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SUMMARY

This thesis investigates the arithmetic of certain families of number fields,
obtained as splitting fields of families of polynomials. The first and main
example is the family Pn,N of polynomials f ∈ Z[X] monic of degree n
with height less or equal than N , and then let N go to infinity. It is known
that "almost all" polynomials f ∈ Z[X] have splitting field Kf over Q with
Galois group Gf isomorphic to the symmetric group Sn. On the other hand,
all Sn-extensions of Q arise in this way for some f . We denote this subset
of Sn-polynomials by P0

n,N .
We prove an average version of the Chebotarev Density Theorem for this

family. In particular, this gives a Central Limit Theorem for the number
of primes with given splitting type in some ranges. As an application, we
deduce some estimates for the ℓ-torsion in the class groups.

Moreover, we also consider the analogue over number fields, and prove
a result generalizing the work of Bhargava, towards the van der Waerden’s
conjecture.
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ZUSAMMENFASSUNG

In dieser Arbeit wird die Arithmetik bestimmter Familien von Zahlen-
feldern untersucht, die als Teilungsfelder von Familien von Polynomen er-
halten werden. Das erste und wichtigste Beispiel ist die Familie Pn,N der
Polynome f ∈ Z[X], die monisch vom Grad n sind und eine Höhe kleiner
oder gleich N haben, und dann lässt man N ins Unendliche gehen. Es ist
bekannt, dass "fast alle" Polynome f ∈ Z[X] ein Spaltfeld Kf über Q mit
der Galoisgruppe Gf , die zur symmetrischen Gruppe Sn isomorph ist. An-
dererseits entstehen alle Sn-Erweiterungen von Q auf diese Weise für einige
f . Wir bezeichnen diese Teilmenge von Polynomen ohne Affekt mit P0

n,N .
Wir beweisen eine durchschnittliche Version des Dichtesatz von Cheb-

otarev für diese Familie. Insbesondere ergibt sich daraus ein zentraler Gren-
zwertsatz für die Anzahl der Primzahlen mit gegebenem Aufspaltungstyp
in einigen Bereichen. Als Anwendung leiten wir einige Schätzungen für die
ℓ-Torsion in den Klassengruppen ab.

Darüber hinaus betrachten wir auch die Analogie über Zahlenfeldern und
beweisen ein Ergebnis, das die Arbeit von Bhargava verallgemeinert, und
zwar in Richtung der van der Waerden-Vermutung.
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Introduction

Counting Sn-polynomials

We fix a field extension K/Q of degree d. Let n ≥ 2 and let N be positive
integers. We consider monic polynomials with coefficients in OK :

f(X) = Xn + αn−1X
n−1 + · · ·+ α0.

Choose an ordered integral basis (ω1, . . . , ωd) of OK over Z. We have, for all
k = 0, . . . , n− 1,

αk =

d∑
i=1

a
(k)
i ωi

for unique a
(k)
i ∈ Z. We view the coefficients a(k)i as independent, identically

distribuited random variables taking values uniformely in {−N, . . . , N}. De-
fine the height of αk as ht(αk) = maxi |a(k)i | and the height of the polynomial
f to be

ht(f) = max
k

ht(αk).

For n ≥ 2, N > 0 define

P0
n,N (K) = {f ∈ OK [X] : ht(f) ≤ N, GKf/K

∼= Sn},

where Kf is the splitting field of f over K inside a fixed algebraic closure
Q of Q. We call these polynomials Sn-polynomials over K, or simply
Sn-polynomials when there is no need to specify the base field.

It has been proven that almost all polynomials are Sn-polynomials in the
following sense:

|P0
n,N (K)|

|Pn,N (K)|
−→

N→+∞
1.

For instance, in the case K = Q, Van der Waerden gave in [Wa] an ex-
plicit error term O(N−1/6). It has improved in [Gal] using large sieve to
O(N−1/2 logN), and more recently by Dietmann [Di] using resolvent poly-
nomials to O(N−2+

√
2+ε) for every ε > 0. The best estimate can be found

in [Bh1], who proved the following result, conjectured by van der Waerden.

Theorem (Bhargava). If either n ≥ 5, one has,

|P0
n,N (Q)| = (2N)n +O(Nn−1),

as N → ∞.

The case of cubic and quartic fields has been proven by Chow and Di-
etmann in [CD]. In Chapter 1 we generalize this result for polynomials in
P0

n,N (K) for many values of n and d. A simplified version of our result is
the following.
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Theorem 1. Let d ≥ 1 and n ≥ 2. There exist constants θ > 0 and θn ≥ 0
such that the number of non Sn-polynomials is

|Pn,N (K) \ P0
n,N (K)| ≪n,K Nd(n−θ)(logN)θn ,

as N → +∞. In particular, if n and d lie in some inetervals, we can take
θ = 1 and θn = 0;

See Theorem 1.1 for the precise statement.

The number of splitting primes

We will be interested, for the family of number fields as above, in under-
standing statistical arithmetic properties. In particular, we consider the
Chebotarev Density Theorem on average. This means, we want to compute
the density on average of the number of primes ℘ unramified in Kf/K for
which f has a given splitting type modulo ℘.

Let r = (r1, . . . , rn) be a square-free "splitting type" (see the notations
for the precise definition) and x ≥ 1. Define

πf,r(x) =
∑

℘⊆OK

NK/Q℘≤x

f of splitting type r mod ℘

1 =
∑

℘⊆OK

NK/Q℘≤x

1f,r(℘),

where ℘ runs over the non-zero prime ideals of K, and

1f,r(℘) =

{
1 if f has splitting type r mod ℘

0 otherwise.

We may view πf,r(x) as a sum of random variables

1·,r(℘) : P0
n,N −→ {0, 1}.

on P0
n,N , seen as a subset of [−N,N ]nd.

For every N , let PN be the uniform probability measure on [−N,N ]nd.
We’ll denote by EN and σ2

N the expectation and the variance, respectively.
For a prime ℘ ⊆ OK , let NK/Q℘ = p

f℘
℘ =: q℘, where p℘ is the character-

istic of the residue field of ℘, and f℘ its inertia degree.
Now we state the main theorem about this part, which will be proved in

Section 2.2. Here πK(x) is the function counting the number of prime ideals
of OK of norm less or equal than x, asymptotic to Li(x) by the prime ideal
theorem. We underline here that in the following x is very small compared
to N .
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Theorem 2. For x = N1/ log logN and for any a < b ∈ R,

PN

(
a ≤

πf,r(x)− δ(r)πK(x)

(δ(r)− δ(r)2)1/2πK(x)1/2
≤ b

)
−→ 1√

2π

∫ b

a
e−t2/2dt

as N → +∞, where δ(r) is the order of the conjugacy class Cr in Sn of
elements of cycle-pattern r, over n!.

This is a "Central Limit Theorem". It shows how πf,r(x) fluctuates
about the mean value δ(r)πK(x), which is the one expected by the Cheb-
otarev Density Theorem.

Example. Let Cr be the trivial conjugacy class and let K = Q. For
a = −0.9 and b = 0.9 the above integral is about 0.6. If n = 3 and N is
near 102 (so x near 20), the ratio is approximately πf (x) − 1.11, which lies
in the interval [−0.9, 0.9] if and only if πf,r(x) is in [0.21, 2.01] ∼ [0, 3]. This
means that the proportion of cubic S3-polynomials with coefficients in a box
[−100, 100] having less than 3 primes below 20 splitting completely in their
splitting field, is about 60 percent.

Application 1

Let f be an Sn-polynomial and let df ∈ OK be its discriminant. The rela-
tion between df and the discriminant DKf/K of its splitting field is still an
open problem in many cases, and leads to difficulties when counting ramified
primes.

Call an irreducible monic integral polynomial f essential if the equality
between the two discriminant holds. It is well known that this implies that
the ring of integers of the splitting field of f is monogenic.

Our results can be applied to study this relation, and to bound on average
the number of primes dividing the discriminant.

Corollary 1. For almost all f ∈ P0
n,N (K), the number of ramified primes

is
≪n,K log logN,

as N → +∞.

See Section 3.1 for this discussion.

Application 2

The following theorem is crucial to achieve results on the ℓ-torsion part of
the class number hf [ℓ] of Kf for every positive integer ℓ.
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Theorem (Ellenberg, Venkatesh). Let K/Q be a field extension of degree s
and discriminat DK . Set δ < 1

2ℓ(s−1) and suppose that

|{p ≤ Dδ
K : p splits completely in K/Q}| ≥ M.

Then, for any ε > 0

hK [ℓ] ≪s,ℓ,ε D
1/2+ε
K M−1.

Let Df be the discriminant of Kf/Q and let df be the discriminant of
the polynomial f .

Corollary 2. For every positive integer ℓ, ε > 0 and for all f ∈ P0
n,N

outside of a set of size o(Ndn), we have

hf [ℓ] ≪n,K,ℓ,ε D

1
2
− 1

d(2n−2)(n−1)! log log |NK/Qdf |+ε

f ,

as N → +∞.

Application 3

If λ1, . . . , λs are elements of OK , we can factorize the ideals they generate
in the Dedekind domain OK as

λiOK =
∏

℘⊆OK

℘βi
℘

for all i, where βi
℘ = 0 for all but finitely many ℘. The leatest common mul-

tiple of λ1, . . . , λs is the ideal of OK defined as the leatest common multiple
of the ideals λ1OK , . . . , λsOK in the Dedekind domain OK , that is

lcm(λ1, . . . , λs) =
⋂

℘⊆OK

℘max{β1
℘,...,β

s
℘} =

∏
℘⊆OK

℘max{β1
℘,...,β

s
℘}.

Proposition 1. One has on average

EN (log |NK/Q(lcm(f(λ) : λ ∈ OK , NK/Qλ ≤ M))| ∼n,K (n− 1)M logM

as M,N → +∞, with

M(logM)ℓ ≪ N = o

(
M

logM

log logM

)
for some 0 < ℓ < 1.

The precise result is stated in Proposition 3.1.

8



Further results and problems

• Regarding the range of x,N for the average Chebotarev Theorem, in
our proof of Theorem 2, the restriction x ≤ N1/ log logN or something
similar is essential. It would be interesting to know in what range of x
and N these results actually hold.

• If we consider the Artin L-function L(s, χ,Kf/K) associated to a fixed
character χ of Sn, we have an estimate on average for the partial sum of
the coefficients of logL(s, χ,Kf/K) and −L′

L (s, χ,Kf/K) (Corollary
4.1). Moreover, in Lemma 4.4, we prove the following upper bound on
average for the conductor ff (χ) of L(s, χ,Kf/K):

EN (log |NK/Q(ff (χ))|) ≪n,K,χ logN.

• Another goal, is to provide similar results for polynomials in OK [X]
having as Galois group over K, either Sn or a transitive proper sub-
group of Sn. It would be interesting to exploit the Hilbert Irreducibility
Theorem to get results for some group G ⊆ Sn.

In Section 2.3, we consider subfamilies A of P0
n,N of a specific form.

See 3.3.1 for explicit examples. We’d like to work with more families
as in 2.3 or with slightly different features, maybe more "favorable"
average properties, to study invariants like class numbers attached to
them. We expect, for instance, to improve the exponent of Df of
Corollary 2 above.
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Notations

• Given a normal extension L over K of degree s, the Galois group GL/K

of L over K is defined to be the group of automorphisms of L that fix
K pointwise. There is a natural embedding

GL/K ↪→ Ss

given by the action of the Galois group on the s homomorphisms of
L onto Q. In the following we’ll identify GL/K with its image via
the above morphism. If ℘ is an unramified prime in L/K, i.e. the
inertia group for every prime p over ℘ of L is trivial, there is a canon-
ical isomorphism between the Galois group of the residue field exten-
sion (OL/p)/(OK/℘) and the decomposition group Dp|℘ at p. Now,
G(OL/p)/(OK/℘) is cyclic with canonical generator the Frobenius at ℘.
The corresponding to p is FrobL/K,p|℘ ∈ Dp|℘. It is the unique element
of GL/K such that for all α ∈ OL we have

FrobL/K,p|℘(α) ≡ αNK/Q℘ mod p.

If we consider another prime over ℘, that is a conjugated one through
an element of the Galois group, the new Frobenius is conjugated to
the previous one via the same automorphism. Hence we denote by
FrobL/K,℘ the Frobenius element at ℘, namely the conjugacy class of
Frobenius automorphisms in GL/K .
Since the base field K is fixed, we sometimes avoid to indicate it in the
notations, unless we need to underline a specific field choice.

• Let f ∈ P0
n,N . We say that r = (r1, r2, . . . , rn) is the splitting type of

f mod a prime ℘ if f mod ℘ splits into distinct monic irreducible fac-
tors (so a square-free factorization), with r1 linear factors, r2 quadratic
factors and so on. For the primes ℘ that not divide the discriminant
Df of the extension Kf/K, r corresponds to the cycle structure of the
Frobenius element FrobKf/Q,℘ =: Frobf,℘ acting on the roots of f . For
each r we have

n∑
i=1

iri = n.

Let Cr be the conjugacy class in Sn of elements of cycle type r; the
order of Cr is n!δ(r), where δ(r) =

∏n
i=1

1
iriri!

.

• Throughout this thesis, we will make frequent use of various symbols
to compare the asymptotic sizes of quantities. We write f(x) ≪a g(x)
or f(x) = Oa(g(x)) to state that there exists a constant C = C(a) > 0
depending on a, such that |f(x)| ≤ C|g(x)| for all x suffciently large.
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Similarly, we write f(x) ≫ g(x) if there exists a constant C > 0 such
that |f(x)| ≤ C|g(x)| for all x suffciently large. We write f(x) ≍
g(x) if both f(x) ≪ g(x) and f(x) ≫ g(x). Moreover, we state that
f(x) ∼ g(x) if f(x)/g(x) → 1 as x → +∞, and f(x) = o(g(x)) if
f(x)/g(x) → 0 as x → +∞.
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1 Number of Sn-polynomials over K

Theorem 1.1. Let d ≥ 1 and n ≥ 2. There exist constants θ > 0 and θn ≥ 0
such that the number of non Sn-polynomials is

|Pn,N (K) \ P0
n,N (K)| ≪n,K Nd(n−θ)(logN)θn ,

as N → +∞. In particular,

( 1 ) if n = 2, we can choose θ = 1, θ2 = 1;

( 2 ) for all d ≥ 1 and n ≥ 3 the above estimate holds with θ = 1/2 and
θn = 1− γn, where γn ∼ (2πn)−1/2;

( 3 ) if one of the following conditions is satisfied, we can take θ = 1 and
θn = 0:

• d = 1, n = 3, 4;

•
[
2d+

√
4d2−2d
d

]
+ 1 ≤ n ≤ 5;

• d ≤ 23, 2(2d+ 1) ≤ n ≤ 94;
• n ≥ max(95, 2(2d+ 1)).

Let G be a subgroup of Sn; define

Nn(N,G;K) = Nn(N,G) = {f ∈ Pn,N (K) : Gf
∼= G},

and Nn(N,G;K) = Nn(N,G) = |Nn(G,N)|. Theorem 1.1 states that

Nn(N,G) ≪n,K Nd(n−θ)(logN)θn (1)

as N → +∞ for all G ⊂ Sn.
Recently Bhargava [Bh1] proved the conjecture for all n ≥ 6 and K = Q.

Part (3) of Theorem 1.1 is a generalization of this result for polynomials with
integral coefficients in a number field K, for some values of d and n. Finally,
for part (2) we apply large sieve to the set Pn,N (see [Gal] for the analogous
result for d = 1).

1.1 Counting reducible polynomials over K

Firstly, we prove (1) in the case G intransitive subgroup of Sn. The polyno-
mials having such G as Galois group are exactly those that factor over K.
Let 1 ≤ k ≤ n/2 and let

ρk(n,N ;K) = ρk(n,N) = {f ∈ Pn,N (K) : f has a factor of degree k over K}

and

ρ(n,N ;K) = ρ(n,N) = {f ∈ Pn,N (K) : f reducible over K}.

12



Proposition 1.1. One has

ρk(n,N) ≪n,K

{
Nd(n−k) if k < n/2

Nd(n−k) logN if k = n/2.

In particular, if n ≥ 3,

ρ(n,N) ≪n,K Nd(n−1),

as N → +∞.

Note that ρ(n,N) ≪n,K Nd(n−1) logN if n = 2, which proves Theorem 1.1,
part (1).

Lemma 1.1. Let β ∈ K be a root of f(X) = Xn + αn−1X
n−1 + · · ·+ α0 ∈

OK [X] of height N . Then

|NK/Q(β)| ≪n,K Nd.

Proof. This follows from the analogous results for polynomials with coeffi-
cients over C (see [Di2], Lemma 1). For all i = 1, . . . , d, σi(β) is a complex
root of σi ◦ f ∈ C[X], hence

|σi(β)| ≤
1

n
√
2− 1

max
1≤k≤n

∣∣∣∣∣σi(αn−k)(
n
k

) ∣∣∣∣∣
1/k

.

Then

|NK/Q(β)| ≤
(

1
n
√
2− 1

)d d∏
i=1

max
1≤k≤n

|σi(αn−k)|1/k ≪n,d Nd.

By Proposition 1.1, it follows that∑
G⊂Sn

intransitive

Nn(N,G) = ρ(n,N) ≪n,K Nd(n−1)

for all n ≥ 3, as N → +∞.

Proof. (Proposition 1.1) Assume that f(X) = Xn+αn−1X
n−1+ · · ·+α0 of

height ≤ N factors over K as f(X) = g(X)h(X), where

g(X) = Xq + aq−1X
q−1 + · · ·+ a0;

h(X) = Xr + br−1X
r−1 + · · ·+ b0,

13



where n = q+ r. We call this set of f ’s ρq,r(n,N). We therefore have to find
an upper bound for the number of coefficients of g and h so that f = gh and
ht(αi) ≤ N for all i = 0, . . . , n− 1.
By Knonecker’s theorem, every product ζ = aibj is a root of an equation of
the form

ζm + d1ζ
m−1 + · · ·+ dm = 0,

where dj = dj(α0, . . . , αn−1) is homogeneous of degree j in the coefficients
of f .
Let σi : K ↪→ C, i = 1, . . . , d be the Q-embeddings of K into C. In particular,
if α ∈ OK , α =

∑d
k=1 akωk has height ≤ N , then for all k = 0, . . . , n− 1,

|σi(α)| ≤ CK,iN

for all i = 1, . . . , d, where CK,i =
∑d

j=1 |σi(ωj)|. Hence

|NK/Q(α)| =
∣∣∣ d∏
i=1

σi(α)
∣∣∣

=
d∏

i=1

∣∣∣ d∑
i=1

σi(ωj)aj

∣∣∣
≤ CKNd,

where CK =
∑d

i=1CK,i. It follows that since ht(dj) ≪n,K N j ,

NK/Q(dj) ≪n,K Ndj

for all j. Now, ( ζ

N

)m
+

d1
N

( ζ

N

)m−1
+ · · ·+ dm

Nm
= 0,

hence ζ
N is a root of an equation with coefficients of norm

NK/Q

( dj
N j

)
≪n,K 1.

As in Lemma 1.1, one has NK/Q

(
ζ
N

)
≪n,K,q,r 1, so

NK/Q(ζ) = NK/Q(aibj) ≪n,K,q,r N
d

for all i, j. Let

A = max
i

|NK/Q(ai)|;

B = max
j

|NK/Q(bj)|.

14



By the above
AB ≪n,K,q,r N

d.

According to the Wiener-Ikehara Tauberian theorem, the number of principal
ideals of norm ≤ x is ≪ x. Given A,B sufficiently large, there are at most
≪n,K AqAq−2 = qAq−1 polynomials g and ≪n,K rBr−1 polynomials h, since
at least one coefficient of g has norm A (q-possibilities), the remaining q− 1
have norm ≤ A, and the same for h. It total, for A,B large enough the
number of products gh is at most

≪n,K qrAq−1Br−1.

It turns out that

ρq,r(n,N) ≪n,K,q,r qr
∑

AB≪Nd

Aq−1Br−1

≪n,K,q,r

∑
A≪Nd

Aq−1
∑

B≪Nd/A

Br−1

≪
∑

A≪Nd

Aq−1
(Nd

A

)r
= Ndr

∑
A≪Nd

Aq−r−1.

We can assume q ≤ r.

• If q < r, the last sum is convergent, so

ρq,r(n,N) ≪n,K,q,r N
dr

as N → +∞.

• If q = r,

ρq,r(n,N) ≪n,K,q,r N
dr
∑

A≪Nd

1

A

≪n,K,q,r N
dr logN

as N → +∞.

In fact, we go further by extending a result of Chela [Ch] and proving an
asymptotic for ρ(n,N ;K).
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Theorem 1.2. Let n ≥ 3. Then

lim
N→+∞

ρ(n,N ;K)

Nd(n−1)
= 2d(n−1)

(
Dn,K ·

(
CKC ′

K

hK

)n−1

+ 1 +
An,Kkn,d

2d(n−1)

)
,

where An,K is an explicit constant, CK is the residue at 1 of ζK , hK is the
class number of K,

Dn,K =
∑

ν∈OK

1<|NK/Qν |<C′
KNd

1

|NK/Qν)|n−1
,

C ′
K =

d∏
j=1

∣∣∣ d∑
k=1

σj(ωk)
∣∣∣,

kn,d = vol(R) =

∫
R
· · ·
∫

dy
(0)
1 . . . dy

(n−2)
1 . . . dy

(0)
d . . . dy

(n−2)
d ,

where R is the region of the d(n− 1)-dimensional Euclidean space defined by

|y(j)k | ≤ 1 ∀j, k,
∣∣∣ n−2∑
j=0

y
(j)
k

∣∣∣ ≤ 1 ∀j, k.

We assume from now on that n ≥ 3. By Proposition 1.1 and by definition
of ρ, ρk if follows that

lim
N

ρ(n,N)

Nd(n−1)
= lim

N

ρ1(n,N)

Nd(n−1)
.

So we reduce to prove the asymptotic for

ρ1(n,N)

Nd(n−1)

as N → +∞.
Let ν ∈ OK and let

Tn,N (ν;K) = Tn,N (ν) := {f ∈∈ Pn,N (K) : f has a linear factor X + ν}.

Lemma 1.2. One has

ρ1(n,N)−
∑

ν∈OK

|NK/Qν|≪n,KNd

Tn,N (ν) = o(Nd(n−1))

as N → +∞.
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Proof. Note that
∑

ν Tn,N (ν) ≥ ρ1(n,N), since in the first sum a polynomial
may be counted repeatedly. Let Ri be the number of f ∈ Pn,N (K) with
exactly i distinct linear factors, and let ρ′1(n,N) be the number of f ∈
Pn,N (K) with two linear factors (not necessarily distinct).
Each of the Ri is counted in

∑
ν Tn,N (ν) exactly i times. Moreover for i > 1,

Ri ≤ ρ′1(n,N) < ρ2(n,N).

By Proposition 1.1, ρ2(n,N) = o(Nd(n−1)), therefore ρ1(n,N) and
∑

ν Tn,N (ν)
differ in a o(Nd(n−1)) term.

Lemma 1.3. One has

lim
N→+∞

∑
ν∈OK

1<|NK/Qν|≤C′
KNd

Tn,N (ν)

Nd(n−1)
= 2d(n−1)Dn,K ·

(
CKC ′

K

hK

)n−1

,

where Dn,K ≤ ζK(n− 1).

