 256) raw signals
sc,ss128_BP (39228, 256, 256) image reconstructions
sc,ss32_BP (39228, 256, 256) image reconstructions
sc,ss64_BP (39228, 256, 256) image reconstructions
sc_BP (39228, 256, 256) image reconstructions

Table 5.7: Contents of SWFD multisegment file.
Name Shape Content Name Shape Content

patientID (39228,) (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14) ms,ss128_BP (39228, 256, 256) image reconstructions
side (39228,) (left, right) ms,ss32_BP (39228, 256, 256) image reconstructions
skin_type (39228,) (1, 2, 3, 4) ms,ss64_BP (39228, 256, 256) image reconstructions
sliceID (39228,) (100, ..., 1500) ms,ss128_raw (39228, 2030, 256) raw signals
linear_BP (39228, 256, 256) image reconstructions ms,ss32_raw (39228, 2030, 256) raw signals
ms_BP (39228, 256, 256) image reconstructions ms,ss64_raw (39228, 2030, 256) raw signals
linear_raw (39228, 2030, 256) raw signals
ms_raw (39228, 2030, 256) raw signals

the same number of instances per dataset category across the two files, the indices are not
paired across semi circle and multisegment array. Hence we decided to split the dataset into
two files. Furthermore, we include two additional HDF5 files “SWFD_semicircle_ss_RawBP-
.h5” and “SWFD_multisegment_ss_RawBP.h5” that contain sparse sampling image and raw
data for multisegment array. As an artifact from discarding first few slices to filter out low
SNR instances (both in MSFD and SWFD), SWFD acquisitions have 1,401 slices, having
sliceID in the range [100, ..., 1500], yielding 2 × 14 × 1,401 = 39,228 samples per dataset
category as opposed to 39,200.

F.3. SCD

Contents of SCD are listed in Table 5.8 and stored in the file “SCD_RawBP.h5”. Different
than the experimental datasets, SCD also contains the ground truth acoustic pressure map
and annotations (labels). Annotations are encoded as 0: background, 1: vessel, and 2: skin
curve.

F.4. OADAT-mini

OADAT-mini consists of a subset of 100 instances of each category of OADAT along with their
annotation maps for vessels. Accordingly, its contents are split into multiple files, one for each

Table 5.8: Contents of SCD files.
Name Shape Content Name Shape Content

sliceID (20000,) (0, ..., 19999) vc,lv128_raw (20000, 2030, 1024) raw signals
ground_truth (20000, 256, 256) acoustic pressure map vc,ss128_raw (20000, 2030, 1024) raw signals
labels (20000, 256, 256) (0, 1, 2) vc,ss32_raw (20000, 2030, 1024) raw signals
linear_BP (20000, 256, 256) image reconstructions vc,ss64_raw (20000, 2030, 1024) raw signals
ms_BP (20000, 256, 256) image reconstructions vc_raw (20000, 2030, 1024) raw signals
linear_raw (20000, 2030, 256) raw signals ms,ss128_BP (20000, 256, 256) image reconstructions
ms_raw (20000, 2030, 256) raw signals ms,ss32_BP (20000, 256, 256) image reconstructions
vc,lv128_BP (20000, 256, 256) image reconstructions ms,ss64_BP (20000, 256, 256) image reconstructions
vc,ss128_BP (20000, 256, 256) image reconstructions ms,ss128_raw (20000, 2030, 256) raw signals
vc,ss32_BP (20000, 256, 256) image reconstructions ms,ss32_raw (20000, 2030, 256) raw signals
vc,ss64_BP (20000, 256, 256) image reconstructions ms,ss64_raw (20000, 2030, 256) raw signals
vc_BP (20000, 256, 256) image reconstructions
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Table 5.9: Contents of OADAT-mini files.
Name Shape Content Name Shape Content

SCD - mini
sliceID (100,) ⊂ (0, ..., 19999) vc,lv128_raw (100, 2030, 1024) raw signals
ground_truth (100, 256, 256) acoustic pressure map vc,ss128_raw (100, 2030, 1024) raw signals
labels (100, 256, 256) (0, 1, 2) vc,ss32_raw (100, 2030, 1024) raw signals
linear_BP (100, 256, 256) image reconstructions vc,ss64_raw (100, 2030, 1024) raw signals
ms_BP (100, 256, 256) image reconstructions vc_raw (100, 2030, 1024) raw signals
linear_raw (100, 2030, 256) raw signals ms,ss128_BP (100, 256, 256) image reconstructions
ms_raw (100, 2030, 256) raw signals ms,ss32_BP (100, 256, 256) image reconstructions
vc,lv128_BP (100, 256, 256) image reconstructions ms,ss64_BP (100, 256, 256) image reconstructions
vc,ss128_BP (100, 256, 256) image reconstructions ms,ss128_raw (100, 2030, 256) raw signals
vc,ss32_BP (100, 256, 256) image reconstructions ms,ss32_raw (100, 2030, 256) raw signals
vc,ss64_BP (100, 256, 256) image reconstructions ms,ss64_raw (100, 2030, 256) raw signals
vc_BP (100, 256, 256) image reconstructions

SWFD semi circle - mini
patientID (100,) (1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13) sc,lv128_raw (100, 2030, 256) raw signals
side (100,) (left, right) sc,ss128_raw (100, 2030, 256) raw signals
skin_type (100,) (1, 2, 3, 4) sc,ss32_raw (100, 2030, 256) raw signals
sliceID (100,) ⊂ (100, ..., 1500) sc,ss64_raw (100, 2030, 256) raw signals
labels (100, 256, 256) (0, 1)
sc,lv128_BP (100, 256, 256) image reconstructions sc_raw (100, 2030, 256) raw signals
sc,ss128_BP (100, 256, 256) image reconstructions
sc,ss32_BP (100, 256, 256) image reconstructions
sc,ss64_BP (100, 256, 256) image reconstructions
sc_BP (100, 256, 256) image reconstructions

SWFD multisegment - mini
patientID (100,) (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) ms,ss128_BP (100, 256, 256) image reconstructions
side (100,) (left, right) ms,ss32_BP (100, 256, 256) image reconstructions
skin_type (100,) (1, 2, 3, 4) ms,ss64_BP (100, 256, 256) image reconstructions
sliceID (100,) ⊂ (100, ..., 1500) ms,ss128_raw (100, 2030, 256) raw signals
labels (100, 256, 256) (0, 1)
linear_BP (100, 256, 256) image reconstructions ms,ss32_raw (100, 2030, 256) raw signals
ms_BP (100, 256, 256) image reconstructions ms,ss64_raw (100, 2030, 256) raw signals
linear_raw (100, 2030, 256) raw signals
ms_raw (100, 2030, 256) raw signals

MSFD multisegment - mini
patientID (100,) (2, 5, 6, 7, 9, 10, 11, 14, 15) ms_ss64_BP_w700 (100, 256, 256) image reconstructions
side (100,) (left, right) ms_ss64_BP_w730 (100, 256, 256) image reconstructions
skin_type (100,) (1, 2, 3, 4) ms_ss64_BP_w760 (100, 256, 256) image reconstructions
sliceID (100,) ⊂ (1, ..., 1400) ms_ss64_BP_w780 (100, 256, 256) image reconstructions
labels (100, 256, 256) (0, 1)
linear_BP_w700 (100, 256, 256) image reconstructions ms_ss64_BP_w800 (100, 256, 256) image reconstructions
linear_BP_w730 (100, 256, 256) image reconstructions ms_ss64_BP_w850 (100, 256, 256) image reconstructions
linear_BP_w760 (100, 256, 256) image reconstructions ms_ss128_BP_w700 (100, 256, 256) image reconstructions
linear_BP_w780 (100, 256, 256) image reconstructions ms_ss128_BP_w730 (100, 256, 256) image reconstructions
linear_BP_w800 (100, 256, 256) image reconstructions ms_ss128_BP_w760 (100, 256, 256) image reconstructions
linear_BP_w850 (100, 256, 256) image reconstructions ms_ss128_BP_w780 (100, 256, 256) image reconstructions
ms_BP_w700 (100, 256, 256) image reconstructions ms_ss128_BP_w800 (100, 256, 256) image reconstructions
ms_BP_w730 (100, 256, 256) image reconstructions ms_ss128_BP_w850 (100, 256, 256) image reconstructions
ms_BP_w760 (100, 256, 256) image reconstructions ms_ss32_raw_w700 (100, 2030, 256) raw signals
ms_BP_w780 (100, 256, 256) image reconstructions ms_ss32_raw_w730 (100, 2030, 256) raw signals
ms_BP_w800 (100, 256, 256) image reconstructions ms_ss32_raw_w760 (100, 2030, 256) raw signals
ms_BP_w850 (100, 256, 256) image reconstructions ms_ss32_raw_w780 (100, 2030, 256) raw signals
linear_raw_w700 (100, 2030, 256) raw signals ms_ss32_raw_w800 (100, 2030, 256) raw signals
linear_raw_w730 (100, 2030, 256) raw signals ms_ss32_raw_w850 (100, 2030, 256) raw signals
linear_raw_w760 (100, 2030, 256) raw signals ms_ss64_raw_w700 (100, 2030, 256) raw signals
linear_raw_w780 (100, 2030, 256) raw signals ms_ss64_raw_w730 (100, 2030, 256) raw signals
linear_raw_w800 (100, 2030, 256) raw signals ms_ss64_raw_w760 (100, 2030, 256) raw signals
linear_raw_w850 (100, 2030, 256) raw signals ms_ss64_raw_w730 (100, 2030, 256) raw signals
ms_raw_w700 (100, 2030, 256) raw signals ms_ss64_raw_w760 (100, 2030, 256) raw signals
ms_raw_w730 (100, 2030, 256) raw signals ms_ss64_raw_w780 (100, 2030, 256) raw signals
ms_raw_w760 (100, 2030, 256) raw signals ms_ss64_raw_w800 (100, 2030, 256) raw signals
ms_raw_w780 (100, 2030, 256) raw signals ms_ss64_raw_w850 (100, 2030, 256) raw signals
ms_raw_w800 (100, 2030, 256) raw signals ms_ss128_raw_w700 (100, 2030, 256) raw signals
ms_raw_w850 (100, 2030, 256) raw signals ms_ss128_raw_w730 (100, 2030, 256) raw signals
ms_ss32_BP_w700 (100, 256, 256) image reconstructions ms_ss128_raw_w760 (100, 2030, 256) raw signals
ms_ss32_BP_w730 (100, 256, 256) image reconstructions ms_ss128_raw_w780 (100, 2030, 256) raw signals
ms_ss32_BP_w760 (100, 256, 256) image reconstructions ms_ss128_raw_w800 (100, 2030, 256) raw signals
ms_ss32_BP_w780 (100, 256, 256) image reconstructions ms_ss128_raw_w850 (100, 2030, 256) raw signals
ms_ss32_BP_w800 (100, 256, 256) image reconstructions
ms_ss32_BP_w850 (100, 256, 256) image reconstructions

transducer array and SCD: “SWFD_semicircle_RawBP-mini.h5”, “SWFD_multisegment_-
RawBP-mini.h5”, “MSFD_multisegment_RawBP-mini.h5”, “SCD_RawBP-mini.h5”. We
list the contents of each of these files in Table 5.9.

APPENDIX G. Considerations when using our datasets

As the volunteers in experimental datasets are considered to be healthy, anonymization is
done one way, and true identities of volunteers are not possible to trace. Furthermore, to the
best of our knowledge, usage of our proposed datasets cannot pose threat to the volunteers,
even with malicious intent. However, as with all clinical data, it should be acknowledged that
our dataset would represent a particular subset of all potential forearm images collected at
respective wavelengths and transducer arrays. Accordingly, any subsequent work that makes
use of our datasets for validation purposes need to ensure that the diversity of our datasets
is sufficient for their target application.
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APPENDIX H. Persistence of proposed datasets

All datasets are hosted on Libdrive at ETH Zurich Research Collection repository. Accord-
ingly, the datasets have a landing page with digital object identifier (DOI) and metadata.
Data will be freely accessible with no restriction. As per ETH Zurich Research Collection
documentation, the dataset is guaranteed to have a retention period for 10 years. Based on
the frequency of usage by the community, the Research Collection may continue to host the
data beyond the 10 year period.

APPENDIX I. Author statement on data license

The dataset is licensed under Creative Commons Attribution-NonCommercial 4.0 Interna-
tional (CC-BY-NC).

