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Robust Data-Enabled Predictive Control: Tractable
Formulations and Performance Guarantees

Linbin Huang†, Jianzhe Zhen†, John Lygeros, and Florian Dörfler

Abstract—We introduce a general framework for robust data-
enabled predictive control (DeePC) for linear time-invariant (LTI)
systems, which enables us to obtain robust and optimal control
in a receding-horizon fashion based on inexact input and output
data. Robust DeePC solves a min-max optimization problem
to compute the optimal control sequence that is resilient to
all possible realizations of the uncertainties in data within a
prescribed uncertainty set. We present computationally tractable
reformulations of the min-max problem with various uncertainty
sets. Moreover, we show that even though an accurate prediction
of the future behavior is unattainable due to inaccessibility of
exact data, the obtained control sequence provides performance
guarantees for the actually realized input and output cost in open
loop. Finally, we demonstrate the performance of robust DeePC
using high-fidelity simulations of a power converter system.

Index Terms—Data-driven control, predictive control, regular-
ization, robust control, robust optimization.

I. INTRODUCTION

Data-driven control seeking an optimal control strategy from
data is attracting increasing interest from both academia and
industry. It can be applied in scenarios where data is readily
available, but the system and uncertainty models are too com-
plex to obtain or maintain. There are mainly two paradigms
of data-driven control: 1) indirect data-driven control that first
identifies a model and then conducts control design based
on the identified model, and 2) direct data-driven control
that circumvents the step of system identification and obtains
control policies directly from data. Indirect data-driven control
has a long history in control, where many methods have
been developed for system identification [1]; the subsequent
control design can use, for instance, model predictive control
(MPC) [2]–[4]. Direct data-driven control gained increasing
attention and became popular thanks to iterative feedback
tuning [5], virtual reference feedback tuning [6], reinforcement
learning [7], learning-based control [8]–[10], etc. The con-
nection between indirect data-driven control and direct data-
driven control was investigated in [11] from the perspective
of regularizations and convex relaxations in optimization. A
central promise is that direct data-driven control may have
higher flexibility and better performance than indirect data-
driven control thanks to the data-centric representation that
avoids using a specific model from identification. Moreover,
it is generally difficult to map uncertainty specifications from
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system identification over to robust control in indirect data-
driven control, while, as we will show in this paper, this may
become easier in direct data-driven control.

In recent years, a result formulated by Willems et al. has
received renewed attention. This result, known as the Funda-
mental Lemma [12], shows that the subspace of trajectories
of a linear time-invariant system can be obtained from the
column span of a data Hankel matrix. Multiple direct data-
driven methods have been proposed based on the Fundamental
Lemma, e.g., [13]–[20]. Here we concentrate on the data-
enabled predictive control (DeePC) proposed in [13], which
uses input and output data to perform safe and optimal control
(with quadratic cost) in a receding-horizon manner. DeePC
has been successfully applied in many scenarios, e.g., power
systems [21], [22], motor drives [23], and quadcopters [24].

When exact (noiseless and uncorrupted) data is accessible,
DeePC can accurately predict the system’s future behavior.
However, in practice, exact data is in general not accessible
due to measurement noise and input noise, which leads to
inaccurate estimations and predictions and may degrade the
control performance. In fact, a key question for data-driven
control is: how does the system perform when applying control
policies computed from inexact (noisy) data? For DeePC, it
has been frequently observed that regularization is important
to ensure good performance under noisy measurements [11],
[15], [17]. In [25], we showed that including a quadratic
regularization in DeePC enables the reformulation as a min-
max problem, which provides robustness against uncertainties
in the output data. Nonetheless, it still remains unclear whether
the performance can be guaranteed under inexact data, and
whether different structural assumptions on the uncertainties
(e.g., with Hankel structure) can be taken into account to re-
duce the conservativeness induced from coarse robustification.