Proof. Since Tn,N (ν) = Tn,N (ν ′) if NK/Qν = NK/Qν
′, we can assume that

2 ≤ NK/Qν ≤ C ′
KNd. A polynomial f ∈ Pn,N with a linear factor X + ν is

of the form

f(X) = (X + ν)(Xn−1 + βn−2X
n−2 + · · ·+ β0) (2)

for some βj ∈ OK for all j. Thus Tn,N (ν) is equal to the number of (n− 1)-
tuples (βn−2, . . . , β0) ∈ On−1

K satisfying (2) for f of height ≤ N . We get
β0 =

α0
ν

βi =
αi−βi−1

ν i = 1, . . . , n− 2

αn−1 = βn−2 + ν.

(3)

Write αi =
∑d

k=1 a
(i)
k ωk and βi =

∑d
k=1 b

(i)
k ωk for all i, where a

(i)
k , b

(i)
k ∈ Z

for all i, k. Now fix βi−1 and let αi varies with ht(αi) ≤ N . One gets from
(3),

NK/Qβi =

d∏
j=1

σj(βi)

=

d∏
j=1

d∑
k=1

(a
(i)
k − b

(i−1)
k )σj(ωk) ·

1

NK/Qν
.

Once fixed βi−1 (i.e. bi−1
k for all k), the norm of βi lies in an interval of

amplitude

C ′
K

(2N)d

NK/Qν
,
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where C ′
K =

∏d
j=1

∣∣∣∑d
k=1 σj(ωk)

∣∣∣. By definition of the ideal class group of
K, the set of principal ideals of OK is the identity element. Let L denote the
average over m of the number of principal ideals of norm m. The uniform
distribuition of the ideals among the hK ideal classes of OK and the Wiener-
Ikehara Tauberian theorem imply that

1

hK

∑
m≤x

|{I ⊆ OK : N(I) = m}| ∼ 1

hK
CKx ∼ Lx;

hence
L =

CK

hK
,

where CK is the residue at 1 of ζK . Therefore there are[
CKC ′

K

hK

(2N)d

NK/Qν

]
or
[
CKC ′

K

hK

(2N)d

NK/Qν

]
+ 1

integral elements βi. The total number of solutions of the second equation
of (3) is of the form

n∏
i=1

(
CKC ′

K

hK

(2N)d

NK/Qν
+ rν,i

)
,

where rν,i = 0 or 1. By induction

βn−2 =
αn−2

ν
− αn−1

ν2
+ · · ·+ (−1)n−2 α0

νn−1
,

from which

|NK/Qβn−2| ≤ C ′
KNd

(
1

NK/Qν
+

1

(NK/Qν)2
+ · · ·+ 1

(NK/Qν)n−1

)
.

So for ν ∈ OK with 2 ≤ NK/Qν < C ′
KNd, the values of βn−2 also satisfy the

third equation in (3) provided N is large enough. We have therefore∑
ν∈OK

1<|NK/Qν|≤C′
KNd

Tn,N (ν) =
∑

ν∈OK

2≤NK/Qν<C′
KNd

HK(ν) · Tn,N (ν)

+
∑

ν∈OK

NK/Qν=C′
KNd

HK(ν) · Tn,N (ν)

=
∑

ν∈OK

2≤NK/Qν<C′
KNd

HK(ν) ·
n−1∏
i=1

(
CKC ′

K

hK

(2N)d

NK/Qν
+ rν,i

)

+
∑

ν∈OK

NK/Qν=C′
KNd

HK(ν) · Tn,N (ν).
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If NK/Q(ν) = C ′
KNd, by arguing as before we get that Tn,N (ν) ≪n,K 1.

Then the last sum is

≪n,K

∑
ν∈OK

NK/Qν=C′
KNd

1 ∼
CKC ′

K

hK
Nd = o(Nd(n−1))

for n ≥ 3. Finally,

∑
ν∈OK

1<|NK/Qν|≤C′
KNd

Tn,N (ν) =
∑

ν∈OK

2≤NK/Qν<C′
KNd

HK(ν)·
n−1∏
i=1

(
CKC ′

K

hK

(2N)d

NK/Qν
+ rν,i

)

+ o(Nd(n−1))

=
∑

ν∈OK

2≤NK/Qν<C′
KNd

HK(ν) ·

((
CKC ′

K

hK

(2N)d

NK/Qν

)n−1

+On,K(Nd(n−3))

)

+ o(Nd(n−1))

= Nd(n−1)

(
2dCKC ′

K

hK

)n−1 ∑
ν∈OK

2≤NK/Qν<C′
KNd

HK(ν) · 1

(NK/Qν)n−1

+ o(Nd(n−1))

= Nd(n−1)

(
2dCKC ′

K

hK

)n−1

·
∑

ν∈OK

2≤|NK/Qν|<C′
KNd

1

|NK/Qν|n−1
+ o(Nd(n−1))

= Nd(n−1)

(
2dCKC ′

K

hK

)n−1

·Dn,K + o(Nd(n−1)).

Recall that αj =
∑d

k=1 a
(j)
k ωk for all j = 0, . . . , n− 1. Let

h(f) = (h1(f), . . . , hd(f)) ∈ Zd,

where hk(f) = a
(0)
k + · · ·+ a

(n−1)
k for all k = 1, . . . , d. Define

Ln(N,h) = {f ∈ Pn,N (K) : h(f) = h}

and Ln(N,h) = |Ln(N,h)|. We have

Ln(N,h) = Ln(N,h′) (4)
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if h′k = ±hk for all k; moreover, by a counting argument as in Lemma 1.1,
it holds ∑

ν∈OK

|NK/Qν|=1

Tn,N (ν) ≍ An,KLn(N, (1, . . . , 1)) (5)

for some positive constant An,K . Note that in the left hand side, Tn,N (ν) = 0
for almost all ν ∈ O×

K , since ht(ν) is arbitrary large by Dirichlet’s unit
theorem.

Lemma 1.4. For all h ∈ Zd,

lim
N→+∞

Ln(N,h)

Nd(n−1)
= kn,d.

Proof. By (4) we may assume that hk ≥ 0 for all k. Let f ∈ Ln(N, 0) and
let

f ′(X) = Xn + αn−1X
n−1 + · · ·+ α0 +

d∑
k=1

hkωk.

Then f ′ ∈ Ln(N +max
k

hk, h). This implies

Ln(N, 0) ≤ Ln(N +max
k

hk, h).

Let now f ∈ Ln(N,h) and let

f ′(X) = Xn + αn−1X
n−1 + · · ·+ α0 −

d∑
k=1

hkωk.

We have
Ln(N,h) ≤ Ln(N +max

k
hk, 0).

It follows that

Ln(N −maxk hk, 0)

Ln(N, 0)
≤ Ln(N,h)

Ln(N, 0)
≤ Ln(N +maxk hk, 0)

Ln(N, 0)
.

In particular
Ln(N,h) ∼ Ln(N, 0)

for all h, as N → +∞.
Our claim is therefore

lim
N→+∞

Ln(N, 0)

Nd(n−1)
= kn,d.

Let End be the nd-dimensional Euclidean space with coordinates
x
(0)
1 , . . . , x

(n−1)
1 , . . . , x

(0)
d , . . . , x

(n−1)
d . Let Λnd be the lattice of integral points
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in End. Then Ln(N, 0) corresponds to the number of integral points of Λnd

which lie inside the cube

CN : |xk(j)| ≤ N ∀j = 0, . . . , n− 1, ∀k = 1, . . . , d

and the hyperplanes

Hk : x
(0)
k + . . . , x

(n−1)
k = 0 ∀k = 1, . . . , d.

That is,
Ln(N, 0) = |Λnd ∩ CN ∩H|,

where H = H1 ∩ · · · ∩Hd. H is a d(n − 1)-dimensional space; we indentify
it with Ed(n−1) with coordinates x

(0)
k , . . . , x

(n−2)
k for all k = 1, . . . , d. Also,

CN ∩H : |x(j)k | ≤ N,
∣∣∣ n−2∑
j=0

y
(j)
k

∣∣∣ ≤ N

for all j = 0, . . . , n− 2 and k = 1, . . . , d.
But

lim
N→+∞

|Λnd ∩ CN ∩H|
Nd(n−1)

= vol(R),

where R is the region obtained transforming CN ∩ H by the substituition
x
(j)
k = Ny

(j)
k for all j, k. We conclude that

lim
N→+∞

Ln(N, 0)

Nd(n−1)
= vol(R) =

∫
R
· · ·
∫

dy
(0)
1 . . . dy

(n−2)
1 . . . dy

(0)
d . . . dy

(n−2)
d

= kn,d.

Lemma 1.4 and (5) yield the following.

Corollary 1.1.

lim
N→+∞

∑
ν∈OK

|NK/Qν|=1

Tn,N (ν)

Nd(n−1)
= An,Kkn,d.

Proof. (Theorem 1.2) Let n ≥ 3; write∑
ν∈OK

|NK/Qν|≤C′
KNd

Tn,N (ν) =
∑

ν∈OK

1<|NK/Qν|≤C′
KNd

Tn,N (ν) +
∑

ν∈OK

|NK/Qν|=1

Tn,N (ν) + Tn,N (0).

Now, Tn,N (0) ∼ (2N)d(n−1); by Lemma 1.1 and Corollary 2

lim
N→+∞

∑
ν∈OK

|NK/Qν|≤C′
KNd

Tn,N (ν)

Nd(n−1)
= 2d(n−1)Dn,K ·

(
CKC ′

K

hK

)n−1

+An,Kkn,d+2d(n−1).

The theorem follows by Lemma 1.2.
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1.2 Proof of Theorem 1.1, part 2

1.2.1 Large sieve inequality for number fields

Let α ∈ Qn/Zn and let c(a) ∈ C for all a lattice vector in Zn. Define

S(α) =
∑

H(a)≤N

c(a)e(a · α),

where the sum runs over a ∈ Zn of height H(a) ≤ N , where H(a) is the
maximum of the absolute values of the components of a. We use the standard
notation e(x) = e2πix. Let ord(α) = min{m ∈ N : mα ∈ Zn}. The following
is the multidimensional analogue of the Bombieri-Davenport inequality:∑

ord(α)≤x

|S(α)|2 ≪n (N s + x2s)
∑

H(a)≤N

|c(a)|2.

We want a similar estimate for algebraic number fields. Specifically, let a be
an integral ideal of K, and let σ be an additive character of On

K mod a. We
call σ proper if it is not a character mod b for any b|a. Let c(ξ) ∈ C for all
ξ = (ξ1, . . . , ξn) ∈ On

K . As before, define

S(σ) =
∑

H(ξ)≤N

c(ξ)σ(ξ),

where H(ξ) = maxni=1 ht(ξi).

Proposition 1.2. One has∑
NK/Qa≤x

∑
σ

|S(σ)|2 ≪n,K (Nnd + cKx2n)
∑

H(ξ)≤N

|c(ξ)|2

for some constant cK , where the second sum is over the proper additive char-
acters mod a.

A more precise statement of this result can be found in [Hu], Theorem 2
for the 1-dimensional case. Proposition 1.2 is the multidimensional analogue
which can be achieved as for the case K = Q; for further details see [Hu],
again.

Let now ℘ be a prime ideal of OK and let Ω(℘) be a subset of On
K/℘On

K ,
whom order is ν(℘), say. For each ξ ∈ On

K , set

P (ξ, x) = |{℘ ∈ OK : NK/Q℘ ≤ x, ξ mod ℘ ∈ Ω(℘)}|

and
P (x) =

∑
NK/Q℘≤x

ν(℘)

qn℘
,

where q℘ = NK/Q℘.
The next results are classical applications of Proposition 1.2 . We include

the proofs for completeness.
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Lemma 1.5. If N ≫K x2/d, then∑
H(ξ)≤N

(P (ξ, x)− P (x)) ≪n,K NndP (x).

Proof. Let φ℘ be the characteristic function of the set Ω(℘), that is

φ℘(ξ) =

{
1 if ξ mod ℘ ∈ Ω(℘)

0 otherwise.

It is periodic function mod ℘. Its Fourier transform is

φ̂℘(σ) =
1

qn℘

∑
ξ mod ℘

φ℘(ξ)σ(ξ).

By the inversion formula we get

φ℘(ξ) =
∑

σ mod ℘

φ̂℘(σ)σ(ξ),

where the sum is over the characters mod ℘. In particular

φ̂℘(1) =
ν(℘)

qn℘
(6)

and, by the orthogonality relations,∑
σ mod ℘

|φ̂℘(σ)|2 =
ν(℘)

qn℘
(7)

From (6), we can write

P (ξ, x) =
∑

NK/Q℘≤x

φ℘(ξ) = P (x) +R(ξ, x),

where
R(ξ, x) =

∑
NK/Q≤x

∑
σ mod ℘

σ ̸=1

φ̂℘(σ)σ(ξ).

By the Cauchy-Schwartz inequality one has∑
H(ξ)≤N

(R(ξ, x))2 =
∑

NK/Q℘≤x

∑
σ mod ℘

σ ̸=1

φ̂℘(σ)
∑

H(ξ)≤N

R(ξ, x)σ(ξ)

≤

 ∑
NK/Q℘≤x

∑
σ mod ℘

σ ̸=1

|φ̂℘(σ)|2


1/2

·

(∑
σ

|S(σ)|2
)1/2

,
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where the last sum is over σ ̸= 1 mod ℘ for some ℘ of norm ≤ x, and

S(σ) =
∑

H(ξ)≤N

R(ξ, x)σ(ξ).

From (7) and Proposition 1.2 we get

∑
H(ξ)≤N

(R(ξ, x))2 ≪

P (x)(Nnd + cKx2n)
∑

H(ξ)≤N

|R(ξ, x)|2
1/2

,

which, for N ≫ x2/d, implies the lemma.

Define, for a collection of subsets Ω(℘) for each prime ℘,

E(N) = |{ξ ∈ On
K : H(ξ) ≤ N, ξ mod ℘ /∈ Ω(℘) ∀℘}|.

Put
S(x) =

∑
NK/Qa≤x

µ2(a)
∏
℘|a

ν(℘)

qn℘ − ν(℘)
,

where µ is the Möbius function; in particular

µ2(a) =

{
1 if a is square-free
0 otherwise.

Lemma 1.6. If N ≫K x2/d, then

E(N) ≪n,K NndS(x)−1.

Proof. Let

c(ξ) =

{
1 if ξ mod ℘ /∈ Ω(℘) ∀℘
0 otherwise

for all ξ ∈ On
K . Note that

E(N) =
∑

H(ξ)≤N

|c(ξ)|2 = S(1).

If we show that ∑
σ mod a

|S(σ)|2 ≥ |S(1)|2
∏
℘|a

ν(℘)

qn℘ − ν(℘)
(8)

for all square-free a, then we have, by Proposition 1.2, for N ≫K x2/d,

E(N)2S(x) ≤
∑

NK/Qa≤x

µ2(a)
∑

σ mod a

|S(σ)|2

≪ (Nnd + cKx2n)
∑

H(ξ)≤N

|c(ξ)|2

≪ NndE(N),

24



and the lemma follows.
Proof of (8): for every prime ℘, by orthogonality we have∑

σ mod ℘

|S(σ)|2 = qn℘
∑

ζ∈On
K/℘On

K

|S(ζ, ℘)|2 − |S(1)|2 (9)

where S(ζ, ℘) =
∑

ξ
ξ mod ℘∈ζ

c(ξ). By the Cauchy-Schwartz inequality,

|S(1)|2 =
∣∣∣∑

ζ

S(ζ, ℘)
∣∣∣2 ≤ (q℘ − ν(℘))

∑
ζ

|S(ζ, ℘)|2 (10)

since S(ζ, ℘) = 0 for all ζ ∈ Ω(℘). Equations (9) and (10) imply (8) for the
case a = ℘ prime ideal.

More generally, if σ1 is a character mod ℘, one has∑
σ mod ℘

|S(σ · σ1)|2 ≥ |S(σ1)|2
ν(℘)

qn℘ − ν(℘)

by replacing c(ξ) with c(ξ)σ1(ξ).
Let now a be square-free. By the unique factorization of ideals we can

write a = ℘b for some prime ideal ℘ and for some square-free ideal b, with
℘ ∤ b. The chinese remainder theorem gives,∑

σ mod a

|S(σ)|2 =
∑

σ mod ℘

∑
σ1 mod b

|S(σ · σ1)|2

≥ ν(℘)

qn℘ − ν(℘)

∑
σ1 mod b

|S(σ1)|2.

We conclude by induction on the number of prime factors of a.

1.2.2 Sieving polynomials in Pn,N

Let f ∈ Pn,N , f(X) = Xn + αn−1X
n−1 + · · · + α0. We identify f with

the lattice vector ξ = ξf = (αn−1, . . . , α0) formed by its coefficients, so that
H(ξf ) = ht(f). Similarly, polynomials mod ℘ are identified with lattice
vectors mod ℘.

Proposition 1.3. Let r be a splitting type. If N ≫K x2/d, then∑
f∈Pn,N

(πf,r(x)− δ(r)πK(x))2 ≪n,K NndπK(x).

Proof. For every prime ℘ of K of norm q℘, let

Xn,r,℘ =
{( r1∏

i=1

g
(1)
i

)
. . .
( rn∏

i=1

g
(n)
i

)
: g

(j)
i ∈ Fq℘ [X] irreducile, monic,

deg(g
(j)
i ) = j, g

(j)
i ̸= g

(j)
k if i ̸= k

}
.
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Namely, Ω(℘) = Ωr(℘) := Xn,r,℘ is the set of polynomials of (square-free)
splitting type r in the finite field Fq℘ . As we’ll show later in Chapter 2,

νr(℘) = |Xn,r,℘| = δ(r)qn℘ +O(qn−1
℘ ).

Therefore

P (x) =
∑

Nk/Q℘≤x

νr(℘)

qn℘
= δ(r)πK(x) +O(log log x),

and πf,r(x) = P (ξf , x). The proposition thus follows by Lemma 1.5.

For any f ∈ OK [X], let

πf (x) :=
∑
q℘≤x

℘ unramified

|{α ∈ OK : f(α) ≡ 0 mod ℘}|.

Observe that if f is irreducible and f(α) ≡ 0 mod ℘ unramified, then
there is a prime P|℘ in the field K(α) so that [OK(α)/P : OK/℘] = 1,
i.e. NK/QP = q℘. Therefore πf (x) corresponds to the prime ideal counting
function πK(α)(x), and the asymptotic

πf (x) ∼ πK(x),

as x → +∞, holds by the Prime Ideal Theorem.

Corollary 1.2. If N ≫K x2/d, then∑
f∈Pn,N

(πf (x)− πK(x))2 ≪n,K NndπK(x).

Proof. Write

πf (x) =
∑
r

r1πf,r(x)

=
(∑

r

r1δ(r)
)
πK(x) +

∑
r

r1(πf,r(x)− δ(r)πK(x)).

In order to compute
∑

r r1δ(r) we consider the generating function∑
n≥0

( ∑
r1,...,rn≥0∑

iri=n

r1δ(r)
)
Xr1

1 Xn−r1 =
∑

r1,...,rn≥0

Xr1
1

r1!

n∏
i=2

1

iriri!
X2r2X3r3 . . . .

We have that
∑

r r1δ(r) corresponds to the coefficients of Xn−1 of

∂

∂X1

∣∣∣
X1=X

exp
(
X1 +

∑
n≥2

Xn

n

)
=

∂

∂X1

∣∣∣
X1=X

exp
(
X1 +

∫ X

0

dt

1− t
−X

)
=

1

1−X

= 1 +X +X2 + . . .
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which is 1. It turns out, by the Cauchy-Schwartz inequality, that

(πf (x)− πK(x))2 ≪
∑
r

r21(πf,r(x)− δ(r)πK(x))2,

and we apply Proposition 1.3 for each r.

Fix a splitting type r, and let

Er(N) = |{f ∈ Pn,N : f has splitting type r mod ℘ for no prime ℘}|.

Corollary 1.3. One has

Er(N) ≪n,K Nd(n−1/2) logN.

Proof. For f ∈ Er(N), πf,r(x) = 0, so by∑
f∈Pn,N

(πf,r(x)− δ(r)πK(x))2

=
∑

f∈Pn,N

πf,r(x)̸=0

(πf,r(x)− δ(r)πK(x))2 +
∑

f∈Er(N)

(δ(r)πK(x))2

=
∑

f∈Pn,N

πf,r(x) ̸=0

(πf,r(x)− δ(r)πK(x))2 + Er(N)(δ(r)πK(x))2

we get

Er(N) ≍
∑

f∈Pn,N

πf,r(x)̸=0

(πf,r(x)− δ(r)πK(x))2(πK(x))−2 ≪n,K Nnd(πK(x))−1

for N ≫K x2/d. Pick x ≍ Nd/2 and conclude by the prime ideal theorem.

In order to improve the exponent of logN we apply Lemma 1.6 to ER(N),
where R is a nonempty set of splitting types and

ER(N) = |{f ∈ Pn,N : f has splitting type in R mod ℘ for no prime ℘}|.

Put δ(R) =
∑

r∈R δ(r).

Proposition 1.4. For any δ < δ(R), one has

ER(N) ≪n,K Nd(n−1/2)(logN)1−
δ

1−δ .
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Proof. Let ΩR(℘) =
⋃

r∈R Xn,r,℘. Its order is

νR(℘) = δ(R)qn℘ +O(qn−1
℘ ).

If the norm of ℘ is large enough, q℘ ≥ t, say, we have

νR(℘) ≥ δqn℘.

If N ≫n,K x2/d, Lemma 1.6 gives

ER(N) ≪n,K NndSR(x)
−1,

where
SR(x) =

∑
NK/Qa≤x

µ2(a)
∏
℘|a

νR(℘)

qn℘ − νR(℘)
.

For q℘ ≥ t,
νR(℘)

qn℘ − νR(℘)
=

(
qn℘

νR(℘)
− 1

)−1

≥ δ

1− δ
,

so

SR(x) ≥
∑

NK/Qa≤x

℘|a⇒q℘≥t

µ2(a)
∏
℘|a

δ

1− δ
=

∑
NK/Qa≤x

℘|a⇒q℘≥t

µ2(a)

(
δ

1− δ

)ω(a)

.

We hence need a lower bound for the sum

Sγ,t(x) =
∑

NK/Qa≤x

a square-free

℘|a⇒q℘≥t

γω(a),

where γ := δ/(1− δ). By a result of Selberg ([Sel], Theorem 2), we get

Sγ,t(x) ≍
1

Γ(γ)

∏
q℘<t

(
1− 1

q℘

)γ ∏
q℘≥t

(
1 +

γ

q℘

)(
1− 1

q℘

)γ

x(log x)γ−1.

Putting x ≍n,K Nd/2, the claim follows.

As we said in the introduction, if f mod ℘ has splitting type r, for some
unramified ℘, then the Frobenius at ℘ has cycle structure r. If G ⊂ Sn is a
proper subgroup, it’s a standard fact that the conjugates of G do not cover
Sn; thus f cannot have all the splitting types. It follows that

|Pn,N \ P0
n,N | ≤

∑
r

Er(N).

We conclude, by Corollary 1.2, that

|Pn,N \ P0
n,N | ≪n,K Nd(n−1/2) logN.

We are now ready to prove Theorem 1.1, part (2). We use the following
lemma to improve the exponent of logN .
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Lemma 1.7. If G is a transitive subgroup of Sn, contains a transposition
and contains a p-cycle for some p > n/2, then G = Sn.