APPENDIX J. Training and evaluation code

In oadat-evaluate repository, along with saved model weights, we provide all necessary scripts
to train modUNet from scratch for all 44 experiments as well as evaluating them over the
whole test set. We provide standalone examples on the repository landing page to show how
to;
(i) load a pretrained model, for example, to do inference or finetuning it,
(ii) train modUNet from scratch for either of the two tasks for a given experiment,
(iii) evaluate a serialized model, whether it is one of the pretrained models we provide as is,
or any other Tensorflow model that is already serialized, and
(iv) use our provided data loader to read any sample from OADAT.

https://renkulab.io/gitlab/firat.ozdemir/oadat-evaluate
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Abstract

Development of imaging methods capable of furnishing tumor-specific morphological, func-
tional and molecular information is paramount for early diagnosis, staging, and treatment of
breast cancer. Ultrasound (US) and optoacoustic (OA) imaging methods exhibit excellent
traits for tumor imaging in terms of fast imaging speed, ease of use, excellent contrast, and
lack of ionizing radiation. Here we demonstrate simultaneous tomographic whole body imag-
ing of optical absorption, US reflectivity and speed of sound (SoS) in living mice. In vivo
studies of 4T1 breast cancer xenografts models revealed synergistic and complementary value
of the hybrid imaging approach for characterizing mammary tumors. While neo-vasculature
surrounding the tumor areas was observed based on the vascular anatomy contrast provided
by the OA data, the tumor boundaries could be discerned by segmenting hypoechoic struc-
tures in pulse-echo US images. Tumor delineation was further facilitated by enhancing the
contrast and spatial resolution of the SoS maps with a full wave inversion method. The malig-
nant lesions could thus be distinguished from other hypoechoic regions based on the average
SoS values. The reported findings corroborate the strong potential of the hybrid imaging
approach for advancing cancer research in small animal models and fostering development of
new clinical diagnostic approaches.
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6.1 Introduction

Breast cancer is the most frequent non-cutaneous type of cancer in women and the second
cause of cancer-related deaths in the female population [1]. Imaging-based mammography
screening is considered to be a major factor leading to a 15-30% reduction of breast cancer
mortality [2]. X-ray imaging of the breast remains the gold standard for breast screening
in the clinical setting. Yet, this approach involves exposure to ionizing radiation and pain
caused by breast compression. Moreover, false positives are produced e.g. due to the pres-
ence of cysts [3] and the sensitivity is low in women with radiographically dense breast [4].
Magnetic resonance imaging (MRI) and pulse-echo ultrasound (US) are then also routinely
used in the clinics to complement the drawbacks of x-ray mammography. MRI provides high
sensitivity for the detection of breast cancer, yet it attains low specificity and comes with
high operational costs [5]. Pulse-echo US can distinguish between liquid-filled cysts from
solid masses and even detect tumors not visible in x-ray images [6]. However, standard hand-
held scans are operator dependent, which prevents the wide use of US as a standalone method.

In recent years, multispectral optoacoustic tomography (MSOT) imaging has been shown to
significantly enhance the capabilities of pulse-echo (reflection) US for the detection of breast
carcinomas [7]. Identification of tumors in MSOT images is facilitated by key bio-markers
such as local increases in vessel density around the tumor region [8, 9], changes in oxygen
saturation in the tumor microenvironment [10, 11] or alterations in the local distribution
of fat, collagen and other intrinsic tissue chromophores [12]. The MSOT imaging depth is
maximized for optical wavelengths around 1064 nm due to relatively low scattering and ab-
sorption of light by living tissues and the high energy of commonly available lasers at this
wavelength [13]. However, optoacoustic (OA) imaging is generally incapable of accurate de-
lineation of tumor shape and boundaries. Complementary anatomical information can be
provided with pulse-echo US images rendered with hybrid systems [14–16]. Also, US imag-
ing can be performed in transmission mode, in which case additional important mechanical
and elastic tissue parameters can be extracted, such as maps of speed of sound (SoS) and
acoustic attenuation (AA) [17]. Recent studies showed that SoS maps provide a powerful
means to identify the tumor volume [18, 19], while AA maps can provide enhanced contrast
for different tissue types [20].

In this work we employ a tri-modal transmission-reflection optoacoustic ultrasound (TROPUS)
imaging platform for simultaneous characterization of solid tumors in mice. The imaging
approach is based on a full ring of cylindrically-focused transducers that can provide high-
resolution cross-sectional OA images in real time by exciting the tissue with a single laser
pulse. Sequential excitation of the array elements and detection of the reflected and trans-
mitted US waveforms further enables forming pulse-echo US as well as SoS images. We
further employed a full wave inversion (FWI) method for reconstructing the transmission US
data [17], which resulted in enhanced contrast and resolution as compared to the previously
reported TROPUS implementation [21].
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6.2 Materials And Methods

6.2.1 The Imaging Setup

The experimental set-up employed for image acquisition consists of four main modules,
namely, a high-speed active transmission and data acquisition system (DAQ), an US ring-
shaped transducer array, a pulsed laser source and a workstation computer (Fig. 6.1a). OA
pressure waves are generated by illuminating the tissues with a nanosecond Nd:YAG pumped
laser source (Spectra-Physics, Santa Clara, CA, USA) operating at 15 Hz pulse repetition rate.
The full-ring-shaped transducer array was custom engineered (Imasonic Sas, Voray, France)
for tomographic cross-sectional small animal imaging. It consists of 512 cylindrically-focused
transducer elements with dimensions 0.37x15 mm2 and interelement pitch of 0.47 mm. All
the transducer elements are distributed equidistantly on two arcs, each covering a 174° angle.
The radius of curvature is 40 mm, and every single transducer element is cylindrically-focused
at 38 mm distance (x-z plane in Fig. 6.1a) to create a cross-sectional imaging geometry. The
peak central frequency and transmission/reception bandwidth of the array elements at -6 dB
are 5 MHz and 60%, respectively. The US array generates pressure waves used to interrogate
the imaged sample in transmission US imaging mode while also detecting the pressure waves
transmitted/reflected or generated within the imaged cross-section in the pulse-echo US and
OA modes, respectively. In the US transmission mode, the excitation pulses are transmitted
by the DAQ to each element of the array to generate US waves. When DAQ is switched to the
receive mode, the detected pressure signals collected by the elements of the transducer array
are digitized and transmitted over 1 Gbit/s ethernet connection to the host PC. Digitization
sampling rate of 40 mega samples per second (MSPS) and vertical resolution of 12 bits were
used for data acquisition. For collecting three-dimensional (3D) image data, the US array
was translated in the vertical direction (y axis in Fig. 6.1a) with 1 mm step size using a
motorized stage. For mouse imaging, the array was placed inside a temperature-controlled
(34°C) water tank to increase the acoustic coupling efficiency between the imaged object and
US sensors. The workstation computer having 128 GB of random access memory (RAM)
and NVIDIA GeForce GTX 1060 graphics processing unit (GPU) synchronizes the DAQ and
the laser by setting the transmission parameters and controlling reception events. It is also
used to record and process the acquired signals to reconstruct images.

6.2.2 Optoacoustic Tomography

OA tomographic imaging of mice was performed at 1064 nm as this particular wavelength is
known to have deep penetration into living mammalian tissues [13]. A fiber bundle (Light-
GuideOptics GmbH, Rheinbach, Germany) separated into 12 output ferules on its distal end
was used to deliver the light beam from the laser output to the imaging sample. For this,
6 output ferules were placed with 60 degrees separation (equidistantly) on each side of the
transducer array (Fig. 6.1a) to facilitate uniform light delivery to the imaged mouse cross
section. The output ferules of the bundle having 0.21x12.65 mm2 dimensions were tilted 24°
to attain an illumination ring with an area of 6 cm2 upon the mouse surface. The pressure
waves excited within the sample were received with 512 elements after every laser pulse and
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Figure 6.1: The tri-modal transmission-reflection optoacoustic ultrasound (TROPUS) imaging plat-
form. a) Excitation and acquisition steps in the optoacoustic (OA) imaging mode, re-
flection ultrasound computed tomography (RUCT) mode and transmission ultrasound
computed tomography (TUCT) speed of sound (SoS) imaging mode. b) Illustration
of three-dimensional (3D) stacks of cross-sectional multimodal images acquired non-
invasively from tumor bearing mice. c) Representative TROPUS images of a cross-
section of the tumor region in a mouse. From left to right, OA image, RUCT image,
and SoS image acquired in the TUCT mode and reconstructed with the full wave inver-
sion (FWI) method. 1 - Skin, 2 - Tumor, 3 - Urinary Bladder, 4 - Femur.

simultaneously digitized with the DAQ. OA images over a field of view (FOV) of 25x25 mm2

were reconstructed using a back-projection algorithm after band-pass filtering the raw data
in the 0.5-6 MHz frequency range [22]. The mouse boundary was manually segmented in
the OA images to suppress the background. The images were subsequently normalized with
a modified Bessel-function that was previously shown to approximate well the diffuse light
distribution within a homogenous scattering and absorbing cylinder [23]. Finally, a vesselness
(Frangi) filter was applied on the images to increase the vascular contrast [24].

6.2.3 Reflection (Pulse-Echo) Ultrasound Computed Tomography

US imaging was performed by sending a short pulse consisting of one cycle of bipolar signal (20
Vpp) with duration of 0.16 microseconds to each element of the array in every transmission
event. The transmission events were repeated to transmit pressure signals with all array
elements. In one transmission event, the DAQ can transmit with a single element and receive
reflected or transmitted signals from other 128 elements. Thereby, the pulse transmission
events for each element were repeated 4 times so that the signals from all 512 elements (360°
full coverage) are acquired. The reflection ultrasound computed tomography (RUCT) images
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were reconstructed with the synthetic transmit aperture (STA) technique. STA uses different
single element in each transmission event and then coherently compounds the images from
those transmission events to form the final image [25, 26]. For the beamforming process, 64
elements located to the left and 64 elements to the right from the transmitting element were
included. In total 129 channels including the signals detected by the transmitting element
were used for reconstruction of one sub-frame for every transmission event. The standard
delay and sum (DAS) algorithm was used for reconstructing low-resolution sub-frames over
25x25 mm2 FOV equivalent to that of the OA images. This process resulted in 512 low
resolution images that were acquired by each transmission event, which were then coherently
compounded to form the final high-resolution image.

6.2.4 Speed of Sound Imaging

SoS tomography images were reconstructed from the US waves traversing the sample (mouse).
For each transmitting element, the signals collected from 171 elements located on its the
opposite side were considered (Fig. 6.1a). SoS maps were reconstructed with a FWI method
[17]. A time of flight (TOF) picker algorithm was used to calculate the difference between
the TOF of waves propagating in water and through the sample [27, 28]. This TOF picker
algorithm was improved by weighting, median filtering and reciprocal pair comparison of the
calculated TOF values, as previously described [29]. The wave propagation model was based
on sampling the space between emitter and receiver along multiple paths using a family of
Bezier curves. In short, the FWI method convolves a reference waveform with estimated TOF
values from different paths corresponding to the defined curves [30]. Then, it minimizes the
cost function between simulated waves and the measurements by changing SoS values in the
defined image grid. This process is repeated iteratively until the cost function converges. The
estimated SoS values provide the corresponding wave propagation speed for the defined cross-
sectional reconstruction grid containing the mouse and background medium. Herein, the FWI
method was employed to achieve improved resolution and contrast in the transmission US
imaging mode as compared to the previously reported TROPUS implementation [21], which
used the less accurate bent-rays approach. In the latter case, the wave propagation was
significantly simplified and modeled as a narrow ray going through the path with the lowest
TOF between the emitter and the receiver. Despite its merits, FWI has high computational
complexity, which results in 5 minutes of reconstruction time per slice when using GPU.
In this study, we further performed a comparison of the SoS maps reconstructed with all
the three approaches. Transmission ultrasound further enables reconstructing AA maps.
However, these were not considered in the current study due to lack of valuable tumor-related
contrast.

6.2.5 Animal Handling

In total, 5 mice of the same age were imaged with the TROPUS system. All mice were
anesthetized with 1.8% isoflurane in 100% oxygen flowing at a rate of 0.8 l/min. A custom-
designed animal holder was used to keep the imaged mouse in vertical position inside the
ring-shaped detector array. The head of the mouse was kept above the water level and
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a mask was used to deliver the oxygen-anesthesia mixture. The water temperature was
maintained at 34°C during the measurements. One of the mice (M1) was used as a control
with no tumor. The other 4 mice had orthotopic tumors induced via inoculation of 4T1
mammary carcinoma cells in the mammary fat pad. Cell inoculation was performed at
different days to characterize the ability of the TROPUS system to image tumors at different
stages. Specifically, 2 orthotopic tumors in mice M3 and M4 were induced one month before
the experiment, while the tumor cells were inoculated 3 weeks before the experiment in mice
M2 and M5. All procedures involving animal care and experimentation were conducted in
full compliance with the institutional guidelines of the Institute for Biological and Medical
Imaging and with approval from the government of Upper Bavaria.