To this end, we present a robust DeePC framework that
involves solving a min-max problem to robustify the control
sequence against uncertainties in data. We justify our min-max
formulation by showing that it leads to a performance guaran-
tee. We consider different uncertainty sets as tight estimates
when different types of data matrices (e.g., Hankel or Page
matrices) are used. For instance, to make the considered set
tight, one may incorporate Hankel structure on uncertainties
when Hankel matrices are used, and may consider column-
wise uncertainties when Page/trajectory matrices are used. For
such uncertainty sets we explicitly show how the min-max
problems can be reduced to tractable minimization problems.

The rest of this paper is organized as follows: Section II
gives a brief review on DeePC. Section III presents robust
DeePC. Section IV derives the tractable formulations under
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different uncertainty sets. Section V tests the robust DeePC
on a power converter system. Section VI concludes the paper.

Notation: Let Z denote the set of integers, and [n] the index
set with cardinality n ∈ Z>0, i.e., [n] = {1, ..., n}. Let ∥x∥
(∥A∥) denote the 2-norm of the vector x (the matrix A) and
∥x∥1 the 1-norm of x. For a vector x, we use ∥x∥2A to denote
x⊤Ax and xi (or (x)i) to denote the i-th element of x. For a
matrix A, we use ∥A∥Q to denote ∥Q 1

2A∥, ∥A∥F to denote the
Frobenius norm of A, Ai (or (A)i) to denote the i-th column
of A, and Aij (or (A)ij) to denote the element in the i-th row
and j-th column of A. We use 1n to denote a vector of ones
of length n, 1m×n to denote a m-by-n matrix of ones, and In
to denote an n-by-n identity matrix (abbreviated as I when
the dimensions can be inferred from the context). We use A+

to denote the pseudoinverse of A, and A⊥ = I − A+A to
denote the orthogonal projector onto the kernel of A. We use
[Z0;Z1; ...;Zℓ] to denote the matrix [Z⊤

0 Z⊤
1 · · · Z⊤

ℓ ]⊤. We
use ⊗ to denote the Kronecker product.

II. DATA-ENABLED PREDICTIVE CONTROL

A. Preliminaries on the Fundamental Lemma

Consider a discrete-time linear time-invariant (LTI) system{
xt+1 = Axt +But
yt = Cxt +Dut

(1)

in a minimal representation, where xt ∈ Rn is the state of the
system, ut ∈ Rm is the input vector, and yt ∈ Rp is the output
vector, all at time t ∈ Z≥0. Recall the respective extended ob-
servability matrix and convolution (impulse-response) matrices

Oℓ(A,C) := [C;CA; ...;CAℓ−1] , and

TN :=


D 0 0 · · · 0
CB D 0 · · · 0
CAB CB D · · · 0

...
...

...
. . .

...
CAN−2B CAN−3B CAN−4B · · · D

 . (2)

The lag of the system (1) is defined by the smallest integer
ℓ ∈ Z≥0 such that the observability matrix Oℓ(A,C) has rank
n, i.e., the state can be reconstructed from ℓ measurements.

In a data-driven setting, ℓ and n are generally unknown,
but upper bounds can usually be inferred from knowledge of
the system. Consider a length-T (T ∈ Z≥0) trajectory of (1):
ūd = [ūd0 ; ū

d
1 ; . . . ; ū

d
T−1] ∈ RmT , ȳd = [ȳd0 ; ȳ

d
1 ; . . . ; ȳ

d
T−1] ∈

RpT , i.e., the length-T restricted behavior. For the inputs ūd,
define the Hankel matrix of depth L (with T ≥ L > ℓ) as

HL(ū
d) :=


ūd
0 ūd

1 · · · ūd
T−L

ūd
1 ūd

2 · · · ūd
T−L+1

...
...

. . .
...

ūd
L−1 ūd

L · · · ūd
T−1

 . (3)

Similarly, for the outputs define the Hankel matrix HL(ȳ
d).