Proof. See [Gal], page 98.

Let

T = {r : r2 = 1, r4 = r6 = · · · = 0},
P = {r : rp = 1 for some p > n/2}.

By using the above correspondence, we can view T as the set of elements of
Sn among whose cycles there is just one transposition and no other cycles of
even length. Analogously, P is the set of elements of order divisible by some
prime p > n/2. By Lemma 1.7, we have the inequality

|Pn,N \ P0
n,N | ≤ ρ(n,N) + ET (N) + EP (N) (11)

We can estimate ρ(n,N) thanks to Proposition 1.1. For the other summands,
we compute δ(T ) and δ(P ) in order to apply Proposition 1.4.

• Write
δ(T ) =

1

2

∑
r3,r5,...∑
iri=n−2

∏
i≥3
odd

1

iriri!
.

The generating function is

1

2

∑
r3,r5...

∏
i≥3
odd

1

iriri!
X

2+
∑

i≥3 iri
odd =

X2

2
exp

∑
n≥0

X2n+1

2n+ 1

.

Therefore δ(T ) is half the coefficient of Xn−2 of

exp

∑
n≥0

X2n+1

2n+ 1

 = exp

(∫ X

0

dt

1− t2

)

= exp

(
1

2

∫ X

0

dt

1− t

)
exp

(
1

2

∫ X

0

dt

1 + t

)
=

(
1 +X

1−X

)1/2

= (1 +X)(1−X2)−1/2

= (1 +X)
∂

∂X
(arcsinX)

= (1 +X)
∂

∂X

∑
k≥0

1

22k

(
2k

k

)
X2k+1


= (1 +X)

∂

∂X

∑
k≥0

(2k)!

(2kk!)2
X2k

 .
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It turns out that
δ(T ) =

(n− j)!

2n−j+1
(n−j

2

)
!2
,

where j = 2 if n is even and j = 3 if n is odd. By Stirling’s approxi-
mation n! ∼

(
n
e

)n√
2πn we get, for instance, when n is even,

δ(T ) ∼
(
n−2
e

)n−2√
2π(n− 2)

2n−2
((

n−2
2

)n−2
2
√
π(n− 2)

)2
∼ 1√

2πn
.

The case n odd is analogous.

• Write
δ(P ) =

∑
n/2<p≤n

1

p

∑
ri,i ̸=p∑

i ̸=p iri=n−p

∏
i ̸=p

1

iriri!
.

The generating function of the last sum above for a fixed prime n/2 <
p ≤ n is

∑
ri,i ̸=p

∏
i ̸=p

1

iriri!
Xp+

∑
i ̸=p iri = Xp exp

 ∑
n≥1, n̸=p

Xn

n

 .

The coefficient of Xn−p of exp
(∑

n≥1, n̸=p
Xn

n

)
is precisely our sum,

which is therefore 1, since

exp

 ∑
n≥1, n̸=p

Xn

n

 = exp

(∫ X

0

dt

1− t

)
= exp(− log(1−X))

= 1 +X +X2 + . . . .

By the classical Martens’ estimate, we conclude that

δ(P ) =
∑

n/2<p≤n

1

p
∼ log 2

log n
.

By (11), Lemma 1.7 and Proposition 1.1 it follows

|Pn,N \ P0
n,N | ≪n,K Nd(n−1/2)(logN)1−γn ,

where γn ∼ (2πn)−1/2, that is, part (2) of Theorem 1.1.
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1.2.3 Remarks

Let f ∈ Pn,N . By Proposition 1.3, we get in particular that for every ε > 0,

πf,r(x)− δ(r)πK(x) = O
(
x

1
2 log x

)
as x → +∞, for all but On,K(x2n(log x)−3) polynomials f with ht(f) ≪ x2/d.
Indeed, if

E(x) := {f ∈ Pn,N : |πf,r(x)− δ(r)πK(x)| > x
1
2 log x}

denotes the exceptional set, one has

x(log x)2|E(x)| ≪
∑

f∈Pn,N

|πf,r(x)− δ(r)πK(x)|2

≪ NndπK(x),

if N ≫ x2/d. Hence

|E(x)| ≪ Nnd

x(log x)2
x

log x
≪ x2n

(log x)3

by setting N ≍ x2/d and by letting x → +∞.
This sharper form

πf,r(x)− δ(r)πK(x) = O
(
x

1
2
+ε
)

holds for all irreducible f by assuming the Artin’s conjecture for the splitting
field of f .

The reader can confront this result with the remark after Proposition
2.1, in which, for Sn-polynomials f , we have a significantly improved error
term, but a larger set of exceptions.

1.3 Proof of Theorem 1.1, part 3

In order to conclude, it remains to show (1) for G primitive subgroup and
for G transitive but imprimitive subgroup.

1.3.1 Case 1: G imprimitive

The irreducible polynomials f ∈ Pn,N (K) having such G as Galois group
are those whose associated field Lf = K[X]/(f) = K(α) (α is any root of
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f) has a nontrivial subfield over K.
Note that for any proper divisor e of n,

|{f ∈ Pn,N (K) : f irreducible, K(α)/K has a subfield of degree e}|
≤ |{β ∈ Q : [K(β) : K] = n, K(β)/K has a subfield of degree e, HK(β) ≪ N1/n}|
≤ |{θ ∈ Q : [Q(θ) : Q] = nd, Q(θ)/Q has a subfield of degree ed, H(θ) ≪K N1/n}|

K(β) = Q(θ)

K

Q

n!

d

nd

We recall that for a monic polynomial f ∈ C[X], the Mahler measure of f is

M(f) =
∑

f(θ)=0

max{1, |θ|}.

For any x ∈ Q and L/K number field containing x, we define the multiplica-
tive Weil height of x over K as

HK(x) =
∏

ν∈ML

max{1, |x|ν}[Lν :Kν ]/[L:K],

where ν runs over all the places of L (note that HK(x) does not depend
on the choice of L). For K = Q, HQ = H is the usual multiplicative Weil
height. If α is an algebraic number of degree n over K and f is its minimal
polynomial over K, then

M(f) = HK(α)n.

Mahler showed that M(f) and ht(f) are commensurate in the sense that

ht(f) ≪ M(f) ≪ ht(f).

In particular HK(α) ≪ N1/n, which explains the first inequality above.
For the second one, note that H(θ) ≤ HK(θ) for all θ ∈ Q. Moreover, if we
fix a primitive element γ ∈ K so that K = Q(γ), we have that K(β) = Q(θ),
where θ = β + qγ for all but finitely many q ∈ Q. Since

HK(β + qγ) ≤ 2HK(β)HK(qγ),

it follows that H(θ) ≪K N1/n.
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An upper bound for the set

Z(ed, n/e, cKN1/n) := {θ ∈ Q : [Q(θ) : Q] = nd,

Q(θ)/Q has a subfield of degree ed, H(θ) ≤ cKN1/n}

is given by Widmer ([Wi], Theorem 1.1.), namely

Z(ed, n/e, cKN1/n) ≪n,K Nd
(

n
e
+ed
)
.

Finally

|{f ∈ Pn,N (K) : f irreducible, K(α)/K has a non trivial subfield}|

≪n,K max
1<e<n
e|n

Nd
(

n
e
+ed
)
≤ Nd

(
n
2
+2d
)
,

because the function d
(
n
x + xd

)
assumes the maximum in x = 2 for x ∈

[2, n/2]. Since it is known, for instance from Kuba [Ku], that

lim
N→+∞

P(f irreducible) = 1

with error term O(N−d), we get∑
G⊂Sn

imprimitive

Nn(N,G) ≪n,K Nd
(

n
2
+2d
)
≪ Nd(n−1),

as long as n ≥ 2(2d+ 1).

1.3.2 Case 2: G primitive

We need the following result which generalizes a result of Lemke Oliver and
Thorne ([LT], Theorem 1.3).

Let G be a transitive subgroup of Sn. Any f ∈ Nn(N,G) (which can
be assumed to be irreducible) cuts out a field Lf = K[X]/(f) whose normal
closure Kf/K has Galois group G with discriminant of norm

|NK/QDLf/K | ≪n,K Nd(2n−2).

Let L/K be an extension of degree n. Define

ML(N ;K) = ML(N) = |{f ∈ Pn,N : Lf ≃ L}|.

By a theorem of Schmidt [Sc], the number Fn(X,K) of field extensions
L/K of degree n with |NK/QDL/K | ≤ X is On,K(X(n+2)/4). For n ≤ 5, pre-
cise asymptotic formulas are known (see [DH], [DW], [Bh3], [Bh4], [BSW]).
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In particular the above authors proved the Linnik’s conjecture for small de-
grees: Fn(X,K) ≍n,K X. For n ≥ 95, the best bound is that of Lemke
Oliver and Thorne [LT2], namely Fn(X,Q) ≪n Xc(logn)2 , where c ≤ 1.564
is an explicitly computable constant. For smaller degrees, 6 ≤ n ≤ 94,
we use the following improvement to Schmidt bound, by [AGHLLTWZ]:
Fn(X,K) ≪n,K X

n+2
4

− 1
4n−4

+ε for all ε > 0.
Denote by

Fn(X,G;K) = Fn(X,G) = {L/K : [L : K] = n, G
L̃/K

∼= G, |NK/QDL/K | ≤ X},

where L̃ is the Galois closure of L over K.

Theorem 1.3. For any G ⊆ Sn transitive subgroup, one has

Nn(N,G) ≪n,K


Nd(2n−1) · (logN)nd−1 if n ≤ 5;

Nd
(
1+

(2n−2)(n+2)
4

− 1
2n−2

)
+ε if 6 ≤ n ≤ 94;

Nd(1+c(2n−1)((log(nd))2) · (logN)nd−1 if n ≥ 95,

as N → +∞, for all ε > 0. If moreover G is primitive,

Nn(N,G) ≪n,K


Nd(2n−1)− 2

n · (logN)nd−1 if n ≤ 5;

Nd
(
1+

(2n−2)(n+2)
4

− 1
2n−2

)
− 2

n
+ε if 6 ≤ n ≤ 94;

Nd(1+c(2n−1)((log(nd))2)− 2
n · (logN)nd−1 if n ≥ 95,

as N → +∞, for all ε > 0.

Proof. Since the discriminant of f ∈ Pn,N satisfies NK/Qdf ≪n,K Nd(2n−2)

(see 3.1), we can write

Nn(N,G) ≪n,K

∑
L∈Fn(Nd(n−2),G)

ML(N) (12)

Now, for any L/K as above with signature (r1, r2),

ML(N) ≤ |{α ∈ OL : K(α) ∼= L, HK(α) ≪n,K N1/n}|
≪n,K |ΩN1/n ∩ (OL \K)|,

where for Y ≥ 1, ΩY is the subset of the Minkowski space L∞ = Rr1 × Cr2

of elements whom Weil height over K is at most Y .
By applying Davenport’s lemma and by computing the volume of ΩY we
achieve

|ΩY ∩ Zn| ≪n,d Y nd(log Y )r1+r2−1.

By Proposition 2.2 of [LT],

|ΩY ∩ OL| ≪n,d Y nd(log Y )r1+r2−1
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as well. In particular

ML(N) ≪n,K Nd(logN)r1+r2−1.

As in the last part of the proof of Theorem 2.1 of [LT], one gets the improve-
ment

ML(N) ≪n,K
Nd(logN)r1+r2−1

λ
,

where λ = {∥α∥ : α ∈ OL \K}, ∥α∥ is the largest archimedean valuation of
α.

By (12) and the result of Schmidt follows the first part of the theorem.

Let now G be primitive; in particular L/K has no proper subextensions.
Therefore essentially as in [EV], Lemma 3.1, since if α ∈ OL \ K then
L = K(α), and OK [α] is a subring of OL which generates OL as a K-vector
space, one deduces

∥α∥ ≫ |NK/QDL/K |
1

nd(n−1) .

Finally, by partial summation we conclude

Nn(N,G) ≪n,K

∑
L∈Fn(Nd(2n−2),G)

Nd(logN)nd−1

|NK/QDL/K |
1

nd(n−1)

,

by using the bounds for Fn(X,K) according to n, observing that Fn(X,K) ≤
Fnd(Cn,KX,Q) for some constant Cn,K .

Assume now G to be primitive; for g ∈ G, g = c1 . . . ct where cj are
disjoint cycles, the index of g is

ind(g) = n− t.

The index of the group G is

ind(G) = min
g∈G
g ̸=1

ind(g).

Proposition 1.5. Let f ∈ OK [X] be a monic, irreducible polynomial of
degree n with associated field Lf = K[X]/(f). If ind(Gf ) = k, then the dis-
criminant DLf/K has the property Pk: if ℘ ⊆ OK , ℘|DLf/K , then ℘k|DLf/K .

Proof. The Galois group Gf acts on the n embeddings of Lf into Kf , its
Galois closure. Let ℘ ⊆ OK ,

℘OLf
=
∏
i

Pei
i ,

where for each i, Pi has inertia degree fi over K. Now, the primes dividing
the discriminant of Lf/K are either tamely ramified or wildly ramified.
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• If ℘ is tamely ramified, the inertia group I℘ is cyclic, and any generator
g ∈ Gf is the product of disjoint cycles consisting of f1 clycles of length
e1, f2 cycles of length e2 and so on. Hence the exponent of ℘ dividing
DLf/K is

v℘(DLf/K) =
∑
i

(ei − 1)fi = ind(g) ≥ ind(Gf ) = k.

• If ℘ is wildly ramified, we have the strict inequalities

v℘(DLf/K) >
∑
i

(ei − 1)fi > k.

In both cases we see that ℘k|DLf/K .

For a primitive group G, the followings are standard facts.

a. If G contains a transposition, then G = Sn. In particular ind(G) ≥ 2.

b. If G contains a 3-cycle or a double transposition and n ≥ 9, then
G = An or Sn. In particular ind(G) ≥ 3.

It follows from Proposition 1.5, a and b that:

Corollary 1.4. Let f ∈ OK [X] be a monic, irreducible polynomial of degree
n with Gf ⊂ Sn primitive. Then DLf/K has the property P2.
If moreover Gf ̸= An and n ≥ 9, then DLf/K has the property P3.

We now follow and generalize the argument of Bhargava [Bh1] by dividing
the set Nn(N,G) into three sets.
For an irreducible f ∈ Nn(N,G) with G primitive, let

Cf :=
∏

℘|DLf/K

℘

and denote by Df the discriminant DLf/K .
Let

Nn(N) :=
⋃

G⊂Sn

primitive

Nn(N,G).

As observed before, we can assume that all polynomials are irreducible.
For δ > 0, the sets N1(N, δ),N2(N, δ) and N3(N, δ) are defined as

N1(N, δ) := {f ∈ Nn(N) : |NK/QCf | ≤ Nd(1+δ), |NK/QDf | > Nd(2+2δ)},

N2(N, δ) := {f ∈ Nn(N) : |NK/QDf | < Nd(2+2δ)},

N3(N, δ) := {f ∈ Nn(N) : |NK/QCf | > Nd(1+δ)}.
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We use the following result, in which we identify the space of binary n-ic
forms over OK having leading coefficient 1 with the space of monic polyno-
mials of degree n over OK . The proof uses Fourier analysis over finite fields.
The index of a binary n-ic forms f over OK modulo ℘|p is defined to be

r∑
i=1

(ei − 1)fi,

where f mod ℘ =
∏r

i=1 P
ei
i , Pi irreducible of degree fi over ∈ Fp[OK/℘:Fp]

for all i.
The proofs of the next results which are not included here, can be found

in [Bh1].

Proposition 1.6. Let 0 < δ ≪n,d 1 be small enough and let C = ℘1 . . . ℘m,
℘i ̸= ℘j (i ̸= j) be a product of primes in OK of norm |NK/QC| < Nd(1+δ).
For each i = 1, . . . ,m pick an integer ki. Then the number of K-integral
binary n-ic forms in a box [−N,N ]d(n+1) with coefficients of height ≤ N ,
such that, modulo ℘, have index at least ki, is at most

≪K,ε
Nnd+ε∏m

i=1 |NK/Q℘i|ki

for every ε > 0.

Theorem 1.1, (3) follows by the three lemmas below together with Section
1.1.

Lemma 1.8. For δ > 0 sufficiently small,

|N1(N, δ)| ≪n,K Nd(n−1)

as N → +∞.

Proof. Given a number field L/K, let C be the product of the ramified primes
and let D be its discriminant. The polynomials f so that Lf

∼= L (so Cf = C
and Df = D) must have at least a triple root or at least two double roots
modulo ℘ for every ℘|Cf . This follows easily by Proposition 1.6. Now, the
density of the degree n polynomials over a finite field Fq having a triple root
is 1/q2, whereas the density of the ones having two double roots is 2/q3.
Therefore the density of the above polynomials is

≪
∏
℘|Cf

2

|NK/Q℘|2
≪ 2ω(D)

|NK/QD|
,

where ω(D) is the number of prime divisors of D.
By Proposition 1.6 the number of f ∈ Pn,N with |NK/QC| ≤ Nd(1+δ) and
Df = D is

≪K,ε
Nnd+ε

|NK/QD|
.
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Summing over all D of norm |NK/QD| > Nd(2+2δ) gives∑
D

OK,ε(N
nd+ε2ω(C)/|NK/QD|)

= OK,ε(N
nd+ε · 2d(1+δ) ·N−2d−2dδ)

≪n,K Nd(n−1).

Lemma 1.9. If either

( 1 )
[
2d+

√
4d2−2d
d

]
+ 1 ≤ n ≤ 5, or

( 2 ) dn3 + 8n2d− (7d+ 2)n+ 2 > 0, or

( 3 ) n ≥
[
d(1+c(log(nd))2)+

√
d2(1+c(log(nd))2)2−2d

d

]
+ 1,

then for δ > 0 sufficiently small

|N2(N, δ)| ≪n,K Nd(n−1),

as N → +∞.

Proof. Note that one can prove Theorem 1.3 by using a different bound, if
holds, for the discriminat insted of ≪ Nd(2n−2) and improve the result itself.
For the polynomials in our set we thus have

|N2(N, δ)| ≪n,K


Nd(2δ+3)− 2

n + ε if n ≤ 5;

Nd
(
1+

(2δ+2)(n+2)
4

− 1
2n−2

)
− 2

n
+ε if 6 ≤ n ≤ 94;

Nd(1+c(2δ+2)((log(nd))2)− 2
n + ε if n ≥ 95,

as N → +∞, for all ε > 0. If n satisfies either (1) or (2) or (3), one has the
desired upper bound On,K(Nd(n−1)).

Proposition 1.7. Let ℘ ∈ OK be a prime ideal over p and let q = p[Ok/℘:Fp].
If h(X1, . . . , Xn) ∈ OK [X1, . . . , Xn] is such that

h(c1, . . . , cn) ≡ 0 mod q2,

h(c1 + qd1, . . . , cn + qdn) ≡ 0 mod q2

for all (d1, . . . , dn) ∈ On
K , then

∂

∂xn
h(c1, . . . , cn) ≡ 0 mod q.
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Proof. Write

h(c1, . . . , cn−1, Xn) = h(c1, . . . , cn) +
∂

∂xn
h(c1, . . . , cn)(Xn − cn)

+ (Xn − cn)
2r(X)

where r(X) ∈ OK [X]. If we set Xn to be in OK , dn ≡ cn mod ℘, then the
first and last terms are multiples of ℘2, hence the middle term must be as
well. Therefore ∂

∂xn
h(c1, . . . , cn) must be zero modulo ℘.

Lemma 1.10. For δ > 0 sufficiently small,

|N3(N, δ)| ≪n,K Nd(n−1)

as N → +∞.

Proof. As in Lemma 1.8, for every ℘|Cf = C, f has either at least a triple root
or at least a pair of double roots modulo ℘. Let q so that f mod ℘ ∈ Fq[X].
Apply Proposition 1.7 to df mod ℘ for every ℘|C as a polynomial in the
coefficients αn−1, . . . , α0 of f . It follows that

∂

∂α0
df ≡ 0 mod C;

hence so is the Sylvester resultant

Resα0(df ,
∂

∂α0
df ) = ±ddf (α0).

Let D(αn−1, . . . , α1) := ddf (α0). Note that D is not identically zero, thanks
to the formulae for iterated discriminants of [LMc]. Moreover, by Lemma
3.1 of [Bh2], the number of αn−1, . . . , α1 in OK of height ≤ N so that
D(αn−1, . . . , α1) = 0 is O(Nd(n−2)); the number of f with such αn−1, . . . , α1

is thus O(Nd(n−1)).
Fix now αn−1, . . . , α1 so that D(αn−1, . . . , α1) ̸= 0. Then D(αn−1, . . . , α1) ≡

0 mod C for at most OK,ε(N
ε) ideal factors C of norm NK/QC > Nd. Once

C is determined by αn−1, . . . , α1 up to O(N ε) possibilities, the number of
solutions for α0 mod C to df ≡ 0 mod C is (degα0

(df ))
ω(C) ≪K,ε N

ε. This
is due to the fact that the number of solutions of α0 mod ℘ so that df ≡ 0
mod ℘ for all ℘|C is degα0

(df ).
Since NK/QC > Nd the possibilities for α0 of height ≤ N are also

OK,ε(N
ε). So the total number of f is OK,ε(N

d(n−1)+ε).
We are going to remove the factor N ε. To do this, consider

A :=
∏
℘|C

NK/Q℘>Ndδ/2

℘.
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• If NK/QA ≤ Nd, then C has a factor B of norm

Nd(1+ δ
2) ≤ NK/QB ≤ Nd(1+δ),

with A|B|C. Let B be such a factor of largest norm. Define

D′ :=
∏
℘|B

℘v℘(D).

Then NK/QD
′ > Nd(2+δ). The same argument of Lemma 1.8 with B

in place of C and D′ in place of D gives the estimate∑
NK/QD′>Nd(2+δ)

OK,ε(N
nd+ε ·N−2d−dδ) ≪n,K Nd(n−1).

• If NK/QA > Nd, we use the original argument at the beginning of
the proof with A in place of C. We have that A is a divisor of
D(αn−1, . . . , α1). Let αn−1, . . . , α1 so that D(αn−1, . . . , α1) ̸= 0.

Now, df (α0) is a polynomial in α0 of degree ≤ 2n − 2; its coefficients
are monomials in αn−1, . . . , α1 of degree ≤ 2n−2. Therefore D, whose
degree is ≤ 4n− 6, has bounded norm

NK/QD ≪ Nd(2n−2)(4n−6).

The reader can see some details in 3.1. The number of primes ℘ with
NK/Q℘ > Ndδ/2 dividing D is then at most

≪ log(Nd(2n−2)(4n−6))

Ndδ/2
≪n,d 1.

Once A is determined by αn−1, . . . , α1, the number of solutions for α0

mod A to df ≡ 0 mod A is On,K(1). Since NK/QA > Nd, the total
number of f is then On,K(Nd(n−1)).

We now put it all together. Note that S3, S4 and S5 are primitive groups,
hence the upper bound of 1.3.1 is not interesting for n ≤ 5. For the second
case of Lemma 1.9, if n ≤ 2(2d+ 1), the condition (2) becomes

32d4 + 112d3 + 10d2 + 57d+ 16 > 0,

which is true for all d ≥ 1. Similarly, the condition n ≤ 2(2d+1) is stronger
than (3) of Lemma 1.9, and we obtain Theorem 1.1.
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2 An average version of the Chebotarev Density
theorem

From now on, according to Theorem 1.1, we set ξ > 0 so that the number
of non Sn-polynomials in Pn,N (K) is ≪n,K Nd(n−ξ). Specifically, for all
n ≥ 3, d ≥ 1 we can take ξ = 1

2 − ε for an ε > 0 arbitrary small. If moreover
n is as in (3) of Theorem 1.1, put ξ = 1. 3 All the implied constants in the
following may depend on ε, too.

For every splitting type r, and for every prime ℘ of norm q℘, recall that we
denoted by Xn,r,℘ the set of polynomials in Fq℘ with square-free factorization
of type r. The following key fact is what we’ll use to estimate the error term
in the asymptotic of the expectation EN (πf,r(x)) of πf,r(x) and its powers.

Lemma 2.1. Let k ≥ 1, ℘1, . . . , ℘k primes and gi ∈ Xn,r,℘i for all i =
1, . . . , k. Then if q℘i < Ndξ/kn for all i = 1, . . . , k

PN (f ∈ P0
n,N : f ≡ gi mod ℘i ∀i = 1, . . . , k) =

1

(q℘1 . . . q℘k
)n

+On,K(N−dξ)

as N → +∞.

Proof. We prove the case k = 1. An application of the chinese remainder
theorem leads to the result for k > 1.
Let g =

∑n
i=1 giX

i and f =
∑n

i=1 fiX
i. Now (ω1, . . . , ωd) is an integral

bases of OK over Z; by applying linear transformations we can assume that
the reduction modulo ℘ of (ω1, . . . , ωf℘) is a basis for the Fp-vector space
OK/℘. Then write for every i = 0, . . . , n− 1

gi =

f℘∑
j=1

b
(i)
j ωj mod Fq℘ ,

fi =

f℘∑
j=1

a
(i)
j ωj mod Fq℘ ,

where a
(i)
j , b

(i)
j ∈ Z for all i and j.

One has f ≡ g mod ℘ if and only if fi = gi in Fq℘ for i = 0, . . . , n − 1.
This means a

(i)
j ≡ b

(i)
j mod p, that is a

(i)
j = b

(i)
j + pk

(i)
j for some k

(i)
j ∈ Z.

Since the height of f is less or equal than N , for j = 1, . . . , f℘ and for all
i = 0, . . . , n− 1 we have

−N − b
(i)
j

p
≤ k

(i)
j ≤

N − b
(i)
j

p
;
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so for each of the coefficients a
(i)
1 , . . . , a

(i)
f℘

we have[
N − b

(i)
j

p

]
−

[
−N − b

(i)
j

p

]
=

2N

p
+O(1)

choices. Whereas for each coefficient a
(i)
f℘+1, . . . , a

(i)
d there are 2N choices.

Therefore for each coefficient fi of f one has(2N
p

+O(1)
)f℘

· (2N)d−f℘ =
(2N)d

q℘
+O(Nd−1)

possibilities. It turns out that

|{f ∈ Pn,N : f ≡ g mod ℘}| = (2N)nd

qn℘
+O(Ndn−1),

so by Theorem 1.1

|{f ∈ P0
n,N : f ≡ g mod ℘}| =

∑
f∈Pn,N

f≡g mod ℘

1 +O
( ∑

f /∈P0
n,N

1
)

=
(2N)nd

qn℘
+O(Nd(n−ξ)).

As long as qn℘ < Ndξ, we get

1

|P0
n,N |

∑
f∈P0

n,N

f≡g mod ℘

1 =
1

(2N)nd
(1 +O(Nd(n−ξ)))

((2N)nd

qn℘
+O(Nd(n−ξ))

)

= (1 +O(N−dξ))
( 1

qn℘
+O(N−dξ)

)
=

1

qn℘
+O(N−dξ).

Proposition 2.1. One has, for all primes ℘ with q℘ < Ndξ/(n+1),

( 1 ) PN (1f,r(℘) = 1) = EN (1f,r(℘)) = δ(r) + Cr
q℘

+O
(

1
q2℘

+ qn℘N
−dξ
)
,

for some explicit constant Cr;

( 2 ) σ2
N (1f,r(℘)) = (δ(r)− δ(r)2) + Cr(1−2δ(r))

q℘
+O

(
1
q2℘

+ qn℘N
−dξ
)
.

It follows that, for x < Ndξ/(n+1),
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( 3 ) EN (πf,r(x)) = δ(r)πK(x) + Cr log log x+On,K(1),

as x,N → +∞.

Hence, the normal order of πf,r(x) is δ(r)πK(x), which means that
πf,r(x) ∼ δ(r)πK(x) for almost all f , as x → +∞ and N large enough.

Proof. Once fixed a prime ℘,

EN (1f,r(℘)) =
1

|P0
n,N |

∑
f∈P0

n,N

1f,r(℘)

=
1

|P0
n,N |

∑
f∈P0

n,N

f of splitting type r mod ℘

1

=
1

|P0
n,N |

∑
g∈Xn,r,℘

∑
f∈P0

n,N

f≡g mod ℘

1.

On the other hand,

|Xn,r,℘| =
n∏

k=1

(
Aq℘,k

rk

)
,

where Aq℘,k is the number of degree-k irreducible polynomials in Fq℘ [X],
which, by the Möbius inversion formula, equals

1

k

∑
d|k

µ(d)qk/d℘ =
qk℘
k

+O(qαk
℘ ),

where αk = 1 if k = 2, and αk < k − 1 if k > 2. One has, for all k ≥ 2(
Aq℘,k

rk

)
=

Aq℘,k(Aq℘,k − 1) . . . (Aq℘,k − rk + 1)

rk!

=
1

rk!

(qk℘
k

+O(qαk
℘ )
)
. . .
(qk℘
k

− rk + 1 +O(qαk
℘ )
)
.

It turns out that

(
Aq℘,k

rk

)
=


1
r1!

q℘(q℘ − 1) . . . (q℘ − r1 + 1) if k = 1
1

r2!2r2
q2r2℘ + C(r2)q

2r2−1
℘ +O(q2r2−2

℘ ) if k = 2
1

rk!k
rk q

krk
℘ +O(q

k(rk−1)+αk
℘ ) if k > 1.
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Hence

|Xn,r,℘| =
1

r1!
q℘(q℘−1) . . . (q℘−r1+1)

1

r2!2r2
(q2r2℘ +C(r2)q

2r2−1
℘ +O(q2r2−2

℘ ))

n∏
k=3

(
1

rk!krk
qkrk℘ +O(qk(rk−1)+αk

℘ ))

= δ(r)qn℘ + Crq
n−1
℘ +O(qn−2

℘ ),

where Cr = −δ(r)C(r2)
(r1+1)(r1+2)

2r1!
.

By Lemma 2.1, for qn+1
℘ < Ndξ,

EN (1f,r(℘)) = (δ(r)qn℘ + Crq
n−1
℘ +O(qn−2

℘ ))
( 1

qn℘
+O(N−dξ)

)
= δ(r) +

Cr

q℘
+O

( 1

q2℘
+ qn℘N

−dξ
)
,

which proves (1) and (2) follows by definition.
For (3), by linearity, we simply have to sum over all primes ℘ with

NK/Q℘ ≤ x and use the estimate∑
NK/Q℘≤x

1

NK/Q℘
= log log x+O(1)

to get

EN (πf,r(x)) = δ(r)πK(x) + Cr log log x+O(1 + πK(x)n+1N−dξ)

as long as
πK(x)n+1N−dξ = o(log log x).

If moreover x < Ndξ/(n+1), then the term πK(x)n+1N−dξ is negligible.

Remark. From (3) of Proposition 2.1, we have that for every m ≥ 2,

πf,r(x)− δ(r)πK(x) = O((log log x)m)

as x → +∞, for all but On,K

(
x

(n+1)(n−ξ)
ξ (log log x)1−m

)
Sn-polynomials f

of height ≪ x
(n+1)

dξ .

Confront this with the similar result pointed out in Remark 1.2.3, obtained
by sieving polynomials.

For f ∈ P0
n,N , let φ : Gf → C be a central function, i.e. constant on the

conjugacy classes. Define

πf,φ(x) =
∑

NK/Q℘≤x

℘∤Df

φ(Frobf,℘).
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Then, if we sum over the conjugacy classes, i.e. over the splitting types
r = (r1, . . . , rn), we get

πf,φ(x) =
∑
r

φ(gr)πf,r(x),

where gr is any element of the conjugacy class Cr for every r.

Corollary 2.1. If x < Ndξ/(n+1),

EN (πf,φ(x)) =
∑
r

δ(r)φ(gr)πK(x) +
∑
r

δ(r)φ(gr) log log x+On,K(||φ||),

where ||φ|| = supg∈Gf
|φ(g)|.

2.1 Higher moments

The following approach is based by the one used in [GS] to compute the
moments ∑

n≤x

(ω(n)− log log x)k

of the prime divisor function, uniformely in a wide range of k. Our aim is to
prove Theorem 2 by using the method of moments. This can also be done,
as in the classical proof of the Erdős-Kac theorem, by applying the Central
Limit Theorem (see Appendix A). However here we get better estimates
allowing us to prove Theorem 2 in a significantly faster way.

Fix a splitting type r and a prime ℘. Consider the independent discrete
random variables X℘ defined by

P(X℘ = 1) =
|Xn,r,℘|

qn℘
.

So

P(X℘ = 1) =
|Xn,r,℘|

qn℘
= δ(r) +

Cr

p
+O

( 1

q2℘

)
(13)

For all primes ℘ we define the function

Y℘(f) =

1− |Xn,r,℘|
qn℘

if 1f,r(℘) = 1

− |Xn,r,℘|
qn℘

otherwise .

Now, we consider a generalization Ya of the function Y℘ for any integral
non-zero ideal a of K, whose k-moments are "small" unless a satisfies the
following property (∗): ℘α||a ⇒ α ≥ 2 (see the next lemma).

Let a =
∏s

i=1 ℘
αi
i in K, where the ℘i are distinct primes of OK and

αi ≥ 1. Let A :=
∏s

i=1 ℘i be the square-free part of a. Set

Ya(f) =
s∏

i=1

Y℘i(f)
αi .
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Lemma 2.2. Uniformly for even natural numbers k with k ≪r
dξ

n+1/2
logN
log z ,

one has

1

|P0
n,N |

∑
f∈P0

n,N

 ∑
NK/Q℘≤z

Y℘(f)

k

= Ck,rπK(z)k/2
(
1 +O

(
k3

(1− δ(r))k/2
log log z

πK(z)

))
+O(πK(z)k(n+1)N−dξ),

as z,N → +∞. While uniformly for odd natural numbers k with k ≪r
dξ

n+1/2
logN
log z , one has

1

|P0
n,N |

∑
f∈P0

n,N

 ∑
NK/Q℘≤z

Y℘(f)

k

≪ Ck,rπK(z)k/2k
log log z

πK(z)1/2
+πK(z)k(n+1)N−dξ,

as z,N → +∞.
Here

Ck =


k!

2k/2(k/2)!
for k even

k!

2
k−1
2 ( k−1

2
)!

for k odd,

and

Ck,r =

{
Ck(δ(r)− δ(r)2)k/2 for k even
Ckδ(r)

k−1
2 for k odd.

Observe that, for any real number z < x, we can write

πf,r(x)− δ(r)πK(x) =
∑
p≤z

Y℘(f) +
∑

z<NK/Q℘≤x

1f,r(℘)

+
(∑

p≤z

|Xn,r,℘|
qn℘

− δ(r)πK(x)
)
.

Pick z = x− k. Since

πK(z) ∼ x− k

log x

(
1 +

log(1− k
x)

log x

)
=

x

log x
+O

(
k

log x

)
,

by the above one has

πf,r(x)− δ(r)πK(x) =
∑

NK/Q℘≤z

Y℘(f) +Or

(
k

log x

)
.
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Proof. We may write

1

|P0
n,N |

∑
f∈P0

n,N

 ∑
NK/Q℘≤z

Y℘(f)

k

=
∑

NK/Q℘1,...,NK/Q℘k≤z

1

|P0
n,N |

∑
f∈P0

n,N

Y℘1...℘k
(f).

Let us then consider more generally 1
|P0

n,N |
∑

f∈P0
n,N

Ya(f). By definition,

for any prime ℘, Y℘(f) = Y℘(g) if f ≡ g mod ℘; therefore
1

|P0
n,N |

∑
f∈P0

n,N

Ya(f) =
1

|P0
n,N |

∑
gi mod ℘i

i=1,...,s

∑
f∈P0

n,N

f≡gi mod ℘i ∀i

Y℘1(g1)
α1 . . . Y℘s(gs)

αs ,

where the first sum in the right-hand side is over gi ∈ Fq℘i
[X] monic. As

long as (q℘1 . . . q℘s)
n < Ndξ the sum is, by Lemma 2.1,∑

g1,...,gs

Y℘1(g1)
α1 . . . Y℘s(gs)

αs
1

|P0
n,N |

∑
f∈P0

n,N

f≡gi mod ℘i ∀i

1

=
∑

g1,...,gs

Y℘1(g1)
α1 . . . Y℘s(gs)

αs

(
1

(q℘1 . . . q℘s)
n
+O(N−dξ)

)

=
1

(NK/QA)n

∑
g1,...,gs

Y℘1(g1)
α1 . . . Y℘s(gs)

αs +O

(
N−dξ

∑
g1,...,gs

1

)

=
1

(NK/QA)n

∑
g1,...,gs

Y℘1(g1)
α1 . . . Y℘s(gs)

αs +O((NK/QA)
nN−dξ),

since |Y℘i(gi)
αi | ≪ 1. Denoting the main term by Y (a), we have

Y (a) =
1

(NK/QA)n

∑
g1

Y℘1(g1)
α1 . . . Y℘s(gs)

αs

=
1

(NK/QA)n

s∏
i=1

 ∑
gi∈Xn,r,℘i

(
1− |Xn,r,℘i |

qn℘i

)αi

+
∑

gi /∈Xn,r,℘i

(
−|Xn,r,℘i |

qn℘i

)αi


=

1

(NK/QA)n

s∏
i=1

(
|Xn,r,℘i |

(
1− |Xn,r,℘i |

qn℘i

)αi

+ (qn℘i
− |Xn,r,℘i |)

(
−|Xn,r,℘i |

qn℘i

)αi
)

=
∏
℘α||a

(
|Xn,r,℘|

qn℘

(
1− |Xn,r,℘|

qn℘

)α

+

(
1− |Xn,r,℘|

qn℘

)(
−|Xn,r,℘|

qn℘

)α)
,

by using the inductive formula
ℓ∏

i=1

(ai + bi) =
∑

1≤i1<···<ik≤ℓ

j1<···<jh≤∈{1,...,ℓ}\{i1,...,ik}
k+h=ℓ

ai1 . . . aikbj1 . . . bjh .
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Thus
1

|P0
n,N |

∑
f∈P0

n,N

Ya(f) = Y (a) +O((NK/QA)
nN−dξ);

Observe now that Y (a) = 0 unless αi ≥ 2 for all i = 1, . . . , s. It turns out
that

1

|P0
n,N |

∑
f∈P0

n,N

 ∑
NK/Q℘≤z

Y℘(f)

k

=
∑

NK/Q℘1,...,NK/Q℘k≤z

℘1...℘k (∗)

Y (℘1 . . . ℘k)

+O

 ∑
NK/Q℘1,...,NK/Q℘k≤z

(q℘1 . . . q℘k
)nN−dξ


=

∑
NK/Q℘1,...,NK/Q℘k≤z

℘1...℘k (∗)

Y (℘1 . . . ℘k) +O(πK(z)k(n+1)N−dξ).

Let P1, . . . ,Ps be the distinct primes in ℘1 . . . ℘k with NK/QP1 < · · · <
NK/QPs. Since ℘1 . . . ℘k satisfies (∗), we have s ≤ k/2. The main term
above is∑

s≤k/2

∑
NK/QP1<···<NK/QPs≤z

∑
α1,...,αs≥2

α1+···+αs=k

(
k

α1, . . . , αs

)
Y (Pα1

1 . . .Pαs
1 ) (14)

At this point, we divide into two cases, since if k is even there is a term
s = k/2 with all αi = 2. This main term contributes

k!

2k/2(k/2)!

∑
NK/QP1,...,NK/QPk/2≤z

Pj distinct

Y (P2
1 . . .P2

k/2)

=
k!

2k/2(k/2)!

∑
NK/QP1,...,NK/QPk/2≤z

Pj distinct

k/2∏
i=1

|Xn,r,Pi |
qnPi

(
1−

|Xn,r,Pi |
qnPi

)
.

Now, clearly

∑
NK/QP1,...,NK/QPk/2≤z

Pjdistinct

k/2∏
i=1

|Xn,r,Pi |
qnPi

(
1−

|Xn,r,Pi |
qnPi

)

≤

 ∑
NK/QP≤z

|Xn,r,P |
qnP

(
1−

|Xn,r,P |
qnP

)k/2

.
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On the other hand, by induction

∑
NK/QP1,...,NK/QPk/2≤z

Pj distinct

k/2∏
i=1

|Xn,r,Pi |
qnPi

(
1−

|Xn,r,Pi |
qnPi

)

=
∑

NK/QP1,...,NK/QPk/2−1≤z

Pj distinct

k/2−1∏
i=1

|Xn,r,Pi |
qnPi

(
1−

|Xn,r,Pi |
qnPi

) ∑
NK/QPk/2≤z

Pk/2 ̸=Pj ∀j

|Xn,r,Pk/2
|

qnPk/2

(
1−

|Xn,r,Pk/2
|

qnPk/2

)

≥
∑

NK/QP1,...,NK/QPk/2−1≤z

Pj distinct

k/2−1∏
i=1

|Xn,r,Pi |
qnPi

(
1−

|Xn,r,Pi |
qnPi

) ∑
NK/QΠk/2≤NK/QP≤z

|Xn,r,P |
qnP

(
1−

|Xn,r,P |
qnP

)

≥ · · · ≥
∑

NK/QΠ2≤NK/QP≤z

|Xn,r,P |
qnP

(
1−

|Xn,r,P |
qnP

)
· · ·

∑
NK/QΠk/2≤NK/QP≤z

|Xn,r,P |
qnP

(
1−

|Xn,r,P |
qnP

)

≥

 ∑
NK/QΠk/2≤NK/QP≤z

|Xn,r,P |
qnP

(
1−

|Xn,r,P |
qnP

)k/2

,

where Πn is the n-th prime of smallest norm. By (13)∑
NK/QP≤z

|Xn,r,P |
qnP

(
1−

|Xn,r,P |
qnP

)
= (δ(r)− δ(r)2)πK(z) +O(log log z),

∑
NK/QΠk/2≤NK/QP≤z

|Xn,r,P |
qnP

(
1−

|Xn,r,P |
qnP

)
= (δ(r)− δ(r)2)πK(z) +O(log log z + k).

The main term in (14) is then

k!

2k/2(k/2)!
((δ(r)− δ(r)2)πK(z) +O(log log z + k))k/2

=
k!

2k/2(k/2)!
(δ(r)− δ(r)2)k/2(πK(z)k/2 +O(k2πK(z)k/2−1 log log z)).

We have now to estimate the error term in (14), for s = k/2 − 1. Since
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Y (Pα1
1 . . .Pαs

s ) ≤ |Xn,r,P1
|...|Xn,r,Ps |

(qP1
...qPs )

n one has

∑
NK/QP1<···<NK/QPs≤z

∑
α1,...,αs≥2

α1+···+αs=k

(
k

α1, . . . , αs

)
Y (Pα1

1 . . .Pαs
s )

≤ k!

(k/2− 1)!

( ∑
NK/QP≤z

|Xn,r,P |
qPn

)k/2−1 ∑
α1,...,αk/2−1≥2

α1+···+αk/2−1=k

1

α1! . . . αk/2−1!

≤ k!

2k/2−1(k/2− 1)!

(
k/2

k/2− 2

)
(δ(r)πK(z) +O(log log z))k/2−1

≪ k!

2k/2(k/2)!
k3
(
δ(r)k/2−1πK(z)k/2−1 + kπK(z)k/2−2 log log z

)
≪ k!

2k/2(k/2)!
k3δ(r)k/2−1πK(z)k/2−1.

We used the fact that the number of sequences of integers (α1, . . . , αk/2−1),
αi ≥ 2 such that

∑
αi = k is the number of sequences (α′

1, . . . , α
′
k/2−1),

α′
i ≥ 1 such that

∑
αi = k/2+ 1, that is the number of strong compositions

of k/2 + 1 into k/2− 1 parts, which is
( k/2
k/2−2

)
. Thus, for k even,

1

|P0
n,N |

∑
f∈P0

n,N

 ∑
NK/Q℘≤z

Y℘(f)

k

=
k!

2k/2(k/2)!
(δ(r)− δ(r)2)k/2(πK(z)k/2

+O

(
k2πK(z)k/2−1 log log z +

k3

(1− δ(r))k/2
πK(z)k/2−1)

)
+O(πK(z)k(n+1)N−dξ)

=
k!

2k/2(k/2)!
(δ(r)− δ(r)2)k/2πK(z)k/2

(
1 +O

(
k3

(1− δ(r))k/2
log log z

πK(z)

))
+O(πK(z)k(n+1)N−dξ).

Finally, for k odd, we have the estimate for the term with s = k/2− 1/2 as
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for the previous case, obtaining

1

|P0
n,N |

∑
f∈P0

n,N

 ∑
NK/Q℘≤z

Y℘(f)

k

≪ k!

2
k−1
2 (k−1

2 )!
k
(
δ(r)

k−1
2 πK(z)

k−1
2 +O(kπK(z)

k−3
2 log log z)

)
+ πK(z)k(n+1)N−dξ

≪ Ck,rπK(z)k/2k
log log z

πK(z)1/2
+ πK(z)k(n+1)N−dξ.

Proposition 2.2. Uniformly for even natural numbers k with k ≪r
dξ

n+1/2
logN
log x ,

one has

1

|P0
n,N |

∑
f∈P0

n,N

(πf,r(x)− δ(r)πK(x))k

= Ck,rπK(x)k/2

(
1 +O

(
k3/2

(1− δ(r))k/2
log log x

πK(x)1/2

))
+O(πK(x)k(n+1)N−dξ),

as x,N → +∞. While uniformly for odd natural numbers k with k ≪r
dξ

n+1/2
logN
log x ,

1

|P0
n,N |

∑
f∈P0

n,N

(πf,r(x)− δ(r)πK(x))k

≪ Ck,rπK(x)k/2k
log log x

πK(x)1/2
+ πK(x)k(n+1)N−dξ,

as x,N → +∞.

Proof. For z = x− k we obtained

πf,r(x)− δ(r)πK(x) =
∑

NK/Q℘≤z

Y℘(f) +Or

(
k

log x

)
.

In particular,

(πf,r(x)− δ(r)πK(x))k =

 ∑
NK/Q℘≤z

Y℘(f)

k

+O

k−1∑
j=0

(
k

log x

)k−j (k
j

) ∣∣∣∣∣∣
∑

NK/Q℘≤z

Y℘(f)

∣∣∣∣∣∣
j (15)
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The dominant term in the error is obtained for j = k − 1. If k is even, we
apply Lemma 2.2 to (15) and we get

1

|P0
n,N |

∑
f∈P0

n,N

(πf,r(x)− δ(r)πK(x))k

= Ck,rπK(x−k)k/2
(
1 +O

(
k3

(1− δ(r))k/2
log log(x− k)

πK(x− k)
+ k3

Ck−1,r

Ck,r

log log(x− k)

πK(x− k) log(x− k)

))
+O(πK(x− k)k(n+1)N−dξ)

= Ck,rπK(x)k/2

(
1 +O

(
k3/2

(1− δ(r))k/2
log log x

πK(x)1/2

))
+O(πK(x)k(n+1)N−dξ),

since

πK(x− k)k/2 = πK(x)k/2 +O

(
πK(x)k/2−1 k2

log x

)
and

Ck−1,r

Ck,r
≪r 1.

If k is odd, we can handle it using the Cauchy-Schwartz inequality:

1

|P0
n,N |

∑
f∈P0

n,N

∣∣∣ ∑
NK/Q℘≤z

Y℘(f)
∣∣∣k−1

≤
( 1

|P0
n,N |

∑
f∈P0

n,N

∣∣∣ ∑
NK/Q℘≤z

Y℘(f)
∣∣∣k−2)1/2( 1

|P0
n,N |

∑
f∈P0

n,N

∣∣∣ ∑
NK/Q℘≤z

Y℘(f)
∣∣∣k)1/2.

Lemma 2.2 leads to
1

|P0
n,N |

∑
f∈P0

n,N

∣∣∣ ∑
NK/Q℘≤z

Y℘(f)
∣∣∣k−1

≪ (Ck−2,rCk,r)
1/2kπK(z)

k
2
−1 log log z.

Since
(Ck−2,rCk,r)

1/2

Ck,r

(
k

k − 1

)
≍ k1/2,

we obtain from (15)

1

|P0
n,N |

∑
f∈P0

n,N

(πf,r(x)−δ(r)πK(x))k ≪ Ck,rπK(x)
k
2 log log x

(
k

πK(x)1/2
+

k3/2

πK(x) log x

)

+ πK(x)k(n+1)N−dξ

≪ Ck,rπK(x)k/2k
log log x

πK(x)1/2
+ πK(x)k(n+1)N−dξ.
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In particular, if x = o

(
N

dξ
k(n+1/2)

)
, then the last summand in the error

term is negligible, in both cases.

2.2 Proof of the main theorem

Once proved that the normal order of πf,r(x) is δ(r)πK(x), we want to study
the distribution of

πf,r(x)− δ(r)πK(x)

(δ(r)− δ(r)2)1/2πK(x)1/2

for x = N1/ log logN . As we already stated, this quantity is distributed like a
normal distribution with mean 0 and variance 1. Let

Φ(b) =
1√
2π

∫ b

−∞
e−t2/2dt.

Firstly, note that the claim is equivalent to say that

PN

(
πf,r(x)− δ(r)πK(x)

(δ(r)− δ(r)2)1/2πK(x)1/2
≤ b

)
−→ Φ(b)

as N → +∞. We use the method of moments here and the asymptotics of
2.1.

By the method of moments, the theorem will follow if we prove that for
k ≥ 1,

EN

(
(πf,r(x)− δ(r)πK(x))k

((δ(r)− δ(r)2)1/2πK(x)1/2)k

)
converges to µk as N → +∞. See Appendix A for more details.

It’s well known that

µk =
1√
2π

∫ +∞

−∞
xke−x2/2dx =

{
k!

2k/2(k/2)!
if k is even

0 if k is odd.

From Proposition 2.2, if we fix k ≥ 1, we see exactly that

1

|P0
n,N |

∑
f∈P0

n,N

(
(πf,r(x)− δ(r)πK(x))k

((δ(r)− δ(r)2)1/2πK(x)1/2)k

)
−→

x→+∞
Ck = µk

if k is even, and

1

|P0
n,N |

∑
f∈P0

n,N

(
(πf,r(x)− δ(r)πK(x))k

((δ(r)− δ(r)2)1/2πK(x)1/2)k

)
≪k,r

log log x

πK(x)1/2
−→

x→+∞
0 = µk

if k is odd.
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2.3 Estimates for subfamilies

Consider a subfamily A = Aβ,M (N) of P0
n,N , depending on parameters β,

M satisfying the following conditions, for a positive real number x, and for
a fixed splitting type r:

1. 1 < β ≤ n, M > 0.

2. For each prime ℘, let

A ℘ := {f mod ℘ : f ∈ A } ⊆ Fq℘ [X].

For s ≥ 1, if gi ∈ A ℘i for every 1 ≤ i ≤ s and NK/Q℘i ≤ x, then
uniformely on ℘1, . . . , ℘s with NK/Q℘1, . . . , NK/Q℘s ≤ x,

∑
f∈A

f≡gi mod ℘i ∀i

1 =
MNdβ

(q℘1 . . . q℘s)
β
+ En,K(N)

where En,K(N) ≪ Nd(β−ξ), as x,N → +∞ and x sufficiently small
with respect to N .

3. Denote by XA
n,r,℘ the intersection Xn,r,℘ ∩ A ℘. Assume that

|XA
n,r,℘| =

∑
f∈A

f of splitting type r mod ℘

1

= δ(r)qβ℘ +O(E℘),

In many examples we can apply the RH over finite fields, hence we
get that the above sum is of size δ(r)|A ℘| with error term of size

O(|A ℘|/√q℘). In particular, in those cases, E℘ ≪ q
β− 1

2
℘ .

We proceed in a similar way as in 2.1. Define

Y℘(f) =


1− |XA

n,r,℘|
qβ℘

if 1f,r(℘) = 1

− |XA
n,r,℘|
qβ℘

otherwise .

and

µ(x) =
∑

NK/Q℘≤x

|XA
n,r,℘|
qβ℘

= δ(r)πK(x) +O

( √
x

log x

)
.

Observe that for every f ∈ A one has

πf,r(x)− µ(x) =
∑

NK/Q℘≤x

Y℘(f),
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and so for any positive integer k,

∑
f∈A

(πf,r(x)− µ(x))k =
∑

NK/Q℘1,...,NK/Q℘k≤x

∑
f∈A

Y L
℘1...℘k

(f)

 ,

where as before, if a is a non zero integral ideal of K and has prime factor-
ization a =

∏s
i=1 ℘

αi
i , then put Ya(f) =

∏s
i=1 Y℘i(f)

αi .

Proposition 2.3. Let A ⊆ P0
n,N with conditions 1, 2 and 3.

( 1 ) Uniformly for even k, with k ≪r,n
log(MNdβ)

log x one has

∑
f∈A

(πf,r(x)− µ(x))k

= Ck,rMNdβπK(x)k/2
(
1 +O

(
k3

(1− δ(r))k/2

√
x

πK(x) log x

))
+O

(
πK(x)k(n+1)En,K(N)

)
,

as x,N → +∞.

( 2 ) Uniformly for odd k, with k ≪r,n min
(
(log x)1/2, log(MNdβ)

log x

)
, one has

∑
f∈A

(πf,r(x)− µ(x))k

≪ Ck,rMNdβπK(x)k/2k

√
x

πK(x)1/2 log x
+ πK(x)k(n+1)En,K(N),

as x,N → +∞.

( 3 ) Fix k even. If x = o

(
(MNdξ)

1

k(n+1
2)

)
, then

∑
f∈A

(πf,r(x)− µ(x))k

= Ck,rMNdβπK(x)k/2
(
1 +Ok

( √
x

πK(x) log x

))
+O

(
πK(x)k(n+1)En,K(N)

)
,

as x,N → +∞.
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Proof. As before, we compute more generally
∑

f∈A Ya(f) with q℘i ≤ x:∑
f∈A

Ya(f) =
∑

gi∈A ℘i ∀i

∑
f∈A

f≡gi mod ℘i ∀i

Y℘1(g1)
α1 . . . Y℘s(gs)

αs

=
∑

gi∈A ℘i ∀i
Y℘1(g1)

α1 . . . Y℘s(gs)
αs

(
MNdβ

(NK/QA)β
+ En,K(N)

)

=
MNdβ

(NK/QA)β

∑
gi∈A ℘i ∀i

Y℘1(g1)
α1 . . . Y℘s(gs)

αs

+Or((q℘1 . . . q℘s)
βEn,K(N))

= MNdβY (a) +Or((NK/QA)
βEn,K(N)),

where
Y (a) =

1

(NK/QA)β

∑
gi∈A ℘i ∀i

Y℘1(g1)
α1 . . . Y℘s(gs)

αs .

One has

Y (a) =
1

(NK/QA)β

∑
g1∈A ℘1

Y℘1(g1)
α1 · · ·

∑
gs∈A ℘s

Y℘s(gs)
αs

=
1

(NK/QA)β

s∏
i=1

(
|XA

n,r,℘i
|

qβ℘i

(
1−

|XA
n,r,℘i

|
qβ℘i

)αi

+

(
1−

|XA
n,r,℘i

|
qβ℘i

)(
−
|XA

n,r,℘i
|

qβ℘i

)αi
)

=
∏
℘α||a

(
|XA

n,r,℘|
qβ℘

(
1−

|XA
n,r,℘|
qβ℘

)α

+

(
1−

|XA
n,r,℘|
qβ℘

)(
−
|XA

n,r,℘|
qβ℘

)α)
.

As before, Y (a) is 0 unless a satisfies (∗). Therefore∑
NK/Q℘1,...,NK/Q℘k≤x

∑
f∈A

Y℘1...℘k
(f) = MNdβ

∑
NK/Q℘1,...,NK/Q℘k≤x

℘1...℘k (∗)

Y (℘1 . . . ℘k)

+O(πK(x)k(n+1)En,K(N)).

As in Lemma 2.2, if k is even, the main term of the above is

k!

2k/2(k/2)!

∑
NK/QP1,...,NK/QPk/2≤x

Pj distinct

Y (P2
1 . . .P2

k/2)

= Ck

∑
NK/QP1,...,NK/QPk/2≤x

Pj distinct

k/2∏
i=1

|XA
n,r,Pi

|

qβPi

(
1−

|XA
n,r,Pi

|

qβPi

)
,
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with the analogous upper and lower bounds. Observe that∑
NK/Q℘≤x

|XA
n,r,℘|
qβ℘

(
1−

|XA
n,r,℘|
qβ℘

)
= (δ(r)− δ(r)2)πK(x) +O

( √
x

log x

)
,

∑
NK/QΠk/2≤NK/Q℘≤x

|XA
n,r,℘|
qβ℘

(
1−

|XA
n,r,℘|
qβ℘

)
= (δ(r)− δ(r)2)πK(x) +O

( √
x

log x
+ k

)
.

So the main term contributes

CkMNdβ(δ(r)− δ(r)2)k/2(πK(x)k/2 +O

(
k2πK(x)k/2−1

√
x

log x

)
.

We now estimate the error term for s = k/2 − 1; since Y (Pα1
1 . . .Pαs

s ) ≤
|XA

n,r,P1
|...|XA

n,r,Ps
|

(qP1
...qPs )

β one has

∑
NK/QP1<···<NK/QPs≤x

∑
α1,...,αs≥2

α1+···+αs=k

(
k

α1, . . . , αs

)
Y (Pα1

1 . . .Pαs
s )

≤ k!

(k/2− 1)!

 ∑
NK/QP≤x

|XA
n,r,P |

qβP

k/2−1 ∑
α1,...,αk/2−1≥2

α1+···+αk/2−1=k

1

α1! . . . αk/2−1!

≪ Ckk
3δ(r)k/2−1πK(x)k/2−1.

If k is odd, the estimate for s = k/2− 1/2 gives∑
NK/QP1<···<NK/QPs≤x

∑
α1,...,αs≥2

α1+···+αs=k

(
k

α1, . . . , αs

)
Y (Pα1

1 . . .Pαs
s )

≪ Ck,rπK(x)k/2k

√
x

πK(x)1/2 log x
.

By combining all, we have, for even k,∑
f∈A

(πf,r(x)− µ(x))k = Ck,rMNdβπK(x)k/2

+O

(
Ck,rMNdβk2πK(x)k/2−1

√
x

log x
+ CkMNdβk3πK(x)k/2−1

)
+O

(
πK(x)k(n+1)En,K(N)

)
= Ck,rMNdβπK(x)k/2

(
1 +O

(
k3

(1− δ(r))k/2

√
x

πK(x) log x

))
+O(πK(x)k(n+1)En,K(N)).
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If x = o(N ε), the last summand in the error term is negligible.

Note. If one applies the same exact method of Section 2.1, that is, applying
the previous result to z < x and then to z = x − k, one can achieve the
following better estimate for the even k-moments related to the family A .

Corollary 2.2. Let A ⊆ P0
n,N with conditions 1, 2 and 3. Then uniformly

for even k, with k ≪r,n min
(
(log x)1/2, log(MNdβ)

log x

)
, one has

∑
f∈A

(πf,r(x)− µ(x))k

= Ck,rMNdβπK(x)k/2

(
1 +O

(
k3/2

(1− δ(r))k/2

√
x

πK(x)1/2 log x

))
+O(πK(x)k(n+1)En,K(N)),

as x,N → +∞.
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3 Applications

3.1 Discriminant and average of ramified primes

Let f be an Sn-polynomial and let df ∈ OK be its discriminant. We are
going to discuss the relation between the number of primes ℘ ∈ OK dividing
df and the discriminant of its splitting field field Kf/K (i.e. the ramified
primes in the extension Kf/K).

For a polynomial f ∈ Pn,N , the bound

NK/Qdf ≪ Nd(2n−2)

holds, since df is given by the (2n− 1)-dimensional determinant

df = (−1)n(n−1)/2 det



1 αn−1 αn−2 · · · α0 0 · · ·
0 αn αn−1 · · · α1 α1 · · ·
...

...
0 · · · 0 αn · · · α1 α0

n (n− 1)αn−1 (n− 2)αn−2 · · · 0 0 · · ·
...

...
0 · · · · · · 0 nαn · · · α1


with αn = 1 in our case. However, it turns out (see [GZ], Corollary 2.2) that

NK/Qdf ≍ Nd(2n−2)

for almost all f . Indeed, for all ε > 0 there exists δ = δ(n) s.t. for N large
enough

PN (|NK/Qdf | > δNd(2n−2)) > 1− ε.

By the primitive element theorem, we know there is an integral element
θ ∈ OKf

so that Kf = K(θ). Let fθ ∈ K[X] be the minimal polynomial of
θ. Then it holds the following relation between the discriminant of fθ and
the discriminant DKf/K of the number field extension Kf/K:

dfθOK = α2
fθ

·DKf/K ,

where αfθ ∈ OK (see [La], Chapter III).
Now, let α be a root of f ∈ P0

n,N and consider the extension generated by
α over K.

Kf

K(α)

K

Q

(n−1)!

n

d
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By the transitivity of the discriminant in towers of extensions, one has

DKf/K = D
(n−1)!
K(α)/KNK(α)/K(DKf/K(α)).

As above, dfOK = α2
f ·DK(α)/K with αf ∈ OK . It turns out that

NK/Qdf = a2f (NK/QDKf/K)1/(n−1)!(NK/Q(NK(α)/KDKf/K(α)))
1/(n−1)!

(16)
where af = NK/Qαf ∈ Z

As in Proposition 6.4 of [ABZ], we see that the probability that a monic,
irreducible, degree n polynomial with height ≤ N has discriminant coprime
with ℘ ∈ OK is 1− 1

q℘
, hence

|{f ∈ P irr
n,N : ℘|dfOK}|
|P irr

n,N |
−→

N→+∞

1

q℘
.

Corollary 3.1. The average of the number of ramified primes in Kf/K is

EN (℘ ∈ OK : ℘|DKf/K) ≪n,K log logN,

as N → +∞.

Proof. Since almost all polynomials in Pn,N are irreducible, with error term
O(N−d), and since |P0

n,N | = (2N)nd +O(Nd(n−ξ)), we also have that

|{f ∈ P0
n,N : ℘|dfOK}|
|P0

n,N |
=

1

q℘
+ o(1)

as N → +∞. In particular, for the primes of norm q℘ < Ndξ/n, we can also
write down explicitely the error term by applying Lemma 2.1:

PN (f ∈ P0
n,N : ℘|dfOK) =

1

|P0
n,N |

∑
g∈Fq℘ [X]

monic, deg g=n
g double root

∑
f∈P0

n,N

f≡g mod ℘

1

= qn−1
℘

( 1

qn℘
+O(N−dξ)

)
=

1

q℘
+O(qn−1

℘ N−dξ)

as N → +∞, as long as q℘ < Ndξ/n. It follows that

EN (℘ ∈ OK : ℘|dfOK) =
∑

q℘<Ndξ/n

1

|P0
n,N |

∑
f∈P0

n,N

℘|dfOK

1 +O
( 1

|P0
n,N |

∑
f∈P0

n,N

∑
q℘≥Ndξ/n

℘|dfOK

1
)

= log logN +On,K(1),
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as N → +∞.
Recall that in OK , an ideal a is divisible by a prime factor of pOK if and

only if NK/Qa is divisible by p. From the transitive relation (16), one has
the claim.

Let θ = θ1 be a root of f , and let K1 = K(θ).
For a prime ℘ ∈ OK1 , the ring OK1 [θ] is called ℘-maximal if ℘ is not
a divisor of αfθ . In particular OK1 [θ] is not ℘-maximal if and only if
℘|dfOK(DK1/K)−1.
There is an equivalent condition for OK1 [θ] to be ℘-maximal.

Theorem 3.1 ([ABZ], Corollary 3.2). The ring OK1 [θ] is not ℘-maximal if
and only if there exists u ∈ OK1 [X], with u mod ℘ irreducible, such that
f ∈ ℘2 + u℘+ u2OK1 in OK1 [X].

In particular, the ℘-maximality depends just on f mod ℘2. The proba-
bility that such a polynomial modulo ℘2 is in the above ideal (for a fixed u)
is given by the following.

Theorem 3.2 ([ABZ], Proposition 3.4). Let g ∈ Fq℘ [X] monic, of degree
m; then

1

q2n℘

∑
f∈(OK1

/℘2)[X]

monic, deg f=n

f∈g℘+g2OK1

1 =

{
0 if 2m > n
1

q3m℘
if 2m ≤ n.

Corollary 3.2. In the above notations, the average of the number of primes
dividing αf is

EN (℘ ∈ OK : ℘|αf ) ≪n,K 1,

as N → +∞.

Proof. From Theorems 3.1 and 3.2, we deduce that if g ∈ Fq℘ [X] is monic,
of degree m ≤ n/2, then

1

|P0
n,N |

∑
f∈P0

n,N

f∈℘2+g℘+g2OK1

1 =
1

|P0
n,N |

∑
h mod ℘2

monic, deg h=n

h∈g℘+g2OK1

∑
f∈P0

n,N

f≡h mod ℘

1

=
∑

h mod ℘2

monic, deg h=n

h∈g℘+g2OK1

( 1

q2n℘
+O(N−dξ)

)

=
1

q3m℘
+O(q2n−3m

℘ N−dξ),

for all primes of norm q℘ < Ndξ/2n.
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The next step is to compute the probability PN (f ∈ P0
n,N : ℘|dfOK(DK1/K)−1),

which is, by the above

1

|P0
n,N |

∑
m≤n/2

∑
g∈Fq℘ [X]

monic, irreducible

deg g=m

∑
f∈P0

n,N

f∈℘2+g℘+g2OK1

1

=
∑

m≤n/2

∑
g∈Fq℘ [X]

monic, irreducible

deg g=m

( 1

q3m℘
+O(q2n−3m

℘ N−dξ)
)

=
∑

m≤n/2

(qm℘
m

+O
(qm−1

℘

m

))( 1

q3m℘
+O(q2n−3m

℘ N−dξ)
)

=
∑

m≤n/2

( 1

mq2m℘
+O

( q2n℘
mq2m℘

N−dξ +
1

mq2m+1
℘

))
=

1

q2℘
+O

(
q2n−2
℘ N−dξ +

1

q3℘

)
,

as N → +∞, for q℘ < Ndξ/2n. Then, the number of primes (on average)
diving dfOK(DK1/K)−1 is

EN (|{℘ : ℘|dfOK(DK1/K)−1}|)

=
∑

q℘<Ndξ/2n

PN (f : ℘|dfOK(DK1/K)−1) +
1

|P0
n,N |

∑
f∈P0

n,N

∑
q℘≥Ndξ/2n

℘|dfOK(DK1/K
)−1

1

=
∑

q℘<Ndξ/2n

1

q2℘
+O(1 + πK(Ndξ/2n)2n−1Ndξ)

≪n,K 1,

since ∑
q℘≥Ndξ/2n

℘|dfOK(DK1/K
)−1

1 ≪n,K
logN

log(Ndξ)
≪n,K 1.

3.2 Upper bounds for the torsion part of the class number

All these bounds represent evidence towards the so-called ε-conjecture.

Conjecture 3.1. Let K/Q be a number field of degree s with discriminant
DK . Then for every integer ℓ ≥ 1 and every ε > 0,

hK [ℓ] ≪s,ℓ,ε D
ε
K ,

62



where hK [ℓ] is the order of the ℓ-torsion subgroup of the class group.

Using the well-known Minkowski bound

hK ≤ s!

ss
4r2

πr2
D

1/2
K (logDK)s−1,

where r2 is the number of real Q-embeddings of K, one has

hK ≪s,ε D
1/2+ε
K

for any ε > 0. We can of course use the above to bound the ℓ-part hK [ℓ] of
hK . But we’d like to improve the above estimate, and the main point we’re
going to use is the existence of "many" splitting completely primes, which
contributes significantly to the quotient of the class group by its ℓ-torsion.
We state this precisely in Theorem 3.3 below. The GRH guarantees the
existence of such primes, but here, we’d like to proceed unconditionally.

Let K/Q be a number field. Again, the presence of "small" primes that
split completely in K, give a means to improve the Minkowski upper bound,
using the following theorem ([EV], Lemma 2.3).

Theorem 3.3 (Ellenberg, Venkatesh). Let K/Q be a field extension of degree
s. Set δ < 1

2ℓ(s−1) and suppose that

|{p ≤ Dδ
K : p splits completely in K/Q}| ≥ M.

Then, for any ε > 0

hK [ℓ] ≪s,ℓ,ε D
1/2+ε
K M−1.

Let L/K be a number field extension of degree s, where K/Q is the
degree d field fixed at the beginning of our discussion.

L

K ℘

Q p

s

d

Thanks to Theorem 2, we are able to count

|{℘ ∈ OK : |NK/Q℘| ≤ |NK/QDL/K |δ, ℘ splits completely in L/K}|.

Some of those primes correspond to the primes p splitting completely in L/Q,
such that ℘|p. There are exactly d primes ℘ for any p and NK/Q℘ = p. By
the transitive relation

DL = Ds
KNK/QDL/K ,
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if ℘|p as above, then p ≪ Dδ
L.

But in general,

|{℘ ∈ OK : |NK/Q℘| ≤ |NK/QDL/K |δ, ℘ splits completely in L/K}|
≥ d|{p ≪ Dδ

L : p splits completely in L/Q}|,

since there are primes ℘ ∈ OK splitting completely in L/K, such that the
primes p under those ramify in L/Q. We can then write

|{℘ ∈ OK : |NK/Q℘| ≤ |NK/QDL/K |δ, ℘ splits completely in L/K}|
≤ d|{p ≪ Dδ

L : p splits completely in L/Q}|
+ d|{p : p ramifies in K/Q and pOK splits completely in L/K}|,

which is

≪K |{p ≪ Dδ
L : p splits completely in L/Q}|+ |{p : p ramifies in L/Q}|.

In Corollary 3.1, we computed an upper bound on the average of the ramified
primes in the case L = Kf . It turns out that if

|{℘ ∈ OK : |NK/Q℘| ≤ |NK/QDL/K |δ, ℘ splits completely in L/K}| ≥ M,

then on average

|{p ≪ Dδ
L : p splits completely in L/Q}| ≫n,K M − log logN.

Corollary 3.3. For every positive integer ℓ, ε > 0 and for almost all f ∈
P0

n,N , outside of a set of size o(Ndn), we have

hf [ℓ] ≪n,K,ℓ,ε D

1
2
− 1

d(2n−2)(n−1)! log log |NK/Qdf |+ε

f ,

as N → +∞.

In order to prove Corollary 3.3, we need the following lemma.

Lemma 3.1. The density of the set of f ∈ P0
n,N so that NK/QDKf/K ≪

N1/ log logN is zero, as N → +∞.
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Proof. By using the notations of Theorem 1.3, we have that∑
f∈P0

n,N

NK/QDKf/K≪N1/ log logN

1

≪
∑

L∈Fn(N1/ log logN ,Sn)

∑
f∈P0

n,N

Kf
∼=L

1

≪
∑

L∈Fn(N1/ log logN ,Sn)

∑
α∈OL

K(α)∼=L

HK(α)≪N1/n

1

≪ N
d
(
1+ n+2

4d log logN

)
+ε

,

for every ε > 0, by using Schmidt bound [Sc] for the number of field exten-
sions with bounded discriminant.

Proof. (Corollary 3.3) By Theorem 2, for x = N1/ log logN , r a (square free)
splitting type, and α = α(N) > 0 for large N ,

PN

(
−N1/α ≤

πf,r(x)− δ(r)πK(x)

(δ(r)− δ(r)2)1/2πK(x)1/2
1 ≤ N1/α

)
−→

N→+∞
1.

In particular,

πf,r(x) ≥ δ(r)πK(x)−N1/α(δ(r)− δ(r)2)1/2πK(x)1/2

for all but o(Ndn) f ′s in P0
n,N . Pick α = 3 log logN ; then N1/απK(x)1/2 ≪r

πK(x). By enlarging N , we can assume that

N1/α(δ(r)− δ(r)2)1/2πK(x)1/2 ≪r
1

2
δ(r)πK(x).

Then we get

πf,r(x) ≫ δ(r)πK(x).

For Cr = {id}, since NK/Qdf ≍ Nd(2n−2) for almost all f , and by the rela-
tion NK/Qdf = (NK/QDKf/K)1/(n−1)!a2f (NK/Q(NK(α)/KDKf/K(α)))

1/(n−1)!,
we are bounding below the primes of norm

q℘ ≪ N1/ log logN ≪n,K (NK/Qd
1/d(2n−2)
f )1/ log log |NK/Qdf |

=
(
(NK/QDKf/K)1/d(2n−2)(n−1)!a

1/d(n−1)
f (NK/Q(NK(α)/KDKf/K(α)))

1/d(2n−2)(n−1)!
)1/ log log |NK/Qdf |

=

(NK/QDKf/K)
1

d(2n−2)(n−1)!
+

log af
d(n−1) log |NK/QDKf/K |+

log |NK/Q(NK(α)/KDKf/K(α))|

d(2n−2)(n−1)! log |NK/QDKf/K |

1/ log log |NK/Qdf |
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splitting completely in Kf/K. Now, for almost all f , the discriminant satis-
fies log log |NK/Qdf | ≫K

ℓ
d

n!−1
(n−1)(n−1)! ; moreover by (16), we have that

af ≪ Nd(n−1)

(NK/QDKf/K)
1

2(n−1)!

and

NK/Q(NK(α)/KDKf/K(α)) ≪
N

2d
(n−2)!

NK/QDKf/K
.

By Lemma 3.1, we have that for almost all f , the exponent(
1

d(2n− 2)(n− 1)!
+

log af
d(n− 1) log |NK/QDKf/K |

+
log |NK/Q(NK(α)/KDKf/K(α))|

d(2n− 2)(n− 1)! log |NK/QDKf/K |

)
· 1

log log |NK/Qdf |
−→

N→+∞
0.

In particular, we can take δ > 0 so that(
1

d(2n− 2)(n− 1)!
+

log af
d(n− 1) log |NK/QDKf/K |

+
log |NK/Q(NK(α)/KDKf/K(α))|

d(2n− 2)(n− 1)! log |NK/QDKf/K |

)
· 1

log log |NK/Qdf |
< δ <

1

2ℓ(n!− 1)
.

It turns out that the primes p ≪ Dδ
f splitting completely in Kf/Q are at

least

≫n,K,ℓ

(NK/Qdf )
1

d(2n−2) log log |NK/Qdf | log log |NK/Qdf |
log |NK/Qdf |

− log logN.

By Theorem 3.3,

hf [ℓ] ≪n,K,ℓ,ε

D
1
2
+ε

f log |NK/Qdf |·
(
((NK/QDKf/K)·(NK/Q(NK(α)/KDKf/K(α))))

1
d(2n−2)(n−1)! log log |NK/Qdf |

· a
1

d(n−1) log log |NK/Qdf |

f log log |NK/Qdf | − log |NK/Qdf | log logN
)−1

.

Since by transitivity Df = Dn!
KNK/QDKf/K , one has the claim.

Note. For example, in the case K = Q, one obtains more precisely the
upper bound
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hf [ℓ] ≪n,ℓ,ε D
1
2
− 1

(2n−2)(n−1)! log log df
+ε

f · logN

log logN

for any ε > 0, for almost all f as N → +∞.

We can improve this last bound by adding an additional hypothesis.

Theorem 3.4. Let K be a number field of degree s. There exists θ ∈ OK−Z
whose minimal polynomial fθ has height

ht(fθ) ≤ 3s
(DK

s

) s
2s−2

.

Proof. See [GJ], Appendix A.

Corollary 3.4. Assume that Kf is generated over K by an element θ of
small height of Theorem 3.4. Then for every positive integer ℓ, ε > 0 and
for almost all f ∈ P0

n,N outside of a set of size o(Ndn) we have

hf [ℓ] ≪n,K,ℓ,ε D

1
2
− n!+d

n!(2n−2)(n−1)!
· 1
log log |NK/Qdf |+ε

f ,

as N → +∞.

Proof. In particular we have ht(fθ) ≪n D
n!

2n!−2

f and so

NK/Qdfθ = a
′2
fθ
NK/QDKf/K ≍ Dn!d

f = Dn!2d
K (NK/QDKf/K)n!d

with high probability. Since NK/Qdf ≍ Nd(2n−2) for almost all f and

NK/QDKf/K =
(NK/Qdf )

(n−1)!

c2fNK/Q(NK(α)/KDKf/K(α))
≍ Nd(2n−2)(n−1)!

c2fNK/Q(NK(α)/KDKf/K(α))

for almost all f (here cf = a
(n−1)!
f ), we obtain

NK/QDKf/K ≍
Nn!(2n−2)(n−1)!Dn!2d

K

a
′2
fθ
(c2fNK/Q(NK(α)/KDKf/K(α)))n!d

.

It turns out that

N ≍ Cn(f, θ,K) · (NK/QDKf/K)
1

n!(2n−2)(n−1)!

for almost all f ∈ P0
n,N . We denoted by

Cn(f, θ,K) =
(a

′2
fθ
(c2fNK/Q(NK(α)/KDKf/K(α))

n!d))
1

n!(2n−2)(n−1)!

D
n!d

(2n−2)(n−1)!

K

.
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As in Corollary 3.3 we want to count the primes of norm

q℘ ≪n N1/ log logN

≪
(
Cn(f, θ,K) · (NK/QDKf/K)

1
n!(2n−2)(n−1)!

)1/ log log |NK/Qdf |

=

(
(NK/QDKf/K)

1
n!(2n−2)(n−1)!

+
logCn(f,θ,K)

log |NK/QDKf/K |

)1/ log log |NK/Qdf |

splitting completely in Kf/K.
By the above we get

logCn(f, θ,K)

log |NK/QDKf/K |
· 1

log log |NK/Qdf |
≍n,K

logN

log |NK/QDKf/K |
· 1

log logN
,

which tends to zero as N → +∞ for almost all f , by Lemma 3.1.
We can then fix a δ > 0 so that(

1

n!(2n− 2)(n− 1)!
+

logCn(f, θ,K)

log |NK/QDKf/K |

)
· 1

log log |NK/Qdf |
< δ <

1

2ℓ(n!− 1)

(by enlarging the norm of df if necessary). Therefore the number of primes
p ≪ Dδ

f splitting completely in Kf/Q is bounded below by

≫n,K,ℓ

(
Cn(f, θ,K) · (NK/QDKf/K)

1
n!(2n−2)(n−1)!

)1/ log log |NK/Qdf |
log logN

logN
−log logN

Note that

Cn(f, θ,K) ≫
(NK/Q(NK(α)/KDKf/K(α)))

1
d(2n−2)(n−1)!

D
nd

2n−2

K

.

By the transitive relation

DKf/K = D
(n−1)!
K(α)/KNK(α)/KDKf/K(α)

and
NK/QDK(α)/K =

NK/Qdf

a2f
,

one has that the number of primes p ≪ Dδ
f splitting completely in Kf/Q is

≫
(
(NK/QDKf/K)

(
1

n!(2n−2)(n−1)!
+ 1

d(2n−2)(n−1)!

)
1

log log |NK/Qdf |a

1
d(n−1) log log |NK/Qdf |

f log logN

− (NK/Qdf )
1

d(2n−2) log log |NK/Qdf |D

nd
2n−2 log log |NK/Qdf |

K logN log logN
)

·
(
(NK/Qdf )

1
d(2n−2) log log |NK/Qdf |D

nd
2n−2 log log |NK/Qdf |

K logN
)−1
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By Theorem 3.3 and the transitivity of the discriminant

NK/QDKf/K =
Df

Dn!
K

one gets the desired upper bound for hf [ℓ] for almost all f .

3.3 Results for subfamilies

Consider a family A ⊆ Aβ,M (N) ⊆ P0
n,N satisfying conditions 1, 2, 3 of

Section 2.3 with Cr = {id}.
By using the method of moments, and from Proposition 2.3, the same proof
of Theorem 2 leads to

1

|A |

∣∣∣∣{f ∈ A : a ≤
πf,r(x)− µ(x)

(δ(r)− δ(r)2)1/2πK(x)1/2
≤ b

}∣∣∣∣ −→
N→+∞

1√
2π

∫ b

a
e−t2/2dt,

where x = N1/ log logN and a, b ∈ R.
In particular, as in Corollary 3.3, we have that

πf,r(x) ≥ µ(x)−N1/3 log logN (δ(r)− δ(r)2)1/2πK(x)1/2

for all f ∈ A outside of a set of size o(Ndβ). For N large enough, one gets

πf,r(x) ≫n,K δ(r)πK(x),

for almost all f ∈ A .
In many examples, one has that for f ∈ A , the discriminant satisfies
NK/Qdf ≍ Ndα(n) with 0 < α(n) < 2n− 2.
Let 0 < δ < 1

2ℓ(n!−1) . The same computation as in the proof of Corollary
3.3, togheter with Theorem 3.3, yields to

hf [ℓ] ≪n,K,ℓ,ε D

1
2
− 1

dα(n)(n−1)! log log |NK/Qdf |+ε

f ,

for every ε > 0, as N → +∞, for almost all f ∈ A .

3.3.1 Explicit examples

3.3.2 Families of trinomials

Let n ≥ 2, 0 ≤ t < n and let B be the following family of polynomials over
OK :

B = {f(X) = Xn + aXt + b : ht(a), ht(b) ≤ N}.

Now, the polynomial F (X,Y, Z) = Xn + Y Xt +Z in three variables is irre-
ducible over K[X,Y, Z]. We can then apply Hilbert’s Irreduciblity Theorem.
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One of the latest effective versions can be found in [PS], Theorem 1.3. It
leads to

|{a, b ∈ OK : ht(a),ht(b) ≤ N, GF (X,a,b) ̸∼= Sn}| ≪n,K N1/2.

Hence the subfamily A = B ∩ P0
n,N satisfies

|A | = 4N2 +O(N1/2),

as N → +∞. By elementary computations, we can see that if ℘ is a prime
ideal of OK of norm q℘ ≤ x, where x < N1/2, and g ∈ A ℘, then

∑
f∈A

f≡g mod ℘

1 =
4N2

q2℘
+O(N).

The family A therefore satisfies conditions 1, 2 and 3 of 2.3, with β = 2,
M = 4, En,K(N) = N . For a splitting type r, we can apply the RH over
finite fields to get

|XA
n,r,p| = δ(r)p2 +O(p3/2).

The discriminant of a trinomial f as in A is given by

df = (−1)
n(n−1)

2 bt−1(nn/d′b
n−t
d′ −(−1)n/d

′
(n−t)

n−t
d′ tt/d

′
an/d

′
)d

′ ≍n,K Nd(n+t−1),

where d′ = (n, t). We can then upper bound the ℓ-torsion of the class number
as follows:

hf [ℓ] ≪n,K,ℓ,ε D
1
2
− 1

d(n+t−1)(n−1)! log logN
+ε

f ,

for every ε > 0, as N → +∞, for almost all f ∈ A .

Subcase

A more explicit example is given by the family of irreducible polynomials
over Q:

A = {f(X) = Xn + aX + b : f irreducible, |a|, |b| ≤ N, ((n− 1)a, nb) = 1}.

Osada in [Os] proved that these polynomials are indeed Sn-polynomials. We
start by counting them. As above, by an Hilbert’s Irreducibility Theorem
argument, almost all polynomials of the form Xn + aX + b are irreducible
over Q, with an exceptional set of size ≪n N1/2. In other words,

|A | =
∑

|a|,|b|≤N

((n−1)a,nb)=1

1 +O(N1/2).
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To treat the sum, we use the Möbius function to handle the coprimality
condition. In general, let r ≤ s with (r, s) = 1; one has∑

|a|,|b|≤N

(ra,sb)=1

1 =
∑

|a|,|b|≤N

∑
d|sb
d|ra

µ(d)

=
∑
d≤rN

µ(d)
∑
|a|≤N

d|ra

∑
|b|≤N

d|sb

1.

Now, if d|s, the last sum on the RHS is 2N +O(1). Denote by

[d|s] =

{
1 if d|s
0 otherwise;

Analogously, [d ∤ s] = 1− [d|s]. It turns out that the above sum is∑
d≤rN

µ(d)
∑
|a|≤N

d|ra

(
[d|s](2N +O(1)) + [d ∤ s]

∑
ℓ|d
ℓ|s

∑
|b|≤N

d
ℓ
|b

1
)

=
∑
d≤rN

µ(d)
∑
|a|≤N

d|ra

(
[d|s](2N +O(1)) + [d ∤ s]

(
2N

d
σ((s, d)) +O(τ((s, d)))

))
,

where σ(c) =
∑

ℓ|c ℓ, and τ is the counting-divisors function. The above is

4N2
∑
d≤rN

µ(d)

(
[d|s] + [d ∤ s]

σ((s, d))

d

)(
[d|r] + [d ∤ r]

σ((r, d))

d

)
+O(N)

= 4N2
( ∑
d≤rN

d|(s,r)

µ(d)+
∑
d≤rN

d|s,d∤r

µ(d)

d
σ((r, d))+

∑
d≤rN

d|r,d∤s

µ(d)

d
σ((s, d))+

∑
d≤rN

d∤s,d∤r

µ(d)

d2
σ((r, d))σ((s, d))

)

+O(N)

= 4CnN
2 +O(N),

where

Cn =
∏
p|s

(
1− 1

p

)
+
∏
p|r

(
1− 1

p

)
+
∑
d≥1

µ(d)

d2

∑
ℓ|s,ℓ|d

ℓ
∑

k|r,k|d

k−
∑
d|r

µ(d)

d2

∑
ℓ|d

ℓ−
∑
d|s

µ(d)

d2

∑
ℓ|d

ℓ.

The analogous computations yield, for a prime p < N1/2, g ∈ A p,∑
f∈A

f≡g mod p

1 =
4CnN

2

p2
+O(N).
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Hence A = A2,4N2(N) satisfies

hf [ℓ] ≪n,ℓ,ε D
1
2
− 1

n(n−1)! log logN
+ε

f ,

for every ε > 0, as N → +∞, for almost all f ∈ A .

3.4 The Cilleruelo’s conjecture on average

For f ∈ Z[X] an irreducible polynomial of degree n, the Cilleruelo’s conjec-
ture states

log(lcm(f(1), . . . , f(M))) ∼ (n− 1)M logM

as M → +∞, where lcm(f(1), . . . , f(M)) is the least common multiple of
f(1), . . . , f(M). It’s well-know for n = 1 as a consequence of the Dirichlet’s
theorem for primes in arithmetic progression, and it was proved by Cilleruelo
in [Cil] for degree-2 polynomials. Recently the conjecture was shown for a
large family of polynomials of any degree (see [RZ]). We want to investi-
gate the case of polynomials in P0

n,N (K) by considering the leatest common
multiple of ideals of OK .

Proposition 3.1. Let N,M > 0 such that

M(logM)ℓ ≪ N = o

(
M

logM

log logM

)
for some 0 < ℓ < 1. Then

EN (log |NK/Q(lcm(f(λ) : λ ∈ OK , NK/Qλ ≤ M)|) = (n− 1)M logM

+O

(
M

logM

log logM
+N log logM

)
,

as N,M → +∞.

Proof. Following [Cil], we compare the behaviour of

lcm(f(λ) : NK/Qλ ≤ M) =
∏
℘∈Pf

℘β℘(M)

and
Pf (M) :=

∏
NK/Qλ≤M

|NK/Qf(λ)| =
∏
℘

|NK/Q℘|α℘(M),

where Pf is the set of primes such that the equation f ≡ 0 mod ℘ has some
solutions, which is the set of ℘ so that Frobf,℘ ∈ Gf has fixed points. We
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start by writing

log(lcm(f(λ) : NK/Qλ ≤ M)) = logPf (M) +
∑

NK/Q℘≤M

β℘(M) logNK/Q℘

−
∑

NK/Q℘≤M

℘ unramified

α℘(M) logNK/Q℘

−
∑

NK/Q℘≤M

℘ ramified

α℘(M) logNK/Q℘

−
∑

NK/Q℘>M

(α℘(M)− β℘(M)) logNK/Q℘

and we’re going to study all these five terms.

• logPf (M) =
∑

NK/Qλ≤M log |NK/Qf(λ)|; Pick A = A(M,N) such that
A = o(M) and A ≫ N

logM . Then for A ≪ NK/Qλ ≤ M and f(X) =

Xn + αn−1X
n−1 + · · ·+ α0 one has

log |NK/Qf(λ)| = n log |NK/Qλ|+ log
∣∣∣NK/Q

(
1 +

αn−1

λ
+ · · ·+ α0

λn

)∣∣∣
= n log |NK/Qλ|+ log

∣∣∣∣∣
d∏

i=1

σi

(
1 +

αn−1

λ
+ . . .

)∣∣∣∣∣
= n log |NK/Qλ|+ log

d∏
i=1

∣∣∣1 + σi

(αn−1

λ
+ . . .

)∣∣∣
= n log |NK/Qλ|+

d∑
i=1

log
(∣∣∣1 + σi

(αn−1

λ
+ . . .

)∣∣∣)
= n log |NK/Qλ|+

d∑
i=1

O
(
σi

(αn−1

λ

)
+ · · ·+ σi

(α0

λn

))
= n log |NK/Qλ|+

d∑
i=1

O

(
N

NK/Qλ
+ · · ·+ N

NK/Qλn

)
= n log |NK/Qλ|+On,K

(
N

A

)
,

where σ1, . . . , σd are the Q-embeddings of K into C.
If 1 ≤ NK/Qλ ≪ A, we simply use that |NK/Qf(λ)| ≪ NdMn, so

log |NK/Qf(λ)| ≪n,d logN + logM . Therefore, since the elements in OK
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of norm at most M are at most M ,

logPf (M) =
∑

A≪NK/Qλ≤M

log |NK/Qf(λ)|+
∑

NK/Qλ≪A

log |NK/Qf(λ)|

=
∑

A≪NK/Qλ≤M

(
n logNK/Qλ+O

(
N

A

))
+

∑
NK/Qλ≪A

log |NK/Qf(λ)|

= nM logM +O

(
M +

NM

A
+A(logN + logM)

)
= nM logM +O

(
M

logM

log logM
+N log logM

)
,

as M → +∞, by choosing A = N
logM log logM and N = o

(
M logM

log logM

)
.

• β℘(N) = max
NK/Qλ≤M

max{k ≥ 0 : ℘k|f(λ)}; if ℘k|f(λ), then in particular

k ≤ log |NK/Qf(λ)|
log q℘

≪ logN+logM
log q℘

. Thus∑
q℘≤M

β℘(M) log q℘ ≪
∑

q℘≤M

(logN + logM)

≪ M
(
1 +

logN

logM

)
≪ M

under the conditions above.
• If ℘ is a prime which doesn’t divide DKf/K , then the number of solu-

tions s℘k(f) of f mod ℘k is equal to the number s℘(f) of solutions mod ℘
(see Theorem 1 of [Na]). On the other hand, by dividing the interval [1,M ]
into consecutive intervals of length qk℘, one has

s℘k(f)
[M
qk℘

]
≤

∑
NK/Qλ≤M

f(λ)≡0 (℘k)

1 ≤ s℘k(f)
([M

qk℘

]
+ 1
)
,

so ∑
NK/Qλ≤M

f(λ)≡0 (℘k)

1 = M
s℘k(f)

qk℘
+O(s℘k(f)).

For those ℘, one has

α℘(M) =
∑

NK/Qλ≤M

∑
k≥1

℘k|f(λ)

1 =
∑
k≥1

∑
NK/Qλ≤M

f(λ)≡0 (℘k)

1

=
∑
k≥1

M
s℘k(f)

qk℘
+O

( ∑
1≤k≤ logN+logM

log q℘

1
)

= M
s℘(f)

q℘ − 1
+O

( logN
log q℘

+
logM

log q℘

)
.
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Therefore ∑
q℘≤M

℘ unramified

α℘(M) log q℘ = M
∑

q℘≤M
℘ unramified

log q℘
q℘ − 1

s℘(f) +O(M).

Using Proposition 2.1 we can estimate on average
∑

q℘≤x
℘ unramified

s℘(f) for x > 0,

x < Ndξ/(n+1):

1

|P0
n,N |

∑
f∈P0

n,N

∑
q℘≤x

℘ unramified

s℘(f) =
1

|P0
n,N |

∑
f∈P0

n,N

∑
q℘≤x

℘ unram.

∑
α mod ℘

f(α)≡0 (℘)

1

=
∑

α∈OK

∑
σ∈Gf

σα=α

1

|P0
n,N |

∑
f∈P0

n,N

∑
q℘≤x, ℘ unram.

Frobf,℘=σ

1

=
∑

α∈OK

∑
σ∈Gf

σα=α

1

|P0
n,N |

∑
f∈P0

n,N

πC (σ),Kf/K(x)

=
∑

α∈OK

∑
σ∈Gf

σα=α

EN (πC (σ),Kf/K(x))

=
∑

α∈OK

∑
σ∈Gf

σα=α

( |C (σ)|
n!

πK(x) +O(log log x)
)

= πK(x) +O(log log x),

where πC (σ),Kf/K is the Chebotarev density theorem function on the conju-
gacy class C (σ) of σ. Note that

πC (σ),Kf/K − πf,r(x) ≪n,K log log x

on average, if C (σ) = Cr for some r. Write

s℘(f) = 1 + σ℘(f),

where −1 ≤ σ℘(f) ≤ n− 1 and

1

|P0
n,N |

∑
f∈P0

n,N

∑
q℘≤x

℘ unramified

σ℘(f) ≪n,K log log x

if x < Ndξ/(n+1).
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Now, ∑
q℘≤M

℘ unramified

log q℘
q℘ − 1

s℘(f) =
∑

q℘≤M

log q℘
q℘

−
∑

q℘≤M
℘ ramified

log q℘
q℘

+
∑

q℘≤M
℘ unramified

log q℘
q℘

σ℘(f) +O(1).

Since ∑
q℘≤M

log q℘
q℘

= logM +O(1),

and ∑
q℘≤M

℘ ramified

log q℘
q℘

≪ log log |NK/QDKf/K | ≪ log logN

(see [RZ], Lemma 3.2), one gets∑
q℘≤M

℘ unramified

log q℘
q℘ − 1

s℘(f) = logM +
∑

q℘≤M
℘ unramified

log q℘
q℘

σ℘(f) +O(log logN).

Let 0 < δ < 1
2(n+1) and N > M(logM)2δ(n+1), so that

M ′ :=
M1/2(n+1)(logM)δ

(logN)1/(n+1)
< Ndξ/(n+1).

Write∑
q℘≤M

℘ unramified

log q℘
q℘

σ℘(f) =
∑

q℘≤M ′

℘ unramified

log q℘
q℘

σ℘(f) +
∑

M ′<q℘≤M
℘ unramified

log q℘
q℘

σ℘(f).

For the first term, by partial integration we obtain

1

|P0
n,N |

∑
f∈P0

n,N

∑
q℘≤M ′

℘ unramified

log q℘
q℘

σ℘(f) ≪
logM ′

M ′ log logM ′

+

∫ M ′

2
log log t

(1− log t)

t2
dt ≪ 1,

since
∫M ′

2 log log t (1−log t)
t2

dt ≪
∫M ′

2
t1/2

t2
dt ≪ 1.

To treat the second term, note that it is

≤ (n− 1)
∑

M ′<q℘≤M

log q℘
q℘

≤ (n− 1)
∑

M−y<q℘≤M

log q℘
q℘

,
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for y ≥ M −M ′. If moreover we pick M ∼ 2y, then∑
M−y<q℘≤M

log q℘
q℘

≪ logM − log(M − y) = o(logM)

as M → +∞.
Hence we have the following estimate on average:

1

|P0
n,N |

∑
f∈P0

n,N

∑
q℘≤M

℘ unramified

α℘(M) log q℘ = M logM +O
(
M log logN +

M

y

)

= M logM +O(M log logN),

for N > M(logM)2δ(n+1), 0 < δ < 1
2(n+1) .

• We divide the sum into two terms:∑
q℘≤M

℘ ramified

α℘(M) log q℘ =
∑

q℘≤M
℘ ramified

log q℘|{λ ∈ OK : NK/Qλ ≤ M, f(λ) ≡ 0 mod ℘}|

+
∑

q℘≤M
℘ ramified

log q℘
∑

NK/Qλ≤M

∑
k≥2

f(λ)≡0 (℘k)

1

= I + II.

To estimate I, note that

|{λ ∈ OK : NK/Qλ ≤ M, f(λ) ≡ 0 mod ℘}| =
[M
q℘

]
s℘(f) ≪

M

q℘
s℘(f),

so

I ≪
∑

q℘≤M
℘ ramified

log q℘
q℘

s℘(f) ≪n M
∑

q℘≤M
℘ ramified

log q℘
q℘

≪ M log logN.

The mean value of II is

1

|P0
n,N |

∑
f∈P0

n,N

II ≪ 1

Nnd

∑
q℘≤M

log q℘
∑

NK/Qλ≤M

∑
2≤k≪ logN+logM

log q℘

∑
f∈P0

n,N

f(λ)≡0 (℘k)

1.

Similarly as we computed in Chapter 2, note that for any λ ∈ OK ,∑
f∈P0

n,N

f(λ)≡0 (℘k)

1 =
∑

g∈F
qk℘

[X]

g(λ)=0

∑
f∈P0

n,N

f≡g mod ℘k

1.
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Since there are q
k(n−2)
℘ possibilities for g as in the above sum, one has

∑
f∈P0

n,N

f(λ)≡0 (℘k)

1 =
(2N)nd

q2k℘
+O(Nd(n−ξ))

as long as k ≪ logN
log q℘

. Hence

1

|P0
n,N |

∑
f∈P0

n,N

II ≪ M
∑

q℘≤M

log q℘
∑
k≥2

( 1

q2℘

)k
+

M

Ndξ

∑
q℘≤M

log q℘
∑

k≪ logN+logM
log q℘

1

≪ M +
M2

Ndξ

( logN
logM

+ 1
)
.

To conclude

1

|P0
n,N |

∑
f∈P0

n,N

∑
q℘≤M

℘ ramified

α℘(M) log q℘ ≪ M log logN +
M2

Ndξ

( logN
logM

+ 1
)
.

• For λ, µ ∈ OK such that NK/Qλ < NK/Qµ let

G(µ, λ) =
f(µ)− f(λ)

µ− λ
.

Once fixed µ, G(µ, λ) is a polynomial in λ of degree n− 1.
We are now dealing with the primes ℘ of norm q℘ > M , for which

α℘(M) =
∑

NK/Qλ≤M

∑
k≥1

1(f(λ) ≡ 0 mod ℘k)

=
∑
k≥1

∑
NK/Qλ≤M

f(λ)≡0 (℘k)

1 ≪
∑

1≤k≪ logN+logM
log q℘

≪n,K 1.

For ℘ of norm q℘ > M we then have

α℘(M)− β℘(M) ≪n,K 1.

Note also that if ℘|f(λ), then |q℘| ≤ |NK/Qf(λ)| ≪ NdMn, so α℘(M) = 0

for q℘ ≫ NdMn. Also, α℘(M) ̸= β℘(M) if and only if there exist µ, λ ∈ OK ,
NK/Qλ < NK/Qµ ≤ M such that ℘|f(µ) and ℘|f(λ), equivalently ℘|f(λ) and
℘|(µ − λ)G(µ, λ); but ℘ ∤ (µ − λ), since |NK/Q(µ − λ)| ≤ M − 1 < q℘, so
℘|G(µ, λ).
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Thefore∑
q℘>M

(α℘(M)− β℘(M)) log q℘ ≪
∑

1≤NK/Qλ<NK/Qµ≤M

∑
M<q℘≪NdMn

℘|f(ℓ)
℘|G(µ,λ)

log q℘

=
∑

1≤NK/Qλ<NK/Qµ≤M

G(µ,λ)=0

∑
M<q℘≪NdMn

℘|f(λ)

log q℘+
∑

1≤NK/Qλ<NK/Qµ≤M

G(µ,λ)̸=0

∑
M<q℘≪NdMn

℘|f(λ)
℘|G(µ,λ)

log q℘

≪
∑

1≤NK/Qλ<NK/Qµ≤M

∑
M<q℘≪NdMn

℘|f(λ)

log q℘+
∑

1≤NK/Qλ<NK/Qµ≤M

G(µ,λ)̸=0

∑
M<q℘≪NdMn

℘|f(λ)
℘|G(µ,λ)

log q℘

≪ (logN + logM) max
NK/Qµ≤M

{℘ : q℘ > M, ℘|f(µ)}

+
∑

1≤NK/Qλ<NK/Qµ≤M

G(µ,λ)̸=0

∑
M<q℘≪NdMn

℘|f(λ)
℘|G(µ,λ)

log q℘.

For NK/Qµ ≤ M , |NK/Qf(µ)| ≪ NdMn, so the primes ℘ with q℘ > M

dividing f(µ) are at most ≪ log(NdMn)
logM ≪n,K 1. Thus∑

q℘>M

(α℘(M)−β℘(M)) log q℘ ≪
∑

1≤NK/Qλ<NK/Qµ≤M

G(µ,λ) ̸=0

∑
M<q℘≪NdMn

℘|f(λ)
℘|G(µ,λ)

log q℘+logM,
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or on average

1

|P0
n,N |

∑
q℘>M

(α℘(M)− β℘(M)) log q℘

≪
∑

1≤NK/Qλ<NK/Qµ≤M

G(µ,λ)̸=0

∑
M<q℘≪NdMn

℘|G(µ,λ)

log q℘|{f : f(λ) ≡ 0 mod ℘}|+ logM

=
∑

1≤NK/Qλ<NK/Qµ≤M

G(µ,λ)̸=0

∑
M<q℘≪NdMn

℘|G(µ,λ)

log q℘

( 1

q2℘
+O

( 1

Ndξ

))
+ logM

≪
∑

1≤NK/Qλ<NK/Qµ≤M

G(µ,λ)̸=0

∑
M<q℘≪NdMn

℘|G(µ,λ)

log q℘
q2℘

+
1

Ndξ

∑
1≤NK/Qλ<NK/Qµ≤M

G(µ,λ)̸=0

∑
M<q℘≪NdMn

℘|G(µ,λ)

log q℘ + logM

= I + II + logM.

For II, observe that since |G(µ, λ)| ≪ NdMn−1, the number of primes ℘ of
norm q℘ > M dividing G(µ, λ) is at most ≪ log(NdMn−1)

logM ≪ 1, so

II ≪ M2

Ndξ
logM.

For I, we separate the contribution of small and large prime. Pick M <
BM,N ≪ NdMn; for small primes we have∑
1≤NK/Qλ<NK/Qµ≤M

G(µ,λ)̸=0

∑
M<q℘≤BM,N

℘|G(µ,λ)

log p

q2℘
=

∑
M<q℘≤BM,N

log q℘
q2℘

∑
1≤NK/Qλ<NK/Qµ≤M

G(µ,λ)≡0 (℘)

1

≪ M
∑

M<q℘≤BM,N

log q℘
q2℘

≪ M,
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since
∑

1≤NK/Qλ<NK/Qµ≤M

G(µ,λ)≡0 (℘)

1 ≤ (n− 1)M . For large primes,

∑
1≤NK/Qλ<NK/Qµ≤M

G(µ,λ)̸=0

∑
BM,N<q℘≪NdMn

℘|G(µ,λ)

log q℘
q2℘

≪ (logN + logM)

B2
M,N

∑
1≤NK/Qλ<NK/Qµ≤M

G(µ,λ)̸=0

|{℘ : q℘ > BM,N , ℘|G(µ, λ)}|

≪ M2

B2
M,N

logM
logM

logBM,N
,

by observing that |{℘ : q℘ > BM,N , ℘|G(µ, λ)}| ≪ log(NdMn−1)
logBM,N

≪ logM
logBM,N

since |G(µ, λ)| ≪ NdMn−1. We obtained

1

|P0
n,N |

∑
f∈P0

n,N

∑
q℘>M

(α℘(M)− β℘(M)) log q℘ ≪ M +
M2

Ndξ
logM + logM

by choosing for instance BM,N = M logM .
Finally,

1

|P0
n,N |

∑
f∈P0

n,N

log |NK/Q(lcm(f(λ) : NK/Qλ ≤ M)) = (n− 1)M logM

+O

(
M

logM

log logM
+N log logM +M log logM +

M2

Ndξ
logM

)
= (n− 1)M logM +O

(
M

logM

log logM
+N log logM

)
,

when M(logM)ℓ ≪ N = o
(
M logM

log logM

)
, 0 < ℓ < 1 small enough.

In particular

log |NK/Q(lcm(f(λ) : NK/Qλ ≤ M))| ∼ (n− 1)M logM

for all but o(Nnd) set of f in P0
n,N .
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4 Further results and problems

4.1 Other Galois groups

In general, for a subgroup G ⊆ Sn, the elements in a conjugacy class in
G necessarily have the same cycle type, but the converse need not to be
true. That is, the cycle type of a conjugacy class in G need not determine
it uniquely. This uniqueness property does hold for cycle types for the full
symmetric group, which implies that the cycle type of an Sn-polynomial
having a square-free factorization mod p uniquely determines the Frobenius
element for an Sn-number field obtained by adjoining one root of it.
Let’s consider the case of the alternating group An ⊆ Sn. A single conjugacy
class in Sn that is contained in An may split into two distinct classes. Also,
note that the fact that conjugacy in Sn is determined by cycle type, means
that if σ ∈ An, then all of its conjugates in Sn also lie in An. There is a full
characterization of the behaviour of conjugacy classes in An.

Lemma. A conjugacy class in Sn splits into two distinct conjugacy classes
under the action of An if and only if its cycle type consists of distinct odd
integers. Otherwise, it remains a single conjugacy class in An.

Proof. Note that the conjugacy class in Sn of an element σ ∈ An splits, if
and only if there is no element τ ∈ Sn \ An commuting with σ. For if there
is one, for each τ ′ ∈ Sn \An we have

τ ′στ ′−1 = τ ′σττ−1τ ′−1 = (τ ′τ)σ(τ ′τ)−1,

and ττ ′ ∈ An. On the other hand, if τστ−1 and σ, with τ ∈ Sn \ An, are
conjugated in An, then for some τ ′ ∈ An, we have τστ−1 = τ ′στ ′−1, giving

τ ′−1τσ = στ ′−1τ,

and hence τ ′−1τ ∈ Sn \An commutes with σ.
Now suppose, σ has a cycle ci of even length. A cycle of even length

is an element of Sn \ An, and as σ commutes with its cycles, we are done
by the above. If σ has two cycles (a1 . . . ak) and (b1 . . . bk) of the same odd
length k, then (a1b1) . . . (akbk) is a product of k permutations (hence odd,
so an element of Sn \An) commuting with σ.

Suppose σ = c1 . . . cs is a product of odd cycles ci of distinct lengths di.
Let τ ∈ Sn be a permutation commuting with σ. Then τ must fix each of
the ci, that is, τ must be of the form τ = ca11 . . . cass for some ai ∈ Z. But as
the ci are even permutations (as cycles of odd length), we have τ ∈ An. So
no τ ∈ Sn \An commutes with σ and we have the claim.

As in the case of Sn polynomials, we are going to count the number of
G-polynomials, where G is a subgroup of the symmetric group Sn.

By generalizing some results of [Di], [Di2], [HB] and [BHB] we will prove
the following.
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Theorem 4.1. For every ε > 0 and positive integer n,

|{(α0, . . . , αn−1) ∈ On
K : ht(αj) ≤ N ∀j,

f(X) = Xn + αn−1X
n−1 + · · ·+ α0 has GKf/K = G}|

≪n,d,ε N
d(n−1+1/[Sn:G])+ε,

where [Sn : G] is the index of G in Sn.

4.1.1 Proof of Theorem 4.1

Lemma 4.1. Let n > r, (n, r) = 1, α1, . . . , αr−1, αr+1, . . . , αn−1 ∈ OK be
fixed. Then

Xn + αn−1X
n−1 + · · ·+ α1X + t ∈ (OK [t])[X]

has for all but at most On,d(1) αn−r in OK the full Sn has Galois group of
K(t).

Proof. This follows from Satz 1 of [He].

Lemma 4.2. Let f(X) = Xn + αn−1X
n−1 + · · · + α0 ∈ OK [X] with roots

β1, . . . , βn ∈ Kf and GKf/K = G ⊆ Sn. Let

Φ(z;α0, . . . , αn−1) =
∏

σ∈Sn/G

(
z −

∑
τ∈G

βστ(1)β
2
στ(2) . . . β

n
στ(n)

)
be the Galois resolvent with respect to

∑
τ∈GXτ(1)X

2
τ(2) . . . X

n
τ(n). Then Φ

has integral coefficients and the roots are integral over K.

Proof. The polynomial Φ is fixed by any permutation of the roots. Then the
coefficients are symmetric polynomials in the roots of f , hence they can be
written as integral polynomials in the elementary symmetric polynomials of
the roots of f , that is in the coefficients of f .
The root

∑
τ∈G βστ(1)β

2
στ(2) . . . β

n
στ(n) of Φ is fixed by any element of G, so

it is in K. It also satisfy a monic polynomial with coefficients in OK . Then
it is integral over K.

Lemma 4.3. Let F ∈ OK [X1, X2] of degree n be irreducible over K. For
Pi ∈ R≥1, i = 1, 2, let

N(F ;P1, P2) = |{(x1, x2) ∈ O2
K : F (x1, x2) = 0, ht(xi) ≤ N i = 1, 2}|.

Denote by
T = max

(e1,e2)
{P de1

1 , P de2
2 },
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where the maximum takes over all integer 2-uples (e1, e2) for which the cor-
responding monomial Xe1

1 Xe2
2 occurs in F (X1, X2) with nonzero coefficient.

Then for every ε > 0

N(F ;P1, P2) ≪n,d,ε max{P1, P2}ε · exp
(
d2 logP1 logP2

log T

)
.

Proof. It is a straightforward generalization of the special case P1 = 1 of
Theorem 1 in [BHB]. See also [HB], Theorem 15. As noticed in [Di2], if F
is irreducible over K, by Bézout’s Theorem N(F ;P1, P2) ≪n,d 1, so we may
assume that F is absolutely irreducible, as in [BHB].

We can now prove Theorem 4.1. Let G be a subgroup of Sn of index
[Sn : G] = m. By Lemma 4.2, there exist b1, . . . , bm ∈ Z[α0, . . . , αn−1] so
that

Φ(z;α0, . . . , αn−1) = zm + b1(α0, . . . , αn−1)z
m−1 + · · ·+ bm(α0, . . . , αn−1).

By Lemma 1.1, a root z ∈ OK of Φ has norm bounded by

|NK/Q| ≪n,d Ndα

for some α ≥ 1.
Now fix αn−1, . . . , α2 of height N . Our goal is to bound the number of

α1, α0 ∈ OK of height N so that GKf/K = G. It suffices to show that there
are at most O(Nd(1+1/m)+ε) such α1, α0.

By Lemma 4.1, Xn + αn−1X
n−1 + · · · + α1X + t has for all but at

most On,d(1) values of α1 the full symmetric group as Galois group over
K(t). Hence it’s enough to fix any such α1 of height N for which Xn +
αn−1X

n−1 + · · · + α1X + t has Galois group Sn over K(t) and then show
that for those fixed αn−1, . . . , α1 there are at most O(Nd/m+ε) possibilities
for α0, ht(α0) ≤ N , for which f has Galois group G.

Consider Φ(z;α0, . . . , αn−1) = Φ(z, α0) as a polynomial in z, α0. Since
Xn+αn−1X

n−1+ · · ·+α1X + t has Galois group Sn, the resolvent Φ(z, α0)
must be irreducible over K[z]. We can now bound above the number of zeros
of Φ(z, α0) with |NK/Q(z)| ≪ Ndα and ht(α0) ≤ N by applying Lemma 4.3
with P1 ≍ Nα and P2 = N . In this case T ≫ Ndmα, so

|{(z, α0) ∈ O2
K : |NK/Q(z)| ≪ Ndα, ht(α0) ≤ N, Φ(z, α0) = 0}|

≪n,d,ε N
ε · exp

(
d2 logNα logN

dmα logN

)
≪n,d,ε N

d
m
+ε.

This completes the proof of Theorem 4.1.
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Consider the set

P1
n,N (K) = {f ∈ Pn,N (K) : Gf = Sn or An}.

Now, if G ⊆ Sn, G ̸= Sn, An then its index in Sn is greater or equal then
n. From Theorem 4.1 we thus have that

|P1
n,N (K)| = (2N)nd +O

(
Nd(n−1+ 1

n)+ε
)
.

Let Cr ∈ An be a conjugacy class, with r = (r1, . . . , rn) a square-free
splitting type such that either ri is even for some i, or all the ri’s are odd
but ri = rj for some i ̸= j.

By following the same argument as in Lemma 2.1 and Proposition 2.1,
we get the Chebotarev Theorem on average:

1

|P1
n,N (K)|

∑
f∈P1

n,N

( ∑
NK/Q℘≤x

Frobf,℘∈Cr

1
)
= δ(r)πK(x) + Cr log log x+On,K(1),

as x,N → +∞, if x < N
d(1−(1/n))−ε

n+1 .

Remark. Note that even if one doesn’t fully control the conjugacy classes of
a subgroup G ⊆ Sn in terms of the cycle type, there is still interesting infor-
mation to extract from it. Especially, about the number of totally splitting
primes (corresponding to the trivial conjugacy class), which was the main
tool in the application to class group torsion upper bounds of Section 3.2.

4.2 Other subfamilies

It is reasonable to consider subfamilies of Sn-polynomials as in Section 2.3.
However, there are some interesting examples that don’t fit those criteria.
The following is subset of P0

n,N (Q), since it fullfills the conditions of Corol-
lary 1 in [Os]. Namely, A is the family of polynomials of the form

f(X) = fℓ,q,r(X) = Xn + qrXn−1 + ℓrXn−2 + ℓqrXn−3 + · · ·+ ℓqrX3

+ℓrX2 + ℓqrX + ℓqr,

where ℓ, q, r are distinct primes, and ℓqr ≤ N .
Let p be a prime. We have that

A p = {f mod p : f ∈ A }

consists of all polynomials g ∈ Fp[X] of the form

g(X) = Xn +AXn−1 +BXn−2 + CXn−3 + · · ·+ CX3 +BX2 + CX + C,
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where A,B,C ∈ Fp. In particular, |A p| = p3. Let g ∈ A p as above. We
are going to count the number of f ∈ A congruent to g mod p. We need
to distinguish the case when p possibly equals one of the primes ℓ, q, r. We
avoid to indicate ℓ ̸= q ̸= r in the notations. It turns out that∑

f∈A
f≡g mod p

1 = |{(ℓ, q, r) : ℓqr ≤ N, qr ≡ A, ℓr ≡ B, ℓqr ≡ C mod p}|

= |{(q, r) : qr ≤ N/p, qr ≡ A mod p}|+|{(ℓ, r) : ℓr ≤ N/p, ℓr ≡ B mod p}|
+ |{(ℓ, q) : ℓq ≤ N/p}|

+ |{(ℓ, q, r) : ℓ, q, r ̸= p, ℓqr ≤ N, qr ≡ A, ℓr ≡ B, ℓqr ≡ C mod p}|.

With a little work, one can show that∑
f∈A

f≡g mod p

1 =
N log logN

p logN
+ Ep(N),

where the error term Ep(N) depends on g and on p. Indeed:

Ep(N) ≪n


log p
p

N log logN
(logN)2

+ N
p logN if A ≡ B ≡ 0;

log p
p

N log logN
(logN)2

+ N
p logN + N log logN

p2 logN
+ N(log logN)2

p3 logN
if A,B,C ̸≡ 0;

log p
p

N log logN
(logN)2

+ N
p logN + N log logN

p2 logN
otherwise,

as long as p < N , and (log logN)1/2 < p < N for the middle case.
Fix a splitting type r. To count the polynomials in A p of splitting type r,
we make again use of the RH over finite fields. Consider the morphism

{(x, ℓ, q, r) ∈ A4 : fℓ,q,r(x) = 0} F−→ A3

(x, ℓ, q, r) 7−→ (ℓ, q, r).