6.3 Results

The representative three-dimensional (3D) image stacks acquired non-invasively from a tumor-
bearing mouse are shown in Fig. 6.1b, corroborating the system’s ability to simultaneously
deliver whole body multi-modal OA and US data from mice. Representative cross-sections of
the OA, RUCT, and SoS images covering 25x25 mm2 FOV containing the tumor are further
shown in Fig. 6.1c. The tumor location can be readily identified as a hypoechoic region in the
RUCT image and as a region with lower vessel density in the OA image. In addition, SoS im-
ages enable the tissue assessment based on the distribution of its elastic modulus and density.

Note that the quality of the SoS images strongly depends on the inversion method. Indeed,
the tumor mass is barely visible in the images reconstructed using straight ray approxima-
tion, which generally exhibit size-distortion due to refraction and poor contrast and resolution
(first column in Fig. 6.2). When a more accurate modeling approach is attempted for the
SoS reconstruction assuming Bezier-curve type of wave propagation, the reconstructed image
quality readily improves (second column in Fig. 6.2). In our previous work the Bezier curve
approximation was shown to be sufficiently accurate to enable the segmentation of outer
boundaries and major anatomical structures [21]. However, quantitative analysis of smaller
regions such as tumors cannot reliably be performed with this approach due to insufficient spa-
tial resolution and contrast. While increased values of SoS are observed in the tumor region,
similar values also appear in other regions, thus hampering unequivocal tumor differentia-
tion. The state-of-the-art FWI reconstruction method significantly improves the resolution,
contrast, and overall quality of the SoS maps (third column in Fig. 6.2), facilitating clear
delineation of the tumor boundaries and other anatomical structures. This is also shown in
Fig. 6.1c by comparing RUCT and SoS images. Further analysis was done to compare SoS
values in different anatomical regions, namely tumor and urinary bladder, estimated with
each reconstruction method. These anatomical structures were manually segmented in the
cross sections rendered with the FWI method. The calculated mean and standard deviation
of the SoS values in the tumor were 1614±11.45 m/s, 1544±3.60 m/s and 1564±6.17 m/s for
the straight ray approximation, the Bezier curves method and the FWI method, respectively.
The corresponding values for the urinary bladder were 1611±7.84 m/s, 1541±2.14 m/s and
1584±11.02 m/s. Thus, no clear distinction between the tumor and urinary bladder can be
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Figure 6.2: Comparison between different methods for rendering the speed of sound (SoS) images
with transmission ultrasound computed tomography (TUCT). (a) Straight ray approxi-
mation. (b) Bezier curve reconstruction. (c) Full wave inversion (FWI). Reconstructions
from different cross sections acquired from the same mouse with 1 mm steps are shown –
see Fig. 6.1b. The SoS values were calculated over the tumor (green curve) and urinary
bladder (cyan curve) areas manually segmented in the FWI images.

made by analyzing the SoS values rendered with the straight ray and Bezier curves methods,
yet such differentiation is possible based on values extracted with the FWI methods. The
volumes of the tumor and urinary bladder regions were further estimated by integrating the
segmented regions over consecutive slices. This resulted in 219 mm3 and 196 mm3 estimates
for the tumor and urinary bladder, respectively.

We subsequently analyzed in vivo data from n = 4 tumor-bearing mice (M2-M5) and a
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Figure 6.3: Cross-sectional multi-modal images of the tumor-bearing (M2-M5) and tumor free (M1)
mice acquired from approximately the same abdominal region. Histological cryo-sections
taken from approximately corresponding regions ex vivo are shown in the bottom row.
The tumors and other anatomical structures are labeled: 1 - Vertebral Column, 2 -
Caudal Vertebrae, 3 - Urinary Bladder, 4 - Tumor, 5 - Coxal Bone, 6 - Ischium, 7 -
Female Urethra.

tumor-free mouse (M1). The results are shown in Fig. 6.3. While vascular density/size is
clearly altered in the tumor regions according to the OA data, the lesion boundaries cannot
be accurately discerned from those images. The RUCT data is used instead for anatomical
guidance and segmentation of the tumor boundaries. Yet, anechoic or hypoechoic structures
corresponding to malignant tumors may easily be confused with other mouse organs. For ex-
ample, the urinary bladder, clearly distinguished as a low intensity region in the RUCT image
of M1 (Fig. 6.3), exhibits similar characteristics to tumors regions shown for other mice. In
this regard, the additional information provided by OA facilitates classifying this region as
benign since no increase in vessel density or thickness occurs around expected tumor region.
OA images from M3 and M4 show increased vessel density around the tumor region but not
in the tumor core, which is consistent with previous studies [10, 31]. However, OA images are
often corrupted with streak type artifacts [32] that can be observed in the urinary bladder
area. Note that such artifacts are commonly amplified by the Frangi filtering (see image com-
parison in the supplementary information), which may lead to misinterpreting the artifacts
for blood vessels. In general, the streak artifacts can be mitigated by using an imaging system
with higher number of elements or employing more sophisticated reconstruction approaches
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[33]. Note also that the RUCT images of M3 and M4 exhibit several regions with low inten-
sity, which seem to be difficult to classify as benign or malignant even in conjunction with
the vascularization information provided by the OA data. This turns even more challenging
for M2 and M5, which have small-sized tumors. In those cases, the SoS data may serve as
a complementary modality for increasing specificity of tumor detection and characterization.
The tumor locations identified by the multi-modal in vivo TROPUS imaging were further
confirmed by studying the histological cryo-sections taken from approximately corresponding
regions ex vivo (last row in Fig. 6.3). Note that while the anatomical structures visible in
the cryo-sections were generally matching the information obtained by TROPUS, the exact
shape and size of the different structures might have changed due to compression and freezing
of the samples.

To compare the information provided by reflection and transmission ultrasound, the tumors
were manually segmented in the RUCT and SoS images following their identification and
localization using the multi-modal data. The segmented regions based on the SoS (Fig. 6.4a)
and RUCT (Fig. 6.4b) data were then superimposed on the OA images (Fig. 6.4c). Even
though the US-based segmentations generally match the regions with low vessel density in
the OA images, robust tumor differentiation based on vascular OA features seems challeng-
ing. We subsequently generated binary masks from the segmented region of interests (ROIs)
and extracted the mean and standard deviation of the SoS values in the tumor regions (Fig.
6.4d). The measured mean SoS values in the tumors ranged from 1541 to 1572 m/s with the
respective standard deviations ranging from 2.77 to 6.26 m/s. Also, the SoS values increased
as a function of tumor size, though the limited sample size prevents establishing such a cor-
relation unambiguously. In general, the reconstructed SoS values in the tumor regions are
in the range of previously reported data for solid breast tumors [34], yet longitudinal study
with an increased sample size is needed to validate quantification by the proposed methods.

Finally, the anatomical localization capabilities of the RUCT and SoS images were compared
based on the segmented tumor areas from both modalities. While comparison between the
extracted tumor areas yields similar values for both modalities (Fig. 6.4e), slightly larger area
estimations were generally obtained when segmenting tumors based on the RUCT images in
3 out of 4 tumor-bearing mice. In one mouse having the smallest tumor size (M2), the
segmented area was slightly larger in the SoS image, though the actual SoS values were
smaller, which may just indicate an early stage of the tumor development.

6.4 Discussion and Conclusion

The presented results indicate that the marriage between diverse OA and US contrasts in
one single TROPUS platform has the potential to provide complementary information for
characterizing mammary tumors in mice. Angiogenesis is a central hallmark of solid tu-
mors, representing formation of new vascular network necessary to support tumor growth
and metastasis. In our study, neo-vasculature was clearly observed in the areas surrounding
the tumors in the OA images. However, tumor boundaries could not clearly be discerned
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Figure 6.4: Tumor segmentation and characterization. (a) The manually segmented tumor areas in
the speed of sound (SoS) images reconstructed with full wave inversion (FWI) method.
(b) The corresponding segmentations based on the reflection ultrasound computed to-
mography (RUCT) images. (c) The segmented areas superimposed onto the optoa-
coustic (OA) images. d) Measured mean and standard deviation of SoS values inside
the segmented region of interests (ROIs) based on SoS-based tumor segmentations. e)
Comparison of the measured tumor areas based on the SoS- and RUCT-based tumor
segmentations. The ratios between the calculated areas are presented for each imaged
mouse.

based on the vascular anatomy contrast provided by the OA data. On the other hand, the
tumors appeared as anechoic or hypoechoic structures in pulse-echo US, although some mouse
organs like the urinary bladder may have a similar appearance in those images. The improved
resolution and contrast of SoS maps reconstructed with the FWI method facilitated the de-
lineation of the tumor mass. In this case, we were able to assign the tumors to areas having
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sharp boundaries and a relatively uniform SoS different from the background. The extracted
average values of SoS in the tumor regions could also potentially be used to distinguish malig-
nant lesions from other regions with uniform SoS. Generally, reliable identification of tumors
appears to be challenging in images from standalone modalities and the complementary in-
formation provided by OA, pulse-echo and SoS images aided an unambiguous identification.
Yet, further work is required to strengthen the synergistic and complementary value of the
suggested hybrid imaging methodology.

Even though the present study solely focused on the anatomical imaging capabilities of OA
and US, these modalities are generally equipped with a range of additional functional and
molecular imaging features that can aid tumor identification and characterization. Previous
studies using MSOT approaches have demonstrated high resolution readings of tumor oxy-
genation gradients across tumors [35] as well as perfusion and targeted uptake of nanoparticles
and other molecular agents by the tumor microenvironment [31, 36]. Similarly, Doppler and
contrast-enhanced US imaging have been used for multi-parametric characterization of func-
tional tumor parameters [37–39]. From the imaging point of view, hybridization of multiple
modalities based on US and OA excitation can enhance the reconstruction accuracy of those
methods by exploiting synergistic information on the underlying optical and acoustic tissue
properties [32, 40]. The accuracy and quantification capabilities of the proposed system shall
be validated in future longitudinal studies.

Clinical translation potential is another important aspect of the TROPUS platform that
can be explored for identifying new diagnostics bio-markers of breast cancer. To this end,
pulse-echo US is routinely used in the clinics for anatomical guidance and characterization of
breast lesions. Transmission US has also shown promising diagnostic results in clinical trials
[41]. Initial clinical studies aimed at early breast cancer detection have also been performed
with OA imaging [8]. In one recent study, a full-ring array analogous to the one used in the
TROPUS system has been tested for OA imaging of human breast [42], further supporting
the clinical translation potential of our approach.

In conclusion, we demonstrated the potential of TROPUS imaging for detection and char-
acterization of mammary tumors in mice. The reported findings corroborate the strong po-
tential of the hybrid imaging approach for advancing cancer research in small animal models
and fostering development of new clinical diagnostic approaches.
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Supplementary Figure

Figure 6.5: Cross-sectional optoacoustic (OA) images without Frangi filter. The same OA images
with Frangi filter are shown in Fig. 6.3.



Bibliography

[1] Rebecca L Siegel, Kimberly D Miller, and Ahmedin Jemal. “Cancer statistics, 2019”.
In: CA: a cancer journal for clinicians 69.1 (2019), pp. 7–34.

[2] Diana L Lam et al. “Imaging-based screening: understanding the controversies”. In:
AJR. American journal of roentgenology 203.5 (2014), p. 952.

[3] Wendie A Berg et al. “Combined screening with ultrasound and mammography vs
mammography alone in women at elevated risk of breast cancer”. In: Jama 299.18
(2008), pp. 2151–2163.

[4] Valerie P Jackson et al. “Imaging of the radiographically dense breast.” In: Radiology
188.2 (1993), pp. 297–301.

[5] Monica Morrow, Janet Waters, and Elizabeth Morris. “MRI for breast cancer screening,
diagnosis, and treatment”. In: The Lancet 378.9805 (2011), pp. 1804–1811.

[6] Qiuting Li et al. “Combining Ultrasound and X-Ray Imaging for Mammography: A
Prototype Design”. In: Bildverarbeitung für die Medizin 2019: Algorithmen–Systeme–
Anwendungen. Proceedings des Workshops vom 17. bis 19. März 2019 in Lübeck. Springer.
2019, pp. 245–250.

[7] Srirang Manohar and Maura Dantuma. “Current and future trends in photoacoustic
breast imaging”. In: Photoacoustics 16 (2019), p. 100134.

[8] Mohammad Mehrmohammadi et al. “Photoacoustic imaging for cancer detection and
staging”. In: Current Molecular Imaging (Discontinued) 2.1 (2013), pp. 89–105.

[9] Isabel Quiros-Gonzalez et al. “Optoacoustics delineates murine breast cancer mod-
els displaying angiogenesis and vascular mimicry”. In: British journal of cancer 118.8
(2018), pp. 1098–1106.

[10] Avihai Ron et al. “Volumetric Optoacoustic Imaging Unveils High-Resolution Pat-
terns of Acute and Cyclic Hypoxia in a Murine Model of Breast CancerImaging High-
Resolution Patterns of Acute and Cyclic Hypoxia”. In: Cancer research 79.18 (2019),
pp. 4767–4775.

[11] Emma Brown, Joanna Brunker, and Sarah E Bohndiek. “Photoacoustic imaging as a
tool to probe the tumour microenvironment”. In: Disease models & mechanisms 12.7
(2019), p. dmm039636.

[12] Gael Diot et al. “Multispectral Optoacoustic Tomography (Msot) of Human Breast
Cancermsot Signatures of Human Breast Cancer”. In: Clinical Cancer Research 23.22
(2017), pp. 6912–6922.



Bibliography 157

[13] Arunima Sharma, Vijitha Periyasamy, and Manojit Pramanik. “Photoacoustic imaging
depth comparison at 532-, 800-, and 1064-nm wavelengths: Monte Carlo simulation and
experimental validation”. In: Journal of Biomedical Optics 24.12 (2019), pp. 121904–
121904.

[14] Elena Merčep et al. “Whole-body live mouse imaging by hybrid reflection-mode ultra-
sound and optoacoustic tomography”. In: Optics letters 40.20 (2015), pp. 4643–4646.

[15] Jeesu Kim et al. “Programmable real-time clinical photoacoustic and ultrasound imag-
ing system”. In: Scientific reports 6.1 (2016), p. 35137.

[16] Milan Oeri et al. “Hybrid photoacoustic/ultrasound tomograph for real-time finger
imaging”. In: Ultrasound in Medicine & Biology 43.10 (2017), pp. 2200–2212.

[17] M Pérez-Liva et al. “Time domain reconstruction of sound speed and attenuation in
ultrasound computed tomography using full wave inversion”. In: The Journal of the
Acoustical Society of America 141.3 (2017), pp. 1595–1604.

[18] Adrian Taruttis, Gooitzen M van Dam, and Vasilis Ntziachristos. “Mesoscopic and
macroscopic optoacoustic imaging of cancer”. In: Cancer research 75.8 (2015), pp. 1548–
1559.

[19] Xosé Luı́s Deán-Ben, Steven James Ford, and Daniel Razansky. “High-frame rate four
dimensional optoacoustic tomography enables visualization of cardiovascular dynamics
and mouse heart perfusion”. In: Scientific reports 5.1 (2015), p. 10133.

[20] Hiroaki Okawai, Kazuto Kobayashi, and Shin’ichi Nitta. “An approach to acoustic
properties of biological tissues using acoustic micrographs of attenuation constant and
sound speed.” In: Journal of Ultrasound in Medicine: Official Journal of the American
Institute of Ultrasound in Medicine 20.8 (2001), pp. 891–907.

[21] Elena Merčep et al. “Transmission–reflection optoacoustic ultrasound (TROPUS) com-
puted tomography of small animals”. In: Light: Science & Applications 8.1 (2019),
p. 18.

[22] X Luı́s Deán-Ben, Vasilis Ntziachristos, and Daniel Razansky. “Effects of small varia-
tions of speed of sound in optoacoustic tomographic imaging”. In: Medical physics 41.7
(2014), p. 073301.

[23] Daniel Razansky and Vasilis Ntziachristos. “Hybrid photoacoustic fluorescence molecu-
lar tomography using finite-element-based inversion”. In: Medical physics 34.11 (2007),
pp. 4293–4301.

[24] Alejandro F Frangi et al. “Multiscale vessel enhancement filtering”. In: Medical Im-
age Computing and Computer-Assisted Intervention—MICCAI’98: First International
Conference Cambridge, MA, USA, October 11–13, 1998 Proceedings 1. Springer. 1998,
pp. 130–137.

[25] Søren K Jespersen, Jens E Wilhjelm, and Henrik Sillesen. “Multi-angle compound imag-
ing”. In: Ultrasonic imaging 20.2 (1998), pp. 81–102.

[26] Ihor Trots et al. “Synthetic aperture method in ultrasound imaging”. In: Ultrasound
Imaging (2011), pp. 37–56.



158 Bibliography

[27] Cuiping Li et al. “An improved automatic time-of-flight picker for medical ultrasound
tomography”. In: Ultrasonics 49.1 (2009), pp. 61–72.

[28] Erol Kalkan. “An automatic P-phase arrival-time picker”. In: Bulletin of the Seismo-
logical Society of America 106.3 (2016), pp. 971–986.

[29] Cuiping Li, Neb Duric, and Lianjie Huang. “Comparison of ultrasound attenuation
tomography methods for breast imaging”. In: Medical Imaging 2008: Ultrasonic Imaging
and Signal Processing. Vol. 6920. SPIE. 2008, pp. 338–346.

[30] Mailyn Perez-Liva et al. “Speed of sound ultrasound transmission tomography image
reconstruction based on Bézier curves”. In: Ultrasonics 103 (2020), p. 106097.

[31] Eva Herzog et al. “Optical imaging of cancer heterogeneity with multispectral optoa-
coustic tomography”. In: Radiology 263.2 (2012), pp. 461–468.

[32] Elena Merčep et al. “Hybrid optoacoustic tomography and pulse-echo ultrasonogra-
phy using concave arrays”. In: IEEE transactions on ultrasonics, ferroelectrics, and
frequency control 62.9 (2015), pp. 1651–1661.

[33] X Luı́s Dean-Ben et al. “Accurate model-based reconstruction algorithm for three-
dimensional optoacoustic tomography”. In: IEEE transactions on medical imaging 31.10
(2012), pp. 1922–1928.

[34] Cuiping Li et al. “In vivo Breast Sound-Speed Imaging with Ultrasound Tomography”.
In: Ultrasound in Medicine & Biology 35.10 (2009), pp. 1615–1628.

[35] Michal R Tomaszewski et al. “Oxygen enhanced optoacoustic tomography (OE-OT)
reveals vascular dynamics in murine models of prostate cancer”. In: Theranostics 7.11
(2017), p. 2900.

[36] Katheryne E Wilson, Keerthi S Valluru, and Jürgen K Willmann. “Nanoparticles for
Photoacoustic Imaging of Cancer”. In: Design and Applications of Nanoparticles in
Biomedical Imaging (2017), pp. 315–335.

[37] HHT Madsen and F Rasmussen. “Contrast-enhanced ultrasound in oncology”. In: Can-
cer Imaging 11.1A (2011), S167.

[38] Hyun-Jung Jang, Hojun Yu, and Tae Kyoung Kim. “Contrast-enhanced ultrasound in
the detection and characterization of liver tumors”. In: Cancer Imaging 9.1 (2009),
p. 96.

[39] L Alamo and U Fischer. “Contrast-enhanced color Doppler ultrasound characteristics in
hypervascular breast tumors: comparison with MRI”. In: European radiology 11 (2001),
pp. 970–977.

[40] Xosé Luıs Deán-Ben, E Merčep, and Daniel Razansky. “Hybrid-array-based optoacous-
tic and ultrasound (OPUS) imaging of biological tissues”. In: Applied Physics Letters
110.20 (2017), p. 203703.

[41] Mark Sak et al. “Using speed of sound imaging to characterize breast density”. In:
Ultrasound in medicine & biology 43.1 (2017), pp. 91–103.



Bibliography 159

[42] Sjoukje M Schoustra et al. “Twente Photoacoustic Mammoscope 2: system overview and
three-dimensional vascular network images in healthy breasts”. In: Journal of biomedical
optics 24.12 (2019), pp. 121909–121909.



7 MULTIMODAL ASSESMENT OF NON-ALCOHOLIC
FATTY LIVER DISEASE WITH
TRANSMISSION-REFLECTION OPTOACOUSTIC
ULTRASOUND

This chapter includes the following publication:

Under Review (2023).

Authors:
Berkan Lafci1,2, Anna Hadjichambi3,4,5, Christos Konstantinou3,4,5, Joaquin L. Herraiz6,7,
Luc Pellerin5,8, Neal C. Burton9, Xosé Luís Deán-Ben1,2, Daniel Razansky1,2

1 Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Fac-
ulty of Medicine, University of Zurich, Switzerland
2 Institute for Biomedical Engineering, Department of Information Technology and Electrical
Engineering, ETH Zurich, Switzerland
3 The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
4 Faculty of Life Sciences and Medicine, King’s College London
5 Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
6 Nuclear Physics Group and IPARCOS, Complutense University of Madrid, Madrid, Spain
7 Health Research Institute of Hospital Clínico San Carlos (IdISSC), Madrid, Spain
8 Inserm U1313, Université et CHU de Poitiers, Poitiers, France
9 iThera Medical GmbH, Munich, Germany



161

Abstract

Rationale
Non-alcoholic fatty liver disease (NAFLD) is an umbrella term referring to a group of condi-
tions associated to fat deposition and damage of liver tissue. Early detection of fat accumu-
lation is essential to avoid progression of NAFLD to serious pathological stages such as liver
cirrhosis and hepatocellular carcinoma.

Methods
We exploited the unique capabilities of transmission-reflection optoacoustic ultrasound (TROPUS),
which combines the advantages of optical and acoustic contrasts, for an early-stage multi-
parametric assessment of NAFLD in mice.

Results
The multispectral optoacoustic imaging allowed for spectroscopic differentiation of lipid con-
tent, as well as the bio-distributions of oxygenated and deoxygenated hemoglobin in liver
tissues in vivo. The pulse-echo (reflection) ultrasound (US) imaging further provided a valu-
able anatomical reference whilst transmission US facilitated the mapping of speed of sound
changes in lipid-rich regions, which was consistent with the presence of macrovesicular hep-
atic steatosis in the NAFLD livers examined with ex vivo histological staining.

Conclusion
The proposed multimodal approach facilitates quantification of liver abnormalities at early
stages using a variety of optical and acoustic contrasts, laying the ground for translating the
TROPUS approach toward diagnosis and monitoring NAFLD in patients.
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7.1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is a common disorder comprising a progressive
spectrum of diseases, defined as an accumulation of fat in the liver (steatosis), in the absence
of significant alcohol consumption [1]. NAFLD progresses to non-alcoholic steatohepatitis,
characterized by inflammation and hepatocyte damage (which includes ballooning and cell
death), together with deposition of collagen and fibrosis progression [2], results in enlarging
and discoloring of the organ [3]. Further progression of fibrosis may lead to the irreversible
stages of cirrhosis and, eventually, hepatocellular carcinoma [4]. At present, no approved
interventions are available to treat liver fibrosis, which calls for the development of new re-
search tools aimed at better understanding the underlying causes of NAFLD, as well as new
methods capable of detecting this condition at the earliest reversible stage before it pro-
gresses to fibrosis [5, 6]. NAFLD and liver fibrosis have become a major health concern due
to the growing prevalence of overweight and obese individuals in developed countries [7]. The
worldwide mortality rate related to liver diseases follows an upward trend, reaching 2 million
disease-related deaths annually in 2019 [8]. However, detection of early liver damage is chal-
lenged by the small size and sparsity of the scars formed before the appearance of fibrosis
[9]. Currently, liver disease assessment is performed with biopsies and histopathology imag-
ing [10]. Liver biopsy is however an invasive and user-dependent (sampling bias) procedure
hindering a continuous monitoring of liver tissue abnormalities. Therefore, the development
of non-invasive methods enabling the quantitative assessment of NAFLD is paramount both
for preclinical studies aiming at advancing our knowledge of the disease, as well as for early
diagnosis purposes in the clinical setting.

Whole-body clinical imaging methods have been shown to provide important advantages for
liver disease diagnosis. Magnetic resonance imaging (MRI) achieves high specificity for fat
accumulation by using the proton density fat fraction technique [11]. X-ray computed to-
mography (CT) has also been reported for the assessment of liver abnormalities with high
resolution [12]. However, the use of these methods is associated with high installation and
maintenance costs, exposure to ionizing radiation, and insufficient sensitivity to molecular
(fat) contrast [13, 14]. Ultrasound (US) imaging is a more affordable and accessible bedside
technology which has also been used for visualizing and assessing liver abnormalities [15,
16]. Linear array probes are typically used in clinics to provide a quick assessment of the
liver with pulse-echo (B-mode) US. However, this approach does not provide sufficient tomo-
graphic (angular) coverage needed for accurate localization and quantitative characterization
of the damaged liver areas, further lacking the necessary contrast for assessing fat accumula-
tion. In response, tomographic US methods have been developed to provide enhanced tissue
contrast. Reflection ultrasound computed tomography (RUCT) is based on tomographic
pulse-echo US imaging with waves being sequentially emitted and detected at different an-
gular positions around the sample. The broad angular coverage has been shown to increase
the image contrast, resolution and field of view (FOV) with respect to those achieved with
linear arrays [17]. Transmission ultrasound computed tomography (TUCT) further enables
mapping the speed of sound (SoS) distribution in tissues by considering US waves transmitted
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through the sample. SoS maps have been shown to provide improved specificity for detecting
fatty and glandular tissue abnormalities and delineation of lesions [18].

Hybrid optoacoustic (OA) imaging combining light with sound has emerged as another pow-
erful functional and molecular preclinical imaging approach. It is based on optical ex-
citation of tissues at near infrared (NIR) wavelengths and tomographic detection of the
thermoelastically-induced US waves, thus rendering rich optical contrast with high spatial
resolution unaffected by photon scattering in deep tissues [19, 20]. In particular, multispectral
optoacoustic tomography (MSOT) capitalizes on optical excitation at different wavelengths to
spectroscopically differentiate between oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb),
melanin, lipids and other tissue bio-chromes as well as extrinsically administered contrast
agents [21, 22]. However, unambiguous anatomical differentiation of lesions and organs is
hindered with MSOT whose main contrast stems from hemoglobin-rich structures such as
major blood vessels.

Recently, a multi-modal transmission-reflection optoacoustic ultrasound (TROPUS) imaging
has been suggested as a versatile imaging approach for multi-parametric anatomical, func-
tional and molecular characterization of murine disease models [23, 24]. The full tomographic
coverage of the circular transducer array used in TROPUS results in an improved contrast
and resolution with MSOT, RUCT and TUCT, while further providing real-time imaging
capabilities for visualizing dynamic processes [25, 26]. Here, we employed TROPUS for as-
sessing early-stage NAFLD in mice. The lipid accumulation in the liver was delineated and
quantified with TUCT and MSOT while RUCT facilitated anatomical interpretation. The in
vivo imaging results were validated with Hematoxylin and Eosin (H&E) staining of excised
specimens.

7.2 Results

The TROPUS imaging setup consists of a circular US transducer array, a nanosecond laser
source, a data acquisition-transmission system DAQ and a workstation PC used for the
system synchronization, data transfer, storage and processing (Fig. 7.1a, see Methods for
details) [24]. Imaging in the MSOT mode was performed by quickly switching the optical
wavelength of the nanosecond optical parametric oscillator (OPO) laser from 740 to 940 nm
with a 20 nm step size at 25 Hz repetition rate in order to enable the separation of Hb,
HbO2, melanin and lipid components, the latter having a distinct peak in its absorption
spectrum at 920 nm (Fig. 7.1b) [27]. Exemplary cross-sectional MSOT images acquired
from living mice at 800nm excitation wavelength are shown in Fig. 7.1c. RUCT imaging
was based on the synthetic transmit aperture (STA) image acquisition technique [25], which
employs sequential transmission of US pulses with each array element followed by detection of
the reflected signals. Image compounding was subsequently performed by adding up multiple
low-contrast delay-and-sum images acquired from different views around the sample, resulting
in a final high-contrast RUCT images (Fig. 7.1d). Quantitative TUCT images representing
the SoS distribution in the mouse in m/s were reconstructed from the US waves that traversed
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the imaged object using a full wave inversion (FWI) algorithm (Fig. 7.1e) [28].

Figure 7.1: TROPUS imaging. (A) Lay-out of the imaging set-up combining three modalities,
namely MSOT, RUCT and SoS imaging. Only half of the ring array is shown for better
visualization. (B) Absorption spectrum of Hb, HbO2 and lipid in 700 nm and 1000 nm
wavelength range. (C) Exemplary MSOT images from different cross sections recorded
at 1064 nm excitation wavelength. (D) The corresponding cross sections reconstructed
with the RUCT modality. (E) The corresponding cross sections showing the SoS maps
reconstructed with TUCT modality. Hb: deoxy-hemoglobin; HbO2: oxy-hemoglobin,
MSOT: multispectral optoacoustic tomography; RUCT: reflection ultrasound computed
tomography; SoS: speed of sound; TROPUS: transmission-reflection optoacoustic ultra-
sound; TUCT: transmission ultrasound computed tomography.

The basic ability of the multimodal TROPUS system to differentiate between NAFLD and
control liver tissues was first evaluated with ex vivo samples (Fig. 7.2). Specifically, livers
excised from 3 NAFLD and 3 control mice were imaged at two different vertical positions,
resulting in 12 cross-sectional images. The MSOT images enable resolving the fat content
by capitalizing on the distinctive optical absorption spectrum of lipids (Fig. 7.1b). The
spectrally un-mixed bio-distributions of lipids (green color in Fig. 7.2a), overlaid onto the
structural MSOT images rendered by averaging signals acquired at all the excitation wave-
lengths, clearly evince a higher fat content in the NAFLD liver tissue with respect to the
control. RUCT images were further acquired for anatomical reference (Fig. 7.2b), which were
used to delineate the borders of the excised livers in order to create binary masks to suppress
background and conduct quantitative analysis. The corresponding SoS images acquired with
TUCT manifest lower SoS values in the entire cross-sections of NAFLD livers as compared to
the controls (Fig. 7.2c), which is generally expected considering a slower sound wave propa-
gation in fat compared to liver tissue [29]. Histology images based on H&E staining were also
acquired for validation (Fig. 7.2d). The spectra of the MSOT signals averaged over selected
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region of interests (ROIs) revealed the presence of fat in the liver tissue from animals with
NAFLD (Fig. 7.2e). Specifically, a distinctive peak at 920 nm was observed in the MSOT
signal spectra matching well the known local maximum in the optical absorption of lipids
[27]. This spectral peak was not present in the spectrum of the MSOT signals recorded from
the control liver tissue. The lipid signals in ex vivo liver tissues were then averaged based
on the pixel number after removing the non-distinct absorption background. The averaged
lipid signal un-mixed from the MSOT images was 47% higher in NAFLD livers as compared
to controls, exhibiting statistically significant differences for the 12 imaged cross-sections
(Fig. 7.2f, p=0.001). Note that a similar standard deviation (STD) of the lipid signal (12%
of the average value of all images) was observed in both cases. Statistical analysis of the
measured SoS values for the 12 imaged cross-sections further revealed significant differences
between NAFLD liver tissues and controls (Fig. 7.1g, p=0.010). The measured SoS mean
and STD in NAFLD mice were 1495 m/s and 12 m/s, respectively, while these values were
1525 m/s and 15 m/s, respectively, in control mice. Histology images based on H&E staining
further revealed macrovesicular hepatic steatosis in the NAFLD livers (Figs. 7.2d). The
lipid accumulates in the hepatocytes as vacuoles detectable with H&E staining [30]. These
intracytoplasmatic fat droplets were not observed in histology images of control tissues. The
difference in fat content observed in histology images is thus consistent with the observations
in the in vivo MSOT and SoS images.

TROPUS was then used to image NAFLD and control mice in vivo. The good anatomical
contrast provided by RUCT facilitated identification of the liver cross-sections (Figs. 7.3a-
b). The SoS images further provided sufficient contrast and resolution to differentiate the
liver from other surrounding tissues (Figs. 7.3c-d). Segmentation of the liver was done by
an experienced biologist considering both the RUCT and SoS images. This served to define
binary masks to quantify differences in SoS between NAFLD and control mice. SoS values
were averaged for the segmented binary masks for 4 NAFLD (20 cross-sections) and 4 control
(20 cross-sections) mice. Statistical analysis revealed a significant drop in SoS in liver ROIs
for the NAFLD (average: 1475 m/s, STD: 34 m/s) versus control (average: 1538 m/s, STD:
18 m/s) mice (Fig. 7.3e, p=0.007), which is consistent with reduced SoS values in fat tissues
versus healthy liver tissues [29]. A clear difference between the body weights of NAFLD
and control mice was further observed (Fig. 7.3f, p=0.0005), with mean values of 42g and
30g, respectively. The cross-sectional areas were further calculated by manually segmenting
the outer boundaries of the mouse body in the RUCT images, where the skin surface was
clearly distinguishable. Statistically significant differences in cross-sectional areas of NAFLD
(average area: 562 mm2, STD: 29 mm2) and control (average area: 333 mm2, STD: 21 mm2)
mice were also observed (Fig. 7.3g, p=7e-9). Despite the increased body weight and cross-
sectional area in NAFLD mice, RUCT manifested sufficient penetration depth to visualize
structures in the central region of the mouse. Also, the transmitted US waves through mouse
body were shown to have sufficient amplitude to enable reconstructing SoS images through
the whole mouse body using the FWI reconstruction algorithm.

MSOT images were subsequently analyzed to visualize the distribution of different tissue
chromophores. Specifically, linear un-mixing was performed by considering four components,
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Figure 7.2: TROPUS imaging of liver tissues excised from NAFLD and control mice. (A) Un-mixed
lipid distribution (green color) overlaid onto the anatomical MSOT images corresponding
to averaged signals over all the acquired wavelengths for excised livers from mouse with
NAFLD and control mouse. (B) RUCT images of excised livers from mouse with NAFLD
and control mouse. (C) SoS images of excised livers from mouse with NAFLD and control
mouse. (D) Histology images of excised livers from mouse with NAFLD and control
mouse. (E) MSOT signal spectra of liver tissue shown in the panels a. (F) Average lipid
signal intensities from 3 NAFLD and 3 control mice. (G) Average SoS values from 3
NAFLD and 3 control mice. MSOT: multispectral optoacoustic tomography; NAFLD:
non-alcoholic fatty liver disease; RUCT: reflection ultrasound computed tomography;
SoS: speed of sound; (p values are indicated by *≤0.05, **≤0.01 and ***≤0.001)

namely, Hb, HbO2, melanin and lipids. One NAFLD and one control animal were excluded
from the MSOT data analysis due to the saturated signal intensity from the melanin channel
as a result of skin pigmentation. MSOT images of NAFLD and control mice corresponding
to averaged signals over all the wavelengths used for acquisition are shown in Figs. 7.4a-
b. NAFLD mice clearly manifest an increased lipid content in the liver region (Fig. 7.4c),
indicated by the yellow contour. On the contrary, a relatively low accumulation of fat in
the liver was observed in control mice (Fig. 7.4d). Much like for the ex vivo samples,
analysis of the MSOT signal spectra averaged over the liver areas enabled detection of lipids.
While spectra from both NAFLD and control mice monotonically decrease with wavelength,
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Figure 7.3: Cross-sectional RUCT and SoS images of NAFLD and control mice in vivo. (A) RUCT
image of a NAFLD mouse cross section. Zoom-in of the liver region is shown. (B)
RUCT image of a control mouse cross section. Zoom-in of the liver region is shown.
(C) SoS image of a NAFLD mouse cross section. Zoom-in of the liver region is shown.
(D) SoS image of a control mouse cross section. Zoom-in of the liver region is shown.
(E) Boxplots of the measured SoS values in the segmented liver regions for NAFLD vs
control mice cross sections. (F) Boxplots of the measured body weights for NAFLD
and control mice. (G) Boxplots of the measured cross-sectional areas for NAFLD and
control mice. NAFLD: non-alcoholic fatty liver disease; RUCT: reflection ultrasound
computed tomography; SoS: speed of sound. (p values are indicated by *≤0.05, **≤0.01
and ***≤0.001)

the lipid peak at 920 nm can only be detected in NAFLD mice (Fig. 7.4e). A statistically
significant (19%) difference in lipid accumulation between NAFLD and control mice was found
by calculating the averaged lipid signal values in the liver regions from all the measured cross
sections (Fig. 7.4f, p=0.05).
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Figure 7.4: Cross-sectional MSOT images of NAFLD and control mice in vivo. (A) Cross section
of a NAFLD mouse. (B) Cross section of a control mouse. (C) The un-mixed bio-
distribution of lipids within selected liver region is shown for NAFLD mouse. (D) The
un-mixed bio-distribution of lipids is shown for control mouse. (E) Spectrum of the
MSOT signals in liver region indicated in panels (A-B). (F) Boxplots of the lipid signals
in the liver cross sections for all mice. MSOT: multispectral optoacoustic tomography;
NAFLD: non-alcoholic fatty liver disease. (p values are indicated by *≤0.05, **≤0.01
and ***≤0.001)

7.3 Discussion

Early detection of NAFLD is essential for preventing progression of this condition to more
advanced stages [31]. The process of fat accumulation in the liver is generally reversible before
the onset of fibrosis by adjusting the daily diet and following a healthy lifestyle [32]. How-
ever, development of effective treatment strategies for NAFLD implies the in vivo validation
of potential therapies in preclinical disease models. Histopathology imaging is conventionally
used for this purpose [33], which however only allows measurements at single time points thus
hampering longitudinal treatment follow-up studies. In vivo imaging modalities have thus
been attempted for liver screening, predominantly MRI and pulse-echo US [34], which how-
ever suffer from low sensitivity and insufficient quantification accuracy. Multi-modal imaging
with TROPUS represents a valuable alternative that can provide multi-parametric readings
of the liver tissue condition. We have shown that the optical absorption peak of lipids at
920 nm facilitates quantification of fat accumulation in the MSOT images. The tomographic
RUCT imaging was further shown to achieve improved resolution and contrast with respect
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to standard pulse-echo US, thus enabling clear delineation of the outer boundary and internal
structures in the cross-sectional images. The FWI reconstruction method further enabled the
rendering of accurate SoS maps. Segmentation accuracy of the liver in the images benefits
from the combination between SoS and RUCT images, which facilitated the observation of
statistically significant differences in the measured parameters in NAFLD versus control liver
tissues.

While TROPUS exploits the synergistic combination of three modalities for detecting and
evaluating liver abnormalities, each modality is associated with certain limitations. For in-
stance, MSOT imaging is affected by light attenuation in biological tissues, which effectively
limits the achievable depth [35]. The so-called spectral-coloring effects may further hamper
accurate quantification of chromophore distribution in deep tissues [36]. Model-based recon-
struction algorithms can be used for rendering more quantitative results, although accurate
modelling of all the factors affecting MSOT signals remains challenging [37–40]. On the other
hand, due to the need for image compounding, RUCT and SoS imaging have an inferior imag-
ing speed as compared to MSOT. While the achieved frame rates were generally sufficient for
the experiments performed in this work, a high temporal resolution may be required to quan-
tify dynamic biological processes, such as contrast-enhanced imaging for better assessment
of NAFLD. The frame rate of all the TROPUS modalities can be increased by compressed
sensing methods [26, 41] or optimized data acquisition strategies [25]. Deep learning-based
methods could further enhance the performance of sparse acquisition strategies and provide
more accurate segmentation of the liver boundaries [42, 43]. It is also important to take into
account that three-dimensional (3D) imaging can only be achieved by vertically scanning the
transducer array [24]. Alternatively, 3D imaging systems have been proposed for both MSOT
and US imaging [44, 45].

Going forward, longitudinal studies starting from the early fat accumulation to fibrosis devel-
opment, all the way to advanced pathological stages, such as liver cirrhosis or hepatocellular
carcinoma, can also be performed with TROPUS, thus revealing new insights on the under-
lying mechanism of disease progression. Contrast agents may also be used for an enhanced
TROPUS performance. For example, indocyanine green (ICG) is mainly cleared through the
liver, and thus can be used to assess functional differences between healthy and NAFLD mice
by comparing clearance time [22]. Different types of nanoparticles can also be used to boost
imaging sensitivity and contrast [46–49]. Additional functional parameters such as blood flow
can be extracted with contrast-enhanced MSOT imaging and Doppler US [50, 51].

In conclusion, we have demonstrated the capacity of the multi-modal TROPUS imaging for
detecting and assessing NAFLD. The proposed approach facilitates quantification of liver
abnormalities at early stages using a variety of optical and acoustic contrasts. It thus defines
new in vivo imaging biomarkers to evaluate the efficacy of potential treatment strategies,
providing a valuable alternative to conventional methods of assessing fat accumulation in
the liver. All the three imaging modalities, namely, MSOT, pulse-echo, and transmission



170 NAFLD IMAGING

US, have already been used in clinics [18, 52, 53] laying the groundwork for translating the
TROPUS approach toward diagnosis and monitoring of NAFLD in humans.

7.4 Materials And Methods

7.4.1 Imaging System

The TROPUS imaging setup contains four main components, namely a circular US trans-
ducer array, a nanosecond laser source, a DAQ and a workstation PC used for the system
synchronization, data transfer, storage and processing [24]. The custom-engineered ring-
shaped detector array (Imasonic Sas, Voray, France) consists of 512 individual elements op-
erated in both transmit mode for US wave generation and in receive mode for the detection
of OA, pulse-echo (reflection) and transmitted US signals (Fig. 7.1a). The array has 40
mm radius with the individual elements having 0.37 mm x 15 mm dimensions, interelement
spacing of 0.1 mm, peak central frequency of 5 MHz and transmit/receive bandwidth of 60%
at -6 dB. The array’s active surface is shaped to provide cylindrical (toroidal) focusing in
the imaged (two-dimensional (2D)) plane. During the experiments, the array was connected
to an electronically controlled stage system with 4 degrees of freedom (x, y, z translations
and azimuthal rotation) enabling accurate positioning of the imaged mouse at the center
followed by volumetric scanning along the elevational (z) dimension. The mouse and the
transducer array were placed in a temperature-controlled (36.5°C) water tank to ensure op-
timal physiological conditions and uninterrupted acoustic coupling. A tunable nanosecond
OPO laser (SpitLight, InnoLas Laser GmBH, Krailling, Germany) was used for the OA ex-
citation. The laser delivers ∼20 mJ per pulse energy at 25 Hz repetition rate and optical
wavelength between 680 and 1200 nm tunable on a per-pulse basis. The output beam was
guided through an optical fiber separated into 12 output ferules with dimensions 0.21 mm x
12.65 mm to illuminate the object from different angles with uniform fluence (CeramOptec
GmBH, Bonn, Germany) and optical energy density below safety limits [54]. The output
ferules were equidistantly distributed on the top and bottom parts of the array with 24° tilt
angle to optimize the uniformity of the illumination profile in the imaging plane. The MSOT
and US signals collected by the array were digitized with a custom engineered DAQ (Falken-
stein Mikrosysteme GmbH, Taufkirchen, Germany). The DAQ is connected to a workstation
PC via 1 Gbit/s Ethernet to transfer the acquired signals. The workstation employed has 128
GB random access memory (RAM) and an NVIDIA GeForce GTX 1060 graphics processing
unit (GPU) for real-time reconstruction of images. This PC was also used for synchronizing
the delays between laser emission and US transmission, controlling the stages, and storing
the acquired signals.

7.4.2 Multispectral Optoacoustic Tomography (MSOT) Imaging

Imaging in the MSOT mode was performed by quickly switching the optical wavelength of
the nanosecond OPO laser from 740 to 940 nm with 20 nm step size at 25 Hz repetition
rate. For each laser pulse, the OA signals recorded by all 512 elements were simultaneously
sampled by the DAQ at 40 mega samples per second (MSPS) (2030 samples were acquired per
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laser pulse from each element). The acquired signals were first bandpass filtered with cut-off
frequencies 0.1 and 6 MHz. Then, MSOT images were reconstructed with a back-projection
algorithm assigning different SoS values for the background (water) and the mouse body
(Fig. 7.1c) [55]. 200 frames were averaged for each cross section to improve contrast to noise
ratio (CNR). Frames affected by breathing motion were separated before averaging using an
automatic detection algorithm based on the cross correlation between the frames [56]. The
outer boundaries of each cross section were manually segmented in the reconstructed images
using the combined information from RUCT and MSOT images. The segmented binary masks
were also used to correct for light attenuation through the mouse using a simple modified
Bessel function approximation [57]. Then, adaptive histogram equalization was applied on
the MSOT images. After the histogram equalization, Frangi (vesselness) filter was used to
detect vessels inside the mouse body [23]. As a final step, the segmented binary mask was
applied for background suppression while combining reconstructed image and Frangi filtered
image. The MSOT images acquired at the 11 wavelengths were used by a linear un-mixing
algorithm [38] in order to separate Hb, HbO2, melanin and lipid components, the latter
having a distinct peak in its absorption spectrum at 920 nm (Fig. 7.1b) [27].

7.4.3 Reflection Ultrasound Computed Tomography (RUCT) Imaging

RUCT imaging was based on the STA image acquisition technique [25]. Data acquisition
was performed by sequential transmission of a single-cycle bipolar square US wave (0.16
µs, 38 Vpp) with each array element. After each transmission event, all transducer ele-
ments were switched to receive the reflected and transmitted US waves. The acquisition
scheme thus resulted in 512x512 time-resolved signals for the 512 transmission events. Cross-
sectional images from single transmission events were reconstructed individually using delay
and sum (DAS) algorithm [25]. It combines the information contained in 128 neighboring
channels (90°) around the transmitting element to reconstruct a low-contrast RUCT image
from each individual transmission event. Image compounding was subsequently performed
by adding up the 512 low-contrast images, which resulted in a better image contrast owing
to consolidation of the different views around the sample. The final (high contrast) RUCT
images are presented on a logarithmic scale (Fig. 7.1d).

7.4.4 Speed of Sound (SoS) Imaging

Data acquisition for SoS mapping was based on the same STA-based method described above.
Quantitative images of the SoS distribution in m/s were reconstructed from the US waves that
traversed the imaged object. Specifically, signals collected from 171 elements on the opposite
side of each transmitting element were considered. A gradient-descent FWI algorithm was
used to iteratively vary the estimation of the SoS values in the defined image grid to minimize
the mean squared error (MSE) between the estimated waves and the actual measurements
(Fig. 7.1e) [28]. In this work, 40 iterations were used in all cases.

FWI methods are able to improve resolution and contrast in the transmission US imaging
mode when compared to the less precise bent-ray-based approach previously reported for
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TROPUS reconstructions [23]. Nevertheless, FWI is more computationally complex, and
typically requires large computational times, even when employing a GPU. Therefore, in
this work, we used two approaches to speed-up the reconstruction time. On the one hand,
the initial estimation of the SoS mapping was obtained from the time of flight (TOF) of
each emitter-receiver pair. Reference waveforms for each emitter-receiver pair were obtained
from acquisitions in water, i.e. no sample placed within the FOV, and the transmitted
signals were decomposed as the sum of scaled and time-shifted versions of the reference
waveforms. The TOF values were obtained as the minimum of the time shifts obtained
from this decomposition. This approach is more robust and less sensitive to noise than the
conventional TOF picker algorithms [24, 58, 59]. On the other hand, the estimation of the
transmitted waves for a specific SoS mapping within the iterative algorithm was obtained
by sampling the space between each emitter and receiver with multiple paths using parallel
computations on a GPU, and convolving the reference waveform with the estimated TOF
of each path [60]. This avoids the need of using slow acoustic solvers. With the proposed
method, the total SoS reconstruction time was within 5 minutes per slice.

7.4.5 Ex Vivo Liver Imaging

Ex vivo imaging was performed to validate that the quantitative readings provided by TROPUS
enable the differentiation between the diseased and normal liver. For this, ex vivo liver sam-
ples from 3 NAFLD and 3 control mice were imaged. The samples were embedded in a 20
mm cylindrical agarose phantom (1.3% w/v agarose powder). The same data acquisition
protocol was executed as for the in vivo animal imaging experiments. Cross-sectional images
from two different slices were acquired by vertically shifting the electronically controlled stage
with a 1 mm step size.

Fat accumulation in liver tissues was further validated with tissue histological sections. Specif-
ically, a Leica ASP300S tissue processor (Leica, Heerbrug, Switzerland) was used for paraffin
embedding. Then, a microtome (Model: Microm HM 335 E, Thermo Scientific, Walldorf,
Germany) was used to generate 3 µm thick tissue samples. The samples were stained by H&E
and examined by an experienced liver histopathologist using a Nikon Eclipse 80i microscope
(Nikon AG, Egg, Switzerland). 10x and 20x magnification images were acquired using a
brightfield microscope.

7.4.6 Animal Experiments

Animal housing and experiments were performed in accordance with the Swiss animal wel-
fare laws approved by the Committee on Animal Experimentation for the Canton de Vaud,
Switzerland (VD 3401.c). Mice of C57BL/6 background were housed at the department of
Biomedical Sciences, University of Lausanne, Switzerland for 24 weeks under a 12 h dark/-
light cycle. The cages were ventilated and kept in a room with temperature and moisture
controlled to 20-22°C and 50-60%, respectively. After the first 8 weeks, half of the mice
continued having ad libitum access to normal chow (Granovit, Switzerland; 3242.PX.F12)
and water, while the other half was given ad libitum access to high fat diet (Envigo, Harlan
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Teklad, USA; Cat no TD.93075.PWD, Adjusted Calories Diet [55/fat]) with fructose and glu-
cose included in the water (23.1 g/L d-fructose (Axonlab) + 18.9 g/L d-glucose (Axonlab))
for 16 weeks, to develop a diet-induced model of NAFLD [61]. Body weight was measured
weekly with a digital balance.

4 mice with NAFLD and 4 control mice were imaged with TROPUS. Anaesthesia was induced
with an initial dose of 4% isoflurane (Abbott, Cham, Switzerland) in an oxygen/air mixture
(200:800 mL/min) and was maintained at 1.5% isoflurane supplied via a nose cone under
normal air supply (oxygen/air 100:400 mL/min). The fur around the abdomen was shaved
and depilated. The mice were vertically placed inside the water tank at the center of the
ring array transducer with their head kept above the water surface by means of a custom-
designed animal holder. Body temperature was maintained at 36.5°C by heating of the water
using an electrical heater. For each mouse, 5 cross-sectional images from different sections
corresponding to the liver region (40 images in total) were acquired by vertically shifting the
US array with an electronically controlled stage.
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8 DISCUSSION AND FUTURE DIRECTIONS

This thesis focuses on the development of hybrid OA and US systems by proposing both
hardware and software solutions. The constraints imposed by hybrid imaging modalities are
investigated throughout the thesis. Several solutions including imaging setups, optimization
of data acquisition schemes, and development of new image processing methods using con-
ventional and state-of-the-art computer vision techniques are proposed to overcome these
constraints. Each method comes with advantages and challenges. This section summarizes
the findings and focuses on the improvement points for the proposed methods.

The project presented in “Deep Learning for Automatic Segmentation of Hybrid Optoa-
coustic Ultrasound (OPUS) Images” focuses on the development of automated segmentation
methods for outer boundary of the mouse body from 2D cross-sectional images of OA and
US. The study shows the successful implementation of deep learning-based semantic seg-
mentation. The results are quantified by calculating the Dice metric between predictions of
deep learning method and manual segmentation. The same metric is used to compare the
proposed method with active contour. The proposed deep learning method outperforms the
active contour method quantitatively and qualitatively. The study can be extended to 3D
imaging modalities including the hybrid OA and US systems. The work does not involve the
segmentation of inner structures such as kidney, liver, and spleen. However, the accurate
light attenuation modeling requires information of all tissue structures in the cross-sections.
The future works can include investigation of multiorgan segmentation and accurate light
attenuation modeling methods.

US data acquisition sequences and possible array designs for tomographic imaging are pro-
posed in “Expediting Image Acquisition in Reflection Ultrasound Computed Tomography”.
Combination of consecutive transducer elements and spatial undersampling are investigated
to increase frame rate in RUCT. The results are quantified by comparing CNR and spa-
tial resolution for the same increase in frame rate (temporal resolution) for each method.
The combination of multiple transducer elements for transmission and reception of US waves
are implemented without changing the waveforms from each individual channel. Different
waveforms (i.e., planar and diverging waves) can be generated by arranging the delays of
each transducer elements separately. The investigation of alternative waveform can help to
achieve higher frame rates or increase in contrast and/or resolution. Alternatively, the de-
velopment of faster DAQ with higher data transfer rate can help to achieve higher frame rates.

In the work presented in “Signal Domain Learning Approach for Optoacoustic Image Re-
construction from Limited View Data” chapter, a method to reduce limited view artifacts
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in signal domain are proposed. The results are validated by comparing the reconstructed
OA images using several image processing performance metrics. In the presented project,
the ground truth data is available in the test dataset. Thus, validation of the methods and
calculation of the evaluation metrics are possible. However, the application of the proposed
method on the images without ground truth data can result in the removal and addition of
structures that are not present in the reality. The constraints on the networks should be ad-
justed to guarantee convergence of anatomically correct structures. The image reconstruction
algorithms can be incorporated in the deep learning networks to learn and perform image
generation directly in the inference time.

The dataset presented in “OADAT: Experimental and Synthetic Clinical Optoacoustic Data
for Standardized Image Processing” chapter includes raw signals and reconstructed images
with different sparse and angular coverage acquisitions from two different detector arrays.
The benchmarks and training, validation, and test scripts for common deep learning algo-
rithms are also included to give researchers a tool to explore and validate further image
processing methods. In the presented data acquisitions, the orientation of the probe is per-
pendicular to the vessels in human forearm. However, the detector array can be used in
different orientations in clinical settings. In this regard, the dataset and the benchmarks
should be extended for different orientations. Different types of the detector arrays can be
used to increase dataset variability, i.e., 3D probes. The extension of the dataset and bench-
marks will be beneficial for the development and validation of new image processing methods.

The applications of TROPUS system for multimodal assessment of mammary tumor and
liver disease progression are shown in chapters 6 and 7. While TROPUS imaging setup is
suitable for achieving optimal imaging performance for small animal applications, it is not
practical for human imaging where only one-sided access to the region of interest is available
due to the large size of the human body. In vivo human imaging with OA imposes number
of physical constraints and image reconstruction challenges related to the strong attenua-
tion of the excitation light in living tissues, restricted tomographic access to the region of
interest (limited-view problem) and acoustic heterogeneities. In addition, the full view to-
mographic coverage requires the use of extended number of detection elements to meet the
strict inter-element pitch requirements. This results in excessive hardware complexity and
implementation cost as well as excessive computational and memory requirements, hindering
the real-time image rendering which is crucial in a bedside clinical imaging setting. In or-
der to overcome these challenges, optimized detector array geometries with higher number of
transducer elements and increased angular coverage are needed. In addition to considerations
pertaining excessive instrumentation costs, it is not possible from a physical standpoint to
achieve full tomographic coverage when imaging human tissues.

We believe that the methods proposed in this thesis will foster the applications of hybrid OA
and US systems in preclinical and clinical settings.
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In vivo mouse cross-section with 2 consecutive element transmission and recep-
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transmission and reception. (c) In vivo mouse cross-section with uniform spar-
sity level of 3 in transmission and reception. (d) In vivo mouse cross-section
with uniform sparsity level of 4 in transmission and reception. . . . . . . . . . 27
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transmission and reception. (c) In vivo mouse cross-section with random spar-
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2.1 Key components and workflow of the conducted study. Images were acquired
by multispectral optoacoustic tomography (MSOT) small animal scanners
(Models inVision 256-TF and inVision 512-echo, iThera Medical GmbH, Mu-
nich, Germany) and manually segmented to create ground truth data. Deep
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plied on the acquired images. The results are evaluated by comparing the
output of the segmentation algorithms with manually segmented images using
Dice coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 The U-Net convolutional neural network (CNN) architecture used for image
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2.3 Algorithmic steps of the active contour edge detection (ACED) segmentation
approach. (a) The originally reconstructed optoacoustic (OA) image. (b)
Output of Canny edge detector. (c) Image after morphological operations of
dilation/erosion. (d) Fitted circle on pixels detected in the previous step. (e)
The final result of the active contour segmentation. . . . . . . . . . . . . . . . 47
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mentation (left), active contour edge detection (ACED) (middle) and convo-
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2.5 Segmentation results for optoacoustic (OA) images obtained with manual seg-
mentation, active contour edge detection (ACED) and convolutional neural
network (CNN) for mouse cross-sections through brain (a-c), liver (d-f), and
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ing (kidney) and artifacts (liver, brain). The corresponding Dice coefficients
are also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6 Segmentation results for ultrasound (US) images obtained with manual seg-
mentation, active contour edge detection (ACED) and convolutional neural
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3.1 Imaging setup and transmit/receive schemes. (a) Schematic diagram of the
circular array (top view). The animal position is indicated. (b) Active array
elements for transmission and/or reception. Different colors indicate indepen-
dent signals. Top row – all array elements are driven independently. Sec-
ond row – consecutive elements are driven simultaneously in transmission or
grouped (combined) in reception. Third row – Uniform undersampling acqui-
sition scheme with only a few equidistant elements activated in transmission
and reception. Bottom row – Sparse undersampling with randomly chosen
transmission and reception elements. . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Effects of element size in transmission analyzed by varying the number of si-
multaneously transmitting consecutive elements (NCT). (a) Schematic repre-
sentation of the transmission configuration with the positions of transmitting
elements of the circular array shown in red. These elements (NCT = 1, 2,
3, 4) are driven simultaneously in one transmission event. Reflection ultra-
sound computed tomography (RUCT) images from a circular phantom with
uniformly distributed microspheres show the effects of increasing the element
size on the directivity of the transmitted ultrasound beam. (b) Contrast to
noise ratio (CNR) of the RUCT images as a function of the number of consec-
utive transmitting elements (NCT). The signal and background regions for the
CNR calculation are indicated in (a) with blue and red squares, respectively.
(c) Averaged 20 horizontal profiles within the rectangular region indicated in
green in (a) as a function of lateral distance for NCT = 1, 2, 3, 4. . . . . . . . 69

3.3 Effects of varying the number of consecutive reception elements (NCR). (a)
Groups of reception channels (NCR = 1, 2, 3, 4) are indicated with different
colors. Compounded (512 transmission events) reflection ultrasound computed
tomography (RUCT) images of wires aligned perpendicular to the imaging
plane. (b) Contrast to noise ratio (CNR) dependence on NCR. (c) Horizontal
image profile through the central wire as a function of NCR. d) Horizontal
image profile through a peripheral wire as a function of NCR. . . . . . . . . . 70

3.4 Effects of uniform undersampling in reception. (a) Different acquisition schemes
were evaluated with increasing level of sparsity, i.e., NSR = 1, 2, 3, 4. The cor-
responding compounded reflection ultrasound computed tomography (RUCT)
images of wires aligned perpendicular to the imaging plane are shown. (b)
Contrast to noise ratio (CNR) as a function of NSR. (c) Horizontal image
profile through the central wire as a function of NSR. (d) Horizontal image
profile through the peripheral wire as a function of NSR. . . . . . . . . . . . . 71
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3.5 Effects of random undersampling in reception. (a) Illustration of the various
random undersampling schemes having NSR = 1, 2, 3, 4 with the corresponding
compounded reflection ultrasound computed tomography (RUCT) images of
wires aligned perpendicular to the imaging plane. (b) Contrast to noise ratio
(CNR) as a function of NSR. (c) Horizontal image profile through the central
wire as a function of NSR. d) Horizontal image profile through the peripheral
wire as a function of NSR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 Reflection ultrasound computed tomography (RUCT) phantom images ac-
quired with consecutive elements and with sparse acquisitions as a function of
the number of consecutive elements grouped in transmission/reception (NCTR)
and the sparsity level (NSTR). The test phantom consisted of a 20 mm diame-
ter cylinder made of agar (1.3% w/v agar powder) embedded with three 6 mm
diameter cylindrical insertions filled with a uniform distribution of 50µm-sized
microparticles (Cospheric BKPMS-1.2 45-53µm). The increase in frame rate
for a given data throughput capacity is shown in the bottom right corner of
the images. (a) Compounded images as a function of the number of consec-
utive elements (NCTR = 1, 2, 3, 4). (b) Compounded images from uniform
undersampling as a function of the sparsity level (NSTR = 1, 2, 3, 4). (c)
Compounded images from random undersampling as a function of the sparsity
level (NSTR = 1, 2, 3, 4). (d) Contrast to noise ratio (CNR) of the images
as a function of NCTR and NSTR. The signal and background regions for the
CNR calculations are indicated in panel a with blue and red squares, respec-
tively. (e) Standard deviation of image intensity across the FOV as a function
of NCTR and NSTR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.7 Comparison between in vivo reflection ultrasound computed tomography (RUCT)
images acquired with the consecutive and undersampling schemes. A fe-
male athymic nude mouse (8 weeks old) was imaged in vivo. The achiev-
able increase in frame rate for a given data throughput capacity of the data
transmission-acquisition system (DAQ) is shown in upper left corner of the
images. (a) RUCT images acquired with simultaneously driven consecutive
elements (NCTR = 1, 2, 3, 4). (b) RUCT images acquired with uniform sparse
acquisition as a function of sparsity levels (NSTR = 1, 2, 3, 4, respectively). (c)
RUCT images acquired with random sparse acquisition as a function of spar-
sity levels (NSTR = 1, 2, 3, 4, respectively). (d) Change in contrast to noise
ratio (CNR) calculated on the transverse colon using consecutive element and
sparse acquisition methods. (e) Difference between minimum and maximum
values of line profile of descending colon (P1) for the consecutive and under-
sampling acquisition schemes. (f) Difference between minimum and maximum
values of line profile of vertebral column (P2) for the consecutive and under-
sampling acquisition schemes. Signal profiles through the descending colon
(P1) and vertebral column (P2) are shown under the images in panels a-c. . . 74
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4.1 Handheld multispectral optoacoustic tomography (MSOT) imaging with lin-
ear and multisegment array configurations. A) Schematic diagram of the array
geometries. The excitation light beam and generated ultrasound (US) waves
are represented with red arrows and dashed circles, respectively. B) Raw data
(time-resolved signals) along with the reconstructed MSOT images correspond-
ing to a hand-held scan of the human arm at 1064 nm excitation wavelength
with the linear and multisegment arrays, respectively. C) Simulated signals
along with the reconstructed images for the linear and multisegment arrays,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Summary of the proposed network architectures. A) Style network architec-
ture with loss functions defined by red labels. Mean absolute error (MAE),
cycle consistency loss (CCL), feature matching loss (FM), latent discriminator
loss (LDL), style discriminator loss (SDL). B) Training of side network with
simulated data. C) Training of side network using only experimental data from
the linear part of the array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Results in the signal and image domains. A) Signal domain representation of
a test image. Left to right: multisegment ground truth (GT) signals, linear
GT signals, multisegment signals after style and side networks, multisegment
signals after style and side network with real center (RC). B) Images recon-
structed with back-projection and model-based elastic-net approach. Bench-
mark UNet result is added for comparison. . . . . . . . . . . . . . . . . . . . . 91

4.4 Example of reconstructions on the test set (sample number 1-16). Each row
corresponds to a different input signal. Each column corresponds to a different
method (best viewed digitally). “BM-1” - our sides network applied without
prior style transfer network and trained with both synthetic data and linear
parts of experimental data, “BM-2” - our sides network applied without prior
style transfer network trained only on synthetic data, “BM-3” - supervised
sides network which predicts from linear part array signal of concave parts. . 96

4.5 Example of reconstructions on the test set (sample number 17-32). Each row
corresponds to a different input signal. Each column corresponds to a different
method (best viewed digitally). “BM-1” - our sides network applied without
prior style transfer network and trained with both synthetic data and linear
parts of experimental data, “BM-2” - our sides network applied without prior
style transfer network trained only on synthetic data, “BM-3” - supervised
sides network which predicts from linear part array signal of concave parts . . 97
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5.1 Experimental data acquisition, transducer arrays and resulting images. (a)
Experimental setup for optoacoustic (OA) forearm imaging. (b) Semi circle
array along with an example of acquired images. (c) Multisegment array along
with an example of acquired images. (d) Uniform subsampling for the semi
circle array (128, 64 and 32 elements) and limited view acquisition for the
semi circle array with reduced angular coverage (128 elements). (e) Uniform
subsampling for the multisegment array (128, 64 and 32 elements), and lin-
ear array acquisition for the multisegment array (128 elements). Transducer
elements are shown as actively receiving (red) or off (white). . . . . . . . . . 107

5.2 Overview of the simulated data. (a) Virtual circle array and an image re-
constructed using 1,024 transducer elements. (b) Multisegment array and the
corresponding image reconstructed using combined linear and concave parts
of the transducer array. (c) Uniform subsampling of virtual circle array with
128, 64 and 32 elements and limited view acquisition with reduced angular
coverage (128 elements). (d) Uniform subsampling of multisegment array with
128, 64 and 32 elements and linear array acquisition (128 elements). (e) Vessel
size distribution (pixels per vessel), number of vessels per image, and peak
signal-to-noise ratio of full sampling compared to other reconstructions (x axis
naming conventions are explained in Sec. 5.3.3). Transducer elements are
shown as actively receiving (red) or off (white). . . . . . . . . . . . . . . . . 109

5.3 Residual convolutional block with batch normalization (BN). ci-j conv. layer
have i × i kernels and j filters. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 Distribution of modUNet structural similarity index (SSIM) performance on
simulated cylinders dataset (SCD)(left), single wavelength forearm dataset
(SWFD) (middle) and multispectral forearm dataset (MSFD) (right) image
translation experiments, sorted in ascending median test sample performance. 114

5.5 Distribution of modUNet intersection over union (IoU) performance on sim-
ulated cylinders dataset (SCD) semantic segmentation experiments for vessel
(left) and skin curve (right) labels, sorted in ascending median test sample
performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.6 Fitzpatrick skin phototype [1] distribution of volunteers in datasets. . . . . . 122

5.7 Schematic of the proposed modUNet architecture. CBj represents the resid-
ual two-dimensional (2D) convolutional block with batch normalization shown
in Fig. 5.3 (main manuscript) where each convolution has j filters. Other
abbreviations correspond to 2D-maxpooling (MP) of poolsize 2, 2D bilin-
ear upsampling (UP) by a factor of 2, concatenation (CAT), and attention
gates (AGs) [2]. Finally, c1-j represents a convolutional layer of j filters (1
for image translation and 3 for semantic segmentation experiments) and 1 × 1
kernels without activation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
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5.8 We showcase the worst (1st column),1st- (2nd column), 5th- (3rd column), and
10th-percentile (4th column) structural similarity index (SSIM) samples based
on modUNet predictions for experiment fSWFD_lv128,li with input (1st row),
modUNet prediction (2nd row), and target (3rd sample) pairs. Red arrows
indicate some of the distorted vessel geometries at input getting corrected at
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and 10th-percentile (4th column) structural similarity index (SSIM) samples
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5.15 We showcase 95th- (1st column), 98th- (2nd column), 99th-percentile (3rd col-
umn), and the best (4th column) structural similarity index (SSIM) samples
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5.16 We showcase 95th- (1st column), 98th- (2nd column), 99th-percentile (3rd col-
umn), and the best (4th column) structural similarity index (SSIM) samples
based on modUNet predictions for experiment fMSFD_lv128,li with input (1st
row), modUNet prediction (2nd row), and target (3rd sample) pairs. Red ar-
rows indicate some of the distorted vessel geometries at input getting corrected
at modUNet predictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.17 We showcase 95th- (1st column), 98th- (2nd column), 99th-percentile (3rd
column), and the best (4th column) structural similarity index (SSIM) samples
based on modUNet predictions for experiment fSWFD_ss32,sc with input (1st
row), modUNet prediction (2nd row), and target (3rd sample) pairs. . . . . 129

5.18 We showcase 95th- (1st column), 98th- (2nd column), 99th-percentile (3rd col-
umn), and the best (4th column) SSIM samples based on modUNet predictions
for experiment fSWFD_ss32,ms with input (1st row), modUNet prediction (2nd
row), and target (3rd sample) pairs. . . . . . . . . . . . . . . . . . . . . . . . 130

5.19 We showcase the worst (1st column), 2nd worst (2nd column), 1st- (3rd col-
umn), and 5th-percentile (4th column) vessel intersection over union (IoU)
samples based on modUNet predictions for experiment fseg_lv128,li with input
(1st row), modUNet prediction (2nd row), and ground truth (3rd sample) pairs.131

5.20 We showcase the worst (1st column), 2nd worst (2nd column), 1st- (3rd col-
umn), and 5th-percentile (4th column) vessel intersection over union (IoU)
samples based on modUNet predictions for experiment fseg_ss32,vc with input
(1st row), modUNet prediction (2nd row), and ground truth (3rd sample) pairs.131

5.21 We showcase the worst (1st column), 2nd worst (2nd column), 1st- (3rd col-
umn), and 5th-percentile (4th column) skin curve intersection over union (IoU)
samples based on modUNet predictions for experiment fseg_ss32,vc with input
(1st row), modUNet prediction (2nd row), and ground truth (3rd sample) pairs.132

5.22 We showcase the worst (1st column), 2nd- (2nd column), 3rd- (3rd column),
and 4th-worst (4th column) intersection over union (IoU) samples based on
modUNet predictions for experiment fseg_MSFD_ss64,ms with input (1st row),
modUNet prediction (2nd row), and target (3rd sample) pairs. . . . . . . . . 132

5.23 We showcase the worst (1st column), 2nd- (2nd column), 3rd- (3rd column),
and 4th-worst (4th column) intersection over union (IoU) samples based on
modUNet predictions for experiments fseg_SWFD_ss64,sc (left) and fseg_SWFD_ss128,ms

(right) with input (1st row), modUNet prediction (2nd row), and target (3rd
sample) pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.24 Pipeline figure to summarize data storage and algorithms. . . . . . . . . . . 134



List of Figures 195

6.1 The tri-modal transmission-reflection optoacoustic ultrasound (TROPUS) imag-
ing platform. a) Excitation and acquisition steps in the optoacoustic (OA)
imaging mode, reflection ultrasound computed tomography (RUCT) mode
and transmission ultrasound computed tomography (TUCT) speed of sound
(SoS) imaging mode. b) Illustration of three-dimensional (3D) stacks of cross-
sectional multimodal images acquired non-invasively from tumor bearing mice.
c) Representative TROPUS images of a cross-section of the tumor region in a
mouse. From left to right, OA image, RUCT image, and SoS image acquired in
the TUCT mode and reconstructed with the full wave inversion (FWI) method.
1 - Skin, 2 - Tumor, 3 - Urinary Bladder, 4 - Femur. . . . . . . . . . . . . . . 146

6.2 Comparison between different methods for rendering the speed of sound (SoS)
images with transmission ultrasound computed tomography (TUCT). (a)
Straight ray approximation. (b) Bezier curve reconstruction. (c) Full wave
inversion (FWI). Reconstructions from different cross sections acquired from
the same mouse with 1 mm steps are shown – see Fig. 6.1b. The SoS values
were calculated over the tumor (green curve) and urinary bladder (cyan curve)
areas manually segmented in the FWI images. . . . . . . . . . . . . . . . . . . 149

6.3 Cross-sectional multi-modal images of the tumor-bearing (M2-M5) and tumor
free (M1) mice acquired from approximately the same abdominal region. His-
tological cryo-sections taken from approximately corresponding regions ex vivo
are shown in the bottom row. The tumors and other anatomical structures
are labeled: 1 - Vertebral Column, 2 - Caudal Vertebrae, 3 - Urinary Bladder,
4 - Tumor, 5 - Coxal Bone, 6 - Ischium, 7 - Female Urethra. . . . . . . . . . . 150

6.4 Tumor segmentation and characterization. (a) The manually segmented tu-
mor areas in the speed of sound (SoS) images reconstructed with full wave
inversion (FWI) method. (b) The corresponding segmentations based on the
reflection ultrasound computed tomography (RUCT) images. (c) The seg-
mented areas superimposed onto the optoacoustic (OA) images. d) Measured
mean and standard deviation of SoS values inside the segmented region of in-
terests (ROIs) based on SoS-based tumor segmentations. e) Comparison of the
measured tumor areas based on the SoS- and RUCT-based tumor segmenta-
tions. The ratios between the calculated areas are presented for each imaged
mouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.5 Cross-sectional optoacoustic (OA) images without Frangi filter. The same OA
images with Frangi filter are shown in Fig. 6.3. . . . . . . . . . . . . . . . . . 155
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7.1 TROPUS imaging. (A) Lay-out of the imaging set-up combining three modal-
ities, namely MSOT, RUCT and SoS imaging. Only half of the ring array is
shown for better visualization. (B) Absorption spectrum of Hb, HbO2 and lipid
in 700 nm and 1000 nm wavelength range. (C) Exemplary MSOT images from
different cross sections recorded at 1064 nm excitation wavelength. (D) The
corresponding cross sections reconstructed with the RUCT modality. (E) The
corresponding cross sections showing the SoS maps reconstructed with TUCT
modality. Hb: deoxy-hemoglobin; HbO2: oxy-hemoglobin, MSOT: multispec-
tral optoacoustic tomography; RUCT: reflection ultrasound computed tomog-
raphy; SoS: speed of sound; TROPUS: transmission-reflection optoacoustic
ultrasound; TUCT: transmission ultrasound computed tomography. . . . . . 164

7.2 TROPUS imaging of liver tissues excised from NAFLD and control mice. (A)
Un-mixed lipid distribution (green color) overlaid onto the anatomical MSOT
images corresponding to averaged signals over all the acquired wavelengths for
excised livers from mouse with NAFLD and control mouse. (B) RUCT im-
ages of excised livers from mouse with NAFLD and control mouse. (C) SoS
images of excised livers from mouse with NAFLD and control mouse. (D) His-
tology images of excised livers from mouse with NAFLD and control mouse.
(E) MSOT signal spectra of liver tissue shown in the panels a. (F) Average
lipid signal intensities from 3 NAFLD and 3 control mice. (G) Average SoS
values from 3 NAFLD and 3 control mice. MSOT: multispectral optoacoustic
tomography; NAFLD: non-alcoholic fatty liver disease; RUCT: reflection ul-
trasound computed tomography; SoS: speed of sound; (p values are indicated
by *≤0.05, **≤0.01 and ***≤0.001) . . . . . . . . . . . . . . . . . . . . . . . 166
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