The length-L restricted behavior of (1) equals the im-
age of HL(ū

d, ȳd) := [HL(ū
d);HL(ȳ

d)] if and only if
rank

(
HL(ū

d, ȳd)
)
= mL+n [26, Corollary 19]. Note that this

result extends and includes the original Fundamental Lemma
[12, Theorem 1] which requires controllability and persistency
of excitation (i.e., HL+n(ū

d) must have full row rank) as

sufficient conditions. These behavioral results can be leveraged
for data-driven prediction as follows. Consider Tini, N ∈ Z≥0

so that rank
(
HTini+N (ūd, ȳd)

)
= m(Tini+N)+n. Then, we

partition Hankel matrix HTini+N (ūd, ȳd) into

[ŪP; ŪF] := HTini+N (ūd) and [ȲP; ȲF] := HTini+N (ȳd) ,

where ŪP ∈ RmTini×Hc , ŪF ∈ RmN×Hc , ȲP ∈ RpTini×Hc ,
ȲF ∈ RpN×Hc , and Hc = T − Tini − N + 1. In the sequel,
the data in the partition with subscript P (for “past”) will be
used to implicitly estimate the initial condition of the system,
whereas the data with subscript F will be used to predict the
“future” behavior. Recall that the image of HTini+N (ūd, ȳd)
spans all length-(Tini+N) trajectories, that is, [ūini;u; ȳini; y]
is a trajectory of (1) if and only if there exists g ∈ RHc so that

[ŪP; ȲP; ŪF; ȲF]g = [ūini; ȳini;u; y] . (4)

The initial trajectory [ūini; ȳini] can be thought of as setting the
initial condition for the future trajectory [u; y]. In particular, if
Tini ≥ ℓ, for every given u, the future outputs y are uniquely
determined through (4) [27].

One can also use (Chinese) Page matrices or trajectory
matrices as data-driven predictors [26], where the Page matrix
(of depth L) for a signal u ∈ RmLHc is

PL(u) :=


u0 uL · · · uL(Hc−1)

u1 uL+1 · · · uL(Hc−1)+1

...
...

. . .
...

uL−1 u2L−1 · · · uLHc−1

 , (5)

and a trajectory matrix (of depth L) can be constructed from
Hc independent length-L trajectories ui ∈ RmL (i ∈ [Hc]) as

TL(u) :=
[
u1 u2 · · · uHc

]
. (6)

Notice that the columns in a Hankel matrix are correlated,
while the columns in a Page/trajectory matrix are independent.

B. Review of DeePC

Based on (4), the DeePC method in [13] directly uses input
and output data to perform safe and optimal control:

min
g,[u;y]∈C

∥u∥2R + ∥y − r∥2Q
s.t. [ŪP; ȲP; ŪF; ȲF]g = [ūini; ȳini;u; y],

(7)

where the input/output constraints are defined as C = {[u; y] ∈
R(m+p)N | W [u; y] ≤ w} for W ∈ Rnw×(m+p)N and w ∈
Rnw (we assume that C is large enough such that (7) is
feasible). The positive definite matrix R and positive semi-
definite matrix Q are the cost matrices. The vector r ∈ RpN

is a reference trajectory for the future outputs. DeePC solves
(7) in a receding horizon fashion, that is, after calculating
the optimal control sequence u⋆, we apply (ut, ..., ut+k−1) =
(u⋆0, ..., u

⋆
k−1) to the system for k ≤ N time steps. Then,

we reinitialize (7) by updating [ūini; ȳini] to the most recent
measurements, and setting t to t + k, to calculate the new
optimal control for the next k time steps. We refer to, for
example [11], [15], [28], for selecting the hyper-parameters.

Exact data and inexact data. We use ŪP, ŪF, ūini, ȲP, ȲF,
and ȳini to denote the exact data generated from the system
(1), which accurately captures the system dynamics according
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to (4); we use ÛP, ÛF, and ûini to denote the corresponding
recorded (inexact) input data, and use ŶP, ŶF, and ŷini to
denote the corresponding measured (inexact) output data.

In this paper, we assume that there is no process noise in
the state variables. The formulation in (7) assumes exact data,
while in practice, exact data may not be accessible to the
controller due to, for example, measurement noise and input
noise (i.e., noise that enters through the input channels). With
inexact data, the equality constraints in (7) may be infeasible,
either with a small T or a large T [13]. Moreover, the equality
constraints may restrict the feasible set of g to an undesired
region that is determined by random noise. Therefore, we
propose to penalize the violation of the equality constraints in
the cost function (i.e., consider them as soft constraints [29])

min
g:[ÛFg;ŶFg]∈C

∥ÛFg∥2R + ∥ŶFg − r∥2Q

+λu∥ÛPg − ûini∥2 + λy∥ŶPg − ŷini∥2 ,
(8)

where λu, λy > 0 are the weighting coefficients. Note that (8)
is always feasible as long as the set C is nonempty. In what
follows, we adopt robust optimization approach to address
uncertainties in the data matrices and trajectories of (8).

III. ROBUST DEEPC

In this section, we propose a framework for robust DeePC
to handle different types of uncertainties in input/output data.

A. Robust DeePC

To model the uncertainties in the input/output data, we
introduce an uncertainty vector ξ ∈ D, where D ⊂ Rnξ is
a prescribed uncertainty set. We consider parameterized data
matrices UP(ξ), YP(ξ), UF(ξ), YF(ξ), and initial trajectories
uini(ξ), yini(ξ), which are affine functions of ξ and satisfy
UP(0) = ÛP, YP(0) = ŶP, UF(0) = ÛF, YF(0) = ŶF,
uini(0) = ûini and yini(0) = ŷini. For instance,

YP(ξ) = ŶP+
∑nξ

j=1
Y

(j)
P ξj and yini(ξ) = ŷini+

∑nξ

j=1
y
(j)
ini ξj ,

where Y
(j)
P ∈ RpTini×Hc , y(j)ini ∈ RpTini for every j ∈ [nξ].

The parameterized matrices and trajectories are built upon
the inexact data. We assume that the uncertainties in the
input/output data are captured by the set D.

Assumption 1. There exists a ξ̄ ∈ D such that UP(ξ̄) = ŪP,
YP(ξ̄) = ȲP, UF(ξ̄) = ŪF, YF(ξ̄) = ȲF, uini(ξ̄) = ūini, and
yini(ξ̄) = ȳini.

Then, we introduce the following robust DeePC formulation
which robustifies (8) against the uncertainties in data

min
g∈G

max
ξ∈D

∥UF(ξ)g∥2R + ∥YF(ξ)g − r∥2Q
+λu∥UP(ξ)g − uini(ξ)∥2 + λy∥YP(ξ)g − yini(ξ)∥2,

(9)
where G = {g | ∀ξ ∈ D : [UF(ξ)g;YF(ξ)g] ∈ C}. Note
that the input/output constraints in G are also robustified. We
assume that G is nonempty. Since C is a polytope and the
uncertainty set D is a compact and convex set with nonempty
relative interior, each semi-infinite constraint in G admits a
tractable robust counterpart, that is, it can be reformulated into
a finite set of convex constraints by using standard techniques

TABLE I
TRACTABLE ROBUST COUNTERPARTS FOR ∀ξ ∈ D : (a+M⊤ξ)⊤x ≤ b.

LO: LINEAR OPTIMIZATION PROBLEMS. CQO: CONVEX QUADRATIC
OPTIMIZATION PROBLEMS. NOTE THAT ν IS AN ADDITIONAL

OPTIMIZATION VARIABLE IN THE RESULTING TRACTABLE ROBUST
COUNTERPARTS. THIS TABLE IS ADAPTED FROM [31].

tractability D robust counterpart

box (LO) ∥ξ∥∞ ≤ ρ a⊤x+ ρ∥Mx∥1 ≤ b

ellipsoidal
(CQO) ∥ξ∥ ≤ ρ a⊤x+ ρ∥Mx∥ ≤ b

budget
(LO) Dξ ≤ d

a⊤x+ d⊤ν ≤ b,
D⊤ν =Mx, ν ≥ 0

polyhedral
(LO)

∥ξ∥∞ ≤ ρ,
∥ξ∥1 ≤ τ

a⊤x+ ρ∥ν∥1 + τ∥Mx− ν∥∞ ≤ b

Fig. 1. Interaction between the system and robust DeePC. The data matrices
ÛP, ŶP, ÛF, and ŶF are obtained offline.

from robust optimization [30]; see Table I. If some of the
equality constraints in (7) are certain, that is, not affected by
uncertainties, then one can include such equalities in G instead
of softening them, in a similar way as in [25]. The minimizer
g⋆ of (9) is then used to compute the control sequence u⋆ =
ÛFg

⋆, which is optimal with regards to the worst-case scenario
in D (i.e., robust and optimal). We illustrate the relationship
between the unknown system and robust DeePC in Fig. 1,
where the realized control actions usys of the system may
be different from u⋆ due to input noise. The realized output
trajectory ysys (in response to usys) is in general different from
the predicted trajectory y⋆ = ŶFg

⋆. With inexact data, the
(worst-case) prediction in (9) may be non-causal. We relegate
the investigation on the causality issue to future research.

B. Performance Guarantees of Robust DeePC

Although (9) considers uncertainties in data, it is still not
obvious that the realized cost can be guaranteed by applying
u⋆ = ÛFg

⋆ to the system. This is because the violations of the
initial conditions are penalized in (9), and thus we generally
have ŪPg ̸= ūini and ȲPg ̸= ȳini, hence, the decision variable
g cannot be used to accurately predict the realized future
trajectory. As a first result, we link the realized cost of the
system, defined by crealized = ∥usys∥2R + ∥ysys − r∥2Q, to the
optimization cost of (9), and show how the realized cost can
be certified by applying robust DeePC. Here “realized cost”
refers to the cost accrued by the real system if usys is applied
in open loop for the whole horizon N (see Fig. 1).
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Theorem III.1. If Assumption 1 holds and ∥usys−ŪFg
⋆∥ ≤ ηi

where g⋆ is the minimizer of (9), then there exists sufficiently
large (λu, λy) such that

2
√
copt + ηi(

√
2 ∥ImN∥R + ∥TN∥Q) ≥

√
crealized ,

where copt is the minimum of (9), and TN is defined in (2).

Proof. If Assumption 1 holds, it follows the min-max problem

copt ≥∥ŪFg
⋆∥2R + ∥ȲFg⋆ − r∥2Q + λu∥ŪPg

⋆ − ūini∥2

+ λy∥ȲPg⋆ − ȳini∥2 .
(10)

Since the realized [usys; ysys] is an input/output trajectory de-
parting from [ūini; ȳini], according to the Fundamental Lemma
[12], there exists a ḡ that satisfies

[ŪP; ȲP; ŪF; ȲF]ḡ = [ūini; ȳini;usys; ysys]. (11)

By defining ∆g = ḡ − g⋆, we have
ŪP

ȲP
ŪF

ȲF

∆g =


ūini − ŪPg

⋆

ȳini − ȲPg
⋆

usys − ŪFg
⋆

ysys − ȲFg
⋆

 =:


ϵuini

ϵyini

ϵusys

ysys − ȲFg
⋆

 , (12)

which implies that

∆g =

ŪP

ȲP
ŪF

+ ϵuini

ϵyini

ϵusys

+

ŪP

ȲP
ŪF

⊥

x ,

and ȲF∆g = ȲF

ŪP

ȲP
ŪF

+ ϵuini

ϵyini

ϵusys

 =: Kϵini + TN ϵusys
,

where x ∈ RHc and ϵini = [ϵuini
; ϵyini

] , while the second
equality follows from ȲF[ŪP; ȲP; ŪF]

⊥ = 0 because the out-
put trajectory is uniquely determined given an initial trajectory
and a future input trajectory [27]. Note that TN maps the N -
step future inputs to the N -step future outputs; see (2).

By defining Λ := diag(λuImTini
, λyIpTini

), it follows
from (10) and (12) that

copt − ∥usys − ϵusys∥2R
≥∥ysys −Kϵini − TN ϵusys − r∥2Q + ∥ϵini∥2Λ
≥ 1

2 (∥ysys − r −Kϵini − TN ϵusys
∥Q + ∥ϵini∥Λ)2

≥ 1
2 (∥ysys − r − TN ϵusys

∥Q − ∥Kϵini∥Q + ∥ϵini∥Λ)2

≥ 1
2∥ysys − r − TN ϵusys

∥2Q .

(13)

Here, the second inequality follows from a2 + b2 ≥ 1
2 (a +

b)2; the third inequality holds thanks to the reverse triangle
inequality; and the last inequality is satisfied if we take λu
and λy large enough (by assumption) to ensure Λ ⪰ K⊤QK
such that ∥ϵini∥Λ ≥ ∥Kϵini∥Q. From (13), we further have

copt ≥ 1
4 (
√
2∥usys − ϵusys

∥R + ∥ysys − r − TN ϵusys
∥Q)2 ,

considering that a2 + b2 ≥ 1
2 (a+ b)2, and

2
√
copt ≥

√
2∥usys − ϵusys

∥R + ∥ysys − r − TN ϵusys
∥Q

≥
√
2∥usys∥R −

√
2
∥∥ϵusys

∥∥
R
+ ∥ysys − r∥Q − ∥TN ϵusys

∥Q
≥

√
2∥usys∥R + ∥ysys − r∥Q − ηi(

√
2∥ImN∥R + ∥TN∥Q) ,

where the second inequality follows from the reverse triangle
inequality, and the third due to the Cauchy–Schwarz inequality.
Notice that

√
2 ∥usys∥R + ∥ysys − r∥Q ≥ √

crealized because
a+ b ≥

√
a2 + b2 (a, b ≥ 0). This completes the proof.

Theorem III.1 shows that by solving the min-max problem
in (9), one can obtain a robust control sequence that guarantees
the realized cost. The choice of (λu, λy) depends only on Q
and K, where K is implicitly determined by the state-space
matrices A, B, C, and D. Since Theorem III.1 only requires
(λu, λy) to be sufficiently large, one can use an estimate on the
upper bound of the largest eigenvalue of K⊤QK and choose
(λu, λy) accordingly, where we can estimate K using inexact
data. The value of ηi increases with a higher level of input
noise. In the absence of input noise (i.e., usys = ŪFg

⋆) we
construct a new upper bound on the realized cost.

Corollary III.2. If Assumption 1 holds and the input data is
exact, then there exist sufficiently large (λu, λy) such that

2copt ≥ crealized .

Proof. Since ϵusys
= usys − ŪFg

⋆ = 0 by assumption, the
claim follows from (13) and the definition of crealized.

With ηi = 0, the inequality in Corollary III.2 is at least as
tight as the one in Theorem III.1. The minimum of (9) will in
general be increasing when a larger uncertainty set is needed
to cover possible realized uncertainties, which indicates that
the realized cost may also increase. Hence, one should also
make the considered uncertainty set tight to reduce the con-
servativeness. We observe in our case studies (in Section IV)
that crealized is close to 2copt when the considered uncertainty
set is a tight estimate of the realized uncertainties.

IV. TRACTABLE REFORMULATIONS OF ROBUST DEEPC
We next derive tractable reformulations for robust DeePC

when various uncertainty sets are considered, and we will com-
pare the conservativeness and the resulting robust counterparts.
We first compactly and equivalently rewrite (9) as

min
g∈G

max
ξ∈D

∥A(ξ)g − b(ξ)∥2 , (14)

where A(ξ) and b(ξ) are affine functions of ξ, namely,

A(ξ) = A(0)+
∑nξ

j=1
A(j)ξj , and b(ξ) = b(0)+

∑nξ

j=1
b(j)ξj ,

where

A(j) = [λ
1
2
uU

(j)
P ;λ

1
2
y Y

(j)
P ;R

1
2U

(j)
F ;Q

1
2Y

(j)
F ] ∈ RHr×Hc ,

b(j) = [λ
1
2
uu

(j)
ini ;λ

1
2
y y

(j)
ini ; 0; 0] ∈ RHr , ∀j ∈ [nξ] ,

A(0) = [λ
1
2
u ÛP;λ

1
2
y ŶP;R

1
2 ÛF;Q

1
2 ŶF] ∈ RHr×Hc ,

b(0) = [λ
1
2
u ûini;λ

1
2
y ŷini, ; 0;Q

1
2 r] ∈ RHr ,

and Hr = (m+ p)(Tini +N). Eq. (14) can be considered as
a robust least-squares problem, and we refer to, e.g., [30],
[32], for existing techniques to solve this problem. Below
we discuss various uncertainty quantifications and tractable
reformulations for (14) sorted from coarse to fine, as listed in
Table II. Note that the squared 2-norms in the soft constraints
of (8) and (9) are essential for obtaining the robust least-square
problem in (14) and deriving the tractable reformulations.
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TABLE II
COMPARISONS OF DIFFERENT UNCERTAINTY SETS FOR ROBUST DEEPC.

Section uncertainty
type tractability

set different
bounds for
different
columns

remove the
effects of
scaling

matrices

consider
Hankel

structure

IV-A unstructured conic
quadratic % % %

IV-B column-wise conic
quadratic ! % %

IV-C interval convex
quadratic ! ! %

IV-D structured semi-definite
program % ! !

A. Unstructured Uncertainties

Consider the following variant of (14) with unstructured
uncertainties in the following form

min
g∈G

max
(∆A,∆b)∈Duns

∥(A(0) +∆A)g − (b(0) +∆b)∥, (15)

where the unstructured uncertainty set is defined through

Duns = {(∆A,∆b) | ∥[∆A ∆b]∥F ≤ ρu},

with ρu ∈ R≥0. Here we take the square-root of the quadratic
objective function of (14), which will not affect the minimizer.

Note that (15) is a special (albeit unstructured) case of (14)
with ξ = [(∆A)1; (∆A)2; . . . ; (∆A)Hc

; ∆b], and it can be
easily verified that the elements of A(ξ) = A(0) + ∆A

and b(ξ) = b(0) + ∆b are affine functions of ξ. Moreover,
Assumption 1 can be easily satisfied by choosing a sufficiently
large ρu, which leads to a performance certificate according
to Theorem III.1. The following result shows that (15) can be
reformulated into a tractable conic quadratic problem.

Proposition IV.1. A vector g⋆ is a minimizer of (15) if and
only if g⋆ also minimizes the following problem

min
g∈G

∥A(0)g − b(0)∥+ ρu
√

∥g∥2 + 1. (16)

Moreover, the minima of (15) and (16) coincide.

Proof. The claimed result can be proved by referring to [32,
Theorem 3.1].

Eq. (16) can be seen as adding a regularizer
√
∥g∥2 + 1

to the formulation in (8) [25]. If ∆b = 0, the regularizer
becomes ∥g∥. This regularizer robustifies the obtained control
policy against inexact data, which avoids the incorrect solution
(u⋆ = ÛFg

⋆ = 0 and y⋆ = r) of (7) when the data matrix
becomes full row rank due to noise. We refer to [28] for a
detailed discussion on the role of regularization in data-driven
control. The considered uncertainties in (15) may be overly
conservative for several reasons: 1) the worst-case realization
of the uncertainties satisfies rank([∆A ∆b]) = 1 [32], which
cannot be achieved in general when Hankel matrices are
used; 2) Hankel structure cannot be imposed on ∆A; 3) the
uncertainties are indirectly added to the raw data through the
scaling matrices, e.g., Q

1
2 and λ

1
2
y I; 4) the columns in [∆A ∆b]

are uncorrelated when Page matrices or trajectory matrices are
used, but Duns considers the Frobenius norm of [∆A ∆b]
to be bounded which may impose correlations among the

columns. In the following sections we alleviate these sources
of conservatism. First we consider column-wise uncertainties.

B. Generalized Column-wise Uncertainties

Consider the following variant of (14) with generalized
column-wise uncertainties, that is,

min
g∈G

max
(∆A,∆b)∈Dgcol

∥(A(0) +∆A)g − (b(0) +∆b)∥. (17)

Here the generalized column-wise uncertainty set [33, Sec-
tion 3] is defined column-by-column as

Dgcol={(∆A,∆b) | ∃ρA ∈ RHc :∥(∆A)i∥ ≤ (ρA)i,∀i ∈ [Hc],

fj(ρA) ≤ 0, ∀j ∈ [J ], ∥∆b∥ ≤ ρb},

where the function fj : RHc → [ − ∞,+∞] correlating the
(ρA)i is a proper, closed and convex function for each j ∈ [J ].

Proposition IV.2. If Dgcol admits a Slater point, then a
vector g⋆ is a minimizer of (17) if and only if there exists
a (λ⋆, {y⋆j }Jj=1) such that g⋆ also minimizes the following
convex optimization problem

min
g∈G,λ

{yj}Jj=1

∥A(0)g − b(0)∥+
∑

j∈[J]
ψj(yj , λj) + ρb

s.t. λj ≥ 0 ∀j ∈ [J ] and
∑

j∈[J]
yj ≤ −|g|,

(18)

where ψj : RHc ×R≥0 → [−∞,+∞] denotes the perspective
function1 of the conjugate function f∗j : RHc → [−∞,+∞]
of fj . Moreover, the minima of (17) and (18) coincide.

Proof. According to [33, Theorem 1], we have

max(∆A,∆b)∈Dgcol
∥(A(0) +∆A)g − (b(0) +∆b)∥

= ∥A(0)g − b(0)∥+ max
ρA:fj(ρA)≤0 ∀j∈[J]

ρ⊤A|g|+ ρb.
(19)

Then, one can reformulate the inner maximization into its dual
and obtain (18) thanks to the strong duality of convex pro-
grams, which applies because Dgcol admits a Slater point.

Eq. (17) is useful if (column-independent) Page/trajectory
matrices are used. Different (correlated) bounds for different
columns can be considered, which can come in handy when
the data comes from a time-varying system or the columns
are from independent experiments (i.e., trajectory matrices
are used). The following result shows that for a special case
of (17), where ρA is an uncorrelated vector, then (17) becomes
a least-square problem with a weighted 1-norm regularization.

Corollary IV.3. Consider Dgcol = Dcol in (17), where

Dcol := {(∆A,∆b)|∥(∆A)i∥ ≤ (ρA)i,∀i ∈ [Hc], ∥∆b∥ ≤ ρb},

then g⋆ is a minimizer of (17) if and only if g⋆ minimizes

min
g∈G

∥A(0)g − b(0)∥+ ρ⊤A|g|+ ρb . (20)

Moreover, the minima of (17) and (20) coincide.

Proof. The result follows from (19) with a constant ρA.

1We adopt the definition of the perspective function from [34], where
ψ(x, t) = tf∗(x/t) if t > 0, and ψ(x, t) = δ∗

dom(f)
(x) if t = 0, and

δ∗S denotes the support function over the set S.
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In (17), the uncertainties are still indirectly added to the raw
data through the scaling matrices. Although one can consider
more sophisticated column-wise sets to cancel the scaling
matrices, a tractable formulation may not be obtained. We next
show that with interval uncertainties, one can directly consider
uncertainties added to data and obtain a tractable formulation.

C. Interval Uncertainties

Consider the following special case of (14)

min
g∈G

max
(∆A,∆b)∈Dint

∥(A(0) +∆A)g − (b(0) +∆b)∥ (21)

with the nonempty interval uncertainty set

Dint = {(∆A,∆b) | |(∆A)ij | ≤ Āij ,∀(i, j), |(∆b)i| ≤ b̄i,∀i},

where Ā ∈ RHr×Hc

≥0 and b̄ ∈ RHr

≥0 .

Proposition IV.4. A vector g⋆ is a minimizer of (21) if
and only if there exists a (γ⋆, ν⋆) such that (g⋆, γ⋆, ν⋆) also
minimizes the following convex quadratic problem

min
g∈G,γ,ν

∥γ + b̄+ Āν∥2

s.t. −γ ≤ A(0)g − b(0) ≤ γ
−ν ≤ g ≤ ν.

(22)

Moreover, the minimum of (21) coincides with ∥γ⋆+b̄+Āν⋆∥.

Proof. This proof is adapted from [30, Section 6.2], which
shows that (21) can be equivalently reformulated as

min
g∈G,τ

τ⊤τ

s.t. |(A(0)g − b(0))i|+ b̄i +
∑Hc

j=1
Āij |gj | ≤ τi, ