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Summary 

The brain is arguably the most complex organ in the human body. The network consisting of 86 billion 
neurons, each connected to thousands of other neurons through long and thin neurites and through 
synaptic contacts, is thought to implement most of our cognitive abilities. While individual neurons 
have been studied in considerable detail, their synaptic connectivity remains largely unknown. 

The reverse engineering of synapse-resolution circuit diagrams (so-called “connectomes”) has recently 
become possible due to progress in three-dimensional electron microscopy. Since 2015, the size of 
synapse-resolution electron microscopy volumes from the mammalian cerebral cortex has increased by 
more than four orders of magnitude. This progress comes with a great many opportunities and 
challenges. This cumulative thesis consists of four chapters, each corresponding to a previously 
published journal article, concerned with these analysis opportunities and challenges. 

Chapter 1 provides a review of the electron microscopy and data analysis techniques used in 
connectomics. At the hypothetical example of the connectomic reconstruction of a whole human brain, 
the progress and remaining challenges of electron microscopy-based connectomics are illustrated. In 
particular, the accuracy and computational cost of existing reconstruction methods based on artificial 
intelligence are identified as principal limiting factors. 

Chapter 2 describes the dense connectomic reconstruction of an electron microscopy volume of 
roughly 500,000μm3 from layer 4 of mouse primary somatosensory cortex and the analysis of the 
around 2.7 meters of neurites and 400,000 synapses contained therein. The unprecedented size of this 
reconstruction was enabled by efficient semi-automated reconstruction methods presented in this 
chapter. The resulting subcellular connectome was subjected to various analyses. In particular, the 
connectome was used to derive upper bounds on the circuit fraction that is consistent with saturated 
Hebbian plasticity. 

Chapter 3 presents a method for the analysis of neuron-to-neuron connectomes of local cortical 
circuits, the reconstruction of which has recently become possible. Specifically, it is demonstrated by 
simulation that summary statistics derived from the connectome of a local cortical circuit are sufficient 
for Bayesian selection among seven competing models. Furthermore, it is shown that “weighted” 
connectomes with information about connection strengths are sufficient to distinguish between 
artificial recurrent neural networks with biologically plausible connectivity that differ only in the task 
that they were trained on. 

Finally, chapter 4 reports a connectomic comparison of mouse and human cerebral cortex. A 
combination of efficient automated and manual analysis methods was used to analyze nine electron 
microscopy volumes from mouse, macaque and human cortical layers 2/3. In particular, these data 
were used to infer the relative contributions of excitatory and inhibitory synaptic inputs onto 
pyramidal neurons. The increased interneuron population in human compared to mouse cerebral cortex 
was found to be associated not with a corresponding increase in inhibitory synapses onto pyramidal 
neurons, but rather with an increase in interneuron-to-interneuron connectivity. 
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Zusammenfassung 

Das Gehirn ist das wohl komplexeste Organ des menschlichen Körpers. Das Netzwerk aus rund 86 
Milliarden Neuronen, von denen jedes mit tausenden anderen Neuronen durch lange und dünne 
Neuriten und durch synaptische Kontake verbunden ist, implementiert die meisten unserer kognitiven 
Fähigkeiten. Während Neurone in Einzelheit bereits im Detail studiert wurden, ist deren synaptische 
Konnektivität noch immer grösstenteils unbekannt. 

Das Reverse Engineering von solchen synaptischen Schaltplänen (auch «Konnektome» genannt) 
wurde in den letzten Jahren durch Forschritte in dreidimensionaler Elektronenmikroskopie ermöglicht. 
Seit 2015 haben Elektronenmikroskopievolumen von der Grosshirnrinde von Säugetieren in ihrem 
Volumen um mehr als vier Grössenordnungen zugenommen. Dieser Fortschritt bringt viele neue 
Möglichkeiten, aber auch viele Herausforderungen. Diese kumulative Doktorarbeit besteht aus vier 
Kapiteln (jedes einem bereits veröffentlichten Fachartikel entsprechend), die sich mit diesen 
Analysemöglichkeiten und –herausforderungen beschäftigen. 

Kapitel 1 gibt einen Überblick über die in Connectomics eingesetzten Techniken der 
Elektronenmikroskopie und Datenanalyse. Am hypothetischen Beispiel der konnektomischen 
Rekonstruktion eines ganzen menschlichen Gehirns werden die Fortschritte und verbleibenden 
Herausforderungen von Connectomics illustriert. Insbesondere werden die Fehlerraten und 
Rechenkosten der bestehenden, auf künstlicher Intelligenz basierenden Rekonstruktionsmethoden als 
limitierende Faktoren identifiziert. 

Kapitel 2 beschreibt die dichte konnektomische Rekonstruktion eines Elektronenmikroskopie-

volumens von etwa 500 000 μm3 aus Schicht 4 des primären somatosensorischen Kortex der Maus und 
die Analyse der rund 2,7 m an Neuriten und 400 000 Synapsen darin. Die Grösse dieser 
Rekonstruktion wurde ermöglicht durch effiziente halbautomatische Rekonstruktionsmethoden, die in 
diesem Kapitel beschrieben werden. Das daraus resultierende subzelluläre Konnektom wurde 
verschiedenen Analysen unterzogen. Zum Beispiel wurde das Konnektom verwendet, um 
Obergrenzen für den mit saturierter Hebb'schen Plastizität kompatiblen Schaltkreisanteil zu 
bestimmen. 

In Kapitel 3 wird eine Methode zur Analyse von Neuron-zu-Neuron-Konnektomen eines lokalen 
kortikalen Schaltkreises vorgestellt. Durch Simulation wird gezeigt, dass von dem Konnektom eines 
lokalen kortikalen Schaltkreises abgeleitete Statistiken ausreichen für die Bayes'sche Auswahl 
zwischen sieben alternativen Schaltkreismodellen. Darüber hinaus wird gezeigt, dass «gewichtete» 
Konnektome mit Information über Verbindungsstärken ausreichen zur Unterscheidung zwischen 
künstlichen rekurrenten neuronalen Netzen mit biologisch plausibler Verbindungsdichte, die sich nur 
unterscheiden durch die Aufgabe, für die sie trainiert wurden. 

Schliesslich wird in Kapitel 4 ein konnektomischer Vergleich zwischen der Grosshirnrinde von 
Mäusen und Menschen vorgestellt. Mit einer Kombination effizienter automatischer und manueller 
Analysemethoden wurden neun Elektronenmikroskopievolumen aus kortikaler Schicht 2/3 von Maus, 
Makak und Mensch analysiert. Diese Daten wurden verwendet, um die relativen Beiträge errengender 
und hemmender Synapsen auf Pyramidalneuronen abzuleiten. Die erhöhte Interneuronenpopulation in 
der menschlichen Grosshirnrinde im Vergleich zur Maus ist nicht einhergehend mit einer 
entsprechenden Zunahme an synaptischer Hemmung auf Pyramidenneuronen, sondern mit einer 
Erweiterung des Interneuron-zu-Interneuron-Netzwerks. 
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Introduction 

The human brain consists of an estimated 86 billion neurons, each receiving and transmitting signals 
from and to other neurons through thousands of synapses. This high degree of connectivity is possible 
because of the specialized morphology of these cells: Neurons extend centimeter-to-meter long and 
micrometer-to-nanometer thin and branching neurites that support the flow and transformation of 
signals. Together, this results in a network of unique size and complexity, physically implemented in 
the extremely dense brain tissue, folded and packed in the human skull. 

It is thought that these neuronal circuits and the circuits of the neocortex, in particular, are at the core 
of our ability to learn, to think logically and abstractly, to be creative, and to navigate complex and 
changing physical and social environments. These are often considered hallmarks of intelligence. 
Understanding the biological underpinnings of intelligence is thus among the biggest ambitions of 
neuroscience. 

The following section will briefly introduce the concept of psychometric “general intelligence” and 
will provide a summary of experimental evidence from human and non-human studies. This evidence 
indicates promising approaches to studying the neurobiology of intelligence. Being able to reproduce 
intelligence in silico is arguably a necessary but insufficient condition to an understanding of 
biological intelligence. While insufficient, artificial intelligence still contributes to our understanding 
of the neurobiology of intelligence: through artificial intelligence-based methods in neurobiological 
research and by indicating open research questions through its failures. These aspects will be briefly 
discussed in the subsequent section. 

Intelligence in humans and non-human animals 
Intelligence is commonly defined as involving “the ability to reason, plan, solve problems, think 
abstractly, comprehend complex ideas, learn quickly and learn from experience (Gottfredson 1997)” 
and has been studied for more than 100 years, both in humans and non-human animals. Understanding 
the biological underpinnings of intelligence is among the biggest ambitions of neuroscience. 

Cognitive tests in humans indicate that task performance across many different cognitive domains is 
positively correlated. For example, humans that perform well on linguistic tests also tend to perform 
well on other tasks, such as spatial thinking. This positive correlation was termed “g-factor”, with “g” 
standing for “general intelligence” (Spearman 1927), and was found to explain ~40% of inter-
individual variability in task performance (Carroll 1993). 

In non-human animals, early empirical research focused on the ability to learn associations between a 
situation and a response through trial and error (Thorndike 1911) or through reward and punishment 
(Pavlov 1927, Skinner 1938). Animal behavior was thought of as a combination of innate and learned 
sensory-motor reflexes (Watson 1913). However, evidence for psychometric “general intelligence” 
was also found in non-human animals (for a comprehensive review, see (Burkart et al. 2017)). In mice, 
tests of “general cognitive abilities” across a battery of tasks (including fear conditioning, odor 
discrimination, and spatial navigation) revealed that individual performance across all tasks was 
correlated and that a single factor explained 30% to 40% of the inter-individual variability (Matzel et 
al. 2003). In macaques, ~50% of inter-individual variability in task performance was explained by a 
single factor that declined with age (Herndon et al. 1997). In the cleaner fish, no evidence for 
psychometric “general intelligence” was found (Aellen et al. 2022) despite evidence for fish being able 
to recognize themselves in a mirror (Kohda et al. 2022) or to count (Triki and Bshary 2018). 
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This evidence from human and non-human animals indicates a number of promising approaches to 
studying the neurobiology of psychometric “general intelligence”: First, psychometric differences 
across individuals of the same species can be directly correlated with neurobiological differences. A 
second approach consists of correlating inter-species differences in psychometric intelligence with 
neurobiological differences. Finally, the correlated performance across many different tasks is 
suggestive of a general, brain-wide biological mechanism. Thus, a third approach consists of 
identifying neurobiological features that are similar across brain areas within individuals, but that are 
variable across individuals. 

To date, studies of the neurobiology of intelligence (for a review, see (Goriounova and Mansvelder 
2019)) are mostly based on the former two approaches: Structural and functional brain imaging in 
humans found psychometric intelligence to be associated with brain volume (Pietschnig et al. 2015), 
cortical thickness (Narr et al. 2007), and low metabolic rate (Haier et al. 1988) across a large and 
distributed network of cortical areas and white matter (for a review, see (Jung and Haier 2007)). 
However, brain size and neuron count cannot fully explain intelligence; macroscopic brain structure 
and psychometric intelligence in humans are only moderately correlated (e.g., (Narr et al. 2007)), and 
wales have been reported to have larger brains and more neocortical neurons than humans (Mortensen 
et al. 2014). 

This indicates that differences in psychometric intelligence might rather be associated with differences 
in neuronal physiology or connectivity. Indeed, recent comparative studies have reported human-
specific molecular (e.g., (Bakken et al. 2021)), morphological (e.g., (Mohan et al. 2015)), and 
electrophysiological (e.g., (Gidon et al. 2020)) neuronal features. Inter-species differences in synaptic 
connectivity have been reported in terms of volumetric synapse density and synapse size (DeFelipe et 
al. 2002), but remain largely unknown. This is despite evidence for strong inheritability of 
psychometric intelligence and for its association with genes related to nervous system development 
and to synapse structure and function (Savage et al. 2018). 

Comprehensive mapping of neuronal morphologies and synaptic connectivity could provide some of 
these missing data. As indicated above, connectomic comparisons across species, individuals, and 
brain areas could help to identify pertinent circuit structures, even in the absence of psychometric 
measurements. While reliant on large amounts of data, such “connectomic screening” has become 
plausible due to recent developments in volume electron microscopy and artificial intelligence-based 
analysis methods. 

Neurobiology has and continues to inspire the development of artificial intelligence (AI). Vice versa, 
AI contributes to neurobiology by providing data analysis tools and hypotheses (Fukushima 1980, 
Helmstaedter 2015, Hassabis et al. 2017, Richards et al. 2019, Kudithipudi et al. 2022). The following 
section will give a brief overview of how AI is used in the field of connectomics and how limitations 
in today’s AI may indicate interesting directions for neurobiological research. 

“Intelligence” of artificial neural networks 
Over the last decade, AI has made tremendous progress. This progress was enabled primarily by three 
factors: the adoption of deep neural network, the availability of unprecedented computational power in 
form of graphics processing units (GPUs), and the dramatically increasing amount of digital 
information for training. Deep learning systems, in form of convolutional neural networks (LeCun et 
al. 1989, LeCun et al. 1998), first substantially exceeded alternative machine learning approaches on 
computer vision problems, such as image recognition (Ciresan et al. 2011, Krizhevsky et al. 2012).  
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The architecture of these convolutional neural networks (CNNs) was based on the neocognitron 
(Figure I-1; (Fukushima 1980)), which was largely inspired by the research of Hubel and Wiesel 
(1962) in the cat visual cortex. This biologically-inspired architecture was combined with pragmatic 
algorithmic decision, such as weight sharing, and error backpropagation (Rumelhart et al. 1986) for 
training by gradient descent. 

The majority of AI systems in connectomics are still backpropagation-trained CNNs (Berning et al. 
2015, Dorkenwald et al. 2017, Lee et al. 2017, Januszewski et al. 2018, Heinrich et al. 2021, Sheridan 
et al. 2022, Schmidt et al. 2022). Some have been claimed to achieve “superhuman” performance (Lee 
et al. 2017). The combination of deep neural networks and training by backpropagation has also 
achieved impressive results on other tasks, such as speech recognition (Hinton et al. 2012), playing of 
video games (Mnih et al. 2015), and the prediction of protein structures (Jumper et al. 2021). The 
combination of deep neural networks with “big data” and “big compute” enabled AI systems that 
outperform humans in tasks ranging from playing Go (Silver et al. 2016) to the detection of skin 
cancer (Esteva et al. 2017). 

This is despite substantial differences between biological and artificial neural networks (ANNs). For 
example, an artificial neuron can establish both positive (“excitatory”) as well as negative 
(“inhibitory”) connections onto postsynaptic neurons. In contrast, most neurons in the mammalian 

Figure I-1 Architecture of the neocognitron (Fukushima 1980), a neurobiologically inspired artificial neural network for 
shift invariant pattern recognition. Top: Correspondence between the layers of artificial neural networks (U0, US1, UC1, etc.)  
and the hierarchical model of cat visual cortex proposed by Hubel and Wiesel (1959), Hubel and Wiesel (1962). Bottom: 
Spatial representation of the artificial neurons and their connectivity. Note that each neuron receives inputs only from a small 
set of neuron in the previous layer that represent a finite patch of the visual field. Modified and reproduced with permission 
from Springer Nature. 
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cerebral cortex are thought to be either excitatory or inhibitory (Dale’s principle; (Eccles et al. 1976, 
Strata and Harvey 1999), but see also (Granger et al. 2017)). Another substantial difference is energy 
efficiency: While biological neurons are on average only weakly coupled and thus asynchronously and 
typically only sparsely active, artificial neural networks are simulated by iteratively updating all 
neurons in lockstep (but see also (Tavanaei et al. 2019, Gallego et al. 2022)). Computation and 
memory is intermixed in biological neural networks, but artificial neural networks are typically 
simulated on computers with von Neumann architectures (but see (Zhang et al. 2020)). This 
architecture is characterized—and today often “bottlenecked” (Backus 1978)—by the separation of 
data from computation.  

To identify potential neurobiological mechanisms of intelligent behavior, it might thus be more 
informative to consider problems that have remained unsolved in AI. Examples can be found by 
considering how artificial neural networks learn. ANNs are typically trained in a supervised manner by 
error backpropagation (Rumelhart et al. 1986). This requires enormous amounts and repeated 
presentation of training data. Even when ANNs perform well on both the training and test data, they 
are often “fooled” by minimally perturbed training samples (Szegedy et al. 2013). Such adversarial 
attacks indicate that today’s ANNs do not truly “understand” the task that they were trained on 
(Goodfellow et al. 2014). Thus, error backpropagation is controversial as a potential biological 
learning mechanism (Zador 2019, Lillicrap et al. 2020). 

Learning multiple tasks remains challenging for ANNs. Today, multi-task ANNs are typically 
obtained by simultaneously training on all tasks (Ruder 2017). When the different tasks are trained 
sequentially, later tasks were found to cause “catastrophic forgetting” of earlier tasks (French 1999, 
Goodfellow et al. 2013, Parisi et al. 2019). In contrast, humans continue to learn new skills and 
knowledge throughout life, and they often do so by generalizing from previous experiences. Notably, 
learning new skills also improves previously learned skills. This ability to expand specific into general 
knowledge is not yet found in today’s AI. Humans learn while performing tasks, while in AI the 
training and inference phases are strictly separated. For an extensive comparison of human and 
machine learning, see (Lake et al. 2017). 

In summary, artificial intelligence has made tremendous progress over the last decade with the 
adoption of artificial “deep” neural networks. These networks are inspired at least partially by 
neuroscientific research and the neurosciences profit from progress in AI to automatically analyze the 
increasing amounts of data. However, there are still limitations in the architecture and learning 
mechanisms of artificial neural networks that make ANNs lag behind human cognitive performance: 
ANNs lack general features of human intelligence, such as the ability for lifelong learning across 
many domains. And the poor generalization performance results in fragility, even on domain-specific 
tasks. This indicates that much can still be learned by studying the mechanisms of computation and 
learning in the biological neuronal circuits of the cerebral cortex. 

Chapter 1 discusses the use of AI in connectomics and the improvements in accuracy and 
computational efficiency that would be required for the automated reconstruction of a whole human 
brain at nanometer resolution. A key analysis challenge in connectomics is the reconstruction of 
connectomes from three-dimensional electron microscopy (3D EM) image volumes. Because this 
analysis step reduces giga- and increasingly frequently petabyte-scale image volumes to much smaller 
data structures describing synaptic connectivity, it is often the computationally most expensive step. 
This is in essence a computer vision problem, which makes it particularly amendable for convolutional 
neural networks. 
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Chapter 2 describes a first attempt to quantify in a mammalian cortical circuit the fraction of 
connections potentially “learned” by Hebbian synaptic plasticity (Hebb 1949). More precisely, this 
analysis indicates that only a minority—less than a quarter—of connections in layer 4 of mouse 
primary somatosensory cortex is consistent with saturated Hebbian plasticity. Such quantifications of 
circuit plasticity may contribute to the understanding of the tradeoff between learning speed and 
memory stability in biological intelligence. This tradeoff will be subject of the discussion. 

The following section will give a brief historical account of the neurobiological study of brain 
functions and their biological implementation. The discoveries that the brain is organized into 
functionally specialized areas and that these consist of separate, but interconnected nerve cells—the 
neurons—were crucial. This enabled the study of brain functions by characterizing neurons and their 
connectivity in well-defined regions using light microscopy and electrodes. 

Towards a mechanistic understanding of brain functions 
In the neurobiological study of cognitive processes, one of the first and most fundamental findings was 
the functional specialization of the brain. In the second half of the 19th century, Broca and Wernicke 
correlated the cognitive impairments of their patients with the locations of lesions in the patients’ 
brains (Broca 1861, Wernicke 1874). Their findings indicated that speech was linked to two regions of 
the cerebral cortex: Broca’s area in the left frontal lobe for speech production (Broca 1861), and 
Wernicke’s area in the left temporal lobe for speech comprehension (Wernicke 1874). An alternative 
approach to studying the local specialization of the brain was pursued by Fritsch and Hitzig (Fritsch 
and Hitzig 1870). They made use of Galvani’s observation that the leg of a frog reacts to electrical 
stimulation (Galvani 1791). Fritsch and Hitzig used electrodes to locally stimulate the cerebral cortex 
of dogs. They observed that stimulations in a particular area of the cerebral cortex could induce muscle 
contractions on the contralateral side and that the relationship between the stimulated location and the 
contracted muscles appeared to be consistent across dogs. Together, these experiments provided first 
evidence for the electrical excitability of the cerebral cortex, for motor cortex, and for the somatotopic 
organization of parts of the cerebral cortex. 

These observations of functional cortical specializations beg the question: What is the cerebral cortex 
made of? And what are the differences between cortical areas with different functional specializations? 

Cellular organization of the cerebral cortex 
In the middle of the 19th century, it was still in question whether the cell theory (Schleiden 1838, 
Schwann 1839) applies to the brain as well. The relationship between cell bodies and the much thinner 
fibers in nervous tissue was unclear, largely because of inadequate microscopy techniques. A big step 
forward was taken by the development of a novel staining technique by Golgi (Golgi 1883), which 
only stains a small subset of neurons. Ramón y Cajal adopted and adapted this staining method and 
used it in his extensive anatomical studies of, e.g., the bird cerebellum, the retina, and the mammalian 
cerebral cortex (Ramón y Cajal 1891, Cajal 1899).  

These experiments revealed a large diversity in neuronal morphologies (Figure I-2). However, Ramón 
y Cajal also recognized shared features across neurons: He recognized, for example, that there were 
two different types of branches emerging from the cell body of each neuron: Most branches—termed 
“dendrites”—were of large diameter, spatially restricted to the surround of the cell body and often 
stubbed with spines. But one branch—the “axon”—was thinner, of more complex morphology, spine-
free and much longer (despite incomplete staining). 



6 

Based on the morphology of these branches, Ramón y Cajal hypothesized that the branches serve 
different functions, namely those of collecting and distributing signals. This was based on the thinking 
that dendritic spines are the sites of synaptic connections. Golgi had previous noticed these dendritic 
protrusions, but considered them to be an artifact of the staining technique. However, by providing 
evidence for spines from multiple staining techniques, Ramón y Cajal substantially contributed 
towards the gradual acceptance of dendritic spines and, ultimately, of the neuron doctrine (Waldeyer-
Hartz 1891). 

Based on the extensive description of neuron morphologies in the mammalian cerebral cortex, Ramón 
y Cajal, and later his student Lorente de Nó (Lorente de Nó 1922, Lorente de Nó 1949), separated 
neurons into distinct cell types. Most importantly, these included various types of pyramidal neurons 
and interneurons, which were identified based on the characteristic cell body shape and the short axon, 
respectively, and further subdivided based on the cell body location and the distribution of the axonal 
and dendritic arbors across cortical layers (Brodmann 1909). From the morphology of interneuron 
axons, Lorente de Nó inferred potential cell type-specific functions. Furthermore, the vertical 
orientation of interneuron axons led him to suggest that the cerebral cortex consists of repeated, 
identical, and vertically aligned units of neurons. 

 

Figure I-2 Summary of the cellular organization of the mammalian cerebral cortex (from rabbits, mice, etc.) drawn by 
Ramón y Cajal (1923). Note the structures at different spatial scales: the subdivision of the cerebral cortex into five layers 
(A–E; F: white matter; G: striatum) based on the distribution of cell bodies, the axonal and dendritic morphology of neurons, 
and subcortical afferents (f) and efferents (g).Types of pyramidal (right) and non-pyramidal (left) neurons were defined 
based on the morphology of axons (e.g., neurons with ascending axons (c–e)) and dendrites, including the rate of spines. 



Introduction 

7 

Circuit inference using electrodes and light microscopy 
Evidence for functional “cortical columns” was obtained by electrophysiological recordings from the 
cat somatosensory (Mountcastle 1957) and visual cortex (Hubel and Wiesel 1962). In the latter study, 
the receptive field properties of neurons were characterized based on extracellular recordings. As the 
recording electrode was advanced through the visual cortex, changes in receptive field properties were 
observed. By correlating the receptive field properties with estimated electrode positions, it was noted 
that neurons aligned along the cortical axis often responded most strongly to stimuli in the same eye 
and of similar orientation. However, marked shifts in preferred orientations were observed when the 
electrode was oblique to the cortical axis. Based on these observations, it was concluded that cat visual 
cortex was composed of discrete columns in which neurons have common receptive field properties. 
These columns were estimated to span from the pial surface of the cortex to white matter and to 
measure ~500μm in diameter. (However, the notion of discrete cortical columns in cat visual cortex 
has since been questioned. For example, neuronal orientation preferences have been described as being 
arranged in a pinwheel-like pattern (Bonhoeffer and Grinvald 1991). In this arrangement, changes in 
orientation preferences are mostly continuous. Despite such observations, the notion of functional 
cortical columns in visual cortex held on. In the visual cortex, “columnar organization” is now 
typically understood to mean “shared functional properties of neurons along the cortical axis.” In this 
one-dimensional definition of “columns”, little importance is given to the implied cylindrical volume 
with finite radius and well-defined boundary. Furthermore, in the rodent visual cortex, receptive fields 
appear to be incompatible even with the one-dimensional column definition (Ohki et al. 2005).) 

In the same study (Hubel and Wiesel 1962), receptive fields were separated into two categories: 
“Simple” receptive fields were described as relatively small and could be decomposed into excitatory 
and inhibitory regions which interacted linearly. “Complex” receptive fields were described as “far 
more intricate and elaborate” and were defined primarily by exclusion. The distribution of neurons 
with simple and complex receptive fields was found to differ across layers: Simple cells were found 
most frequently in layers 3, 4, and 6; and complex cells most frequently in layers 2 and 3. The authors 
(Hubel and Wiesel 1962) argued that simple and complex cells implement two sequential 
transformations of the inputs from visual thalamus: Afferents from visual thalamus converge onto 
cortical neurons as to produce simple receptive fields. And axons of simple cells converge onto other 
neurons to produce complex receptive fields. 

To identify potential synaptic connections implementing these signal transformations, Gilbert and 
Wiesel (1979) combined intracellular recordings with intracellular injection of horseradish peroxidase 
(HRP, (LaVail and LaVail 1972)). Compared to the Golgi technique, HRP stained the axonal arbor 
much more completely. Thus, the simple and complex cells identified by intracellular recordings could 
be correlated with detailed morphological cell types. Because physical contact is a necessary condition 
for two neurons to be connected, the morphological reconstructions from multiple experiments could 
be combined to infer potential synaptic connectivity based on spatial overlap (Figure I-3). 
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Gilbert and Wiesel (1979) assumed that neurons innervated a random subset of the neurons whose cell 
bodies are located in the layer of densest axonal projections. Based on this assumption, they have 
inferred that thalamocortical axons innervated the spiny stellate neurons in cortical layer 4 and to a 
lesser degree the pyramidal neurons in layer 6. This was consistent with the previously observed high 
proportions of simple cells in these layers. It was also in line with the hypothesis of simple receptive 
fields being the result of combined thalamocortical innervations. The neurons in layer 4 were 
hypothesized to innervate the pyramidal neurons in superficial layers 2 and 3, which, in turn, were 
hypothesized to innervate pyramidal neurons in layer 5. Layer 6 pyramidal neurons, so it was inferred, 
received synaptic inputs from layer 5 and sent outputs back to layer 4. They hypothesized that this 
translaminar connectivity was complemented by recurrent connections within layers. Together, these 
synaptic connections would amount to a “canonical” circuit structure that was repeated across 
functional cortical columns. 

Geometrically inferred potential neural circuits are insightful in that they provide “upper bounds” / 
necessary conditions on the true synaptic connections. A major limitation of the inferences by Gilbert 
and Wiesel is the use of somata as model of synaptic input domains: Pyramidal neurons in layer 5, for 
example, have apical dendrites that span and may receive synaptic inputs across layers 1–5. Reducing 
complex axonal arbors to the cortical layer of their main plexus is similarly problematic. These 
limitations were addressed in more recent geometrical circuit inferences (Binzegger et al. 2004, Egger 
et al. 2014, Markram et al. 2015). Taking into account the complexity of axonal and dendritic arbors 
provides more accurate estimates of the number of physical contacts and thus of the potential 
synapses. However, the relationship between physical contacts and actual synaptic contacts, which is 
central to geometric circuit inferences, is largely inaccessible in light-microscopic neuron 
reconstructions. The following questions are of particular importance: What fraction of physical 
contacts is synaptic? And is this fraction constant across the various types of neurons and synapses? 

 

Figure I-3 Schematic diagram (bottom) of the neuronal circuit in cat visual cortex inferred by Gilbert and Wiesel (1979)
from the layer-wise distribution of neurons and of their axonal plexus (top). Neurons with cell bodies in, say, layer 2/3 were 
assumed to be innervated by neurons with axonal plexus in that layer (e.g., layer 4ab and 4c neurons). Note the combination 
of feed-forward connectivity across layers (from LGN to layers 4, 2+3, 5, and ultimately 6) with recurrent connectivity 
within layers and from layer 6 back to layer 4. Reproduced from Gilbert and Wiesel (1983) with permission from Elsevier. 
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Arguably the “gold standard” method for addressing these questions is electron microscopy. The 
development of this technique and its applications to the study of individual chemical synapses and of 
neuronal circuits will be briefly summarized in the following section. These studies were highly 
informative about the ultrastructural organization of neurons, their synapses, and their organization in 
the neuropil, but also immensely laborious. Ultimately, this motivated the recent development in 
electron microscopy techniques that have enabled connectomics and the works in this thesis. 

Electron microscopy 
The neuron doctrine, according to Ramón y Cajal (1911), states that the brain consists of physically 
separate cells—the neurons—that are interconnected via specialized contacts between axons on one 
hand, and somata and dendritic spines on the other hand. Sherrington (Foster and Sherrington 1897) 
introduced the term “synapse” to refer to these specialized contacts. 

Chemical synapses 
While the concept of synapses dates back to the end of the 19th century, confirmation thereof—that is, 
of the physical separation of the interconnected neurons at synapses—required a microscopy technique 
with sufficient spatial resolution to resolve ~10nm thick cell membranes. The development of the 
electron microscope (EM; (Knoll and Ruska 1932)) and of techniques for fixation, staining, plastic 
embedding and thin sectioning of biological tissue (Newman et al. 1943, Pease and Baker 1948, Geren 
and McCulloch 1951, Palade 1952) finally allowed for the microscopic identification of synapses (de 
Robertis and Bennett 1955, Palay 1956). 

Synapses were characterized as appositions of pre- and postsynaptic membranes that showed 
“thickenings and increased densities (Gray 1959)”. The presynaptic terminal was identified by the 
presence of synaptic vesicles of around 30–50nm diameter, which were hypothesized to contain 
neurotransmitter molecules and to underlie the electrophysiologically inferred quantal release (Fatt and 
Katz 1952). Evidence for neurotransmitter content in synaptic vesicles was later provided by 
“fractionation” of nervous tissue, isolation of “synaptosomes” and of the synaptic vesicles therein. The 
synaptic vesicle fractions were found to be enriched in neurotransmitter molecules (Whittaker et al. 
1963, de Robertis et al. 1963). EM also revealed that presynaptic terminals often contained 
mitochondria. 

Gray (1959) provided an influential ultrastructural characterization of synapses in the cerebral cortex 
(Figure I-4). Synapses were found on cell bodies, dendritic trunks and dendritic spines. These 
synapses differed in ultrastructure and were subdivided into two types: Synapses onto dendritic spines 
and a subset of synapses onto dendritic trunks showed thickenings that were noticeably more 
pronounced along the post- than presynaptic membrane. Overall, the thickened apposition in these 
synapses made up a large fraction of the total contact site. These are the characteristics of synapses of 
“type 1” (Figure I-4, top). In contrast, the thickening was found to be only a minor fraction of the total 
contact in synapses onto cell bodies and in a subset of synapses onto dendritic trunks. Also, the 
thickening was equally pronounced along the pre- and postsynaptic membranes. These synapses were 
designated as “type 2” (Figure I-4, bottom). Later, Colonnier (1968) proposed a closely related 
classification of cortical synapses into “asymmetric” or “symmetric” synapses. 

In aldehyde-fixed samples it was found that symmetric—but not asymmetric—synapses were 
associated in the presynaptic terminal with elongated, non-spherical synaptic vesicles. It had been 
suggested that asymmetric synapses with spherical vesicles and symmetric synapses with elongated 
vesicles correspond to excitatory and inhibitory, respectively (Uchizono 1965). This was based on the 
observations that synapses onto somata and distal dendrites of cerebellar Purkinje cells contained 
elongated and spherical vesicles, respectively, and that electrophysiological recordings suggested 



10 

strong inhibitory, respectively excitatory connections onto these compartments (Uchizono 1965). The 
classification of asymmetric and symmetric cortical synapses as excitatory and inhibitory, 
respectively, was later corroborated by EM images of synapses with immuno-labelling for GABA 
(Beaulieu et al. 1992).  

Degeneration studies of Peters et al. and White et al. 
The high resolution of the electron microscope came at the cost of a limited field of view. Typically, 
the field of view was sufficiently large to classify synapses as asymmetric or symmetric and to 
distinguish between synapses onto somata, dendritic trunks, or dendritic spines. However, the field of 
view was typically too small to identify the pre- or postsynaptic cell types. 

This problem was partially addressed by the axon degeneration method (Colonnier 1964, Alksne et al. 
1966): Colonnier (1964) had observed that lesioning of long-range connections to the cerebral cortex 
resulted in ultrastructural degenerations, such as accumulation of electron-dense material, in the 
affected axons. This was exploited by Jones (1968), who lesioned the thalamus to degenerate and 
thereby identify thalamocortical axons in electron micrographs of the cat somatosensory cortex. In this 
first study of identified synapses and of the corresponding postsynaptic targets, thalamocortical 
synapses were found primarily on dendritic spines and shafts in layer 4, but also in adjacent parts of 
layers 3 and 5. 

 

Figure I-4 Synaptic ultrastructure in the rat cerebral cortex revealed by transmission electron microscopy (Gray 1959). 
Presynaptic (pre) terminals contain synaptic vesicles and occasionally mitochondria (m). Dendrites (den; containing 
microtubules and occasionally mitochondria) and spine heads (top right and bottom right) are the most common postsynaptic 
targets. Synaptic contact (insets top right and bottom center) show thickened apposed membranes with clear separation by 
extracellular space. Two types of cortical synapses were defined based on the patterns of membrane thickening (Gray 1959, 
Colonnier 1968): asymmetric (likely excitatory) synapses with a prominent postsynaptic density (top), and symmetric (likely 
inhibitory) synapses with little difference in the pre- and postsynaptic thickening. Note also that symmetric synapses 
typically only correspond to a minor fraction of the total axo-dendritic contact (e.g., bottom left). Modified and reproduced 
with permission from Blackwell Publishing Ltd. 
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Among the most influential studies of thalamocortical synapses by axon degeneration are those of 
Peters and colleagues (Peters and Feldman 1976). Lesions in the lateral geniculate nucleus (LGN) 
were used to study the postsynaptic targets of thalamocortical synapses in the rat visual cortex. 
Synapses were found onto dendritic spines (83%), dendritic shafts (15%) and somata (2%), with the 
latter two targets likely belonging to inhibitory interneurons. This was compared to the overall 
distribution of asymmetric synapses onto dendritic spines (86%) and dendritic shafts (14%). Because 
of the similarity in postsynaptic targets, it was noted that thalamocortical terminals “appeared to be 
disposed randomly, forming no discernible patterns” and it was hypothesized that “every component 
in layer IV capable of forming an asymmetric synapse is a potential recipient for a thalamocortical 
axon terminal (Peters and Feldman 1976)”. A generalization of this hypothesis later became known as 
“Peters’ rule” (Braitenberg and Schüz 1998). 

However, this experimental approach was insufficient to identify the types of neurons postsynaptic to 
degenerated axon terminals. Because of the thin diameter of spine necks and the large section 
thickness, even in serial section electron microscopy it was difficult to trace innervated spine heads 
back to the corresponding dendrites. Inference of the postsynaptic cell type from the local dendritic 
geometry was an additional challenge. Thus, it remained unclear whether thalamocortical synapses 
were, in fact, randomly distributed onto spiny dendrites in layer 4 or whether thalamocortical synapses 
were differentially distributed over the dendrites of the various spiny cell types. 

Identification of the postsynaptic neurons became possible by combining axon degeneration with 
Golgi impregnation of postsynaptic neurons (Blackstad 1975, Fairén et al. 1977, Peters et al. 1977). In 
one method, the silver chromate of the Golgi stain was chemically replaced by gold deposits, which 
were then visible under both light and electron microscopes (Fairén et al. 1977). 

White et al. made extensive use of this method (or retrograde HRP labeling for projection-based 
definition of postsynaptic cell types (LaVail and LaVail 1972, Somogyi et al. 1979)) to study 
thalamocortical connections in layer 4 of mouse primary somatosensory cortex. The following targets 
were found postsynaptic to identified thalamocortical synapses: spiny stellate (White 1978) and 
pyramidal neurons in layers 4 (White and Hersch 1981), pyramidal neurons in layers 3 (White 1978), 
5 (White 1978) and 6 (Hersch and White 1981), and many interneuron cell types (e.g., (White and 
Rock 1981)). Many of the same connections were found by similar studies in the visual cortex of rats 
and cats (for an overview, see (White and Keller 1989)). 

Quantitative analyses of these connections indicated that different cell types receive thalamocortical 
synapses at different rates (White and Keller 1989): The average distance between identified 
thalamocortical synapses was roughly 5μm along the dendrites of a layer 4 spiny stellate neuron, but 
around 2μm along the dendrites of a layer 4 bitufted interneuron. The fraction of asymmetric synapses 
along the dendrite with identified thalamocortical presynaptic terminals was found to be around 13% 
for the spiny stellate neuron, 20% for the bitufted interneuron, and only 4% for a multipolar 
interneuron. This is despite identified thalamocortical axons contributing an estimated 20% of the 
asymmetric synapses in the surrounding neuropil (White and Rock 1981).  

Based on these data, White and Keller (1989) proposed “rule 3. Neuronal types receive characteristic 
patterns of synaptic connections; the actual numbers, proportions, and spatial distribution of the 
synapses formed by each neuronal type occur within a range of values.” with the corollary that 
“different extrinsic and intrinsic synaptic pathways form specific proportions of their synapses with 
different postsynaptic elements (spines vs. dendritic shafts, one cell type vs. another).” 

In summary, the combination of EM images with high resolution, but small field of view for 
ultrastructural identification and characterization of synaptic contacts with degeneration and Golgi 
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staining for the identification of pre- and postsynaptic cell types provided valuable insights about the 
“first” cortical synapses in sensory processing. However, this method also has a number of limitations: 
Degeneration is heterogeneous across axons, brain regions, and species. This makes absolute 
quantifications difficult. Furthermore, mechanically-induced lesions are large compared to neurons. As 
a result, this experimental approach was most suitable to study the synapses in long-range connections. 
Local cortical connections, in contrast, were more difficult to study. Light and electron microscopy-
compatible labeling techniques were too coarse, and the distances between a synapse and the cell 
bodies of the pre- and postsynaptic neurons—often hundreds of micrometers or millimeters—too large 
for serial section transmission electron microscopy (ssTEM) at that time. However, a smaller nervous 
system could be studied using only ssTEM. 

Connectome of Caenorhabditis elegans 
In 1986, Brenner and colleagues published a comprehensive reconstruction of the hermaphrodite 
nervous systems of C. elegans (White et al. 1986). For this, worms were fixed with osmium tetroxide, 
dehydrated, and embedded in epoxy before being cut into approximately 50nm thick sections for 
ssTEM. Section ribbons were manually picked up, collected on grids, and stained for TEM. Tissue 
sections were then imaged by TEM microscopes onto film. 

For circuit reconstruction, neurons and their synaptic connectivity were marked by Rotring pens 
directly onto the photographs from approximately 8000 serial sections. Groups of processes were 
assigned arbitrary labels, which were then copied manually onto each photograph in which the 
processes were visible. At the same time, a list of synapses between labeled processes was compiled. 
To reduce human errors (the dominant source of errors), redundancy was used: Synapses were 
annotated once for each of the involved processes and these annotations were checked for consistency; 
processes that reached no or multiple cell bodies were corrected; and reconstructions that violated the 
bilateral symmetry of the nervous system were double-checked. These checks were focused on parts of 
processes with inconsistent “synaptic behavior” before falling back to an exhaustive search of the 
reconstructions. 

The resulting neuronal connectivity map (“connectome”) comprised 302 neurons, 5000 chemical 
synapses, and 2000 neuromuscular and 600 gap junctions in the hermaphrodite. The ventral cord, in 
which only every third section was imaged, was later found to miss gap junctions and was completed 
(Varshney et al. 2011). The value of such a whole-organism connectome is being questioned 
(Bargmann and Marder 2013), but it has also been claimed that the C. elegans connectome “has 
profoundly influenced subsequent studies of the function of neural circuits in this species (Briggman 
and Denk 2006)”. Despite these successes, no further whole-organism or other large-scale 
connectomes were pursued in the following decades. (Connectomes of both sexes of adult C. elegans 
were published only recently (Cook et al. 2019).) 

Reason for this was partly the large amount of labor involved in preparing, imaging and then manually 
annotating the series of thousands of tissue sections. (Though computer-aided reconstruction methods 
had been explored (Levinthal and Ware 1972, White 1974).) Furthermore, the manual handling of the 
50nm thick tissue sections was prone to errors. Sections could get contaminated by debris, deformed, 
or break. Even few problematic sections were prohibitive to the faithful reconstruction of processes 
through the image series and thus of the connectome. While thicker sections could alleviate these 
problems, the poor depth resolution even in 50nm thin sections was (after human errors) the second 
most common source of reconstruction errors. 

Recent developments in volume electron microscopy techniques have at least partially addressed these 
issues. In the following section, three connectomic volume EM techniques and their tradeoffs in terms 
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of automation, reliability, image quality and acquisition speed will be discussed. Of these, serial 
section transmission electron microscopy (ssTEM) and a combination of automated tape-collecting 
microtomy and multi-beam scanning electron microscopy (ATUM-multiSEM) have recently been 
used to image volumes on the order of (1mm)3 from the mammalian cerebral cortex. However, 
analysis of these petabyte-scale EM volumes is currently limited by the speed and accuracy of neuron 
reconstructions. Manual, automated, and hybrid reconstruction methods will be briefly surveyed at the 
end of the following section.  

Modern volume electron microscopy 

Serial block-face scanning electron microscopy (SBEM) 
To address the limitations of manual section handling, serial block-face scanning electron microscopy 
(SBEM; (Denk and Horstmann 2004)) has been proposed. Instead of manually cutting and collecting 
tissue sections prior to image acquisition, SBEM alternates between imaging and automated, diamond 
knife-based ablation of the surface of a tissue block. Because imaging is performed on the tissue block 
surface, consecutive images are pre-aligned and mostly devoid of physical deformations (though 
electron beam deflections caused by the accumulation and deposition of charged debris is a problem; 
see also chapter 1). 

For the same reason, SBEM is incompatible with transmission electron microscopy. Furthermore, the 
lack of surface structure after diamond knife-based ablation results in poor contrast by secondary 
electron detection. Instead, images are generated by the detection of backscattered electrons from a 
scanning electron beam. This has a number of implications. Because of the relatively low rate of 
detected backscattered electrons, comparably high electron doses are required. This comes at the risk 
of degenerated image resolution through charge accumulation and through degradation of the plastic 
embedding, which negatively affects cutting quality. The risk of charge accumulation was partially 
addressed by providing neutralizing charges in form of gas molecules or atoms in the microscopy 
chamber that get ionized by (a small fraction of) the electron beam. Thus, SBEM was typically carried 
out in low vacuum. The required electron doses (and with it the image quality and acquisition speed) 
were further improved by the development of high-contrast staining (e.g., (Hua et al. 2015)). 

Together, this results in a 3D-EM technique that reliably produces image volumes on the order of 
(100μm)3 at voxel sizes of around 12×12×25nm3 at effective image acquisition rates of up to ~6MHz 
(e.g., (Briggman et al. 2011, Helmstaedter et al. 2013, Wanner et al. 2016, Kornfeld et al. 2017, 
Schmidt et al. 2017, Svara et al. 2018, Motta et al. 2019, Karimi et al. 2020, Gour et al. 2021, Loomba 
et al. 2022)). However, even under these highly idealized conditions it would take more than 600 years 
to image the 450mm3 of a whole mouse brain. And a volume of (1mm)3 for the study of local circuits 
in the mouse cerebral cortex would still take more than 1.5 years. 

The effective imaging rate is limited by time spent on cutting and stage movements for image tiling. 
To overcome the issue of low imaging speed in SBEM and the practical issues arising from the tight 
coupling image acquisition with diamond knife-based ablation, alternative approaches have been 
developed (Figure I-5). 
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Figure I-5 Overview of modern volumetric transmission (TEM; top) and scanning (SEM; bottom) electron microscopy 
methods used in connectomics. The high spatial resolution of TEM enabled the first visualization of synapses (Palade and 
Palay 1954). Serial section TEM (ssTEM) was used for the three-dimensional reconstruction of the C. elegans nervous 
system (White et al. 1986) and is still used in large-scale connectomic efforts (Zheng et al. 2018, MICrONS consortium et al. 
2021). Serial section tilt electron tomography (ET) enables virtual re-sectioning, which was used, for example, in a detailed 
analysis of the structure-function relationship in cortical synapses (Holler et al. 2021). GridTape TEM (Graham et al. 2019)
was used for automated TEM imaging of motor control circuits in the Drosophila nerve cord (Phelps et al. 2021). Serial 
block-face SEM (SBF-SEM / SBEM; (Denk and Horstmann 2004)) was used, for example, to study the neural circuits of the 
retina (Briggman et al. 2011) and in the works in chapters 2 and 4. Focused ion beam SEM (FIB-SEM; (Knott et al. 2008)) 
was used in an enhanced variant (eFIB-SEM; (Xu et al. 2017)) to image and reconstruct a substantial portion of the 
Drosophila central brain at high and isotropic resolution (Scheffer et al. 2020). Multi-beam SEM (multiSEM; (Eberle et al. 
2015)) imaging of section series automatically collected on wafers (Templier 2019) is a promising approach for imaging of 
very large tissue volumes at high speed and quality. Automated tape-collecting ultramicrotomy (ATUM; (Schalek et al. 
2011, Hayworth et al. 2014)) has been used in combination with multiSEM to image large tissue volumes from mouse 
(Sievers) and human cerebral cortex (chapter 4 and (Shapson-Coe et al. 2021)). Reproduced from Peddie et al. (2022) with 
permission from Springer Nature. 
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Serial section transmission electron microscopy (ssTEM) 
Transmission electron microscopy offers high in-plane resolution, non-destructive imaging, and high 
image acquisition speed. The tissue sample is typically cut into ~50nm thick sections, which are then 
placed in electron-transparent slots in a sample holder. The manual and error-prone handling of tissue 
sections is increasingly being replaced by robot-assisted (Lee et al. 2018) and fully-automated 
(Graham et al. 2019, Phelps et al. 2021) methods. Image acquisition speed was optimized by using an 
array of CCD (Bock et al. 2011) or CMOS (Zheng et al. 2018) sensors, or a combination of a custom 
scintillator with a large-format CMOS sensor (Yin et al. 2020). This increased the field of view and 
thus the interval between time-intensive stage movements. 

ssTEM was used to image the complete brain of an adult Drosophila melanogaster (Zheng et al. 2018). 
More recently, ssTEM was used to acquire a volume of nearly 1mm3 from functionally characterized 
primary and higher-order visual cortices of mouse (MICrONS consortium et al. 2021). In the latter 
case, image acquisition was further sped up by parallelization across five ssTEM setups, each with 
nominal effective imaging speed of 100MHz (Yin et al. 2020, MICrONS consortium et al. 2021). 
Across the entire experiment, acquisition of roughly 1mm3 at 4×4×40 nm3 nominal voxel size took 6 
months, corresponding to a throughput of ~26MB/s per microscope (Yin et al. 2020). 

Despite the increasingly automated tissue sectioning and section handling, large-scale ssTEM volumes 
typically suffer from high rates of image defects, such as knife marks, cracks and folds (MICrONS 
consortium et al. 2021, Macrina et al. 2021). These defects correspond to complex deformation or loss 
of tissue, both of which complicate the alignment of the two-dimensional images into a continuous 
three-dimensional image volume. Together, the defects and resulting alignment issues are the primary 
limiting factors in the automated circuit reconstructions from large-scale ssTEM volumes. It has been 
noted that “robust handling of image defects is crucial for real-world accuracy, and is where human 
experts outshine AI (Lee et al. 2019)”. Thus, circuit reconstructions in the ssTEM volumes of the 
whole fly brain or of mouse visual cortex are typically done manually (e.g., (Bates et al. 2020)) or 
semi-automatically (Dorkenwald et al. 2022). 

Automated tape-collecting ultramicrotomy (ATUM) for multi-beam scanning electron 
microscopy (multiSEM) 
Around the same time that SBEM was developed, Hayworth, Schalek et al. worked on an alternative 
approach to address the issue of manual section handling in ssTEM (Hayworth et al. 2006, Schalek et 
al. 2011, Hayworth et al. 2014). The goal was to automate the cutting and collecting of tissue sections 
onto a substrate suitable for imaging by SEM (Schalek et al. 2011, Hayworth et al. 2014). In this 
approach, tissue sections are cut by a standard ultramicrotome and automatically collected from a 
water boat onto tape. Within 24 hours, 1000 to 10,000 sections can be automatically collected on tape. 
Because of the lack of manual handling, this method allows for the collection of long series of large 
and thin tissue sections of high quality. 

For imaging by SEM, the tape is then cut into strips and mounted onto an electrically conductive 
substrate, typically a silicon wafer. To avoid charge accumulation, the tape is “connected” to the wafer 
by applying a conductive paint along the tape edge. These steps are performed manually and have the 
risk of contaminating or damaging the sections. Furthermore, this approach has stringent requirements 
for the tape: For the collection of tissue sections from the water boat, the tape must be hydrophilic, 
which is achieved by plasma treatment (Kubota et al. 2018). Furthermore, the tape must be electrically 
conductive (to avoid charge accumulation during imaging) and free of electron contrast. 

ATUM decouples tissue sectioning from SEM imaging. As a result, it is possible to prepare section 
series, image them at low resolution using light or electron microscopy, and perform the resource-
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intensive high-resolution EM imaging only if quality checks are met. This substantially reduces the 
complexity and risk of large-volume EM experiments compared to SBEM. Using multiple ATUM 
setups, multiple samples or even multiple blocks from the same sample (Hayworth et al. 2015) could 
be cut in parallel. 

As a further consequence of decoupling the sectioning from imaging, a larger fraction of microscope 
time is spent imaging. This overhead reduction is particularly important for microscopes with high 
image acquisition speeds, such as the recently developed multi-beam scanning electron microscopes 
(multiSEM; (Eberle et al. 2015)). To reduce the overhead from exchanging sample holders, it is also 
important to maximize the density of tissue sections per silicon wafer. Using ATUM, for example, 
around 220 sections of (1.3mm)2 were fit onto a (100mm)2 wafer (Sievers unpublished). Recently, an 
alternative approach has been proposed that uses magnetic force to automatically collect sections onto 
a silicon wafer (Templier 2019). By collecting 203 sections of 0.8mm×1.4mm onto a roughly (40mm)2 
wafer, this method has demonstrated nearly 4-fold higher packing density. 

ATUM combined with single-beam SEM was used to generate image volumes from the mouse visual 
cortex (40×40×50μm3 at 3×3×29nm3 voxel size and an average effective imaging rate of 0.5MHz; 
(Kasthuri et al. 2015)) and thalamus (400×600×280μm3 at 4×4×30nm3 voxel size and average 
effective imaging rate of ~12MHz; (Morgan et al. 2016)) and the cerebellum (190×120×49μm3 and 
190×120×75μm3 at 4×4×30nm3 voxel size and 5MHz brutto imaging rate; (Wilson et al. 2019)). 
Multi-beam SEM imaging of ATUM samples was used to acquire EM volumes from mouse primary 
somatosensory cortex (1.3×1.3×0.25mm3 at 4×4×35nm3 voxel size and 240MHz effective imaging 
rate; (Sievers unpublished)) and from human temporal cortex (around 4.2mm2×0.175mm at 4×4×(30–
40)nm3 voxel size and 125–190MHz effective imaging rate, (Shapson-Coe et al. 2021)) and 
(1.1×1.1×0.082mm3 at 4×4×(35–40)nm3 voxel size and ~1.2GHz brutto imaging rate; (Loomba et al. 
2022)), both on a 61 beam Zeiss multiSEM. 

Circuit reconstructions from volumetric electron micrographs 
Semi-automated computer-assisted circuit reconstruction has been explored already in the 1970ies 
(Levinthal and Ware 1972, White 1974). Since then, automated and semi-automated methods for 
circuit reconstruction from volume EM have improved dramatically. However, due to improvements 
in EM techniques, the image volumes and the average length of the neurites contained in these image 
volumes have increased as well. Thus, the observation from 1972 that “with current techniques of 
embedding, cutting, staining and preparing of micrographs … the difficulty in obtaining three 
dimensional information does not lie primarily in the preparation of the photographs of many serial 
sections but rather in making use of the photographs in such a way that useful information can be 
obtained (Levinthal and Ware 1972)“ remains highly relevant. 

Circuit reconstruction evolved from fully manual volume reconstructions (e.g., (Fiala 2005, Morgan et 
al. 2016)) to fully manual neurite center-line (“skeleton”) reconstructions (e.g., (Briggman et al. 2011, 
Wanner et al. 2016, Eichler et al. 2017)) to overlapping fully manual skeleton reconstruction with 
automatically generated volume over-segmentations (Helmstaedter et al. 2013). 

The latter approach was enabled by the adoption of machine learning-based methods for the automated 
detection of cell membranes, which serve as boundaries for image segmentation algorithms. These 
methods include random forest classifiers (Andres et al. 2008, Kaynig et al. 2010), learned 
probabilistic ridge detection (Mishchenko et al. 2010), and convolutional neural networks (CNNs; 
(Jain et al. 2007, Turaga et al. 2009, Berning et al. 2015, Lee et al. 2017, Sheridan et al. 2022)). 
Today, most automated circuit reconstruction workflows use CNNs for the detection of cell 
membranes, with the output serving as “elevation map” for volume segmentation by watershed 
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transform (but see (Januszewski et al. 2018, Meirovitch et al. 2019) for alternative approaches). Each 
resulting segment is typically contained in a single neurite, but each neurite is still split into many 
segments. To reduce the number of split errors per neurite, volume segments are typically 
“agglomerated” by machine learning-based methods (Andres et al. 2008, Jain et al. 2011, Nunez-
Iglesias et al. 2013, Parag et al. 2015, Lee et al. 2017, Motta et al. 2019). 

As a result of these improvements, the circuit reconstruction approaches gradually shifted from 
manual reconstructions augmented by automation (e.g., (Helmstaedter et al. 2013)) to (a combination 
of manual and) exhaustively proofread automated reconstructions (e.g., (Mishchenko et al. 2010, Kim 
et al. 2014, Kasthuri et al. 2015)). As error rates decreased further, exhaustive proofreading became 
inefficient. Thus, reconstruction speed was optimized by “focusing” manual inspection and correction 
efforts onto automatically detected locations of reconstruction errors (Plaza et al. 2012, Takemura et 
al. 2015, Motta et al. 2019). Likely error locations are identified based on implausible local 
morphology (Meirovitch et al. 2016, Rolnick et al. 2017, Zung et al. 2017, Motta et al. 2019) or 
transitions in neurite types (Li et al. 2020). 

In chapter 2, automated reconstructions in combination with focused error corrections were used to 
obtain a dense circuit reconstruction from a SBEM volume from layer 4 of mouse primary 
somatosensory cortex. This reconstruction was ~300 times larger and obtained ~20-times more 
efficiently than previous dense reconstructions from the mammalian cerebral cortex. 

In collaboration with Meike Sievers, Martin Schmidt, and scalable minds, the automated 
reconstruction methods were later substantially improved in terms of accessibility, computational 
efficiency, and reconstruction quality for a petabyte-scale ATUM-multiSEM dataset from mouse 
primary somatosensory cortex (Sievers unpublished). The most notable changes are the adoption of 
improved CNN architectures and training procedures (Lee et al. 2017) and the use of biologically-
informed global constraints to prevent merge errors during agglomeration. When applied to the SBEM 
volume from layer 4 of mouse primary somatosensory cortex, these changes increased the expected 
run length (ERL) from ~8μm (Motta et al. 2019) to ~130μm. Together with a synapse detection 
method specifically developed for SBEM, these methods were used in the connectomic reconstruction 
and comparison of cortical layer 2/3 of mouse (n=5 SBEM volumes), macaque (n=2), and human 
(n=2) in chapter 4. 

Subcellular connectomic analyses 
With the recent methodological improvements, the acquisition of EM volumes on the order of 
(100μm)3 has become routine. However, these volumes are still orders of magnitudes smaller than the 
volumes necessary for reconstruction of cortical connectomes between identified pre- and postsynaptic 
neurons in mouse (Figure I-6). Despite this limitation, (100μm)3 volumes of mouse cerebral cortex are 
rich in information: They contain roughly hundred neuronal somata, meters of neurites, and millions 
of synapses (Braitenberg and Schüz 1998). Individual neurites and their synaptic connections can be 
reconstructed over tens to a few hundred micrometers. The analysis potential of these volumes also 
comes with unique challenges: Because most neurites cannot be followed to the corresponding soma, 
established electrophysiological, molecular or even morphological neuron classifications are 
unavailable for them. Instead, neurites must be characterized based on their ultrastructure (e.g., size 
and distribution of mitochondria), their detailed local morphology (e.g., spine density, inter-bouton 
distance, bouton volume) or their synaptic connectivity. 
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Even at this subcellular level, morphologies and connectivity of neurites in mammalian cerebral cortex 
were found to be highly structured, non-random, and informative about cortical organization. The 
following sections will discuss how subcellular connectomes can be used (i) to quantify the degree to 
which the synaptic outputs of axons can be predicted from proximity to postsynaptic targets, (ii) to 
make inferences about synaptic strengths and plasticity mechanisms, (iii) for the definition axons with 
evidence for non-random innervation of subcellular targets, and (iv) to compare the relative 
contributions of excitatory and inhibitory neurons to the synaptic inputs onto the dendritic trees across 
cell types and species. 

Testing the geometric predictability of synaptic connectivity (Peters’ rule) 
In their studies of thalamocortical synaptic connectivity (see “Degeneration studies of Peters et al. and 
White et al.”), Peters and Feldman (Peters and Feldman 1976, Peters 1979) argued that 
thalamocortical axon terminals in layer 4 innervated all available postsynaptic elements in proportion 
to their availability. As a corollary, all dendrites in layer 4 are supposed to be innervated by 
thalamocortical axons at equal rate. Braitenberg and Schüz (1998) later generalized these suppositions 
to all connections in the cerebral cortex and termed this generalization “Peters’ rule”. 

The idea that synaptic connectivity could be inferred from proximity between neurons was at the core 
of efforts to understand or simulate the brain (Binzegger et al. 2004, Egger et al. 2014, Markram et al. 
2015, Reimann et al. 2015). It is hypothesized that statistical connectivity inferred from overlaps 
between light-microscopic reconstructions of neuron morphologies (potentially from multiple 
experiments) provides a sufficient description of neuronal circuits. In this context, the complete 
connectivity maps by EM-based connectomics are of limited value (da Costa and Martin 2013). Thus, 
testing Peter’s rule beyond thalamocortical connections (see “Degeneration studies of Peters et al. and 
White et al.”) was a highly relevant research question for early connectomic studies. 

 

Figure I-6 Intralaminar neuron-to-neuron connectomes in mouse primary somatosensory (S1) cortex and their minimal 
circuit volumes. EM volumes smaller than the minimal circuit volume can be used for subcellular connectomic analyses (see 
chapters 2 and 4). (a) In its most simple form, a neuron-to-neuron connectome is represented by a binary adjacency matrix. 
Matrix entries indicate the presence (‘1’) or absence (‘0’) of synaptic connections (right) between pre- and postsynaptic 
neurons. To measure the absence of a connection (bottom), the dendrites of the postsynaptic neuron must be reconstructed 
completely. The presynaptic axon must be reconstructed from the soma to all terminals plausibly in contact with the 
postsynaptic neuron. The smallest volume containing both of these reconstructions is called ‘minimal circuit volume’. (b,c)
The minimal circuit volumes for neuron-to-neuron connectomes of the intralaminar, recurrent connectivity in mouse S1 is 
(b) approximately (300μm)3 in layer 4 and (c) approximately (1–2mm)2×0.5mm in layer 2/3. Modified and reproduced from 
Helmstaedter (2013) with permission from Springer Nature. 
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Mishchenko et al. (2010) used ssTEM to image four neuropil volumes from the stratum radiatum of 
rat hippocampus, spanning a total of ~670μm3. They asked whether the density of input synapses 
along micrometer-long fragments of spiny dendrites could be predicted from the number of axons 
around them. Because only a small fraction of these axons established synapses onto that dendrite, 
they introduced a distance-dependent contact-to-synapse conversion fraction. However, even with this 
distance-dependent model, the dendritic synapse density was poorly predicted. This was interpreted as 
evidence for changes in the conversion factor along or across dendrites. Instead, Mishchenko et al. 
(2010) found that local dendritic synapse density could be predicted based on the average 
circumference of the dendritic trunk. 

Kasthuri et al. (2015) used ATUM-SEM to image a volume of 80,000μm3 from layer 5 of mouse 
somatosensory cortex. For their reconstructions they followed the approach of Mishchenko et al. 
(2010): Using semi-automated methods, they densely reconstructed three cylinders, each ~600μm3 in 
size and centered onto an apical dendrite. When accounting for overlaps, the total reconstructed 
volume amounted to ~1500μm3. For their analyses, Kasthuri et al. (2015) started with the observation 
that approximately 14–17% of excitatory connections onto the spine heads of the central apical 
dendrites consisted of multiple synapses. In the following, they asked whether these multi-synaptic 
connections could be the result of random synaptic connections following Peters’ rule. 

First, they quantified for each excitatory axon that enters the cylindrical volume around an apical 
dendrite the path length within this volume. This path length was found to be only weakly correlated 
with the number of synapses an axon established onto the central apical dendrite. Similarly, the 
number of physical contacts (both synaptic and non-synaptic) between an axon and the spines of the 
central apical dendrite was found to be essentially uncorrelated with the number of synapses. 

Second, they directly addressed the question whether the observed multi-synaptic connections could 
be the result of random synaptic connectivity. Specifically, they asked whether the observed synaptic 
contacts were a random subset of all physical contacts between excitatory axons and the spines of the 
central apical dendrite. To test this, they considered a random subset of physical contacts as synaptic 
contacts while keeping constant the total number of synapses per axon and per spine. They found that 
the observed number of multi-synaptic connections far exceeded expectation based on random 
connectivity. Similarly, they reported that the number of synapses that an excitatory axon established 
on a segment of the central apical dendrite was correlated with the number of additional synapses onto 
the same dendrite beyond that segment. 

In conclusion, the detailed subcellular morphology and synaptic connectivity of neurites in small 
electron microscopy volumes provided evidence for non-random local excitatory connectivity in the 
mammalian brain. In rat hippocampus, poor predictability of the synapse density along a dendrite 
based the number of surrounding axon fragments was found (Mishchenko et al. 2010). In mouse 
somatosensory cortex, the probability of synapses onto a particular apical dendrite was found to be 
inhomogeneous across excitatory axons (Kasthuri et al. 2015). 

However, due to the small image volumes, these studies were limited to testing Peters’ rule at short 
length scales. The above-mentioned analyses were limited to radii of at most 1μm (Mishchenko et al. 
2010) and ~5μm (Kasthuri et al. 2015), respectively. Therefore, these studies were unable to directly 
quantify the geometric predictability of synaptic connections from light-microscopic reconstructions 
of neuron morphologies. The alignment of morphological reconstructions from multiple light-
microscopic experiments is typically on the order of a few tens of micrometers. Thus, a direct 
treatment of this question became possible only with EM volumes in which even the smallest 
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dimension is a few tens of micrometers in length. The first such EM volume from the mammalian 
cerebral cortex and quantitative tests of various formulations of Peters’ rule are described in chapter 2. 

Because of the limited extent of previous EM volumes (Mishchenko et al. 2010, Kasthuri et al. 2015), 
each axon fragment was short and established only a small number of synapses within the 
reconstructed image volume. Thus, only little information was available for sub-classification of 
excitatory axons. As a result, it could not be excluded that the observed non-random connectivity was, 
in fact, the result of two or more subtypes of excitatory axons with different target-preferences, but 
random synaptic targeting. In chapter 2, this issue could be partially addressed because the 
reconstructed excitatory axons were sufficiently long that morphological and connectomic features 
were descriptive enough for a separation of thalamocortical and corticocortical axons. 

Interneurons make up only 8%–25% of the neuron in the rodent cerebral cortex (see chapter 4) and 
small fractions of the total axonal and dendritic path lengths. Thus, the small volumes of previous 
studies contained only few fragments of inhibitory axons and dendrites. Furthermore, it was reported 
that the few identified inhibitory axon fragments established, on average, fewer synapses than 
excitatory axon fragments (Kasthuri et al. 2015). As a result, previous studies were unable to test the 
geometric predictability of synaptic connections originating from inhibitory axons or terminating onto 
interneuron dendrites. The results of such an analysis are reported in chapter 2. 

Inferences about synaptic strength and plasticity 
The flow of signals and thus also the computations in neural networks not only depend on the non-
random structure in the presence or absence of synaptic connections, but also on the strength of these 
connections. In general, connection strengths are highly variable. For example, paired 
electrophysiological recordings from spiny neurons in layer 4 of rat primary somatosensory cortex 
indicate that connections strengths, as measured by the average evoked excitatory postsynaptic 
potentials (EPSPs), range from 0.3mV to 9.6mV (Feldmeyer et al. 1999). The distribution of 
connection strengths even within homogeneous neuron populations is positively skewed and 
approximately log-normal (Buzsáki and Mizuseki 2014). The range of EPSP amplitudes is even larger 
when considering differences across cell types: Across 36 different excitatory connections in mouse 
primary somatosensory cortex, EPSP amplitudes were found to range from 0.04mV to 7.79mV (Lefort 
et al. 2009). Ideally, a connectome would thus contain information not only about the presence and 
absence of connections, but also about connection strengths. 

Connection strength is the result of many factors: To first approximation, connection strength scales 
linearly with the number of synapses. Direct measurements of the number of synapses in a connection 
is possible in large EM volumes that cover at least the minimal circuit volume (Helmstaedter 2013). 
And alternative approach consists of light-microscopic neuron reconstructions followed by inspection 
of putative synaptic contacts in many targeted small EM volumes (e.g., (Markram et al. 1997, Holler 
et al. 2021)). However, due to the intracellular stain, accurate classification of contacts as synaptic or 
non-synaptic is non-trivial. 

Notably, this approximation assumes that all synapses contribute equally to the total connection 
strength. Experimental evidence suggests, however, that even individual synapses differ in strength 
(Matsuzaki et al. 2001). It is thought that synapse strength depends on three factors: the probability 
that a synaptic vesicle fuses and releases neurotransmitter molecules into the synaptic cleft in response 
to the local increase in Ca2+ concentration that is caused by the depolarization of an action potential; 
the number of synaptic vesicle release sites; and the average postsynaptic response caused by the 
release of a single synaptic vesicle. (The average postsynaptic response is itself the result of many 
factors, such as the number of neurotransmitter molecules per synaptic vesicle, the probability of a 
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neurotransmitter molecule binding to a receptor on the postsynaptic site, the permeability and binding 
kinetics of these receptors, the ion concentrations and membrane potential in the postsynaptic 
terminal, etc.) 

Structural correlates of synaptic strength 
Can the strength of individual synapses be inferred from ultrastructural information contained in EM 
volumes? One line of evidence comes from EM studies using immuno-labelling for synaptic receptors. 
For example, strong and significant correlations were observed between synapse size (PSD or active 
zone) and the number of AMPA receptor-specific immuno-particles (Nusser et al. 1998, Takumi et al. 
1999, Kharazia and Weinberg 1999). In excitatory synapses, PSD area was found to be strongly 
correlated presynaptically with the active zone area and with the number of docked vesicles 
(Schikorski and Stevens 1997) and postsynaptically with spine head volume (Harris and Stevens 1989, 
Holtmaat et al. 2005, Arellano et al. 2007, Bopp et al. 2017). Spine head volume, in turn, was found to 
correlate with the amplitude of excitatory postsynaptic currents (EPSCs) evoked by two-photon-based 
glutamate uncaging (Matsuzaki et al. 2001) and with the volume of the presynaptic bouton (Knott et 
al. 2006). 

Together, these studies indicate strong correlations between PSD area and quantities that are related to 
the three-factor model of synaptic strength. A direct measurement of the relationship between total 
PSD area and EPSP amplitude across synaptic connections was reported only recently (Holler et al. 
2021). 

In conclusion, these studies indicate that EM-based connectomes of the mammalian cerebral cortex are 
not limited to binary connectivity matrices, but that structural measurements such as the total PSD area 
allow the connectome to be augmented with information about connection strengths. 

Synaptic long-term potentiation (LTP) 
Importantly, the strength of a synapse is generally not static, but may change over time. 

Almost 50 years ago, Bliss and Lømo (1973) studied the synaptic connections from axons of the 
perforant pathway onto granule cells in the dentate gyrus. They found that brief high-frequency 
stimulations of perforant pathway axons (at 10–20Hz for 10–15s or at 100Hz for 3–4s) using an 
extracellular electrode reliably (>80%) and rapidly (within seconds) induced long-lasting (30min to 
10h) potentiation of the connection by >40%. This study established simultaneous extracellular 
stimulation of perforant pathway axons and recording of the evoked field potential in granule cells of 
the dentate gyrus as the model system for long-term potentiation (LTP). Subsequent studies in rabbit 
and rat indicated that, depending on the stimulation protocol, potentiation may last from hours to many 
weeks (Abraham 2003). 

Since then, hippocampal LTP by extracellular stimulation has been studied extensively (for a review, 
see (Bliss and Collingridge 1993)). Most excitatory connections in the hippocampus were found to be 
capable of LTP, and most forms of LTP were found to depend on the activation of postsynaptic 
NMDA receptors (for a review, see (Malenka 1994)). However, pharmacological activation of NMDA 
receptors alone was found to be insufficient for LTP induction (Kauer et al. 1988). Instead, the 
combined activation of NMDA receptors by glutamate released from the presynaptic terminal with 
simultaneous postsynaptic depolarization (Gustafsson et al. 1987) is necessary to open the NMDA 
receptors’ ion channels and to eject from it the magnesium block, which then allows for the influx of 
Ca2+ (Ascher and Nowak 1988). The mechanism by which Ca2+ contributes to the expression of LTP is 
still under investigation, but Ca2+/calmodulin-dependent protein kinase II (CaMKII) is likely to play a 
central role (Herring and Nicoll 2016). CaMKII-mediated phosphorylation of AMPA receptor subunits 
seems to enhance their trafficking to and insertion into the PSD as well as to increase the conductance 
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of the corresponding channels. There is also evidence for CaMKII-mediated modification of PSD 
proteins, which affects the number of synaptic AMPA receptors through regulation of their rates of 
endo- and exocytosis and of displacement along the cell membrane. LTP induction was found to 
correlate with the transport of AMPA receptor into the postsynaptic terminal (Shi et al. 1999) as well 
as with the polymerization of actin filaments in spine heads (see (Kim and Lisman 1999)). 

The latter two could be mechanisms that result in an increase in synapse area and spine head volume, 
respectively. In fact, already shortly after the discovery of LTP, electron microscopy studies by Van 
Harreveld and Fifková described stimulation-induced ultrastructural changes (Van Harreveld and 
Fifková 1975, Fifková and Van Harreveld 1977). In the region of the molecular layer that contains the 
likely stimulated synapses from perforant pathway axons onto granule cells, a substantial increase in 
total spine head volume was observed. This change was detected two minutes after stimulation and 
persisted for at least 23h. The increase was largest (+38%) within the first hour after stimulation, but 
remained large (+23%) for up to 23h. Interestingly, the total size of axonal boutons and the density of 
synaptic vesicles transiently decreased within the first hour. In contrast, the total spine head volume 
remained unchanged in the region of the molecular layer that contains the likely unstimulated synapses 
from commissural pathway axons onto granule cells. Together, these observations indicate a strong 
correlation between lasting changes in connection strength and spine head size, and that these changes 
are specific to the stimulated connections. Furthermore, the mechanisms underlying LTP are likely to 
be multiple and of varying time courses. 

Desmond and Levy conducted similar experiments (e.g., (Desmond and Levy 1983, Desmond and 
Levy 1988)). In the latter study, synapses were quantified in terms of axon-spine interface (ASI) area, 
which encompasses both the PSD and non-PSD areas. After stimulation, a substantial increase in the 
total ASI area per unit neuropil volume was found. This effect was driven primarily by and was 
significant only for “concave” (large), but not for other (smaller) spine synapses. Furthermore, the 
increase in total ASI area was due to proportional increases in total PSD and total non-PSD areas. 

Structural plasticity and circuit remodeling 
To what degree this increase in total synapse size per unit neuron volume was caused by an 
enlargement of existing synapses or by the addition of new synapses was disputed. By interpreting 
polyribosomes and multi-synaptic axonal boutons as markers of synaptogenesis, the reduction in these 
markers post-stimulus was interpreted as evidence for a strengthening of existing synapses (Desmond 
and Levy 1990). However, other studies reported an increase in the density of synapses onto dendritic 
shafts (Lee et al. 1980), shafts and stubby spines of likely interneuron dendrites (Chang and 
Greenough 1984), or spines of spiny dendrites (Trommald et al. 1996) after stimulation. 

Even if the synapse density remained constant, could it be that this is the result of balanced removal of 
existing and addition of new synaptic connections? In fact, it has been argued that LTP may 
correspond to a balanced redistribution of synaptic strength, without changing the overall synapse 
densities or sizes (Sorra and Harris 1998). 

Monitoring of dendrites for growth or retraction of their spines across time became feasible with the 
development of two-photon (2P) fluorescence microscopy (Denk et al. 1990, Denk and Svoboda 
1997). For a review of 2P-based studies of plasticity-related spine dynamics, see (Yuste and 
Bonhoeffer 2001). 

Using this method, extracellular high-frequency stimulation in organotypic slice cultures of 
developing rat hippocampus was found to initiate a spatiotemporal window of tens of minutes and 
restricted to tens of micrometers around the electrode in which the density and length filopodia on 
individual pyramidal neuron dendrites substantially increased (Maletic-Savatic et al. 1999). Within an 
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hour, roughly a quarter of these filopodia developed a “bulbous”, spine head-like morphology. A 
similar experiment found that new protrusions emerged in, but only rarely outside of, the dendritic 
region of long-term potentiated synaptic connections (Engert and Bonhoeffer 1999). When LTP 
induction failed or was blocked by an NMDA receptor-antagonist, no generation of new, but only a 
loss of existing spines was found. 

In vivo, filopodia and spines on dendrites of pyramidal neurons in layer 2/3 of developing rat barrel 
cortex were found to be motile, changing in length by roughly 0.2–0.6μm within 10min (Lendvai et al. 
2000). Sensory deprivation during the critical period by whisker trimming reduced this motility by 
~40%, but did not change the density of filopodia and spines. To study the relationship between the 
motility of spines and their synaptic innervation, in vivo 2P time-lapse imaging of pyramidal neuron 
dendrites in layer 1 of adult mouse barrel cortex was combined with ssTEM (Knott et al. 2006). 
Asymmetric synapses were reported on all spines that persisted for ≥4 days, but only on about a third 
of “younger” spines. Consistent with previous reports (Toni et al. 1999), the axonal boutons 
presynaptic to these young spines were mostly multi-synaptic (67% vs. 14% on average across random 
boutons) and thus likely pre-existing. Thus, LTP induction in vivo appears to be associated with 
increased but balanced rates of spine removal and spine generation. Newly generated spines are 
synaptically innervated within days, corresponding to a change of the binary connectome. 

However, most of the data discussed so far were obtained by spatially unspecific manipulation of 
neuronal activity, such as extracellular stimulation of afferents or sensory deprivation. Targeted 
stimulation and monitoring of identified spines was achieved by exploiting the 2P approach not only 
for imaging, but also for photolysis of caged glutamate (Matsuzaki et al. 2001). More than 90% of 
stimulated spines, but less than 10% of spines adjacent along the same dendrite, were found to rapidly 
(within less than 5 minutes) double to triple in volume (Matsuzaki et al. 2004). This enlargement was 
transient in ~95% of initially large spines. In initially small spines, the enlargement decayed to ~75% 
within tens of minutes, but then persisted for at least 100 minutes. When combined with whole-cell 
recordings from the postsynaptic neurons, strong correlations were found—both in the few minutes 
after stimulation as well as after tens of minutes—between spine volume and the evoked excitatory 
postsynaptic currents. A similar study reported that, while being synapse specific, the induction of 
LTP reduced for around ten minutes the threshold for LTP induction on spines less than ~10μm away 
on the same dendrite (Harvey and Svoboda 2007), thus supporting the formation of synapse clusters. 
Recently, it has been suggested that potentiation of such clustered synapses during motor learning 
induces the generation of new spines and that the survival of these spines depends on the correlation of 
the synaptic input with the clustered input (Hedrick et al. 2022).  

Bidirectional Hebbian plasticity 
In 1949, Hebb stated the following postulate about the neural mechanism of associative learning: 
“When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in 
firing it, some growth process or metabolic change takes place in one or both cells such that A’s 
efficiency, as one of the cells firing B, is increased. (Hebb 1949)” In other words, the synaptic 
connection from neuron A onto neuron B increases in strength if neuron A is repeatedly and causally 
involved in the generation of action potentials in neuron B. Importantly, the strength change in 
connection A→B depends only on the activities of neurons A and B, but not of any other neuron C. 
Synaptic LTP, as described above, is thus widely considered to be a neurobiological mechanism of 
homosynaptic Hebbian plasticity. 

However, this model is clearly too simplistic: Following Hebb’s postulate, synaptic connections only 
ever increase in strength. Even more problematic is the positive feedback loop arising from the fact 
that strengthening of a synaptic connection increases the probability of this connection causing a 
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postsynaptic action potential and thus to further increase in strength. To address this concern, a 
number of potential mechanisms have been proposed (for a review, see (Abbott and Nelson 2000)). 
These include global exponential decay of synaptic strength (Nass and Cooper 1975), renormalization 
of input synapse strengths per neuron (von der Malsburg 1973), and neuron-specific activity-
dependent plasticity thresholds (Bienenstock et al. 1982). Experimental evidence for these 
mechanisms comes, for example, from studies of synaptic scaling during sleep (de Vivo et al. 2017) 
and of activity-dependent homeostatic plasticity (Turrigiano et al. 1998) during development 
(Turrigiano and Nelson 2004) or in response to sensory stimulation/deprivation (Knott et al. 2002, 
Mrsic-Flogel et al. 2007). 

Only shortly after the first reports of LTP, it has been observed that changing the order of pre- and 
postsynaptic stimulation of the same synaptic connections could instead induce long-term depression 
(LTD) (Levy and Steward 1983). Since then, the precise spike timing dependence of LTP and LTD in 
synaptic plasticity have been studied extensively (e.g., (Markram et al. 1997, Bi and Poo 1998, Egger 
et al. 1999); for a review, see (Markram et al. 2012)). Thus, the term “Hebbian plasticity” is now 
commonly used to refer to bidirectional homosynaptic plasticity. Induction of LTD by low-frequency 
stimulation in hippocampal synapses was found to be accompanied by a reduction in AMPA-, but not 
NMDA-receptors and corresponding postsynaptic current (Carroll et al. 1999). LTD induction was 
also found to be associated with spine head shrinkage (Okamoto et al. 2004, Zhou et al. 2004, Oh et al. 
2013) and retraction (Nägerl et al. 2004).  

Together, these studies indicate that the efficacy of hippocampal and cortical synaptic connection may 
increase or decrease in an activity-dependent manner. Both LTP and LTD are accompanied by 
ultrastructural changes at the level of individual synapses, such as the expansion or shrinkage of spine 
heads; and by larger structural changes, such as the growth or retraction of spines. The densities and 
sizes of dendritic spines—though not the changes thereof—are directly observable in electron 
microscopy. EM-based comparisons of stimulated and unstimulated nervous contributed to the 
understanding of synaptic plasticity. 

Intriguingly, even a single EM volume of unstimulated nervous tissue allows inferences about synaptic 
plasticity mechanism. For example, Hebbian learning by spike timing dependent plasticity (STDP) is a 
homosynaptic process. Thus, to first approximation, all synapses in a multi-synaptic connection (i.e., 
from the same axon onto the same dendrite) are expected to follow the same changes in efficacy and 
thus also in structure. As a consequence, two synapses from the same axon onto the same dendrite are 
expected to be more similar than two synapses from two separate, functionally less correlated axons 
onto the same dendrite. Indeed, EM-based studies have reported that the synapses in multi-synaptic 
connections are unexpectedly similar in size (Sorra and Harris 1993, Kasthuri et al. 2015, Bartol et al. 
2015, Bloss et al. 2018, Motta et al. 2019, Dorkenwald et al. 2021), thereby providing purely structural 
observations compatible with and suggestive of homosynaptic plasticity.  

The first report of unexpected size similarity in multi-synaptic connections was based on six pairs of 
synapses, each from a multi-synaptic axonal bouton onto spines of the same dendrite (Sorra and Harris 
1993). Later, ten bisynaptic connections in CA1 of rat hippocampus were used to estimate the 
precision of homosynaptic size modulation and the range of synaptic sizes to infer a storage capacity 
of 4.7 bits per synapse (Bartol et al. 2015). As EM volumes grow in size, increasingly more detailed 
predictions of homosynaptic plasticity can be tested (see Discussion). 

In an analysis described in chapter 2, more than 5000 bisynaptic connections were used not only to 
provide evidence for Hebbian plasticity in layer 4 of the mouse cerebral cortex, but also to quantify the 
fraction of the circuit that is consistent with saturated Hebbian plasticity. To date, synaptic plasticity 
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has been studied primarily in tissue subjected to artificial electrical, chemical or sensory stimulation. 
As a result, it is still unclear at what rates LTP and LTD occur in vivo under naturalistic sensory 
inputs. Furthermore, it has been reported that spines are highly dynamic in vivo and that spine head 
volumes fluctuate substantially even in the absence of pre- or postsynaptic activity (for a review, see 
(Shimizu et al. 2021)). Thus, even if LTP and LTD occur at high rates, the stability of the 
corresponding synaptic changes is unclear. As exemplified by the various pathway-specific critical 
periods during cortical development, the capacities for LTP and LTD are also likely to be experience- 
and cell type-dependent. Connection-specific analyses have first been attempted in chapter 2, but are 
facilitated as EM volumes approach the minimal circuit volume (Dorkenwald et al. 2021).  

In summary, the weighted connectome that can be extracted from an EM volume provides a snapshot 
of the dynamic processes that shape synaptic connectivity. Thus, a static connectomic snapshot of 
nervous tissue can be used for inferences about inherently dynamic processes, such as synaptic 
plasticity. This has been exemplified in chapter 2 by the analysis of bisynaptic connections for 
evidence of Hebbian plasticity, which is possibly even in subcellular connectomes. Recent progress in 
EM methods made the reconstruction of such connectomes routine, thus enabling a quantitative 
comparison of synaptic plasticity across cell types, brain regions, and species. The same data can be 
used to make inferences about other forms of synaptic plasticity, such as heterosynaptic or 
homeostatic plasticity. Implicitly, these synaptic mechanisms also make predictions about higher-order 
synaptic connectivity patterns. Studying these will become possible within the near future. 

Quantification of subcellular target specificities of interneurons 
While pyramidal neurons are the principal cell type of the cerebral cortex, the repertoire of potential 
computation in cortical circuits is considerably expanded by inhibitory interneurons. In the mouse 
cerebral cortex, for example, inhibitory interneurons form 8%–25% of all neurons (see chapter 4) and 
~10% of the synapses in the neuropil (Braitenberg and Schüz 1998). 

Inhibitory interneurons can be found in all layers of the cerebral cortex, including layer 1. As implied 
by the name, the axons and typically “smooth” (i.e., spine-free or sparsely-spiny) dendrites of 
interneurons are typically more localized than in pyramidal neurons, thus suggesting a role primarily 
in local computations. (Historically, spiny stellate neurons have been described as excitatory 
interneurons. While this characterization is justifiable based on the localization of the axonal and 
dendritic arbors to layer 4, the term “interneuron” will be used to refer exclusively to inhibitory 
interneurons in the following.) The primary neurotransmitter released by cortical interneurons is 
GABA, which mostly has a hyperpolarizing and thus inhibitory effect on postsynaptic neurons. This 
effect is mediated primarily by GABAA and GABAB receptors, which react to GABA by opening 
channels selective for chloride and potassium ions with reversal potentials around and below the 
typical neuronal resting potential, respectively. 

Based on the inhibitory effect, various functional roles have been suggested for interneurons. These 
include the dynamic counterbalance of excitation to maintain a stable activity level across the local 
circuit. In the absence of inhibition, the recurrent excitatory network is at risk of runaway excitation. 
Such epileptiform hyperactivity is likely neurotoxic and has low dynamic range and thus also low 
capacity for information coding and processing. Another potential functional role of interneurons is 
the contribution to oscillatory activity. Oscillations may serve as reference signal for phase-based 
information coding or as basis for reliable information transfer by increasing the temporal coincidence 
of excitatory synaptic release. These functions could be implemented even by unstructured and 
random inhibitory connectivity. However, a more complex functional role in the precise 
spatiotemporal control of neuronal dynamics even at the subcellular level is suggested by the large 
diversity of interneurons (Kubota et al. 2016). 
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Already Ramón y Cajal and Lorente de Nó have described cortical interneurons (which were identified 
by their short axons in Golgi-stained tissue) and divided them into separate morphological cell types. 
Later, interneuron subtypes were further refined as methods for electrophysiological, molecular, 
functional, developmental, etc. characterizations became available and were improved. The definition 
of interneuron subtypes is still an area of ongoing research (Ascoli et al. 2008, Yuste et al. 2020). 

Correlated electrophysiological, light- and electron-microscopic studies revealed that neuronal cell 
types in the cerebral cortex differed in the subcellular postsynaptic targets. In mouse cerebral cortex, 
excitatory synapses are presynaptic primarily to dendritic spines of excitatory neurons or to dendritic 
shafts of interneurons (Braitenberg and Schüz 1998). Inhibitory synapses, in contrast, are presynaptic 
mostly to multi-synaptic spines (Jones and Powell 1969), dendritic shafts, somata or axon initial 
segments (Somogyi et al. 1982) of excitatory neurons, and to interneurons (Braitenberg and Schüz 
1998, Kubota et al. 2016). These subcellular postsynaptic targets are innervated in an interneuron 
subtype-specific manner (for a review, see (Kubota et al. 2016)). For example, somata and proximal 
dendrites of excitatory neurons are primarily innervated by parvalbumin- or cholecystokinin-positive 
“basket” interneurons. Distal (apical) dendrites of excitatory are innervated mostly by somatostatin-
positive interneurons, and the axo-axonal synapses onto excitatory axon initial segments were thought 
to originate almost exclusively from “chandelier” interneurons (but see (Gour et al. 2021, Schneider-
Mizell et al. 2021)). 

The synapses onto the different targets are likely to underlie different functions. Inhibitory synapses 
onto multi-synaptic spines were found to induce small inhibitory postsynaptic potentials (IPSP) in the 
soma of the postsynaptic neuron (Kubota et al. 2015), but strong inhibitory and shunting effects in the 
spine head and its local surround. Thus, inhibitory spine synapses have the potential for synapse-
specific suppression of excitatory inputs and plasticity mechanisms (Chiu et al. 2013). In contrast, 
synapses onto the soma or onto the axon initial segment (Somogyi et al. 1982) are positioned ideally to 
suppress the initiation of action potentials. However, the local postsynaptic membrane potential is the 
result of non-linear integration of all synaptic inputs onto that neuron (e.g., (Branco et al. 2010)). The 
strong and temporally precise control over action potential initiation of synapses onto the axon initial 
segment thus comes at the cost of unspecific inhibitory-excitatory interactions. 

These subcellular target specificities are thought to be the result of concurrent attractive and repulsive 
mechanisms (for a review, see (Sanes and Zipursky 2020)). The precision of these mechanisms, of the 
resulting synapse distributions, and ultimately of the notion of cell type-specific connectivity is still 
unclear. EM-based connectomics is well-suited for an unbiased analysis of interneuron axons and of 
their subcellular target properties. In chapter 2, mathematical models are proposed for the connectomic 
identification of excitatory and inhibitory axons and of axon subpopulations with statistically 
significant evidence for subcellular target preference. Using these purely connectivity-based methods, 
inhibitory axon subpopulations with preferential innervation of smooth (likely interneuron) dendrites, 
proximal and distal dendrites and somata of excitatory neurons were identified. Notably, no evidence 
for axon initial segment-specific interneuron axons was found in mouse primary somatosensory cortex 
layer 4. 

As with the analysis of structural correlates of Hebbian plasticity, these analyses of axonal target 
specificity are suitable for connectomic screening subcellular connectomes. Synaptic adhesion 
molecules and thus likely also in specificity mechanisms are thought to be altered in neurological 
disorders. Connectomic comparisons of healthy and diseased tissue from animal models and humans 
are thus of interest. 
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Excitation-inhibition balance across cell types and species 
The features of cortical architecture described in the previous sections—the ultrastructure of excitatory 
and inhibitory neurons, the poor geometric predictability and plasticity of synaptic connections, and 
the preferential innervation of specific postsynaptic targets—have been studied primarily in non-
human animals. In particular, the primary animal models over the last decades have been rodents. 

Rodents are attractive model systems because of the availability of genetic tools. This allowed, for 
example, for the introduction of human disease-associated genetic mutations or for genetically targeted 
expression of fluorescence proteins, calcium-sensitive fluorescence proteins, or light-sensitive ion 
channels. Together, these tools were used to study the neurobiology of human diseases in mice. 
However, insights from mouse models of neurodegenerative diseases have so far failed to translate 
into effective treatments for humans (Dawson et al. 2018). 

Arguably, for mice to become an effective model system of human neurodegenerative diseases, it 
might be necessary—but insufficient—to understand the relationship between mouse and human 
brains under healthy conditions. In particular, how much variability is there within and across healthy 
mouse brains? How much variability is there within and across human brains? And what are the 
common features and differences between healthy mouse and human brains? Addressing these 
questions might also shed light on the neural mechanisms underlying the substantial differences in 
cognitive abilities. 

The cerebral cortex is a particularly attractive subject in this regard. The cortical sheath expanded 
600–800-fold in area from mouse to human (Mota and Herculano-Houzel 2015). In the lissencephalic 
mouse brain, ~98% of the cortical sheath is exposed at the surface, whereas the majority of the human 
cortical sheath (55%–65%) is folded into gyri. Gyration allows for a supra-linear expansion of the 
cortical sheath relative to brain surface and increases the potential connectivity by separating neuronal 
distance along the cortical sheath from the neuronal distance in Euclidean space (for a review, see 
(Striedter et al. 2015)). The cortical sheath not only expanded in surface area, but also ~3-fold in 
thickness (DeFelipe et al. 2002). This is accompanied by a ~1000-fold increase in number of neurons: 
from 5 million (Herculano-Houzel et al. 2013) to 16 billion (Azevedo et al. 2009). 

The relationship between number of neurons and cognitive abilities remains unclear. For example, 
normal aging-related cognitive decline is thought to be associated not with a substantial loss of cortical 
neurons, but rather with changes in synaptic connectivity (Morrison and Baxter 2012). This begs the 
question how the cerebral cortices of mice and humans differ in terms of connectivity. For example, 
does the ~3-fold increase in cortical sheath thickness and the corresponding increase in the extent of 
pyramidal neuron dendrites (Mohan et al. 2015) results in a 3-fold increase in synaptic inputs per 
neuron? 

The relative contribution of excitation and inhibition to the total synaptic input per neuron is another 
key determinant of neuronal dynamics and computations. Thus, it is notable that the proportions of 
glutamatergic and GABAergic cell types were found to differ substantially across species (e.g., 
(Bakken et al. 2021)). For example, the fraction of GABAergic interneurons was found to double in a 
recent study from ~16% in mice to ~33% in human (Bakken et al. 2021). Does this imply a 
corresponding increase in inhibitory synapses in the cortical neuropil? 

Comparative electron microscopy is well-suited suited to address this question. For example, a study 
based on two-dimensional TEM images compared the synaptic composition of cortical neuropil in 
mouse and human (DeFelipe et al. 2002). The average volumetric synapse density was found to be 
~2.7 times lower in human than in mouse (~1.1μm-3 vs. ~2.9μm-3), but average synapse size was found 
to be 20%–30% larger. The fraction of symmetric (likely inhibitory) synapses was reported to be 
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slightly lower in human than in mouse cortex (11% vs. 16%) and very similar when restricted to 
cortical layers 2 and 3 (~11%). 

How do volumetric fractions of interneurons and inhibitory synapses relate to the excitatory and 
inhibitory synaptic inputs onto excitatory neurons? In general, these relationships are non-linear. For 
example, even if the interneuron fraction remained constant from mouse to human, the proportion of 
inhibitory input synapses onto excitatory neurons could have changed due to a change in the average 
target specificity of interneurons. To assess the synaptic inputs onto excitatory neurons, the volumetric 
fractions of interneurons and inhibitory synapses are thus insufficient. 

These considerations are further complicated by the fact that many of the existing data about the 
ultrastructure of the human cerebral cortex were obtained from diseased tissue. Most human cortical 
tissue was obtained post-mortem or in form of access tissue from surgeries for the treatment of drug-
resistant epilepsy (e.g., (DeFelipe et al. 2002, Shapson-Coe et al. 2021)). Both of these conditions—
through the decay of nervous tissue post-mortem or as consequence of pharmacological treatment—
are unlikely to reflect human cortical circuits under healthy physiological conditions. 

Thus, even basic, low-order statistics of synaptic connectivity in the human cerebral cortex are 
unclear. Chapter 4 provides measurements of the average synaptic connectivity within and across 
excitatory and inhibitory neurons in layer 2/3 of mouse and human cerebral cortex. The fraction of 
inhibitory synaptic inputs onto excitatory neurons was found to have increased modestly and 
sublinearly with the fraction of interneurons. This is the consequence of a shift in the average 
inhibitory target specificity towards interneurons. Together with the increased fraction of interneurons, 
this shift in average inhibitory target specificities resulted in a substantial expansion of potentially 
disinhibitory interneuron-to-interneuron connectivity. 

In conclusion, even electron microscopy volumes on the order of (100μm)3, which are too small to 
follow pre- or postsynaptic neurites of a synapse to the corresponding somata and which are thus 
limited to subcellular connectomic analyses, can provide valuable insights about the organization of 
the mammalian cerebral cortex. However, recent improvements in sample preparation and electron 
microscopy methods made it possible to image 1mm3-sized volumes of cortical tissue at nanometer 
resolution (Shapson-Coe et al. 2021, MICrONS consortium et al. 2021, Sievers unpublished), thus 
exceeding the minimal resolution and volume requirements for the reconstruction of neuron-to-neuron 
connectomes of local cortical circuits (Helmstaedter 2013). Hence, it is becoming plausible to realize 
one of the promises of dense circuit mapping: the experimental testing of neural network models of 
brain function based on their structural implications (Seung 2009). 

The following section will introduce a widely used approach for the analysis of neuron-to-neuron 
connectivity, namely that of identifying overrepresented network motifs. The mathematical tools 
necessary for the identification of such network motifs will be briefly introduced. However, these 
small network motifs are only indirectly linked to circuit function and it will be argued that more 
complex analysis approaches are necessary for the structural disambiguation of most network models. 
One such approach will be presented in chapter 3. 

Analysis of neuron-to-neuron connectomes 
The neuron-to-neuron connectivity in cortical circuits has been studied using a range of techniques 
(for a review, see (Luo et al. 2018)). These include, for example, connectivity inferences from overlap 
between light-microscopic reconstructions of individual—potentially electrophysiologically (Gilbert 
and Wiesel 1983) or genetically identified (Livet et al. 2007)—neurons; monosynaptic transsynaptic 
tracing using modified rabies virus (Wickersham et al. 2007); optical stimulation and activity 
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measurement by use of genetically encoded light-gated ion channels and calcium indicators (Petreanu 
et al. 2007); and multi-electrode recordings. Intracellular multi-electrode recordings in slice 
preparations have been used to probe the connectivity in small networks of up to six neurons (Mason 
et al. 1991, Markram et al. 1997, Feldmeyer et al. 1999, Thomson et al. 2002, Song et al. 2005, Lefort 
et al. 2009). 

Already early pair-wise connectivity measurements in homogeneous neuron populations in the 
cerebral cortex indicated that the excitatory neural network might be non-random in structure. 
However, to claim that the measured network is in fact non-randomly structured, it must be verified 
that the observed connectivity is unlikely to have occurred by chance in a random network. Thus, it is 
necessary to build mathematical models of random networks. 

Mathematically, neural networks (or connectomes) are most commonly represented by directed edge-
weighted graphs. A graph is defined by a set of vertices (representing the neurons) and a set of 
weighted directed edges (representing synaptic connections) between these vertices. The foundation of 
graph theory was laid in 1736 by Leonhard Euler while working on the problem of the “seven bridges 
of Königsberg”. Initially, the study of graphs was based on the tools of combinatorics. In contrast, the 
idea of random graphs (i.e., graphs as random discrete objects) was introduced and systematized only 
the late 1950ies (Gilbert 1959, Erdős and Rényi 1959). In this framework, a graph is a random 
instance (i.e., a randomly drawn element) from a probabilistic graph model (i.e., a distribution over 
graphs). 

For example, the Erdős-Rényi (ER) model (Erdős and Rényi 1959), G(n,M), corresponds to uniform 
random sampling from the set of all graphs that consist of exactly n vertices and M edges. The G(n,p) 
variant of the ER model (Gilbert 1959) corresponds graphs with n vertices that are constructed by 
randomly and independently connecting each vertex pair with probability p. Both of these models 
trivially extend to directed graphs. In the context of a connectome, the G(n,p) model corresponds to a 
network of n neurons, where each combination of pre- and postsynaptic neuron pair is connected 
independently with probability p. Graph models also allow inference from a graph instance about the 
model parameters. For example, a measured connectome could be used to infer the maximum 
likelihood estimate of the pairwise connection probability p between neurons.  

Dual-electrode recordings from thick tufted pyramidal neurons in L5 of rat somatosensory cortex 
indicated that only 10% of cell pairs were synaptic connected in at least one direction (Markram et al. 
1997). Under the G(n,p) ER model, the maximum likelihood probability for directed connections is p 
= 1-(1-10%)1/2 = ~5.1%. This model would predict that p2/[1-(1-p)2] = ~2.6% of connected neuron 
pairs should be connected reciprocally. However, the experimentally measured fraction of reciprocal 
connections more than ten times larger (Markram et al. 1997). Thus, this particular neural network is 
more structured than predicted by the ER model. 

This approach of testing higher-order connectivity predictions (the reciprocal connections) from 
lower-order statistics (the pairwise connectivity) against experimental data has been generalized and 
used to study networks of three or four neurons (Milo et al. 2002, Song et al. 2005). Among triplets of 
thick tufted pyramidal neurons in layer 5 of rat visual cortex, this analysis indicated an 
overrepresentation of reciprocal connections between all pairs of neurons (Song et al. 2005). Such 
overrepresented connection patterns have been termed “network motifs” (Milo et al. 2002). 
Furthermore, the probability of reciprocal connectivity between pairs of neurons was found to increase 
with connection strength. Based on these observations, the authors suggested that “the network may be 
viewed as a skeleton of stronger connections in a sea of weaker ones (Song et al. 2005)”. 
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This illustrates two key challenges of circuit mapping by multi-electrode recordings: First, the 
proposed “skeleton” consists of a small fraction of connections within a sparsely connected network. 
The probability of finding these skeletal connections by random sampling of neurons is small. In a 
dense, weighted connectome, however, they are trivial to identify. Second, it is unclear how the 
absolute frequency and relative overrepresentation of small networks patterns related to circuit 
function. Analyses of other networks, such as the web link or social networks, revealed non-random 
features relative to the ER model (e.g., the average path length between all pairs of nodes as measure 
of “small-world”-ness (Watts and Strogatz 1998)) that have been proposed as summary statistics of 
entire neural networks. While addressing the limitations of small network patterns, the relationship 
between these features and neural network functions remains unclear. 

Instead of inferring functional properties from the prevalence of small network motifs, it might be 
worth considering network models with specific functional properties and structural implications. For 
example, synfire chains have been proposed as network model for the sequential propagation of 
neuronal activity over periods that were thought to exceed the timescales of individual neurons (Amari 
1972, Abeles 1982, Diesmann et al. 1999). Temporally precise, sequential activation of neurons has 
been reported, for example, in the cerebral cortex of behaving monkeys (Abeles et al. 1993) and in 
slice preparations from mouse visual cortex (Mao et al. 2001) and has been inferred from repeated 
patterns of synchronized synaptic inputs in slices from mouse visual cortex and in vivo in the cat 
visual cortex (Ikegaya et al. 2004). Synfire chains have been proposed as mechanism to represent and 
learn the hierarchical composition of cognitive concepts (Bienenstock 1995). In its simplest form, 
synfire chains consist of ordered “pools” of neurons, where all neurons in one pool innervate all 
neurons in the next pool. Thus, the synfire chain model is a functional model with connectomically 
testable structural implications. 

However, the structural implications are less clear in other functional network models. SORN (self-
organizing recurrent neural networks; (Lazar et al. 2009)), for example, is a network model of stable 
cortical dynamics based on multiple synaptic plasticity mechanisms. Arguably the most extreme 
functional network models are backpropagation-trained recurrent neural networks (RNNs) whose 
connectivity is defined almost exclusively by the objective function. Thus, it is unclear how 
informative connectomic data truly is for the falsification of neural network models. 

In chapter 3, a method for connectome-based model selection is proposed. And a set of seven 
structural and functional models of local cortical circuits with biologically plausible and meaningful 
parameterizations is presented. The key question addressed in chapter 3 is the following: Given a 
measured connectome of a local cortical circuits and the set of seven circuit models, is it possible to 
infer which model explains the connectome best? In particular, is it possible to infer from a 
connectome the posterior probabilities of the various models? It is shown that six relatively simple 
connectome summary statistics are sufficient for accurate separation of these models. This holds even 
in the presence of considerable reconstruction errors, which makes model selection plausible even 
from fully automated but imperfect reconstructions of petabyte-scale EM volumes. 

Are such large-scale EM volumes even necessary for model selection? Or could a smaller EM volume 
of only part of the local circuit be sufficient? In small EM volumes, neurons and their axons and 
dendrites are heavily truncated (see “Subcellular connectomic analyses”). Even the synaptic 
connections between neurons with their soma in the image volume are mostly located outside the 
image volume. While sufficient for the subcellular connectomic analyses described above, small EM 
volumes are insufficient for model selection. As a result, the first neuron-to-neuron connectomes that 
were made possible by recent technological improvements in connectomics have opened the 
possibility of completely new and fundamentally different connectomic analyses. 
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Outline of thesis 
The remainder of this thesis is organized into four chapters and a discussion. Chapter 1 is a review of 
electron microscopy and data analysis methods used in connectomics. At the hypothetical example of 
the dense connectomic reconstruction of a whole human brain, the artificial intelligence-based 
reconstruction methods are identified as primary limiting factors. Chapter 2 presents the dense 
connectomic reconstruction of a SBEM volume from layer 4 of mouse primary somatosensory cortex, 
which was used, for example, to derive upper bounds on the circuit fraction that are consistent with 
saturated Hebbian plasticity. Chapter 3 proposes a method for Bayesian model selection from 
summary statistics of neuron-to-neuron connectomes. Simulations are used to validate this method and 
to illustrate that weighted neuron-to-neuron connectome might be sufficient to dinstinguish between 
network models that are defined only by their function. Chapter 4 presents a connectomic comparison 
of nine SBEM volumes from mouse, macaque, and human cerebral cortex, which indicates that the 
increase in interneurons from mouse to human is accompanied only by a moderate increase in 
inhibitory synaptic input onto pyramidal neurons, but by a substantial increase of interneuron-to-
interneuron connectivity. Finally, the discussion summarizes recent analyses of connectomic correlates 
of synaptic plasticity and proposes higher-order circuit predictions for future analyses.  
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Chapter 1. Big data in nanoscale connectomics, and the greed for 
training labels 

Alessandro Motta, Meike Sievers (née Schurr), Benedikt Staffler, Moritz Helmstaedter. 
Current Opinion in Neurobiology (2019). DOI: 10.1016/j.conb.2019.03.012 

Contributions: Review scientific data acquisition (Figure 1-1a) and analysis methods (Figure 1-1b). 
Estimation of image acquisition, automated image processing, and manual proofreading costs for 
connectomic reconstruction of whole human brain (Figure 1-2). 

 

The neurosciences have developed methods that outpace most other biomedical fields in terms of 
acquired bytes. We review how the information content and analysis challenge of such data 
indicates that electron microscopy (EM)-based connectomics is an especially hard problem. 
Here, as in many other current machine learning applications, the need for excessive amounts of 
labelled data while utilizing only a small fraction of available raw image data for algorithm 
training illustrates the still fundamental gap between artificial and biological intelligence. 
Substantial improvements of label and energy efficiency in machine learning may be required to 
address the formidable challenge of acquiring the nanoscale connectome of a human brain. 

In the biomedical sciences, the amounts of measured data become large when they are acquired over 
multiple dimensions: Human genomes, for example, are each small (about 20 GB) by today’s 
standards, but genomics entered the ‘big data’ field when entire genomes could be acquired over 
several time points and over many single cells in a human patient (genomics is expected to generate 
about 40 exabytes (EB, 1018 bytes) by 2025 (Stephens et al. 2015), Figure 1-1a). In microscopy, 2D-
to-4D data acquisition is routine and microscopy techniques are leading today in the amount of 
biomedical scientific data they produce. 

In the following, we will first review current data rates in neuroscientific imaging and compare them 
to other ‘big data’-generating biomedical methods; we will then discuss the effective compressibility 
of the data, asking whether in fact, big data in connectomics (Sporns et al. 2005) can be considered 
‘small data’ (Engert 2014) since it could in principle be turned into information-rich compressed 
representations. Finally, we discuss how deep learning-based analysis in connectomics improved in 
terms of accuracy (leading to claims of ‘superhuman performance’ (Lee et al. 2017, Januszewski et al. 
2018)), while still being many orders of magnitude away from the ability to analyze a human 
connectome. As in many other applications, machine learning in connectomics has not been able to 
overcome the label burden that is abundant in today’s artificial intelligence (AI). Understanding how 
the biological computers in our (and some other animals’) heads are able to extract information from 
massive amounts of unlabeled data, requiring only minimal labelled input at low computational cost, 
may be a key challenge of neuroscience, and could become a key contribution of neuroscience to AI 
research in the future (Helmstaedter 2015, Botvinick et al. 2017, Hassabis et al. 2017, Lake et al. 2017, 
Lake et al. 2017). 

Data rates and volumes 
Imaging the brain at low resolution to obtain whole-brain structural and functional information using 
(functional) magnetic resonance imaging ((f)MRI), and diffusion tensor imaging (DTI) are routine 
research and clinical techniques in humans. Data amounts for a single MRI scan are on the scale of 50 
MB (structural MRI at 0.7 mm isotropic voxel size on a 3 T scanner, ~1.8 MB/s) to 2.6 GB (for fMRI 
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at 1.6 mm isotropic voxel size on a 7 T scanner, 0.02–0.1 MB/s, see appendix A1), thus all the 
imaging datasets from 1113 participants acquired in the ‘Human Connectome Project’ (Van Essen et 
al. 2013) comprise a total of 81 TB (Figure 1-1a). 

At the other end of the resolution spectrum, imaging mammalian brain tissue at a scale sufficient to 
identify chemical synapses and to reconstruct even the thinnest neuronal processes (axons, dendrites 
and their spines) for mapping synaptic neuronal networks in the mammalian gray matter using 3D EM 
generates 0.3–2.1 PB per cubic millimeter of brain tissue (at voxel size of 11 × 11 × 30 nm3 (Schmidt 
et al. 2017) to 4 × 4 × 30 nm3 (Morgan et al. 2016), see also (Lichtman et al. 2014)). Thus, even a 
single human brain imaged in such detail would comprise 0.5–3.1 zettabytes (ZB, 1021 bytes) (Figure 
1-1a), about 10–100 times more than the total amount of genomic data expected world-wide by 2025 
(Stephens et al. 2015). 

But is it at all realistic to image such large volumes using today’s 3D-EM technology? The effective 
imaging rates of 3D single-beam scanning EM (SEM) setups has improved by about 200-fold over the 
last 15 years from ~0.03 to 0.5 million voxel per second (MVx/s) (Briggman et al. 2011, Denk and 
Horstmann 2004, Kasthuri et al. 2015) via ~1–2 MVx/s (Morgan et al. 2016, Wanner et al. 2016, 
Svara et al. 2018, Kornfeld et al. 2017) to ~6 MVx/s ((Schmidt et al. 2017), accounting for the voxel 

Figure 1-1 Data rates and information content in connectomics and other scientific methods. (a) Overview of raw data 
acquisition rates (black crosses) and total data amounts (blue) for connectomic and other techniques. Macroscale 
connectomics (macro): data from Human Connectome Project (Van Essen et al. 2013); Mesoscale connectomics (meso, 
(Bohland et al. 2009)): data from Allen Brain Atlas (Kuan et al. 2015, Oh et al. 2014, Harris et al. 2019), range indicates data 
rate for 1–6 microscopes; Microscale connectomics (micro): data from (Schmidt et al. 2017, Briggman et al. 2011, Bock et al. 
2011, Zheng et al. 2018, Eberle et al. 2015) and M.S., unpublished data; Light sheet microscopy (LSM) for cell tracking in 
animal development (Keller et al. 2010, Chhetri et al. 2015) and whole-brain activity measurements (Dunn et al. 2016), data 
from (Amat et al. 2015, Liu and Keller 2016); Multi-electrode array (MEA) recordings; data from (Shein-Idelson et al. 2017, 
Jun et al. 2017); Genomics: data from (Stephens et al. 2015) and specification of Illumina NovaSeq 6000 
(https://www.illumina.com/systems/sequencing-platforms/novaseq/specifications.html); CERN: data from 
http://cds.cern.ch/record/2299292 and http://cds.cern.ch/record/1997399, gray indicates immediate data rejection yielding a 
6-order of magnitude data rate reduction; Human eye: estimate based on 1.2 million ganglion cells per eye (Harman et al. 
2000, Curcio and Allen 1990), 1 B/s per ganglion cell axon (Koch et al. 2006), and 70 years median life time at 16 waking 
hours per day. See appendix A1 for details of the calculations. (b) Relation between eventual data compressibility and time to 
achieve the required analysis for various big-data producing methods. Note that 3D EM techniques for connectomics in large 
(mammalian) brains stand out because of the enormous analysis times. Inset illustrates why imaging of cells using LSM, 
while generating higher data rates, is immediately and substantially compressible, which connectomic data are not (sample 
images from (Liu and Keller 2016) as adapted from (Wu et al. 2013), with permission, and (Berning et al. 2015)). Note 
further that first whole-brain 3D EM connectomic datasets (Zheng et al. 2018, Ohyama et al. 2015, Hildebrand et al. 2017)
and analyses (Li et al. 2019) are available. Scale bars, 10 μm (LSM and SEM, left); 0.5 μm (SEM, right). 
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size, this yields a volume throughput of 23 Gnm3/s) or 12 MVx/s ((Morgan et al. 2016), 0.6 Gnm3/s). 
Similarly, the effective imaging rate of transmission electron microscopy (TEM) setups has 
accelerated from ~1–5 MVx/s (Bock et al. 2011, Lee et al. 2016) to 11 MVx/s ((Zheng et al. 2018), 
this corresponds to ~0.6–7 Gnm3/s, with automated grid exchange (Zheng et al. 2018) up to 21 
Gnm3/s). In both the serial block-face SEM imaging (SBEM) and serial-section transmission electron 
microscopy (ssTEM) approaches, improvements in effective imaging rate were achieved primarily by 
reducing the overhead times of moving the sample under the electron beam—by either continuous 
imaging along one dimension in SBEM (Schmidt et al. 2017) or by minimizing the stage movement 
and settling times in ssTEM (Zheng et al. 2018). Effective imaging rates in focused ion-beam million 
SBEM (FIB-SEM) (Knott et al. 2008) setups have improved from ~0.035 MVx/s (Korogod et al. 
2015) to ~0.6 MVx/s (scanning rate 1.25 MHz, (Xu et al. 2017, Takemura et al. 2017), i.e. 
~0.3Gnm3/s). The development of the multi-beam SEM (mSEM, Zeiss, (Eberle et al. 2015)) has 
drastically increased the imaging rate on a single EM setup, yielding today effective imaging rates of 
190 MHz (at 10 MHz imaging rate per electron beam, 106 Gnm3/s) or 230 MHz (at 20 MHz imaging 
rate per electron beam, 129 Gnm3/s), both on a 61-beam mSEM. Still, the time required to move the 
sample under the beam is limiting these setups from yielding the nominal imaging rates of 1.2–1.8 
GHz per microscope (with 61 or 91 beams). 

Thus, imaging even one single human brain at nanoscale connectomic resolution would currently 
require about 0.5–3.9 million electron beam years at an effective imaging speed of 20 MVx/s per beam 
(200–1500 electron beam years for a mouse brain; 30–260 electron beam years for the smallest 
mammalian brain, that of the Etruscan shrew (Mikula 2016); ranges given correspond to voxel sizes of 
11 × 11 × 30 nm3 to 4 × 4 × 30 nm3), thus about one million single-beam EM setups (or about 10,000 
mSEM setups) to obtain the image data for one human brain within a couple of years. This optimistic 
estimate assumes that imaging of a large brain can be parallelized by using approaches to separate 
tissue cutting from tissue imaging (most notably the hot knife approach, (Hayworth et al. 2015)), 
which currently also requires that such large brains can be stained and resin-embedded in one piece 
(see (Mikula 2016) for detailed discussion). While in SBEM and ssTEM or ssSEM (Hayworth et al. 
2006) approaches (see (Briggman and Bock 2012) for a review) tissue cutting is not a critical time-
consuming step (and neither is milling in FIB-SEM (Xu et al. 2017)), the combined error rates from 
cutting and imaging can become increasingly burdensome for long-term imaging when tissue removal 
and block-face imaging are tightly integrated. Soberingly, in all current 3D-EM approaches, obtaining 
long tissue series in the 3rd dimension at tolerable loss and error rate is still the key challenge, and 
current published datasets have not yet exceeded an extent of 280 μm in the smallest imaged 
dimension (Schmidt et al. 2017, Morgan et al. 2016, Zheng et al. 2018). 

Compressibility of raw data 
While thus enormous amounts of bytes can be generated by the most advanced imaging techniques in 
the neurosciences (see Figure 1-1a for several additional examples including light-sheet microscopy 
(LSM) and large-scale multi-electrode recording), their relevant scientific content can often be 
represented in a much more condensed form (Engert 2014). For the imaging of cell bodies and their 
developmental migration using LSM at nominally more than 2 GB/s, for example, the imaged volumes 
contain a large fraction of ‘background’ voxels which are not needed for further processing (Figure 1-
1b). Up to 60-fold initial compression of the data are, therefore, possible immediately (Amat et al. 
2015), with real-time cell segmentation and tracking algorithms (Stegmaier et al. 2016) reducing the 
scientifically relevant data further to a few kB/s. Importantly, this analysis result can be achieved 
within a few days of computer processing (Figure 1-1b). Similarly, for large-scale functional 
recordings of calcium transients in thousands of neuronal cell bodies (Ahrens et al. 2012, Ahrens et al. 
2013, Tang et al. 2018), the initially very large datasets can be highly compressed once the underlying 
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sequences of action potentials have been extracted for each neuron. In these data, the 3D-locality of 
the relevant information (cell bodies), the locally high volumetric and temporal correlation of the 
signal and the effectively low-dimensional underlying phenomenon (cell body locations over time; 
action potentials over time) enable the efficient conversion of initially large datasets to much more 
condensed representations (Figure 1-1b, note that additional information may be contained in the 
fluorescence transients in the surrounding neuropil). The disposal of a majority of acquired data is 
actually well-known from large-scale particle accelerators, where hardware-based and software-based 
filters reduce the captured sensory data by more than six orders of magnitude to about 4.5 GB/s 
(Figure 1-1b), yielding about 12 PB of storage per month of experiments at CERN 
(http://cds.cern.ch/record/2299292). 

A consideration of data compressibility for high-resolution connectomic imaging at EM level 
illustrates the fundamentally different nature of this data: Information is highly anisotropic and dense 
(Figure 1-1b). At any location along an axon, there is a 2D plane in which the axon is a very local 
object; but along a 3rd (convoluted) dimension, the axon is often as extended as the entire brain. As a 
result, in some part of the 3D image data centimeters away, the very same neuron may give rise again 
to a nanoscale local axonal cross section (Figure 1-1b). Additionally, the image information about one 
thin neuronal process is locally independent of that of the directly neighboring one at sometimes less 
than 100 nm distance, which can be another thin axon, or a very large dendrite, Figure 1-1b. 
Therefore, compression at the image level is far from obvious, and can hardly be lossless. While the 
compression factor in high resolution connectomics could be enormous (compression would go from 
zettabytes of image data to 10–100 terabytes for a binary connectome encoding which neuron connects 
to which other neuron in a human brain), the time to obtain such a compression would today be at least 
several decades (Figure 1-1b, see below). To complicate the situation, it is by no means clear yet 
which representation of connectomic data is sufficient for a given nervous system. As an example, not 
only the positioning of synapses along dendrites of neurons but also along their axons has been 
described as a relevant anatomic feature in birds (Kornfeld et al. 2017, Carr and Konishi 1990, Carr 
and Konishi 1988) and recently also in mammals (Schmidt et al. 2017). Having condensed a 
connectomic EM dataset to ‘just’ the underlying connectivity matrix would have lost this relevant 
structural feature of neuronal networks in these species (see also (Mitra 2014)). Obviously, much more 
information is contained in the 3D-EM data (detailed features of synapses; glial cells; interaction with 
blood vessels to name a few). 

Taken together, we argue that while in principle, also big data in connectomics could be viewed as 
highly compressible ((Engert 2014), afterall one major goal of connectomics is a binary connectivity 
matrix between ideally all neurons in an animal’s brain), it is practically no, and the key big data 
challenge in connectomics remains not that of analyzing connectomes, but of obtaining them 
efficiently.  

Image analysis 
Even assuming the imaging of a human connectome was feasible, how far are we away today from 
being able to analyze the resulting large amounts of 3D image data? Image analysis in connectomics 
has evolved from fully manual volume labeling of neurites at about 100–200 human work hours/mm 
path length ((Fiala 2005), see (Helmstaedter et al. 2008) for estimates) to neurite skeletonization at 
about 5–10 hours/mm (Wanner et al. 2016, Helmstaedter et al. 2011, Eichler et al. 2017, Berning et al. 
2015). Recent methodological claims indicate reduction to about 0.5–1 hour/mm or less (Januszewski 
et al. 2018, Boergens et al. 2017, Kornfeld and Denk 2018), although these methods have not yet been 
shown to enable actual dense connectomic reconstruction at these rates (see, however, (Motta et al. 
2019)). In most cases the reduction of human work load was enabled by parallel computer-based 
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image analysis (Lee et al. 2017, Januszewski et al. 2018, Takemura et al. 2017, Berning et al. 2015, 
Helmstaedter et al. 2013, Takemura et al. 2013, Meirovitch et al. 2016, Funke et al. 2019, Mishchenko 
et al. 2010, Kim et al. 2014, Bae et al. 2018, Plaza 2016, Kaynig et al. 2015, Beier et al. 2017, Becker 
et al. 2012). Thus, with reduced human work hour investment, resource consumption by automated 
methods has increased. 

If one uses today’s best estimates of data analysis rates, the analysis of a human connectome would 
require 1013 human work hours and 6 × 1014 compute core hours. Taking a hypothetical substantial 
investment of one billion EUR spent over five years, these numbers allow us to compare how much 
improvement is still required for EM imaging, EM data analysis (accuracy, so far leveraged by human 
involvement) and compute efficiency (Figure 1-2a) to make the acquisition of a nanoscale human 
connectome even plausible. The amount of human work hours spent would have to be reduced by at 
least five orders of magnitude. This could be achieved by reducing the number of locations at which 
human workers are requested to provide annotations; plausibly by improving accuracy of automated 
methods by a factor of 105 (notably this is already compared to the most optimistic current analysis 
claims, (Januszewski et al. 2018, Boergens et al. 2017, Kornfeld and Denk 2018), which so far yield 
remaining error rates of analysis that are about 1000-fold higher than needed for human neurons; also 
this would still imply to recruit 20 million work hours over 5 years, corresponding to 20,000 full-time 
employees. This indicates that rather, an improvement of 7–10 orders of magnitude may be required). 
While currently, the resource consumption from computing is about one order of magnitude less 
severe than that from human work hour investments (Figure 1-2a), four orders of magnitude of 
improvements of resource consumption efficiency for the computational methods are required, as well 
(Figure 1-2a, see also (Lichtman et al. 2014)). EM techniques, to the contrary, would have to operate 
at about 1500–5000 EUR per electron beam (operated at an optimistic 20 MVx/s effective scanning 
speed per beam), thus roughly 10–50-fold improvements are needed compared to today’s setups. 

How could the concomitant improvement of at least five orders of magnitude in automated analysis 
accuracy and four orders of magnitude in computational efficiency be plausibly obtained? Deep 
learning has made dramatic improvements over the last decade, leading experts to proclaim that almost 
any problem will soon be solved by artificial neural networks. The increase in accuracy, however, has 
come at the cost of increased computational resource consumption (compared e.g. LeNet (LeCun et al. 
1998), AlexNet (Krizhevsky et al. 2012), GoogLeNet (Szegedy et al. 2015)), even if methods have 
been proposed to make deep learning approaches more resource efficient (Zhang et al. 2016, Rastegari 
et al. 2016, He and Sun 2015). Potentially, combination of low-cost but inaccurate with expensive 
high-accuracy approaches could improve the situation (Lichtman et al. 2014, Meirovitch et al. 2016). 

For a different possible approach to this challenge, contrast the training approaches in current machine 
learning as used in connectomics (Figure 1-2b) with the label and energy efficiency of a human 
infant’s brain that is learning to call a tree a tree: 1–2.4 million retinal ganglion cells (i.e. about 1.1–
2.6 MB/s data rate, comparable to standard single-beam SEMs in connectomics, Figure 1-1a) yield 
about 70 TB of visual input by the age of 1.5 years, of which one can estimate for an urban-raised 
child about 4% to have been trees in various forms and shapes (see appendix A1 for details of these 
estimates). Together with an estimated few dozen explicit labels of ‘tree’, infant tree detection is 
usually successful thereafter. If one compares to the detection of synapses or neurites (Figure 1-2b) in 
connectomics, where 107–108 labels are usually used for current state-of-the-art performance, which 
are then presented 100–1000 times each, then it becomes clear that today’s AI in connectomics is still 
driven by labels. Furthermore, the core of the learning technique (stochastic gradient descent) has 
stayed essentially unchanged; Progress was made in terms of prediction accuracy, while training only 
changed insofar that multiple graphics processing units (GPUs) can now be used to process ever-
increasing training data volumes in parallel. And notably, no unsupervised learning approach has so 
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far gained any substantial traction: While different unsupervised algorithms have been developed for 
example, for layer-wise pre-training (Hinton et al. 2006), auto-encoders (Bengio 2009, Kingma and 
Welling 2013), adversarial training (Goodfellow et al. 2014); and semi-supervised methods have been 
explored (Kingma et al. 2014, Rasmus et al. 2015), none of these has yet resulted in an order-of-
magnitude improvement over the performance achieved by supervised learning for a large variety of 
tasks (see also (Goodfellow et al. 2016), p. 489). 

Facing the challenge to speed up connectomic data analysis by at least five orders of magnitude while 
at the same time reducing the computational cost by four orders of magnitude for the mapping of a 
human connectome, we think one has to ask whether the current supervised machine learning 
approaches will be able to provide the order-of-magnitude advance in both accuracy and efficiency 
every about five years that is needed to see this happen in the lifetime of today’s PhD students. Human 
brains operate at extremely low computational cost, and the accuracy of an attentive, focused human is 
sufficient to solve probably all segmentation problems in well-aligned 3D image data in connectomics. 
And they achieve this with minimal labels. This not to say that current progress in connectomic is 
strictly limited by available labels (compare for example SegEM (Berning et al. 2015) to flood filling 
networks (Januszewski et al. 2018)—about the same amount of labels, but six-fold improvement of 

Figure 1-2 Comparison of imaging and data analysis resources for obtaining a human nanoscale connectome; and 
comparison of the need for labels in artificial and human ‘intelligence’. (a) Estimates of required improvements of 3D-EM 
imaging and connectomic data analysis if the goals is to image a human brain microscale connectome investing 1 billion 
EUR over 5 years for each of the 3 categories (imaging, human annotation, compute resources). Note that while ‘only’ 5 
orders of magnitude improvements of automated analysis accuracy are required, these have to go along with increased 
computational efficiency of 4 orders of magnitude. Automated analysis improvements over the last decade have yielded 
about 2 orders of magnitude in accuracy (compare (Helmstaedter 2013)), but at substantial increase in computational cost; 
however, human annotation cost still exceeds computational cost by about an order of magnitude (cf. (Lichtman et al. 2014)
for a focus on the computational cost). Note further that when automated reconstruction accuracy approaches a level at 
which entire neurons are on average error-free (i.e. error rates below one per 1–10cm for human neurons), human annotation 
may become entirely dispensable. (b) Difference of required label rate and total raw data amount between artificial 
intelligence (AI) approaches used in connectomics today and estimates for human infant learning to identify trees from 
visual inputs. Note that while massive data repetition in AI methods shifts exposed data amounts, label fraction stays 
unchanged. Inset shows total amount of labels used in current connectomic analysis approaches for segmentation and 
synapse detection: SegEM (Berning et al. 2015); Flood-filling networks (FFN) (Januszewski et al. 2018); SyConn 
(Dorkenwald et al. 2017); SynEM (Staffler et al. 2017); Parag (Parag et al. 2018). 
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inter-error distances). But it is plausible to ask whether it is maybe inefficient (or wasteful) not to 
make use of the fact that raw data are available in vast amounts (the equivalent of the visual input of a 
two-year old can be generated within five days on a mSEM). We may find out that learning with 
extremely low label rates (that could be higher-order labels (Silver et al. 2017)) is required to 
accelerate progress in connectomic analysis. 

In any case, this comparison may point to the fact that with all current optimism about ‘artificial 
intelligence’, it is primarily the availability of massive label amounts (via user agreement, for example 
https://policies.google.com/privacy or via substantial resource investments into human work, 
connectomics) that rescues accuracy in current machine learning approaches to a certain degree. Far-
reaching progress, in artificial intelligence as in connectomics, may only be possible when we 
understand and emulate the way biological computers, such as mammalian brains, implement efficient 
data-driven, not label-driven learning. Connectomic insights may contribute for this to happen 
(Helmstaedter 2015, Lake et al. 2017, Lake et al. 2017, Schmidt et al. 2017, Motta et al. 2019, Bartol 
et al. 2015, de Vivo et al. 2017). 
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Contributions: Development of automated methods (Figure 2-2A) for neurite type classification 
(TypeEM; Figure 2-2C), and spine head detection and attachment (Figure 2-2D). Contributions to the 
semi-automated reconstruction of axons, in particular to the resolution of merge errors (Figure 2-2H). 
Development of statistical methods for connectome analysis, specifically for the definition of axon 
classes with subcellular target specificities (Figure 2-4), for the quantification of the contributions of 
neurite geometry and postsynaptic membrane distribution to axonal targeting (Figure 2-5), for the 
detection of thalamocortical axons and the analysis of subcellular distribution of their output synapses 
on postsynaptic neurons (Figure 2-6), and for estimation of the circuit fractions that are consistent with 
homosynaptic plasticity mechanisms (Figure 2-7). Writing of manuscript with MH and with 
contributions by all authors. 

 

Research article summary 

Introduction 
The brain of mammals consists of an enormously dense network of neuronal wires: the axons and 
dendrites of nerve cells. Their packing density is so high that light-based imaging methods have so far 
only been able to resolve a very small fraction of nerve cells and their interaction sites, the synapses, 
in mammalian cortex. Recent advances in three-dimensional (3D) electron microscopy allow 
researchers to image every nerve cell and all chemical synapses in a given piece of brain tissue, 
opening up the possibility of mapping neuronal networks densely, not just sparsely. Although there 
have been substantial advances in imaging speed, the analysis of such 3D image data is still the 
limiting step. Therefore, dense reconstructions of cortical tissue have thus far been limited to 
femtoliter-scale volumes, keeping the systematic analysis of axons, neuronal cell bodies and their 
dendrites of different types, and the dense connectome between them out of reach. 

Rationale 
Image analysis has made decisive progress using artificial intelligence-based methods, but the 
resulting reconstructions of dense nerve tissue are still too error-prone to be scientifically meaningful 
as is. To address this, human data analysis has been integrated into the generation of connectomes and 
it is the efficiency of this human-machine data analysis that now determines progress in connectomics. 
We therefore focused on efficiency gains by: (i) improving the automated segmentation quality, (ii) 
analyzing the automated segmentation for locations of likely errors and directing the human work to 
these locations only, and (iii) optimizing human data interaction by helping annotators to immediately 
understand the problem to be solved, allowing fast, in-browser parallel data flight, and by minimizing 
latency between annotator queries. With this, close to 100 student annotators solved hundreds of 
thousands of reconstruction problems within just 29 s each, including all preparation and transition 
time. 
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Results 
We reconstructed 2.7 m of neuronal wires densely in layer 4 of mouse somatosensory cortex within on 
~4000 invested human work hours, yielding a reconstruction ~300 times larger than previous dense 
cortical reconstructions at ~20-fold increased efficiency, a leap for the dense reconstruction of 
connectomes. The resulting connectome between 6979 presynaptic and 3719 postsynaptic neurites 
with at least 10 synapses each, comprising 153,171 synapses total, was then analyzed for the dense 
circuit structure in the cerebral cortex. We found that connectomic data alone allowed the definition of 
inhibitory axon types that showed established principles of synaptic specificity for subcellular 
postsynaptic compartments, but that at scales beyond ~5 μm, geometric predictability of the circuit 
structure was low and coarser models of random wiring needed to be rejected for dense cortical 
neuropil. A gradient of thalamocortical synapse density along the cortical axis yielded an enhanced 
variability of synaptic input composition at the level of single L4 cell dendrites. Finally, we quantified 
connectomic imprints consistent with Hebbian synaptic weight adaptation, obtaining upper bounds for 
the fraction of the circuit that could have undergone long-term potentiation. 

Conclusion 
By leveraging human-machine interaction for connectomic analysis of neuronal tissue, we acquired 
the largest connectome from the cerebral cortex to date. Using these data for connectomic cell-type 
definition and the mapping of upper bounds for the learned circuit fraction, we establish an approach 
for connectomic phenotyping of local dense neuronal circuitry in the mammalian cortex, opening the 
possibility for the connectomic screening of nervous tissue from various cortices, layers, species, 
developmental stages, sensory experience, and disease conditions.  