For a prime p, let G be the Galois group the Galois closure of the extension
Fp(A,B,C)[x]/Fp(A,B,C), where xn + Axn−1 + Bxn−2 + Cxn−3 + · · · +
Cx3 + Bx2 + Cx + C = 0. On can show that "almost always" G = Sn, so
the Chebotarev Density Theorem over Fp implies that

{(A,B,C) ∈ F3
p : Frobp acts as a permutation of cycle type r on F−1(ℓ, r, q)}

= δ(r)p3 +O(p5/2).

In the notation of Section 2.3, we get

|XA
n,r,p| = δ(r)p3 +O(p5/2).

We can view the above example as one a family as in 2.3, with M not a
constant, but M = log logN

logN . However, the relation between p and N is more
delicate here.

The aim is to work with families A like the last one, and even extended,
to improve the main term in the higher moments for the Chebotarev Theo-
rem, and have results for the class group bounds, holding for all f ∈ A .
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4.3 Artin L-functions

Let f ∈ P0
n,N and fix an irreducible representation ρ of the symmetric group

Sn. Let χ be the associated character χ = Tr ◦ ρ. For a prime ℘ of OK , we
denote by ρ the subrepresentation of ρ on V

Ip|℘
ρ , that is, invariant under the

action of the inertia group Ip|℘ for a prime p over ℘. If ℘ is unramified on
Kf , clearly ρ = ρ. For ℜs > 1 the Artin L-function associated to χ is

L(s, χ) = Lf (s, χ) =
∏
℘

χ(1)∏
i=1

(1− α℘,i,χq
−s
℘ )−1,

where α℘,i,χ are the eigenvalues of ρ(Frobf,℘).
By taking the logarithm we see that

logL(s, χ) =
∑

℘,m≥1

χ(1)∑
i=1

αm
℘,i,χ

mqms
℘

=
∑

℘,m≥1

1

m
χ(Frobmf,℘)q

−ms
℘

=
∑
n≥1

∑
℘,m≥1
qm℘ =n

1

m
χ(Frobmf,℘)n

−s

=
∑
n≥1

an,χ,fn
−s,

where we define
an,χ,f =

∑
℘,m≥1
qm℘ =n

1

m
χ(Frobmf,℘).

Let
π̃f,χ(x) =

∑
℘,m≥1
qm℘ ≤x

1

m
χ(Frobmf,℘) =

∑
n≤x

an,χ,f ,

where Frobf,℘ denotes the canonical generator of D℘/I℘ for the ramified
primes, whereas in general set

χ(Frobmf,℘) =
1

|I℘|
∑
τ∈D℘

τ≡Frobmf,℘ mod I℘

χ(τ).

Similarily, for the logarithmic derivative:

EN

(
− L′

L
(s, χ)

)
=
∑
n≥1

Λ(n)EN (a′n,χ,f )n
−s,
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where a′n,χ,f =
∑

℘,m≥1
qm℘ =n

χ(Frobmf,℘). Let

π′
f,χ(x) =

∑
n≤x

a′n,χ,f .

Corollary 4.1. One has

( 1 ) EN (π̃f,χ(x)) =
∑

r δ(r)χ(gr)πK(x) +On,K,χ(logN +
√
x);

( 2 ) EN (π′
f,r(x)) =

∑
r δ(r)χ(gr) log x πK(x)+On,K,χ

((
x

log x + logN log x
))

,

as x,N → +∞, if x < Ndξ/(n+1).

In particular, ∑
n≤x

EN (an,χ,f ) ∼
∑
r

δ(r)χ(gr)
x

log x

and ∑
n≤x

Λ(n)EN (a′n,χ,f ) ∼
∑
r

δ(r)χ(gr)x,

if x < Ndξ/(n+1), as x,N → +∞.

Proof. As in [Se] Proposition 7 of section 2.6, we get

π̃f,χ(x)− πf,χ(x) ≪ ∥χ∥(logN +
√
x)

as x → +∞, where ∥χ∥ = supσ∈Gf
|χ(σ)|.

We thus have (1) by Corollary 2.1.
Again, using an analogous argument as in [Se],

π′
f,χ(x)− πf,χ(x) ≪ ∥χ∥(logN +

√
x)

as x,N → +∞. Hence by partial integration∑
n≤x

Λ(n)EN (a′n,χ,f ) = EN

( ∑
1≤q℘≪log x

∑
q℘≤x

log q℘ · χ(Frobmf,℘)
)

= EN

( ∑
1≤q℘≪log x

log x
∑
q℘≤x

χ(Frobmf,℘)−
∑

1≤q℘≪log x

∫ x

2

∑
q℘≤t

χ(Frobmf,℘)
dt

t

)
log x EN (π′

f,χ(x)) +O
(∫ x

2
EN (π′

f,χ(x))
dt

t

)
=
∑
r

δ(r)χ(gr) log x πK(x)+O
(
∥χ∥(logN log x+

√
x log x)+∥χ∥

∫ x

2

πK(t)

t
dt
)

=
∑
r

δ(r)χ(gr) log x πK(x) +O
(
∥χ∥

( x

log x
+ logN log x

))
,

which shows (2).
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Let Nf (t, χ) be the function counting the net number of zeros of Lf (s, χ)
with imaginary part in (0, t]. A consequence of Corollary 3.1 is the following
upper bound on average for the logarithm f(χ) = ff (χ) of the global Artin
conductor.

Lemma 4.4. For almost all f ∈ P0
n,N , it holds

log |NK/Qf(χ)| ≪n,K,χ logN,

as N → +∞.

Proof. Recall that the global conductor f(χ) is the product over primes ℘ ⊆
OK of ℘ to the local conductor f℘(χ), where the local factor at ℘ is given in
terms of the the ramification groups Gi,℘ of Gf at ℘ as

f℘(χ) =
∑
i≥0

|Gi,℘|
|G0,℘|

codimV Gi,℘

=
∑
i≥0

|Gi,℘|
|G0,℘|

(
χ(1)− 1

|Gi,℘|
∑

σ∈Gi,℘

χ(σ)
)

=
(
χ(1)− 1

e℘,f

∑
σ∈G0,℘

χ(σ)
)
+
∑
i≥1

|Gi,℘|
|G0,℘|

(
χ(1)− 1

|Gi,℘|
∑

σ∈Gi,℘

χf (σ)
)

= ftame
℘ (χ) + fwild

℘ (χ),

where e℘,f = |G0,℘| = |I℘| is the ramification index at ℘. Moreover one has

ftame
℘ (χ) ≪

(
1− 1

e℘,f

)
∥χ∥

and
fwild
℘ (χ) ≪

(
1− 1

q℘

)
∥χ∥.

In the following, we say that a polynomial f ∈ P0
n,N is tamely or wildly

ramified at a prime ℘ if ℘ is tamely or wildly ramified in the extension
Kf/K. The logarithm of the norm of the conductor is then

log |NK/Qf(χ)| =
∑
℘

f℘(χ) log q℘

=
∑
℘

℘ ramifies

f℘(χ) log q℘

=
∑
℘

℘ tamely
ramified

ftame
℘ (χ) log q℘ +

∑
℘

℘ wildly
ramified

(ftame
℘ (χ) + fwild

℘ (χ)) log q℘.
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Note that the primes that are wildly ramified have norm dividing their ex-
ponent in the discriminant, hence dividing the order of Gf = Sn. So their
norm is ≪n,K 1. By Corollary 3.1,

EN (log |NK/Qf(χ)|) ≪ ∥χ∥
( ∑

q℘<Ndξ/(n+1)

log q℘·PN (f ∈ P0
n,N : ℘ tamely ramified)

+
∑

q℘≥Ndξ/(n+1)

log q℘
1

|P0
n,N |

∑
f∈P0

n,N

℘ tamely
ramified

1 +
∑
q℘≪1

(
1− 1

q℘

)
log q℘

)

≪ ∥χ∥
( ∑

q℘<Ndξ/(n+1)

log q℘ · PN (f ∈ P0
n,N : ℘ tamely ramified)

+ logN
1

|P0
n,N |

∑
f∈P0

n,N

∑
q℘≥Ndξ/(n+1)

1

℘ ramified

)

≪ ∥χ∥
( ∑

q℘<Ndξ/(n+1)

log q℘ · PN (f ∈ P0
n,N : ℘ ramified) + logN

)
≪n,K,χ

∑
q℘<Ndξ/(n+1)

log q℘
q℘

+ logN

≪n,K,χ logN.

Classically, one deduces Chebotarev Theorems from the information about
the zeros of the Artin L-functions, by using the explicit formulas. We aim
to do the opposite, that is, to compare the explicit formulas with Corollary
4.1, and get results about the distribution on average of zeros of Lf (s, χ).
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Appendix A

Higher moments

We prove a bound for the k-moments EN (πf,r(x)
k) for every k ≥ 2 by using

a standard application of the multimonomial theorem. Then we prove The-
orem 2 by applying the Central Limit Theorem, as in the classical proof of
the Erdős-Kac theorem for the prime divisors counting function.

Proposition 4.1. Let x = o(N ε) for all ε > 0. Then uniformly for nat-
ural numbers k ≥ 2 with (k − 1)! ≪n,r,K log log x, there exists a constant
C(n, r,K) such that

EN (πf,r(x)
k)− δ(r)kπK(x)k − kδ(r)k−1CrπK(x)k−1 log log x

≤ C(n, r,K)k!πK(x)k−1,

for x,N large enough.
Moreover, for a fixed k ≥ 2, x < Ndξ/(kn+1),

EN (πf,r(x)
k) = δ(r)kπK(x)k + kδ(r)k−1CrπK(x)k−1 log log x+O(πK(x)k−1)

and
EN ((πf,r(x)− δ(r)πK(x))k) ≪n,K k!

(
k

[k/2]

)
πK(x)k−1

as n,N → +∞.

Proof.

EN (πf,r(x)
k)

=
1

|P0
n,N |

∑
f∈P0

n,N

k∑
u=1

1

u!

∑
k1,...,ku≥2

k1+···+ku=k

(
k

k1, . . . , ku

) ∑
℘1 ̸=... ̸=℘u

NK/Q℘i≤x

1f,r(℘1) . . .1f,r(℘u).

The average sum 1
|P0

n,N |
∑

℘1 ̸=... ̸=℘u

NK/Q℘i≤x

1f,r(℘1) . . .1f,r(℘u) (which is the domi-

nant term in the above, for u = k) is the probability of f of splitting type r
mod ℘1, . . . , ℘k, i.e.

1

|P0
n,N |

∑
℘1 ̸=... ̸=℘k

NK/Q℘i≤x

1f,r(℘1) . . .1f,r(℘k) =
1

|P0
n,N |

∑
gi∈Xn,r,℘i

i=1,...,k

∑
fi≡gi mod ℘i

i=1,...,k

1.

By Lemma 2.1 we get

1

|P0
n,N |

∑
fi≡gi mod ℘i

i=1,...,k

1 =
1

(q℘1 . . . q℘k
)n

+O(N−dξ).
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Hence

1

|P0
n,N |

∑
℘1 ̸=... ̸=℘k

NK/Q℘i≤x

1f,r(℘1) . . .1f,r(℘k) = |Xn,r,℘1 | . . . |Xn,r,℘k
|
( 1

(q℘1 . . . q℘k
)n

+O(N−dξ)
)

= (δ(r)qn℘1
+Crq

n−1
℘1

+O(qn−2
℘1

)) . . . (δ(r)qn℘k
+Crq

n−1
℘k

+O(qn−2
℘k

))
( 1

(q℘1 . . . q℘k
)n

+O(N−dξ)
)

= (δ(r)k(q℘1 . . . q℘k
)n

+δ(r)k−1Cr((q℘1 . . . q℘k−1
)nqn−1

℘k
+(q℘1 . . . q℘k−2

)nqn−1
℘k−1

qn℘k
+· · ·+qn−1

℘1
(q℘2 . . . q℘k

)n)

+ δ(r)k−2C2
r ((q℘1 . . . q℘k−2

)nqn−1
℘k−1

qn−1
℘k

+ . . . )

+O((q℘1 . . . q℘k−1
)nqn−2

℘k
+· · ·+qn−2

℘1
(q℘2 . . . q℘k

)n))
( 1

(q℘1 . . . q℘k
)n

+O(N−dξ)
)

= δ(r)k + δ(r)k−1Cr

( 1

q℘1

+ · · ·+ 1

q℘k

)
+ δ(r)k−2C2

r

( ∑
1≤i<j≤k

1

q℘iq℘j

)
+ · · ·+ δ(r)Cr

( ∑
1≤j1<···<jk−1≤k

1

q℘j1
. . . q℘jk−1

)
+O

( 1

q℘1 . . . q℘k

+
1

q2℘1

+ · · ·+ 1

q2℘k

+ (q℘1 . . . q℘k
)nN−dξ

)
= δ(r)k + δ(r)k−1Cr

( 1

q℘1

+ · · ·+ 1

q℘k

)
+O

( ∑
1≤i<j≤k

1

q℘iq℘j

+
1

q2℘1

+ · · ·+ 1

q2℘k

+ (q℘1 . . . q℘k
)nN−dξ

)
.

as long as (q℘1 . . . q℘k
)nN−dξ < 1

q℘1
+ · · ·+ 1

q℘k
, e.g. when q℘i < Ndξ/(kn+1)

for all i = 1, . . . , k. By induction over k, one has the following estimates:∑
℘1 ̸=... ̸=℘k

NK/Q℘i≤x

1

q℘1

=
∑

q℘1≤x

1

q℘1

∑
℘1 ̸=℘2 ̸=... ̸=℘k

NK/Q℘2,...,NK/Q℘k≤x

1

=
∑

q℘1≤x

1

q℘1

(πK(x)k−1 +O((k − 1)!πK(x)k−2))

= πK(x)k−1 log log x+O((k − 1)!πK(x)k−1);

∑
℘1 ̸=... ̸=℘k

NK/Q℘i≤x

1

q℘1q℘2

=
∑
q℘1≤x

1

q℘1

∑
℘1 ̸=℘2

NK/Q℘2≤x

1

q℘2

∑
℘1 ̸=℘2 ̸=℘3 ̸=... ̸=℘k

NK/Q℘3,...,NK/Q℘k≤x

1

= πK(x)k−2(log log x)2

+O(πK(x)k−2 log log x+ (k − 2)!πK(x)k−3(log log x)2);
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∑
℘1 ̸=... ̸=℘k

NK/Q℘i≤x

(q℘1 . . . q℘k
)n =

∑
q℘1≤x

qn℘1

∑
℘1 ̸=℘2

NK/Q℘2≤x

qn℘2
. . .

∑
℘1 ̸=... ̸=℘k

NK/Q℘k≤x

qn℘k

≪ πK(x)k(n+1).

In the last one we used the asymptotic∑
NK/Q℘≤x

qn℘ ∼ πK(x)n+1.

Finally,

EN (πf,r(x)
k) = δ(r)kπK(x)k + kδ(r)k−1CrπK(x)k−1 log log x

+O
(
πK(x)k−1 + πK(x)k(n+1)N−dξ

)
as x,N → +∞.

The term πK(x)k(n+1)N−dξ is negligible for x < Ndξ/(kn+1). Since, by
induction

k∑
i=0

(
k

i

)
i(−1)k−i = 0,

the second estimate is straightforward:

EN ((πf,r(x)− δ(r)πK(x))k) =
k∑

i=0

(
k

i

)
EN (πf,r(x)

i)(−δ(r)πK(x))k−i

=
k∑

i=0

(
k

i

)
(δ(r)iπK(x)i + iδ(r)i−1CrπK(x)i−1 log log x

+O(i!πK(x)i−1))(−δ(r)πK(x))k−i

=
k∑

i=0

(
k

i

)
(δ(r)iπK(x)i)(−δ(r)πK(x))k−i

+

k∑
i=0

(
k

i

)
(iδ(r)i−1CrπK(x)i−1 log log x)(−δ(r)πK(x))k−i

+O(

k∑
i=0

(
k

i

)
(i!πK(x)i−1)(δ(r)πK(x))k−i)

= 0 + Crδ(r)
k−1πK(x)k−1 log log x

k∑
i=0

(
k

i

)
i(−1)k−i

+O(
k∑

i=0

(
k

i

)
δ(r)k−ii!πK(x)k−1)

= O(k!

(
k

[k/2]

)
πK(x)k−1),
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By enlarging the error term, one has

EN (πf,r(x)
k) = δ(r)kπK(x)k +O(πK(x)k−1 log log x) (17)

for x = o(Ndξ/(kn+1)). In particular, if we choose

x = N1/ log logN ,

then (17) holds for all k ≥ 1.

Alternative proof of the main theorem

Fix a splitting type r and a prime ℘. We are going to compare the behaviour
of 1f,r(℘) with that of the independent discrete random variables X℘ defined
in 2.1. Let

S(x) :=
∑

Nk/Q℘≤x

X℘.

By (3) of Proposition 2.1,

EN (πf,r(x)) = E(S(x)) +O(πK(x)n+1N−dξ).

Moreover, for k ≥ 2, the k-moment can be written as

EN (πf,r(x)
k) = E(S(x)k) +O(πK(x)k(n+1)N−dξ). (18)

In fact, looking at the beginning of the proof of Proposition 4.1, one has, for
all t = 1, . . . , k

1

|P0
n,N |

∑
℘1 ̸=... ̸=℘k

NK/Q℘i≤x

1f,r(℘1) . . .1f,r(℘t)

= |Xn,r,℘1 | . . . |Xn,r,℘t |
( 1

(q℘1 . . . q℘k
)n

+O(N−dξ)
)

=
∑

℘1 ̸=... ̸=℘t

NK/Q℘i≤x

E(X℘1 . . . X℘t) +O(πK(x)t(n+1)N−dξ).
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Therefore

EN (πf,r(x)
k)

=
1

|P0
n,N |

∑
f∈P0

n,N

k∑
u=1

1

u!

∑
k1,...,ku≥2

k1+···+ku=k

(
k

k1, . . . , ku

) ∑
℘1 ̸=... ̸=℘u

NK/Q℘i≤x

E(X℘1 . . . X℘u)

=
1

|P0
n,N |

∑
f∈P0

n,N

k∑
u=1

1

u!

∑
k1,...,ku≥2

k1+···+ku=k

(
k

k1, . . . , ku

) ∑
℘1 ̸=... ̸=℘t

NK/Q℘i≤x

E(X℘1 . . . X℘u)

+O(πK(x)t(n+1)N−dξ)

= E(S(x)k) +O(πK(x)t(n+1)N−dξ).

Since the variables (X℘)℘ are independent, by the central limit theorem

P
(
S(x)− E(S(x))

σ(S(x))
≤ b

)
−→

N→+∞
Φ(b) (19)

Now,
E(S(x)) = δ(r)πK(x) +O(log log x)

and

σ2(S(x)) =
∑

NK/Q℘≤x

σ2(X℘)

=
∑

NK/Q℘≤x

(E(X2
℘)− E(X℘)

2)

=
∑

NK/Q℘≤x

(
δ(r)− δ(r)2 +O

( 1

q℘

))
= (δ(r)− δ(r)2)πK(x) +O(log log x);

thus
S(x)− E(S(x))

σ(S(x))
=

S(x)− δ(r)πK(x) +O(log log x)

((δ(r)− δ(r)2)1/2πK(x)1/2)
(
1 +O

(
log log x
πK(x)

))
=

S(x)− δ(r)πK(x) +O(log log x)

(δ(r)− δ(r)2)1/2πK(x)1/2
(1 + o(1))

=
S(x)− δ(r)πK(x)

(δ(r)− δ(r)2)1/2πK(x)1/2
+ o(1).

Therefore, by (19)

P
(

S(x)− δ(r)πK(x)

(δ(r)− δ(r)2)1/2πK(x)1/2
≤ b

)
∼ Φ(b) +

1√
2π

∫ b+o(1)

b
e−t2/2dt

= Φ(b) + o(1) −→ Φ(b).
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Since the function Φ is determined by its moments

µk =

∫ +∞

−∞
xkdΦ(x),

if a family of distribution functions Fn satisfies
∫ +∞
−∞ xkdFn(x) → µk for all

k ≥ 1, then Fn(x) → Φ(x) pointwise (see [Fel], p. 262). On the other hand,
if Fn(x) → Φ(x) for each x and if

∫ +∞
−∞ |x|k+εdFn(x) is bounded in n for

some ε > 0, then
∫ +∞
−∞ xkdFn(x) → µk ([Fel], p. 245).

So the theorem will follow by the method of moments if we prove that
for k ≥ 1,

EN

(
(πf,r(x)− δ(r)πK(x))k

((δ(r)− δ(r)2)1/2πK(x)1/2)k

)
converges to µk as N → +∞. We shall first show that its difference with

E
(

(S(x)− δ(r)πK(x))k

((δ(r)− δ(r)2)1/2πK(x)1/2)k

)
converges to 0, and then show that the above itself converges to µk.

By (18),

E(S(x)k)− EN (πf,r(x)
k) ≪ πK(x)k(n+1)N−dξ

then

E((S(x)− δ(r)πK(x))k)− EN ((πf,r(x)− δ(r)πK(x))k)

≪
k∑

i=0

(
k

i

)
πK(x)i(n+1)N−dξ(δ(r)πK(x))k−i

≪ πK(x)k(n+1)N−dξ,

which converges to 0 by the choice of x. The last step is to show that the
moments

E
(
(S(x)− δ(r)πK(x))k

σk(S(x))

)
are bounded. Let

Y℘ = X℘ − |Xn,r,℘|
qn℘

= X℘ − E(X℘).

It holds, by the multimonomial theorem,

E((
∑

NK/Q℘≤x

Y℘)
k) = E((S(x)− E(S(x)))k)

=
k∑

u=1

∑
k1+···+ku=k

(
k

k1, . . . , ku

) ∑
NK/Q℘1<···<NK/Q℘u≤x

E(Y k1
℘1

) . . .E(Y ku
℘u

).
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Since E(Y℘) = 0, the last sum equals

k∑
u=1

∑
k1+···+ku=k

ki>1

(
k

k1, . . . , ku

) ∑
NK/Q℘1<···<NK/Q℘u≤x

E(Y k1
℘1

) . . .E(Y ku
℘u

).

Then |E(Y ki
℘i
)| ≤ |E(Y 2

℘i
)|, so∑

NK/Q℘1<···<NK/Q℘u≤x

E(Y k1
℘1

) . . .E(Y ku
℘u

) ≤ (
∑

NK/Q℘≤x

σ2(Y℘))
u

=≤ (
∑

NK/Q℘≤x

σ2(X℘))
u

= (σ2(S(x)))u.

Since k1+ · · ·+ku = k and ki ≥ 2, one has 2u ≤ k. Consider N large enough
such that σ2(S(x)) ≥ 1. It turns out that

E((S(x)− E(S(x)))k) ≤ σk(S(x))

k∑
u=1

∑
k1+···+ku=k

ki>1

(
k

k1, . . . , ku

)

≪ σk(S(x));

in other words

sup
x

∣∣∣∣E((S(x)− δ(r)πK(x))k

σk(S(x))

)∣∣∣∣ < ∞,

which completes the proof.
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Zürich, Switzerland.

E-mail ilaria.viglino@yahoo.it

Website https://math.ethz.ch/the-department/people.html?u=viglinoi

Phone +41 764 098 003

OrcID https://orcid.org/ 0000-0002-0230-5495

Education
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Linear Algebra I.

Jan. 22 - Aug. 22 Coordinator, ETH Eidgenössische Technische Hochschule, Zürich, CH
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