 

Dense reconstruction of ~500,000 cubic micrometers of cortical tissue yielding 2.7 m of neuronal cables (~3% shown, 
front) implementing a connectome of ~400,000 synapses between 34,221 axons and 11,400 postsynaptic processes 
(fraction shown, back). These data were used for connectomic cell-type definition, geometrical circuit analysis, and 
measurement of the possible plastic fraction (the “learnedness”) of the circuit. 
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Research article 
The dense circuit structure of mammalian cerebral cortex is still unknown. With developments 
in three-dimensional electron microscopy, the imaging of sizable volumes of neuropil has 
become possible, but dense reconstruction of connectomes is the limiting step. We reconstructed 
a volume of ~500,000 cubic micrometers from layer 4 of mouse barrel cortex, ~300 times larger 
than previous dense reconstructions from the mammalian cerebral cortex. The connectomic 
data allowed the extraction of inhibitory and excitatory neuron subtypes that were not 
predictable from geometric information. We quantified connectomic imprints consistent with 
Hebbian synaptic weight adaptation, with yielded upper bounds for the fraction of the circuit 
consistent with saturated long-term potentiation. These data establish an approach for the 
locally dense connectomic phenotyping of neuronal circuits in the mammalian cortex. 

The cerebral cortex of mammals houses an enormously complex intercellular interaction network 
implemented with neuronal processes that are long and thin, branching, and extremely densely packed. 
Early estimates indicated that 4 km of axons and 400 m of dendrites are compressed into a cubic 
millimeter of cortical tissue (Braitenberg and Schüz 1998). This high packing density of cellular 
processes has made the locally dense mapping of neuronal network in the cerebral cortex challenging. 

So far, reconstructions of cortical tissue have been either sparse (Lübke et al. 2003, da Costa and 
Martin 2009, Bock et al. 2011, Lee et al. 2016, Schmidt et al. 2017, Han et al. 2018) or restricted to 
small volumes of up to 1500 μm3 (Mishchenko et al. 2010, Kasthuri et al. 2015, Calì et al. 2018). 
Consequently, the detailed network architecture of the cerebral cortex is unknown. Particular open 
questions are to what degree local neuronal circuits are explainable by geometric rules alone 
(Braitenberg and Schüz 1998, Lübke et al. 2003, Peters 1979, Binzegger et al. 2004, Markram et al. 
2015) and on which spatial scales cortical connectivity is only explainable by innervation preferences 
beyond such geometric models (Lee et al. 2016, Mishchenko et al. 2010, Kasthuri et al. 2015, White et 
al. 1984, Shepherd et al. 2005). Similarly, although numerous cortical neuronal cell types have been 
described based on protein expression, morphology, and electrophysiological characteristics (Ascoli et 
al. 2008), and these have been shown to have particular target patterns (Kubota et al. 2016), the 
inverse question—whether, at the level of dense cortical circuit, axons represent a continuum of 
synaptic preference or a set of distinct innervation paradigms that would allow for a purely 
connectomic cell type definition [as has been successful in the retina (Helmstaedter et al. 2013, Kim et 
al. 2014)]—is still open. Next, at the level of synaptic input to the primary dendrites of cortical 
excitatory cells, it is not known whether the typically three to 10 primary dendrites of a cortical neuron 
that leave the cell body homogeneously sample the available excitatory and inhibitory synaptic inputs 
or if there is an enhanced heterogeneity of synaptic input position, making it possible to exploit the 
numerous mechanisms that have been discussed for the nonlinear integration of local synaptic inputs 
(Major et al. 2013, Jia et al. 2014, Lavzin et al. 2012, Branco et al. 2010). Finally, whereas the change 
of synaptic weights in response to electrical and sensory stimulation has been widely studied (Fifková 
and Van Harreveld 1977, Markram et al. 1997, Egger et al. 1999, Matsuzaki et al. 2004, Sáez and 
Friedlander 2009) and connectomic data consistent with LTP have been described (Bartol et al. 2015, 
Sorra and Harris 1993), the fraction of a given cortical circuit that is plausibly shaped by processes 
related to Hebbian learning under undisturbed conditions is still unknown. 

We used dense connectomic reconstruction to quantitatively address these questions about the 
formational principles of a dense cortical circuit. 
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Results 
We acquired a three-dimensional (3D) EM dataset from upper layer 4 of primary somatosensory 
cortex of a 28-day-old mouse (Figure 2-1, A to D, likely located within a barrel, see Materials and 
Methods in appendix A1) using serial block-face electron microscopy [SBEM (Denk and Horstmann 
2004); dataset size: 61.8 × 94.8 × 92.6 μm3; voxel size: 11.24 × 11.24 × 28 nm3]. For dense 
reconstruction (Figure 2-1, E to H), we 3D aligned the images and applied a sequences of automated 
analyses [SegEM (Berning et al. 2015), SynEM (Staffler et al. 2017), ConnectEM, and TypeEM; 
Figure 2-2, Materials and Methods in appendix A2 and Table A2-2], followed by focused manual 
annotation (FocusEM). We reconstructed 89 neurons that had their cell body in the dataset (Figure 2-
1, E and F). These neurons constituted only 2.6% of the total path length (69 mm; Figure 2-1G). To 
reconstruct axons, which constitute most of the wiring in the dense circuit (1.79 m, 66.6%, Figure 2-
1H), we applied a scalable distributed annotation strategy that identified locations of uncertainty in the 
automated reconstruction, which were then resolved by targeted manual annotation. To reduce the 
required manual annotation time, it was critical to obtain an automated reconstruction with low error 
rates, to use efficient algorithms for identifying locations for focused manual inspection (queries), and 
to minimize the time spent per user query. For this (Figure 2-2A), we developed artificial intelligence-
based algorithms that evaluated the EM image data and convolutional neural network (CNN)-filtered 

Figure 2-1 Dense connectomic reconstruction of cortical neuropil from layer 4 of mouse primary somatosensory cortex. (A
to D) Location [(A), red] of the 3D EM dataset (B). WM, white matter. High-resolution example images are shown in (C) 
and (D). Asterisks indicate examples of dendritic spines. Direct links to data browser webKnossos are as follows: 
https://wklink.org/9276 (B), https://wklink.org/7101 (C), and https://wklink.org/8906 (D). (E) Reconstruction of n = 89 
neurons with a cell body and dendrites in the dataset. (F) Three spiny neurons (SpNs) and two INs (see movie A2-1). (G) 
Quantification of circuit components in the dense reconstruction. Most of the circuit path length (total: 2.69 m) is contributed 
by nonproximal axons (1.79 m, 66.6%), spine necks (0.55 m, 20.5%), and dendritic shafts (0.28 m, 10.3%) not connected to 
any cell body in the volume. (H) Display of all 34,221 reconstructed axons contained in the dataset. Scale bars in (D) are as 
in (C); scale bar in (F) is 10 μm. 
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versions of the image data in the surrounding of interjunctions between segmented pieces of neurites 
(Figure 2-2B). Together with classifiers that computed the probability of volume segments belonging 

 

Figure 2-2 Methods for the efficient dense connectomic reconstruction. (A) Simplified diagram of reconstruction steps 
[figure A2-1, detailed in (B) to (H)]. wh, annotation work hours. (B) ConnectEM classifier for combining neurite pieces from 
the CNN-based volume segmentation (Berning et al. 2015): at junctions of volume segments (bottom right), raw data, CNN, 
and shape features were evaluated. (C). TypeEM classifier for assigning cellular identity to volume segments: the probability 
of axons, dendrites, spine heads, and glial processes was evaluated. Shown is an illustration of spine head (purple) and 
astrocyte (cyan) classification; one of the 985 features is illustrated (segment thickness). Numbers indicate the probability of 
the segment being a spine head. Precision and recall of spine head detection were 92.6 and 94.4%, respectively. (D) Process 
for automatically attaching spine heads to the dendritic shaft by stepwise agglomeration of volume segments along the 
highest-probability transition between neighboring segments [according to the ConnectEM score (B)]. An example of six 
neighboring spine heads that were all automatically attached is shown. In total, 58.9% of spine heads were automatically 
attached (A). (E) Automated detection of spine and shaft synapses [here, vesicle clouds (green) and mitochondria (blue) were 
detected and used as additional features for the SynEM (Staffler et al. 2017) classifier]. (F to H) Focused annotation strategy 
for directing human annotation queries (Q) to ending locations of the automatically reconstructed axon pieces [(F), blue], 
oriented along the axon’s main axis [traced in webKnossos using flight mode (G (Boergens et al. 2017)), yielding flight paths 
of 5.5 ± 8.8 μm length (21.3 ± 36.1 s per ending annotation, n = 242,271, movie A2-1)]. Neurite mergers (H) were detected 
as “chiasmatic” configurations, and queries (Q) directed from the exits of the chiasma toward its center were used to 
determine correct neurite continuities (figure A2-1). (I and J) Quantification of circuit size and invested work hours for 
dense circuit reconstructions in connectomics and resulting order-of-magnitude improvement provided by FocusEM 
compared with previous dense reconstructions (m). Fish o.b., zebrafish olfactory bulb (Wanner et al. 2016); M. retina, mouse 
retina IPL (Helmstaedter et al. 2013); Fly larva, mushroom body in larval stage of D. melanogaster (Eichler et al. 2017); M. 
cortex, mouse somatosensory cortex [(Kasthuri et al. 2015) and this study (magenta)]. Only completed dense reconstructions 
were included in the comparison. 
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to an axon, a dendrite, a spine head, or a glial process (using, among others, shape features; Figure 2-
2C), this allowed us to automatically connect parts of dendrites, attach spine heads to dendritic shafts 
(by a greedy stepwise agglomeration initiated at the spine head, Figure 2-2D; 58.9% of spine heads 
unaffected by the dataset boundary were automatically attached) and reconstruct parts of axons. 
Similarly, synapses were automatically detected by evaluating pre- and postsynaptic volumes at 
neurite interfaces [Figure 2-2E and Figures A2-2 to A2-5 (Staffler et al. 2017); for shaft synapses, 
additional CNN-based classifiers for vesicle clouds and mitochondria were used]. To manually correct 
remaining errors in axons (Figure 2-2, F to H), we detected ending locations of automatically 
reconstructed axon pieces (Figure 2-2F) and directed user queries to these locations. For this, we used 
an egocentric 3D image display mode [“flight mode,” Figure 2-2G (Boergens et al. 2017)] and 
oriented the user annotation along the axis of the neurite for which a local annotation (“query”) was 
requested (Movie A2-2). Together with data preloading, this yielded a low-latency, targeted neurite 
annotation in which individual user queries took 29.4 s to resolve (traveled path length per query: 5.49 
μm). These queries could be easily distributed among 87 annotators. Similarly, we detected locations 
of likely mergers between axons (Figure 2-2H, “chiasmata”) and directed user queries to reconnect 
these chiasma exits along actual axons. Using this scalable annotation architecture, we obtained a 
dense reconstruction of 2.69 m of neuronal processes (Figure 2-1, G and H) with a total investment of 
3981 human work hours, ~10 times faster than a recent dense reconstruction in the fly larval brain 
(Eichler et al. 2017) (Figure 2-2, I and J), ~20 times faster than the previous dense reconstruction in 
the mammalian retina (Helmstaedter et al. 2013), and ~25 times faster than the previous dense 
reconstruction in mammalian cortex (Kasthuri et al. 2015) (Figure 2-2, I and J). To quantify remaining 
reconstruction error rates in this dense neuropil reconstruction, we measured the remaining errors in a 
set of 10 randomly chosen axons and found 12.8 errors per millimeter of path length (of these, there 
were 8.7 continuity errors per millimeter; see Materials and Methods in appendix A2). This is 
indistinguishable from the error rates previously found in fast human annotations (Helmstaedter et al. 
2013, Boergens et al. 2017, Helmstaedter et al. 2011). 

We obtained a connectome (Figure 2-3) between 34,221 presynaptic axonal processes and 11,400 
postsynaptic processes [6979 × 3719 connectivity matrix (Figure 2-3E) when restricted to those pre- 
and postsynaptic neurites that established at least 10 synapses]. Among the postsynaptic processes, we 
classified n = 169 apical dendrites (ADs) that traversed the dataset along the cortical axis without 
connection to one of the neuronal cell bodies in the dataset (Figure 2-2A), 246 smooth dendrites (SDs, 
Figure 2-2B), 80 somata, 116 axon initial segments (AIS; Figure 2-2C), and 89 proximal dendrite (PD) 
trees connected to a soma in the dataset (Movie A2-1; note that some of these neurons also had ADs 
that were classified as PDs and not included in the AD definition above; see Materials and Methods, 
and Tables A2-1 and A2-2).  
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Figure 2-3 Postsynaptic target classes and dense cortical connectome. (A to D) Display of all ADs [(A), magnified one AD 
bundle (left) and top view in tangential plane illustrating AD bundles], SDs [(B), magnification inset illustrating low rate of 
spines], AISs (C), and their respective path length and spine density distributions (D). Note that spine density is 
underestimated by ~20% (table A2-1). (E) Display of connectome between all axons (n = 6979) and postsynaptic targets (n = 
3719) in the volume with at least 10 synapses each, establishing a total of 153,171 synapses (of 388,554 synapses detected in
the volume). For the definition of postsynaptic target classes, see (A) to (D); for the definition of presynaptic axon classes, 
see figure 2-4 and figure A2-6. AISs with fewer than 10 input synapses are also shown. SOM, neuronal somata. Note that 
some of these PD dendrites are L4 ADs not included in the AD definition above. Asterisks indicate remaining unassigned 
axons. 
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Connectomic definition of axon types 
We investigated whether, based solely on connectomic information (Figure 2-3), we could extract the 
rules of subcellular innervation preference described for inhibitory axons in the mammalian cortex 
(Kubota et al. 2016) and if such synaptic target preference could also be found for excitatory axons. 
We first measured the preference of each axon for innervating dendritic spine heads versus dendritic 
shafts and other targets (Figure 2-4, A and B) because, in the mammalian cortex, most axons of 
inhibitory interneurons (INs) preferentially innervate the dendrites’ shafts or neuronal somata (Kubota 
et al. 2016) and most excitatory glutamatergic axons preferentially innervate the spine heads of 
dendrites (Braitenberg and Schüz 1998). The fraction of primary spine synapses per axon (out of all 
synapses of that axon) accordingly allowed the identification of spine-preferring, likely excitatory 
axons with at least 50% primary spine innervations (n = 5894 axons) and shaft-preferring, likely 
inhibitory axons with <20% primary spine innervations (n = 893 axons, or 13.2% of all axons; for 
exceptions to this rule and control measurements, see appendix A2 and Tables A2-1 and A2-2). 

We then determined for each of the subcellular synaptic target classes defined above (Figures 2-3 and 
2-4C) the per-synapse innervation probability that would best explain whether and inhibitory axon 
establishes at least one synapse onto each of these targets. These inhibitory “single-hit” binomial 
innervation probabilities were 4.2% (somata), 17.8% (PD), 4.9% (SD), 3.3% (AD), and 0.5% (AIS) 
(Figure 2-4D). We then computed the expected distribution of synapses per axon made onto each 
target class assuming the double-hit, triple-hit, etc., innervation probabilities are the same as the 
probability to establish at least one synapse onto that target. When comparing these target distributions 
with the measured distributions of synapses per axon onto each target class (Figure 2-4E), we found 
that inhibitory axons established enhanced preference for somata (p = 2.4 × 10-34, n = 893, one-sided 
Kolmogorov-Smirnov test), PDs (p = 6.0 × 10-77), ADs (p = 2.5 × 10-4), and to a lesser degree for SDs 
(p = 1.7 × 10-3, Table A2-1), but no enhanced preference for AISs in L4 (p = 0.648). AISs were 
synaptically innervated by 0.172 input synapses per micrometer of AIS length, but these innervations 
were not made by axons with an enhanced preference for AISs, unlike in supragranular and 
infragranular layers (Taniguchi et al. 2013). 

When performing the same analysis for excitatory axons (Figure 2-4F), we found clear target 
preference for ADs (p = 2.5 × 10-34, Figure 2-4F), SDs (p = 7.6 × 10-25), and PDs (p = 1.3 × 10-169). By 
contrast, thalamocortical (TC) axons [detected using the criteria reported in (Bopp et al. 2017); see 
figure A2-6, and Materials and Methods] indicated a target preference for PDs (p = 2.5 × 10-31), but 
not for ADs (p = 0.019) or SDs (p = 0.723). To determine the fraction of inhibitory and excitatory 
axons that had an unexpected high synaptic preference for one (or multiple) of the subcellular target 
classes, we applied the false detection rate criterion used for the determination of significantly 
expressed genes [q value (Storey and Tibshirani 2003); see materials and methods] and obtained lower 
bounds on the fractions of axons in the tissue that preferentially innervate the various subcellular 
target classes (Figure 2-4G; at 58.0% of inhibitory and 24.4% of excitatory axons). Inhibitory axons 
(Figure 2-4H), but not excitatory axons (Figure 2-4I), showed higher-order innervation preferences, 
indicating that at the level of the dense cortical circuit, synaptic target preferences established by 
axons were not a continuum but allowed cell-type classification without the need for measurements of 
neuronal morphology, electrical activity, protein expression, or transcription levels. 
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Figure 2-4 Connectomic definition of axon classes. (A) Example axons with high (top) and low (bottom) fraction of output 
synapses made onto dendritic spines. (B) Distribution of spine-targeting fraction over all n = 6,979 axons; dashed lines 
indicate thresholds applied to distinguish non-spine preferring, likely inhibitory axons (<20% spine innervation, n = 893, 
12.8% of all axons) from spine-preferring, mostly excitatory axons (>50% spine innervation, n = 5,894, 84.5%). Diagram 
shows the definition of primary spine innervations. (C to I) Connectomic definition of axon classes by preferential synaptic 
innervation of subcellular targets. (C) Two sample axons innervating three somata [left, n = 6 synapses onto somata (S) of 14 
total, arrows] and an AD (right, n = 2 synapses onto AD of 13 total), respectively. All other cell bodies and ADs are shown 
in gray. (D) Fraction of synapses onto somata, PDs, ADs, SDs, and AISs for all axons. Binomial probabilities are shown over 
axons to establish at least one synapse onto the respective target (arrows: magenta, excitatory; black, inhibitory). Black lines 
indicate the average over axons. (E) Comparison of predicted synapse fraction onto target classes per inhibitory axon on the 
basis of the binomial probability to innervate the target at least once [gray shading; see arrows in (D)] and measured 
distribution of synapse fractions onto targets (black lines). (F) Same as (E) but for excitatory axons. (G) Fraction of target-
preferring excitatory (Exc.) and inhibitory (Inh.) axons identified using the false detection rate criterion [q = 5 to 30% 
(Storey and Tibshirani 2003)]. Colored bars indicate the distribution for q = 5% (left) and q = 30% (right). Mixed colors 
indicate axons specific for both somata and PDs. [(H) and (I)] Second-order innervation preference by target-specific axons; 
numbers indicate fractional innervation by remaining synapses per axon; colors indicate underfrequent (black) or 
overfrequent (blue) innervation. Diagonal entries are the fraction of synapses onto the same target (black boxes). 
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Geometric sources of synaptic innervations 
Could these local connectivity rules have been derived solely from the geometry of axons and 
dendrites? We first quantified the overall relation between the spatial distribution of axons and 
dendrites and the establishment of synapses between them (Figure 2-5). One paradigm, originally 
proposed by Peters (Peters 1979), states that TC axons entering a certain cortical tissue volume would 
sample the available cortical dendrites for synaptic innervation according to their relative prevalence 
in the tissue (Braitenberg and Schüz 1998). This model (Figure 2-5A) predicted the TC innervation of 
most cortical dendrites rather well, with the exception of smooth dendrites [an exception reported by 
White et al. (White et al. 1984)] and the enhanced TC innervation of PDs of layer 4 cells (Jia et al. 
2014). When applied to cortical excitatory and inhibitory axons (Figure 2-5A), we found that this 
model predicted excitatory innervation of most spiny dendrites rather well, but again failed to predict 
innervation of SDs and the proximal bias of inhibitory synapses. Because this model [which has been 
most widely used for circuit inference (Lübke et al. 2003, Binzegger et al. 2004)] implicitly accounts 
for the density of synapses along the presynaptic axons, it was capable of capturing the increased 
synapse density of TC axons (Figure 2-5A). A simpler variant of Peters model (Braitenberg and Schüz 
1998, Shepherd et al. 2005) (Figure 2-5B), which uses the density of pre- and postsynaptic path length 
as basis for the synaptic innervation prediction, failed at predicting the TC innervation but captured the 
corticocortical innervation of spiny dendrites (Figure 2-5B). We then analyzed whether a Peters model 
normalized for postsynaptic synapse density (Figure 2-5C) would better capture synaptic innervation 
and found that, in fact, the dendritic model was a far better predictor of synaptic innervation (compare 
Figure 2-5, C and B). This indicated that SDs and Ads sampled synaptic input according to the relative 
path length of the presynaptic axon (Figure 2-5C). We then investigated whether a Peters model 
account for pre- and postsynaptic synapse densities would improve the innervation prediction (Figure 
2-5D). In this model, both the output and the input of cortical excitatory neurites were properly 
predicted, but the suppressed innervation of SDs and Ads by TC axons and the proximal bias of 
inhibitory axons was not. Notably, none of the Peters models could account for this proximal bias of 
inhibitory synapses [Figure 2-5D; for other failures of Peters predictions, see, e.g., (da Costa and 
Martin 2009, Schmidt et al. 2017, Mishchenko et al. 2010, Kasthuri et al. 2015)]. 

More recently, the Peters has been investigated for the close proximity between axons and dendrites 
on the scale of a few micrometers (Mishchenko et al. 2010, Kasthuri et al. 2015) and concluded poor 
(Mishchenko et al. 2010) or absent (Kasthuri et al. 2015) geometric predictability of synaptic 
innervation. We used our larger dense reconstruction to investigate the geometric prediction over a 
substantially broader spatial scale from 1 to ~30 μm and accounted for inhibitory axons, excitatory 
axons, and postsynaptic target types (Figure 2-5, E to H). We measured whether the postsynaptic 
membrane surface available within a certain radius rpred around a given axon (Figure 2-5E) would be a 
predictor of synaptic innervation for that given axon. We measured the available membrane surface 
belonging to the five subcellular target classes around all 6979 axons (Figure 2-5F) and used a linear 
multinomial regression model to predict synaptic innervation from these data (Figure 2-5G). Then, we 
computed the coefficient of determination (R2) reporting the fraction of axonal synaptic innervation 
variance that could be explained purely based on the geometrical information (Figure 2-5H; for details, 
see materials and methods). In fact, for small spatial scales of 1 to 5 μm, the membrane surface 
available around an axon was a rather good predictor of synaptic innervation from excitatory axons 
(range, 16 to 90%, Figure 2-5H; less so for inhibitory axons: range, 23 to 79%). 
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Figure 2-5 Contribution of neurite geometry and membrane availability to cortical wiring. (A to D) Quantitative test of 
various formulations of Peters’ rule: comparison of actual synaptic innervation to the prediction of synaptic innervation on 
the basis of the availability of postsynaptic path length in the dataset (A), the product of pre- and postsynaptic path length 
(B), the sampling of presynaptic partners by their relative prevalence (C), and the product of pre- and postsynaptic synapse 
density (D). Log likelihood ratios were as follows: -1.1×103 (A), -11×103 (C), and -12×103 (D), all compared with the simple 
model in (B); p < 10-14 (corrected for degrees of freedom). (E to H) Prediction of single-axon synaptic target preference by 
distance-dependent postsynaptic surface sampling. (E) Diagram of the surface area of the various subcellular postsynaptic 
target classes (colors) within a distance rpred from a given axon (black) and example surfaces around two axons within a 
prediction radius rpred = 5 μm. (F) Surface fraction of target classes around all n = 6979 axons in dependence of rpred around 
axons. Colors indicate the fraction of synapses of a given axon actually innervating the respective target. (G) Relationship 
between the surface fraction around all axons and synaptic innervation by these axons for each target (rpred = 10 μm). Black 
lines indicate linear regression for geometrical innervation prediction. (H) R2 reporting the fraction of synaptic innervation 
variance [over all axons; see (G)] explained by a multivariate linear innervation model using the available postsynaptic 
surface area around axons [shaded areas: red, excitatory axons (Exc.); blue, inhibitory axons (Inh.)]; lower end of shades 
indicates prediction; upper ends indicate correction by the variance contributed by the multinomial sampling of targets along
axons; solid lines represent direct prediction of innervation from surface fraction. Dashed lines indicate modeled prediction 
for a purely geometric forward model at rpred = 10 μm. Insets (right) show sampling-corrected predictive power of excitatory 
(top) and inhibitory (bottom) axons for the innervation of target classes. 
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Would this imply that axonal and dendritic proximity at the single-axon level can be used to infer 
synaptic connectivity in the cortex (Markram et al. 2015)? We found that for the spatial alignment 
scales that can be achieved in light-microscopy-based neuron reconstructions from multiple animals 
(10 to 20 μm), predictability dropped substantially (Figure 2-5H), making circuit inference by an 
emulation of growth processes based on light-microscopically aligned data (Markram et al. 2015, 
Reimann et al. 2015) implausible. 

Subcellular synapse placement 
We used our dense reconstruction to study the spatial distribution of synapses along somata and 
dendrites in the cortical neuropil. The density of TC synapses had a substantial dependence on cortex 
depth (Figure 2-6, A to D): the absolute density of TC synapses in the volume increased by ~93% over 
50 μm cortex depth (Figure 2-6, A and B); the TC excitatory synapse fraction TC/(TC+CC) (where 
CC is corticocortical) increased by 82.6%, corresponding to an absolute increase in the TC synapse 
fraction of 5.8% per 50 μm cortex depth (Figure 2-6D). This gradient was consistent with light-
microscopic analyses of TC synapses indicating a decrease of TC synapse density from lower to upper 
L4 (Oberlaender et al. 2012). Neither the inhibitory nor the corticocortical excitatory synapse densities 
showed a comparable spatial profile (Figure 2-6C). 

How is the synaptic TC gradient mapped onto the dendrites of L4 neurons along the cortex axis 
(Figure 2-6, E to G)? One possibility is that the TC synapse gradient is used to enhance the variability 
of synaptic input composition between different primary dendrites of the L4 neurons such that a 
neuron’s dendrites pointing upward toward the pia would sample relatively less TC input than 
dendrites pointing toward the white matter. Alternatively, mechanisms to establish synaptic target 
preference (such as those reported in Figure 2-4) could be used to counterbalance this synaptic 
gradient and equilibrate the synaptic input fractions on the differently oriented dendrites. Our analysis 
showed that, in fact, even at the level of single primary dendrites, TC input fractions were 1.28-fold 
higher for dendrites pointing upward toward the cortical surface versus downward toward the white 
matter (Figure 2-6, F and G; TC input fractions of each dendrite were corrected for the entire neuron’s 
TC input fraction; for this analysis, see materials and methods). We then investigated whether this 
differential composition of the excitatory inputs is accompanied by different compositions of the 
inhibitory input synapses (Figure 2-6, H to L). We found that the fraction of TC input to a neuron’s 
dendrites was anti-correlated to the fraction of inhibitory synapses that originated from AD-preferring 
inhibitory axons (Figures 2-6I and 2-4), both at the level of the input to L4 neurons and at the level of 
single primary dendrites of L4 neurons (Figure 2-6, I and J). The effect was absent for all other 
synapse classes, most notably the soma-preferring inhibitory axons (Figure 2-6K; see discussion). 
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Connectomic mapping of the plasticity-consistent circuit fraction 
The concept of Hebbian plasticity, thought to be at the core of experience-dependent changes of 
synaptic weights in the brain, makes predictions about the temporal evolution of synaptic weights in 
multiple synaptic contacts between the same pre- and postsynaptic neurons (AADD joint synapses; 
Figure 2-7, A and B): Because Hebbian synaptic plasticity is dependent on the electrical activity of the 
pre- and postsynaptic neurons, which in a first approximation can be assumed to be similar at joint 
synapses, long-term potentiation (LTP) predicts joint synapses to become stronger and relatively more 
similar in weight (especially if synaptic weight saturates) and long-term depression (LTD) predicts 
joint synapses to become weaker and relatively more dissimilar in weight (but more similar if synaptic 

 

Figure 2-6 Gradient of TC synapse density in L4 and ensuing variability of synaptic input composition in L4 neurons. (A to 
D) Distribution of TC synapses within the L4 dataset (A): gradient along the cortical axis (B), which is absent for inhibitory
(yellow) or CC (blue) synapses (C). (D) Resulting gradient of TC synapse fraction [increase by 83% from 7.0 to 12.8% 
(+5.8%) within 50 μm along the cortical axis; line fit, p < 1.1 × 10-12, n = 134,537 synapses]. (E to G) Analysis of the 
variability of TC input onto the primary dendrites of neurons possibly resulting from the TC synapse gradient (D): example 
reconstructions (E) aligned to the somata; (F) fraction of excitatory input synapses originating from TC axons evaluated for 
each primary dendrite, plotted according to the direction of the dendrite relative to cortical axis (-1, aligned toward pia; +1, 
aligned toward WM). TC input fraction [TC/(TC+CC)] of each dendrite compared with the TC input fraction of its entire 
parent neuron (ratio shown). (G) Summary analysis of relation between dendrite direction and relative TC input fraction 
showing that the TC input fraction is determined by the dendrites’ orientation relative to the cortex (1.28-fold higher relative 
TC fraction for downward- than upward-pointing dendrites, n = 183, p = 0.026, two-sided t test for dendrites with a 
normalized absolute projection >0.5; bars correspond to ranges -1 to -0.5; -0.5 to 0.5; and 0.5 to 1). (H to K) Enhanced TC 
synaptic input (red spheres) is correlated to reduced inhibitory input from AD-preferring inhibitory axons (purple spheres 
and arrows in H) at the level of single dendrites (r = -0.24, p = 0.0095, n = 183, Pearson’s correlation after Bonferroni’s 
correction) and for neurons [(J), r = -0.27, p = 0.01, n = 84], but not soma-preferring inhibitory axons [green in (H) and (K), 
r = 0.08, p = 0.49, n = 84]. 
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weights saturate; Figure 2-7A). Models of LTP and LTD thus make particular predictions about the 
temporal evolution of joint synaptic weights, and the mapping of synaptic weights and synaptic weight 
similarity in the connectome allows the quantification of upper bounds on the fraction of the circuit 
that can have undergone such particular patterns of weight change before the connectomic experiment 
(we denote those synapse pairs for which such patterns of weight change occurred to a sufficient 
degree as “having undergone LTP/LTD”; see discussion). 

We set out to leverage our large connectomic dataset (n = 5290 excitatory joint synaptic pairs onto 
spines; Figure 2-7C) to map the relation between synaptic size and synaptic size similarity in joint 
synapse pairs [Figure 2-7E; for visualization, the figure reports relative synaptic size dissimilarity on 
the x-axis; for the utilization of the axon-spine interface area (Figure 2-7D) as an indicator of synaptic 
weight (Cheetham et al. 2014, de Vivo et al. 2017)]. These data would allow us to determine upper 
bounds on the plasticity-consistent fraction of the circuit beyond the previous finding that in joint 
synapse pairs, synaptic size is more similar than for randomly shuffled synapse pairs (Kasthuri et al. 
2015, Bartol et al. 2015, Sorra and Harris 1993, Bloss et al. 2018). 

Synaptic size similarity in joint synapse pairs showed a broad distribution (Figure 2-7E). When 
comparing this distribution with the synaptic size and synaptic size similarity distribution obtained 
from a random assignment of the same synapses onto “random pairs” (Figure 2-7F and Figure A2-7, C 
and D), we observed that the population of oversimilar synapse pairs (Figure 2-7F) was split into a 
region of oversimilar and large synapses (mean synaptic size 0.23 to 1.19 μm2; 16 to 20% of all joint 
synapse pairs are found in this region; the above-random synapse pairs constitute 3.6 to 3.9% of all 
joint synapse pairs; see figure A2-7, C and D, and the Materials and Methods for details of the region 
definition and statistics), and oversimilar and small synapses (mean synaptic size 0.06 to 0.2 μm2; 15 
to 19% of all joint synapse pairs were found in this region; 3.0 to 3.4% of all joint synapse pairs were 
above random in this region). With this information, we obtained upper bounds on the fraction of the 
circuit that can have undergone LTP and LTD with weight saturation (compare Figure 2-7, F and A). 

To what degree was the observed synaptic weight similarity a result of subtypes of neurons 
establishing differently sized synapses? Although the quantification of the upper bounds of the 
plasticity-consistent circuit fraction would remain unaffected, we could use this more detailed analysis 
to understand whether the plasticity-consistent circuit fractions were specific to types of neuronal 
connections. 

First, we considered the possibility that certain presynaptic cell types made consistently larger or 
consistently smaller synapses (Figure 2-7G). In this case, the distribution of synaptic weight similarity 
for same-axon different-dendrite (AADs) synapse pairs would also show a bias toward more similarly 
size synapses. However, we found no such evidence (Figure 2-7H), excluding cell-type-specific 
synapse size of either presynaptic (axonal) or postsynaptic (dendritic) origin as the cause of the 
observed oversimilar synapse pairs. 
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Figure 2-7 Connectomic mapping of the plasticity-consistent circuit fraction. (A) Hebbian LTP makes predictions about the 
temporal evolution of synaptic size and size similarity in AADD synapse pairs (green; insets show example model 
trajectories of synapse pairs exposed to LTP with and without weight saturation), yielding a region in the size-similarity 
plane (right) where synaptic pairs that have undergone LTP are predicted to be found (colors in right panel as in temporal 
plots on the left). For Hebbian LTD, pairs of synapses behave accordingly only if synaptic size saturates at low values (red). 
Arrows indicate trajectories of synapse pairs with randomly drawn initial size that undergone LTP with (dark green) or 
without (light green) weight saturation; LTD with (red) and without (pink and yellow indicate linear and exponential decay, 
respectively) weight saturation. (B) Example AADD synapse pair (arrows) onto dendritic spines between the same axon 
(blue) and same dendrite (red). Direct links to datasets are as follows: https://wklink.org/3356 (synapse 1) and 
https://wklink.org/6145 (synapse 2). (C) Frequency of joint synapse pairs in the dataset (n = 5290 spine synapse pairs, 
shaded, analyzed here). (D) ASI as a representative measure of synapse weight (Cheetham et al. 2014, de Vivo et al. 2017), 
dataset link https://wklink.org/5780 (E) Distribution of mean synaptic size and synaptic size similarity for all pairs of AADD 
synapses from excitatory axons; each dot corresponds to one synapse pair. Isolines indicate statistical regions defined in (F). 
(F) Map of the relation between synaptic size and synaptic size similarity in AADD pairs, reported as the difference of (E) to 
random synapse pairs (figure A2-7, C and D). Isolines indicate significance levels (p = 0.05 and 0.005 for outer and inner 
isolines, respectively) outlining overfrequency of synapse pairs that are similar in size and large (upper area) and similar in 
size and small (lower area). (G and H) Analysis of AADd and AaDD synapse pairs that would indicate a contribution of cell-
type-dependent connection size differences. No oversimilarity can be found in these cases (H). (I) Analysis as in (E) and (F) 
but for TC connections. Note upper bound of 16% of connections consistent with stabilized LTP. (J) Summary of fraction of 
synapse pairs that resided in the regions identified in (F) and (I) as upper bounds (for the interaction between the two upper 
bounds, see Materials and Methods in appendix A2). Numbers indicate the ranges for different significant thresholds [see (F) 
and (I) and figure A2-7, C and D]. (K) Analysis as in (G) and (H) but for CC-to-L4 neuron connections only, refuting 
subtypes of CC connections as the source of the observed oversimilarity (see figure A2-7, A and B). Image width is 2 μm in 
(B) and (D). 
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Next, we separated those connections established by TC axons from those made by the remaining 
excitatory (i.e., CC) axons (Figure 2-7I and figure A2-7, A and B). We found an excess of oversimilar 
synapse pairs in the TC connections as well, with 7 to 16% of pairs found in a region of overly similar 
and large synapses (i.e., an upper bound of 16% on LTP). The region of overly similar and small 
synapse pairs, however, only comprised 2 to 7% of joint synapse pairs. This remaining number of 
overly similar small synapse pairs could in fact be induced by the overly similar large synapse pairs 
(see Materials and Methods in appendix A2). At 28 days of age, ~3 weeks after the proposed critical 
period during which LTP can be induced in TC connections (Crair and Malenka 1995, Li et al. 2013), 
a fraction of up to 16% of joint synapse pairs was still consistent with previous episodes of LTP that 
led to stabilized potentiated synapse pairs at dendritic spines (Grutzendler et al. 2002, Trachtenberg et 
al. 2002), but 84% were not. 

Repeating these analyses for other combinations of pre- and postsynaptic neurite types (Figure 2-7J), 
we found upper bounds for LTP and LTD of ~10 to 20%. For each of these subtype-specific 
connections, we could then again analyze whether any purely presynaptic or purely postsynaptic 
subtype within the already type-selected connections (corresponding to squares in the table of Figure 
2-7J) could be the cause of the observed synapse similarity. For example, the connections from 
corticocortical axons onto spiny L4 neurons (Feldmeyer et al. 1999) showed no evidence for 
presynaptic axonal subtypes yielding oversimilar synapses (Figure 2-7K; for additional controls of 
these findings, see appendix A2; figure A2-7, A and B; and table A2-1). 

Together, these results provide a first quantitative upper bound on the fraction of the circuit consistent 
with previous episodes of saturated Hebbian synaptic plasticity leading to strengthening or weakening 
of synapses (a “connectomic fingerprint” of the maximum possible plasticity fraction of the circuit) 
and excluded obvious cell-type-based connection strength differences as the origin of these 
observations. Because these results were obtained from brains of untrained animals and were not the 
result of electrical or other simulation (“plasticity induction”), these data may represent an unbiased 
screening of upper bounds of plasticity traces in local cortical circuits, for which the dense 
connectomic mapping was essential. 

Discussion 
Using FocusEM, we obtained the first dense circuit reconstruction from the mammalian cerebral 
cortex at a scale that allowed the analysis of axonal patterns of subcellular innervation, ~300 times 
larger than previous dense reconstructions from cortex (Kasthuri et al. 2015). Inhibitory axon types 
preferentially innervating certain postsynaptic subcellular compartments could be defined solely on the 
basis of connectomic information (Figures 2-3 and 2-4). In addition to inhibitory axons, a fraction of 
excitatory axons also exhibited such subcellular innervation preferences (Figure 2-4). The geometrical 
arrangement of axons and dendrites explained only a moderate fraction of synaptic innervation, 
revoking coarse random models of cortical wiring (Figure 2-5). A substantial TC synapse gradient in 
L4 gave rise to an enhanced heterogeneity of synaptic input composition at the level of single cortical 
dendrites (Figure 2-6), which was accompanied by a reduced innervation from AD-preferring 
inhibitory inputs. The consistency of synapse size between pairs of axons and dendrites signified 
fractions of the circuit consistent with saturated synaptic plasticity, placing an upper bound on the 
“learned” fraction of the circuit (Figure 2-7). FocusEM allowed the dense mapping of circuits in the 
cerebral cortex at a throughput that enables connectomic screening. 

Synaptic input composition along L4 dendrites 
Our finding of a covariation of enhanced TC input to L4 excitatory cells with reduced direct inhibitory 
input from AD-preferring INs (Figure 2-6, H to K) could be interpreted in the context of a 
disinhibitory circuit described previously (Pfeffer et al. 2013, Yu et al. 2019). Taking into account the 
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preferential targeting of ADs and of soma-preferring parvalbumin (PV)-positive INs by somatostatin 
(SST)-positive INs, this could imply that SST-IN-based disinhibition can enhance TC input by 
silencing perisomatic PV inputs recruited by feedforward inhibition (Porter et al. 2001) and 
concomitantly reducing the direct inhibitory component from SST INs. In any case, this finding of 
per-dendrite input variation points to a circuit configuration in which TC input variability is enhanced 
between neurons of the same excitatory type in cortical layer 4, and furthermore provides evidence for 
a per-dendrite synaptic input composition of enhanced heterogeneity. 

Connectomic traces of plasticity 
We interpreted the joint synapse data (Figure 2-7) in terms of upper bounds of synapse pairs that could 
have undergone certain models of plasticity. Although this analysis detects those synapse pairs that 
were exposed to saturating plasticity (i.e., the possible plasticity event led to a final weight state of 
both synapses), an alternative interpretation is a dynamic circuit in which at any given point in time, 
only a fraction of synapses has expressed saturated plasticity, whereas other (or all) synapses are in the 
process of undergoing plastic changes. We expect that more elaborate plasticity models of entire 
circuits will also make testable predictions that are accessible by connectomic snapshot experiments as 
shown here. 

Outlook 
The presented methods and results open the path to the connectomic screening of nervous tissue from 
various cortices, layers, species, developmental stages, sensory experiences, and disease conditions. 
The fact that even a small piece of mammalian cortical neuropil contains a high density of relevant 
information so rich as to allow the extraction of possible connectomic signatures of the “learnedness” 
of the circuit makes this approach a promising endeavor for the study of the structural setup of 
mammalian nervous systems. 

Materials and Methods 

Animal experiments 
A wild-type (C57BL/6) male mouse was transcardially perfused at postnatal day 28 under isoflurane 
anesthesia using a solution of 2.5% paraformaldehyde and 1.25% glutaraldehyde (pH 7.4) following 
the protocol in (Briggman et al. 2011). All procedures followed the animal experiment regulations of 
the Max Planck Society and were approved by the local animal welfare authorities 
(Regierungspräsidien Oberbayern and Darmstadt). 

Tissue sampling and staining 
The brain was removed from the skull after 48 hours of fixation and sliced coronally using a 
vibratome. Two samples were extracted using a 1-mm biopsy punch (Integra Miltex, Plainsboro, NJ) 
from a 1-mm-thick slice 5 mm from the front of the brain targeted to layer 4 in the somatosensory 
cortex of the right hemisphere. The corresponding tissue from the left hemisphere was further sliced 
into 70-μm-thick slices followed by cytochrome oxidase staining, indicating the location of the 
coronal slice to be in barrel cortex. 

Next, the extracted tissue was stained as described previously (Briggman et al. 2011). Briefly, the 
tissue was immersed in a reduced osmium tetroxide solution (2% OsO4, 0.15 M CB, 2.5 M KFeCN), 
followed by a 1% thiocarbohydrazide step and a 2% OsO4 step for amplification. After an overnight 
wash, the sample was further incubated with 1.5% uranyl acetate solution and a 0.02 M lead(II) nitrate 
solution. The sample was dehydrated with propylene oxide and EtOH embedded in Epon Hard (Serva 
Electrophoresis GmbH, Germany), and hardened for 48 hours at 60°C. 
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3D electron microscopy experiment 
The embedded sample was placed on an aluminum stub and trimmed such that the tissue was directly 
exposed on all four side of the sample. The sides of the sample were covered with gold in a sputter 
coater (Leica Microsystems, Wetzlar, Germany). Then, the sample was placed into an SBEM setup 
[(Denk and Horstmann 2004), Magellan scanning electron microscope, FEI Company, Hillsboro, OR, 
equipped with a custom-built microtome courtesy of W. Denk]. The sample was oriented so that the 
radial cortex axis was in the cutting plane. The transition between L4 and L5A was identified in 
overview electron microscopy (EM) images by the sudden drop in soma density between the two 
layers (Figure 2-1C). A region of size 96 × 64 μm2 within L4 was selected for imaging using a 3 × 3 
image mosaic, a pixel size of 11.24 × 11.24 nm2, an image acquisition rate of 10 MHz, a nominal 
beam current of 3.2 nA (thus a nominal electron dose of 15.8 e-/nm2), an acceleration voltage of 2.5 
kV, and a nominal cutting thickness of 28 nm. The effective data rate, including overhead time spent 
during motor movements for cutting and tiling, was 0.9 MB/s. A total of 3420 image planes were 
acquired, yielding 194 GB of data. 

Image alignment 
After 3D EM dataset acquisition, all images were inspected manually and marked for imaging artifacts 
caused by debris present on the sample surface during imaging. Images with debris artifacts were 
replaced by the images at the same mosaic position from the previous or subsequent plane. First, rigid 
translation-only alignment was performed based on the procedures in (Briggman et al. 2011). The 
following modifications were applied. When shift vectors were obtained that yielded offsets of >100 
pixels, these errors were iteratively corrected by manually reducing the weight of the corresponding 
entry in the least-squares relaxation by a factor of up to 1000 until the highest remaining residual error 
was <10 pixels. Shift calculations of subsequent images in cutting direction was found to be the most 
reliable measurement and was therefore weighted 3-fold in the weighted least-squares relaxation. The 
resulting shift vectors were applied (shift by integer voxel numbers) and the 3D image data were 
written in KNOSSOS format (Boergens et al. 2017, Helmstaedter et al. 2011). For further 
improvements, subimage alignment was applied (see Materials and Methods in appendix A2). 

Methods description for software code 
All routines described in the following are available as software at 
https://gitlab.mpcdf.mpg.de/connectomics/L4dense, which is the relevant reference for the exact 
sequence of processing steps applied. The following descriptions and the more detailed ones in the 
Materials and Methods in appendix A2 are aimed at pointing to the key algorithmic steps rather than 
enumerating all detailed computations. 

Workflow for dense circuit reconstruction 
The workflow for volume reconstruction of the acquired 3D EM volume (Figure 2-2 and figure A2-1) 
was as follows. We first detected blood vessels and cell bodies using automated heuristics, and then 
processed the remaining image volume using machine-learning-based image segmentation [CNN and 
watershed as described in SegEM (Berning et al. 2015)]. The result of this processing was 15 million 
volume segments correspond to pieces of axons, dendrites, and somata (volume: 0.0295 ± 0.3846 μm3, 
mean ± SD). We then constructed the neighborhood graph between all these volume segments and 
computed the properties of interfaces between directly adjacent volume segments. On the basis of 
these features, we trained a connectivity classifier (ConnectEM; Figure 2-2, A and B) to determine 
whether two segments should be connected (along an axon or a dendrite or glial cell) or if they should 
be disconnected. Using the SynEM classifier (Staffler et al. 2017), we determined whether an interface 
between two disconnected processes corresponds to a chemical synapse and, if so, which was the 
presynaptic and which was the postsynaptic neurite segment (see below for more details). We 
furthermore trained a set of classifiers (TypeEM; Figure 2-2C) to compute for each volume segment 
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the probability of being part of an axon, a dendrite, a spine head, or a glia cell (precision and recall 
were 91.8 and 92.9% for axons, 95.3 and 90.7% for dendrites, 97.2 and 85.9% for astrocytes, and 92.6 
and 94.4% for spine heads, respectively; see table A2-2). 

Cell body-based neuron reconstruction 
We next reconstructed those neurons that had their cell bodies in the tissue volume (Figure 2-1, E and 
F, cell gallery in Movie A2-1; n = 125 cell bodies; of these, 97 were neuronal and of these 97, 89 were 
reconstructed with dendrites in the dataset). For this, we used a set of simple growth rules for 
automatically connecting neurite pieces on the basis of the segment-to-segment neighborhood graph 
and the connectivity and neurite type classifiers (Figure A2-1, “automated agglomeration”; see 
Materials and Methods in appendix A2). As a result, we obtained fully automated reconstructions of 
the neuron’s soma and dendritic processes. With a minimum additional manual correction investment 
of 9.7 hours for 89 cells (54.5 mm dendritic and 2.1 mm axonal path length), the dendritic shafts of 
these neurons could be reconstructed without merge errors, but there were 37 remaining split errors, at 
87.3% dendritic length recall (table A2-2). This reconstruction efficiency compares favorably to recent 
reports of automated segmentation of neurons in 3D EM data from the bird brain obtained at ~2-fold 
higher imaging resolution (Januszewski et al. 2018), which reports soma-based neuron reconstruction 
at an error rate of beyond 100 errors per 66 mm dendritic shafts at lower (68%) dendritic length recall 
with similar resource investment (see Materials and Methods in appendix A2). 

In addition to the dendritic shafts, the dendritic spines constitute a major fraction of the dendritic path 
length in cortical neuropil (Figure 2-1G). Using out spine head classifier (part of the TypeEM 
classifiers; Figure 2-2C), we found 415,797 spine heads in the tissue volume, which is a density of 
0.784 per μm3 (0.98 per μm3 neuropil, when excluding somata and blood vessels). To connect these to 
the corresponding dendritic shafts, we trained a spine neck continuity algorithm that was able to 
automatically attach 58.9% of these spines (evaluated in the center of the dataset at least 10 μm from 
the dataset border), yielding a dendritic spine density of 0.672 per μm dendritic shaft length 
[comparable to spine densities in the bird brain (Kornfeld et al. 2017)]. However, in the mammalian 
cerebral cortex, the density of spines along dendrites is even higher (at least 1 per μm dendritic shaft 
length). The remaining spine heads were then attached to their dendritic shafts by seeding manual 
reconstructions at the spine heads and asking annotators to continue along the spine necks to the 
dendritic shafts. This annotations was performed in the “orthogonal mode” configuration of 
webKnossos (Boergens et al. 2017), in which the annotator viewed three orthogonal image planes to 
decide where to continue the respective spine neck [as in KNOSSOS (Helmstaedter et al. 2011)]. The 
annotation of all remaining spine necks consumed an additional 900 hours of human work for the 
attachment of 98,221 spines, resulting in a final overall spine density of 0.959 per μm dendritic shaft 
length. 

Dense tissue reconstruction 
The reconstruction of neurons starting from their cell bodies, however, was not the main challenge. 
Rather, the remaining processes, axons and dendrites not connected to a cell body within the dataset 
and densely packed in the tissue constitute ~97% of the total neuronal path length in this volume of 
cortex (Figure 2-1G). To reconstruct this vast majority of neurites (Figure 2-1H), we first used out 
connectivity and neurite type classifiers (ConnectEM and TypeEM, respectively; Figure 2-2) to 
combine neurite pieces into larger dendritic and axonal agglomerates (“automated agglomeration”, 
figure A2-1, and Materials and Methods in appendix A2). Then, we took those agglomerates that had a 
length of at least 5 μm (n = 74,074 axon agglomerates), detected their endings that were not at the 
dataset border, and directed focused human annotators to these endings (“queries”, Figure 2-2, F and 
G). 
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For human annotation, we used an egocentric directed 3D image data view (“flight mode” in 
webKnossos), which we had previously found to provide maximized human reconstruction speed 
along axons and dendrites in the cortex (Boergens et al. 2017). Here, however, instead of asking 
human annotators to reconstruct entire dendrites or axons, we only queried their judgement at the 
endings of automatically reconstructed neurite parts. To make these queries efficient, we made three 
additions to webKnossos: (i) we oriented the user along the estimated direction of the neurite at its 
ending, reducing the time the user needs to orient within the 3D brain tissue; (ii) we dynamically 
stopped the user’s flight along the axon or dendrite whenever another of the already reconstructed 
neurite agglomerates had been reached; and (iii) we preloaded the next query while the user was 
annotating (Figure 2-2, F and G). Movie A2-2 illustrates this annotation process for cases of splits and 
mergers, respectively. Note that the user was able to switch quickly to the next query and, based on its 
3D orientation, spent little time orienting in the tissue at the new location. With this, the average user 
interaction time as 21.3 ± 36.1 s per query, corresponding to an average of 5.5 ± 8.8 μm traveled per 
query. In total, 242,271 axon-ending queries consumed 1978 paid-out work hours (i.e., including all 
overheads, 29.4 s per query). 

However, we had to account for a second kind of reconstruction error, so-called mergers, which can 
originate from the original segmentation, the agglomeration procedure, or erroneous flight paths from 
human queries (Figure 2-2H). To detect such mergers, we started with the notion that most of these 
merger locations will yield a peculiar geometrical arrangement of a 4-fold neurite intersection once all 
neurite breaks have been corrected (Figure 2-2H, “chiasma”). Because such chiasmatic configurations 
occur rarely in branching neurites, we directed human focused annotation to these locations. First, we 
automatically detected these chiasmatic locations using a simple heuristic to detect locations at which 
axon-centered spheres intersected more than three times with the axon [Figure 2-2H, n = 55,161 
chiasmata; for approaches to detect such locations by machine learning, see (Rolnick et al. 2017, Zung 
et al. 2017)]. Then, we positioned the user queries at a certain distance from the chiasma locations 
pointing inward (Figure 2-2H) and used a set of case distinctions to query a given chiasma until its 
configuration had been resolved (see Materials and Methods in appendix A2 for details). Chiasma 
annotation consumed an additional 1132 work hours [note that the detection of endings and chiasmata 
was iterated eight times for axons (see Materials and Methods in appendix A2) and that, in a final step, 
we also detected and queried 3-fold neurite configurations to remove remaining mergers]. 

Synapse detection, types of postsynaptic targets, and connectome reconstruction 
Given the reconstructed pre- and postsynaptic neurites in the tissue volume, we then went on to extract 
their connectome. For this, we used SynEM (Staffler et al. 2017) to detect synapses between the 
axonal presynaptic processes and the postsynaptic neurites (Figure 2-2E). 

We trained a dedicated interface classifier for nonspine synapses using training data containing only 
shaft and soma synapses (Figures A2-2 to A2-5; see Materials and Methods in appendix A2). This 
classifier also used four additional texture filters compared with SynEM in (Staffler et al. 2017), which 
originated from the voxelwise predictions of a multiclass CNN trained on synaptic junctions, vesicle 
clouds, mitochondria, and a background class (Figure 2-2E). 

Because we were interested in analyzing the subcellular specificity of neuronal innervation, we had to 
also classify which of the postsynaptic membranes belonged to cell bodies; to classify spiny dendrites 
as belonging to excitatory cells and smooth dendrites as belonging to INs; and to detect AISs and 
those dendrites that were likely ADs of neurons located in deeper cortical layers. We developed 
semiautomated heuristics to detect these subcellular compartments (Figure 2-3, A to D; see Materials 
and Methods in appendix A2 for details). 
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Definition of excitatory and inhibitory axons 
We used the fraction of primary spine synapses per axon (out of all synapses of that axon, only axons 
with at least 5 μm path length and at least 10 synapses were analyzed), which had a peak at ~80% 
(Figure 2-4, A and B), to identify spine-preferring, likely excitatory axons with at least 50% primary 
spine innervations. Similarly, we identified shaft-preferring, likely inhibitory axons with <20% 
primary spine innervations. Together, this yielded 6449 axons with clear shaft or spine preferences. 
For the remaining n = 528 axons with primary spine innervations >20% and <50%, we first wanted to 
exclude remaining mergers between excitatory and inhibitory axons (that would yield intermediate 
spine innervations rates) and split these axons at possible merger locations (at least 3-fold 
intersections). Of these, 338 now had at least 10 synapses and spine innervation rates <20% or >50%. 
The remaining n = 192 axons (2.75% of all axons with at least 10 synapses) were not included in the 
following analyses. This together yielded n = 5894 excitatory and n = 893 inhibitory axons in our data. 
For additional controls, see Materials and Methods in appendix A2. 

TC axons were defined following parameters described previously (Bopp et al. 2017) (see Materials 
and Methods in appendix A2). 

Analysis of subcellular synaptic target preferences 
First, we assumed that all synapses of a given axon class have the same probability to innervate a 
particular postsynaptic target class (as above). We then inferred this single-hit innervation rate for all 
combinations of presynaptic axon classes and postsynaptic target classes by determining the 
probability that best explains whether an axon innervated the target class under a binomial model. The 
optimized binomial model was then used together with the measured number of synapses of each axon 
to calculate the expected distribution of target innervation rates. A one-sided Kolmogorov-Smirnov 
test was used to search for the existence of a subpopulation with an increased target innervation rate. 
To identify those axons that innervated a given target class beyond chance (Figure 2-4G), we 

computed the probability 𝑝 , ,
( )  of finding at least the measured fraction of synapses onto target t 

for each axon i from axon class k. The p values were also calculated for the expected distribution of 

target innervation rates and combined with 𝑝 , ,
( )  to estimate the p-value threshold �̂�( ) at which the 

false discovery rate q (Storey and Tibshirani 2003) crosses 20%. Eighty percent of the axons with 

𝑝 , ,
( )

< �̂�
( ) innervate target t with a rate above the single-hit innervation probability and are thus 

considered to be t preferring. 

For the analysis of second-order innervation preference (Figure 2-4, H and I), we reported the fraction 
of synapses onto target τ by t-preferring axons of class k after removal of synapses onto t. This 
innervation rate was compared against the fraction of synapses onto target τ by all axons of class k. 

Geometrical predictability analysis 
Peters’ rule (Braitenberg and Schüz 1998) stipulates that synapses between classes of axons and 
dendrites are established in proportion to the prevalence of these classes. One variant of Peters’ rule 
considered (Figure 2-5B) makes the prediction that the fraction of synapses from axon class A onto 
target class T is the product of pA and qT, where pA is the proportion of axonal path length made up by 
class A, and qT is the proportion of dendritic path length (excluding spines) made up by class T. The 
measured synapse fractions were compared against the predictions by calculating the ratio of observed 
to predicted synapse fractions. 

Other formations evaluate these predictions independently for each axon class (Figure 2-5A) or each 
dendrite class (Figure 2-5C). 
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Finally, to assess the effect of incorporating explicit knowledge about the synapse densities of 
different axon and dendrite classes, a fourth variant of Peters’ rule (Figure 2-5D was considered in 
which the predicted synapse fraction from axon class A onto target class T is the product of p’A and 
q’T, the overall fractions of synapses originating from A and innervating T, respectively. 

How much additional information about the neuropil composition around an axon helps to predict its 
postsynaptic targets was assessed as follows. For each axon, we determined the total surface area of 
the target classes that were contained within the cylinder of radius rpred around the axon (Figure 2-5E) 
and compared it with the actually innervated target fraction of each axon (Figure 2-5, E and F). We 
then analyzed the correlation between the availability of the target surfaces and the established 
synapses on these target classes (Figure 2-5G). 

We then computed R2 using the following model. For all axons of a given type, we used the fraction of 
target innervations and fractional surface availabilities in a surround of radius rpred to find the optimal 
multivariate linear regression parameters. To estimate best-case geometric predictability, we then 
calculated R2 as 1 minus the ratio between the squared residuals of the regression and the synaptic 
variance on the same axons used for parameter optimization. Here, we corrected for the variance 
introduced by the finite number of synapses per axon: we used the axons’ fractional surface 
availabilities within rpred and absolute synapse numbers to calculate the expected binomial variance 
and subtracted it from the square residuals. 

This analysis made several assumptions that were in favor of a geometrical explanation of synaptic 
innervation [there, the conclusion about a minimal predictability (Figure 2-5H) are still upper-bound 
estimates]. It was assumed that the number of synapses for a given axon was already known; in most 
settings, only average synapse rates are known for a given circuit. It also assumed that a precise 
knowledge of the axonal trajectory and the surrounding target surface fractions were available; again, 
this is usually only available as an average on the scale of rpred of several tens of micrometers. 

To relax the assumption of complete knowledge about target availabilities, we repeated the above R2 
analysis for a model in which the predicted fractional innervation of a target is the fractional surface 
availability of that target. 

The computational routine used can be found at https://gitlab.mpcdf.mpg.de/connectomics/L4dense in 
+connectEM/+Connectome/plotGeometricPredictability.m. 

Synapse-size consistency analysis 
To determine the consistency of primary spine synapses between a given axon-dendrite pair, we 
calculated the axon-spine interface area (ASI) (Cheetham et al. 2014, de Vivo et al. 2017) of a synapse 
as the total contact area between the corresponding axon and spine head agglomerates. For axon-
dendrite pairs connected by exactly two primary spine synapses, we then calculated the coefficient of 
variation (CV) of the ASI areas by CV = 21/2(ASI1 - ASI2)/(ASI1 + ASI2)., where ASI1 and ASI2 are 
the larger and smaller of the two ASI areas, respectively. To avoid false same-axon same-dendrite 
(AADD) pairs caused by remaining merge errors in the axon reconstruction, this analysis was 
performed only after splitting axons at their branch points. The measured distribution of CV values 
was compared against the CV values obtained by randomly drawing pairs from all AADD synapses 
and against the CV values of observed AADd synapse pairs and pairs from different axons onto the 
same dendrite (AaDD) and from different axons onto different dendrites (AaDd; Figure 2-7H). To test 
whether AADD primary spine synapse pairs are more similar in size than pairs in the control 
conditions, a one-sided Kolmogorov-Smirnov test was used. We calculated the decimal logarithm of 
the average ASI area (in square micrometers) and the CV of the ASI areas of each synapse pair to map 
the size-similarity (Figure 7, F and I). The kernel density estimate of the observed distribution was 
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compared against the distribution expected from random pairs (5000 Monte Carlo samples; figure A2-
7C) to identify statistically significantly overrepresented regions. Contour lines show the intersection 
of the significance regions for p-value thresholds of 0.5% and 5% (Figure 2-7, E, F, I, and figure A2-7, 
C and D), with the convex hull around the set of all data points. The fraction of data points contained 
within a contour was used as the upper bound on the fraction of connections consistent with saturated 
Hebbian plasticity (Figure 2-7J). 

Statistical methods 
The following statistical tests were performed (in order of presentation in the figures): 

The existence of axon subpopulations with unexpectedly high synapse rate onto a given target class 
was tested using the one-sided Kolmogorov-Smirnov test (Figure 2-4, E and F). Axons belonging to a 
given target-preference class were identified on the bases of the false detection rate criterion [q = 20% 
(Storey and Tibshirani 2003)] (Figure 2-4G). 

The degree to which synaptic variance is explainable by geometry-based models was evaluated using 
R2 (Figure 2-5H). Binomial variance was corrected for by subtracting the surface fraction-based 
expected binomial variance from the squared residuals. 

F tests were used to evaluate synaptic gradients as function of cortical depth (Figure. 2-6, B and D) or 
dendritic orientation (Figure 2-6, F and G). For correlation of the TC input fraction with other synaptic 
input fractions along dendrites, the inhibitory input fraction and seven target-preferential inhibitory 
and excitatory synapse types were tested. AD-preferring inhibitory synapses were the only ones with 
significant and substantial correlation (Pearson’s correlation after Bonferroni’s correction for n = 8 
multiple tests). The correlation was also significant at the soma level (Pearson’s correlation). Both 
correlations were also significant using Spearman’s rank correlation. 

The four variants of Peters’ rule (Figure 2-5, A to D) were compared using a likelihood-ratio test 
based on the following multinomial model. It was assumed that the pre- and postsynaptic classes of 
each synapse in the connectome were sampled either after the path-length fractions of these classes (pA 
and qT) or after the product of the path length and a class-specific likelihood-maximizing relative 
synapse density. Wilks’ theorem was used to compute the corresponding p values. 

To test whether the axon-spine interface areas of a given spine-synapse pair configuration were more 
similar than randomly sampled pairs, a one-sided Kolmogorov-Smirnov test was used (Figure 2-7, H 
and K). 
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Chapter 3. Cellular connectomes as arbiters of local circuit models 
in the cerebral cortex 
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Contributions: Development of simulation methods to assess the effects of partial imaging and dense 
reconstruction of a circuit subvolume (figures 3-5e,f) and of incomplete hypothesis spaces on 
Bayesian model selection (figure 3-6a). Development of method consisting of the iterative training and 
sparsification of artificial recurrent neural networks for the synthesis of connectomes with biologically 
plausible and almost exclusively task-defined connectivity (figure 3-7). Analysis of connectomic 
separability of task-defined binary and weighted connectomes (figures 3-7). Writing of manuscript 
with EK and MH and input from all authors. 

 

With the availability of cellular-resolution connectivity maps, connectomes, from the 
mammalian nervous system, it is in question how informative such massive connectomic data 
can be for the distinction of local circuit models in the mammalian cerebral cortex. Here, we 
investigated whether cellular-resolution connectomic data can in principle allow model 
discrimination for local circuit modules in layer 4 of mouse primary somatosensory cortex. We 
used approximate Bayesian model selection based on a set of simple connectome statistics to 
compute the posterior probability over proposed models given a to-be-measured connectome. 
We find that the distinction of the investigated local cortical models is faithfully possibly based 
on purely structural connectomic data with an accuracy of more than 90%, and that such 
distinction is stable against substantial errors in the connectome measurement. Furthermore, 
mapping a fraction of only 10% of the local connectome is sufficient for connectome-based 
model distinction under realistic experimental constraints. Together, these results show for a 
concrete local circuit example that connectomic data allows model selection in the cerebral 
cortex and define the experimental strategy for obtaining such connectomic data. 

In molecular biology, the use of structural (x-ray crystallographic or single-particle electron 
microscopic) data for the distinction between kinetic models of protein function constitutes the gold 
standard (e.g., (Doyle et al. 1998, Nogales 2016)). In Neuroscience, however, the question whether 
structural data of neuronal circuits is informative for computational interpretations is still heavily 
disputed (Bargmann and Marder 2013, Morgan and Lichtman 2013, Denk et al. 2012, Jonas and 
Kording 2017), with the extreme positions that cellular connectomic measurements are likely 
uninterpretable (Jonas and Kording 2017) or indispensable (Denk et al. 2012). In fact, structural circuit 
data has been decisive in resolving competing models for the computation of directional selectivity in 
the mouse retina (Briggman et al. 2011).  

For the mammalian cerebral cortex, the situation can be considered more complicated: it can be argued 
that it is not even known which computation a given cortical area or local circuit module carries out. In 
this situation, hypotheses about the potentially relevant computations and about their concrete 
implementations are to be explored simultaneously. To complicate the investigation further, the 
relation between a given computation and its possible implementations is not unique. Take, for 
example pattern distinction (of tactile or visual inputs) as a possible computation in layer 4 of sensory 
cortex. This computation can be carried out by multi-layer perceptrons (Rosenblatt 1962), but also by 
random pools of connected neurons in an “echo state network” (Jaeger and Haas 2004) (Figure 3-1a, 
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Figure A3-1a-g) and similarly by networks configured as “synfire chains” (Abeles 1982) (Figure 3-
1a). If one considers different computational tasks, however, such as the maintenance of sensory 
representations over time scales of seconds (short-term memory), or the stimulus tuning of sensory 
representations, then the relation between the computation and its implementation becomes more 
distinct (Figure 3-1a). Specifically, a network implementation of antiphase inhibition for stimulus 
tuning (Troyer et al. 1998) is not capable of performing the short-term memory task (Figure A3-1k,l), 
and a network proposed for a short-term memory task (FEVER (Druckmann and Chklovskii 2012)), 
fails to perform stimulus tuning (Figure 3-1a, Figure A3-1-3). Together, this illustrates that while it is 
impossible to uniquely equate computations with their possible circuit-level implementations, the 
ability to discriminate between proposed models would allow to narrow down the hypothesis space 
both about computations and their circuit-level implementations in the cortex.  

With this background, the question whether purely structural connectomic data is sufficiently 
informative to discriminate between several possible previously proposed models and thus a range of 
possible cortical computations is of interest.  

 

Figure 3-1 Relationship between models and possible computations in cortical circuits, and proposed strategy for 
connectomic model distinction in local circuit modules of the cerebral cortex. (a) Relationship between computations 
suggested for local cortical circuits (left) and possible circuit-level implementations (right). Colored lines indicate successful 
performance in the tested computation; gray lines indicate failure to perform the computation (see Figure A3-1 for details). 
(b) Enumeration of candidate models possibly implemented in a barrel-circuit module. See text for details. (c) Flowchart of 
connectomic model selection approach to obtain the posterior 𝑝(𝐦|C) over hypothesized models m given a connectome C. 
ABC-SMC: approximate Bayesian computation using sequential Monte-Carlo sampling. (d) Sketch of mouse primary 
somatosensory cortex with presumed circuit modules (“barrels”) in cortical input layer 4 (L4). Currently known constraints 
of pairwise connectivity and cell prevalence of excitatory (ExN) and inhibitory (IN) neurons (𝑝 : pairwise excitatory-
excitatory connectivity (Feldmeyer et al. 1999, Gibson et al. 1999, Lübke et al. 2000, Beierlein et al. 2003, Lefort et al. 
2009), 𝑝 : pairwise excitatory-inhibitory connectivity (Gibson et al. 1999, Beierlein et al. 2003), 𝑝 : pairwise inhibitory-
inhibitory connectivity (Gibson et al. 1999, Gibson et al. 2005), 𝑝 : pairwise inhibitory-excitatory connectivity (Gibson et 
al. 1999, Beierlein et al. 2003, Koelbl et al. 2015), 𝑟 : pairwise excitatory-excitatory reciprocity (Feldmeyer et al. 1999, 
Gibson et al. 1999, Beierlein et al. 2003)). 
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Here we asked whether for a concrete cortical circuit module, the “barrel” of a cortical column in 
mouse somatosensory cortex, the measurement of the local connectome can in principle serve as an 
arbiter for a set of possibly implemented local cortical models and their associated computations.  

We developed and tested a model selection approach (using Approximate Bayesian Computation with 
Sequential Monte-Carlo Sampling, ABC-SMC (Beaumont et al. 2002, Sisson et al. 2007, Toni et al. 
2009), Figure 3-1c) on the main models proposed so far for local cortical circuits (Figure 3-1b) 
ranging from pairwise random Erdős–Rényi (ER (Erdős and Rényi 1959)) to highly structured “deep” 
layered networks used in machine learning (Schmidhuber 1992, El Hihi and Bengio 1996). We found 
that connectomic data alone is in principle sufficient for the discrimination between these investigated 
models, using a surprisingly simple set of connectome statistics. The model discrimination is stable 
against substantial measurement noise, and only partly mapped connectomes have already high 
discriminative power. 

Results 
To develop our approach we focus on a cortical module in mouse somatosensory cortex, a “barrel” in 
layer 4 (L4), a main input layer to the sensory cortex (Binzegger et al. 2005). The spatial extent of this 
module (roughly db = 300μm along each dimension) makes it a realistic goal of experimentally 
mapped dense connectomes using state-of-the-art 3D electron microscopy (Denk and Horstmann 
2004, Kasthuri et al. 2015) and circuit reconstruction approaches (Boergens et al. 2017, Berning et al. 
2015 , Januszewski et al. 2018, Motta et al. 2019). A barrel is composed of about 2,000 neurons 
(Meyer et al. 2011, Feldmeyer 2012). Of these about 90% are excitatory, and about 10% inhibitory 
(Meyer et al. 2011, Feldmeyer 2012) (Figure 3-1d), which establish a total of about 3 million chemical 
synapses within L4. The ensuing average pairwise synaptic connectivity within a barrel has been 
estimated based on data from paired whole-cell recordings (Feldmeyer et al. 1999, Gibson et al. 1999, 
Lübke et al. 2000, Beierlein et al. 2003, Gibson et al. 2005, Koelbl et al. 2015): excitatory neurons 
connect to about 15-25% of the other intra-barrel neurons; inhibitory neurons connect to about 50-60% 
of the other intra-barrel neurons (Figure 3-1d). Moreover, the probability of a connection to be 
reciprocated ranges between 15% and 35% (Feldmeyer et al. 1999, Lefort et al. 2009, Feldmeyer 
2012, Gibson et al. 1999, Beierlein et al. 2003). Whether intracortical connections in L4 follow only 
such pairwise connection statistics or establish higher-order circuit structure is not known 
(Helmstaedter et al. 2008, Markram et al. 2015, Egger et al. 2014, Kasthuri et al. 2015). Furthermore, 
it is not understood whether the effect of layer 4 circuits is primarily the amplification of incoming 
thalamocortical signals (Feldmeyer et al. 1999, Lien and Scanziani 2013), or whether proper 
intracortical computations commence within L4 (Ahissar and Kleinfeld 2003, Prigg et al. 2002, Bruno 
and Simons 2002). A L4 circuit module is therefore an appropriate target for model selection in local 
cortical circuits. 

The simplest model of local cortical circuits assumes pairwise random connectivity between neurons, 
independent of their relative spatial distance in the cortex (Erdős–Rényi (Erdős and Rényi 1959), 
Figure 3-2a-c). This model has been proposed as Echo State Network (ESN (Jaeger 2001, Jaeger and 
Haas 2004)). As a slight modification, random networks with a pairwise connectivity dependent on the 
distance between the neurons’ cell bodies are the basis of liquid state machines (LSMs (Maass et al. 
2002, Probst et al. 2012), Figure 3-2a-c). At the other extreme, highly structured layered networks are 
successfully used in machine learning and were originally inspired by neuronal architecture (multi-
layer perceptrons (Rosenblatt 1962), Figure 3-2d-g). Furthermore, embedded synfire chains have been 
studied (SYN (Abeles 1982, Trengove et al. 2013), Figure 3-2h-j), which can be considered an 
intermediate between random and layered connectivity. In addition to these rather general model 
classes, particular suggestions of models for concrete cortical operations have been put forward that 



68 

make less explicit structural assumptions (feature vector recombination network (FEVER (Druckmann 
and Chklovskii 2012)), proposed to achieve stimulus representation constancy on macroscopic 
timescales within a network; and antiphase inhibition (API (Troyer et al. 1998, Miller et al. 2001)), 
proposed to achieve contrast invariant stimulus tuning), or that are based on local learning rules (spike 
timing dependent plasticity/self-organizing recurrent neural network (STDP-SORN (Lazar et al. 2009, 
Zheng et al. 2013)).  

We first had to investigate whether the so far experimentally established circuit constraints of local 
cortical modules in S1 cortex (Figure 3-1d; number of neurons, pairwise connectivity and reciprocity; 
see above) were already sufficient to refute any of the proposed models.  

 

Figure 3-2 Compliance of candidate models with the so-far experimentally determined pairwise barrel circuit constraints in 
L4 (see Figure 3-1d). (a) Illustration of a simplified cortical barrel of width 𝑑  and somata with inter soma distance 𝑑 . (b)
Pairwise excitatory and inhibitory connection probabilities 𝑝  and 𝑝  are constant over inter soma distance 𝑑  in the Erdős–
Rényi echo state network (ER-ESN) and decay in the exponentially decaying connectivity - liquid state machine model 
(EXP-LSM). (c) Possible pairwise excitatory-excitatory connectivity 𝑝  and excitatory-excitatory reciprocity 𝑟  in the ER-
ESN and EXP-LSM model satisfy the so-far determined barrel constraints (box). (d-g) Layered model: (d) example network 
with three layers (𝑛 = 3), excitatory forward (between-layer) connectivity 𝑝 , , excitatory lateral (within-layer) connectivity 

𝑝 ,  and inhibitory connectivity 𝑝 . (e) Range of 𝑝  and 𝑟  in the LAYERED model for varying number of layers 𝑛  (white 

box: barrel constraints as in c). (f,g) Expected excitatory pairwise connectivity 𝐸[𝑝 ] and reciprocity 𝐸[𝑟 ] as function of 
𝑝 ,  and 𝑝 ,  for 𝑛 = 3. Isolines indicate barrel constraints, model parameters in compliance with these constraints: area 

between intersecting isolines. Note that constraints are fulfilled only for within-layer connectivity 𝑝 , > 0, refuting a strictly 

feedforward network. (h-j) Embedded synfire chain model (SYNFIRE). (h) Two subsequent synfire pools in the disjoint 
(top) and embedded (bottom) synfire chain. Since intra-pool connectivity 𝑝 ,  is strictly zero, reciprocal connections do not 

exist in the disjoint case (𝑟 = 0) but in the embedded configuration. (i,j) Pairwise excitatory connectivity 𝑝  and pairwise 
excitatory reciprocity 𝑟   as function of the number of pools 𝑛  and the pool size 𝑠  for a SYNFIRE network with 𝑁 =

2000 neurons. Respective barrel constraints (white and dashed line). See Figure A3-2 for analogous analysis of FEVER, API 
and STDP-SORN models. 
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Both the pairwise random ER model (Figure 3-2c) and the pairwise random but soma-distance 
dependent EXP-LSM model are directly compatible with measured constraints on pairwise 
connectivity and reciprocity (Figure 3-2c). A strictly layered multilayer perceptron model, however, 
does not contain any reciprocal connections and would in the strict form have to be refuted for cortical 
circuit modules, in which the reciprocity range is 0.15-0.35. Instead of rejecting such a “deep” layered 
model altogether, we studied a layered configuration of locally randomly connected ensembles (Figure 
3-2d). We found that models with up to ten layers are consistent with the circuit constraints of barrel 
cortex (Figure 3-2e). In subsequent analyses we considered configurations with 2-4 layers. In this 
regime, the connectivity within layers is 0.2-0.6 and between layers 0.3-0.6 (Figure 3-2f,g; nl=3 
layers). Similarly, disjoint synfire chains (Abeles 1982) (Figure 3-2h) would have to be rejected for 
the considered circuits due to lack of reciprocal connections. Embedded synfire chains (e.g., ref. 
(Trengove et al. 2013)), however, yield reciprocal connectivity for the sets of neurons overlapping 
between successive pools (Figure 3-2h). This yields a range of pool sizes for which the SYNFIRE 
model is compatible with the known circuit constraints (Figure 3-2i,j). The other models were 
investigated analogously (Figure A3-2), finding slight (API, Figure A3-2d-g) or substantial 
modifications (FEVER, STDP-SORN, Figure A3-2a-c,h-m) that make the models compatible with a 
local cortical circuit in L4. Notably, the FEVER model as originally proposed (Druckmann and 
Chklovskii 2012) yields substantially too low connectivity and too high reciprocity to be realistic for 
local cortical circuits in L4 (Figure A3-2b). A modification in which FEVER rules are applied on a 
pre-drawn random connectivity rescues this model (Figure A3-2a,b). 

Structural model discrimination via connectome statistics 
We then asked whether these local cortical models could be distinguished on purely structural 
grounds, given a binary connectome of a barrel circuit.  

We first identified circuit statistics 𝛄 that could serve as potentially distinctive connectome descriptors 
(Figure 3-3a). We started with the relative reciprocity of connections within (rr  and rr ) and across 
(rr  and rr ) the populations of excitatory and inhibitory neurons. Since we had already found that 
some of the models would likely differ in reciprocity (see above, Figure 3-2c,g,j, Figure A3-2b,f,g), 

these statistics were attractive candidates. We further explored the network recurrency 𝑟( ) at cycle 
length 𝑙, which is a measure for the number of cycles in a network (Figure 3-3a). This measure can be 
seen as describing how much of the information flow in the network is fed back to the network itself. 
So a LAYERED network would be expected to achieve a low score in this measure, while a highly 

recurrent network, such as SYNFIRE is expected to achieve a high score. We used  𝑟( ) with  𝑙 = 5 
since for smaller 𝑙 this measure is more equivalent to the reciprocity 𝑟  and for larger 𝑙, the measure is 
numerically less stable. Moreover, we investigated the in/out-degree correlation of the excitatory 
population 𝑟 /  (Figure 3-3a). This measure was motivated by the notion that 𝑟 / < 0 should point 

towards a separation of input and output subpopulations of L4, as for example expected in the 
LAYERED model. 

For a first assessment of the distinctive power of these six connectome statistics 𝛄, we sampled 50 L4 
connectomes from each of the 7 models (Figure 3-3b). The free parameters of the models were drawn 
from their respective prior distributions (Figure 3-3b; priors shown in Figure A3-4). For example, for 
the LAYERED model, the prior parameters were the number of layers 𝑛 ∈ [2, 4] , the forward 
connectivity 𝑝 , ∈ [0.19, 0.57] and the lateral connectivity 𝑝 , ∈ [0.26, 0.43]. The proposed network 

statistics 𝛄 (Figure 3-3a) were then evaluated for each of the 350 sampled connectomes (Figure 3-
3b,c). While the statistics had some descriptive power for certain combinations of models (for 
example, rr  seemed to separate API from EXP-LSM, Figure 3-3c), none of the six statistics alone 
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could discriminate between all the models (see the substantial overlap of their distributions, Figure 3-
3c), necessitating a more rigorous approach for model selection. 

Discrimination via Bayesian model selection 
We used an Approximate Bayesian Computation-Sequential Monte Carlo (ABC-SMC) model 
selection scheme (Beaumont et al. 2002, Sisson et al. 2007, Toni et al. 2009) to compute the posterior 
probability over a range of models given a to-be-measured connectome C#.   

In this approach, example connectomes C  are generated from the models M in question (using the 
priors over the model parameters 𝛉 (Figure 3-3b,d; see Figure A3-4 for plots of all priors)). For each 
sampled connectome C , the dissimilarity 𝑑𝛄(C , C#) to the measured connectome C# was computed 

(formalized as a distance 𝑑𝛄(C , C#) between C  and C#). The connectome distance was defined as an 

L1 norm over the six connectome statistics 𝛄 (Figure 3-3a), normalized by the 20%-to-80% percentile 
per connectome statistic (see Methods). If the sampled connectome C  was sufficiently similar to the 

Figure 3-3 Connectome statistics and generative models for approximate Bayesian inference. (a) Connectome statistics 𝛄
used for model distinction: relative excitatory-excitatory reciprocity rr , relative excitatory-inhibitory reciprocity rr , 

relative inhibitory-excitatory reciprocity rr , relative inhibitory-inhibitory reciprocity rr , relative cycles of length 5, 𝑟( ), 
and in-out degree correlation of excitatory neurons 𝑟 / .  (b) Generative model for Bayesian inference: shared set of 

parameters (top: number of neurons 𝑛, fraction of inhibitory neurons 𝑟 , excitatory connectivity 𝑝 , inhibitory connectivity 
𝑝 , fractional connectome measurement 𝑓 , noise  𝜉) and model-specific parameters (middle, model choice 𝑚, number of 
layers 𝑛 , excitatory forward connectivity 𝑝 , , excitatory lateral connectivity 𝑝 , , pool size 𝑠 , STDP learning rate 𝜂 , 

intrinsic learning rate 𝜂 , feature space dimension 𝑑 , feverization ratio 𝑓 , selectivity 𝑛 , see Figure A3-4), generated 

sampled connectome Cs described by the summary statistics 𝛄 = (rr , rr , rr , rr , 𝑟( ), 𝑟 / ) . (c) Gaussian fits of 

probability density functions (PDFs) of the connectome statistics 𝛄 (a) for all models (see Fig. 1b). (d) Sketch of ABC-SMC 

procedure: given a measured connectome C# , parameters 𝛉  (colored dots) are sampled from the prior 𝑝(𝛉) . Each 𝛉

generates a connectome C  that has a certain distance 𝑑𝛄(C#, C ) to C# in the space defined by the connectome statistics 𝛄

(a). If this distance is below a threshold 𝜖 , the associated parameters 𝛉  are added as mass to the posterior distribution 

𝑝(𝛉 C#), and are rejected otherwise. 
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measured connectome C#  (i.e. their distance 𝑑𝛄(C , C#)  was below a preset threshold 𝜖 , see 

Methods), the sample was accepted and considered as evidence towards the model that had generated 
C  (Figure 3-3d). With this, an approximate sample from the posterior 𝑝(𝛉|C#) was obtained (Figure 

3-3d). The posterior 𝑝(𝛉|C#) was iteratively refined by resampling and perturbing the parameters of 
the accepted connectomes and by sequentially reducing the distance threshold 𝜖 . 

We then tested our approach on simulated connectomes C#. These were again generated from the 
different model classes (as in Figure 3-3b); however in the ABC method, only the distances 𝑑𝛄(C , C#) 

between the sampled connectomes C   and the simulated connectomes C# were used (Figure 3-3d). It 
was therefore not clear a-priori whether the statistics 𝛄  are sufficiently descriptive to distinguish 
between the models; and whether this would be the case for all or only some of the models. 

We first considered the hypothetical case of a dense, error-free connectomic reconstruction of a barrel 
circuit under the ER-ESN model yielding a connectome C# . The ABC-SMC scheme correctly 
identified this model as the one model class at which the posterior probability mass was fully 
concentrated compared to all other models (Figure 3-4a). ABC-SMC inference was repeated for n=3 
ER-ESN models, resulting in three consistent posterior distributions. Similarly, connectomes 
C# obtained from all other investigated models yielded posterior probability distributions concentrated 
at the correct originating model (Figure 3-4a). Thus, the six connectome statistics 𝛾 together with 
ABC-based model selection were in fact able to distinguish between the tested set of models given 
binary connectomes. 

Discrimination of noisy connectomes 
We next explored the stability of our approach in the face of connectome measurements in which C# 
was simulated to contain noise from biological sources, or errors resulting from connectomic 
reconstruction inaccuracies. The latter would be caused by the remaining errors made when 
reconstructing neuronal wires in dense nerve tissue (Helmstaedter et al. 2011, Boergens et al. 2017, 
Motta et al. 2019, Januszewski et al. 2018) and by remaining errors in synapse detection, especially 
when using automated synapse classifiers (Kreshuk et al. 2011, Becker et al. 2012, Kreshuk et al. 
2014, Kreshuk et al. 2015, Dorkenwald et al. 2017, Staffler et al. 2017). To emulate such connectome 

noise, we first randomly removed 15% of the connections in C# and reinserted them again randomly. 

We then computed the posterior on such noisy connectomes C#, which in fact became less stable 
(Figure 3-4b; shown is average of n=3 repetitions with accuracies of 83.0%, 99.8% and 100.0%, 
respectively).  

However, in this setting we were pretending to be ignorant about the fact that the connectome 
measurement was noisy (see noise prior in Figure 3-4b), and had assumed a noise-free measurement. 
In realistic settings, however, the rate of certain reconstruction errors can be quantitatively estimated. 
For example, the usage of automated synapse detection (Staffler et al. 2017) and neurite 
reconstructions with quantified error rates (Helmstaedter et al. 2013, Takemura et al. 2013, Wanner et 
al. 2016, Boergens et al. 2017, Januszewski et al. 2018, Motta et al. 2019), provide such error rates 
explicitly. We therefore next investigated whether prior knowledge about the reconstruction error rates 
would improve the model posterior (Figure 3-4c). For this, we changed our prior assumption about 
reconstruction errors 𝜉 from noise-free (Figure 3-4b) to a distribution with substantial probability mass 
around 0-30% noise (modeled as 𝑝(𝜉) ∼ Beta(2,10), Figure 3-4c). When we applied the posterior 
computation again to connectomes C#  with 15% reconstruction noise, these were now as 
discriminative as in the noise-free case (Figure 3-4c, cf. Figure 3-4a,b).  
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To further investigate the effect of biased noise, we also tested conditions in which synaptic 
connections were only randomly removed or only randomly added (corresponding to cases in which 
reconstruction of the connectome may be biased towards neurite splits (Figure 3-4d) or neurite 
mergers (Figure 3-4e)); and cases in which errors were focused on a part of the connectome 
(corresponding to cases in which certain neuronal connections may be more difficult to reconstruct 
than others, Figure A3-5a). These experiments indicate a rather stable range of faithful model selection 
under various types of measurement errors. 

Incomplete connectome measurement 
In addition to reconstruction noise, a second serious practical limitation of connectomic measurements 
is the high resource consumption (quantified in human work hours, which are in the range of 90,000-
180,000 h for a full barrel reconstruction today, assuming 1.5 mm/h reconstruction speed, 5-10 km 
path length per cubic millimeter and a barrel volume of (300 µm)3 (Helmstaedter 2013, Boergens et al. 
2017)). Evidently, the mapping of connectomes for model discrimination would be rendered 
substantially more feasible if the measurement of only a fraction of the connectome was already 

 

Figure 3-4 Identification of models using Bayesian model selection under ideal and noisy connectome measurements. (a)
Confusion matrix reporting the posteriors over models given example connectomes. Example connectomes were sampled 
from each model class (rows; Fig. 3b) and then exposed to the ABC-SMC method (Fig. 3d) using only the connectome 
statistics (Fig. 3a). Note that all model classes are uniquely identified form the connectomes (inset: average posteriors for 
ER-ESN and LAYERED connectomes, respectively; n=3 repetitions). (b) Posteriors over models given example 
connectomes to which a random noise of 15% (inset, dashed line) was added before applying the ABC-SMC method. The 
generative model (Fig. 3b) was ignorant of this noise (n=3 repetitions; bottom: noise prior 𝑝(𝜉) =δ , ). (c) Same analysis 

as in b, this time including a noise prior into the generative model (n=3 repetitions). Bottom: The noise prior was modeled as 
 𝑝(𝜉) = Beta(2,10). Note that in most connectome measurements, the level of reconstruction errors is quantifiable, such that 
the noise can be rather faithfully incorporated into the noise prior (see text). Model identification is again accurate under 
these conditions (compare c and a). (d) Confusion matrix when simulating split errors in neuron reconstructions by randomly 
removing 15% (left) or 80% (right) of connections before ABC-SMC inference. (e) Confusion matrix when simulating 
merge errors in neuron reconstructions by insertion of additional 15% (left) and 80% (right) of the original number of 
connections into random locations in the connectome before ABC-SMC inference. (d,e) Noise prior during ABC-SMC 
inference was of the same type as the simulated reconstruction errors (n=1 repetition; noise prior 𝑝(𝜉) = Beta(2,10)). Color 
bar in c applies to all panels. 
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sufficient for model discrimination. We therefore next investigated the stability of our discrimination 
method under two types of fractional measurements (Figure 3-5). 

We first tested whether reconstruction of only fm = 30% of neurons and of their connectivity is 
sufficient for model selection (Figure 3-5a). We found model discrimination to be 100% accurate in 
the absence of reconstruction errors (Figure 3-5b). This reconstruction assumes the 3D EM imaging of 
a tissue volume that comprises an entire barrel, followed by a fractional circuit reconstruction (see 
sketch in Figure 3-5a). Such an approach is realistic since the speed of 3D EM imaging has increased 
more quickly than that of connectomic reconstruction (Helmstaedter 2013, Lichtman et al. 2014, 
Mikula 2016, Schmidt et al. 2017).  

We then screened our approach for stability against both measurement noise and incomplete 
connectome measurement by applying our method on connectomes of varying noise rates 𝜉  and 
measurement fractions fm with a fixed noise prior (𝑝(𝜉) ∼ Beta(2,10)). For evaluating classification 
performance, we used two approaches: first, we averaged the model posterior along the diagonal of the 
classification matrix (e.g., Figure 3-5b), yielding the average accuracy for a given noise and fractional 
measurement combination (Figure 3-5c). In addition, we evaluated the quality of the maximum-a-
posteriori (MAP) classification, which takes the peak of the posterior as binary classification result 
(Figure 3-5d). The MAP connectome classification was highly accurate even in a setting in which only 
10% of the connectome were sampled, and at a substantial level of reconstruction error of 25%. This 
implies that we will be able to perform the presented model distinction in a partially mapped barrel 
connectome consuming 18,000 instead of 180,000 work hours (Helmstaedter 2013, Boergens et al. 
2017, Staffler et al. 2017) (Figure 3-5c,d). Evidently, this makes a rather unrealistic reconstruction 
feasible (note the largest reconstructions to date consumed 14,000-25,000 human work hours (Wanner 
et al. 2016, Helmstaedter et al. 2013, Takemura et al. 2013, Eichler et al. 2017)). 

We then asked whether complete connectomic reconstructions of small EM image volumes (Motta et 
al. 2019) could serve as an alternative to the fractional reconstruction of large image volumes (Figure 
3-5e,f). This would reduce image acquisition effort and thereby make it realistic to rapidly compare 
how brain regions, species or disease states differ in terms of circuit models. To simulate locally dense 
reconstructions, we first restricted the complete noise-free connectome to the neurons with their soma 
located within the imaged barrel subvolume (Figure 3-5e). Importantly, connections between the 
remaining neurons may be established outside the image volume. To account for the loss of these 
connections, we further subsampled the remaining connections. We found model selection from dense 
connectomic reconstruction of a (150µm)3 volume (12.5% of the barrel volume) to be unstable (67% 
average accuracy; Figure 3-5f) due to the confusion between the ER-ESN, EXP-LSM, FEVER and 
STDP-SORN models (Figure 3-5f). For the dense reconstruction of (100µm)3, accuracy of model 
selection was close to chance level for all models (17% average accuracy; Figure 3-5f). So our tests 
indicate that an experimental approach in which the image volume comprises an entire local cortical 
circuit module (barrel), but the reconstruction is carried out only in a subset of about 10-15% of 
neurons is favored over a dense reconstruction of only 12.5% of the barrel volume. Since the imaging 
of increasingly larger volumes in 3D EM from the mammalian brain is becoming feasible (Morgan et 
al. 2016, Schmidt et al. 2017), while its reconstruction is still a major burden, these results propose a 
realistic experimental setting for connectomic model selection in the cortex. 
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Incomplete set of hypotheses 
Bayesian analyses can only compare evidence for hypotheses known to the researcher. But what if the 
true model is missing from the set of tested hypotheses? To investigate this question, we excluded the 
original model during inference of the posterior distribution from a complete noise-free barrel 
connectome (Figure 3-6a). In these settings, rather than obtaining uniformly distributed posteriors, we 
found that the probability mass of the posterior distributions was concentrated at one or two of the 
other models. The FEVER model, for example, which is derived from pairwise random connectivity 
(ER-ESN) while imposing additional local constraints that result in heightened relative excitatory-
excitatory reciprocity, resembles the EXP-LSM model (see Figure 3-3c). Accordingly, these three 

 

Figure 3-5 Model selection for partially measured and noisy connectomes. (a) Fractional (incomplete) connectome 
measurement when reconstructing only a fraction fm of the neurons in a given circuit, thus obtaining a fraction fm2 of the 
complete connectome. (b) Effect of incomplete connectome measurement on model selection performance for fm = 0.3 (no 
noise; n=1 repetition). Note that model selection is still faithfully possible. (c,d) Combined effects of noisy and incomplete 
connectome measurements on model selection accuracy reported as average posterior probability (c; n=1 repetition per 
entry) and maximum-a-posteriori accuracy (d; n=1 repetition per entry). Note that model selection is highly accurate down to 
10% fractional connectome measurement at up to 25% noise, providing an experimental design for model distinction that is 
realistic under current connectome measurement techniques (see text). Model selection used a fixed 𝑝(𝜉) = Beta(2,10)

noise prior. More informative noise priors result in more accurate model selection (Figure A3-5b). (e) Effect of fractional 
dense circuit reconstruction: Locally dense connectomic reconstruction of the neurons and of their connections in a circuit 
subvolume. (f) Effect of partial imaging and dense reconstruction of the circuit subvolume on average model selection 
accuracy (left: n=1 repetition per entry). Note that model selection based on dense reconstruction of a (150μm)3 volume 
(12.5% of circuit volume) is substantially less accurate than model selection based on complete reconstructions of 10% in the
complete circuit volume (see c). Right: Posterior distributions over models for image volumes of (150μm)3 and (100μm)3, 
respectively (n=1 repetition, each). 
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models (ER-ESN, EXP-LSM, FEVER) showed a high affinity for mutual confusion when the original 
model was excluded during ABC-SMC (Figure 3-6a). This may indicate that our Bayesian model 
selection approach assigns the posterior probability mass to the most similar tested models, thus 
providing a ranking of the hypotheses. Notably, models with zero posterior probability in the 
confusion experiment (Figure 3-6a) were in fact almost exclusively those at largest distance from the 
original model. As a consequence, rejecting the models with zero posterior probability mass may 
provide falsification power even when the “true” model is not among the hypotheses. 

In order to investigate whether our approach provided sensible model interpolation in cases of mixed 
or weak model evidence (Figure 3-6b), we considered the following example. The EXP-LSM model 
turns into an ER-ESN model in the limit of large decay constants 𝜆 of pairwise connectivity (that is 
modeled to depend on inter-soma distance, see inset Figure 3-6b). This allowed us to test our approach 
on connectomes that were sampled from models interpolated between these two model classes. When 
we exposed such “mixed” connectomes to our model discrimination approach, the resulting posterior 
had most of its mass at the EXP-LSM model for samples with 𝑑  close to 1 and much of its mass at 
the ER-ESN model for samples with 𝑑  close to 0. For intermediate model mixtures, the Bayesian 
model selection approach in fact yielded interpolated posterior probability distributions. This result 
gave an indication that the approach had in fact some stability against model mixing. 

Connectomic separability of sparse recurrent neural networks trained on different 
tasks 
Finally, we asked whether recurrent neural networks (RNNs) that were randomly initialized and then 
trained on different tasks could be distinguished by the proposed model selection procedure based on 
their connectomes after training. To address this question, we trained RNNs on either a texture 
discrimination task or a sequence memorization task. Initially, all RNNs were fully connected with 
random connection strengths (Figure 3-7a). During training, connection strengths were modified by 
error back-propagation to maximize performance on the task. At the same time, we needed to reduce 
the connectivity p of the RNNs to a realistic level of sparsity (pS1∈[0.15...0.25], see Figure 3-1d) and 
used the following strategy: Whenever task performance saturated, we interrupted the training to 
identify the weakest 10% of connections and permanently pruned them from the RNN (Figure 3-7b).  

 

Figure 3-6 Effect of incomplete hypothesis space and of model interpolation on Bayesian model selection. (a) Confusion 
matrix reporting the posterior distribution when excluding the true model (hatched) from the set of tested model hypotheses 
(n=1 repetition). Note that posterior probability is non-uniformly distributed and concentrated at plausibly similar models 
even when the true model is not part of the hypothesis space. (b) Posterior distributions for connectome models interpolated 
between ER-ESN and EXP-LSM (n=1 repetition per bar). Inset: Space constant dEXP acts as interpolation parameter between 
ER-ESN (dEXP=0) and EXP-LSM (dEXP=1). Note that the transition between the two models is captured by the estimated 
model posterior, with an intermediate (non-dominant) confusion with the FEVER model. 
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Figure 3-7 Connectomic separability of recurrent neural network (RNNs) with similar initialization, but trained on different 
tasks. (a) Overview of training process: RNNs were initially fully connected. Whenever task performance saturated during 
training, the weakest 10% of connections were pruned (†) to obtain a realistic level of sparsity. (b) Task performance (black) 
and network connectivity (gray) of a texture discrimination RNN during training. Ticks indicate the pruning of connections. 
Inset (*): Connection pruning causes a decrease in task performance, which is (partially) compensated by further training of 
the remaining connections. (Continuation on next page) 
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This training-pruning cycle then continued on the remaining connections. As a result, connectivity 
within an RNN was constrained only by the task used for training.  

Maximum task performance was reached early in training while connectivity was still high (p≈80%) 
and started to decay only after pruning more than 99.6% of connections (p<0.4%). Within this 
connectivity range (80%≥p≥0.4%), task performance substantially exceeded chance level (approx. 
82.8-83.8% vs. 14.3% accuracy for n=4 texture discrimination RNNs; 0.000-0.002 vs. 0.125 mean 
squared error for n=4 sequence memorization RNNs; range of measurements vs. chance level; Figure 
3-7c).  Importantly, task performance was at the highest achieved level also at realistic connectivity of 
pS1=24%.  

We then investigated the connectome statistics applied to the RNNs during training (Figure 3-7d). We 
wanted to address the following two questions: First, how strongly are connectome statistics 
constrained by the training task? In particular, is the variance of connectome statistics in trained RNNs 
much larger than in network models that are primarily defined by their structure (e.g., LAYERED or 
SYNFIRE)? Second, does training of RNNs on different tasks result in different connectomic 
structures? And if so, are the connectome statistics sensitive enough to distinguish RNNs trained on 
different tasks based only on their structure?  

At 24% connectivity, we found the variance of the connectome statistics to be comparable to the 
variance in structural network models (Figure 3-7e; cf. Figure 3-3c), but connectome statistics of 
RNNs trained on different tasks were statistically indistinguishable (Figure 3-7e), and RNNs with 
different tasks were thus only poorly separable (sensitivity index d’ of 0.495; Figure 3-7f). However, 
we noticed a separation into two clusters when RNNs were trained and further sparsified to a 
connectivity of p<<11% (d’=1.45±0.23, mean±std.; Figure 3-7f).  

To further study the effect of sparsification of a trained RNN, we investigated whether additional 
information about the strength of connections (Figure 3-7g) could improve the separability of RNNs 
trained on different tasks. We started with the weighted connectomes of RNNs that were trained and 
sparsified to 24% connectivity. For the evaluation of connectome statistics, we then restricted the 
RNNs to strong connections (Figure 3-7h). When ignoring the weakest 50% of connections of each 
RNN, the texture discrimination and sequence memorization RNNs differed significantly in their 

(Continuation of previous page) (c) Task performance as a function of network connectivity (p). Performance defined as: 
Accuracy (Texture discrimination RNNs, gray); 1 – mean squared error (Sequence memorization RNNs, magenta). Note that 
maximum observed performance was achieved in a wide connectivity regime including connectivity consistent with 
experimental data (pS1=24%; dashed line). Task performance started to decay after pruning at least 99.6% of connections. (d)
Connectome statistics of RNNs over iterative training and pruning of connections (cf. Fig. 3a). (e) Distribution of 
connectome statistics at p=pS1 for RNNs and structural network models. Note that structural network models and structurally 
unconstrained RNNs exhibit comparable variance in connectome statistics (rree: 0.088 vs. 0.15 for API; rrei and rrie: 0.0019 
vs. 0.026 for API; rrii: 9.35×10-7 vs. 8.17×10-3 for API; r(5): 1.54 vs. 1.51 for SYNFIRE; ri/o: 0.057 vs. 0.061 for 
LAYERED; cf. Fig. 3c). RNNs trained on different tasks did not differ significantly in terms of connectome statistics (rree: 
1.48±0.30 vs. 1.46±0.29, p=0.997; rrei and rrie: 1.00±0.04 vs. 0.99±0.01, p=0.534; rrii: 1.01±0.01 vs. 1.01±0.00, p=0.107; r(5): 
2.28±1.24 vs. 1.84±0.80, p=0.997; ri/o: 0.31±0.24 vs. 0.49±0.12, p=0.534; mean±std for n=4 texture discrimination vs. 
sequence memorization RNNs, each; two-sided Kolmogorov-Smirnov test without correction for multiple comparisons). 
Boxes: center line is median; box limits are quartiles; whiskers are minimum and maximum; all data points shown. (f)
Similarity of RNNs based on connectome statistics (lines) as connectivity approaches biologically plausible connectivity pS1

(circles and arrows, left) and for connectivity range from 100% to 0.04% (circles and arrows, right). Note that connectome 
statistics at ≤11% connectivity separate texture discrimination and sequence memorization RNNs into two clusters. (g)
Distribution of connection strengths at p=pS1 for two RNNs trained on different tasks. (h) Connectome statistics of RNNs 
with pS1 connectivity when ignoring weak connections. (i) Separability of texture discrimination and sequence memorization 
RNNs with biologically plausible connectivity based on statistics derived from weighted connectome. 
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relative excitatory→excitatory reciprocity (3.60±0.99 vs. 7.83±1.98, p=0.011) and relative prevalence 
of cycles (22.19±12.69 vs. 118.16±40.86, p=0.011; Figure 3-7h.) As a result, RNNs trained on 
different tasks could be separated by the six connectome statistics with 85±3% accuracy (Figure 3-7i, 
separability d’=1.61±0.24, mean±std.). We concluded that RNNs with biologically plausible 
connectivity that were trained on different tasks can be distinguished based on the proposed statistics 
derived from weighted connectomes, in which only the strongest connections were used for 
connectome analysis. 

Discussion 
We report a probabilistic method to use a connectome measurement as evidence for the discrimination 
of local models in the cerebral cortex. We show that the approach is robust to experimental errors, and 
that a partial reconstruction of the connectome suffices for model distinction. We furthermore 
demonstrate the applicability to large cortical connectomes consisting of thousands of neurons. 
Surprisingly, a set of rather simple connectome statistics is sufficient for the discrimination of a large 
range of models. These results show that and how connectomes can function as arbiters of local 
cortical models (Denk et al. 2012) in the cerebral cortex. 

Previous work on the classification of connectomes addressed smaller networks, consisting of up to 
100 neurons, in which the identity of each neuron was explicitly defined. For these settings, the graph 
matching problem was approximately solved (Vogelstein and Priebe 2015). However, such 
approaches are currently computationally infeasible for larger unlabeled networks (Vogelstein et al. 
2015, Vogelstein and Priebe 2015), which are found in the cerebral cortex.  

As an alternative, the occurrence of local circuit motifs has been used for the analysis of local neuronal 
networks (Milo et al. 2002, Song et al. 2005, Perin et al. 2011). Four of our connectome statistics 
(Figure 3-3a) could be interpreted as such motifs: the relative reciprocity within and across the 
excitatory and inhibitory neuron populations, whose prevalence we could calculate exactly. The key 
challenge of these descriptive approaches is the interpretation of the observed motifs. The Bayesian 
approach as proposed here provides a way to use such data as relative, discriminating evidence for 
possible underlying circuit models. 

One approach for the analysis of neuronal connectivity data is the extraction of descriptive graph 
properties (for example those termed clustering coefficient (Watts and Strogatz 1998), small-
worldness (Humphries and Gurney 2008), closeness- and betweenness centrality (Freeman 1978)), 
followed by a functional interpretation of these measures. Such discovery-based approaches have been 
successfully applied especially for the analysis of macroscopic whole-brain connectivity data (van den 
Heuvel et al. 2016, Rubinov and Sporns 2010).  

The relationship between (static) network architecture and task performance was previously studied in 
feed-forward models of primate visual object recognition (Yamins et al. 2014, Yamins and DiCarlo 
2016), in which networks with higher object recognition performance were shown to yield better 
prediction of neuronal responses to visual stimuli. Our study considered recurrent neural networks, 
accounting for the substantial reciprocity in cortical connectivity, and investigated the structure-
function relationship for static recurrent network architectures on a texture classification task (Figure 
A3-1), as well as for sparse recurrent neural networks in which both network architecture and task 
performance were jointly optimized (Figure 3-7). 

Pre-hoc connectome analyses, in which the circuit models are defined before connectome 
reconstruction, offer several advantages over exploratory analyses, where the underlying circuit model 
is constructed after-the-fact: First, the statistical power of a test with pre-hoc defined endpoints is 
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substantially higher (Pocock and Stone 2016, Wilson et al. 2015), rendering pre-hoc endpoint 
definition a standard for example in the design of clinical studies (Pocock and Stone 2016). Especially 
since so far, microscopic dense connectomes are mostly obtained and interpreted form a single sample, 
n=1 (White et al. 1986, Varshney et al. 2011, Helmstaedter et al. 2013, Kasthuri et al. 2015), this 
concern is substantial, and a pre-hoc defined analysis relieves some of this statistical burden. 
Moreover, the pre-hoc analysis allowed us to determine an experimental design for the to-be-measured 
connectome, defining bounds on reconstruction and synapse errors and the required connectome 
measurement density (Figure 3-5c,d). Especially given the substantial challenge of data analysis in 
connectomics (Helmstaedter 2013), this is a relevant practical advantage.  

We considered it rather unexpected that a 10% fractional reconstruction, and reconstruction errors up 
to 25% would be tolerable for the selection of local circuit models. One possible reason for this is the 
homogeneity of the investigated network models. For each model, the (explicit or implicit) structural 
connectivity rules are not defined per neuron individually, but apply to a whole sub-population of 
neurons. For example, the ER-ESN model implies one connectivity rule for all excitatory neurons and 
a second one for all inhibitory neurons; the layered model defines one connectivity rule for each layer. 
Hence, the model properties were based on the wiring statistics of larger populations, permitting low 
fractional reconstruction and substantial wiring errors. If, on the contrary, the network models were to 
define for each neuron a very specific connectivity structure, a different experimental design would 
likely be favorable, in which the precise reconstruction of few individual neurons could suffice to 
refute hypotheses.  

How critical were the particular circuit constraints which we considered for initial model validation 
(Figure 3-1d)? What if, for example, pairwise excitatory connectivity was lower than concluded from 
pairwise recordings in slice (Figure 3-1d (Meyer et al. 2011, Feldmeyer 2012, Gibson et al. 1999, 
Beierlein et al. 2003, Feldmeyer et al. 1999, Lübke et al. 2000, Lefort et al. 2009, Koelbl et al. 2015, 
Gibson et al. 2005)), and instead for example rather 10%, not 15-25% in L4? The results on 
discriminability of trained RNNs (Figure 3-7), which was higher for sparser networks, may indicate 
that model identification would even improve for lower overall connectivity regimes. Also, such a 
setting would imply that the model priors would be in a different range (Figure A3-4; for example the 
layered network with four layers would imply a pairwise forward connectivity 𝑝 , =27% instead of 

53%). Circuit measurements that already clearly refute any of the hypothesized models based on 
simple pairwise connectivity descriptors would of course reduce the model space a-priori. Once a full 
connectomic measurement is available, the connectivity constraints (Figure 3-1d) can be updated, the 
model hypothesis space diminished or not, and then our model selection approach can be applied.  

The choice of summary statistics in ABC is generally not unique, and poorly chosen statistics may 
bias model selection (Fay et al. 2015, Marin et al. 2014, Robert et al. 2011). Our use of emulated 
reconstruction experiments with known originating models was therefore required to verify ABC 
performance (Figure 3-4-6). These results also indicate that it was sufficient to use summary statistics 
that were constrained to operate on unweighted graphs. More detailed summary statistics that also 
make use of indicators of synaptic weights accessible in 3D EM data (such as size of post-synaptic 
density, axon-spine interface or spine head volume (Harris and Stevens 1989, Bartol et al. 2015, de 
Vivo et al. 2017)) may allow further distinction of plasticity models with subtle differences in 
neuronal activity history. In fact, we found that weighted connectomes were necessary to distinguish 
between circuit models that were subject to identical structural constraints and that only differed in the 
tasks that they performed (Figure 3-7). 

The proposed Bayesian model selection also has a number of drawbacks. 
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First, likelihood-free model inference using ABC-SMC depends on efficient simulation of the models. 
Computationally expensive models, such as recurrent neural networks trained by stochastic gradient 
descent (Figure 3-7), are prohibitive for sequential Monte Carlo sampling. However, the proposed 
connectome statistics and the resulting connectomic distance function provide a quantitative measure 
of similarity even for individual samples (Figure 3-7i). Furthermore, a rough estimate of the posterior 
distribution over models can be obtained already by a single round of ABC-SMC with a small sample 
size. 

Second, an exhaustive enumeration of all hypotheses is needed for Bayesian model selection. What if 
none of the investigated models was correct? This problem cannot be escaped in principle, and it has 
been argued that Bayesian approaches have the advantage of explicitly and transparently accounting 
for this lack of prior knowledge rather than implicitly ignoring it (Lawrence et al. 2013). Nevertheless, 
this caveat strongly emphasizes the need for a proper choice of investigated models. Our results 
(Figure 3-6) indicate that models close to but not identical to any of the investigated ones are still 
captured in the posterior by reporting their relative similarity to the remaining investigated models. 
We argue that rejection of models without posterior probability mass provides valuable scientific 
insights, even when the set of tested hypotheses is incomplete. 

Third, we assumed a flat prior over the investigated models, considering each model equally likely a-
priori. Pre-conceptions about cortical processing could strongly alter this prior model belief. If one 
assumed a non-homogenous model prior, this different prior can be multiplied to the posterior 
computed in our approach. Therefore, the computed posterior can in turn be interpreted as a 
quantification of how much more likely a given model would have to be considered by prior belief in 
order to become the classification result, enabling a quantitative assessment of a-priori model belief 
about local cortical models.  

Together, we show that connectomic measurement carries substantial distinctive power for the 
discrimination of models in local circuit modules of the cerebral cortex. The concrete experimental 
design for the identification of the most likely local model in cortical layer 4, proposed pre-hoc, will 
make the mapping of this cortical connectome informative and efficient. Our methods are more 
generally applicable for connectomic comparison of possible models of the nervous system. 

Methods 

Circuit constraints 
The following circuit constraints were shared across all cortical network models. A single barrel was 
assumed to consist of 1800 excitatory and 200 inhibitory neurons (Meyer et al. 2011, Feldmeyer 
2012). The excitatory connectivity 𝑝 , i.e. the probability of an excitatory neuron to project to any 
other neuron was assumed to be 𝑝 = 𝑝 = 0.2 (Gibson et al. 1999, Beierlein et al. 2003, Feldmeyer 
et al. 1999, Lübke et al. 2000, Lefort et al. 2009), the relative excitatory-excitatory reciprocity rr , 
i.e., the probability of also observing a bidirectional connection given one connection between two 
excitatory neurons, was assumed to lie in the range 𝑟 ∈ [0.15, 0.35] (Feldmeyer et al. 1999, Lefort et 
al. 2009, Feldmeyer 2012, Gibson et al. 1999, Beierlein et al. 2003). The inhibitory connectivity 𝑝 , 
i.e., the probability of an inhibitory neuron to project onto any other neuron, was assumed as 𝑝 =

𝑝 = 0.6 (Koelbl et al. 2015, Gibson et al. 1999, Beierlein et al. 2003, Gibson et al. 2005). Self-
connections were not allowed. 
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Estimates of reconstruction time and synapse number 
Neurite path length density was assumed to be 𝑑 = 10km/mm , barrel volume was assumed to be 
𝑉 = (300µm) , annotation speed was taken as 𝑣 = 1.5mm/h  (Boergens et al. 2017)  together 
yielding the total annotation time 𝑇 = 𝑉𝑑/𝑣. 

The total number of synapses in a barrel was calculated as  𝑁𝑓 = 3,2299,091 with 𝑓 = 3.36 the 
average number of synapses per connection (Feldmeyer et al. 1999) and  𝑁 = 2000 ⋅ (1800 ⋅ 0.2 +

200 ⋅ 0.6) the total number of synaptically connected pairs of neurons. 

Implementations of cortical network models 
Seven cortical models were implemented: the Erdős–Rényi echo state network (ER-ESN (Erdős and 
Rényi 1959, Jaeger and Haas 2004)), the exponentially decaying connectivity - liquid state machine 
model (EXP-LSM (Maass et al. 2002, Probst et al. 2012)), the layered model (LAYERED (Rosenblatt 
1962, Hubel and Wiesel 1962)), the synfire chain model (SYNFIRE (Troyer et al. 1998, Miller et al. 
2001, Abeles 1982)), the feature vector recombination model (FEVER (Druckmann and Chklovskii 
2012)), the antiphase inhibition model (API) and the spike timing dependent plasticity self-organizing 
recurrent neural network model  (STDP-SORN (Lazar et al. 2009, Zheng et al. 2013)). 

The Erdős–Rényi echo state network (ER-ESN) model was a directed Erdős–Rényi random graph. 
Each possible excitatory projection was realized with probability 𝑝 = 0.2, each possible inhibitory 
projection with probability 𝑝 = 0.6. 

For the exponentially decaying connectivity - liquid state machine model (EXP-LSM), excitatory and 
inhibitory neurons were assumed to be uniformly and independently distributed in a cubic volume of 
equal side lengths. The excitatory and inhibitory pairwise connection probabilities 𝑝 (𝑑) and 𝑝 (𝑑) 

were functions of the Euclidean distance 𝑑 of a neuron pair according to 𝑝 (𝑑) = 𝑝 exp , 𝑝 =

𝑝 + (1 − 𝑝 )𝑑 , 𝑑 = 1, 𝑡 ∈ {e,  i}. The length scale parameters 𝜆  were adjusted to match an 
overall connectivity of 𝑝 =  0.2 in the excitatory case (𝑡 = 𝑒) and a connectivity of 𝑝 = 0.6 in the 
inhibitory case (𝑡 = 𝑖).  

The layered model (LAYERED) consisted of 𝑛  excitatory layers. Lateral excitatory-excitatory 

connections were realized within one layer with connection probability 𝑝 , . Forward connections from 

one layer to the next layer were realized with probability 𝑝 , . Inhibitory neurons were not organized 

in layers but received excitatory projections uniformly and independently from all excitatory neurons 
with probability 𝑝 = 0.2 and projected onto any other neuron uniformly and independently with 
probability 𝑝 = 0.6. 

The synfire chain (SYNFIRE) implementation used in this work followed (Trengove et al. 2013). The 

inhibitory pool size 𝑠 , = 𝑠  was proportional to the excitatory pool size 𝑠 . The network 

was constructed as follows: (1) An initial excitatory source pool of size 𝑠  was chosen uniformly 

from the excitatory population. (2) An excitatory target pool of size 𝑠  and an inhibitory target pool 

of size 𝑠 ,  were chosen uniformly. The excitatory source and target pools were allowed to share 

neurons, i.e., neurons were drawn with replacement. (3) The excitatory source pool was connected all-
to-all to the excitatory and inhibitory target pools but no self-connections were allowed. (4) The 
excitatory target pool was chosen to be the excitatory source pool for the next iteration. Steps (2) to (4) 
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were repeated round
( )

 times, with round(∙)  denoting the nearest integer. Inhibitory 

neurons projected uniformly to any other neuron with probability 𝑝 = 0.6. 

The feature vector recombination model (FEVER) network was constructed from an initial ER random 
graph C  with initial pairwise connection probabilities 𝑝 = 𝑝 − 𝑓 𝑑 /𝑛 for 𝑡 ∈ {𝑒, 𝑖} with 𝑓 ∈ [0, 1] 

the feverization, 𝑑 ∈ ℕ the feature space dimension and 𝑛  the number of neurons. The outgoing 

projections 𝐜  of neuron 𝑘 were obtained from C  according to the sparse optimization problem 𝐜 =

argmin𝐜 ∑ ∥∥𝐝 − ∑ 𝐝 c ∥∥ + 𝜆 ( ) ∥∥𝐜 − 𝐜∥∥ , 𝑐 = 0, where the 𝐝 ∈ ℝ  were the feature 

vectors drawn uniformly and independently from a unit sphere of feature space dimension 𝑑  and 

𝐜 ∈ ℝ  denoted the initial outgoing projections of neuron 𝑘 as given by C  and 𝑡(𝑘) = 𝑒 if neuron 𝑘 
was excitatory, 𝑡(𝑘) = 𝑖  otherwise. The sparse optimization was performed with scikit-learn 
(Pedregosa et al. 2011) using the “sklearn.linear_model.Lasso” optimizer with the options 
“positive=True” and “max_iter=100000” for the excitatory and the inhibitory population individually. 
The parameter 𝜆 , 𝑡 ∈ {𝑒, 𝑖} was fitted to match the excitatory and inhibitory connectivity of 𝑝 = 0.2 
and 𝑝 = 0.6 respectively. 

In the antiphase inhibition model (API), a feature vector 𝐝  was associated with each neuron 𝑘. The 
feature vectors were drawn uniformly and independently from a unit sphere with feature space 
dimension 𝑑 . The cosine similarity 𝐶 = 𝑐 (𝐝 , 𝐝 ) between the feature vectors of neuron 𝑖 and 𝑗 

were transformed into connection probabilities 𝑝  between neuron 𝑖  and 𝑗  according to 𝑝 = 1 −

1 − , where 𝑠 = 1 if neuron 𝑗  was excitatory and 𝑠 = −1 if neuron 𝑗  was 

inhibitory. The coefficients 𝑛  with 𝑥 ∈ {−1,1}  were fitted to match the excitatory and 
inhibitory connectivity constraints. The coefficient 𝑛  was in the range 𝑛 ∈ [4,6] (Figure A3-4f 

(Troyer et al. 1998)). 

The spike timing dependent plasticity self-organizing recurrent neural network model  (STDP-SORN)  
network was constructed as follows: An initial random matrix C ∈ {0,1, −1} ×  with pairwise 
connection probabilities 𝑝  for 𝑡 ∈ {𝑒, 𝑖}  was drawn. Let 𝑠 , = ∑ C:  denote the sum of all 

excitatory incoming weights of neuron 𝑘  and similarly 𝑠 , = − ∑ C:  denote the sum of all 

inhibitory incoming weights of neuron 𝑘. Each weight C > 0 was normalized according to C ←

C /𝑠 ,  and each weight C < 0 according to C ← C /𝑠 ,  such that for each neuron the sum of all 

incoming excitatory weights was 1 and the sum of all incoming inhibitory weights was −1. No self-
connections were allowed. The so obtained matrix was the initial adjacency matrix C. The initial 
vector of firing thresholds 𝐭 ∈  ℝ  was initialized to 𝐭 = 𝟏. The neuron state 𝐱 ∈ {0,1}  and the past 
neuron state 𝐱 ∈ {0,1}  were initialized as zero vectors. 

After initialization, for each of the 𝜏 = 10,000 simulation time points, the following steps were 
repeated (Zheng et al. 2013): (1) Propagation, (2) Intrinsic plasticity, (3) Normalization, (4) STDP, (5) 
Pruning and (6) Structural plasticity as follows: 

Propagation. The neuron state 𝐱 ∈ {0,1}  was updated 𝐱 ← 𝛩(C𝐱 + 𝛏 − 𝐭), where 𝛏 was noise with 

𝛏 ∼ N(0, 𝜎 ) iid., 𝜎 = 0.05 and 𝛩(𝑥) =
1, 𝑥 ≥ 0

0 otherwise
.  
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Intrinsic plasticity. The firing thresholds were updated 𝐭 ← 𝐭 + 𝜂 (𝐱 − 𝑓 ) where 𝑓 = 1/10 was the 
target firing rate and 𝜂  the intrinsic plasticity learning rate. 

Normalization. The excitatory incoming weights were normalized to 1 : If C > 0  then C ←

C /𝑠 , . 

STDP (Spike timing dependent plasticity). Weights were updated according to C ← C +

 𝜂 𝐱 𝐱 , + 𝐱 𝐱 − 𝐱 , 𝐱  for 𝑘 ≠ 𝑙. Finally the past neuron state was also updated 𝐱 ← 𝐱. 

Pruning. Weak synapses were removed: If 0 ≤  C < 1/𝑛 then C ← 0. 

Structural plasticity. It was attempted to add 𝑛 = (𝑛 𝑝 − 𝑛 )/(1 − 𝑝 ) synapses randomly, with 
𝑛 = ∑ 1, :  the number of excitatory synapses currently present in the network. For each of these 

attempts two integers 𝑘, 𝑙 ∼ DiscreteUniform(0, 𝑛 ) were chosen randomly and independently. If 𝑘 ≠

𝑙 and C = 0 then C ← 1/𝑛. 

The STDP-SORN model was implemented in Cython and OpenMP.  

All code was verified using a set of unit tests with 91% code coverage. 

Reconstruction errors and network subsampling 
Reconstruction errors were implemented by randomly rewiring connections: A fraction 𝜉 of the edges 
of the network was randomly removed, ignoring their signs. The same number of edges was then 
randomly reinserted and the signs were adjusted to match the sign of the new presynaptic neuron. 
Partial connectomic reconstruction was implemented by network subsampling: A fraction 𝑓 ∈ [0,1]  
of the neurons was uniformly drawn. The subgraph induced by these neurons was preserved, its 
complement discarded. 

Connectomic cortical network measures 
The following measures (Figure 3-3a) were computed: (1) relative excitatory-excitatory reciprocity, 
(2) relative excitatory-inhibitory reciprocity, (3) relative inhibitory-excitatory reciprocity, (4) relative 
inhibitory-inhibitory reciprocity, (5) relative excitatory recurrency, and (6) excitatory in/out-degree 
correlation. All measures were calculated on binarized networks as follows: 

Reciprocity 𝑟  with 𝑥, 𝑦 ∈ {𝑒,  𝑖} , e=excitatory, i=inhibitory, was defined as the number of 

reciprocally connected neuron pairs between neurons of population 𝑥  and 𝑦  divided by the total 
number of directed connections from 𝑥 to 𝑦. If the number of connections from 𝑥 to 𝑦 was zero then 
𝑟  was set to zero. Hence 𝑟  was an estimate for the conditional probability of observing the 

reciprocated edge of a connection from 𝑦 to 𝑥, given a connection from 𝑥 to 𝑦. The relative excitatory-
inhibitory reciprocity was defined as rr = 𝑟 /𝑝 . I.e., relative reciprocities were obtained by 
dividing the reciprocity of a network by the expected reciprocity of an ER network with the same 
connectivity. 

Relative excitatory recurrency was defined as 𝑟( ) = tr(C )/(𝑛 𝑝 ) , where C  was the excitatory 
submatrix and tr denoted the trace of the matrix. The cycle length parameter 𝑛 was set to 𝑛 = 5. 

The excitatory in/out-degree correlation 𝑟 /  was the Pearson correlation coefficient of the in- and out-

degrees of neurons of the excitatory subpopulation. Let 𝑑 ,  denote the in-degree of neuron 𝑘 and 𝑑 ,  
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the out-degree of neuron 𝑘. Let 𝑑 = ∑ 𝑑 ,  and 𝑑 = ∑ 𝑑 , , with 𝑛  the total number of 

excitatory neurons. Then 𝑟 / =
∑ ( , )( , )

∑ , ∑ ,

 . 

Bayesian model selection 
Bayesian model selection was performed on networks sampled from the seven models as follows: 
First, a noise-free network C  with 2000 neurons was drawn from one of the network models 𝑚 ∈

[1, … ,7]. Second, this noise-free network was perturbed with noise of strength 𝜉 as described above. 
Then, a fraction 𝑓  of the network was subsampled, yielding C#.  

The Bayesian posterior 𝑝(𝛉|C#)    was then calculated on the noisy subnetwork C#  using an 
approximate Bayesian-sequential Monte Carlo (ABC-SMC) method. The implemented ABC-SMC 
algorithm followed the ABC-SMC procedure proposed by (Toni and Stumpf 2010) with slight 
modifications to ensure termination of the algorithm, as described below. The ABC-SMC algorithm 
was implemented as custom Python library (see 
https://gitlab.mpcdf.mpg.de/connectomics/discriminatEM).  

The network measures 𝛄 = (rr , rr , rr , rr , 𝑟 , 𝑟( ))  described above were used as summary 

statistics for the ABC-SMC algorithm. The distance between two networks C# and C  was defined as 

𝑑𝛄 C#, C = ∑
𝛄 # 𝛄

𝛄 , 𝛄 ,
, where the sum over 𝑘 was taken over the six network measures. 

The quantities 𝛄 ,  and 𝛄 ,  were the 80% and 20% percentiles of the measure 𝛄 , evaluated on an 

initial sample from the prior distribution of size 2000; the particle number, i.e., the number of samples 
per generation, was set to 2000. If a particle of the initial sample contained an undefined measure (e.g., 
in-/out-degree correlation), it was discarded. When 𝛄 ,  and 𝛄 ,  were equal, the corresponding 

normalization constant of the distance function was set to the machine epsilon instead. The initial 

acceptance distance 𝜖  was the median of the distances 𝑑𝛄 C#, C  as obtained from the same 

initially sampled connectomes C . 

After each generation, 𝜖  for the following generation was set to the median of the error distances 

𝑑𝛄 C#, C  of the particles in the current generation. Particles were perturbed hierarchically. First, a 

model 𝑚 was drawn from the current approximating posterior model distribution. With probability 
0.85 the model 𝑚 was kept, with probability 0.15 it was redrawn uniformly from all models. Second, 
given the sampled model, a single particle from the model specific particles was sampled. The 
sampled particle was perturbed according to a multivariate normal kernel with twice the variance of 
the variance of the particles in the current population of the given model. The perturbed particle was 
accepted if the error distance was below 𝜖 . To obtain again 2000 particles for the next population, 
2000 particle perturbation tasks were run in parallel. However, to ensure termination of the algorithm, 
each of the 2000 tasks was allowed to terminate without returning a new particle if more than 2000 
perturbation attempts within the task were not successful. Model selection was stopped if only one 
single model was left, the maximum number of 8 generations was reached, the minimum 𝜖 =

0.175 was reached or less than 1000 accepted particles were obtained for a population. See code for 
implementation details. 

Functional testing 
The ER-ESN, EXP-LSM and LAYERED models were trained to discriminate natural texture classes, 
which were represented by one natural image each. Samples of length 500 pixel of these classes were 
obtained at random locations of these images. These samples were then fed into LAYERED networks 
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via a single input neuron projecting to the first layer of the network. In the ER and EXP case the input 
neuron projected to all neurons in the network. Within the recurrent network, the dynamical model 
was given by 𝐚(𝑡 + 1) = (1 − 𝛼)𝐚(𝑡) + 𝛼 relu(C𝐚(𝑡) + 𝐮(𝑡)), where C was the adjacency matrix, 𝐮 
the input, a the activation, 𝛼 = 0.1 the leak rate and relu(∙) = max (0,∙). Readout was a softmax layer 
with seven neurons 𝑜 , … , 𝑜 ; one neuron for each class. Adam (Kingma and Ba 2014) was used to 
train all the forward connections with exception of the input connections. The loss 𝑙  was the 
categorical cross entropy accumulated over the last 250 time steps 𝑙 =

− ∑ 𝛿 , ( )log (𝑜 (𝑡)), ,.., , … , where 𝑖 denoted the sample and c(𝑖) the ground truth class 

of sample 𝑖 . At prediction time the predicted class 𝑐∗  was 𝑐∗ = argmax ∈{ ,…, } ∑ 𝑜 (𝑡). The 

model was implemented in Theano (https://deeplearning.net/software/theano) and Keras 
(https://keras.io) as custom recurrent layer and run on Tesla M2090 GPUs. See code for details of the 
implementation. 

In the SYNFIRE model, a conductance based spiking model was used with membrane potential �̇� =

(𝑣 − 𝑣)/𝜏  with 𝜏 = 20ms, inhibitory reversal potential 𝑣 , = −80mV, excitatory reversal 

potential 𝑣 , = 0, resting potential 𝑣 = −70𝑚𝑉 , spiking threshold 𝑣 = −55mV, 

inter pool delay 𝑑 ∼ U(0.5,2), excitatory intra pool jitter 𝑑 , ∼ U(0,0.3) inhibitory intra pool 

jitter 𝑑 , ∼ U(0.3, 0.9), excitatory refractory period 𝜏 , = 2ms and inhibitory refractory period 

𝜏 , = 1ms. On spiking of presynaptic neuron 𝑗 the membrane potential of postsynaptic neuron 𝑖 was 

increased by 𝑔 (𝑣 , − 𝑣 ) where 𝑔  denoted the presynaptic efficacy, 𝑣 ,  the 

presynaptic reversal potential and 𝑣  the postsynaptic membrane potential. The excitatory synaptic 

efficacy 𝑔  and the inhibitory synaptic efficacy 𝑔  were functions of the pool size and were obtained 
by interpolating 𝑠 = [  80,   100,    120,    150,   200,    250,   300] , log (𝑔 ) = [ −2.1, −2.25,

−2.28, −2.365, −2.6, −2.625, −2.75]  and log (𝑔 ) =  [−0.45, −0.7, −0.763, −0.894, −1.25,

−1.25, −1.5] linearly. 

The fractional chain activation 𝑓  was calculated as follows: Let 𝑛 (𝑡) denote the number of active 
neurons of pool 𝑖  between time 𝑡  and 𝑡 +Δ𝑡 , with Δt = 0.1ms . Let the maximal activation be 

𝑛(𝑡) = max 𝑛 (𝑡)  and define the pool activity indicator 𝛿 (𝑡) = 𝐼(𝑛 (𝑡) > , 𝑛(𝑡) =

𝑛 (𝑡), |{𝑖|𝑛(𝑡) = 𝑛 (𝑡)}| = 1) . Let the cumulative activity be 𝑐 (𝑡) = ∑ 𝑛 (𝑡)𝛿 (𝑡)  and 𝑡 =

max 𝑡 𝑐 (𝑡) < 1.2 𝑠  ∀𝑖 . The number of activated pools was 𝑁 = |{𝑖|∃𝑡 < 𝑡 : 𝛿 (𝑡) = 1}| and 

the fractional chain activation 𝑓 = 𝑁/𝑙 in which 𝑙 was the chain length. Fractional pool activation 
𝑓  at time 𝑡 was the fraction of neurons in a pool that exceeded a threshold activity 𝑣 =

−55mV between time 𝑡 and 𝑡 +Δ𝑡, with Δ𝑡 = 0.1𝑚𝑠. 

Additional model-functional testing was performed. Also SYNFIRE, FEVER, API and STDP-SORN 
networks were trained to discriminate textures, analogous to the ER-ESN and EXP-LSM models. The 
test previously applied to the SYNFIRE model was not applied to the remaining models because the 
SYNFIRE model was the only integrate-and-fire model. The recombination memory test, originally 
proposed as part of the FEVER model, was also applied to the API model and vice versa the antiphase 
inhibition test, originally proposed as part of the API model was also applied to the FEVER model. 
These two tests were not applied to the remaining models because these lacked feature vectors. The 
test for uncorrelated and equally distributed activity, originally proposed as part of the STDP-SORN 
model, was also not applied to the remaining models because they did not feature binary threshold 
neurons. If a model was not able to carry out a given task due to inherent properties of that model such 
as, e.g., absence of feature vectors, the model was considered to fail that task. 
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Training, sparsification, and connectomic separability of recurrent neural networks 
trained on different tasks 

Architecture and initialization of recurrent neural networks 
Recurrent neural networks (RNNs) consisting of 1800 excitatory, 200 inhibitory and a single input 
neuron were trained on either a texture discrimination or a sequence memorization task (Figure 3-7). 
Each of the 2000 neurons in the RNN received synaptic inputs from the input neuron and from all 
other RNN neurons. The total input to neuron i at time t was given by Ii,t = Wi,1×A1,t-1 + … + 
Wi,2000×A2000,t-1 + vi×ut + bi, where Wi,j is the strength of the connection from neuron j to neuron i. 
Connections originating from excitatory neurons were non-negative, while connections from 
inhibitory neurons were non-positive. Self-innervations was prohibited (Wi,i = 0 for all i). Aj,t-1 = 
max(0, min(2, Ii,t-1)) is the activation of neuron j in at time t-1. The input signal ut was projected to 
neuron i by connection of strength vi. bi was a neuron-specific bias.  

Prior to training, RNNs were initialized as follows (Figure 3-7a): Neuronal activations Ai,0 were set to 
zero. Internal connection strengths Wj,i were sampled from a truncated normal distribution (by 
resampling values with absolute values greater than two). If necessary, the sign of Wj,i was inverted. 
Connections from inhibitory neurons were rescaled such that <Wj> = 0, where <.> denotes the 
average. Finally, connection strengths were rescaled to a standard deviation of (2 / 2001)1/2 (He et al. 
2015). Connections from the input neuron were initialized by the same procedure. Neuronal biases 
were set to minus <v>×<u>. 

Texture discrimination task 
RNNs were trained to discriminate between seven different natural textures. The activity of the input 
neuron, ut, was given by the intensity values of 100 consecutive pixels in a texture image. For each 
texture, a different excitatory neuron was randomly chosen as output neuron. The RNNs were trained 
to activate an output neuron if and only if the input signal was sampled from the corresponding natural 
texture. 

The texture images were split into training (top half), validation (third quarter), and test sets (bottom 
quarter). Input sequences were sampled by random uniform selection of a texture image, of a row 
therein, and of a pixel offset. The sequences were reversed with 50% probability. The excitatory 
character of the input neuron was emulated by normalizing the intensity values within each gray-scale 
image, clamping the values to two standard deviations and adding a bias of two. 

The RNNs were trained by minimizing the cross-entropy loss on mini-batches of 128 sequences using 
Adam (Kingma and Ba 2014) (learning rate: 0.0001, β1: 0.9 and β2: 0.999). The gradient was clipped 
to a norm of at most 1. Every ten gradient steps, the RNN was evaluated on a mini-batch from the 
validation set. If the running median of 100 validation losses did not decrease for 20,000 consecutive 
gradient steps, the connectivity matrix w was saved for offline analysis and then sparsified (Figure 3-
7a). Following (Han et al. 2015), connections with absolute connection strength below the 10th 
percentile were pruned (and couldn’t be regained thereafter). The validation loss and gradient step 
counter were reset before training of the sparsified RNN continued (Figure 3-7a). 

Four RNNs were trained with different sets of initial parameters and different training sequence 
orders. Each RNN was trained for around 5 days and 21 hours, corresponding to roughly 5.75 million 
training steps (Python 3.6.8, NumPy 1.16.4, TensorFlow 1.12, CUDA 9.0, CuDNN 7.4, Nvidia Tesla 
V100 PCIe; Figure 3-7b,c). 
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Sequence memorization task 
In the sequence memorization task, RNNs were trained to output learned sequences at the command of 
the input signal. The sequences were 100-samples-long whisker traces from (Clack et al. 2012). The 
input signal determined the onset time and type of sequence to generate. The activity of the input 
neuron, ut, was initially at zero (u0 = 0) and switched to either +1 or -1 at a random point in time. The 
RNN was trained to output zero while the input is zero, to start producing sequence one at the positive 
edge, and to generate sequence two starting at the negatives edge in ut. The whisker traces were drift-
corrected, such that they started and ended at zero. The amplitudes were subsequently divided by twice 
their standard deviation. 

Training proceeded as for texture discrimination. The mean squared error was used as loss function. 
Four RNNs with different random initializations and different training sequence orders were each 
trained for roughly 15 days and 22 hours, corresponding to 18.5 million training steps. 

Analysis of RNN connectomes 
Connectivity matrices were quantitatively analyzed in terms of the relative excitatory-excitatory 
reciprocity (rree), the relative excitatory-inhibitory reciprocity (rrei), the relative inhibitory-excitatory 
reciprocity (rrie), the relative inhibitory-inhibitory reciprocity (rrii), the relative prevalence of cycles of 
length 5 (r(5)), and the in-out degree correlation (ri/o) (Figure 3-7d-i). The connectome statistics were 
then further processed using MATLAB R2017b. Equality of connectome statistics across different 
tasks was tested using the two-sample Kolmogorov-Smirnov test. To visualize structural similarity of 
neural networks in two dimensions, t-SNE (Van der Maaten and Hinton 2008) was applied to the six 
connectome statistics. For a quantitative measure of structural separability of RNNs, the connectomic 
distance dγ(Ci, Cj) (see “Bayesian model selection”) was computed for all pairs of RNNs. dγ(Ci, Cj) < θ 
was used to predict whether RNNs i and j were trained on the same task. The performance of this 
predictor was evaluated in terms of the area (A) under the receiver operating characteristic (ROC) 
curve, and accuracy. The sensitivity index d’ was computed as 21/2Z(A), where Z is the inverse of the 
cumulative distribution function of the standard normal distribution. 

Whether information about connection strength helps to distinguish texture discrimination and 
sequence memorization RNNs (Figure 3-7g-i) was tested as follows: For each RNN, the configuration 
with average connectivity closest to 24% was further sparsified by discarding the weakest 5, 10, 15, .., 
95% of connections before computing the connectome statistics. Separability of texture discrimination 
and sequence memorization network based on the connectome statistics was quantified as above.  

Data availability 
The data that support the findings of this study are available at https://discriminatEM.brain.mpg.de. 

Code availability 
All methods were implemented in Python 3 (compatible with version 3.7), unless noted otherwise. All 
code is available under the MIT license at https://gitlab.mpcdf.mpg.de/connectomics/discriminatEM. 
To install and run discriminatEM please follow the instruction in the readme.pdf provided within 
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Contributions: Development of automated reconstruction methods, originally for an ATUM-mSEM 
EM volume from mouse primary somatosensory cortex (Sievers unpublished) and then adapted to 
SBEM datasets (figure 4-1), with Meike Sievers and Martin Schmidt and in collaboration with 
scalable minds GmbH. Development of methods for the analysis of axonal target distributions from 
automated reconstructions under consideration of error rates (figures 4-3D and 4-5H). Development of 
statistical model of cortical neuropil for inference of excitatory and inhibitory synapse proportions and 
of their respective postsynaptic target distributions (figures 4-4 and 4-5J,K). 

 

Research article summary 

Introduction 
The analysis of the human brain is a central goal of neuroscience, but for methodological resons, 
research has focused on model organisms, the mouse in particular. Because substantial homology was 
found at the level of ion channels, transcriptional programs, and basic neuronal types, a strong 
similarity of neuronal circuits across species has also been assumed. However, a rigorous test of the 
configuration of local neuronal circuitry in mouse versus human—in particular, in the gray matter of 
the cerebral cortex—is missing. 

The about 1000-fold increase in number of neurons is the most obvious evolutionary change of 
neuronal network properties from mouse to human. Whether the structure of the local cortical circuitry 
has changed as well is, however, unclear. Recent data from transcriptomic analyses has indicated an 
increase in the proportion of inhibitory interneurons from mouse to human. But what the effect of such 
a change is on the circuit configurations found in the human cerebral cortex is not known. This is, 
however, of particular interest also to the study of neuropsychiatric disorders, because in these, the 
alteration of inhibitory-to-excitatory synaptic balance has been identified as one possible mechanistic 
underpinning. 

Rationale 
We used recent methodological improvements in connectomics to acquire data from one macaque and 
two human individuals, using biopsies of the temporal, parietal, and frontal cortex. Human tissue was 
obtained from neurosurgical interventions related to tumor removal, in which access path tissue was 
harvested that was not primarily affected by the underlying disease. A key concern in the analysis of 
human patient tissue has been the relation to epilepsy surgery, when the underlying disease has 
required often year-long treatment with pharmaceuticals, plausibly altering synaptic connectivity. 
Therefore, the analysis of nonepileptic surgery tissue seemed of particular importance. We also 
included data from one macaque individual, who was not known to have any brain-related pathology. 
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Results 
We acquired three-dimensional electron microscopy data from temporal and frontal cortex of human 
and temporal and parietal cortex of macaque. From these, we obtained connectomic reconstructions 
and compared these with five connectomes from mouse cortex. On the basis of these data, we were 
able to determine the effect of the about 2.5-fold expansion of the interneuron pool in macaque and 
human cortex compared with that of mouse. Contrary to expectation, the inhibitory-to-excitatory 
synaptic balance on pyramidal neurons in macaque and human cortex was not substantially altered. 
Rather, the interneuron pool was selectively expanded for bipolar-type interneurons, which prefer the 
innervation of other interneurons, and which further increased their preference for interneuron 
innervation from mouse to human. These changes were each multifold, yielding in effect an about 10-
fold expanded interneuron-to-interneuron network in the human cortex that is only sparsely present in 
mouse. The total amount of synaptic input to pyramidal neurons, however, did not change according to 
the threefold thickening of the cortex; rather, a modest increase from about 12,000 synaptic inputs in 
mouse to about 15,000 in human was found. 

Conclusion 
The principal cells of the cerebral cortex, pyramidal neurons, maintain almost constant inhibitory-to-
excitatory input balance and total synaptic input across 100 million years of evolutionary divergence, 
which is particularly noteworthy with the concomitant 1000-fold expansion of the neuronal network 
size and the 2.5-fold increase of inhibitory interneurons from mouse to human. Rather, the key 
network change from mouse to human is an expansion of almost an order of magnitude of an 
interneuron-to-interneuron network that is virtually absent in mouse but constitutes a substantial part 
of the human cortical network. Whether this new network is primarily created through the expansion 
of existing neuronal types, or is related to the creation of new interneuron subtypes, requires further 
study. The discovery of this network component in human cortex encourages detailed analysis of its 
function in health and disease.  

 

Connectomic screening across mammalian species: Comparison of five mouse, two macaque, and two human 
connectomic datasets from the cerebral cortex. (A) Automated reconstructions of all neurons with their cell bodies in the 
volume shown, using random colors. The analyzed connectomes comprised a total of ~1.6 million synapses. Arrows indicate 
evolutionary divergence: the last common ancestor between human and mouse, approximately 100 million years ago, and the 
last common ancestor between human and macaque, about 20 million years ago. (B) Illustration of the about 10-fold 
expansion of the interneuron-to-interneuron network from mouse to human. 
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Research article 
The human cerebral cortex houses 1,000 times more neurons than the cerebral cortex of a 
mouse, but the possible differences in synaptic circuits between these species are still poorly 
understood. We used 3-dimensional electron microscopy of mouse, macaque and human cortical 
samples to study their cell type composition and synaptic circuit architecture. The 2.5-fold 
increase in interneurons in humans compared to mouse was compensated by a change in axonal 
connection probabilities and therefore did not yield a commensurate increase in inhibitory-vs-
excitatory synaptic input balance on human pyramidal cells. Rather, increased inhibition 
created an expanded interneuron-to-interneuron network, driven by an expansion of 
interneuron-targeting interneuron types and an increase in their synaptic selectivity for 
interneuron innervation. These constitute key neuronal network alterations in human cortex. 

The human brain, with its 86 billion nerve cells (Herculano-Houzel 2009) forming a network of 
unparalleled complexity, is of special interest for neuroscience. Yet, over the last 50 years, rodents (in 
particular the mouse) have emerged as key research subjects, offering methodological opportunities 
not available for the study of the human brain. Because at the molecular level, evolutionary homology 
is substantial for ion channels, synaptic receptors, and other key molecular constituents of the brain, 
similar homology has been assumed for neuronal circuits, especially in the cerebral cortex. However, 
comparative synaptic-resolution connectomic studies of mouse and human cortex are required to 
determine the degree to which circuit structure may have evolved between species.  

Detailed studies of the human cerebral cortex have provided data on cellular composition of the 
neuropil (von Bartheld et al. 2016, Hodge et al. 2019, Krienen et al. 2020, Herculano-Houzel 2009, 
Letinic et al. 2002, Cajal 1899, Kooijmans et al. 2020, Berg et al. 2021, Bakken et al. 2021, Shapson-
Coe et al. 2021, Field et al. 2021, Szegedi et al. 2020, Sousa André et al. 2017), synaptic properties 
(DeFelipe et al. 2002, Rollenhagen et al. 2020, Domínguez-Álvaro et al. 2019, Marco and DeFelipe 
1997, Wang et al. 2015, Molnár et al. 2008, Melchitzky et al. 1999, Domínguez-Álvaro et al. 2021, 
Melchitzky and Lewis 2008, Cano-Astorga et al. 2021, Cragg 1976) and neuronal morphology (Yáñez 
et al. 2005, Nimchinsky et al. 1999, Boldog et al. 2018, del Rı́o and DeFelipe 1997), yielding a 
comparative description with reference to rodents that indicates a larger number of glial cells (von 
Bartheld et al. 2016), larger synapses (Benavides-Piccione et al. 2002, Szegedi et al. 2016, Molnár et 
al. 2008), and more inhibitory interneurons to form the neuronal network of the human cortex (Bakken 
et al. 2021). This latter comparison had been confounded by rodent data reporting an interneuron 
fraction of 8-25%, (Micheva and Beaulieu 1995, Meyer et al. 2011, Džaja et al. 2014, Tasic et al. 
2018, Hodge et al. 2019, Krienen et al. 2020, Ren et al. 1992, Beaulieu et al. 1994, Lefort et al. 2009), 
thus potentially on par with data from primates (range 15-37%, (Beaulieu et al. 1992, Gabbott and 
Bacon 1996, Hornung and De Tribolet 1994, del Río and DeFelipe 1996, Jones et al. 1994)). Recent 
transcriptomic data substantiates an at least 2-fold increase (Boldog et al. 2018), suggesting the 
balance between inhibitory and excitatory synapses to be substantially shifted towards inhibition. 
Furthermore, based on the about 3-fold larger extent of the dendritic trees of human pyramidal cells, it 
has been assumed that human cortical neurons receive substantially more synapses than those of 
rodents (e.g., 10,000 in rodents vs 30,000 in human, (Eyal et al. 2018, Benavides-Piccione et al. 2002, 
Benavides-Piccione et al. 2013, Mohan et al. 2015, Elston et al. 2001)).  

However, a circuit-level analysis of human cortex that addresses the potential effect of multi-fold 
increased inhibitory circuit elements is still missing. Would, as a result, the inhibitory-to-excitatory 
synaptic balance be increased in the human cortex? Because inhibitory-to excitatory synaptic balance 
has emerged as a key set point that might be altered in neuropsychiatric diseases (studied primarily in 
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Figure 4-1 Comparative connectomic analysis of mouse, macaque and human cortex. Dense connectomic reconstructions 
from layer 2/3 of 5 cortical areas of mouse (bottom, n=5 individuals) and from 4 cortical areas of macaque and human (n=3 
individuals). Note matched cortical areas (A2, STG) across all 3 species, and paired samples from S1 (mouse, macaque). 
Total of 202,954 axons and 1,618,129 million synapses analyzed (see Methods). The raw 3D EM data of mouse datasets S1, 
V2, PPC and ACC were previously published (Karimi et al. 2020), but not their dense reconstruction. Left, simplified 
phylogenetic tree (based on (Hedges and Kumar 2002)) indicating time to last common ancestor between human (Homo 
sapiens) and rhesus macaque (Macaca mulatta), mouse (Mus musculus). Scale bars for brain sketches. S1, primary sensory 
cortex; A2, secondary auditory cortex; V2, secondary visual cortex; PPC, posterior parietal cortex; ACC, anterior cingulate 
cortex; STG, superior temporal gyrus; IFG, inferior frontal gyrus. 

mouse models, (Ramocki and Zoghbi 2008, Rubenstein and Merzenich 2003)), this question is 
relevant for the healthy and diseased human brain.  

We used 3-dimensional electron microscopy followed by sparse and dense circuit reconstruction 
(Motta et al. 2019) to map the synaptic and cellular composition of layer 2/3 in mouse, macaque and 
human cortex. Sampling from multiple individuals and cortical regions, we screened for key 
connectomic alterations between mouse and human cortex, which a single dataset from a given human 
individual and disease condition would not have allowed (Shapson-Coe et al. 2021). While our human 
data was from diseased individuals who underwent neurosurgical interventions, the patients had not 
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undergone yearlong treatment for epileptic disorders that could have substantially altered the synaptic 
network. By including additional data from macaque in our study, we furthermore could ensure that 
none of the reported effects was exclusively attributable to a diseased state of the human brain. 

We determined the circuit effects of an expanded inhibitory neuron population in human cortex and 
obtained a quantitative picture of the human pyramidal cell synaptic input architecture. 

Results 
We obtained tissue samples (Figure 4-1) from the cerebral cortex of two human individuals (a 69-year-
old female and an 80-year-old male) who underwent neurosurgical operations (access tissue that had 
to be removed during surgery and would have been discarded otherwise, see Methods) and of one 
rhesus macaque (Macaca mulatta, 15.6-year old male). Individual age corresponded to 83%, 102% and 
52% of statistical life expectancy, respectively.  

From these tissue samples, we acquired 3-D electron microscopy (EM) image datasets in cortical layer 
2/3 (L2/3) using either serial blockface EM (SBEM) ((Denk and Horstmann 2004), macaque primary 
somatosensory cortex (S1) dataset sized 176x224x100 μm3; superior temporal gyrus (STG) sized 
175x225x108 μm3; human (H5) STG sized 166x216x112 μm3 and human (H6) inferior frontal gyrus 
sized 170x215x79 μm3, all at a voxel size of 11.24x11.24x(28-30) nm3) or ATUM-multiSEM 
((Hayworth et al. 2014, Hayworth et al. 2006, Eberle et al. 2015), dataset human (H5) STG spanning 
all cortical layers, sized 1.7 mm x 2.1 mm x 28.3 µm and dataset from the same sample focused on 
L2/3 sized 1.1 mm x 1.1 mm x 82 µm (total 0.41 PB of data) both  at a voxel size of 4x4x(35-40)nm3). 
For comparison with mouse cortex, we densely reconstructed previously published 3D EM datasets 
from L2/3 of S1, V2, PPC and ACC cortical areas (Karimi et al. 2020) and acquired an additional 
dataset from mouse A2 cortex sized 115x175x109 μm3, approximately corresponding to the location 
of the STG datasets from macaque and human. In the following, we report effects that were multi-fold 
between mouse (n=5 individuals, n=5 cortical regions) and macaque/human (n=3 individuals, n=4 
cortical regions) with a focus on the direct comparison of L2/3 between mouse and human. 

Inhibitory vs. excitatory neuronal composition 
The fraction of nerve cells that were interneurons (INs), increased 2.5-fold between mouse and 
macaque/human (Figure 4-2A,B, n=88 of 734 vs. 278 of 914 neurons from n=5 mouse and n=4 
macaque/human datasets pooled, p<0.001, see Methods, consistent with recent reports from 
transcriptomic cell type analyses, (Bakken et al. 2021, Krienen et al. 2020)). This change in the 
neuronal composition of cortical tissue could have profound effects on the synaptic input to pyramidal 
(excitatory) neurons (ExNs, Figure 4-2C): If all other circuit properties were unchanged between 
mouse and human, the inhibitory-to-excitatory balance (i/e balance) would also be 2.5-fold shifted 
towards inhibition compared to mouse. 
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Synaptic inputs to pyramidal cell dendrites 
We therefore first analyzed the synaptic input to pyramidal cell dendrites in mouse, macaque and 
human (Figures 4-2D-H). While the rate of synapses onto the dendritic shaft of pyramidal cells 

 

Figure 4-2 Multifold changes in cellular composition and synaptic input of mouse vs. macaque and human cortex. (A,B) 
Reconstruction of excitatory neurons (ExN, magenta) and inhibitory interneurons (IN, white) shows 2.54-fold expansion of 
the interneuron pool from mouse to macaque and human, which (C) would predict a similar-fold increase in the inhibitory 
input onto ExNs, which would substantially alter the set point for the inhibitory vs. excitatory synaptic input balance in 
human compared to mouse. (D-F) Mapping of the synaptic input to excitatory neuron dendrites (D) showed an unaltered rate 
of shaft input synapses (E) but a 2.65-fold decrease of spine input synapses (E), resulting in a 2.72-fold increase in the 
fraction of input synapses made onto dendritic shafts (F). (G) Other dendritic inputs were rare but slightly increased from 
mouse to macaque and human: doubly innervated spines: 4.49±0.01 vs. 4.68±0.01 and 6.91±0.01 %; stub synapses: 
1.44±0.00 vs 2.17±0.01 and 4.71±0.01 %; spine neck innervations: 0.26±0.00 vs 0.84±0.00 and 0.67±0.00 %, n=1111, 598, 
1040 total synapses, respectively. Insets in F,G: EM images of example synapses from Human STG multiSEM-imaged (F); 
Macaque STG, Human IFC and Macaque S1, respectively (left to right in G). (H) Concomitant increase of shaft synapse 
input could support the altered i/e balance model in C, if axonal properties remain unchanged from mouse to macaque and 
human, analyzed in Figs. 3 and 4. Scale bars, 1 µm unless indicated otherwise. Data in A from automated reconstructions, in 
B, D-H from expert reconstructions. 
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remained largely constant from mouse to macaque and only slightly increased in human (0.16±0.13 
per µm of dendritic shaft length vs. 0.17±0.11 and 0.21±0.08; n=46, 36, 49; p=0.6 and p=.003 for 
mouse to macaque and mouse to human, respectively, Kolmogorov–Smirnov (KS) test; mean±s.d.; 
Figure 4-2D,E), synapses onto dendritic spines were 2.7-fold sparser in macaque and human 
(1.99±0.65 per µm of dendritic shaft length (mouse) vs. 0.86±0.36 (macaque) and 0.67±0.25 (human); 
mean±s.d.; n=46,36,49, respectively; p<10-18, KS test mouse vs. macaque and human; Figure 4-2D,E). 
As a result, the fraction of synapses made onto the dendritic shafts of pyramidal cells (out of all input 
synapses to these dendrites) was increased 2.7-fold (n=1111 synapses, mouse and n=1638 synapses 
macaque and human, p<0.001, KS test, Figure 4-2F,H). Synaptic inputs to spine necks, stubs or double 
innervation of dendritic spines were rare but slightly increased in macaque and human (Figure 4-2G, 
see figure legend for statistics).  

In mouse, synapses onto dendritic spines have been reported to be predominantly excitatory 
(Braitenberg and Schüz 1998, Motta et al. 2019) and synapses onto dendritic shafts predominantly 
inhibitory (Karimi et al. 2020, Kwon et al. 2019, Kubota et al. 2016). Therefore, the finding of a 2.7-
fold increased fraction of shaft synapses could indicate a substantial shift in the set point for the i/e 
balance in human (as recently claimed for non-human primate (Wildenberg et al. 2021)). For this to be 
correct, however, the properties of excitatory and inhibitory axons, in particular their preference for 
establishing synapses onto dendritic shafts and spines, would have to remain unaltered between mouse 
and macaque and human. This we investigated next (Figures 4-3 and 4-4). 

Synaptic properties of excitatory and inhibitory neurons 
We first reconstructed axons of pyramidal cells and interneurons in mouse and human (Figure 4-3A-
C) to determine their synaptic preferences. The rate of spine innervation showed the well-documented 
dichotomy in mouse (Figure 4-3A,B, see (Motta et al. 2019, Karimi et al. 2020, Kuan et al. 2020)): 
pyramidal cell axons targeted dendritic spines with 61.47±9.26 % (mean±s.d,) of their output synapses 
(n=11 axons, n=367 output synapses), while interneurons only very rarely made an output synapses as 
the only synapse onto a dendritic spine (n=1 of 263 IN output synapses in mouse), with no overlap 
between the populations. In human, however, axons reconstructed from the cell bodies of pyramidal 
cells made only 30.37±16.16 % (mean±s.d.) of their output synapses onto dendritic spines (n=15 
axons, n=1126 output synapses), while interneurons maintained their almost complete exclusion of 
single spine innervation (Figure 4-3B,C; n=12 axons, n=345 output synapses, of which n=1 were 
single spine synapses; note that interneuron axons did however innervate dendritic spines as double 
innervations, in all species, as reported for subtypes of interneurons, (Kubota et al. 2007, del Río and 
DeFelipe 1995), see Figure A4-3; Note further that only the single spine innervation rate was used for 
the following analyses,). Thus the distributions of synaptic target properties between pyramidal and 
interneuron axons reconstructed from their cell body of origin were less separated in human (Figure 4-
3B) and indicated a change in axonal synaptic preference from mouse to human.  
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In the dense cortical neuropil, only a fraction of axons originates from neurons whose cell body is 

 

Figure 4-3 Synaptic target properties of excitatory and inhibitory neurons in mouse and human. (A-C) Axonal target 
properties from identified pyramidal cells and interneurons (n=50 neurons, n=2101 output synapses, cross-validated expert 
reconstructions, see wklink.org/7881 and wklink.org/3103  (mouse), wklink.org/9448 and wklink.org/2204 (human) for all 
reconstructions). Absence of single spine innervation for interneurons in mouse and human (B), but shift in spine innervation 
of excitatory axons from mouse to human, yielding a less separated synaptic preference of excitatory vs. inhibitory axons. 
(D-F) Axonal target properties from dense axonal reconstructions in mouse, macaque and human. Examples of dense axon 
populations from mouse A2 (D) and Human STG (F), all axons traversing boxes of 10x10x10 μm3 size shown (n=120 and 
n=89, respectively). Quantifications in (E) are based on all axons in the respective datasets (n=202,954 axons with 5 to 25
output synapses each; n=1,618,129 synapses). Gray, distribution of spine target fraction for all axons in the datasets, 
uncorrected. Black lines, average likelihood function of true spine target fraction under consideration of error rates (see 
methods). Broadening of axon target property distribution towards lower spine targeting in primate/human compared to 
mouse, that is however less pronounced than in soma-based axon reconstructions (B). (G-I) Path-length dependent axonal 
synapse sorting (PLASS) as a possible origin of broader axonal target property distributions in human. Example of pyramidal 
cell axon (G) from Human STG (path length: 3.74 mm, n=132 output synapses; same neuron as shown in C). Colors indicate 
synaptic target of axonal output synapses. (H,I) Distribution of axonal output synapses along pyramidal cell axons from 
human STG (n=15 axons, 1126 output synapses, expert reconstructions, n=12 reconstructions from mSEM dataset shown, 
for 3 axons from SBEM dataset see wklink.org/9448 and wklink.org/2204). Synapse symbols as in (G). Substantial increase 
in targeting of ExN spines over axonal path length (I). Data in A-C, G-I from expert reconstructions, D-F from dense 
reconstructions. 
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located in close proximity, while most have more distal origins. To study the target properties of all 
axons in the neuropil, also those without their cell body of origin in the data set, we next analyzed the 
dense population of axons in mouse vs. macaque and human that we obtained from the dense 
automated reconstructions (Figure 4-3D-F, n=202,954 axons total with n=1,618,129 output synapses). 
Mouse axons predominantly innervated spines (Figure 4-3E), as expected from the soma-based 
reconstructions (Figure 4-3B) and the small fraction of interneurons (Figure 4-2B). Densely sampled 
macaque and human axons, however, did not reproduce the soma-based axonal properties, but showed 
a broader distribution of spine innervation from 0-80% spine preference (here and in the following, 
spine preference implies fraction of an axon’s synapses established as single spine innervations, not 
considering doubly innervated spines).  

What could yield this difference in axonal properties between soma-based and dense reconstructions in 
macaque and human? In particular we needed to understand the origin of axons with >40% spine 
targeting in macaque and human (Figure 4-3E) that we had rarely observed in the soma-based 
reconstructions (Figure 4-3B). Soma-based reconstructions in datasets smaller than the complete 
axonal arbor bias axonal reconstructions towards local (not distally located) neurons, and to the 
proximal parts of these neurons’ axons. When analyzing the distance-dependence of axonal targeting 
properties for pyramidal axons from human (Figure 4-3G-I), we indeed found evidence for a 
substantial change from proximal axonal preference of shaft innervation to distal preference for spine 
innervation along the axon’s path ((Xu et al. 2020, Durand et al. 1996, Lenz et al. 2021) see (Schmidt 
et al. 2017) for a first report of such a path-length dependent synaptic sorting phenomenon along 
axons in the mammalian cerebral cortex and (Kornfeld et al. 2017, Carr and Konishi 1990) for earlier 
reports in the bird brain). We had to take this effect (Figure 4-3B,E,I) into account when comparing 
the axonal properties in these species (Figure 4-4). 

Excitatory vs. inhibitory synaptic input balance 
We first identified synapses onto a dendritic shaft of distal pyramidal cell dendrites and reconstructed 
the presynaptic axon from that synapse (“shaft-seeded” axons). Then we determined these axons’ 
synaptic target properties based on their other output synapses (Figure 4-4A). While in mouse, as 
expected, axons were clearly identifiable as excitatory vs. inhibitory based on their dichotomy in spine 
targeting preference (Figure 4-4A), the distributions of axonal properties were much less distinct in 
human, recapitulating the properties of densely reconstructed axons in macaque and human (Figure 4-
4A, compare to Figure 4-3B,E). Because this data did not allow the simple threshold-based 
classification of axons into inhibitory vs. excitatory that can be used in mouse, we needed a more 
rigorous approach for axon type determination (Figure 4-4C-E).  

We used the notion that the various types of axons and dendrites and their synaptic output and input 
properties in dense cortical neuropil are ultimately constrained by the synaptic composition of this 
neuropil volume (Figure 4-4B). The volumetric density of synapses onto dendritic spines in the 
neuropil, for example, has to be composed by the intermixing of the spine preference of the various 
axon types present in the neuropil, and similarly for other types of synapses. Because dense 3-D EM 
data allowed us to concomitantly measure the properties of extended stretches of axons and dendrites 
together with the dense volumetric synaptic composition of the neuropil, we could determine the 
occurrence and target properties of excitatory and inhibitory axons without having to make prior 
assumptions about their relative prevalence (see methods). 
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We built a model in which the synaptic properties of excitatory and inhibitory axons, and their relative 
prevalence were determined (Figure 4-4C,D): Inhibitory axons were modeled by a multinomial 
distribution based on point estimates for their synaptic target preferences, while for excitatory axons, a 
distribution of target preference was modeled by a Dirichlet-multinomial to account for the effects of 
broadened synaptic preference reported in Figure 4-3, see Methods. The model was fully constrained 
by the following input data, which we obtained from carefully curated expert reconstructions in all 
datasets (Figure 4-4B, n=11,308 synapses annotated): (1) volumetric fraction of spine synapses; (2) 
fraction of input synapses onto spines along spiny (ExN) dendrites; (3) fraction of output synapses 
onto spines along axons seeded from ExN dendritic spines; (4) fraction of output synapses onto spines 

 

Figure 4-4 Detailed analysis of inhibitory/excitatory input balance onto ExN dendrites. (A) Target properties of axons 
seeded at dendritic spines and shafts of ExN dendrites in mouse and human. Top, example reconstruction (Macaque STG), 
bottom, data from expert reconstructions in mouse S1 and Human STG (n=91 axons, n=745 output synapses) showing shift 
of axonal targeting analogous to densely reconstructed axons in mouse vs. human (compare Fig. 3E). (B-D) Model 
incorporating dense volumetric synapse densities together with dendritic and axonal targeting properties, but not using any 
assumption about excitatory vs. inhibitory synapses or axons: input data (B) from expert annotations (n=754 axons, 
n=11,308 synapses total) that fully constrain the model (C,D) (see Results and Methods; for model validation see Figure A4-
2). Shaded magenta curve: distribution of spine targeting by ExN axons; Magenta line: ExN shaft targeting by ExN axons; 
black line: IN shaft targeting by ExN axons; showing broadening of ExN axons’ spine targeting fraction and shift of 
excitatory and inhibitory shaft targeting from mouse to human. MQ: macaque. (E) Resulting estimates of inhibitory input 
fraction (i/(i+e) balance) onto ExN dendrites in mouse, macaque and human. Violin plots represent expected inhibitory input 
synapse fraction along ExN dendrites (distribution across n=1000 bootstrap samples per dataset). Open shading: only shaft 
and single spine inputs considered; gray shading: including multiply innervated spines and other inputs, see Fig. 2G. 
Synaptic input balance does not approach the inhibitory bias predicted by the increased fraction of INs in macaque and 
human (blue shading indicates prediction from mouse to macaque and human, 24.9%±3.2% (mean±s.d.); p<0.001, by 
bootstrap sampling; see Methods). All data from expert reconstructions. 
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along axons seeded from ExN dendritic shafts; (5) fraction of output synapses onto spines along axons 
seeded from IN (smooth) dendritic shafts. Note that these input data did not require a pre-hoc 
classification of the synapses or axons as inhibitory vs. excitatory, and did not contain the axons 
reconstructed from identified cell bodies (Figure 4-3A-C). With this input data, we obtained fits of the 
synaptic target properties of excitatory and inhibitory axons in each dataset (Figure 4-4C,D shown for 
mouse S1 and Human STG datasets): point estimates for the fraction of synapses made onto ExN 
spines, ExN shafts and IN shafts for inhibitory axons (Figure 4-4C,D) and distributions of these target 
fractions for excitatory axons. Together with the modeled relative prevalence of inhibitory vs. 
excitatory synapses, for any axonal stretch with any combination of x synapses onto shaft and y 
synapses onto spine, we obtain a probability of this axon to be excitatory vs. inhibitory (Figure 4-
4C,D, right panels). For validation of the model, we used the soma-based axon reconstructions (Figure 
4-3A-C) for which we had certainty about their excitatory vs. inhibitory property, and sampled local 
stretches from these ground truth axons, and asked the model to predict their excitatory vs. inhibitory 
character (E→I and I→E misclassification rates: 0% and 0% for mouse, 6.9% and 8.4% for primates; 
Figure A4-2).  

We then applied the model to determine the expected inhibitory vs. excitatory synaptic properties of 
ExN dendrites in all datasets (Figure 4-4E, bootstrapped to account for sample size in input data, and 
controlled for initial conditions, see Methods). We found that the inhibitory input balance increased 
only moderately from 9.3%±0.8% (mean±s.d.) in mouse to 13.8%±1.4% (p=0.001, bootstrap 
sampling) in macaque and human, revoking a setting in which the inhibitory to excitatory input 
balance were to change in proportion to the 2.5-fold increase in IN fraction from mouse to macaque 
and human (Figure 4-4E, compare to Figure 4-3C; p=0.003; when also considering all other types of 
input synapses, p<0.001; bootstrap sampling, see Methods). Rather, the increased fraction of shaft 
input synapses was compensated by a change in axonal targeting properties: excitatory axons made 
0.7%±0.3% of their synapses onto ExN shafts in mouse, but 12.0%±1.1% in macaque and human 
(p<0.001, bootstrap), and their IN shaft targeting changed from 4.4%±0.7% to 17.3%±1.7% (p<0.001, 
bootstrap, consistent with the automated axon reconstructions).  

This lack of enhanced inhibition onto ExN dendrites was also found for the proximal input domains of 
pyramidal cells (axon initial segment, soma and proximal dendrites, Figure A4-1), excluding the 
possibility that inhibitory synapses had been redistributed towards the perisomatic domains.  

These data yielded the important question where the expanded inhibitory population in human is 
establishing its synapses? 
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Figure 4-5 Selective expansion of interneuron types and its effect on the inhibitory-to-inhibitory network. (A-C) Dense 
reconstruction of all interneurons in mouse (A) and human (C) with labeling of multipolar (MP, purple, B) vs. non-
multipolar (BP, bipolar, bitufted, cyan, B) interneurons showing sparsity of BP interneurons in mouse (A) compared to 
human (C). (D) Proportion of BP interneurons 2.3-fold expanded from mouse to macaque and human. (E) Synaptic targets of 
BP vs. MP interneurons in macaque and human show selectivity for inhibitory (93% of synaptic targets, left) vs excitatory 
(87% of synaptic targets, right) postsynaptic partners. (F) Broader distribution of interneuron innervation selectivity in 
macaque and human vs. mouse from soma-based axon reconstructions. This predicts expansion of inhibitory-to-inhibitory 
connectivity in macaque/human vs. mouse (right panels). (G) Within the BP INs, IN targeting is further enhanced (from 
56.63±4.46% to 71.67±2.48%, p<0.05, bootstrapped from 126 and 314 synapses respectively for mouse vs macaque and 
human). (H) Analysis of densely reconstructed inhibitory axons and their targeting of interneuron dendrites (n=94,391 
synapses, n=11,384 axons) by inference of the most likely smooth dendrite targeting probability under consideration of the 
error rates of automated synapse detection.  Expansion of IN-to-IN connectivity as predicted from soma-based 
reconstructions (F). (I-K) Detailed analysis of inhibitory input balance to MP vs. BP IN subtypes across species. (I) example 
reconstructions of input synapses onto IN dendrites. (J) Inhibitory input determined from the model in Fig. 4 for interneuron
dendrites. 2.35-fold increase from mouse to human (18.9%±2.5% to 44.5%±7.3%, mean±s.d.) consistent with the prediction 
from IN expansion for IN dendrites (p=0.662). (J,K) Separate analysis of inhibitory input to MP vs. BP INs reveals 
difference in inhibitory input already in mouse (7.6% vs. 26.2%, p=0.001) that is further enhanced in macaque and human 
(24.2% vs. 44.3%, p=0.026). Data in H from dense reconstructions, otherwise expert reconstructions. 
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Properties of the expanded inhibitory neuronal network in human 
To determine the inhibitory network properties in mouse vs. human we first applied a simple IN 
classification based on the configuration of IN dendrites as multipolar (MP) vs. non-multipolar (which 
included bipolar, bitufted, vertically oriented dendritic trees, Figure 4-5A-D, labeled as “bipolar” (BP) 
for simplicity). The IN pool changed from dominated by multipolar INs in mouse (about 70-82% MP 
vs. 18-30% BP, Figure 4-5D, n=52 vs. 17) to a majority of bipolar INs in macaque/Human (53% BP; 
n=122 MP vs. n=135 BP, p<0.01, see methods for test Figure 4-5D). When mapping the synaptic 
target properties of these classes of INs in mouse vs. human (Figure 4-5E,F), we found a fraction of 
bipolar (BP) INs with almost exclusive innervation of other INs in human that was not found in mouse 
(Figure 4-5F,G, IN targeting by BP IN axons increased from 56% (70 IN targets out of 126 synapses, 
N=4 axons) to 72% (225 IN targets out of 314 synapses, N=9 axons), p=0.018, Figure 4-5G, see 
Methods). The changed IN pool composition together with the changed distribution of IN targeting 
properties would predict a substantial increase of IN-preferring inhibitory axons in the dense neuropil 
of human vs. mouse (Figure 4-5F). In fact, when analyzing the target preferences of inhibitory axons 
for smooth (IN) dendrites in mouse vs. macaque and  human from the dense automated reconstructions 
(Figure 4-5H), we find a substantial shift towards interneuron-to-interneuron connectivity that can 
account for the inhibitory synapses contributed by the expanded IN pool in macaque and human 
(average smooth dendrite targeting probability of inhibitory axons: 8.0%±15.0% in mouse vs. 
21.4%±29.0% in human; n=6565 vs. n=2048 axons; p=2.2×10-104, one-sided Kolmogorov-Smirnov 
test). Together with the increased interneuron fraction (Figure 4-2B), this would estimate the IN-to-IN 
network to expand 6.7-fold from mouse to human. Based on the model (Figure 4-4) we estimated the 
expansion to be 8.6-fold (from 1.0±0.2% IN-IN connectivity in mouse to 8.6±1.4% in macaque and 
human, Figure A4-2F, and Materials and Methods in appendix A4). 

To better understand the contributions of types of INs to this enhanced network, we then analyzed the 
synaptic input balance onto IN dendrites in MP and BP-INs in mouse, macaque and human (Figures 4-
5I-K). To our surprise, already in mouse, MP-INs and BP-INs have different inhibitory input balance 
(Figure 4-5I,K): While MP-INs receive 7.6±2.5% inhibitory input (bootstrapped mean±s.d.; n=105 
axons from n=5 mouse datasets, n=977 synapses total), BP-INs receive 26.2±5.0% (n=88 axons, 
n=694 synapses, p=0.001). In macaque and human, MP-INs receive inhibitory input that is 
commensurate to the fraction of INs in the cortex (24.2±6.4%, n=69 axons from n=4 datasets, n=514 
synapses; p=0.6 for scaling by IN fraction increase), while BP receive further enhanced inhibition 
(44.3±7.8%, n=71 axons, n=506 synapses, p=0.026). These data indicate differential inhibitory 
targeting across species, and may imply separate IN-to-IN circuits to be substantially enhanced in 
macaque and human. 

Excitatory synaptic network 
Finally, we wanted to determine the magnitude of the synaptic input to pyramidal cells in human 
cortex. With the expanded size of pyramidal cell dendritic trees, it has been assumed that human 
pyramidal cells receive a larger number of input synapses than mouse pyramidal cells (from about 
10,000 to about 30,000, (Benavides-Piccione et al. 2002, Benavides-Piccione et al. 2013, DeFelipe et 
al. 2002, Elston et al. 2001, Eyal et al. 2018). Because we found a strongly reduced spine-targeting 
synapse density in human cortex (Figure 4-2E), we wondered what the quantitative input structure of 
human pyramidal cells would in fact be (Figure 4-6A,B, and Figures A4-1 and A4-4). 
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We used our large-scale 3D EM datasets obtained in one human individual that spanned the entire 
depth of cortical gray matter to reconstruct a substantial portion of L2/3 pyramidal cells. Based on 
these reconstructions, we extrapolated to the full extent of the dendritic tree. The large dataset extent 
in-plane allowed us to map some pyramidal cell dendrites in their full extent from soma to dendritic 
tip, and use the properties of these completely mapped dendrites for estimating the total path length of 
pyramidal cell dendrites in human (see Methods). The resulting estimates of total dendritic path length 
(about 9-20 mm path length, Figure 4-6B, Figure A4-4) were consistent with light-microscopic 
reconstructions (Eyal et al. 2018, Mohan et al. 2015). Because we measured synaptic input density in 
parallel, we could exclude a compensation of lower dendritic path length by higher spine-targeting 
synapse density for individual pyramidal cells. Together, total synaptic input to pyramidal cells was 
12,000-17,000 in human L2/3, far below an increase corresponding to the about 3-fold thicker cerebral 
cortex yielding about 3-fold larger pyramidal cell dendritic trees compared to mouse (Figure 4-6B). 

Discussion 
The comparative analysis of mouse, macaque and human cortical neuronal networks revealed that the 
most substantial changes in neuronal architecture, the increase of pyramidal cell size and the numeric 
expansion of the interneuron pool, have not resulted in the most immediate possible circuit changes: 
neither an increase of total synaptic input on pyramidal cells, nor an overall shift of their synaptic 
input balance towards inhibition. Rather, we found an about 6-8-fold expanded interneuron-to-
interneuron network in human cortex (Figure 4-6C, Figure A4-2F). These circuit alterations point 
towards interneuron-to-interneuron connectivity as a key evolutionary change from mouse to primates 
including human. 

 

Figure 4-6 Scaling of pyramidal cell synaptic input and network properties from mouse to human. (A) Large-scale 3D EM 
dataset spanning all cortical layers from human cortex (STG) for reconstruction of dendritic arbors of L2/3 pyramidal 
neurons. (B) With about 3-fold reduced spine density from mouse to human, the about 3-fold increase in pyramidal cell 
dendritic path length yields only moderately increased number of input synapses for human pyramidal cells compared to 
mouse. Dashed lines, macaque. (C) Expanded IN-to-IN network, illustrated based on model fit (Fig. 4, Figure A4-2F, and 
Materials and Methods in appendix A4). Note 8.6-fold expansion of IN-to-IN connectivity from mouse to macaque and 
human. Data in A,B from expert reconstructions. In B right, lower limits of pyramidal cell total dendritic length and total 
input based on (Mohan et al. 2015), upper limits based on data in current study. Brain volume based on (Hofman 2014), 
number of neurons in entire brain based on (Herculano-Houzel 2009). 
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Dependence of spine rates on age 
Our finding of an almost constant total synaptic input to human pyramidal cells when compared to 
mouse may be affected by a reported age-dependent decline of dendritic spines in cortex (Micheva and 
Beaulieu 1996, Calì et al. 2018, Bourgeois and Rakic 1993) which could amount to a reduction in 
spine density of 45-48% during puberty (Bourgeois and Rakic 1993). In fact, the human samples were 
from individuals in the upper quarter of expected life length. However, we found low spine rates in 
macaque, as well, at about 50% life expectancy. Similarly, rodents of 50-80% life expectancy show 
spine rates comparable to those reported here for younger mice (Karimi et al. 2020, Schmidt et al. 
2017). It is therefore unlikely that age-related effects have dominated the finding of reduced spine 
rates in human compared to mouse. Also, while temperature-dependent changes in spine rates have 
been reported (Kirov et al. 2004), these are unlikely the cause of our measured spine rates (Figure 4-
2E, see Materials and Methods in appendix A4 (Elston et al. 2001, Benavides-Piccione et al. 2013, 
Benavides-Piccione et al. 2002, Glantz and Lewis 2000, Medalla et al. 2017, Hsu et al. 2017, Gilman 
et al. 2017, Karimi et al. 2020, Lenz et al. 2021)). 

Synaptic strength vs. synaptic number 
Our data indicates the maintenance of the relative number of inhibitory vs. excitatory input synapses 
on the dendrites of pyramidal cells in human vs. mouse. The effective balance between inhibition and 
excitation could be altered by different strength of synapses. Evidence for larger unitary EPSPs and for 
larger synapses and presynaptic vesicle pools has been found in experiments on human cortical slices 
(Gidon et al. 2020, Eyal et al. 2016, Szegedi et al. 2016, Rollenhagen et al. 2020). At the same time, 
the impact of single inhibitory synapses is enhanced (Wang et al. 2015, Molnár et al. 2008). Whether 
synaptic number is a proper indicator of overall synaptic impact is a matter of investigation, with 
evidence in ferret (Scholl et al. 2021) pointing towards a dominant effect of synapse number, as we 
quantified here. 

Increased complexity of inhibitory networks 
The interneuron-to-interneuron network expansion found in macaque and human could have a 
multitude of dynamic effects. While the most immediate consequence could be a more evolved 
disinhibitory network capability, for example for the gating of otherwise inhibited excitatory activity 
(Letzkus et al. 2011, Letzkus et al. 2015), theoretical studies have also indicated possible effects on the 
maintenance of working memory via enhanced interneuron-to-interneuron connectivity and the 
ensuing network dynamics (Kim and Sejnowski 2021). Our data indicate that a detailed investigation 
of such phenomena is required for an understanding of human cortex. In particular, alterations in 
interneuron-to-interneuron connectivity should become a focus of study in the context of possible 
pathological alterations of human cortex. 

Methods 

Animal experiments and human tissue samples 
All animal-related experimental procedures were performed according to the law of animal 
experimentation issued by the German Federal Government under the supervision of local ethics 
committees and according to the guidelines of the Max Planck Society. Experimental procedures were 
approved by Regierungspräsidium Darmstadt, AZ: F 126/1002 (mouse) and Regierungspräsidium 
Marburg AZ: V54 -19c 20 15 h 01 MR 13/1 Nr. 78/2012 (macaque). 

The human brain tissue samples were collected during neurosurgical procedures that were indicated 
for medical reasons and independently from this research project at the Department of Neurosurgery at 
the Klinikum rechts der Isar of the Technical University of Munich. They were obtained from access 
tissue (i.e., presumably healthy brain parenchyma that had to be removed as part of the procedure and 
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would have been discarded otherwise) before removal of the respective target lesions, as approved by 
the Ethics Committee of the Technical University of Munich School of Medicine (Ethikvotum 
184/16S and 273/21 S-EB). All patients had given their written informed consent.  

The macaque brain tissue sample was collected at German Primate Center (DPZ) GmbH, Göttingen.  

Tissue extraction and preparation 
Mouse tissue was processed and imaged as described previously ((Karimi et al. 2020, Gour et al. 2021, 
Motta et al. 2019). These consisted of four 3D-EM datasets from layers 2/3 of mouse somatosensory 
(S1), secondary visual (V2), posterior parietal (PPC) and anterior cingulate cortex (ACC) sized 
between 72 × 93 × 141 µm3 and 88 x 56 x 213 µm3 (Figure 4-1) acquired at a voxel size of 11.24–12 × 
11.24–12 x 28–30 nm3 the present study densely reconstructed and reanalyzed these published datasets 
from mouse, together with a newly acquired dataset from mouse secondary auditory (A2) cortex. The 
published mouse dataset “PPC-2” (Karimi et al. 2020) covering layers 1-5 was also used for expert 
reconstructions. 

The human and macaque samples were processed as follows. All tissue specimen were fixed by either 
immersion (human) or transcardial perfusion (macaque) using an EM fixative composed of 2.5 % 
paraformaldehyde (Sigma), 1.25 % glutaraldehyde (Serva) and 2 mM calcium chloride (Sigma) in 
80mM cacodylate buffer adjusted to pH 7.4 with an osmolarity ranging from 700 to 800 mOsmol/kg 
(Hua et al. 2015). 

The human “H5” tissue was obtained from the right superior temporal gyrus of an 80 year old male 
patient during resection of a temporal mass lesion (final diagnosis: glioblastoma multiforme). After 
removal the sample was immersed in cold (13°C) EM fixative and transported to a nearby laboratory 
(transport time about 6 min). Partially submerged in cold fixative the sample was manually trimmed 
along the pia-WM axis and mounted on a vibratome stage. Then, submerged in cold EM fixative, the 
sample was cut into 500 µm thick slices with a vibratome (Leica VT 1200S). The slices were then 
transported in 8-12°C cooled fixative and stored over night at 4°C. The next day, samples spanning the 
entire cortical depth and about 1.5-1.7 mm in width were cut out and prepared for electron microscopy 
as described in (Karimi et al. 2020) with the modification that the sample was embedded in Epon Hard 
for sectioning in the ATUM. For this, samples were infiltrated through a graded series (3:1 for 4h, 1:1 
12h/overnight, 1:3 for 4h) of aceton and Epon resin (Epon hard mixture: 5.9g Epoxy, 2.25g DDSA, 
3.7g NMA, 205ul DMP; Sigma-Aldrich). Samples were then incubated in pure resin for 4h at room 
temperature, 12h/overnight at 4°, and another 4-5h at room temperature. Samples were directly 
embedded in pure resin on aluminium pins and kept in a pre-warmed oven (60°) for 2-3 days. Fresh 
resin was prepared for each incubation step. 

The cured sample was trimmed into a hexagonal shape (size 3.1 mm x 1.8 mm) with a diamond 
milling head using an EM trimmer (Leica EM TRIM2, Leica Microsystems, Wetzlar, Germany). Next, 
the sample was cut into 35 nm to 40 nm thick slices at 0.3 mm s-1 cutting speed using a 4 mm ultra35° 
knife (DiATOME, Nidau, Switzerland). The ultrathin sections were collected on plasma-treated, 
carbon coated Kapton tape (custom-processed) with a customized ATUM-tome (RMC Boeckeler, 
Tucson, USA)(Hayworth et al. 2006, Hayworth et al. 2014). The tape was then mounted on silicon 
wafers using double-sided adhesive carbon tape (P77819-25, Science Services GmbH, Munich, 
Germany). In total, 7009 slices (corresponding to an extent of 270.25 µm) were cut.  

The human “H6” sample was obtained from inferior frontal gyrus from a 69 year old female patient 
during surgical removal of frontal mass lesion (final diagnosis: glioblastoma multiforme). Following 
surgical removal, tissue was directly collected in fix solution kept at 4°C. The tissue was immediately 
sliced into 500 µm thin slices in cold fixative using vibratome. Slices were kept at 4°C overnight. 
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Samples were then collected using 1mm circular medical biopsy punch (covering L2/3) and prepared 
for SBEM as described in (Karimi et al. 2020). 

The macaque sample was acquired from a 15.6 year old right handed male animal. Transcardial 
perfusion was performed under anesthesia (Ketamin, Xylazin) after an additional lethal dose of 
Barbituate (90-120 mg/kg i.v.). After flushing with ~2 l of 0.15 M cacodylate buffer (pH 7.4, duration 
15 min) the perfusion solution was changed to ~2 l of EM fixative. The brain was removed and the 
anterior half of the brain was sectioned into 5 mm thick coronal sections. The sections were 
subsequently immersed in cold EM fixative, transported to the research laboratory and kept at 4°C 
over night. Within 48 h the tissue was further dissected (with storage in 4°C EM fixative between 
processing steps). A ~5 mm wide tissue block centered on the anatomically defined arm/finger region 
of the left postcentral gyrus (Area 3a/b) medially adjacent to the rostral end of the intraparietal sulcus 
was dissected. The block was placed in 0.15 M cacodylate buffer and cut along the medio-lateral axis 
into 600 µm thick slices using a vibratome (Microm HM650V, Thermo Scientific). Using a medical 
biopsy punch (KAI medicals, USA), a 1.5 mm-wide sample spanning almost the entire thickness of 
the cortex was cut and subsequently prepared according to the methods described in (Karimi et al. 
2020)using an automated tissue processor (Leica EM AMW). 

3D EM imaging and image alignment 
SBEM datasets of the human (H5, H6), macaque and mouse (A2) samples were acquired using a 
custom-built SBEM microtome ((Denk and Horstmann 2004) courtesy of W. Denk) mounted inside 
the chamber of a scanning electron microscope (FEI Verios, Thermo Fisher Scientific, USA). The 
image acquisition and SBEM microtome were controlled using custom written software (Karimi et al. 
2020). Focus and stigmation were adjusted using custom written auto-correction routines. Imaging 
parameters were as follows: 4x6 (macaque, H5, H6) or 3x4 (mouse A2) mosaic tiles of images sized 
4096 x 3536 voxels with an in-plane voxel size of (11.24 nm)2 and 30 nm nominal cutting thickness at 
400 ns (macaque) or 700 ns (H5, H6, A2) dwell time with a nominal beam current of 800 pA 
(macaque) or 400 pA (H5, H6, A2).  

Two Multi-SEM datasets of sample H5 were acquired as follows. In one experiment, 767 slices (476 
at 35 nm, 291 at 40 nm) were imaged with a 61-beam MultiSEM (MultiSEM 505, Carl Zeiss 
Microscopy GmbH, Oberkochen, Germany) at a landing energy of 1.5 kV, a pixel size of 4 nm and a 
pixel dwell time of 50 ns with an FOV per slice of 1.7 mm x 2.1 mm. In a second experiment 
(H5_ext), 1342 additional slices (thickness 35-40 nm, corresponding to about 54 µm extent) were 
imaged with a smaller FOV per slice (1.1mm x 1.1mm) and aligned together with the previous 
experiment resulting in a total of 82 µm depth. 

Image alignment for SBEM datasets was performed using global 3D relaxation of shift vectors 
calculated by SURF feature detection as in (Drawitsch et al. 2018) followed by subimage alignment as 
in (Motta et al. 2019). The aligned image volume was then saved in the webKnossos (Boergens et al. 
2017) three-dimensional image format. Human STG (H5), human IFG (H6), macaque (STG) and 
mouse (A2) SBEM datasets were aligned by scalable minds, Postdam, see Materials and Methods in 
appendix A4.  

Image alignment for the two multiSEM datasets from sample H5 (H5 and H5_ext) were performed 
similar to (Karimi et al. 2020), following the alignment routines in (Scheffer et al. 2013) and 
https://github.com/billkarsh/Alignment_Projects with modifications. 

Cell type classification 
For analyses in Figures 4-2A-B, cell bodies were manually annotated by an expert annotator in 
webKnossos (Boergens et al. 2017). All cell bodies were identified and classified into pyramidal cell, 
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interneuron and glia. Pyramidal cells were identified based on presence of an apical dendrite directed 
towards the pia, an axon initial segment directed towards the white matter, and spiny dendrites. 
Interneurons were identified based on their large somata, which contained large numbers of 
mitochondria, an axon often exiting from a dendrite, lack of a clear apical dendrite or, if presence of an 
apical-like dendrite, lack of basal dendrites and WM-directed AIS, and smooth dendrites. Non-
neuronal cells were distinguished primarily by their smaller cell bodies and different nuclear shapes. 

For distinction of multipolar vs. bipolar INs (Figures 4-5A-D), the dendrites of all identified 
interneurons were reconstructed and inspected in the coronal and tangential plane (Peters 1984, 
Somogyi and Cowey 1981, De Lima and Morrison 1989, DeFelipe et al. 1989, DeFelipe et al. 1990, 
Somogyi et al. 1982, Cauli et al. 1997, Kawaguchi and Kubota 1996, Pfeffer et al. 2013). Interneurons 
with short dendritic lengths were excluded from this classification. 

Dendrite reconstructions 
Pyramidal and interneuron dendrites (Figures 4-2D-G) were reconstructed by an expert annotator by 
following their trajectory throughout the dataset volume and placing nodes as described previously in 
(Karimi et al. 2020, Gour et al. 2021). From these dendrites for which the identity of the originating 
cell body had been determined, a distal stretch of 3-49 µm length (mouse) and 7-44 µm length 
(macaque and human) was used for annotation of all input synapses. 

Annotation of input synapses on dendrite, soma, axon initial segments 
Analyses reported in Figures 4-2D-G and Figure A4-1 were conducted as follows. For a given 
postsynaptic target class (dendrites, somata, or AIS), all input synapses were identified based on the 
presence of a presynaptic vesicle cloud and postsynaptic density [as described in (Gour et al. 2021, 
Karimi et al. 2020, Schmidt et al. 2017); see following section]. These synapses were labelled as 
single spine when only one presynaptic bouton was found for a dendritic spine; double spine when two 
input synapses were found for which a clear distinction into primary (excitatory) and secondary 
(inhibitory) was not possible; primary spine and secondary spine when two input synapses were found 
for which this distinction was possible; neck for spine neck innervations, stubby spine synapses when 
a short dendritic protrusion of larger diameter than a spine neck and without clear diameter change at 
the end (i.e. no clear spine head) was synaptically innervated, and shaft synapses when the synapse 
was clearly placed on the main dendritic process without noticeable protrusion. Distances of synapses 
from the soma were measured using minimum spanning tree on the annotated nodes of the dendrites 
(see “skeleton” class in code repository). 

Soma based axon reconstructions 
Analyses reported in Figures 4-3A-C, G-I, 5E,F were conducted as follows. The axons of identified 
pyramidal cell and interneurons were reconstructed by first identifying the exit at the axon initial 
segment (AIS). Then the trajectory of the axon was followed throughout the dataset and comments 
were added at the outgoing synapses. The post-target of each synapse was further classified into 
excitatory or inhibitory class based on their spine-targeting synapse density (when target was 
dendritic) or cell body type (when target was a soma or an axon initial segment). Axons with fewer 
than 10 synapses were excluded to allow higher signal-to-noise ratio per axon. 

Synapse-seeded axon reconstructions 
Analyses reported in Figures 4-4A,B were conducted as follows. For a given postsynaptic target with 
identified input synapses, a skeleton node was placed in the presynaptic axon’s vesicle cloud and 
commented as “seed” synapse. The presynaptic axon was then reconstructed throughout the entire 
dataset volume, and all of the axons’ other output synapses and their corresponding post-synaptic 
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targets were identified as described in the following section. The “seed“ synapse was excluded when 
quantifying axonal spine target properties in Figure 4-4A. 

Synapse identification for reconstructed axons 
For analyses reported in Figures 4-3A-C,G-I, 4-4A,B, 4-5E,F, the following synapse identification was 
applied. For each reconstructed axon, synapses were identified manually when following the trajectory 
of axon. First, vesicle clouds in the axon were identified as accumulations of vesicles. Subsequently, 
the most likely postsynaptic target was identified by the following criteria: direct apposition with 
vesicle cloud; presence of a darkening and slight broadening of the synaptic membrane; vesicles at 
close proximity to the plasma membrane at the site of potential synaptic contact. Synapses were 
marked as uncertain whenever the signs of darkened postsynaptic density could not be clearly 
identified. All analysis in this study were conducted only on synapses that had been classified as 
certain. For each axon, at every subsequent synapse location, a node was placed in the vesicle cloud 
and commented with the corresponding postsynaptic target’s identity (i.e., if the postsynaptic target 
was soma, AIS, dendritic shaft, dendritic single spine, dendritic double-innervated spine, spine neck, 
stub, somatic spines or filopodium). All synapses were annotated by an expert annotator; for unclear 
cases, these were re-annotated for expert consensus between 2-3 experts. 

Volumetric model of synapse and axon types, inference of synapse and axon types, 
automated reconstruction and error analysis 
These methods are reported in the Materials and Methods in appendix A4. 

Estimates of total dendritic path length of human pyramidal cells 
For the estimation of the complete synaptic input onto a L2/3 pyramidal cell (Figure 4-6A,B, and 
Figure A4-4), all dendrites of 10 L2/3 pyramidal cells were reconstructed until their end in dataset H5, 
which was either the actual ending of the dendrite in the neuropil, or the end of the dendrite at the 
dataset boundary (4-6A). In addition, 9 pyramidal cells in the extended dataset H5_ext were analyzed 
with a larger fraction of in-dataset dendrite endings. Results from both datasets yielded similar ranges 
for total dendritic path length estimates, as detailed in the following. 

For the following calculations, only dendrites with actual in-dataset endings were used (one exception 
were apical tuft dendrites in which some dendrites without in-dataset endings had more branch points 
and were therefore included in the estimate). This approach could correspond to an underestimation of 
dendrite length; therefore, in addition to the length measurements described here, we also used length 
reports from light-microscopically imaged human L3 pyramidal neurons, which provided similar path 
length measurements (ranges in Figure 4-6B, (Mohan et al. 2015)).  

For each pyramidal cell, the following dendritic compartments were distinguished: (i) apical dendrite 
trunk (measured from the exit at the cell body towards pia along the cortical axis, until the main 
bifurcation), (ii) apical tuft (measured from the main bifurcation point of the apical dendrite), (iii) 
oblique dendrites (measured from the exit at the apical dendritic trunk), and (iv) basal dendrites (all 
dendrites existing at the cell body except the apical dendrite) (Karimi et al. 2020).  

For the basal, oblique and apical tuft compartment N=226, 211, 167 dendrites were reconstructed of 
which N=25, 28 and 32 dendrites with in-dataset endings were found (N=21 cells).  

For the estimation of the average number of branchpoints for the apical tuft compartment dendrites 
without in-dataset endings were included to avoid an underestimation of dendrite length as some of 
them had more branch points than the dendrites with in-dataset endings. For this, all apical tuft 
dendrites beyond a 300µm threshold were included (N=64 dendrites, with N=32 in-dataset endings, 
N=21 cells). 



108 

The estimations for the lengths of the above compartments were done as follows. The length for apical 
dendrite trunk compartment was estimated by averaging the lengths over all the samples from their 
soma exit until the main bifurcation. For each of the remaining compartments (i.e. apical tufts, oblique 
and basal dendrites), the path lengths (“PLs”) between consecutive branch points (“BPs”) were 
measured until a true end was reached. The order of a branch point (“order”) was defined as the 
number of edges along the unique path between it and the cell body node (e.g. order is 0 at the cell 
body node, 1 at first branch point, 2 at second branch point and so on). Then for the entire 
compartment (i.e. apical tuft, oblique or a basal dendrite), the total length was calculated by summing 
the path lengths of each segment times 2 to the power order of the corresponding branch point: 
∑ 𝑃𝐿 _ ∗ 2  where order = order of a branch point, BP = mean number of branch 

points for each compartment and 𝑃𝐿 _   = path length of the succeeding segment at the 

corresponding branch point order. Then, the resulting total length of each compartment was multiplied 
with the average number of basal, oblique or apical tuft exits to estimate lengths for all basal, oblique 
and apical tufts respectively. The model of the branching as binary to the final branch point order 
would likely overestimate total dendritic path length, thus not affecting the conclusion about low total 
input synapse numbers in human. 

To estimate the number of input synapses for each of the dendritic compartments, we proceeded as 
follows. For each compartment (i.e. apical trunk, apical tuft, oblique or basal dendrite), dendritic 
segments of path length 10-50 µm were sampled and all input synapses were annotated. For 
computing the spine-targeting synapse density per dendritic shaft path length, both single spine head 
and primary spine head synapses were included. For shaft synapse density, only the shaft synapses 
were included. For total synapse density, additionally secondary spine head, spine neck and dendrite 
“stub” synapses were included (total fraction of these additional synapses: less than 10%). The average 
spine, shaft and total synapse densities were then multiplied with the total path lengths of the 
corresponding compartments. The apical dendrite trunk was additionally distinguished into a proximal 
segment (up to 50 µm from cell body) and a distal segment (50 µm from soma until the main 
bifurcation). Similarly, the basal dendrites were additionally distinguished into a proximal segment 
which showed high shaft synapse rate (up to 30 µm from cell body for mouse, 80 µm for human). 

For the basal compartment we measured spine-targeting and shaft synapse densities of 0.66  0.23 per 

µm and 0.23  0.09 per µm (N=13), for the oblique compartment 0.67  0.23 per µm and 0.19  0.06 

per µm (N=14), for the apical tuft compartment 0.73  0.34 per µm (N=12) and 0.25  0.07 per µm 
(N=12) respectively.  

For the proximal segment of the apical trunk we measured spine-targeting and shaft synapse densities 
of 0.06  0.14 per µm and 0.44  0.16 per µm (N=9), for the distal segment until the main bifurcation 

0.45  0.39 per µm and 0.20  0.08 per µm (N=7) respectively. 

Statistical tests 
All statistical tests were Kolmogorov-Smirnov for fractions and ratios, and Wilcoxon ranksum tests, 
otherwise. Data is shown as box or violin plots with median, 25th and 75th percentile and outliers 
(using MATLAB, Mathworks). All tests are documented in the code repository (see next section). 

The test of significance for increase in interneuron fraction from mouse to macaque/human was done 
by pooling all identified excitatory neurons and interneurons counts per species group and generating 
1000 bootstrap samples with replacement. Interneuron fraction (INfrac) was computed for each 
bootstrap sample. The p-value was calculated as the fraction of bootstrap samples in mouse for which 
INfrac was greater than or equal to the lowest INfrac in macaque/human bootstrap group (Figure 4-2B, 
error bars 10th-90th percentiles). The same bootstrap approach was used as a test of significance for 
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increase in non-multipolar IN fraction from mouse to macaque/human by pooling all multipolar and 
non-multipolar INs in volume per species group (Figure 4-5D, error bars 10th-90th percentiles) and 
similarly for testing increase of interneuron-targeting fraction of non-multipolar IN axons from mouse 
to macaque/human by pooling all output synapses of non-multipolar IN axons per species group 
(Figure 4-5F,G). 

Data availability 
All electron microscopy datasets are publicly available for browsing at webknossos.org: 

Macaque L2/3 (S1):     https://wklink.org/1186 
Macaque L2/3 (STG):     https://wklink.org/1319 
Human (H5) L23 (STG):   https://wklink.org/7861 
Human (H5) L23 (STG) MultiSEM:   https://wklink.org/5364 
Human (H5) L1-6 (STG) MultiSEM:  https://wklink.org/1742 
Human (H6) L2/3 (IFG):   https://wklink.org/7299 
Mouse L2/3 (S1):     https://wklink.org/9045 
Mouse L2/3 (PPC):    https://wklink.org/2581 
Mouse L2 (ACC):    https://wklink.org/7415 
Mouse L2/3 (V2):    https://wklink.org/3592 
Mouse L2/3 (A2):    https://wklink.org/7193 
Mouse L1-5 (PPC-2):     https://wklink.org/4814 
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Discussion 

This thesis explored the challenges (chapter 1) and opportunities (chapters 2–4) of scaling up electron 
microscopy (EM)-based synapse-resolution circuit mapping (called connectomics hereafter) in the 
mammalian cerebral cortex. Over the last years, EM volumes from mammalian cerebral cortex 
increased from 80,000μm3, corresponding to a volumetrically equivalent cube of roughly (43μm)3, 
(Kasthuri et al. 2015) to around a cubic millimeter (Shapson-Coe et al. 2021, MICrONS consortium et 
al. 2021, Sievers unpublished). This required improvements to sample preparation and EM techniques. 
However, the limiting factor of EM-based connectomics was and still is the circuit reconstruction from 
EM image volumes (chapter 1). This is exemplified by the fact that only ~1500μm3—less than two 
percent—of the aforementioned 80,000μm3 volume from mouse somatosensory cortex were densely 
reconstructed (Kasthuri et al. 2015); automated reconstructions were too erroneous, and manual 
annotations and proofreading too laborious for substantially larger reconstructions. 

In chapter 2, we have used semi-automated reconstruction methods in which manual interventions are 
focused onto the relatively rare locations where the automated reconstruction was likely wrong. This 
allowed us to efficiently and densely reconstruct ~500,000μm3 from layer 4 of mouse primary 
somatosensory cortex, containing 1.8 meters of axons, more than half a meter of spine necks, and 
around 400,000 synapses. However, despite the extent of around 62×95×93μm3, this EM volume was 
still smaller than even the small dendritic trees of spiny stellate neurons. As a result, almost none of 
the neurites in this EM volume could be traced to the soma of the corresponding neuron. The 
connectome extracted from this EM volume was thus not a neuron-to-neuron connectome, but rather a 
subcellular connectome. As a further consequence, the reconstructed neurites could not directly be 
related to known morphological cell types. However, we have demonstrated in chapter 2 how the 
richness of purely structural information in subcellular connectomes can be used, for example, for the 
definition of connectomic cell types (figure 2-4) and for a quantitative analysis of the circuit fraction 
that is consistent with saturated Hebbian plasticity (figure 2-7). 

Subcellular and cellular target specificities 
The analysis in chapter 2 illustrates that synaptic connectivity data are sufficient for identification and 
unbiased quantification of axons with subcellular target specificities. Subcellular target specificities of 
inhibitory cortical axons have previously been reported, e.g., for morphologically or molecularly 
defined cell types [P(subcellular target | cell type)]. But the conditioning on select cell types by these 
methods makes unbiased quantification of the prevalence of such target specificities difficult. In 
contrast, a dense connectomic reconstruction provides unbiased estimates of the distribution of 
synapses in the volume [P(subcellular target | synapse)] and along individual axons [P(subcellular 
target | axon) and P(axon)]. Together, these data allow the identification of non-random and thus of 
specific subcellular targeting, and the quantification of the prevalence of such axons [P(axon | 
subcellular targeting rate)]. 

Axonal target specificities in mammals have also been the subject of other connectomic studies. For 
example, Gour et al. (2021) used manual reconstructions in SBEM volumes from mice of six different 
ages to investigate the postnatal development of inhibitory subcellular target specificities. This 
revealed target-specific developmental timelines. Furthermore, a clever analysis of the absolute 
innervation rates of the various postsynaptic targets across ages indicated differential contributions of 
anti-specific synapse pruning and pro-specific synapse genesis. Schneider-Mizell et al. (2021) 
investigated the synaptic inputs onto the axon initial segment (AISs) of pyramidal neurons in layer 2/3 
of mouse visual cortex and separated the presynaptic axons into likely Chandelier and likely non-
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Chandelier types based on their AIS specificity. They found the number of Chandelier synapses to be 
highly variable across pyramidal neuron AISs, with an average contribution of around 60% of AIS 
synapses that is consistent with previous reports from somatosensory cortex (Gour et al. 2021). These 
studies still focused on subcellular target specificities; cell type-specific targeting was studied in the 
following two works: Karimi et al. (2020) found that inhibitory axons that innervate the main 
bifurcation of pyramidal neurons at the border between cortical layers 1 and 2 preferentially innervate 
either the bifurcations of layer 2 pyramidal neurons or these of pyramidal from deeper layers (most 
likely layer 3 or 5). Furthermore, in a comparably large SBEM volume from rat medial entorhinal 
cortex, Schmidt et al. (2017) were able to identify the postsynaptic target neurons innervated by 
excitatory neurons and found an axonal path length-dependent cell type specificity: preferential 
innervation of interneurons by the axon close to the soma, and preferential innervation of excitatory 
neurons more distally. 

In chapter 4, we found axonal path length-dependent target specificity to be a prominent feature of 
layer 2/3 pyramidal neurons in the human cerebral cortex: On the most proximal ~500μm of these 
axons, the most likely innervated subcellular target was the dendritic shaft of interneurons (around 
50% of output synapses; figure 4-3I); only >750μm from the soma were spine heads of excitatory 
neurons clearly the most likely subcellular target (more than 65% of output synapses) as in mouse 
cerebral cortex. On average, 55% of synapses in layer 2/3 of macaque and human cerebral cortex are 
onto spine heads of excitatory neurons. Thus, axons of pyramidal neurons in layer 2/3 of primate 
cerebral cortex change from anti- to pro-specificity for dendritic spines of excitatory neurons in a path 
length-dependent manner. 

In the presence of such path length-dependent connectivity patterns, soma-based axon reconstructions 
in small EM volumes (relative to the entire axonal tree) result in biased connectivity estimates. Again, 
many such biases can be overcome by analysis of the unbiased set of all axons contained in a dense 
reconstruction. However, in chapter 4, an alternative approach was used: 

Axons and their output synapses were reconstructed starting from synapses onto various subcellular 
targets (figure 4-4B). This provided estimates of the conditional target distributions P(synapse onto 
target Y | synapse onto target X) as in (Karimi et al. 2020, Gour et al. 2021). To estimate the 
prevalence of the various subcellular targets [P(target | synapse)], we have further annotated dendrites 
of known cell types and, importantly, of random subvolumes of cortical neuropil  (figure 4-4B). 
Together, these data provide an unbiased estimate of the distribution of subcellular target co-
innervation rates [P(synapses onto targets X and Y)]. We then modelled cortical neuropil by a mixture 
of two axon populations with distinct distributions of subcellular target innervation rates (figures 4-
4C,D): Inhibitory axons were modelled by a multinomial distribution, whereas excitatory axons were 
modelled by a Dirichlet-multinomial distribution to account for the path length-dependent changes in 
subcellular targeting. The model parameters were derived from the above annotations by likelihood 
maximization. Afterwards, the probability of corresponding to an excitatory or inhibitory axon could 
be inferred for each of the reconstructed axon fragments (insets figures 4-4C,D), thereby providing 
estimates of the relative contributions of excitatory and inhibitory axons to the synapses onto 
pyramidal neuron dendrites (figure 4-4E). In summary, this model-based method allows the unbiased 
estimation of the synaptic composition of cortical neuropil, of the synaptic outputs of separate axon 
types, and of the synaptic inputs onto dendrites of separate dendrite types without dense, but sparse 
subcellular connectomic reconstructions. 

Analysis of fully automated dense reconstructions 
Other analyses in chapter 4 were performed on fully automated dense reconstructions (figures 4-3E 
and 4-5H). This was made possible by improvements in two areas compared to chapter 2: 
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First, more accurate, robust and efficient automated reconstructions methods were developed in 
collaboration with Meike Sievers, Martin Schmidt, and scalable minds GmbH for the reconstruction of 
a petabyte-scale ATUM-multiSEM volume from mouse primary somatosensory cortex (Sievers 
unpublished) and later adapted for SBEM volumes. On a random set of axons in the SBEM volume 
from layer 4 of mouse primary somatosensory cortex, these methods achieved an expected run length 
(ERL) of ~130μm. Compared to the roughly 8μm ERL achieved by the automated reconstruction 
methods used in chapter 2, this is a more then 16-fold improvement. 

Despite this improvement, the fully automated dense reconstructions in chapter 4 still contained errors, 
such as false positive and false negative synapse detections, and spine synapses that were misclassified 
as shaft synapses and vice versa. The second improvement used in chapter 4 thus consisted of error-
aware analysis methods: The error rates of synapse detection were calibrated on relatively small test 
volumes. On the assumption of independent errors, we then inferred for each automatically 
reconstructed and thus potentially flawed axon reconstruction an estimate of the true output synapse 
distribution. Not only did this provide an estimate of error-free axonal properties, but it also provided a 
quantification of the estimate’s uncertainty. 

Error-aware analysis methods might thus provide accurate results from flawed, but fully automated 
connectomic reconstructions. And because of the information richness especially of dense 
reconstructions, many biological analyses remain possible despite the drawback of larger uncertainty. 

This has important implications. First, manual proofreading and correction of automatically generated 
reconstructions might be unnecessary for many biological analyses. The sensitivity to the different 
types and rates of reconstruction errors, and therefore the need for error-aware analysis methods, 
depends on the biological question. In fact, analyses of synapse size similarity in bisynaptic 
connections (figure 2-7) were found to produce similar results when comparing manually proofread to 
fully automated reconstructions, even without error-aware analysis methods (Kornfeld et al. 2020, 
Schmidt et al. 2022). Second, in chapter 1 we have identified accuracy and computational cost of 
automated reconstruction methods as limiting factors of scaling up connectomic analyses. Error-aware 
analysis methods could contribute to easing these burdens by reducing the demand for accuracy and 
by allowing for the use of less accurate, but computationally more efficient reconstruction methods. 

In chapter 4, we have shown how error-aware analysis methods can contribute to scaling up 
connectomics to many subcellular connectomic reconstructions. This was shown at the example of 
“connectomic screening” of inter-species circuit differences. The same error-aware analysis approach 
is also applicable to connectomic screening of subcellular circuit differences across cortical layers, 
brain areas, age, pathologies, etc. But with recent improvements in sample preparation techniques and 
in EM technology, and the resulting availability of cubic millimeter-sized connectomic datasets from 
mouse cerebral cortex (MICrONS consortium et al. 2021, Sievers unpublished), automated analysis 
methods are increasingly put to the test of reconstructing neuron-to-neuron connectomes. In chapter 3, 
we have shown how error-aware methods could also be used in the context of circuit model selection 
from neuron-to-neuron connectomes. 

Connectomic correlates of synaptic plasticity 
In chapter 2, we have used the unprecedented size of the volumetrically dense connectomic in 
mammalian cerebral cortex to identify thousands of bisynaptic excitatory connections (i.e., pairs of 
synapses from the same presynaptic excitatory axon onto the same postsynaptic dendrite) and to derive 
from them upper bounds on the circuit fraction that could have been shaped by saturated Hebbian 
plasticity (Figure 2-7). 
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This analysis was based on a number of assumptions: 

First, we have assumed that the structural features accessible in three-dimensional electron 
micrographs provide a sufficiently accurate estimate of synaptic strength (i.e., expected synaptic 
conductance in response to a somatic action potential). Here, the area of the axon-spine interface (ASI) 
was used as structural correlate of synaptic strength. This was based on experimental observations that 
the ASI area is proportional to the area of the postsynaptic density (PSD), which in turn is proportional 
to the number of AMPA receptors and to the spine head volume, which was itself correlated to the 
amplitude of the evoked postsynaptic potential (EPSP) through this synapse. These experiments have 
been review in the introduction (see “Inferences about synaptic strength and plasticity”). 

Second, we have assumed that synaptic strengths are determined by an idealized version of Hebbian 
plasticity. Specifically, it was assumed that the synaptic strengths in a bisynaptic connection would 
always change in the same direction (i.e., have the same sign of change) in response to a pair of pre- 
and postsynaptic action potentials. This idealization ignores, for example, that action potential 
propagation might fail between the two synapses; that vesicular release at the two synapses is 
stochastic and largely independent; and that additional inhibitory synaptic inputs onto the postsynaptic 
spines might differentially modulate the local ion concentrations and plasticity mechanisms. These 
limitations are discussed below; see “Limiting and opposing factors of Hebbian plasticity”. 

Third, we have assumed that synaptic strengths are constrained to a strictly positively bounded 
interval. In other words, synaptic strength never decreases to zero and never exceeds a finite 
maximum. Both the lower and upper bounds are biologically plausible: An upper bound on synaptic 
strength is likely imposed by the cost of maintaining the molecular machinery and resting ion 
concentrations for synaptic transmission. These metabolic costs must be covered by finite locally 
available energy sources, such as mitochondrial ATP. An argument for strictly positive minimal 
synaptic strength can be made based on the observation of a roughly constant number of NMDA 
receptors across glutamatergic synapses in the rat somatosensory cortex (Kharazia and Weinberg 
1999). Thus, it could be argued that synapse-specific and plastic AMPA-mediated strengths are offset 
by a roughly constant and minimal NMDA-mediated synaptic strength. (However, this argument is 
tied to the somewhat unintuitive implication of non-zero synaptic strength at the moment of synapse 
elimination or generation.) 

Under these assumptions, repeated LTP induction would result in both synapses in a bisynaptic 
connection approaching the maximal strength. And with that, the average of the two synapse strengths 
would converge towards the maximal strength as well. At the same time, the absolute strength 
difference between them would decrease. The relative difference (i.e. the ratio between the absolute 
strength difference and the average strength) would decrease as well. In fact, the relative difference in 
bisynaptic connections is proportional to the coefficient of variation (CV). Thus, repeated LTP under 
these assumptions would result in multi-synaptic connections converging towards synapses with high 
average strength and low CV (Figure 2-7A). (Even if synaptic strength were unbounded, additive LTP 
would lead to the same predictions. Multiplicative LTP in the absence of synaptic strength bounds 
would result in an increase in average synapse strength at constant CV.) Similarly, repeated LTD 
events would result in multi-synaptic connections converging towards configurations with low average 
synaptic strength and low coefficient of variation. (In general, LTD-induced strength changes must be 
non-linear as synapses converge towards the minimal strength. If the minimal strength is zero and is 
approached exponentially as a result of LTD, the average synapse strength decreases at constant CV 
(yellow arrows in figure 2-7A).) 
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Electron microscopy-based analyses of multi-synaptic connections had been previously performed in 
hippocampus of rats (Sorra and Harris 1993, Bartol et al. 2015, Bromer et al. 2018) and mice (Bloss et 
al. 2018), and in the mouse somatosensory cortex (Kasthuri et al. 2015). These analyses indicated that 
synapses in multi-synaptic connections had unexpectedly similar PSD areas (Sorra and Harris 1993, 
Kasthuri et al. 2015, Bloss et al. 2018) and spine head volumes (Sorra and Harris 1993, Bartol et al. 
2015, Kasthuri et al. 2015, Bloss et al. 2018) and number of presynaptic vesicles (Kasthuri et al. 
2015). Since the publication of chapter 2, over-similarity of synapse or spine head sizes have also been 
reported in songbird basal ganglia (Kornfeld et al. 2020) and mouse visual cortex (Dorkenwald et al. 
2021). 

Coefficient of variation of synapse sizes in bisynaptic connections 
Bartol et al. (2015) analyzed the relationship between the average spine head volume and the CV of 
spine head volumes in stratum radiatum of rat hippocampus CA1 across ten bisynaptic connections. 
Because no correlation was detected between these two quantities, it was concluded that the CV was 
constant across all connections. The CV was then interpreted as measure of noise in synaptic strengths 
relative to the contribution of Hebbian plasticity. Based on this value and the observed range of 
synapse sizes, the authors concluded that the synaptic strength range consists of 26 reliably 
distinguishable states (at signal-to-noise ratio of 1). With this, Bartol et al. (2015) inferred a synaptic 
information storage capacity of log2(26) ≈ 4.7 bits. 

In our dense connectomic reconstruction in layer 4 of mouse primary somatosensory cortex, we have 
identified 5290 excitatory bisynaptic connections onto dendritic spines. Synaptic size was measured in 
terms of axon-spine interface (ASI) area (Desmond and Levy 1988, Cheetham et al. 2014, de Vivo et 
al. 2017). Consistent with previous reports, we found that synapses in bisynaptic connections were 
more similar in size than random pairs (Figure 2-7H). However, we found the average CV to be 
substantially higher (0.43) than previously reported for rat CA1 synapses (0.09; (Bartol et al. 2015)). 

In part, the higher CV could be due to the use of automatically computed ASI area as measure of 
synapse size instead of manual and redundant annotations of spine head volumes. The automated ASI 
area calculation likely is less precise than manual spine head volume annotations, which were 
estimated to have a median error of only 1% (Bartol et al. 2015). Furthermore, spine head volume is 
arguably more strongly correlated to synaptic strength than ASI area: The immediate increase in 
synaptic currents after LTP induction was found to be associated with a near-simultaneous increase in 
spine head volume (Matsuzaki et al. 2004, Harvey and Svoboda 2007), but PSD-associated molecules 
reportedly increase with a delay of roughly one hour (Bosch et al. 2014, Meyer et al. 2014). 
Accordingly, spine head volume within the first hour of LTP induction was found to be larger than in 
control synapses with comparable PSD areas (Bosch et al. 2014, Meyer et al. 2014). Because the ASI 
comprises both PSD and non-PSD surface, it is unclear to what degree it follows the time courses of 
PSD area or spine head volume within the first hour of LTP. 

More likely, however, the higher CV in layer 4 of mouse primary somatosensory cortex compared to 
CA1 of rat hippocampus reflects an actual difference in the contributions of Hebbian plasticity to 
synaptic strengths in these regions. Evidence for this comes from two lines: First, when Bartol et al. 
repeated the same analysis in rat dentate gyrus, a CV of 0.40 was measured (Bromer et al. 2018). 
Second, the high CV in mouse cerebral cortex was later corroborated by an independent study: An 
analysis of bisynaptic connections between pyramidal neurons in layer 2/3 of mouse visual cortex in 
terms of spine head volumes reported data that indicate an average CV of 0.46 (Dorkenwald et al. 
2021). 
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Upper bounds on circuit fraction consistent with saturated Hebbian plasticity 
To better understand the relationship between the coefficient of variation (CV) and the average ASI 
area in bisynaptic connections, we used the 5290 bisynaptic connections in our reconstructions from 
layer 4 of mouse primary somatosensory cortex to map this two-dimensional configuration space 
(Figure 2-7E). Specifically, we used kernel density estimation to calculate approximate frequencies of 
all configurations. For control, random permutations of the synapses in actual bisynaptic connections 
were used to estimate the configuration frequencies for random pairs of synapses. Consistent with 
previous results, the difference between actual and control configuration frequencies indicated an 
overrepresentation of bisynaptic connections with low CV (Figure 2-7F).  

Furthermore, we noticed that the statistically overrepresented low-CV configurations could be 
separated into configurations with low CV and large average ASI areas and configurations with low 
CV and small average ASI areas (Figure 2-7F). We found that 16%–20% of bisynaptic connections 
have configurations with low CV and large average ASI area. Under the above assumptions, 
connections subjected to repeated Hebbian LTP are expected to converge onto such configurations. 
Thus, we concluded that at most 16%–20% of bisynaptic connections are consistent with saturated 
Hebbian LTP. Similarly, the 15%–19% of bisynaptic connections with low CV and small average ASI 
areas are, under the above assumptions, consistent with and were thus interpreted as an upper bound 
on connections subjected to repeated Hebbian LTD. 

Synaptic plasticity in vivo 
To date, cortical synaptic plasticity has been studied mainly ex vivo and in response to artificial 
pharmacological, electrical or sensory stimulation. Under these conditions, almost all connections 
between excitatory neurons have been found susceptible to the artificial induction of LTP or LTD. 
However, the synchronized activation of many synaptic inputs that is often used for artificial induction 
of synaptic plasticity stands in contrast to the sparse cortical activity observed in vivo (O'Connor et al. 
2010). Thus, it is still largely unknown how the mechanisms of LTP and LTD operate under 
physiological conditions in vivo and to what extent they—as opposed to other mechanisms, such as 
molecular surface recognition, heterosynaptic or homeostatic plasticity, or random fluctuations—
shape synaptic connectivity under representative sensory inputs. 

The role of Hebbian plasticity in vivo has been studied extensively in the context of fear conditioning. 
In one study (Nabavi et al. 2014), a foot shock was associated with optogenetic activation of auditory 
afferents to the amygdala. After training, optogenetic stimulation was sufficient to evoke the 
conditioned response. Training also increased the ratio of AMPA- to NMDA-mediated currents, 
consistent with LTP induction. Subsequent low-frequency photostimulation (“optical LTD”) of the 
auditory afferents was found to eliminate the association. And if high-frequency photostimulation 
(“optical LTP”) followed optical LTD, then the association could be reinstantiated. Together, these 
observations were interpreted as evidence for a causal role of bidirectional Hebbian plasticity in 
associative memory formation in the amygdala. However, a later study reported that Hebbian 
plasticity was necessary but insufficient for learning a fear memory in few trials (Johansen et al. 
2014). Instead, fear memory formation was found to depend on the co-activation of Hebbian plasticity 
and neuromodulatory processes. 

In the adult cerebral cortex, learning-related synaptic plasticity has been studied predominantly in the 
primary motor cortex. Motor learning was found to correlate with increased rates of elimination and 
generation of structurally and functionally clustered dendritic spines (Yang et al. 2009, Xu et al. 2009, 
Fu et al. 2012, Hedrick et al. 2022). Molecular labeling of potentiated spines indicated that motor task 
learning was associated in layer 2/3 of mouse primary motor (M1) cortex with potentiation in roughly 
2% of spines (Hayashi-Takagi et al. 2015). Spontaneous, motor learning-independent synaptic 



Discussion 

117 

potentiation was roughly half as frequent and less stable. These studies provide first quantifications of 
learning related synaptic plasticity in vivo. “Upper bounds” on structural synaptic plasticity in vivo 
were derived in anesthetized mice by 2P glutamate uncaging at spines on the apical tuft of layer 5/6 
pyramidal neurons (Noguchi et al. 2019). Spine enlargement could be induced in 22% of spines. In 
hippocampal slices, for comparison, spine enlargement could be induced in 95% of spines (Matsuzaki 
et al. 2004). Spine shrinkage could be induced at 35% of spines in the cerebral cortex, which is similar 
to experimental data from hippocampal slices. 

Our connectomic upper bounds were derived in tissue from a briefly anesthetized and then 
transcardially fixative-perfused mouse and without artificial sensory stimulation. Thus, the circuit 
structure studied here should closely reflect the connectivity under physiological conditions. The 
connectomic upper bound on saturated Hebbian LTP (16%–20%) is similar to the rate of spine 
enlargement inducible in vivo (Noguchi et al. 2019), while the connectomic upper bound on saturated 
Hebbian LTD (15%–19%) is lower than derived in vivo. This might indicate that the available LTP 
and LTD mechanisms get activated at different rates in vivo. However, the difference might also 
reflect a difference between synaptic connections onto dendritic spines in cortical layer 4 as opposed 
to superficial connections onto the apical tuft of layer 5 pyramidal neurons. 

Connection-specificity of synapse size and plasticity 
Compared to control connections, configurations with low CV and large average ASI areas, and low 
CV and small average ASI areas were overrepresented by 3.6–3.9 and 3.0–3.4 percentage points, 
respectively. It is tempting to interpret these numbers as lower bounds on the fraction of connections 
shaped predominantly by saturated Hebbian LTP and LTD, respectively. However, these too might be 
the result of mechanisms other than Hebbian plasticity. For example, synaptic strengths might be 
regulated by mechanisms similar to these involved in synaptic specificity (see “Quantification of 
subcellular target specificities of interneurons”); synaptic strength could be regulated by recognition 
molecules in an activity-independent, but connection-specific manner. 

In our analysis, the observed bisynaptic configurations were compared to control connections 
generated by random permutation of the synapses in actual bisynaptic connections. Control 
connections are thus based on the assumption that, in the absence of homosynaptic plasticity 
mechanisms, each synapse could adopt any of the observed synapse sizes. However, this assumption is 
violated when the set of bisynaptic connections consists of two or more types of connections with 
different synapse size distributions. For example, it has been argued that individual synapses between 
layer 4 neurons and between layer 5 neurons differ in efficacy and reliability (Feldmeyer and Sakmann 
2000), which could be associated with different synapse sizes. In this case, the variance and the 
absolute difference of synapse sizes are smaller in actual bisynaptic connections than in random pairs 
of synapses from all connections. 

To reduce this confounding effect in the interpretation of overrepresented low CV connections as 
evidence for Hebbian synaptic plasticity, we repeated the above analysis for separate connection 
subtypes, such as bisynaptic connections from thalamocortical axons (Figure 2-7I) or onto apical 
dendrites. This consistently revealed statistically significant overrepresentations of bisynaptic 
connections that are consistent with saturated Hebbian LTP and LTD, respectively. 

The contributions of Hebbian plasticity to shaping synaptic strength might differ across connections. 
Indeed, pre- before postsynaptic action potentials were found to induce LTP in connections between 
layer 2/3 pyramidal neurons (Egger et al. 1999) and between layer 5 pyramidal neurons (Markram et 
al. 1997), but induced LTD in connections between layer 4 spiny stellate neurons (Egger et al. 1999). 
Even the output synapses of individual excitatory neurons were found to differ in short- (Markram et 
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al. 1998) and long-term plasticity (Lu et al. 2007) depending on the postsynaptic cell types. 
Postsynaptically, LTP and LTD induction by spike timing dependent plasticity was found to depend 
on dendritic location (Froemke et al. 2005, Sjöström and Häusser 2006, Letzkus et al. 2006) and 
depolarization (Sjöström and Häusser 2006, Letzkus et al. 2006). Specifically, a distance-dependent 
shift from LTP (proximal) to LTD (distal) with depolarization-dependent conversion of LTD into LTP 
was observed. 

Our connectomic upper bounds on saturated Hebbian LTP were found to differ across connection 
types: Of the bisynaptic connections onto apical dendrites, at most 10% were found to be consistent 
with saturated LTP. And at most 16% of thalamocortical bisynaptic connections were consistent with 
saturated LTP. Of corticocortical bisynaptic connections onto spiny layer 4 neurons, the fraction 
consistent with saturated LTP is at most 17%. 

In connections between layer 4 spiny stellate neurons, dual whole-cell recordings / stimulations in 
slices from juvenile rat somatosensory cortex were unable to induce LTP (Egger et al. 1999). What 
could explain this apparent discrepancy with our data? 

One hypothesis is that these connections were already saturated to the maximum connection strength. 
Indeed, these connections have been characterized as highly reliable and effective (Feldmeyer et al. 
1999). Evidence for saturating LTP was obtained in rat motor cortex (Rioult-Pedotti et al. 2000) and in 
mouse visual cortex (Cooke and Bear 2010). In rat motor cortex, motor task learning was found to 
increase the magnitudes of evoked local field potentials and of inducible LTD and to reduce the 
magnitude of inducible LTP, consistent with learning-related strengthening of connections within a 
constant range (Rioult-Pedotti et al. 2000). Similarly, visual experience was found to increase in layer 
4 of mouse visual cortex the magnitude of visually evoked potential and to reduce the magnitude of 
inducible LTP at thalamocortical synapses (Cooke and Bear 2010). Consistent with this hypothesis, 
synaptic connections between excitatory neurons in layer 4 of guinea pig visual cortex expressed both 
LTP and LTD after plasticity induction, with LTP associated with initially weak and unreliable 
connections, and LTD associated with initially strong and reliable connections (Sáez and Friedlander 
2009). Interestingly, synapses that expressed neither LTP nor LTD were associated with even higher 
initial connection strength. 

Another hypothesis regarding the apparent discrepancy is the following: Due to the limited EM 
volume, we were unable to distinguish in our estimation of the upper bound on saturated LTP in 
corticocortical connections onto spiny neurons in layer 4 between the different subtypes of presynaptic 
corticocortical axons or different subtypes of postsynaptic excitatory neurons. Spiny stellates make up 
an estimated 70%–80% of the excitatory neurons in layer 4 of mouse somatosensory cortex, with star 
pyramids making up the remaining 20%–30% (Lefort et al. 2009, Hua et al. 2022). The vast majority 
of excitatory corticocortical connections onto these neurons are thought to originate from other 
excitatory neurons in layer 4 (Feldmeyer et al. 1999, Schubert et al. 2003, Lefort et al. 2009). Thus, 
the bisynaptic corticocortical connections onto spiny neurons in layer 4 comprise at least four different 
types of connections. These connections might differ in terms of LTP and LTD mechanisms and of 
activations thereof. Furthermore, connectomic analysis of thalamocortical and local inhibitory 
connections in layer 4 suggests functional differences between spiny stellate and star pyramid neurons 
(Hua et al. 2022). This highlights the importance of large-scale EM volumes and cellular connectomes 
for the definition of morphological cell types and the analysis of homotypic synaptic connections. 

Binary versus analog synaptic strengths 
Since the publication of chapter 2, a detailed analysis of multi-synaptic connections has been 
performed in mouse primary visual cortex layer 2/3 (Dorkenwald et al. 2021). Because of the 
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comparably large EM volume of 250×140×90μm3, it was possible to identify 334 pyramidal neurons 
and 1735 homotypic connections between them. The distribution of synapse sizes in these homotypic 
connections was found to be broader than expected from a log-normal distribution, but to be fit well 
by a mixture of two log-normal distributions termed “S” (for small) and “L” (for large). In logarithmic 
space, the two distributions had similar variance. Based on this observation it was noted that synapse 
sizes between pyramidal neurons in mouse primary visual cortex layer 2/3 were “well-modeled by the 
sum of a binary variable and an analog variable drawn from a log-normal distribution (Dorkenwald et 
al. 2021).” Overall, 23% of synapses were estimated to be in binary state “L”. 

When analyzing 160 bisynaptic connections between layer 2/3 pyramidal neurons, the average synapse 
size was found to be larger than the average across all synapses between these neurons. Accordingly, 
the proportion of synapses in binary state “L” in bisynaptic connections was 36%–42% (compared to 
23% overall). In agreement with previous reports from cerebral cortex (Kasthuri et al. 2015, Motta et 
al. 2019), synapse sizes in these bisynaptic connections were found to be correlated. Intriguingly, 
however, the authors (Dorkenwald et al. 2021) found that bisynaptic connections were explained well 
by a model in which not the log-normal, but only the binary synapse size components were correlated. 
Correlation of the binary states, as quantified by the phi coefficient, was 0.64. Correspondingly, 
bisynaptic connections in which both synapses are in the binary “L” and “S” states were 
overrepresented and made up 33% and 49% of connections, respectively.  

How are these percentages to be interpreted, and how do they relate to the connectomic upper bounds 
on LTP and LTD derived in chapter 2? Indeed, at most 33% and 49% of bisynaptic connections 
analyzed by Dorkenwald et al. (2021) are consistent with saturated Hebbian LTP and LTD, 
respectively. However, the correlation of binary states is not perfect, and the phi coefficient of 0.64 
could be interpreted as fraction of bisynaptic connections shaped by homosynaptic mechanisms. 
Furthermore, even if binary synapse states were independent, 18% and 34% of bisynaptic connections 
would be expected to consist of synapses both in the “L” and “S” state, respectively. Because many 
potential confounders can be excluded in this analysis of homotypic synapses, it could be argued that 
evidence for homosynaptic up- and downregulation of binary synapse sizes can be found in 15% of 
bisynaptic connections, each. The expected coefficients of variation (CVs) of pairs of synapses in the 
same “L” and “S” states, respectively, are roughly 0.36 and 0.39. When accounting for the inferred 
frequencies of binary state combinations, the expected CV is 0.46. This is consistent with the average 
CV of 0.43 measured in our data. Analysis of this correlated mixture of log-normal distributions by the 
method in chapter 2 yields upper bounds on saturated LTP and LTD of roughly 29% and 39%, 
respectively.  

A bimodal synapse size distribution has recently also been observed in SBEM volumes from stratum 
radiatum in CA1 of mouse hippocampus (Spano et al. 2019). Electrophysiological characterizations of 
CA3-to-CA1 synapses reported LTP induction to occur in a step-like all-or-none manner (Petersen et 
al. 1998) and found that LTP and LTD amplitudes were consistent with transitions between two 
discrete synaptic strengths that differ by roughly a factor of two (O'Connor et al. 2005). Furthermore, 
roughly 20%–30% of synapses were estimated to be of high strength under physiological conditions 
(O'Connor et al. 2005). However, these observations are seemingly in contradiction to 
electrophysiological experiments on pyramidal neurons in layer 2/3 of juvenile rat visual cortex, where 
LTP was found to gradually increase to saturation with increasing number of paired stimulations 
(Froemke et al. 2006), though the apparent gradual increase could be composed of multiple 
upregulations of binary synapses. 

Bimodal synapse size distributions could also be the result of bi-stable activity-dependent mechanisms 
acting on synapses with continuous states. For example, Hebbian plasticity alone could produce 
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bimodal synapse strength distributions if the circuit consisted of two functionally anti-correlated 
neuron populations (e.g., through mutual inhibition). Furthermore, a model of spike timing dependent 
plasticity together with a homeostatic mechanism for stable mean firing rates was able to produce both 
stable unimodal and bimodal synaptic strength distributions (Toyoizumi et al. 2007). Simulation of 
visual receptive field development in this model indicated that bimodality increased with stimulation 
duration and strength. Thus, competition between neurons or synapses could result in bimodal 
synaptic strength distributions in an activity-dependent manner. 

Indeed, the circuit analyzed by Dorkenwald et al. (2021) was reconstructed from a sample of the visual 
cortex that prior to the EM experiment has been functionally characterized. For this, neuronal response 
properties were recorded by two-photon imaging of a genetically encoded calcium indicator over 4.5 
hours of artificial visual stimulation (Turner et al. 2020). Plausibly, these artificial conditions induced 
artificial neuronal and synaptic dynamics. To exclude that the bimodal synapse size distribution 
underlying the claim of binary synapse states corresponds to saturated continuous-state synapses, it 
might be necessary to repeat the analysis in tissue from unstimulated animals. 

If saturated continuous-state synapses were in fact to underlie the bimodal synapse distribution, then 
Dorkenwald et al. (2021) would in effect have mapped for a homotypic set of neuronal connections the 
range of synapse sizes. The ratio of the 99th to 1st percentiles of synapse sizes differ roughly 37.4-fold. 
Following the argument of Bartol et al. (2015), this range together with an average CV of 0.46 results 
in an estimated storage capacity of roughly 2.5 bits per synapse. While less than the estimated 4.7 bits 
per synapse in rat hippocampal CA1 (Bartol et al. 2015), this roughly matches the 2.7 bits of synaptic 
storage capacity inferred in rat dentate gyrus (Bromer et al. 2018) and, importantly, is substantially 
more than the upper bound of 1 bit per binary synapse. In fact, when accounting for the redundancy in 
correlated and thus non-uniform distribution of binary synapse states inferred by Dorkenwald et al. 
(2021), the information storage capacity is closer to 0.74 bits per binary synapse. (Note that these 
estimates ignore the roughly 0.6 bits of information encoded in the presence or absence of synapses 
between each pair of layer 2/3 pyramidal neurons.) 

Whether cortical synapses are “digital” or “analog” thus has important implications for memory 
storage capacity. Beyond capacity, two important characteristics of memory storage are learning speed 
and memory retention durations. 

Limiting and opposing factors of Hebbian plasticity 
Hebbian plasticity is an activity-dependent plasticity mechanism. Thus, pre- and postsynaptic action 
potential firing is a necessary condition for Hebbian learning. The prediction of bisynaptic connections 
adopting similar (i.e., low-CV) synaptic strengths also depends on pre- and postsynaptic action 
potentials. As a result, the speed with which bisynaptic connections converge towards low-CV 
configurations might differ across brain regions or connections, depending on the mean action 
potential firing rates. 

While necessary, pre- and postsynaptic action potential firing is insufficient for the induction of low-
CV bisynaptic connections: The Hebbian drive towards low-CV connections is limited or even 
actively countered by opposing factors. These opposing factors include, for example, the stochasticity 
of presynaptic vesicle release, of diffusion of glutamate molecules across the synaptic cleft, and of 
these molecules binding to and opening postsynaptic AMPA and NMDA receptors. Because these 
stochastic processes are largely independent across synapses even in multi-synaptic connections, the 
lowest possible synapse size CV is strictly positive. Inhibitory co-innervation of dendritic spines in 
bisynaptic connections would have a similar effect. 
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In addition to these “passive” factors that limit the lowest possible CV, there are “active” opposing 
factors that increase the synapse size CV. Heterosynaptic plasticity is one such example.  

Heterosynaptic synaptic plasticity was first described in CA1 of rat hippocampus (Lynch et al. 1977), 
only shortly after the discovery of LTP (Bliss and Lømo 1973). After LTP induction in connections 
from Schaffer collaterals onto apical dendrites of CA1 pyramidal neurons, the commissural 
connections onto the basal dendrite of these neurons were found to express LTD, and vice versa 
(Lynch et al. 1977). Since then, many forms of heterosynaptic plasticity have been described, with the 
common feature being that homosynaptic plasticity induction at one synapse also affects other, non-
activated synapses. These heterosynaptic effects were recently reviewed by Jenks et al. (2021) and 
separated into three categories: In “compensatory” heterosynaptic plasticity, homosynaptic plasticity is 
often (but not exclusively) associated with opposite strength changes in other synapses. This can be 
mediated by modification of existing synapses or by structural plasticity (e.g., elimination or 
generation of synapses). In “facilitative” heterosynaptic plasticity, a homosynaptic plasticity event 
does not directly affect the strength of other synapses, but rather facilitates the induction of 
homosynaptic plasticity in them (e.g., (Harvey and Svoboda 2007)). And in “cooperative” 
heterosynaptic plasticity, dendritically clustered synaptic inputs express long-term plasticity in 
response to synchronous activation, even in the absence of a postsynaptic action potential (e.g., 
(Weber et al. 2016)). These heterosynaptic plasticity mechanisms were reported to operate on spatial 
scales of a few tens of micrometers. In the absence of synaptic clustering, the ensuing cross-talk 
between neighboring synapses on the same dendritic tree acts in opposition to the Hebbian alignment 
of strengths in multi-synaptic connections. 

While heterosynaptic plasticity mechanisms operate on tens of micrometers of the dendritic tree, 
homeostatic synaptic plasticity is a neuron-wide mechanism that regulates the strength of input 
synapses to maintain a stable average action potential firing rate (Turrigiano et al. 1998, Turrigiano 
and Nelson 2004). Blocking of neuronal activity in cortical cultures was found to induce a 
compensatory increase in EPSC amplitudes, whereas blocking of GABAergic inhibition resulted in a 
compensatory decrease of EPSC amplitudes over two days (Turrigiano et al. 1998). Importantly, the 
changes in EPSC amplitudes appeared to be proportional to the initial EPSC amplitudes (Turrigiano et 
al. 1998). This is important because such a multiplicative synaptic rescaling—contrary to a potential 
additive form of homeostatic plasticity—preserves relative synaptic strengths and thus also the relative 
strength difference in multi-synaptic connections. 

Sleep has been proposed as another mechanism of synaptic homeostasis (Tononi and Cirelli 2014). 
This proposal was based on experimental observations that wake and sleep are associated in the rodent 
cerebral cortex with net increases and decreases, respectively, in synaptic strengths as measured by 
EPSC amplitudes in slice preparations (Liu et al. 2010) and, in juvenile animals, in spine densities in 
vivo (Maret et al. 2011). Recently, the effects of wake and sleep on synaptic ultrastructure were 
investigated (de Vivo et al. 2017, Spano et al. 2019). In mouse cerebral cortex, sleep was found to be 
associated with a decrease in ASI areas by ~18% (de Vivo et al. 2017). However, instead of purely 
multiplicative rescaling of ASI areas that would preserve relative synapse sizes, the model that best 
explained the difference in ASI area distributions between wake and sleep was one in which the 
smallest 65%–90% of synapses were rescaled to around 80% of their size. ASI areas of synapses onto 
large spine heads and onto spine heads of dendrites with high synapse densities were found to be 
mostly preserved during sleep. 

In summary, the induction and preservation of strengths with small relative difference (low CV) in 
multi-synaptic connections by Hebbian plasticity depends on sufficiently reliable mechanisms of 
synaptic transmission and plasticity and on sufficiently strong or frequent activation of these 
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mechanisms to exceed the effects of opposing mechanisms, such as heterosynaptic plasticity. The 
observation of unexpectedly low average synapse size CVs in bisynaptic connections is indicative of 
connections in which Hebbian contributions to synaptic strength still exceeds these of opposing 
factors. However, there are different potential explanations for these observations, with two extremes 
described in the following. 

One extreme is a fully plastic circuit in which Hebbian and opposing mechanisms are in competition at 
every synaptic connection. Each connection is subjected to events of Hebbian plasticity that induce a 
corresponding increase in relative synapse size similarity, but which is constantly being eradicated by 
the effects of opposing mechanisms. Because all connections are assumed equal, the upper bound on 
the fraction of bisynaptic connections that are consistent with saturated Hebbian plasticity is thus to be 
interpreted as an upper bound on the probability that Hebbian contributions outweigh these of 
opposing mechanisms in any given connection at any given time. Thus, the effect of Hebbian long-
term potentiation of a synaptic connection would, generally, be short-lived. And Hebbian long-term 
memories would have to be constantly reinforced, potentially transferred to other synaptic 
connections. The other extreme is a circuit consisting of two distinct sub-circuits: one dominated by 
Hebbian plasticity, and one in which the contributions of Hebbian plasticity are negligible. The 
connectomic upper bound on the fraction of bisynaptic connections consistent with Hebbian plasticity 
would thus reflect the relative sizes of these sub-circuits. 

Where on this spectrum a given circuit lies is difficult to assess from a single connectomic snapshot. In 
hippocampal CA1, the low synapse size CV on average across bisynaptic connections (Bartol et al. 
2015) despite the high spine turnover (Attardo et al. 2015) and many forms of heterosynaptic plasticity 
(Jenks et al. 2021) is indicative of an effective Hebbian plasticity mechanisms that is activated at high 
rates at most connections. This is consistent with the hypothesized role of the hippocampus in the 
acquisition and temporary storage of episodic memories before consolidation in the cerebral cortex 
(Squire and Zola-Morgan 1991). In the cerebral cortex, the dichotomy of large persistent and small 
transient spines (Holtmaat et al. 2005) and of large stable and small down-scaling synapses during 
sleep (de Vivo et al. 2017) rather indicates connection-specific specialization. In the future, dense 
connectomic reconstructions might help to address whether the stability/plasticity of cortical 
connections is associated with specific neuronal connections, with proximity to inhibitory synapses or 
with neuromodulatory axons. 

Higher-order circuit predictions of Hebbian plasticity 
In chapter 2, we have interpreted the unexpected synapse size similarity in bisynaptic connections as 
evidence for an activity-dependent homosynaptic bidirectional plasticity mechanism, such as Hebbian 
plasticity. We have also noted that the synapse size similarity could be the result of confounding 
factors, such as connection type-specific synapse size distributions. With EM volumes sufficiently 
large for the reconstruction of neuron-to-neuron connectomes, it becomes possible to exclude many of 
these confounding factors by restricting the analysis to homotypic synapses. However, it remains 
unclear whether the unexpected synapse size similarity is, in fact, the result of a Hebbian plasticity 
mechanism or of another homosynaptic mechanism that is governed by activity-independent variables 
that are uniform across the presynaptic axon and the postsynaptic dendrite. 

Further evidence for Hebbian plasticity could be obtained by testing higher-order circuit predictions. 

Hebbian plasticity is often described as a mechanism for correlation-based learning. For example, the 
covariance learning rule (Sejnowski and Tesauro 1989) predicts that synaptic strength change is 
proportional to the correlation of pre- and postsynaptic action potential firing rates. For example, the 
connection strength between neurons X and Y would increase if and only if the firing rates were 
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positively correlated (ρXY>0). Let us further assume that neurons Y and Z have action potential firing 
rates that are correlated with ρYZ. Knowing the correlations of neurons X and Y, and Y and Z, what can 
we say about the correlation ρXZ of action potential firing between neurons X and Z? In fact, ρXZ is 
bounded by ρXY ρYZ ± [(1- ρXY

2) (1- ρYZ
2)]1/2 (Langford et al. 2001). If synapse sizes are governed by 

such a correlation-based mechanism, then a synapse size-weighted neuron-to-neuron connectome 
should reflect this prediction of Hebbian plasticity for feedforward connections. 

If such a correlation-based plasticity mechanism is the dominant determinant of synapse sizes, then, 
conversely, structurally inferred connection strength would be predictive of functional correlation. 
This, in turn, would allow connectomic tests of further plasticity-related circuit structures. For 
example, spatial clustering of correlated or functionally similar synaptic inputs along the dendritic tree 
of individual neurons has been reported in the somatosensory and visual cortex (Takahashi et al. 2012, 
Wilson et al. 2016) and was found to emerge as consequence of learning-related structural plasticity in 
motor cortex (Hedrick et al. 2022). If the purely structural data of a neuron-to-neuron connectome 
allows inference of functional correlations, then so would it allow testing for dendritic clustering of 
functionally correlated synapses and for potential causal heterosynaptic plasticity mechanisms. 

In summary, the large number of synaptic and structural plasticity mechanisms and their interactions 
makes it challenging to study any one of these mechanisms in isolation, especially under the relevant 
physiological conditions in vivo. However, in combination, these mechanisms and their higher-order 
consequences put strong constraints on the synaptic connectivity. As a result, even a single 
connectomic snapshot in its comprehensive description of synaptic connectivity might help to test 
hypotheses and thereby further our understanding of dynamic processes, such as synaptic plasticity, 
learning and memory. 

Conclusion 
In this thesis, we have presented methods for the efficient semi-automated reconstruction and for the 
analysis of electron microscopy-based volumetrically dense connectomes from the mammalian 
cerebral cortex. In particular, we have proposed a method for purely connectivity-based detection of 
axons with evidence for above-random, specific targeting of subcellular targets. This method was used 
to compare the relative contributions of excitatory and inhibitory synapses to the synaptic inputs onto 
spiny dendrites in mouse, macaque and human. We have also proposed a method to derive upper 
bounds on the fraction of connections that are consistent with saturated Hebbian plasticity. 

Recent advances in sample preparation techniques and electron microscopy technology have enabled 
the acquisition of first image volumes from the mammalian cerebral cortex that are sufficiently large 
for the reconstruction of neuron-to-neuron connectomes. We have reviewed this progress and 
discussed the limiting factors in scaling up connectomic analyses. Furthermore, a method for the 
inference of cortical circuit models from connectomes was described. Specifically, we have provided 
simulation-based evidence that statistics derived from a weighted neuron-to-neuron connectome might 
be sufficient to distinguish between circuits that were defined only by their functions.  
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Appendices 

A1. Appendix to chapter 1 

Methods 

Data rates and dataset size (Figure 1-1a) 

Macroscale connectomics (Human Connectome Project) 
Data volumes were measured for scans of a randomly chosen subject of the Human Connectome 
Project’s (Van Essen et al. 2013) “1200 subjects data release” (accessed on 21 and 22 August 2018; 
see https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release 
for reference manual, 10 April 2018 update). Only 3T scans in uncompressed form were considered. 
“Ancillary files copied into multiple structural subdirectories, in order to facilitate using standardized 
scripts and pipelines” were ignored. 

 Structural MRI: 52.4 MB over 7min 40s to 8min 24s (0.11 MB / s) 

 Functional MRI: 
o Resting: 6.1 GB over 14min 33s (1.75 MB / s) 
o Task-evoked: 5 GB over 48min 46s (1.71 MB / s) 

 DTI: 5.8 GB over 6 sessions of 9min 50s, each (1.64 MB / s) 

 MEG: 8.1 GB over 86min (26.2 kB / s) 
 Total amount of data provided by the Human Connectome Project (including 7T scans): 15.2 

TB of unprocessed data, and 81.4 TB when considering raw, preprocessed and analyzed data 

Mesoscale connectomics (Allen Mouse Brain Connectivity Atlas) 
 Oh et al. (2014): 6 microscopes running in parallel. 750 GB of image data over 18.5h per 

mouse brain. 1,772 brains total (Kuan et al. 2015) 
 Range of data rate: 750 GB / 18.5h corresponds to 11.3 MB / s per microscope. Effective data 

rate of running 6 microscopes in parallel is 67.6 MB / s. 
 Total amount of data: 750 GB per brain. 1,772 brain tomographs published in Oh, Harris, Ng 

et al. 2014 Nature. The number of image volumes available in the Allen Mouse Brain 
Connectivity Atlas has since grown (e.g., (Harris et al. 2019)) and reached 2,995 as of 12 
September 2018. 

Nanoscale connectomics 
All data sizes calculated under assumption of 8 bit / voxel.  

Single-beam scanning EM (SEM) 
 Conventional tiling mode (in which scanning of sample surface and stage movement are 

temporally non-overlapping): 0.03-0.5 MHz effective imaging speed 
o Denk and Horstmann (2004): Pixel dwell times of 25 µs and 30 µs. Corresponds to 

maximal effective imaging rates of 0.033 - 0.04 MHz. 
o Briggman et al. (2011): Pixel dwell times of 1.9 µs (e2198) and 5 µs (k0563). 

Corresponds to maximal effective imaging rates of 0.2 - 0.53 MHz. 
o Kasthuri et al. (2015): Effective imaging rate 0.5 MHz (“…scan rate was 1M pixels 

per s. Time is also spent …, roughly halving the overall throughput.”) 
o Schmidt et al. (2017): Effective imaging rate of 0.4 MHz reported for conventional 

mosaic imaging 
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 Conventional tiling mode: 1 – 2 MHz effective imaging speed 
o Wanner et al. (2016): 2 MHz nominal imaging rate. 173×288×98 µm3 at 9×9×25 nm3 

resolution in 32 days corresponds to 0.82 MHz effective imaging speed. 
o Kornfeld et al. (2017): 5 MHz and 2.1 MHz of nominal and effective imaging rates, 

respectively 
o Svara et al. (2018): Nominal imaging rate of 5 MHz reported. Estimate of effective 

data rate: Assuming same microscope (Zeiss UltraPlus) and per-slice overhead (62.9 
s; based on in-plane area and voxel size, and raw and effective data rates) as in 
Kornfeld et al. (2017). Adding overhead estimate to 13.5 s of image acquisition results 
in 0.9 MHz effective image rate. If the overhead is linearly scaled to accommodate for 
the smaller field of view (74 µm vs. 166 µm), the effective data rate is 1.6 MHz. 

 Continuous stage movement with simultaneous image acquisition: 6 MHz 
o Schmidt et al. (2017): 5.9 MHz effective image rate reported. 

 Conventional tiling mode: 6 - 12 MHz 
o Morgan et al. (2016): Nominal imaging rate of 20 MHz reported. Effective imaging 

rate of 12 MHz, when ignoring microscope downtimes. Around 1 TB/days (incl. 
microscope maintenance, retakes, software development 100 TB / 6months) 
corresponds to effective imaging speed of 6 MHz over whole experiment. 

Transmission EM (TEM) 
 TEMCA: 1 – 5 MHz 

o Bock et al. (2011): 5-8 MHz net imaging rate (per section throughput). 450×350×52 
µm3 at 4×4×45 nm3. 20 min for imaging a section. Estimate of effective data rate: 
Assume 3 sections / grid and 10 min. overhead per grid (see Zheng et al. (2018); 
presumably improved, thus in favor of Bock et al. 2011 Nature). This results in 4.3 - 
6.9 MHz effectively. 

o Lee et al. (2016): Similar to Bock et al. (2011). 450×450×150 µm3 at 4×4×40 nm3. 
Net rate of 5-6 MHz. Estimate of effective data rate: Same assumptions as above. 4.3 - 
5.1 MHz effective data rate. 

 TEMCA2: 27 MHz 
o Zheng et al. (2018): TEMCA2 (used for 85 % of series): 50 MHz per-section 

(includes stage-movement overheads). 27 MHz per-grid (grid contains around 3 
sections; includes overheads from grid-exchange and ROI definition). 

Focused ion-beam – single-beam scanning electron microscopy (FIB-SEM) 
 0.035 MHz 

o Korogod et al. (2015): Reported 90s for milling and imaging a 2048×1536 px2 slice. 
That’s around 35 kHz effective imaging rate. Pixel dwell time is 10 µs (i.e., 0.1 MHz 
nominal imaging rate). 

 0.6 MHz 
o Xu et al. (2017): See below 
o Takemura et al. (2017): Around 40×50×120 μm3 imaged at (8 nm)3 voxel size and 

1.25 MHz nominal imaging rate within 5 weeks. The Z-step size was originally 2 nm 
(60,000 ablation and imaging cycles), four images were then averaged in Z to get the 
final dataset, resulting in an effective acquisition data rate (i.e., prior to down-
sampling) of about 0.6 MHz. 

Multi-beam scanning EM (mSEM) 
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 120 – 230 MHz effective imaging speed: 50 ns pixel dwell time per beam correspond to 
absolute imaging rates of up to 1.2 GHz and 1.8 GHz on 61-beam and 91-beam setups, 
respectively (Eberle et al. 2015). Effective imaging rates are reduced by stage movement, 
autofocus and autostigmation measurement, stage calibration and wafer exchange overheads. 
Effective imaging rates of 190 MHz (100 ns pixel dwell time per beam) and 230 MHz (50 ns 
pixel dwell time per beam) have been routinely achieved on a 61-beam setup at 1 s stage 
movement and settling time per hexagon, 12 μm inter-beam distance, and 4 nm pixel size. 

Data compressibility (Figure 1-1b) 

Compression factors and compression latency for nanoscale connectomics 
We assume a binary connectome consisting of N neurons and 1,000 postsynaptic partners per neuron. 
The encoding of each connection is assumed to occupy 1 byte. All image data is assumed to be 
recorded at 8 bit per 4x4x35 nm3 voxel. 

Time for analysis is calculated as follows: 

 Sample preparation and image acquisition: Recursive, parallel binary hot-knife partitioning (at 
0.1 mm / s; (Hayworth et al. 2015)) of whole brain into a sufficiently large number of slabs for 
image acquisition on multiple 91-beam Zeiss multiSEM microscopes operating at (4 nm)2 
pixel size and 20 MHz sampling rate (ignoring any overheads due to, e.g., stage settling). 8 
days were assumed for sample extraction, staining and embedding. Automated cutting of slabs 
at 35 nm thickness and collection onto tape at 10 μm / h. Farms of 8 to 128 microscopes were 
assumed. 

 Automated data analysis: Segmentation, agglomeration, neurite type classification and 
synapse detection for a 0.5 x (100 μm)3 volume of SBEM data from mouse somatosensory 
cortex acquired at 11.24×11.24×28 nm3 voxel size took 4.5 days on a compute cluster of 384 
cores (Motta et al. 2019). Time for these analysis steps was corrected to brain volume in 
question and 4×4×35 nm3 voxel size. Compute resources of 2,304 to 191,664 CPU cores 
(CPU cores of IBM Summit as of August 2018; see https://www.olcf.ornl.gov/summit) at 8 
GB / core and around 0.067 EUR / core hour (https://aws.amazon.com/ec2/pricing/on-
demand) were assumed. 

 Focused neurite reconstruction: Dense reconstruction of SBEM data from mouse 
somatosensory cortex required 4,000 annotator work hours (Motta et al. 2019) at 10 EUR / h. 
This number was adjusted for the brain volume in question. The following two annotator 
workforces were considered: 

o 225,000 annotators, each working every few days (2.5 times per week) for 2 hours per 
session (EyeWire; https://scistarter.org/eyewire), and 

o around 935,000 concurrently working annotators (corresponding to average number of 
concurrent players of the video game “PlayerUnknown's Battlegrounds” on Steam as 
of 23.08.2018; https://store.steampowered.com/stats/Steam-Game-and-Player-
Statistics). 

Reconstruction of whole-brain binary connectomes: 

 Human brain: 86.1 billion neurons (Azevedo et al. 2009) in average brain volume of 1,191 
cm3 (Allen et al. 2002). The binary connectome is 86.1 TB in size and thus around 25 million 
times smaller than the 2.1 ZB of image data (at 4×4×35 nm3 voxel size, see above). Time to 
analysis: 0.3 – 29 million years (96 - 229 days of sample preparation, 290 – 4,600 years of 
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imaging, 0.3 – 29 million years of automated data analysis, 1.2 – 160 thousand years of 
manual proofreading). 

 Mouse brain: 70.9 million neurons (Herculano-Houzel et al. 2006) in 450 mm3 brain volume 
(Mikula 2016) results in a 70.9 GB connectome that is around 11 million times smaller than 
the 0.8 EB of image data. Time to analysis: 130 – 11,000 years (14 – 24 days of sample 
preparation, 40 – 640 days of imaging, 130 – 11,000 years of automated data analysis, 0.4 – 
61 years of manual proofreading). 

 Etruscan shrew: 11.5 million neurons (based on scaling law in Sarko et al. (2009) and brain 
mass of 64.4 mg from Naumann et al. (2012)) in 80 mm3 brain volume (Mikula 2016) results 
in 11.5 GB connectome that is 12.4 million times smaller than the 0.1 EB of image data. Time 
to analysis: 23 – 2,000 years (12 – 17 days of sample preparation, 7 – 114 days of imaging, 23 
– 2,000 years of automated data analysis, 29 days – 11 years of manual proofreading). 

 Adult fly brain: 100,000 neurons in 0.08 mm3 brain volume (Zheng et al. 2018) results in 0.1 
GB connectome that is 1.4 million times smaller than the 143 TB of image data. Time to 
analysis: 17 days – 2 years (8 – 9 days of sample preparation, less than 1 day of imaging, 9 
days to 2 years of automated data analysis, up to 4 days of manual proofreading). 

 Larval fly brain: 11,000 neurons in a brain volume 45 times smaller than that of the adult 
(Schlegel et al. 2017, Zheng et al. 2018) results in 11 MB connectome that is around 290 
thousand times smaller than the 3.2 TB of image data. Time to analysis: 8 – 24 days (8 days of 
sample preparation, less than one day of imaging, up to 16 days of automated data analysis, 
less than one day of manual proofreading). 

Light-sheet microscopy (LSM) 
 Data rates: 2.8 GB / s (10 TB per hour) of raw (Liu and Keller 2016) image data. 

 Compression  rates: 4.5- to 60-fold live-compression reduces the data stream to 0.05 - 0.6 GB 
/s (Amat et al. 2015) 

Multi-electrode array (MEA) 
 Hildebrand et al. (2017) (“Neuropixel” probes): Two probes, each with 960 recording sites, 

384 of which may be recorded simultaneously. Action potential and local field potential 
signals are recorded separately at 10 bits per sample, and 30 kHz and 2.5 kHz sampling rate, 
respectively. This corresponds to 31.2 MB / s. 

 Shein-Idelson et al. (2017): Array of 26,400 electrodes. Simultaneous recording from 1,024 
electrodes at 20 kHz sampling rate and 10 bits per sample yields 25.6 MB / s. 

 Compression ratio: Recording spikes of 1,200 sorted units with 1-bit coding at 0.5 ms 
temporal resolution uses 300 kB / s. This is corresponds to 85-fold compression. 

 Compression delay: Spike sorting is typically performed offline and roughly at the same speed 
as data acquisition (Wouters et al. 2018). The compression delay thus roughly corresponds to 
typical experiment durations of one hour. 

Genome sequencing 
 Illumina NovaSeq 6000 (https://www.illumina.com/systems/sequencing-

platforms/novaseq/specifications.html): 6 trillion bases read in 36 – 45 hours, two bits per 
base results in a data rate of 10.3 MB / s. 

 Total data volume predicted for year 2025: 40 EB (Stephens et al. 2015) 

CERN 
 Data rate and compression factor: 12.3 PB of data stored in October 2017 

(https://home.cern/news/news/computing/breaking-data-records-bit-bit) corresponding to an 
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average rate of 4.6 GB / s. Only 100 – 200 out of 600 million events per second are stored. 
The raw data rate is thus around 18.4 PB / s. 

 Compression delay: Events are discarded live using software- and hardware-based filters 
(https://home.cern/science/computing/processing-what-record). 

 Total data volume: 200 PB as of 29 June 2017 (https://home.cern/news/news/computing/cern-
data-centre-passes-200-petabyte-milestone) 

Retina 
 Data rate: Two retinae with 1.19 million retinal ganglion cells, each (average of 1.07 million 

in (Curcio and Allen 1990) and 1.31 million in (Harman et al. 2000)), and 8.75 bits / s per 
retinal ganglion cell (Koch et al. 2006) results in around 2.6 MB / s. 

 Total data volume: 70 year lifetime with 16 waking hours per day results in 3.8 PB of visual 
input. 

Estimates for human brain nanoscale connectome (Figure 1-2a) 
EM imaging: Human brain volume of 1,191 cm3 at 20 MVx/s effective imaging speed per beam, 
4x4x35 nm3 voxel size yields 3.4 million electron beam years. Allowing 1 billion EUR cost over 5 
years yields required cost per 20MVx/s electron beam of 1,470 EUR, about 30-fold less than current 
mSEM setups (and bout 60-100-fold less than current TEM setups).  

Computational cost: Extrapolating from (Motta et al. 2019) (which is at least as efficient than 
Januszewski et al. (2018)) yields 5.8*1014 CPU core hours at 0.067 EUR per core hour (current 
amazon web service (AWS) rates for the required memory allocation of 12GB RAM/core), i.e. 
3.9*1013 EUR, thus about 4*104 –fold reduction needed to process at a budget of 1 billion EUR for 
one human brain. 

Human annotation cost: Extrapolating from Motta et al. (2019), 1013 human work hours would be 
required, i.e. about 1014 EUR cost, thus a factor of 105 above a putative investment of 1 billion EUR. 
Note that this investment currently yields remaining error rates that are about 103 -104 off the size of 
single human neurons. So far, human annotation accuracy has been boosted by redundant annotation 
(Helmstaedter et al. 2011), with a factor of 10-50 for a 103 accuracy improvement, which may 
however saturate. This would yield a required factor of 106-107 for plausible human annotation cost 
improvement (Figure 1-2a). However, when accuracy reaches a level at which a substantial fraction of 
neurons is error-free, human annotation may become entirely dispensible since statistics over neurons 
can be applied. For human neurons (1-10 cm cable length), this accuracy is about a factor of 103-104 
from today’s results.  

Label usage (Figure 1-2b) 
The “label fraction” for convolutional neural networks (CNNs) is calculated under the assumption of 1 
vx3 output volumes. Such CNN configurations are provided with one label per input volume during 
training. The label fraction thus corresponds to the inverse of the number of voxels in the CNN’s 
(theoretical) field of view. 

 SegEM (Berning et al. 2015): 279 million labeled voxels in training set. Field of view of 
SegEM architecture is 51×51×21 vx3, resulting in a “label fraction” of 1.8 × 10-5. 

 Flood-filling networks (FFN; Januszewski et al. (2018)): 131 million labeled voxels in 
training set. Field of view of FFN network (ignoring information flow due to recursive 
application) is 37×37×25 vx3, resulting in a label fraction of 2.0 x 10-5. 

 Membrane detection of SyConn (Dorkenwald et al. 2017): 6 × 13.5 μm3 of label volume in 
training data. At 9x9x20 nm3 voxel size this corresponds to 50 million labeled voxels. 
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 SynEM (Staffler et al. 2017): Training set consists of 150,766 labeled interfaces. The largest 
of these was 861,001 vx in size, resulting in a label fraction of 1.2 × 10-6. 

 Synapse detection in Parag et al. (2018) (ignoring pruning network): Training volume of “rat 
cortex” dataset consists of around 5 million labeled voxels (97 images, each assumed to be 
(228 px)2 in size). Field of view of 89×89×29 vx3 corresponds to label fraction of 4.4 × 10-6. 

 Infant learning the concept of a tree: Around 77 TB of visual input at 1.5 years of age 
(assuming 15 waking hours per day and visual input rate of 2.6 MB / s; see “data rates” 
section). 4 % of (unlabeled) visual input is assumed to be trees. The label “tree” is given ten 
times, resulting in a label fraction of 3.2 x 10-12 labels per unlabeled byte. 
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A2. Appendix to chapter 2 

Materials and Methods 

Subimage alignment 
To further improve the precision of image alignment, which we found to critically impact the quality 
of the automated volume segmentation, we performed the following steps. Each image of the raw 
dataset was cut into smaller images sized 256x256 pixels each. The offset calculation was run as 
described above (with the shift between neighboring subimages from the same original image set to 
zero). Additionally, we used a mask for blood vessels and nuclei (see below) to determine images 
which mostly contained blood vessels or somata. These images were assigned a decreased weight in 
the relaxation step. After the least-square relaxation, the shifts obtained for the subimages were used to 
create a smooth non-affine morphing of the original images, which were then exported to the 3D 
KNOSSOS format as above. All raw image data is available for inspection at demo.webknossos.org 
(see section on data availability). All code used for image alignment is available at 
https://gitlab.mpcdf.mpg.de/connectomics/L4dense 

Blood vessel detection and correction for brightness gradient 
Blood vessels were detected (Figure A2-1) by automated identification of regions of at least 0.125 µm2 
with extreme brightness values (below 50 or above 162 at 8 bit depth) in each image plane, followed 
by manual inspection to exclude false positives. Image voxels within blood vessels were assigned the 
mean brightness of the entire dataset (mean=121). 

To correct brightness gradients across the image volume, the mean brightness was calculated for non-
overlapping image blocks of 64 x 64 x 29 vx3, respectively, and the resulting marginal brightness 
distributions along the X, Y, and Z axes were smoothed and used to assign a multiplicative correction 
factor to each image block. The correction factor was linearly interpolated and multiplied to the 
brightness value of all non-blood vessel voxels within each of the image blocks. 

Nuclei and myelin detection 
For the automated detection of nuclei and myelin, the following heuristics were applied. First, the 
voxel-wise brightness gradient was computed in the image data after smoothing by a 3-D kernel of 
size 21 x 21 x 9 vx and a standard deviation of ~33.5 nm. Nuclei were identified as regions of at least 
about 1.8 µm3 in size with small brightness gradient and image brightness close to the mean image 
brightness. Myelin was detected as regions of low brightness sized at least about 0.35 µm3. Both 
nuclei and myelin detection were applied on overlapping image volumes of 912 x 912 x 416 vx3 size 
which were then truncated to non-overlapping volumes of 512 x 512 x 256 vx3 size, yielding a 3D 
“soma map” and “myelin map”. The relevant code files at 
https://gitlab.mpcdf.mpg.de/connectomics/L4dense are additionalHeuristics.m, 
localDetectionMyelin.m and localDetectionNuclei.m in the preprocessing/ folder. 

Volume segmentation using SegEM  
To generate an initial automated volume segmentation, SegEM (Berning et al. 2015) was applied to 
image data cubes of size 1024 x 1024 x 512 vx3 with 256, 256, and 128 vx overlap along X, Y, and Z, 
respectively, using CNN 20130516T2040408,3 with parameters θms = 10 vx and θhm = 0.25 (see Table 
1 in (Berning et al. 2015)). At the edge of myelinated regions (see previous section), the CNN output 
was replaced with the minimum output value of -1.7 to enforce splits during the subsequent 
watershed-based volume segmentation. The employed computational routines can be found at 
https://gitlab.mpcdf.mpg.de/connectomics/L4dense in +Myelin/enforceMyelinSegments.m and 
segmentation/segmentForPipeline.m. 
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Segmentation neighborhood graph 
For the determination of neurite continuity and synaptic interfaces (Figure 2-2B,E), a segment 
neighborhood graph (region adjacency graph) was constructed in each of the non-overlapping 
segmentation cubes created by the SegEM step (see previous section). The neighborhood graph was 
constructed as in SynEM (Staffler et al. 2017). Briefly, two volume segments were called adjacent if 
there was a boundary voxel that contained both segments in its 26-neighborhood. The borders between 
adjacent segments were calculated as the connected components of all boundary voxels that had both 
segments in their 26-neighborhood. For each border, an edge between the corresponding segments was 
added to the neighborhood graph. The segment neighborhood graph is thus an undirected multigraph. 

To extend the neighborhood graph beyond the non-overlapping segmentation cubes, pairs of 
segmentation cubes that shared a face in the x, y or z-direction were considered, and segments in the 
juxtaposed segmentation planes from the two segmentation cubes were matched if the number of 
matched voxels for a given pair of segments in the two planes was at least 10, and if the matched 
voxels constituted more than 90% of the area of the smaller segment. In these cases, an edge between 
the corresponding segments from the neighboring segmentation cubes was added to the neighborhood 
graph. 

The employed computational routines can be found at 
https://gitlab.mpcdf.mpg.de/connectomics/L4dense in +SynEM/+Svg/findEdgesAndBorders.m and 
correspondence/calculateGlobalCorrespondences.m. 

Synapse detection with SynEM 
For synapse detection, SynEM was applied to the segment neighborhood graph (see previous section) 
as in (Staffler et al. 2017). In brief, for each pair of adjacent volume segments, the subvolumes for 
SynEM feature aggregation (see (Staffler et al. 2017)) were determined by dilating the border between 
the two volume segments with spherical structuring elements of radius 40 nm, 80 nm and 160 nm, 
respectively, and then intersecting the dilated border the two adjacent volume segments, each. 
Interfaces with a border size of less than 151 voxels were discarded. Then, all interfaces in the 
segment neighborhood graph were classified using the SynEM classifier, yielding two SynEM scores 
for each interface, one for each of the two possible synapse directions. 

In contrast to (Staffler et al. 2017), separate classifiers for interfaces onto spine segments (retrieved by 
TypeEM) and for all other interfaces were used. For interfaces onto spine segments, the classifier from 
(Staffler et al. 2017) was used. All interfaces onto spine segments with at least one score larger than -
1.2292 according to the SynEM classifier (corresponding to 89% recall and 94% precision for spine 
synapses; see the test set of (Staffler et al. 2017)) were considered as synaptic interface candidates. For 
all other interfaces, a second classifier was trained using training data of synapses onto shafts and 
somata (examples in Figures A2-2 to A2-5) and a different feature representation of interfaces as 
follows: The training set of the second classifier consisted of all shaft and soma synapses of the 
SynEM training set and the shaft and soma synapses from two additional training volumes of size 5.75 
x 5.75 x 7.17 μm3. The feature representation of interfaces for the second classifier consisted of all 
features of SynEM described in (Staffler et al. 2017), extended by four additional texture filter 
responses. The additional filter responses were voxel-wise probability maps for synaptic junctions, 
mitochondria, vesicle clouds and a background class obtained using a multi-class CNN. The CNN was 
trained on seven volumes of dense annotations for synaptic junctions, vesicle clouds and mitochondria 
(six volumes of size 3.37 x 3.37 x 3.36 μm3 that were also used for the methods comparison in 
(Staffler et al. 2017), and one additional volume of size 5.75 x 5.75 x 7.17 μm3) using the elektroNN 
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framework (elektronn.org; see also (Dorkenwald et al. 2017)). Interfaces onto segments that were not 
classified as spines by TypeEM with at least one directional SynEM score larger than -1.28317 
according to the second classifier (corresponding to 69% recall and 91% precision evaluated on all 
shaft synapses of the test set for inhibitory synapse detection of SynEM) were considered as synaptic 
interface candidates in addition to the synaptic interface candidates onto spines. 

Synapses onto somata and dendritic shafts: criteria for identification 
The detection of shaft and soma synapses in 3D EM is notoriously challenging when compared to 
primary excitatory spine synapses. 

We used the following criteria for synapse identification: Typically large vesicle-filled bouton; 
Apposition of vesicles towards one interface; At that interface indications of a darkening of the 
synaptic interface; Comparison with other possible synaptic interfaces of the same bouton in cases of 
doubt. Examples from the training set of SynEM for inhibitory axons are shown in Figures A2-2-5. 

ConnectEM classifier 
To determine the continuity between adjacent volume segments (Figure 2-2B), for each interface (see 
previous section) sized at least 10 vx, the SynEM filter bank and aggregation volumes (Staffler et al. 
2017) were applied to the image and CNN output data, resulting in 6,426 texture- and 22 shape-
features per interface. The features were used as input to an ensemble of 1,500 decision tree stumps 
trained with LogitBoost (Friedman et al. 2000) on 76,379 labeled edges obtained from proofread dense 
skeleton annotations of three (5 μm)3 cubes of neuropil. To adapt the SynEM interface classification 
method to a task on undirected edges, the ensemble was trained on both the forward and reverse 
direction of the labeled edges. Each edge in the segment neighborhood graph was then assigned a 
continuity probability by applying the classifier to the corresponding interface in random direction. 
Interfaces with less than 10 vx were treated as having a continuity probability of zero, edges across 
segmentation cubes were assigned a continuity probability of one. The employed computational 
routines can be found at https://gitlab.mpcdf.mpg.de/connectomics/L4dense in calculateFeatures.m, 
connectEM/classifierTraining.m and predictDataset.m in the +connectEM folder. 

TypeEM classifier 
To determine whether a volume segment belonged to a dendrite, an axon, or an astrocyte, and whether 
it was likely a dendritic spine head, we developed a set of four classifiers (“TypeEM”) as follows. 
Each volume segment was expanded into an agglomerate of up to 5 segments by iteratively adding the 
neighboring segment with the highest edge continuity probability to the agglomerate. Agglomeration 
was restricted to the subgraph induced by the edges with at least 92% continuity probability to prevent 
merge errors. 

Then, the following set of features was computed for the agglomerates: 918 texture features from the 
SynEM filter bank (Staffler et al. 2017) applied to the image and CNN output data and pooled over the 
segment agglomerate volume; 6 shape features as in SynEM; the 0th- to 2nd-order statistical moments 
of the agglomerate volume; the eigendecomposition of the 2nd order statistical moment; the 0th-to-2nd 
order statistical moments of the surface of the agglomerate after rotation of the agglomerate to the 
principal component of all its voxels; same as before but for the convex hull of the agglomerate; 
volume-to-surface area ratio, compactness (i.e., (surface area)3 / volume2), clusters of normal unit 
vectors, hull crumpliness and packing (Corney et al. 2002); estimates of the distance (Osada et al. 
2001) and thickness (Yi et al. 2004) histograms from sampling random point pairs on the 
agglomerate’s surface.  

This yielded a total of 1,207 shape features and 924 SynEM features; these were then taken as input to 
an ensemble of 1,500 decision tree stubs trained using LogitBoost (Friedman et al. 2000). 14,657 
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training samples were obtained by one expert (AM) marking all spine head segments and assigning the 
neurite / glia type to each process in three densely reconstructed (5 μm)3 cubes of neuropil (same 
cubes as in previous section “ConnectEM classifier”). 

Together, these data were used to train one-versus-all TypeEM classifiers for axons, dendrites, and 
astrocytes. The classifiers reached the following classification performance on a separate test cube 
sized (5 μm)3: Axon classifier: 91.8% precision (P) and 92.9% recall (R); dendrite classifier: 95.3% P, 
90.7% R; astrocyte classifier: 97.2% P, 85.9% R (at maximum area under precision-recall curve). The 
spine head classifier was trained on a feature set calculated as above, with the exception that the 
agglomeration step was omitted, and achieved 92.6% P and 94.4% R. 

For subsequent processing, the TypeEM classifier scores were transformed to probabilities using Platt 
scaling (Platt 2000). Finally, the one-versus-all axon, dendrite, and astrocyte probabilities of each 
segment were combined to multi-class probabilities by rescaling them by the inverse of their sum. 

The employed computational routines can be found at 
https://gitlab.mpcdf.mpg.de/connectomics/L4dense in +TypeEM/buildFeatures.m and 
+TypeEM/buildPredictions.m. 

Automated reconstruction of dendrites 
For the reconstruction of dendrites, we first selected all SegEM segments with a TypeEM dendrite 
probability of at least 0.3 and a volume of at least 500 vx. In the subgraph induced by these segments 
we deleted all edges that corresponded to an interface of less than 300 vx size or a neurite continuity 
probability below 98%. The graph was then used to cluster the dendritic segments into connected 
components, yielding dendrite agglomerates. 

To reduce the effect of TypeEM misclassifications, we used the fraction of myelinated surface area to 
identify and remove likely axonal agglomerates from the dendrite class (calibrated based on 50 
random agglomerates with a myelinated surface fraction between 0.05 and 0.5): Agglomerates were 
moved from the dendrite to the axon class if they had a total volume of at least 200,000 voxels, had a 
myelinated surface fraction above 0.25 (or above 0.08 if the agglomerate comprised more than 25 
segments); and did not contain somatic segments.  

For the computation of the myelinated surface fraction, for each agglomerate with a total volume of 
above 5 µm3, all neighboring segments of the agglomerate were identified according to the 
neighborhood graph, and the area of interfaces onto neighboring myelin segments was computed. 
Myelin segments were defined as having at least 50% of their volume intersecting with the myelin 
map as derived above (section “nuclei and myelin detection”). This area was then divided by the total 
area of all interfaces between the agglomerate and other segments.  

Reconstruction of cell bodies (somata) 
Cell bodies were reconstructed from the volume segmentation of each cell’s nucleus (see above). First, 
we identified all SegEM segments which were contained in a nucleus with at least 50% of their 
volume. Then we added all direct neighbors of these segments according to the neighborhood graph. 
Then we iteratively extended the soma volumes along the neighborhood graph with the following 
constraints: only consider segments with a size of at least 2,000 voxels and a center of mass at a 
maximal distance of 8 µm from the center of mass of the corresponding nucleus; only consider edges 
in the neighborhood graph with a continuity score above 0.98; do not consider edges if the segments’ 
vessel score or its myelin score were above 0.5. Then, all connected components of segments that were 
completely enclosed by soma segments according to the neighborhood graph were added to the 
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respective soma. Finally, all segments with more than 80% of their surface adjacent to soma segments 
were added iteratively (10 iterations). 

The employed computational routines can be found at 
https://gitlab.mpcdf.mpg.de/connectomics/L4dense in +Soma/agglomerateSoma_BS. 

Soma-seeded reconstruction of neurons 
For the reconstruction of those neurons that had their cell body in the dataset (n=89 with dendrites 
reconstructed in the dataset, Movie A2-1), all dendrite agglomerates from the automated dendrite 
reconstruction that overlapped with a given soma volume (see previous section) were combined into 
one agglomerate for each of the neurons. 

Iterative semi-automated correction of whole cell agglomerates 
The remaining errors in the soma-seeded neuron reconstructions (see previous section) were corrected 
in a semi-automated procedure that consumed 9.7 hours for all neurons, i.e. 5.18 minutes per neuron. 
Soma-based neuron reconstructions were inspected for merger errors in the 3D view of webKnossos, 
and mergers were corrected by deletion of nodes in the neighborhood graph of the neuron 
reconstruction. Then, endings of the neuron were detected (see below), and reconstructions at the 
endings were performed in webKnossos until a dendrite agglomerate was reached that was obtained 
from the automated dendrite reconstruction (see previous section). The inspection for mergers and the 
detection of endings in the dataset was iterated until only real endings or endings at the dataset 
boundary were left. 

Automated axon reconstruction  
For the reconstruction of axons, we first selected all SegEM segments with a volume of at least 300 vx 
and a TypeEM axon probability of at least 50%. The subgraph induced by these segments was 
partitioned into connected components (axon agglomerates) after removal of edges corresponding to 
interfaces with less than 60 vx size or with a neurite continuity probability below 97%. Next, for each 
segment that was part of an axon agglomerate, we computed the first principal component of its voxel 
locations and used its degree of variance explanation as an indicator for the directedness of the 
segment. We then determined for each interface between the agglomerate’s segments and all 
neighboring segments the alignment of the interface’s normal vector with the segment direction. Based 
on this, we obtained an ending score for each interface of the segment, and at locations with high 
scores, the axon agglomerate was grown into neighboring segments under the following additional 
constraints: the neighboring segment had an axon probability of at least 30%; the interface had a size 
of at least 40 vx; the neighborhood graph edge had a neurite continuity probability of at least 80%. 
This growth process was repeated ten times. 

Finally, we compensated for the heightened rate of merge errors in proximity to the dataset boundary 
that results from decreased alignment quality. Edges that were closer than 2 µm to dataset boundary 
and had a neurite continuity probability below 98% were removed from the axon agglomerates. 

Then, all axon agglomerates of length 5 µm and above were used for the following focused annotation 
steps. Length of agglomerates was computed as the summed Euclidean length of all edges in the 
minimal spanning tree of the center of masses of the agglomerate’s segments.  

FocusEM ending detection and query generation 
To determine the endings of axons at which focused annotation could be seeded, we used the 
following procedure. For each segment in an axon agglomerate we took the segments that are direct 
graph neighbors or that come within 1 µm distance, and computed the first principal component of 
their volume. We then identified all segments where the principal component of the local surround 
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explains at least 50% of the variance, and determined the borders on the axon agglomerate surface that 
were aligned to that axis (i.e., all interfaces for which the vectors from the center of mass of the local 
surround to the center of mass of the interface were at an angle of at most cos-1(0.8) ≈ 37 °). Finally, 
the identified interfaces were grouped using a cutoff distance of 600 nm and reduced to the interface 
best aligned to the surround’s principal component. We determined the point within 500 nm of each 
interface that is closest to the core of the axon agglomerate and used it together with the principal 
component of the local surround as the start position and orientation of a focused annotation query in 
webKnossos (Boergens et al. 2017). Interfaces within 3 µm of the dataset boundary were excluded 
from query generation. 

FocusEM axon queries were performed in webKnossos flight mode (Boergens et al. 2017). The 
volume map of all axon agglomerates larger than 5 µm was used to dynamically terminate flight paths 
when a user entered already reconstructed agglomerates (this was implemented in a custom script 
using the webKnossos frontend API, see  
https://gitlab.mpcdf.mpg.de/connectomics/L4dense/+connectEM/+Flight/dynamicStoppingScript.js). 
To reduce the delay between subsequent queries, we implemented a “hot switching mode” in 
webKnossos (Boergens et al. 2017) such that the next query was already loaded in the background 
while answering the current query. With this, an immediate switching (amounting to a jumping to 
query locations in the dataset) was possible that yielded negligible lag between tasks. 

Query analysis 
FocusEM queries yielded linear skeletons from webKnossos flight mode. For each node of a given 
skeleton we determined the overlap with axon agglomerates in the (3 vx)3 cube around each skeleton 
node (a skeleton was considered to overlap with an axon agglomerate if the agglomerate was 
contained in at least 54 vx around the skeleton nodes). For the overlapping agglomerates, we 
determined the corresponding agglomerate endings within 300 nm distance from the skeleton nodes. 
Based on the configuration of agglomerate overlaps, agglomerate endings reached by the queries and 
proximity of the query to the dataset boundary, the query results were either accepted as is, re-queried 
or discarded (see code files below for detailed decision tree). When locations were queried multiple 
times, the information on agglomerate and ending overlap was used to keep only minimal subsets of 
skeleton tracings for the final axon agglomerates (see “Iteration between ending and chiasma 
detection”). For connectome analysis and display, volume segments that had not yet been assigned to 
any axon agglomerate and that overlapped with the user skeleton from the flight mode queries were 
collected and added to the agglomerate volume. 

The employed computational routines can be found at 
https://gitlab.mpcdf.mpg.de/connectomics/L4dense in getAggloQueryOverlapA.m, 
getAggloQueryOverlapB.m,  flightEndingOverlap.m, makeEndingCaseDistinctions.m and 
createNewSuperagglos.m of the +connectEM folder 

Chiasma detection and queries 
To identify mergers, we detected geometric configurations (Figure 2-2H) with more than two-fold 
neurite crossings after agglomeration. Chiasmata were detected by counting the number of 
intersections of the graph representation of an agglomerate with a sphere centered on the nodes of the 
graph. For this, the agglomerate was reduced to the connected component contained within a sphere of 
10 µm radius around the current node followed by pruning of all edges within a sphere of 1 µm radius. 
The remaining graph components that reach a distance of at least 2 µm from the center were 
considered sphere exits. If four or more sphere exits were found, the node at the sphere center was 
labeled as a chiasmatic node. Within axon agglomerates, the chiasmatic nodes were clustered using a 
cutoff distance of 2 µm and subsequently reduced to the node closest to the center of mass of the 
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cluster. At these locations, queries from the sphere exits pointing towards the sphere center were 
generated and annotated as described for the ending queries (Figure 2-2F,G). The webKnossos flight 
mode annotations of chiasma queries were stopped when the annotator left the bounding box around 
all exit locations. In the final iterations of the analysis, 3-fold chiasmata were also detected and 
annotated. 

The employed computational routine can be found at 
https://gitlab.mpcdf.mpg.de/connectomics/L4dense in +connectEM/detectChiasmata.m. 

Chiasma query interpretation 
To decide which of the exits contributing to a given chiasma should remain connected and which 
should be disconnected, we used the query results from all chiasma exits. The full set of results 
enabled the detection of chiasmata with contradictory query answers, partial automated error 
correction, and the re-querying of a minimal set of exits. Chiasmata with a full and contradiction-free 
set of answers were solved by removing the edges within the center 1µm sphere from the agglomerate 
and by subsequent reconnection of the exits based on a minimal set of flight queries. 

The employed computational routines can be found at 
https://gitlab.mpcdf.mpg.de/connectomics/L4dense in +connectEM/splitChiasmata.m and 
+connectEM/splitChiasmataMultiLogic.m. 

Iteration between ending and chiasma detection 
Following automated axon reconstruction, the FocusEM queries were iterated as detailed in 
+connectEM/README.md.  

Spine head detection 
Spine heads were detected as segments with TypeEM spine head probability above 50%. In 14.9% of 
cases, spine heads were split in the initial segmentation and then agglomerated by connecting 
neighboring segments with a TypeEM spine head probability above 50% that were connected by an 
edge with neurite continuity probability of at least 98% (note that in 11.3% of cases, spine heads were 
split at the interface of segmentation cubes; i.e. only in 3.6% of cases, spine heads were split in the 
original SegEM segmentation). Together, this yielded 415,797 spine head agglomerates. (See 
+Spine/+Head/buildAgglos.m). 

Spine attachment 
Of the 415,797 spine head agglomerates, 5.6% got attached to a dendritic shaft during automated 
dendrite agglomeration (see above). We then implemented a greedy walk strategy from spine heads to 
the corresponding dendritic shafts (Figure 2-2D). The walk was terminated upon reaching a dendrite 
agglomerate of at least ~1.1 µm3 (105.5 vx) and was restricted to at most ten steps along continuity 
edges, each having a neurite continuity probability of 25% or more and only involving segments with 
axon probability below 80%. With this, an additional 206,546 (49.7%) spine heads could be attached 
to the corresponding dendrite. For the remaining spines, SegEM mergers in the very thin spin necks 
typically prevented the spine attachment heuristics to be successful. We instead seeded manual 
annotation in the 164’969 remaining spine heads with a distance of at least 3 µm from the dataset 
boundary, asking annotators to connect these to the dendritic shafts 
(+L4/+Spine/+Scripts/prepareSpineTasksWKOrtho.m). This consumed 900 work hours total and 
resulted in a final spine head recall of 88.6% for spine heads further than 10 µm from the dataset 
boundary. The relevant code can be found in (+L4/+Spine/+Scripts/prepareSpineTasksWKOrtho.m). 
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Synapse agglomeration 
Synaptic interface candidates (n = 864,405 out of which 605,569 were onto spine segments and 
258,836 onto other segments) detected by interface classification were discarded if the score both 
synapse scores were larger than -2 or the continuity probability of the corresponding edge was larger 
than 0.7, or the myelin score of the pre- or postsynaptic segment was larger than 0.375 or the 
presynaptic segment was contained in the soma volumes. The remaining synaptic interface candidates 
(n= 862,350) were restricted to those with a center of mass more than 3 µm from the segmentation 
volume boundary (yielding n=696,149 synaptic interfaces with a pre- and postsynaptic segmentation 
object, each, that are used in the following analyses). 

To consolidate synaptic interfaces, the following steps were applied: First, all presynaptic 
segmentation objects contributing to any of the synaptic interfaces were combined, if they were 
connected to each other by at most two steps on the segmentation neighborhood graph with each step 
restricted to edges with a ConnectEM score of greater than 0.98. The same was applied to all 
postsynaptic segmentation objects. Then, all synaptic interfaces between the combined pre – and 
postsynaptic segmentation objects were combined into one synapse, each. Synapse agglomerates for 
which at least one postsynaptic segment was part of the spine head agglomerates were considered as 
spine synapse agglomerates. A spine synapse agglomerate was called “primary spine innervation” if it 
contained the interface with the highest SynEM score onto a given spine head agglomerate, and 
“secondary spine innervation” otherwise. Multiple synapse agglomerates between an axon 
agglomerate and a spine head agglomerate were merged into a single synapse agglomerate. The center 
of mass for a synapse agglomerate was calculated as the component-wise mean of the centers of mass 
of the individual interfaces. The area of a synapse agglomerate was calculated as sum of the border 
areas of the individual interfaces. 

The employed computational routine can be found at 
https://gitlab.mpcdf.mpg.de/connectomics/L4dense in +Synapses/+Scripts/synapseDetection_v3.m. 

Connectome aggregation 
The connectome was constructed using the axon agglomerates, postsynaptic agglomerates (dendrites, 
somata and axon initial segments), and synapse agglomerates. For each pair of an axon and 
postsynaptic agglomerate, all synapse agglomerates that had a presynaptic segment in the axon 
agglomerate and a postsynaptic segment in the postsynaptic agglomerate were extracted and 
associated with the corresponding axon-target connection. The total number of synapses of a 
connection was defined as the number of synapse agglomerates associated with that connection. The 
total border area of a connection was defined as the sum of the border area of all synapse 
agglomerates. All of the following analyses were restricted to axons with at least ten output synapses. 

Target class detection heuristics 
To determine the post-synaptic target classes apical dendrites (AD), smooth dendrites (interneuron 
dendrites, SD), axon initial segments (AIS), proximal dendrites (PD) and cell bodies (SOM), the 
following heuristics were used: 

Cell bodies were identified based on the detection of nuclei as described in “Reconstruction of cell 
bodies”. The non-somatic postsynaptic components of the soma-based neuron reconstructions were 
marked as proximal dendrites. Smooth dendrites were identified by having a spine rate (i.e., number of 
spines per dendritic trunk path length) below 0.4 per µm (Kawaguchi et al. 2006), Figure 2-3D, unless 
identified as apical dendrites. For the analysis of target class specificities and geometric predictability, 
the dendrites of soma-based interneuron reconstructions were considered as smooth, but not proximal 
dendrites. 
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For the identification of apical dendrites, all dendrite agglomerates that intersected with the pia- and 
white matter-oriented faces of the dataset were manually inspected in webKnossos (total of 422 
candidates, total inspection time 5 hours for an expert annotator) with the inspection criteria: directed 
trajectory along the cortical axis; maximally two oblique dendrites leaving the main dendrite; spine 
rate of non-stubby spines of at least about one every two micrometers.  

Contradictory class assignments between SD and AD occurred for 46 dendrites and were resolved by 
manual inspection in webKnossos. 

The axonal part of soma-based neuron reconstructions which was more proximal than the first branch 
point was considered as axon initial segment. Vertically oriented agglomerates that entered the dataset 
from the pia-end of the dataset and had no spines or output synapses, and transitioned into a clearly 
axonal process closer to the white matter boundary of the dataset were also identified as axon initial 
segments.  

Definition of inhibitory and excitatory axons 
Inhibitory and excitatory axons were separated based on the fraction of their synapses marked as 
primary spine innervations (see “synapse agglomeration”) (Figure 2-4A,B). To automatically resolve 
remaining merge errors between these two axon classes, we split axons between the two modes of the 
spine rate distribution (20 to 50% of synapses being primary spine innervations) at all their branch 
points (see “Chiasma detection and queries”). Then, we defined excitatory axons as those with more 
than 50% of synapses being primary spine innervations and termed axons with less than 20% primary 
spine innervations inhibitory.  

Definition of thalamocortical axons  
To identify those excitatory axons that were likely originating from the thalamus we used the fact that 
thalamic axons from VPM have been described to establish large multi-synaptic boutons at high 
frequency in mouse S1 cortex ((Bopp et al. 2017), Figure A2-6). We quantitatively applied these 
criteria by measuring the density of primary spine innervations (PSI) per axonal path length, the 
average number of PSI per axonal bouton, the fraction of axonal boutons with multiple PSIs, and the 
median bouton volume. Boutons were defined as clusters of PSI with an axonal path length of less 
than 2.4 µm between the cluster centers. In a calibration set of ten manually identified corticocortical 
and ten thalamocortical axons these features were discriminatory. We combined them into a single 
thalamocortical axon probability using logistic regression. Excitatory axons with a TC probability of at 
least 60% were identified as thalamocortical. 

Spatial synapse distributions 
To quantify the effect of soma location on synaptic innervation, we calculated the center of mass of all 
somatic segments and the fraction of excitatory input synapses that originate from thalamocortical 
axons for each soma-based neuron reconstruction. Bivariate linear regression was used to estimate the 
effect of soma position within the plane tangential to the cortical surface on the synaptic input 
composition.  

The primary dendrites of the soma-based neuron reconstructions were then identified to assess the 
effect of dendritic orientation on synaptic inputs. The orientation of a dendrite was calculated as the 
volume-weighted mean of the unit vectors from the soma (as above) to the center of mass of the 
corresponding SegEM segments. The fraction of excitatory synapses onto a primary dendrite 
contributed by thalamocortical axons was corrected for the value expected based on somatic position 
(as above). Finally, the dot product dp of the resulting vector (after renormalization) with the unit 
vector along the cortical axis was put in relation to the ratio of the dendritic synapse fraction to the 
synapse fraction of the corresponding neuron. The linear regression of these two quantities was 
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evaluated based on the coefficient of determination, whereas the pia- (dp < -0.5) and white matter-
oriented dendrites (dp > 0.5) were compared based on a two-sample t-test. 

For further analysis of the synapse input composition of L4 neurons, all soma-based neuron 
reconstructions and their individual dendrites were considered if they received at least 100 and 50 
input synapses, respectively. The correlation to the fraction of excitatory synapses contributed by TC 
axons (TC / (TC + CC)) was computed for the fraction of inhibitory synapses and the 7 target-
preferring axon classes defined in Figure 2-4. Statistical tests and Bonferroni correction see Statistical 
Methods.  

Comparison between dense reconstructions 
For the comparison of published dense reconstructions and the invested resources (Figure 2-2I,J), we 
used the following numbers: Dense reconstruction in the mouse retina (Helmstaedter et al. 2013): 
about 640 mm reconstructed neuronal path length, about 20,000 invested work hours; Dense 
reconstruction in the mouse cerebral cortex (Kasthuri et al. 2015): 6.75 mm of path length 
reconstructed within 253 hours (37.5 h/mm, 4.5 µm/µm3, 1500 µm3 reconstructed; see (Berning et al. 
2015) for derivation of numbers); Dense reconstruction in the zebrafish olfactory bulb (Wanner et al. 
2016): 492 mm path length with 25,478 invested work hours; Dense reconstruction in the fly larval 
nervous system (Eichler et al. 2017): 2.07 meters (based on skeleton reconstructions in Supplement of 
(Eichler et al. 2017)) with 28,400 hours investment (73 µm / h; see (Schneider-Mizell et al. 2016)); L4 
dense reconstruction:  2.724 meters (of these in mm: dendritic shafts 342, dendritic spines 551, 
dendrites connected to a cell body in the volume 62.5, axons connected to a cell body in the volume 
6.5; axons 1760; note about 80% of the volume is dense neuropil) within 3,982 hours. 

Computational cost estimate 
For the estimation of the total computational cost, a runtime of 5 hours for SynEM, 72 hours for 
TypeEM and 24 hours for all other routines on a cluster with 24 nodes each with 16 CPU cores and 16 
GB RAM per core was used. The runtime was converted to resources using 0.105 USD/h per CPU 
core with 16 GB RAM (Amazon EC2: 6.7 USD/h for 64 CPU cores with 1000 GB RAM). The 
computational cost for Flood-Filling Networks was calculated using 1000 GPUs that ran for a total 
wall time of 16.02 hours (Suppl. Table 3 in ref. (Januszewski et al. 2018)) and a cost of 0.9 USD/h for 
a single GPU which was multiplied by the ratio of the sizes of our dataset (61 x 94 x 92 µm3) and the 
dataset used in (Januszewski et al. 2018) (96 x 98 x 114 µm3). 

Error Measurements 
To quantify the errors remaining after axon reconstruction, we chose the same 10 randomly selected 
axons (total path length, 1.72 mm) that had also been used for error rate quantification in (Boergens et 
al. 2017). These axons were not part of any training or validation set in the development of FocusEM. 
Repeating the analysis described in (Boergens et al. 2017) for the largest axon agglomerate 
overlapping with the ground truth axon, respectively, yielded a total number of 22 errors, of which 15 
were continuity errors (compare to panels 1l,m in (Boergens et al. 2017)).  

The error rates and recall of soma-based dendrite reconstructions were calculated from proofread 
ground truth annotations comprising a total of 89 cells and 64.08 mm path length. Each node of the 
ground truth skeleton was marked as recalled if it overlapped with the corresponding dendrite 
agglomerate (see “Query analysis”), or flagged invalid if placed outside the segmented volume. A 
ground truth edge was considered recalled if both end nodes were recalled, or invalid if any of the end 
nodes was invalid. 54.51 mm, or 87.3%, of the 62.46 mm valid ground truth path length were recalled. 
Split errors, by definition, result in partial dendrite reconstructions and were thus detected as non-
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recalled ground truth fragments with at least 5 µm path length. The detected were proofread, yielding a 
total of 37 split errors. 

The identification of axonal target specificity (Figure 2-4) was insensitive to split- and merger errors, 
because as long as axonal reconstructions were long enough to provide meaningful statistical power 
for the analyses, split axons were expected to correctly sample target specificities and mergers of 
axons were expected to only dilute specificities. Therefore the results about the existence of target 
specific inhibitory and excitatory axon classes represent a lower bound of specific wiring. The results 
on the lack of geometric predictability (Figure 2-5) were similarly unaffected by remaining split and 
merge errors. 

For the finding that no inhibitory axons show target specificity for AIS in L4 (Figure 2-4E), however, 
we needed to control that this lack of specificity was not induced by remaining axonal merge errors. 
We manually inspected a subset of 10 axons innervating AIS. Only one synapse (out of more than 100 
synapses) was erroneously added to an AIS innervating axon due to a merger, thus providing no 
evidence that the lack of AIS target specificity could be an artifact of merged axons. 

For the results on synaptic input composition (Figure 2-6) we varied the sensitivity of our detection of 
TC axons and found that also for detections with a higher TC axon recall and a lower recall at higher 
precision the conclusions were unchanged. 

The results on synaptic size consistency could be strongly affected by the remaining merge errors in 
axons, diluting data on consistent synapses when merging unrelated axons together. To control for 
this, we obtained the results in Figure 2-7 using axons for which all 3-fold intersections in all axons 
had been artificially split before the analysis. For the results in Figure 2-4, we repeated analyses after 
splitting of axons and found the key conclusions unaltered.  

Supplementary text 

Controls for definition of excitatory and inhibitory axons 
Previous reports have described that a subset of excitatory axons in cortical L4 preferentially target the 
shafts of dendrites in some species (McGuire et al. 1984, Lübke et al. 2000): a study of L4 spiny 
neurons’ axons in juvenile rat found preferential innervation of small-caliber dendritic shafts (and only 
27% of synapses onto spines, (Lübke et al. 2000)), and in cat visual cortex, a subset of corticortical 
excitatory axons from layer 6 has been described to establish preferentially shaft synapses onto spiny 
dendrites in L4 at the end of short axonal branches, yielding boutons terminaux (McGuire et al. 1984, 
Ahmed et al. 1994). To check whether these axons would confound our assignment of shaft-preferring 
axons as inhibitory, we randomly selected 20 shaft synapses onto spiny dendrites and manually 
reconstructed the presynaptic axons with their output synapses. We first asked whether any of these 
axons would preferentially establish boutons terminaux onto shafts, as described in cat, but found no 
such axon, indicating that this innervation phenotype comprises less than 5% or is absent in our data 
from mouse L4 (compare to the estimate of more than 40% of such inputs in cat L4 (McGuire et al. 
1984)). We then checked whether any of the 20 axons showed both a preference for shaft innervation 
and in a minority of cases any clear primary spine head innervation, as described for the L4 axons in 
juvenile rat. We found no such example, indicating that none of the shaft-preferring axons was 
excitatory. This is consistent with data from cat which suggested that L4 axons preferentially target 
spines (Ahmed et al. 1994). Together, we conclude that in our data from mouse L4, excitatory axons 
preferentially establish primary spine head innervations (Figure 2-4B) and inhibitory axons 
preferentially innervate the shafts of dendrites. 
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Synaptic size consistency: additional controls for cell-type effects 
In order to further study the effect of cell types and potential cell-type dependent synaptic weight 
differences, we measured the size of synapses between cell types in L4 that are known to show 
different mean synaptic efficacy: L4-to-L4 connections (in juvenile rat barrel cortex) were reported to 
have an average EPSP amplitude of 1.59 mV (Feldmeyer et al. 1999), while L4-to-L5A connections 
were shown to have a unitary EPSP amplitude of 0.6 mV (Feldmeyer et al. 2005). We used the 
reconstructed output axons in our dataset (n=59, Figure A2-7A,B) and identified those synapses made 
onto other L4 neurons (n=32 manually verified connections) and those onto ADs (n=12). While the 
distribution of synapse size appeared to be biased towards lower synapse size in the L4-to-AD (L5) 
connections (Figure A2-7B), this effect did not reach statistical significance for the small number of 
synapses (synapses between L4 neurons were 28 % larger than those from L4 neurons onto ADs (0.25 
μm2 vs. 0.19 μm2, p=.058, t-test for log ASI, Figure A2-7B). Interestingly, the distribution of synapse 
size for L4-to-L4 neurons was indistinguishable from that onto unidentified targets, indicating the vast 
majority of synapses to be of the L4-to-L4 type.  

We then asked whether, assuming a subtype of smaller synapses as in L4-to-L5 connections, these two 
different synaptic connection types could give rise to the observed synaptic size similarity effects 
studied in Figure 2-7. Even when assuming that 50% of synapses were of the L4-to-AD type 
(substantially more than expected), the effect on above-random synaptic size consistency was small: 
the CV-size map showed a slight peak for smaller but not for larger synapse sizes. With this, the 
observed effects of synaptic size similarity (Figure 2-7) could not be solely caused by synaptic size 
differences for known intracortical cell types. 

Control for mutual interaction between upper bounds on LTP and LTD 
To control for the mutual interaction between the upper bounds on LTP and LTD, we performed the 
following analyses: The two-dimensional size and size-similarity distributions of same-axon same-
dendrite (SASD) synapse pairs and random pairs of SASD synapses were compared to define 
candidate LTP and LTD regions (see methods). We then identified the SASD connections contained in 
the candidate LTD region and asked whether repeated analysis of only the SASD connections outside 
this region still yields statistically significant evidence for a subpopulation of connections with 
similarly sized and large synapses. We found that the upper bounds on LTD in all excitatory, 
corticocortical, and thalamocortical connections are compatible with up to 2.9 %, 3.3 % and 6.7 % of 
LTP, respectively. Analysis of the SASD connections outside the LTP region did not produce any 
evidence for LTD. In between these extremes, other combinations of LTP and LTD frequencies are 
possible. 

Position of the sample with reference to barrels 
The position of the coronal slice from which the sample was extracted was aimed at targeting barrel 
cortex; the position in barrel cortex was further confirmed by cytochrome oxidase staining of the 
contralateral hemisphere which showed the large barrel structures in layer 4. To determine whether the 
sample was located within a barrel or within the septa between barrels, we used the fact that TC axons 
from VPM have been reported to preferentially target the barrels (not the septa) in L4 of S1 cortex. 
Since furthermore the identification of TC boutons based on the criteria in (Bopp et al. 2017) were 
shown to be valid for thalamocortical afferents from the thalamic nucleus VPM but not from the 
nucleus PoM (projecting to the septa, (Bopp et al. 2017)), the presence of high density of likely VPM 
boutons in our sample indicated a location within a barrel. In fact, the tangential plane projection of 
VPM-TC bouton density showed a radially oriented gradient suggesting a position of the sample 
within a S1 barrel (data not shown). Finally, we needed to consider whether the sample was in upper 
L4 or lower L3 (Figure 2-1A). Based on the soma distribution, we estimated it to be in L4. Post-hoc, 
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the absence of any chandelier-type innervation of AIS in the dataset strongly supports the location in 
L4, not L3. 
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Supplementary figures 
 

 

  

 

Figure A2-1 FocusEM workflow. Detailed workflow of FocusEM reconstruction, including the iterations between split and 
merger detection (compare simplified workflow in Figure 2-2A). Methodological details in Materials and Methods 
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Figure A2-2 Examples of soma and shaft synapses from the training set of SynEM for inhibitory axons (example 1, synapse 
onto soma). Large bouton almost completely filled with synaptic vesicles; mitochondrion in bouton; large contact interface 
with a soma; at this interface close packing of synaptic vesicles; darkening of bouton-soma interface. All of the features are 
visible in several EM sections, not just one. Image size: 1.9x1.4 µm. Direct link to webKnossos: https://wklink.org/2495 
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Figure A2-3 Examples of soma and shaft synapses from the training set of SynEM for inhibitory axons (example 2, synapse 
onto soma). Relatively large axonal bouton, completely filled with synaptic vesicles except for one large mitochondrion. 
Large interface with some, close proximity of vesicles with that interface; darkening of the bouton-soma interface; other 
interfaces of the same bouton lack these criteria. Image size: 1.9x1.4 µm. Direct link to webKnossos: https://wklink.org/7852 
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Figure A2-4 Examples of soma and shaft synapses from the training set of SynEM for inhibitory axons (example 3, synapse 
onto dendritic shaft). Axonal bouton filled half with synaptic vesicles (rest filled with a large mitochondrion). Vesicles 
approach bouton-shaft interface, interface has slight darkening. No other plausble partner of that bouton with the same 
characteristics. Image size: 1.9x1.4 µm. Direct link to webKnossos: https://wklink.org/6141 
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Figure A2-5 Examples of soma and shaft synapses from the training set of SynEM for inhibitory axons (example 4, synapse 
onto dendritic shaft). Large axonal bouton filled with vesicles and one large mitochondrion. Vesicles approach two 
processes: dendritic shaft to the right and a glial cell to the left. Apposition of vesicles towards dendritic partner, darkening 
of that interface. Features visible in several image planes. Image size: 1.9x1.4 µm. Direct link to webKnossos: 
https://wklink.org/9156 
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Figure A2-6 Identification of thalamocortical axons from thalamic nucleus VPM by previously established morphological 
criteria in S1 mouse cortex. (A) Example TC axon with indication of postsynaptic spine heads. Note innervation of multiple 
spine heads by single axonal boutons, example of 6 spine heads targeted by one bouton shown. (B) EM images of the six 
targets of one axonal bouton (see inset in A). (C) Criteria for definition of TC axons (from (Bopp et al. 2017)): High 
frequency of large boutons with multiple synaptic targets (example in A,B; red asterisks, postsynaptic spine heads of same 
TC bouton). Quantification of these properties for all excitatory axons (gray shaded) and test sets of expert-annotated 
thalamocortical (TC, blue) and cortico-cortical (CC, black) axons (relative distributions, right axes). See Table A2-1. 
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Figure A2-7 Controls for synaptic size consistency analysis. (A,B) Comparison of synapse size for output synapses of L4 
neurons (L4-to-L4, red, and L4-to-apical dendrites, blue) to overall cortico-cortical synapses in the dataset. Note that L4-to-
L4 synapses are indistinguishable from the overall CC synapses, revoking the possibility that the L4-to-L4 connections are 
the sole source of the subset of larger and more similar synapses found in Figure 2-7. Note also that synapses onto apical 
dendrites have a trend to be smaller. (C,D) Details of the synaptic size consistency analysis (Figure 2-7): data on synaptic 
size and synaptic strength in pairs of joint synapses (C, left) and randomly drawn pairs of synapses (C, right). Subtraction of 
the two maps (Figure 2-7F) exposes overrepresented synapse pair configurations. (D) Analysis of statistical significance 
(one-sided permutation test, 5,000 Monte Carlo samples) yields a map of p-values. Thresholding of this map at p=0.05 and 
p=0.005 (isolines) yields regions within which the fraction of synapse pairs was counted and reported in Figure 2-7F. 
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Supplementary tables 

Table A2-1 Error assessment for reported quantifications and findings 

Result Relevant 
figure 
panels 
of 
chapter 
2 

Methods involved, control performed Resulting error assessment 

Path length 
measurements 

1G, 2I-J, 
5A-D, 
A2-6C 

Determination of correction factor 
for path length measurement based 
on minimum spanning tree of 
segment centers (automated 
reconstruction) compared to skeleton 
length (manual reconstruction) 

Axons: correction factor 0.881 
Dendrites: correction factor 0.454 
 
These corrections were applied to all reported 
path lengths 

  Comparison to reported statistical 
values by Braitenberg and Schüz 
(1998) 

Length density reported by Braitenberg and 
Schüz (1998): 
1-4.1 km of axonal path length / mm3 
0.456 km of dendritic trunk length / mm3 
Axon-dendrite ratio: 2.2:1 – 9:1 
 
Our measurement: 
3.37 km of axonal path length / mm3 
0.645 km of dendritic trunk length / mm3 
Axon-to-dendrite ratio: 5.2:1 

Volume fraction 
measurements 

 Comparison to reported values by 
Braitenberg and Schüz (1998) 
 

Neuropil volume consists to 34 % of axons and 
to 49 % of dendrites (35 % of trunk,+ 14 % of 
spines) 
 
Our measurement: Neuropil volume consists to  
38 % of axons and to 47 % of dendrites. 
 

  Comparison to reported values by 
(Mishchenko et al. 2010, Kasthuri et 
al. 2015)  

(Mishchenko et al. 2010): Hippocampal 
neuropil volume consists to 50 % of axons, to 
40 % of dendrites (31 % trunk + 9 % spines), 
and to 8 % of glial cells.  
 
(Kasthuri et al. 2015): 92 % of neuropil volume 
is occupied by neurites. 

Final path length 
error rate 

 Comparison of axon reconstructions 
after all reconstruction steps as 
reported in the manuscript with a 
fully manual reconstruction of 10 
randomly selected axons from the 
dataset center. These axons were the 
same as those used for calibration of 
human tracing errors in (Boergens et 
al. 2017). These axons had not been 
part of any training or validation set 
here. Error quantification procedure 
was exactly as in (Boergens et al. 
2017). 

22 errors (15 of which are continuity errors, see 
(Boergens et al. 2017)) over total axonal path 
length of 1.72 mm,  i.e. 12.8 errors per mm. 

Measurement of spine 
rates 

3B,D Quantification of spines attached to a 
dendrite (see section “spine 
attachment” in Table A2-2): 
Dendritic shaft path length 
measurement as described above 
(“Path length measurements”) with 
correction applied.  

88.6 % of automatically detected spine heads 
got attached to a dendrite. The resulting spine 
recall is thus 83.6 %. Note this does not include 
filopodia which have no spine head. Thus 
systematic underestimation of spine rates by 
16.4% (indicated in Figure 2-3). 
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Definition of apical 
dendrites (ADs) 

3A First, those automatically 
reconstructed dendrite agglomerates 
were identified that intersected with 
the tangential planes at the top 
(towards pia) and bottom (towards 
white matter) of the dataset. All these 
dendrites (n=423) were inspected by 
an expert annotator, and the 
following criteria were used to 
identify apical dendrites: orientation 
along the radial cortex axis; 
unbranched or branches exiting at a 
shallow angle towards the pia; 
diameter at least about 0.7 µm; large 
spines could be immediately found 
without extensive search. Based on 
these criteria, n=183 apical dendrites 
were identified. 

AD recall: The procedure used systematically 
misses oblique branches from ADs not 
contained in the dataset. The criterion of AD 
diameter may yield an exclusion of thin ADs 
from L4 star pyramidal cells or L6 cells. 
Finally, if the automated dendrite 
reconstructions failed to continue the dendrite 
from bottom to top of the dataset, it would be 
missed. The latter is unlikely due to the large 
diameter of ADs. Together, these factors 
reduce the recall of ADs. Consequently, the 
analysis of AD specificity will yield an 
underestimate of AD innervation. It is stated 
throughout the manuscript that the found target 
specificities with respect to ADs constitute a 
lower bound. This strengthens the conclusions 
about inhibitory and excitatory AD specificity 
(Figure 2-4). 
 
AD precision: The following neurites could 
confound AD identification: basal dendrites of 
L3 pyramidal cells, axon initial segments, IN 
dendrites. The criterion of AD alignment with 
the cortex axis makes confusion with L3 basal 
dendrites unlikely, since these are 
predominantly obliquely oriented to the cortex 
axis. AIS were excluded by the spine criterion. 
The remaining confounder are IN dendrites 
oriented along the cortex axis (such as bitufted 
or bipolar IN dendrites) which may partly be 
spiny. Since these INs are reported to bear 
more stubby than mushroom spines, and are a 
small fraction of neurons (not more than half of 
the IN population, i.e. less than 7%), this 
possible misidentification will dilute results 
about specific innervation by less than 10% 
(and systematically underestimate specificity, 
as above). 
 
Together, the strategy of AD identification 
systematically yields an underestimate of AD 
specific axons, strengthening the conclusions in 
Figure 2-4. 

Definition of smooth 
dendrites (SDs) as 
likely interneuron 
(IN) dendrites 

3B Smooth dendrites were identified as 
dendrites with spine rate of less than 
0.4 per µm (Kawaguchi et al. 2006). 

Spine rates were systematically underestimated 
(see above point “Measurement of spine 
rates”). This applies to all dendrites and is 
therefore unlikely to affect the spine rate 
criterion.  
 
However, spine identification primarily relies 
on the identification of spine heads. If INs have 
systematically smaller spines with 
systematically smaller spine heads, recall could 
be lower. This would further reduce the 
apparent measured spine rate, thus assuring 
inclusion of such dendrites in the SD category. 
 
Conversely, if excitatory dendrites with 
peculiar spine morphology exist, their spine 
rate may be underestimated, and they may be 
misclassified as SD. Figure 2-3D illustrates that 
this would correspond to a small (less than 5%) 
fraction of identified SDs. 
Possible IN dendrites that are indistinguishable 
from excitatory dendrites in spine morphology 
and rate would be missed by the chosen 
procedure. 
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Definition of axon 
initial segments (AIS) 

3C Two procedures were used for AIS 
identification: First, axons exiting 
somata contained in the dataset were 
identified, and the stretch until first 
branching, first output synapse or 
onset of myelination was defined as 
end of AIS. This yielded a set of n = 
58 AIS. Secondly, to identify AIS of 
pyramidal cell somata from L3 that 
would enter the dataset from the top, 
we identified neurites oriented along 
the cortex axis that intersected with 
the upper tangential dataset border 
and had a part classified as axon 
linked to a part classified as dendrite 
(since the AIS did not contain axonal 
features such as vesicles). All of 
these n=533 agglomerates were 
inspected by an expert annotator and 
assigned to the AIS class if no spines 
were found; the lower end of the 
neurite either intersected with the 
lower dataset border or branched into 
axonal branches or became 
myelinated. This yielded an 
additional set of n=58 AIS. 

The AIS exiting from cell bodies can be 
considered rather faithfully identified based on 
their unique properties. For the AIS without a 
soma in the dataset, possible confounders are 
non-spiny IN dendrites and obliquely oriented 
AIS. The latter are expected to be missed, and 
would likely be misclassified into the SD class. 
Of the 58 AIS connected to somata, 55 were 
rather well aligned with the cortex axis. The 
estimate rate of missed AIS is thus 5.2%. 
 
As to non-spiny IN dendrites: These could be 
confounding those AIS that did not make 
output synapses, did not branch into axonal 
branches, and did not get myelinated. These 
(n=27 of 116 AIS, i.e. 23.3%) constitute an 
upper bound for the false-AIS identifications in 
the data. 
 
Together, the definition of AIS is estimated to 
be of >95% recall and >76% precision. 
Therefore, the finding of absence of AIS-
specific innervation in L4 is unlikely to be 
affected by the quality of the AIS definition 
(see below for further controls for this finding). 

Classification of 
axons as inhibitory 
vs. excitatory 

3E, 4A-
B, E,G-
I, 5A-
D,H, 
6C-D 

Using a high fraction of primary 
spine innervations as criterion for the 
definition of excitatory axons implied 
the following caveats: systematic 
underestimation of spine-targeting 
synapses; existence of excitatory 
axons with preference for 
establishing shaft synapses. Both 
were addressed as follows. 

 

  Underestimation of spine synapses: 
This could be caused by merger 
errors between inhibitory and 
excitatory axons. 25 randomly 
sampled axons with 25% to 50% 
primary spine synapses were 
inspected to estimate the prevalence 
of merge errors. 

To reduce merge errors, all axons with primary 
spine synapse fractions between 20% and 50% 
were split at all (true or merger error-induced) 
branch points, reducing the number of axons 
between 20 and 50% spine synapse fraction 
from 528 to 192 of axons with at least 10 
synapses. 

  Misidentification of shaft-preferring 
excitatory axons: In reports from cat 
L4 (McGuire et al. 1984), axons of 
L6 pyramidal neurons were described 
to form most boutons at the end of 
short side twigs (33 / 35). 72 % of 
their synapses were onto dendritic 
shafts of smooth / sparsely spiny 
cells. To test for these, we randomly 
sampled 10 shaft synapses onto spiny 
dendrites, reconstructed the axons 
and inspected them for these 
properties.  

No axon (0/10) showed the feature of frequent 
end boutons onto shafts. 
 

  Furthermore, we randomly sampled 
25 axons with 25% to 50% primary 
spine synapses, less than 25% 
secondary spine synapses and less 
than 10% soma synapses. 

None of these axons (0/25) had clear 
asymmetric primary spine synapses. 

  Reports from juvenile rat L4 
indicated a high rate of L4 spiny 
neuron -to-L4 spiny neuron synapses 
onto shafts (Feldmeyer et al. 2005).  

We investigated n=3 output axons of spiny 
neurons (n=112 synapses total) in our data and 
found spines as synaptic targets in 66, 76 and 
84 % of cases, making it unlikely that 
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excitatory L4 axons preferentially target 
dendritic shafts in our dataset. 

Identification of TC 
axons 

A2-6A-
C, 5A-
D, 6A-
B,D,F,G
,H-K, 
7I-J 

TC axons were identified using the 
detailed published analysis by (Bopp 
et al. 2017). This work reports that 
VPM boutons in L4 of mouse S1 
cortex are unique in their size and the 
number of synapses based on 
electron microscopy with 
immunoreactive staining for 
VGLUT2. 
 
Potential confounders: overlapping 
feature distributions between 
VGLUT2+ and VGLUT2- boutons; 
errors in feature calculation for axon 
reconstructions. 

Based on (Bopp et al. 2017), the estimated 
precision and recall for individual VPM 
boutons is 79.8% and 60.9%, respectively. 
 
The detection of TC processes is improved by 
considering axons with at least ten synapses 
instead of individual axonal boutons. Then, TC 
axon identification is estimated to carry a 
precision of up to 95.9% at 96.9% recall. 
 
Split and merge errors in axon reconstructions, 
and false negative synapses lead to a false 
negative classification of true TC axons, which 
we estimate to yield a recall of about 70% for 
TC axons. Note that this could only contribute 
to an overestimation of the TC gradient if recall 
was inhomogeneous over cortex depth. Since 
however TC axons mostly enter from the WM-
oriented side of the sample, and detection 
operates on the entire TC axon in the dataset, 
such a local TC recall effect is rather unlikely.  
The false discovery rate of spine synapses (6%; 
see Table A2-2) is unlikely to introduce false 
positive TC axons, such that TC axon detection 
precision can be estimated to be as high as 
determined above (above 95%). 

Determination of 
axonal target 
specificities 

4D-I, 
6H-K 

For the results on connectomically 
defined axonal target preferences 
(Figure 2-4), we identified the 
following possible confounders: 
merging of axons; splits of axons; 
incorrect automated synapse 
detection; confusion of excitatory 
and inhibitory axons (see above) with 
misinterpretation of excitatory target 
specificities. These were controlled 
for as follows: 
 

 

  Remaining merge errors in axon 
reconstruction 

The merging of axons of different types results 
in a dilution of axonal target specificities. The 
detected target specificities (Figure 2-4) thus 
correspond to a subset, with the fraction of 
axons per specificity class being lower bounds. 
For lack of AIS specificity, see below. 

  Control by artificially splitting all 
reconstructed axons at (true and 
merge error-induced) branch points 

When repeating the analysis of target 
specificities with a set of axons in which all 
axons were artificially split at branch points, 
the detected target specificities of inhibitory 
and excitatory axons remain unchanged. For 
lack of AIS specificity, see below. 

  Remaining split errors in axon 
reconstruction 

The incorrect splitting of axons would yield an 
erroneous count of axons, but would not affect 
the (average) distribution of synaptic targets of 
that axon class (unless extreme 
inhomogeneities in axon target distribution 
were expected). If the incorrect splitting of 
axons reduced the number of synapses per axon 
it would decrease the sensitivity of our 
methods; the fact that we were able to detect 
the described axonal specificities nevertheless 
(Figure 2-4) indicates that this effect did not 
dominate the analysis. For lack of AIS 
specificity, see below. 
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  Effect of false positive synapse 
detection 

The rate of false positive spine and shaft 
synapse detections were measured separately 
by proofreading 20 random synapses per 
postsynaptic target class. The specificity 
analysis for inhibitory axons was then repeated 
20 times, with synapses being randomly 
removed proportionally to the false positive 
rate. The inhibitory specificities remained 
statistically significant across all rounds, with 
AD specificity most sensitive to these control 
measurements. 

  Confusion of excitatory and 
inhibitory axons. The report of the 
target specificity of excitatory axons 
(Figure 2-4) could have been a result 
of misclassifying inhibitory axons 
(for which such specificity had been 
reported before) as excitatory. To 
control for this, we randomly 
selected 5 excitatory axons, each, 
with specificity for smooth, apical or 
proximal dendrites. 

All 15 inspected axons identified as specific 
show clear primary spine innervations with 
asymmetric synapses. 
Since some axons contained merge errors, we 
repeated the analysis with split axons, yielding 
the same results.  
 
We conclude that the specificities of excitatory 
axons are stable against these controls. 

  All confounders reported would, if 
anything, yield an underestimation of 
the level of synaptic target 
specificity, and an underestimation of 
the fraction of axons exhibiting such 
specificity. Therefore, all quantitative 
values in Figure 2-4 are interpreted 
as lower-bound measurements. One 
exception is the lack of specificity for 
AIS targets, which could have been 
caused by the above confounders. 

 

  Lack of specificity of axons for AIS 
in L4. This could have been caused 
by the confounders listed above. To 
control for this, we manually 
inspected 10 AIS innervating axons 
for merge errors. 

2 out of 10 axons were found to contain merge 
errors which could not explain the lack of 
specificity. While a large fraction of AIS 
synapses were FP detections, an independent 
manual control reconstruction (A. Gour, pers. 
Communication) confirmed the lack of AIS 
specificity in L4 axons. 

   The specificity analysis was repeated using a 
multinomial null model with little effect on the 
first-hit probabilities and no effect on the 
detected target specificities. 

Peters’ rule: 
comparison between 
Peters’ models 

5A-D Instead of path length fractions, 
fractions of surface area could be 
used (which would also include 
somatic surface that has no path 
length equivalent). Dendritic spine 
length can be considered as path 
length, as well. 

When computing the model predictions (Figure 
2-5A-D) with surface area instead of path 
length, and when including or excluding 
dendritic spine neck length, all conclusions 
were stable. 

  Differential precision and recall for 
the automated detection of spine vs. 
shaft synapses could confound the 
observed underestimates of smooth 
dendrite innervation. Correction of 
synapse counts as count * precision / 
recall 

When accounting for precision and recall of 
synapses, all conclusions were stable. 

  The finding of substantial AD 
innervation by TC axons (since not 
found by Peters) was inspected for 10 
random detected TC-to-AD 
innervations. 

In 2 of 10 cases, the synapse was a FP 
detection of SynEM (Staffler et al. 2017). 1 AD 
definition was disputable (oblique AD dendrite 
vs. non-AD). Recall could be 70-80%. 
Therefore, only deviations of the Peters’ 
predictions from actual innervation of more 
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than 25% were considered significant and are 
indicated in Figures 2-5A-D (range 0.75-1.25 
was shown in white) 

Geometric prediction 
of synaptic 
innervation for 
individual axons 

5E-H We corrected the observed 
innervation variance for the variance 
contribution by binomial sampling, 
which is a relevant source of 
variability for low n measurements. 
This correction overcompensated the 
measured variance in the case of 
innervation of smooth dendrites by 
inhibitory axons. We therefore 
compared the prediction in the 
uncorrected form and found that it 
was similar to the prediction for 
inhibitory innervation of AIS 

Curve for AIS in Figure 2-5H, bottom right 
panel, is representative of SD targets as well. 

TC synapse gradient 6A-G Other synapse distributions 
 
 
 
 
Literature controls 

Our data: TC synapse density increases by 93% 
(relative to pia-facing end of EM volume) over 
~50 µm. Gradient is not present in IN synapses 
or CC synapses. 
 
In hindsight, the Panel 3f of (Oberlaender et al. 
2012) shows indications of an increase in the 
estimated TC bouton density within D2 barrel 
of rat by 83% over first 50 µm of L4 (relative 
to L3/L4 border).  

Correlation of other 
synaptic input to the 
TC input fraction 

6H-K Search for correlation among 4 input 
fractions, correction for multiple 
testing, see Statistical Methods. 
 
Control for possible distance-
dependent effect: test if TC input 
fraction was related to the length of 
the primary dendrite. 
 
Control for influence of dendrites 
with no AD-preferring inhibitory 
innervation (zero values in Figure 2-
6I-K). 
 
 
 

Significance after correction for multiple 
testing, both for single-dendrite and per-neuron 
correlation. 
 
 
No correlation between TC input fraction and 
length of primary dendrites. 
 
 
 
Correlations are similar or stronger when only 
considering measurements with at least one 
inhibitory innervation of the AD and Soma 
preferring type (Figure 2-6I-K). 

Analysis of synapse 
pairs 

7 For the result on synaptic size 
homogenization the following 
potential confounders were 
identified: false multi-synaptic 
connections due to merge errors in 
axons or false positive synapse 
detections; missed multi-synaptic 
connections due to false negative 
synapses; size-dependent bias in 
synapse detection. 

To prevent the effect of false multi-synaptic 
connections, all analyses in Figure 2-7 were 
performed after splitting excitatory axons at all 
branch points. This eliminates false 
connections and reduces true connections in an 
unbiased manner. 
 
Based on the 6% false discovery rate of spine 
synapses, the fraction of false bi-synaptic 
connections is estimated to be less than 12%. 
 
False negative spine synapses could result in 
bi-synaptic connections being missed, thus 
reducing the sensitivity of the analysis. FN 
synapses could also cause false detection of, 
e.g., tri-synaptic connections as bi-synaptic. 
Due to the low prevalence of connections with 
more than two synapses, the latter error is 
assumed to be small. 
 
The detection of synapses is size-dependent 
(Staffler et al. 2017). To reduce this potential 
error source, the bi-synaptic connections are 
compared to random pairs sampled from the 
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pool of all synapses in bi-synaptic connections. 
The null model thus accounts for synapse size-
dependence. 

  Usage of axon-spine interface area 
(ASI) instead of postsynaptic density 
area (PSD). This could add 
variability to the measurement. 

We followed the same strategy as (de Vivo et 
al. 2017), whose experiments were performed 
under rather similar conditions (SBEM, mouse 
S1 and M1 cortex). 
 
For the relation between ASI and PSD area: 
This was subject to earlier work: Volumetric 
ssTEM images from L2/3 of adult rat barrel 
cortex were used in (Cheetham et al. 2014) to 
quantify ASI and PSD areas for spine synapses 
and found these to be highly correlated (R² = 
0.89). 
 
No evidence of a size-dependent relative 
variance that could have induced a broadened 
CV distribution for large synapses was found in 
(Cheetham et al. 2014). 
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Table A2-2 Methodological error considerations 

Method Error quantification performed Resulting error assessment 

Automated volume 
segmentation 
(SegEM) 

Published inter-error distance measurement 
of SegEM ((Berning et al. 2015); by 
comparison to manually traced neurites) 
 
CNN parameters (see Table 1 in (Berning et 
al. 2015)): 20130516T2040408,3 

Watershed parameters “whole cell 
segmentation” (see Table 2 in (Berning et al. 
2015)): θms = 10 vx, θhm = 0.25 
 

Results for automated segmentation (excluding 
agglomeration and FocusEM, see below): 
Inter-error distance: 4.48 μm 
Inter-split distance: 4.56 μm 
Inter-merge distance: 241.52 μm 
 
As reported in Table 2 of (Berning et al. 2015). (2-
vx overlap) 

Automated synapse 
detection (SynEM): 
synapses onto spines 

Classification accuracy as reported in 
(Staffler et al. 2017). Error measurement by 
comparison to consensus expert annotations 
in ((Staffler et al. 2017); Supplemental 
Synapse Gallery). 

Precision of synapse detection (including partner 
detection): 94% precision; recall 89% 

 Measurement of false-positive synapses by 
inhibitory axons onto spines (“secondary 
spine innervations”) after full axon 
reconstruction. Comparison to expert 
annotation. 

FP rate for spine synapses by inhibitory axons 
(these comprise less than one fourth of inhibitory 
synapses): 
proximal dendrites: 33.3 % (6 / 18) 
apical dendrites: 33.3 % (6 / 18) 
smooth dendrites: 25 % (4 / 16) 
other dendrites: 35.3 % (6 / 17) 
 
These false positive rates were taken into account 
for analysis of inhibitory specificities (Figures 2-
4D-I) see Table A2-1. 
For the effect of synapse size on detection accuracy 
see below. 
 
Precision and recall were taken into account for the 
analysis of Peters’ rule (Figures 2-5A-D), see 
Table A2-1. 

Synapses onto shafts 
(Figures A2-4-5) 

Improved version of shaft synapse detection 
from ((Staffler et al. 2017); added CNN 
predictions as additional texture filters in 
SynEM; training was restricted to shaft and 
soma synapses (extended training set), see 
Methods for details).  
 
Error measurement by comparison to 
consensus expert annotations. 

Performance on test set of inhibitory shaft 
synapses: 
 
92% precision (68 / 74) 
69% recall (68 / 98) 
 
The lower recall for shaft synapses could yield 
errors in fractional target innervation 
measurements (Figure 2-4) if recall was dependent 
on the target class. This was controlled by manual 
annotations (see Table A2-1, section 
“Determination of axonal target specificities”). 
 
 

 Identification of false-positive synapses by 
inhibitory axons onto shafts/non-spines after 
full axon reconstruction.  
Comparison to expert annotation. 

FP rate for shaft/non-spine synapses by inhibitory 
axons onto 
 
somata: 5 % (1 / 20) 
proximal dendrites: 5.3 % (1 / 19) 
apical dendrites: 29.4 % (5 / 17) 
smooth dendrites: 5.9 % (1 / 17) 
axon initial segments: 22.2 % (4 / 18) 
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other dendrites: 17.7 % (3 / 17) 
 
These false positive rates were taken into account 
for analysis of inhibitory specificities (Figure 2-
4D-I), see section ”Determination of axonal target 
specificities” of Table A2-1. 
 
Precision and recall were taken into account for the 
analysis of Peters’ rule (Figures 2-5A-D), see 
Table A2-1. 

Synapses onto somata 
(Figures A2-2-3) 

Detection of synapses onto somata similar to 
the detection of synapses onto shafts (see 
above). 
 
Error measurement by comparison to 
consensus expert annotations of inhibitory 
axons. 

Performance on test set of soma synapses: 
 
85% precision (33 / 39) 
97% recall (33 / 34) 
 
This was taken into account when reporting 
somatic innervation specificity (see Table A2-1, 
section ” Determination of axonal target 
specificities”, Figure 2-4D-I) 
Note that synapse detection was best for larger 
synapses (Suppl. Synapse Gallery in (Staffler et al. 
2017)), with 100% recall for synaptic interfaces 
larger than 0.25 µm2. 

Automated 
classification of 
neurite types (axon, 
dendrite, spine head, 
glia) (TypeEM) 

Classification performance measured using 
an expert-annotated dense test set (available 
at +TypeEM/+Data/tracings/ex145-07x2-
roi2017/dense-v2/region-4.nml) 

Precision (P) and recall (R) for detection of 
axons: 91.8 % (P), 92.9 % (R) 
dendrites: 95.3 % (P), 90.7 % (R), 
astrocytes: 97.2 % (P), 85.9 % (R), 
spine heads: 92.6 % (P), 94.4 % (R) 
 
415,797 spine heads detected 

Automated neurite 
agglomeration 
(connectEM): 
dendrites 

Parameters were optimized by grid search. 
The automated reconstructions were 
compared against 8 ground truth tracing of 
dendritic trunks (3.18 mm total) in terms of 
path length recall, split rate, merge rate. 
Percolation of merge errors was evaluated by 
the volume contained in the ten largest 
agglomerates. The parameter set was chosen 
as to optimize split rate and recall at a merge 
rate close to zero. 
The tracings used to optimize the parameters 
are available in +connectEM/evaluationData 
 

Identified parameters: 
Minimum border size: 300 vx 
Minimum segment size: 500 vx 
Minimum dendrite probability: 30 % 
Minimum edge continuity probability: 98 % 
 
Corresponding errors: 
2.516 mm of ground truth tracings are covered by 
dendrite reconstructions yielding 79.2 % path 
length recall 
43 split errors (ignoring spines) yielding 58.5 μm 
inter-split distance 
1 merge error yielding 2.516 mm inter-merger 
distance 
 
Note that the dendrite split rate was strongly 
dependent on dendrite size; therefore large ADs 
were recovered. Their density was in the range of 
the expected density of pyramidal cells from 
infragranular layers (based on data from rat S1 
(Meyer et al. 2010) in the volume 214 ADs from 
L5 would be expected, which would indicate a 
recall of about 85%.). 

Axons (initial 
agglomeration) 

Parameters were optimized using the method 
described for dendrites. The agglomerates 
were compared against 10 ground truth 
tracings of axons (1.72 mm total). 

Identified parameters: 
Minimum border size: 60 vx 
Minimum segment size: 300 vx 
Minimum axon probability: 50 % 
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The tracings used to optimize the parameters 
are available in 
+connectEM/evaluationData/new_axon_gt_R
OI2017 

Minimum edge continuity probability: 97 % 
 
Corresponding errors: 
0.981 mm of ground truth tracings are covered by 
axon reconstructions yielding 57.0 % path length 
recall 
320 split errors yielding 3.1 μm inter-split distance 
2 merge errors yielding 491 μm inter-merger 
distance 

Axons (directionality-
based growth) 

Parameters were optimized using the method 
described for dendrites. The agglomerates 
were compared against 10 ground truth 
tracings of axons (1.72 mm total). 
 
 
The tracings used to optimize the parameters 
are available in 
+connectEM/evaluationData/new_axon_gt_R
OI2017 

Identified parameters: 
Minimum latent score: 0.8 
Minimum border size: 40 vx 
Minimum directionality score: 0.9  
Minimum axon probability: 30 % 
Minimum edge continuity probability: 80 % 
Number of steps: 10 
 
Corresponding errors: 
1.299 mm of ground truth tracings are covered by 
axon reconstructions yielding 75.5 % path length 
recall 
363 split errors yielding 3.6 μm inter-split distance 
19 merge errors yielding yielding 68.4 μm inter-
merger distance 

FocusEM: Detection 
of annotator query 
locations (split errors)  

Identification of qualitatively sound 
parameters. 
 
Note that the results of all methods 
contributing to neurite reconstruction were 
summarily evaluated by comparison of the 
final reconstruction to fully manually traced 
neurites (see Section “Final path length error 
rate” in Table A2-1 for details). 

Identified parameters: 
Latent score: 0.5 
Segment directionality: 0.8 
Distance cut-off: 600 nm 
 
(see 
+connectEM/calculateDirectionalityOfAgglomerat
es.m) 
 

Detection of 
annotator query 
locations (merge 
errors, “chiasmata”)  

Iterative refinement by inspection of random 
subsets of detections by experts. 
 
Note that the results of all methods 
contributing to neurite reconstruction were 
summarily evaluated by comparison of the 
final reconstruction to fully manually traced 
neurites (see Section “Final path length error 
rate” in Table A2-1 for details). 
 

Identified parameters: 
Radius of outer sphere: 10 µm 
Radius of inner sphere: 1 µm 
Minimum distance from center: 2 µm 
Distance cut-off: 2  µm 
 
Corresponding errors: 
Precision of 90-100% (10/10) for 4-fold chiasmata 
Precision of 75% (15/20) for 3-fold chiasmata 

User queries in 
webKnossos “flight 
mode”; final 
reconstruction 

All methods contributing to neurite 
reconstruction were summarily evaluated by 
comparison of the final reconstruction to 
fully manually traced neurites (see Section 
“”Final path length error rate in Table A2-1 
for details). 
 

 
 
 

Spine head 
attachment: 
Automated 

Parameters for automated spine attachment 
were optimized on a set of ground truth 
annotations by “grid search” in parameter 
space.  
 
Ground truth tracings available in 
+ConnectEM/+Spine/+Data/attachment-

The following parameters were used: 
Maximum astrocyte probability: 100 % 
Maximum axon probability: 80 % 
Minimum dendrite probability: 0 % 
Minimum edge probability: 25 % 
Maximum number of steps: 10 
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ground-truth 
 
 

58.9 % of spine heads were automatically attached 
(evaluated for spine heads at least 10 µm from 
dataset boundary) 
Automated spine density: 0.672 spines per µm of 
dendritic shaft length 
 
 

Manual Spine heads that did not get attached to a 
dendrite by automation (n=164,969) were 
manually annotated (see Methods). 49,000 of 
the detected spine heads (11.8 % of total) 
were less than 3 µm from dataset border and 
were excluded from manual annotation. 
The precision of the spine head attachment 
was evaluated on a randomly selected subset 
of attached spine heads (n=24). 

Resulting spine head attachment recall: 88.6 % of 
detected spine heads further than 10 µm from 
dataset boundary. This corresponds to an 
attachment rate of 96.3 % when correcting for false 
positive spine head detections (see section 
“Automated classification of neurite types”). 
Resulting dendritic spine density: 0.959 per µm of 
dendritic path length. 
Resulting spine head attachment precision: Around 
92 % (22 / 24) of the attached spine heads were 
connected to the correct dendrite.  
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Supplementary movies 
The following supplementary movies are available for download at: 
https://www.science.org/doi/10.1126/science.aay3134 

Movie A2-1 
Gallery of soma-based single-cell reconstructions. 

Movie A2-2 
Example of FocusEM queries for ending and merger resolution. 

The user is presented with a new task start point automatically after each finished task to reduce 
annotation delays. The queries are limited to a certain sphere around the start location, since the 
possible trajectories in the chiasma configurations (Figure 2-2H) are known. Light-gray shading in the 
user viewport indicates end of task. 
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A3. Appendix to chapter 3 

Detailed treatment of models: structural properties 
ER-ESN. We first considered a directed Erdős-Rényi (ER) model (Figure 3-2b-c) (Erdős and Rényi 
1959). ER graphs were, for example, proposed as the computational substrate of Echo State Networks 
(ESNs) (Jaeger and Haas 2004, Buehner and Young 2006, Xue et al. 2007, Lukoševičius and Jaeger 
2009, Jaeger 2010, Pascanu and Jaeger 2011, Lukoševičius et al. 2012, Yildiz et al. 2012, Manjunath 
and Jaeger 2013). In these studies, single neurons were allowed to make both excitatory and inhibitory 
synapses. However, to obey the biological constraint of neurons establishing either excitatory or 
inhibitory synapses - “Dale’s law”, (Dale 1935) - we implemented ER-ESNs to comprise separate 
excitatory and inhibitory neuron populations. Connection probabilities were independent of inter-soma 
distance (Figure 3-2b, cf. the next model). The reciprocity of ER networks equals the excitatory 
connectivity, 𝑟 = 𝑝 , satisfying the experimentally observed constraints (Figure 3-2c). 

EXP-LSM. We next considered pairwise random but distance-dependent connectivity (Figure 3-2b-c). 
Such architectures have been proposed as models for real-time computations without stable states 
(Liquid State Machines, (LSMs), (Maass et al. 2002, Maass and Markram 2004, Maass et al. 2004, 
Maass et al. 2004, Maass et al. 2006, Auer et al. 2008, Buonomano and Maass 2009, Sussillo and 
Abbott 2009, Manevitz and Hazan 2010, Hazan and Manevitz 2012, Probst et al. 2012, Sussillo and 
Barak 2012). To model neuronal connectivity dependent on the distance between neuronal cell bodies, 
soma positions were independent and identically uniformly distributed within a L4 model cube of size 
300 µm (Figure 3-2a). We assumed the pairwise connection probabilities 𝑝 (𝑑 ) = exp(−𝑑 /𝜆 ), 
𝑝 (𝑑 ) = exp(−𝑑 /𝜆 ), to decay exponentially with inter-soma distance 𝑑  (Figure 3-2b). The decay 
lengths 𝜆 , 𝜆  were adjusted to satisfy the L4 connectivity constraints (Figure 3-1d). The reciprocity 
constraint was then found to be also satisfied (Figure 3-2c). Notably, the distance dependence of the 
EXP-LSM model implied a reciprocity higher than in ER networks, but was still within the 
experimentally observed regime (Figure 3-2c). 

LAYERED. We next investigated the hypothesis of hierarchical, layered processing in local cortical 
networks (Figure 3-2d). Layered models were first proposed as the multi-layer perceptron (Rosenblatt 
1962). Many studies of early sensory processing, particularly visual processing made use of such 
models (Fukushima 1979, Fukushima 1980, Griffith 1963, Hubel and Wiesel 1962, Ivakhnenko 1971, 
Ivakhnenko and Lapa 1965, LeCun et al. 1989, LeCun et al. 1998, Malsburg 1986, Rosenblatt 1962, 
Schmidhuber 2015). Pure multi-layer perceptrons lack reciprocated connections and thus violate basic 
circuit properties found in local cortical networks. When instead considering a stacked recurrent neural 
network, however, a layered model could be made comply with the observed circuit constraints. For 
this, excitatory neurons were uniquely grouped into sequentially ordered layers. Connections within a 
layer were implemented using a pairwise connection probability 𝑝 , > 0 . However, only 

unidirectional connections from one layer to the subsequent layer were allowed with pairwise 
connection probability 𝑝 ,  (Figure 3-2d). Inhibitory neurons were not organized in layers but 

provided global inhibition (Figure 3-2d). Obviously, as the number of layers increases, high average 
reciprocity and high average pairwise connectivity become mutually exclusive (Figure 3-2e), such that 
the number of layers in a LAYERED model is limited by the connectivity and reciprocity constraints. 
For 𝑛 = 2 to 𝑛 = 4 layers, the connectivity constraints (Figure 3-2f-g) could be robustly satisfied. 

SYNFIRE. We then investigated embedded synfire chains (Figure 3-2h). A variety of synfire chain-
like models has been proposed (Griffith 1963, Abeles 1982, Abeles 1991, Bienenstock 1995, 
Herrmann et al. 1995, Hertz and Prügel-Bennett 1996, Diesmann et al. 1999, Gewaltig et al. 2001, 
Levy et al. 2001, Aviel et al. 2003, Mehring et al. 2003, Abeles et al. 2004, Aviel et al. 2005, Goedeke 
and Diesmann 2008, Kumar et al. 2008, Schrader et al. 2008, Trengove et al. 2013, Zheng and Triesch 
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2014). Some of these models were defined as structurally separated neuronal pools with sequential 
activation chains (Griffith 1963, Abeles 1982), similar to the LAYERED model introduced above, but 
for 𝑝 , = 0 (Figure 3-2d). Most studies however considered embedded synfire chain models, in which 

synfire pools were allowed to overlap (Abeles 1982, Abeles 1991, Bienenstock 1995, Herrmann et al. 
1995, Aviel et al. 2003, Aviel et al. 2005, Schrader et al. 2008, Trengove et al. 2013). We considered 
embedded synfire chains (Trengove et al. 2013). Excitatory synfire pools were uniformly drawn with 
replacement. Pools were then sequentially connected all-to-all (Figure 3-2h). The neuronal populations 
belonging to a synfire pool could overlap (Figure 3-2h) such that reciprocated connections emerged 
during this process (Figure 3-2h). Connectivity and reciprocity were found to lie within the 
experimentally observed constraints for pool size 𝑠  between 80 and 300 and the number of pools 

𝑛  between 60 and 190 (Figure 3-2i,j).  

FEVER. Then, the feature-vector recombination (FEVER) model (Druckmann and Chklovskii 2010, 
Druckmann and Chklovskii 2012) was considered, which was proposed to allow sustained neuronal 
representations on macroscopic time scales (seconds; “short-term memory”) (Figure A3-2a). Here, 
connectivity is based on the neurons’ receptive fields represented by feature vectors: The postsynaptic 
neurons' feature vectors are additively and sparsely recombined to approximate the presynaptic 
neuron's own feature vector (Figure A3-2a). The FEVER model in its original formulation yielded 
lower pairwise connectivity (range 0-0.1) and higher reciprocity (range 0.45-0.6) than given by the 
barrel circuit constraints (Figure A3-2b). We therefore constructed an adapted FEVER model by 
initializing the connectivity using an ER model with connectivity 𝑝 , > 0, 𝑐 ∈ {𝑒, 𝑖}. Subsequently, 

connections were added according to the FEVER rule, which now had to incorporate the initial 
random connections, as well. As a consequence, the average FEVER rule error ‖D − DW‖  of a 
modified FEVER network with 𝑓 = 200 and initial excitatory connectivity 0.14 was 10% larger than 
the average FEVER rule error of an unmodified FEVER network with 𝑓 = 400 (see Figure A3-2c). 
In fact, a fraction of the resulting modified FEVER model instantiations complied with the barrel 
circuit constraints (Figure A3-2b). However, the question whether these modified models still 
provided the functional properties originally proposed for the FEVER networks had to be investigated 
(see below). 

API. Lastly, we investigated the anti-phase inhibition (API) model (Figure A3-2d), which was 
originally proposed to explain contrast invariant stimulus tuning in the primary visual cortex (Troyer 
et al. 1998, Miller et al. 2001, Hansel and van Vreeswijk 2002, Kayser and Miller 2002, Hansen and 
Neumann 2004), and has been extended to the primary somatosensory cortex (Miller et al. 2001).  In 
the original API model, a hidden feature vector is associated with each neuron, and connections 
between neurons are determined based on a connectivity rule that depended only on the correlation 
between the feature vectors of the pre- and postsynaptic neurons (Figure A3-2d). The shape of this 
connectivity rule determined the pairwise connectivity and reciprocity. For excitatory presynaptic 
neurons k with feature vector 𝐝 , connections were not established with a candidate postsynaptic 
neuron l if the cosine similarity of their feature vectors was negative (𝑐 (𝐝 , 𝐝 ) < 0 ), and the 
connection probability was set to rise steeply for positively correlated feature vectors (Figure A3-2d). 
Similarly for inhibitory neurons, connections were not established if the feature vector of the candidate 
postsynaptic neuron was positively correlated, but connection probability was set to rise steeply for 
increasingly negative feature vector correlations. The particular shapes of this connectivity rule as 
proposed in the original model, however, yielded too many reciprocated excitatory connections 
(Figure A3-2e-g), reciprocity range 0.8-1) since bidirectional connections between neurons with 
similar feature vectors were strongly favored. We therefore adapted the shape of the API connectivity 
rule to reduce this bias (Figure A3-2d), decreasing the frequency of reciprocal connections and 
satisfying the local cortical circuit constraints for excitatory connections (Figure A3-2f,g). For 
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inhibitory connections, the constraint to reach connectivity beyond 50% (Figure 3-1d) was not 
fulfillable with the original API connectivity rule (Figure A3-2d,e), which yielded an effective limit at 
50% connectivity. We therefore modified the API connectivity rule for inhibitory connections to allow 
these also between neurons with negative cosine similarity of their feature vectors (Figure A3-2d-g).  

Thus, in summary, 3 of the 7 models (ER-ESN, EXP-LSM, SYNFIRE) satisfied the biological circuit 
constraints in a barrel module as they had been originally proposed; 4 models (LAYERED, STDP-
SORN, FEVER, API) did not satisfy these constraints in their original formulation. These however 
were made comply with these circuit constraints by minor (LAYERED, API) or more substantial 
(STDP-SORN, FEVER) alterations. We had to investigate next whether these altered models could 
still perform the computations they had been proposed for, tested in the context of potentially relevant 
stimulus transformations in a barrel module. 

STDP-SORN. We next considered a model in which local cortical circuity is shaped mainly by 
generative local learning rules such as spike timing dependent plasticity (STDP) (Gerstner et al. 1996, 
Markram et al. 1997); such rules have been used in networks labeled self-organizing recurrent neural 
networks (SORN) (Lazar et al. 2007, Lazar et al. 2009, Zheng et al. 2013, Zheng and Triesch 2014, 
Aswolinskiy and Pipa 2015). Here, cortical circuity is formed by STDP, synaptic normalization, 
intrinsic plasticity and structural plasticity (Figure A3-2h-l). The original SORN formulation yielded 
however substantially lower excitatory reciprocity than found experimentally (range 0-0.0038 
compared to 0.15-0.45, (Figure A3-2m) and we therefore introduced the following modifications to 
the SORN model: originally, the STDP rule increased the synaptic weight by an amount 𝜂  
whenever the presynaptic neuron fired one time step before the postsynaptic one and decreased it by 
𝜂  if the firing order was reversed (Figure A3-2i). We modified this rule such that the synaptic 
weight was also increased by 𝜂  if both neurons fired at the same time (Figure A3-2i). Originally, 
the structural plasticity rule prescribed a fixed number of synapse creation attempts per time step 
(Figure A3-2k). We introduced a homeostatic structural plasticity rule which attempted to keep the 
number of connections constant (Figure A3-2j,k). Synapses were added with initial weight 𝑐 . The 
synaptic weight developed over time following the STDP rule (Figure A3-2l). Together, these 
alterations of the STDP-SORN model yielded pairwise connectivity properties that complied with the 
experimentally observed ones in the barrel circuit (Figure A3-2m). 

Detailed functional investigation of models 
To investigate the models’ functional properties, we considered the sensory input to a barrel module, 
which is dominated by the response to the aligned principal whisker (Brecht and Sakmann 2002). An 
awake behaving mouse is frequently swiping its whiskers across objects with different surface texture 
(von Heimendahl et al. 2007, Prigg et al. 2002, Carvell and Simons 1990, Guić-Robles et al. 1989). 
When doing so, neurons in thalamus and cortex have been shown to exhibit specific responses to 
troughs and elevations in the surfaces the whisker is exposed to (“slip – stick events”, (Jadhav et al. 
2009, Wolfe et al. 2008)). We therefore considered the discrimination of surface textures, represented 
as height – correlated activity, as a simple realistic model test, and exposed the ER-ESN, EXP-LSM 
and LAYERED models to such a texture discrimination task. The API model had been already 
specifically proposed for rodent S1 (Miller et al. 2001), and we therefore tested the anti-phase stimulus 
representation property directly. The FEVER model had been proposed to allow extended 
representation of sensory stimuli on time scales relevant for short-term working memory, so we used 
the correlation between the representations in the network at the beginning and end (after 20 neuronal 
time constants) as a test of model functionality. Finally, the STDP-SORN and SYNFIRE models have 
so far been mainly tested for basic stability properties, namely the lack of correlated firing modes in 
SORN (Lazar et al. 2009) and the faithful transmission of activity across pools in SYNFIRE 
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(Trengove et al. 2013), which we therefore considered as the required readouts for model functionality 
for SORN and SYNFIRE.  

ER-ESN, EXP-LSM, LAYERED. The ER-ESN, EXP-LSM and LAYERED models were tested 
using a texture classification task (Figure A3-1a). We assumed that texture elevation Δ𝑧 (Figure A3-
1a,b) is converted into a temporal activity when the whisker is sweeping over that surface (Figure A3-
1b, see above). Such elevation profiles were sampled from 7 textures (Figure A3-1a,c) and presented 
as network input activity (Figure A3-1d,e, this would correspond to thalamic input to layer 4). The 
neurons in the presumed L4 network were then connected to dedicated readout neurons, 𝑜 , … , 𝑜  , 
whose activity was interpreted as (continuous) texture classification readout (Figure A3-1e, top).  In 
order to extract a texture class prediction from the activity of the output neurons, their activity was 
integrated over the second half of the texture presentation, and the highest activity was interpreted as 
texture choice (Figure A3-1f). For the ER-ESN and EXP-LSM models, only the readout projections 
from the L4 pool to 𝑜 , … , 𝑜  were trained. In the LAYERED model, all inter-layer projections 𝑝 ,  

(Figure 3-2d) were trained in addition. Training was performed using the “Adam” adaptive moment 
estimation method (Kingma and Ba 2014). 

While the performance of the LAYERED model was substantially higher than that of ER-ESN and 
EXP-LSM models (accuracies 90.8% vs 66.1%, 66.5%, Figure A3-1g), all models performed 
substantially above chance level (chance level 14% accuracy, Figure A3-1g). 

SYNFIRE. Synfire chains were proposed as a model to explain synchronous propagation of cortical 
activity (Abeles 1982). We therefore tested whether the initial activation of a single neuron pool in our 
modified SYNFIRE model still yielded a propagation of activity along the embedded SYNFIRE chain 
in a sequential manner (Figure A3-1h). For this we first activated all neurons in one neuron pool, and 
then tracked whether the subsequent pools were also activated, and in the right sequence. We 
considered a pool to be activated if at least half of its neurons were active (Figure A3-1i). We found 
that the SYNFIRE model did indeed support stable propagation within the imposed circuit constraints 
(Figure A3-1h,i). The average activated fraction of the chain 𝑓  was substantially above 95% for pool 
sizes 𝑠 ≥ 100 (Figure A3-1j) and reached about 80% for 𝑠 = 80 (Figure A3-1j). Since the 

structural constraints had defined a range of pool sizes 80-300 (Figure 3-2h-j), the modified SYNFIRE 
model was considered to still be sufficiently viable. 

FEVER. For the adapted FEVER model, we evaluated whether it could faithfully maintain a given 
input stimulus representation over time, as proposed in the original work in the context of short-term 
memory (Druckmann and Chklovskii 2012). We compared the imprinted state at the beginning of a 
trial (imposed as activity in (Druckmann and Chklovskii 2012) to each neuron) to the represented state 
at the end of a trial (using the cosine similarity as measure (Figure A3-3a,b)). In fact, the 
representation was robustly stable over time for a range of feverization ratios 𝑓  (range 0.5-1, Figure 
A3-3b). Thus, although the FEVER error had increased by 11% compared to the original model 
(Suppl. Fig. 2c), the modified FEVER network still provided its key proposed functional feature: to 
keep stimuli represented over macroscopic time scales within a network. 

API. The originally proposed API network (Troyer et al. 1998) was intended to convert the purely 
excitatory thalamocortical input impinging on L4 neurons (Figure A3-3c) into an intracortical activity 
that was inhibition-dominated for those neurons whose feature vectors were anticorrelated to that of 
the thalamic input (Figure A3-3d). Similarly, the intracortical synaptic input to neurons with feature 
vectors orthogonal to that of the thalamic input was intended to be close to zero, and the intracortical 
synaptic input was intended to be excitation-dominated for neurons with feature vector aligned to that 
of the thalamic input (Figure A3-3d). We took the inhibition-dominated regime as the key property of 
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this network (“antiphase inhibition”) and tested whether for neurons with a feature vector 
anticorrelated with the thalamic input feature vector in fact increasingly inhibition-dominated input 
could be found after 𝑡 = 100 time constants of the network simulation (Figure A3-3d). We found 
that also in the modified API model, neurons with a feature vector tuned antiphasic to the thalamic 
input were inhibited (Figure A3-3d). Since furthermore the correlation between cortical feature vectors 
of antiphasic tuned neurons and thalamic feature vectors decreases with increasing feature space 
dimension (Figure A3-3e), the API tuning property vanished for feature space dimension above about 
50 (Figure A3-3e; see inset in Figure A3-3e for an example of the API tuning property for a higher 
feature space dimension of 93). Since this was in the range of possible thalamic feature space 
dimensions (note that only about 250 thalamic neurons project to a L4 barrel), we considered the API 
tuning property to be sufficiently realized for our adapted API model, as well. 

STDP-SORN. The STDP-SORN model was proposed as an example of network self-organization, 
demanding that neuronal activity in this network would neither overly synchronize nor be limited to a 
small subset of the neuronal population (Figure A3-3f). We used a simple measure of median 
correlation between the activities in all pairs of neurons in the network to detect overly synchronized 
network activity. We found that for learning rates 𝜂  of 0.0006-0.0014 and intrinsic learning rates 
𝜂  of 0.05-0.1 (Figure A3-3f), this network activity correlation remained below 0.0422, indicating that 
the modified STDP-SORN model fulfilled this basic functional requirement. Similarly, the spike 
source entropy (SSE) was greater than 0.99, similar to the original work (Lazar et al. 2009), for the 
modified STDP-SORN model indicating equally distributed activity. 

In summary, the process of adapting the previously proposed models to basic experimentally 
determined circuit constraints in L4 of barrel cortex (Figure 3-2, Figure A3-1, Figure A3-2) did not 
compromise the basic functional properties that these models were expected to exhibit in the context 
of sensory input to cortex (Figure A3-1, Figure A3-3).  

Supplementary methods: functional properties of STDP-SORN, API, FEVER 
The STDP-SORN model was tested for pairwise neuronal correlation. The Pearson product-moment 
correlation coefficients C ,  were calculated for the activity traces of each neuron pair. The median 

med(C , ) of these correlations was calculated to represent the whole network. It was also tested for 

equal activity distribution through the spike source entropy (SSE), defined by SSE =
∑  

/
 in 

which 𝜌  denoted the mean firing probability of neuron 𝑘 across the complete trial. 

The API model was tested for its antiphase inhibition property. The dynamical model was 𝑎(𝑡 + 1) =

(1 − 𝛼)𝑎(𝑡) + 𝛼𝐶relu(𝑎(𝑡) + 𝑢 )  with 𝛼 = 1/10 . Neuron 𝑘  received input 𝑢 ,  given by 𝑢 , =

relu (𝑐 (𝐬𝐭𝐢𝐦, 𝐝 ),0) . The stimulus was 𝐬𝐭𝐢𝐦 = 𝐝 ∗  where 𝑘∗ ∼ DiscreteUniform(0, 𝑛)  was a 
randomly chosen neuron. At the end of a trial the feature vector-stimulus cosine similarity 
𝑐 (𝐝, 𝐬𝐭𝐢𝐦) was calculated. The simulation was implemented in Theano. 

The FEVER dynamics were given by 𝑎(𝑡 + 1) = 𝑎(𝑡) + 𝛼((C − 1) 𝑓 𝑎(𝑡) + 𝑢(𝑡))  according to 

(Druckmann and Chklovskii 2012), with 𝑓(𝑥) =  min(max(𝑥, 0) , 2/10) , 𝛼 = 1/100 , 𝑢(𝑡) =

𝑢 I(𝑡 < 0.05 𝑡 )  and 𝐮𝟎 = 𝑓(𝐫)  where 𝐫  was a random vector with components 𝐫 = 𝐮 /‖𝐮‖ , 
𝐮 = 𝐞 𝛅  with 𝐞 ∼ U(−1,1)  iid. and 𝛿 ∼ Ber(1/10)  iid.. At the end 𝑡  of the trial the 
represented state 𝐝 = D𝑎(t ), with D the feature vector matrix, was compared to the target state 
𝐝 = D𝐮  via the cosine similarity 𝑐 (𝐝 , 𝐝 ).  
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Supplementary methods: extended analysis of incomplete and erroneous circuit 
measurements 
Edge removal only. A fraction of the edges (connections) was uniformly at random removed from the 
network irrespective of whether their pre- and postsynaptic neurons were excitatory or inhibitory. 

Edge addition only. A fraction of the number of edges present in the unperturbed network was added 
between previously non connected neurons. Neuron pairs were chosen uniformly at random 
irrespective of whether their pre- and postsynaptic neurons were excitatory or inhibitory. Connections 
were then added and the sign of the added connection determined according to the type of the 
presynaptic neuron. 

Biased perturbation. Removal and addition of edges was biased towards a subnetwork. A 
subnetwork consisting of a fraction 𝑓  of the excitatory and of the same fraction 𝑓  of the inhibitory 
neurons, i.e. 𝑓 𝑛  excitatory and 𝑓 𝑛  inhibitory neurons was chosen uniformly at random from all 
subnetworks with such excitatory and inhibitory neuron numbers. A total number of 𝜉(𝑛 + 𝑛 ) 
connections were then first removed from the subnetwork and reinserted again. 

Locally dense reconstruction of a barrel subvolume. Neurons and connections were assumed to be 
uniformly and independently distributed in the barrel cube of side length 𝑑  (Figure 3-2a). The locally 
dense reconstruction of a barrel subcube of side length 𝑑  was simulated as follows: First, the 
connectome was restricted to neurons located within the subcube. Each neuron had a probability 𝑝 =

(𝑑 /𝑑 )  of being located within the subcube. Of the remaining connections, the ones not located 
within the subcube were discarded. Each connection had a probability 𝑝 of being located within the 
subcube. Note that the minimum acceptance distance 𝜖  was set to zero for the simulation of locally 
dense reconstructions. 

Supplementary figures 
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Figure A3-1 Functional performance of candidate models in the local circuit context of a barrel in primary somatosensory 
cortex. (a) Example input to the whisker-pathway: surface texture profiles 𝑇 … 𝑇  (sampled from two dimensional (𝑥 and 𝑦) 
images, white line). (b) Sketch of transformation of the texture elevation Δ𝑧 into a temporal activity trace through whisker 
movement. (c) Example texture traces from textures 𝑇 , … , 𝑇  that were fed into the modeled L4 network for the ER-ESN, 
EXP-LSM and LAYERED models. Note that the networks were trained during the second half of the texture presentation 
(black line). (d) Discrimination of thalamocortical input by a L4 network with output to L2/3. The thalamic input was 
modeled as the texture traces (a-c). Models were trained to classify by output to seven classification units (for example in 
L2/3). (e) Example activities in the network: thalamocortical input signal 𝑎  (bottom), intra-L4 activity 𝑎  of 40 example 
neurons 𝑛  (excitatory neurons (e), blue; inhibitory neurons (i), red, middle), activity 𝑎  of readout neurons 𝑜 , … , 𝑜

potentially located in L2/3 (top). Average readout activity in the second half of presentation time was used for determining 
the classification result. (f) Classification results for the ER-ESN, EXP-LSM and LAYERED models determined from 4497 
randomly selected test-set texture exposures. (g) Classification accuracy for the results in (f) (box plot of bootstrapped 
texture classification tests, n=100 bootstrap samples; center line, median; box limits, upper and lower quartiles; whiskers, 
1.5x interquartile range; points, outliers). Note that all models provide high classification accuracy (above 80%) in this 
texture discrimination task, well above chance level (dashed line). (h-j) Functional properties of the SYNFIRE model as 
implemented for the model discrimination in Fig. 4-6. (h) Example activity (right) in an embedded SYNFIRE model with 6 
pools of size spool=290 neurons each (i.e. 𝑟  of 0.15, 𝑟  of 0.33, see Fig. 2h-j). Random subset of 74 neurons (of the 1780 
neurons in the circuit) and their pool membership (left) shown. Note that in the embedded SYNFIRE model, neurons belong 
to multiple pools. (i) Fractional pool activation (fraction of neurons per pool active over time) for the example in h. (j)
Fractional chain activation over pool size. Each pool size was evaluated 200 times on networks with 2000 neurons (center 
line: mean; shading: s.d.). (k) Short-term memory in the FEVER model; three examples shown. The stimulus to be 
represented (black) and the state actually represented by the FEVER network (orange) are closely aligned. (l) Short-term 
memory in the API model; three examples shown. The state actually represented by the API model is dissimilar to the 
stimulus. Also the normalized represented state (blue) is not aligned with the stimulus. (m) Stimulus tuning in the FEVER 
model; three examples shown. All responses are weak. (n) Stimulus tuning in the API model; three examples shown. The 
aligned neuron (39° relative tuning) responds strongly positive, the anti-aligned neuron (151° relative tuning) responds 
strongly negative. 
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Figure A3-2 Compliance of candidate models with the so-far experimentally determined pairwise circuit constraints in L4 
(see Fig. 1d): FEVER, API and STDP-SORN. (a) Adaptation of the feature vector recombination model (FEVER). The 
adapted model starts with a randomly initialized network, whereas the original model starts with an empty network. (b)
Excitatory reciprocity 𝑟  over excitatory pairwise connectivity 𝑝  for the original and adapted FEVER model. The feature 
space dimension 𝑑  is color coded. (c) Average FEVER error for the original and the adapted FEVER model. Errors bars 

indicate 95% confidence intervals from 1000 bootstrapped iterations. (d) Adaptation of the antiphase inhibition model (API). 
Excitatory and inhibitory connection probability 𝑝  and 𝑝  over cosine similarity of the feature vectors 𝑐 (𝐝 , 𝐝 )  of 
feature vector 𝐝  and feature vector 𝐝 . (e) Distribution of cosine similarities in an API network for 𝑛 = 5 and 𝑑 = 20. 

(f) Excitatory reciprocity 𝑟  over excitatory pairwise connectivity 𝑝  for the original and adapted API model. The 
conversion factor 𝑛  is color coded. (g) Excitatory reciprocity 𝑟  over excitatory pairwise connectivity 𝑝  for the 

original and adapted API model. The feature space dimension 𝑑  is color coded. (h) Spike timing dependent plasticity / self-

organizing recurrent neural network (STDP-SORN) model. Transition from time 𝑡 to time 𝑡 +Δ𝑡. The network is modified 
through spike timing dependent plasticity with learning rate 𝜂 , intrinsic plasticity with learning rate 𝜂 , random synapse 
addition with probability 𝑝 , and synaptic normalization Σ. (i) A synaptic weight is increased by 𝜂  if a postsynaptic 
spike is emitted after an interval Δ𝑡 after the presynaptic spike has occurred or if the postsynaptic spike is emitted at the 
same time. A synaptic weight is decreased by 𝜂  if a presynaptic spike is emitted after an interval Δ𝑡  after the 
postsynaptic spike. (j) Evolution of the number of synapses 𝑁  from time t through time  t +Δ𝑡. The number of synapses 𝑛
is not modified by the spike timing dependent plasticity STDP or the synaptic normalization Σ. The negative synapses 
C < 0 are removed in a subsequent pruning step. New synapses are then added with probability 𝑝 . (k) Probability of 
adding a synapse 𝑝  over time 𝑡 is adjusted such that pruned synapses are replaced. (l) Histogram of excitatory synaptic 
weights C at the start 𝑡  and the end 𝑡  of a SORN simulation. Randomly added synapses are initialized with weight 𝑐
(black triangle). (m) Excitatory reciprocity 𝑟  over excitatory pairwise connectivity 𝑝 . Orange dots represent the adapted 
model, black dots the original model (black box: known barrel circuit constraints, see Fig. 1d). 
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Figure A3-3 Functional performance of candidate models in the local circuit context of a barrel in primary somatosensory 
cortex: FEVER, API, SDTP-SORN models. (a) FEVER model. Dimensions 14, 92, and 102 of the imprinted state 𝐝  and the 
represented state at the end of the trial 𝐝  for a feature space with dimension 𝑑 = 150 . (b) Cosine similarity 

𝑐 (𝐝 , 𝐝 ) of 𝐝  and 𝐝  over feature space dimension 𝑑  and feverization ratio 𝑓 .   (c) API model.  (d) Activity at the 

end of the trial 𝑎(𝑡 ) and thalamic input for the API model. Excitation (exc.) and inhibition (inh.) are plotted on the 
ordinate, the cosine similarity between feature vector and stimulus 𝑐 (𝐝, 𝐬𝐭𝐢𝐦) on the abscissa. (e) Correlation of 𝑎(𝑡 )

with 𝑐 (𝐝, 𝐬𝐭𝐢𝐦) for those neurons with 𝑐 (𝐝, 𝐬𝐭𝐢𝐦) < 0 as function of the feature space dimension 𝑑 . The full data 

corresponding to the blue and green dots is shown in the insets (f) Example STDP (SORN) activity for excitatory neurons 
(E) and inhibitory neurons (I). Top left: Example with low median activity correlation med(C , ). Top right: Example with 

high median activity correlation med(C , ). Bottom left: Median activity correlation med(C , ) over STDP learning rate 

𝜂  and intrinsic learning rate 𝜂 . The dashed bars in the scatter plot and the black lines at the color bar indicate the 
support of the prior distribution. Bottom right: spike source entropy. 
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Figure A3-4 Probability mass or density functions of the priors used for Bayesian model selection (Fig. 3). (a) Uniform prior 
over the model classes 𝑚 . (b) Parameters shared across models: number of neurons 𝑛 , inhibitory ratio 𝑟 , excitatory 
connectivity 𝑝 , and inhibitory connectivity 𝑝 . (c) Number of layers 𝑛  for the LAYERED model. (d) Pool size 𝑠  for the 

SYNFIRE model. (e) Feature space dimension 𝑑  and feverization 𝑓  for the FEVER model. (f) Selectivity 𝑛  and feature 

space dimension 𝑑  for the API model. (g) STDP learning rate 𝜂  and intrinsic learning rate 𝜂  for the STDP-SORN 

model. (h) Excitatory forward connectivity 𝑝 ,  and excitatory lateral connectivity 𝑝 ,  for the LAYERED model (dotted: 

𝑝 , × 𝑝 , ∈ [0.19, 0.57] × [0.26, 0.43]). 
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Figure A3-5 Extended analysis of noisy and incomplete circuit measurements. Noise prior during ABC-SMC inference was 
of the same type as the perturbations to the measured connectome. (a) Biased perturbation: 15% of the connections of the 
unperturbed network were randomly removed from a randomly chosen sub-network of size 𝑓 = 30% of the original 
network. The same amount of connections was then randomly reinserted in the same sub-network before ABC-SMC 
inference (n=1 repetition; noise prior of Beta(2,10)). (b) Effect of highly informative noise prior on accuracy of model 
selection from noisy and incomplete circuit measurements. Top: Uniform distributions centered on true noise levels with 
scales of 8 percentage points were used as noise priors. Middle and bottom: model selection accuracy reported as average 
posterior probability and maximum-a-posteriori accuracy (n=1 repetition per entry), respectively. Note that highly 
informative noise priors result in more accurate model selection compared to Beta(2, 10) noise priors (Fig. 5c,d). 
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A4. Appendix to chapter 4 

Materials and Methods 
Alignment of datasets 
Human STG (H5), human IFG (H6), macaque (STG) and mouse (A2) SBEM datasets were aligned 
with Voxelytics (scalable minds, Postdam, Germany), which implements a least-squares optimization 
of SIFT feature matches. It minimizes the match distances for neighboring tiles in the 3D tile grid in 
multiple steps, first using translation only, then one affine transformation per tile, and finally fine-
grained mesh transforms. It also includes several heuristics to exclude false matches, including 
RANSAC optimization (Fischler and Bolles 1981).  

Volumetric model of synapse and axon types 
The model used to obtain classification criteria for inhibitory vs. excitatory axons (Figure 4-4B-E) was 
defined as follows. To analyze synaptic inputs onto spiny and smooth dendrites (Figures 4-4C-E, 4-5I-
K), it was assumed that the cortical volume contains two distinct axon populations: excitatory axons 
and inhibitory axons. The two axon populations were assumed to differ in prevalence and potentially 
also in synapse densities. As a result, it was assumed that the fraction of excitatory synapses in the 
cortical neuropil was 𝑝 . 

Furthermore, it was assumed that excitatory and inhibitory axons differed in the fraction of synapses 
established onto spine heads (of spiny dendrites), onto shafts of spiny dendrites, and onto shafts of 
smooth dendrites. 

The probabilities of an inhibitory axon to innervate spine heads (𝑝 ), shafts of spiny dendrites 

(𝑝
 ), or shafts of smooth dendrites (𝑝

 ) were assumed to be constant across 

interneurons and constant along individual interneuron axons. Additionally, the targets of synapses 
along inhibitory axons were assumed to be independent. Together, these assumptions allowed 
inhibitory axons to be modeled by a multinomial distribution. 

For excitatory axons, it was observed that the prevalence of postsynaptic target changes with distance 
to soma (Figure 4-3H,I). To account for this, excitatory axons were modeled by a Dirichlet-

multinomial distribution with parameters  𝛼 = 𝛼 , 𝛼
 

, 𝛼
 . 

Data and parameter inference 
To analyze the neuropil composition, five types of measurements were taken: 

1. In boxes of cortical neuropil (average total volume per dataset: 375 μm3 for mouse, 1200 μm3 
for primate), the number of synapses onto spine heads and the number of synapses onto 
dendritic shafts were measured (average total number of synapses per dataset: 338 for mouse, 
322.8 for primate). For macaque S1 and human STG, the shaft synapses were further 
subdivided into shaft synapses onto spiny dendrites and into shaft synapses onto smooth 
dendrites. 

2. Along distal segments of spiny dendrites (minimum distance from soma: 30 μm for 
mouse, 45 μm for macaque, 80 μm for human), the number of synapses onto spine 
heads and the number of synapses onto dendritic shafts were measured (average 
number of dendrites and of synapses per dendrite: 9.2 and 23.3 per mouse dataset, 
21.2 and 17.1 per primate datasets). 

3. Random spine synapses onto distal pyramidal neuron dendrites were used as “seeds” 
for the local reconstruction of the presynaptic axon and its postsynaptic targets 
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(average number of axons and of synapses per axon: 13.8 and 8.4 per mouse dataset, 
21.8 and 6.9 per primate dataset). 

4. As in 3, but with shaft synapses onto distal spiny dendrites as (average number of 
axons and of synapses per axon: 16.8 and 7.7 per mouse dataset, 34.8 and 8.9 per 
primate dataset). 

5. As in 3, but with shaft synapses onto distal dendrites of inhibitory interneurons 
(minimum distance from soma: 30 μm) as seeds (average number of axons and of 
synapses per axon: 47 and 8.1 per mouse dataset, 35 and 6.3 per primate dataset). 

Synapses onto other postsynaptic targets (e.g., spine necks) were ignored. From these data, the 

maximum likelihood estimates of the parameters 𝑝 , 𝛼 , 𝛼  , 𝛼  , 𝑝 , 

𝑝
 , and 𝑝   were derived. The likelihood was given by: 

ℒ = ℒ . × ℒ .  . × ℒ  . × ℒ   . × ℒ   . 

 

ℒ = Binomial 𝑉
 

𝑉  , 𝑝 , 

where 𝑝 = 𝑝 𝑝 + (1 − 𝑝 )𝑝  

and 𝑝 = 𝛼 /‖𝜶𝒆𝒙𝒄‖  for all targets. 

 

ℒ  . = Binomial 𝐷
 

𝐷 , 𝑝  )

 .

, 

where 𝑝  =
𝑝 𝑝 + (1 − 𝑝 )𝑝

𝑝 𝑝 + 𝑝
 

+ (1 − 𝑝 ) 𝑝 + 𝑝
 

 

 

ℒ  .

=

⎣
⎢
⎢
⎢
⎢
⎡𝑓

𝐴 BetaBinomial 𝐴  𝐴 , 𝛼 , 𝛼
 

+ 𝛼
 

)

𝐴 𝑝

+ 1 − 𝑓
𝐴 Binomial 𝐴  𝐴 , 𝑝 )

𝐴 𝑝 ⎦
⎥
⎥
⎥
⎥
⎤

, 

where 𝑓 =
𝑝 𝑝

𝑝 𝑝 + (1 − 𝑝 )𝑝
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ℒ   . =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑓

𝑛 DirichletMultinomial(𝐵 , 𝑛, 𝐵 − 𝑛|𝜶𝒆𝒙𝒄

𝐵 𝑝
 

+ 1 − 𝑓
𝑛 Multinomial(𝐵 , 𝑛, 𝐵 − 𝑛|𝒑𝒊𝒏𝒉

𝐵 𝑝
 

⎦
⎥
⎥
⎥
⎥
⎥
⎤

, 

where 𝑓 =
𝑝 𝑝

 

𝑝 𝑝
 

+ 1 − 𝑝 𝑝
 

  

 

ℒ   . =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑓

𝑛 DirichletMultinomial(𝐶 , 𝐶 − 𝑛, 𝑛|𝜶𝒆𝒙𝒄

𝐶 𝑝
 

+ 1 − 𝑓
𝑛 Multinomial(𝐶 , 𝐶 − 𝑛, 𝑛|𝒑𝒊𝒏𝒉

𝐶 𝑝
 

⎦
⎥
⎥
⎥
⎥
⎥
⎤

, 

where 𝑓 =
𝑝 𝑝

 

𝑝 𝑝
 

+ 1 − 𝑝 𝑝
 

  

To compute the maximum likelihood parameter estimates, the fmincon function of MATLAB 

(R2017b) was used to minimize the negative log-likelihood. 𝑝
  was defined as 1 −

𝑝 − 𝑝
 . The parameters were constrained as follows: 0.5 < 𝑝 < 1 , 0 < 𝑝 <

0.5 ,  0 < 𝑝
 

< 1 , 𝑝 + 𝑝
 

< 1 , 0 < 𝛼  for all targets, and 𝛼
 

+

𝛼
 

< 𝛼 . The parameters were initialized to  𝑝 = 90%,  𝑝 = 20% , 

𝑝
 

= 40%, 𝛼 = 9, 𝛼  
= 1.5, 𝛼  

= 1.5.  

The expected fraction of synapses onto spiny dendrites that originate from inhibitory axons is 

𝐼 =  
(1 − 𝑝 )(𝑝 + 𝑝

 
)

(1 − 𝑝 ) 𝑝 + 𝑝
 

+ 𝑝 𝑝 + 𝑝
 

. 

For the quantification of uncertainty and for statistical testing, bootstrap sampling was used (Efron 
1979): The measurements for each of the five types of input data were resampled with replacement 
while keeping the number of measurements unchanged. These data were then used for inference of 
maximum likelihood parameter estimates and of the expected inhibitory synaptic input fractions for 
spiny and smooth dendrites. This process was repeated n=1000 times per dataset. 

To predict how a change in the proportion of excitatory and inhibitory neurons affects 𝐼, the following 
model was used: Let 𝑓  denote the fraction of (inhibitory) interneurons. It follows that the expected 
synapse contribution of interneurons relative to excitatory neurons is 𝑐 = [(1 − 𝑓 )𝐼]/[𝑓 (1 − 𝐼)] . 
Assuming that the neuronal synapse contributions remain constant, a change in the fraction of 

inhibitory neurons to 𝑓  results in a predicted inhibitory synaptic input fraction of 𝐼 = 𝑐𝑓 / 𝑐𝑓 +

1(1 − 𝑓 ) . 

For statistical testing, 𝐼  was computed as the average inhibitory input synapse fraction of spiny 

dendrites across all mouse datasets. 𝑓  and 𝑓  were obtained by bootstrap sampling the pooled 
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excitatory neuron and interneuron counts across all mouse and human datasets, respectively. 𝐼 was 
then compared against the average inhibitory input synapse fraction of spiny dendrites across all 
human datasets (𝐼 ). To compute a p-value, this comparison was repeated across 1000 bootstrap 
samples. Specifically, the p-value was calculated as the fraction of bootstrap samples in which 

𝐼 ≥ 𝐼.  

To validate the initial parameters of the likelihood maximization procedure, the following approach 

was used. Model parameters were randomly sampled: 𝑝  uniformly between 0 and 1; 𝑝 , 

𝑝
 , and 𝑝   uniformly from the 2-simplex; 𝑝 , 𝑝  , and 𝑝   

uniformly from the 2-simplex, and 𝛼 = 10  with 𝑧 uniformly between -1 and +2. 𝛼  was set 

to 𝛼 𝑝  for all targets. For each dataset, 10,000 sets of random model parameters were 
generated this way and evaluated in terms of the likelihood of the model input data. The random 
model parameters with maximum likelihood were then used as initial parameter values for the 
likelihood maximization procedure (as above). For all nine datasets, the inhibitory synaptic input 
fractions for spiny and smooth dendrites inferred this way were identical (≥3 significant digits) to the 
values inferred using fixed initial model parameters. 

To account for the confusion of excitatory and inhibitory synapses in macaque and human, we 
considered the extreme case of true inhibitory synapses getting misclassified as excitatory. This would 
result in the strongest under-estimation of I/(I+E) in primates. Let X = I/(I+E) denote the true 
inhibitory synapse fraction. Assuming that a fraction C=8.4% of true inhibitory synapses gets 
misclassified as excitatory (see Figure A4-2), the measured inhibitory synapse fraction is (1-C)×I / [(1-
C)×I + (C×I + E)] = (1-C)×I/[I+E] = (1-C)×X. Thus, the upper bound on the true value of I/(I+E) is Y 
/ (1-C). For statistical testing, the bootstrap samples of the inhibitory synapse fractions for macaque 
and human were corrected as above before comparison against the predictions from mouse. We found 
that even the upper bound on I/(I+E) for macaque and human was significantly lower than the 
prediction from mouse (15.0%±1.5% vs. 24.9%±3.2%; p<0.001). 

Connectivity estimates 
The connectivity within and across excitatory neuron (ExN) and inhibitory interneuron (IN) 

populations (Figure A4-2F) was computed as follows: 𝑝 → = 𝑝 𝑝 + 𝑝
 , 

𝑝 → = 𝑝 𝑝
 , 𝑝 → = (1 − 𝑝 ) 𝑝 + 𝑝

 
,  and 𝑝 → =

(1 − 𝑝 )𝑝
 . For the illustration of inhibitory connectivity in Figure 4-6C, IN→ExN 

connections were established with probability 𝑘𝑝 → /[𝑓 (1 − 𝑓 )] and IN→IN connections with 

probability 𝑘𝑝 → /𝑓 , where 𝑓  is the interneuron fraction and 𝑘 is a constant, such that each IN 
innervates on average 30% of all other neurons. Notably, it was assumed that the average number of 
synapses in IN→ExN and IN→IN connections is equal. 

Dense reconstruction 
For the analyses reported in Figures 4-3D-F and 4-5H, the following methods were employed. 3D EM 
datasets were processed using voxelytics (scalable minds, Potsdam, Germany, developed in 
collaboration with MPI Brain Research, Dept. of Connectomics).  Briefly, a convolutional neural 
network (CNN; modified from (Lee et al. 2017)) was used to infer voxel-wise affinities from which an 
initial volume segmentation was generated by seeded watershed transform. For the reconstruction of 
neurites, volume segments were grouped into agglomerates by median-affinity-based hierarchical 
agglomeration with additional constraints to reduce the rate of merge errors. These constraints include: 
i) neurite type-based restrictions to avoid merge errors between, for example, axons and dendrites; ii) a 
restriction to avoid merge errors between cells whose cell body is located within the image volume; 



Appendices 

179 

and iii) agglomerate volume-based restrictions. Neurite types were inferred using a CNN for voxel-
wise semantic segmentation of axons, dendrites, spine heads, astrocytes, myelin, and other objects. For 
connectome inference, a CNN for semantic segmentation of synapses, vesicle clouds, and 
mitochondria was used in combination with a decision tree forest that was trained to classify 
agglomerate-to-agglomerate contacts as synaptic or non-synaptic based on summary statistics of the 
CNN outputs. The CNNs and decision tree forests were trained on previously published training data 
from layer 4 of mouse S1 (Motta et al. 2019) and, optionally, on additional dataset-specific training 
data. 

To separate axonal, dendritic, and other (e.g., glial) agglomerates, the volume-weighted average of 
voxel-wise neurite type probabilities were computed. Agglomerates were classified as axonal or 
dendritic if they exceeded dataset-specific axon and dendrite probability thresholds (see below), 
respectively. Automatically detected synapses were classified into spine synapses, shaft synapses, and 
other synapses based on the average type probabilities at the postsynaptic site. Spine synapses were 
further sub-classified into spine synapses into singly vs. multiply innervated spine heads. For 
subsequent analyses, only spine synapses onto singly innervated spine heads and shaft synapses with 
presynaptic axon and postsynaptic dendrite agglomerates were considered. 

Estimation of error rates 
To estimate error rates of the automated reconstructions and to optimize analysis parameters, ground 
truth annotations were generated for each dataset. The ground truth consisted of synapse annotations 
in neuropil volumes of (5 μm)3 for mouse, (7 μm)3 for macaque, and (7 μm)3 for human. Synapses 
were classified into spine synapses, shaft synapses, and other synapses. The postsynaptic dendrites 
were classified as either spiny or smooth. For spine synapses, the corresponding dendrite was 
identified. 

The following parameters and error rates were estimated from these annotations: 

 Minimum axon probability for axon agglomerates (manually optimized for high recall based 
on the axon probability distribution across agglomerates presynaptic to ground truth synapse 
annotations) 

 Minimum dendrite probability for dendrite agglomerates (as for axons) 

 Average automated spine synapse fractions for dendrite agglomerates corresponding to spiny 

(𝑝 ) and smooth dendrites (𝑝 ), respectively 

 Precision and recall of automated spine synapse detection and confusion rate of true spine 
synapses as shaft synapses 

 Precision and recall of automated shaft synapse detection and confusion rate of true shaft 
synapses as spine synapses 

Inference of axonal spine targeting probability 
To classify axon agglomerates as excitatory or inhibitory, the model of excitatory and inhibitory axons 
derived from manual annotations was reused (see above). Specifically, each axon agglomerate was 
classified based on its spine targeting probability. First, the number of automatically detected spine 
(𝑁 ) and shaft synapses (𝑁 ) was computed. To account for the error rates of automated 

synapse detection, the normalized likelihood ℒ (𝑝 ) = P(𝑁 , 𝑁 |𝑝 )  was 

estimated was follows: 

For a given 𝑝 , the effect of imperfect synapse detection was simulated by a forward model for all 

axon configurations 𝑛  ~ Binomial(𝑛 , 𝑝 )  with 𝑛 ∈ [0,100] . The un-normalized 
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likelihood of 𝑝  was then approximated by the probability mass corresponding to the combination 

of 𝑁  and 𝑁  after the forward model. The forward model was evaluated for 𝑝 =

0%, 1%, … ,100%. For details, see MATLAB function +HNHP/+Auto/+inferSpineSynapseFraction.m. 

Given the likelihood P(𝑁 , 𝑁 |𝑝 ) and the model of excitatory and inhibitory neurons, the 

posterior probability of being excitatory or inhibitory was computed for each axon agglomerate. For 
subsequent analyses, inhibitory axon agglomerates were defined as axon agglomerates with a posterior 
probability of being inhibitory above 50%. 

Inference of smooth dendrite targeting probability for inhibitory axons 
To compute the smooth dendrite targeting probability of inhibitory axons, spiny and smooth dendrites 
had to be separated. For a dendrite with 𝑁  input synapses onto spine heads and 𝑁  input 

synapses onto the dendritic shaft, the probability of being a smooth dendrite was computed by: 

𝑝 =
Binomial(𝑁 |𝑁 + 𝑁 , 𝑝 )

Binomial(𝑁 |𝑁 + 𝑁 , 𝑝 ) +  Binomial(𝑁 |𝑁 + 𝑁 , 𝑝 )
 

The smooth dendrite targeting probability of inhibitory axons was then computed by: 

𝑝 = 1 − arg max ℒ 𝑝 𝑝
|

�̂� 𝑝 + (1

|

− �̂� )(1 − 𝑝 )  

where 𝑝  is the true probability of targeting spiny dendrites, 𝑝 |  is the true spine synapse 

fraction among synapses onto spiny dendrites, and �̂�  is the expected probability of targeting spiny 
dendrites when accounting for the error rates of automated spine and shaft synapse detection. Notably, 
the transformation of the former two parameters into the latter is based on the assumption that smooth 
dendrites are devoid of spines. For details, see MATLAB script +HNHP/+Auto/runAnalysis.m. 

  



Appendices 

181 

Supplementary text 

Possible effect of temperature on stability of dendritic spines 
Reports about a temperature-dependent change in spine rates, shown for slices of mammalian 
hippocampus (Kirov et al. 2004), could be of concern as a potential contributor to the observed low 
spine rates in human cortex (Figure 4-2E). While our tissue was immersed in cooled liquid, this liquid 
was fixative in our case, which would quickly halt any additional modifications of the neuropil; in 
fact, we saw no evidence of ultrastructural change in macaque and H5 that has been described as a 
corollary of temperature-induced tissue alterations (Kirov et al. 2004). Sample H6 showed occasional 
dendrites with swellings (beady morphology), which were excluded from analyses. Control 
experiments using cold fixative on mouse samples did not yield substantially altered spine rates 
(1.2±0.4 per µm dendrite in mouse data fixed at 4°C, n=4). Together, we have to conclude that our 
finding about the synaptic input to human cortical pyramidal cells should be taken to treat reports of 
extremely high spine rates in human (Benavides-Piccione et al. 2013, Elston et al. 2001) with caution 
(see also (Benavides-Piccione et al. 2002, Glantz and Lewis 2000, Medalla et al. 2017, Hsu et al. 
2017)), even if some of the differences are attributable to variations between cortical areas in human 
and primates (Elston et al. 2001, Medalla et al. 2017, Gilman et al. 2017), but similar variability was 
not reported in mouse (Karimi et al. 2020). 
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Lichtman at Harvard University for initial advice on setting up ATUM; G. Tushev for ATUM 
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Supplementary figures 

 

Figure A4-1 Synaptic input to pyramidal cells at their soma, axon initial segment and proximal dendrites. (A) Example 
reconstructions of pyramidal cell bodies and axon initial segments (AIS) from mouse A2 and Human STG datasets. All input 
synapses to soma and AIS were manually annotated (green). Note sparsity of somatic input synapses in human. (B,C)
Quantification of total input synapses onto soma and AIS per neuron in mouse, macaque and human. Note 2.9-fold drop of 
somatic input from mouse to macaque and human (104 ± 17 input synapses, N=17 somata in mouse to 36 ± 9 input synapses, 
N=22 somata in macaque and human, mean ± s.d., p-value<0.001, Kolmogorov-Smirnov test, B), while input to AIS is only 
slightly enhanced (40% increase, 29 ± 6 input synapses, N=15 AIS in mouse vs. 42 ± 23 input synapses, N=29 AIS in 
macaque and human, mean ± s.d., p-value<0.01, Kolmogorov-Smirnov test, C). (D-F) Analysis of proximal dendritic input: 
definition of proximal dendrites as those with reduced input spine density. Input spine density increases to distal levels 
within about 30µm in mouse and about 80µm in human (F), which were used as thresholds for definition of proximal 
dendrites in G,H. (G,H) Quantification of total inhibitory synaptic input to proximal dendrites using total dendritic path 
length per neuron of these compartments (123 ± 30 µm for proximal basal, N=10 cells and 40 ± 14 µm, N=7 cells for 
proximal apical in mouse and 395 ± 60 µm, N=17 cells, and 121 ± 66 µm, N=21 cells in human, respectively, mean ± s.d) 
and shaft input synapse densities. In the proximal dendrite, 95% and 75% of shaft inputs were inhibitory in mouse and 
human, respectively. (I) Summary of inhibitory synaptic input to the non-distal input domains AIS, Soma, proximal 
dendrites. Note that total inhibitory input in these domains is largely constant from mouse to human, with a potential shift of 
synapses from soma to AIS and proximal dendrites. Notably, there was no sign of an increased inhibition in Human in these
input compartments (excluding compensation of the finding of largely similar distal i/(i+e) in mouse, macaque and human, 
Fig. 4E). All data based on expert reconstructions. 



Appendices 

183 
  

 

Figure A4-2 Validation of excitatory and inhibitory axon definition, and network expansion. (A) Example pyramidal neuron 
axon from human STG with excitatory output synapses onto dendritic spines of excitatory neurons (ExN) (magenta circles), 
onto dendritic shafts of excitatory neurons (black circles), and onto dendritic shafts of interneurons (IN) (black squares). 
Right: Simulation of local axon reconstruction seeded from a shaft synapse onto an IN dendrite (black square with outline). 
The local axon reconstruction spans the seed synapse and the nine synapses closest to it (2 onto dendritic spines, 7 onto 
dendritic shafts). (Continuation on next page) 
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(Continuation of previous page) The inferred probability of the local axon reconstruction being part of an excitatory axon is 
99.4%. (B) Axonogram of axon in (A) with each output synapse colored by inferred excitatory probability of the 
corresponding simulated local reconstruction. Note that 99 out of the 101 excitatory synapses have an inferred excitatory 
probability >50%. (C) Example bipolar interneuron axon from human STG with inhibitory output synapses (symbols and 
scale bar as in (A)). (D) Axonogram of axon in (C). All 34 inhibitory synapses have an inferred excitatory probability <50%. 
(E) Histogram of inferred excitatory probability for synapses from ExN and IN axons from mouse, and macaque and human. 
In mouse, all 33 excitatory and 167 inhibitory synapses were correctly classified. In macaque and human, 93.1% of the 1,239 
excitatory and 91.6% of the 356 inhibitory synapses were correctly classified. All data based on expert reconstructions. (F)
Connectivity estimates from the model for mouse and macaque and human (see Suppl. Methods “Connectivity estimates”). 
ExN postsynaptically comprises shaft and spine targets. ExN shaft connectivity (gray shading) reported separately in 
rightmost column, this is part of the ExN column. Note 8.6-fold expansion of IN-to-IN connectivity, and 14.4-fold expansion 
of ExN connectivity at shaft synapses. 
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Figure A4-3 Spine-targeting interneurons. (A) Example reconstructions of bipolar interneurons with output synapses onto 
spines, which could resemble double bouquet INs (61-63). (B) Quantification of spine targeting by IN axons. Note spine 
targeting is almost exclusively onto spines that are doubly innervated, therefore not confounding the classification of axons
based on single-spine innervation (cf. Fig. 4). All data based on expert reconstructions. 
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Figure A4-4 Dendritic path length estimates for human pyramidal cells. (A) Example reconstruction of a dendritic tree of a 
L3 pyramidal cell (PC) in Human STG dataset. Dendrites were traced either until the end of the dataset (EoDs) or until an 
actual ending (true). (Continuation on next page) 
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(Continuation of previous page) (B) Example quantification of measured dendrite path lengths from the L3 PC shown in (A) 
to their endings eods, true) and their branchpoints. Plotted separately for each compartment (apical, oblique, basal). Path 
lengths were either measured from the main bifurcation (apical), from the root of the apical trunk (oblique) or from the soma
(basal). (C) Quantification of measured dendrite path lengths as shown as in (B) based on all PC reconstructions in Human 
STG datasets (H5, H5_ext). For the basal, oblique and apical tuft compartment N=226, 211, 167 dendrites were analyzed, of 
which N=25, 28 and 32 dendrites with true endings were found (N=21 cells). No EoDS ending exceeded true ending path 
lengths, which minimized the chance of missing longer dendrites leaving the dataset. Note the early branching especially for 
the basal compartment. (D) Reconstructions of dendritic trees of L2/3 PCs in Human STG datasets (H5 and H5_ext) with 
either all compartments (first and second row, n=15) or only apical compartment (below, n=6). Note that due to the smaller 
depth in z for the H5 dataset the PC reconstructions appear sparser than in H5_ext. Scale bars 50 µm. All data based on 
expert reconstructions. 
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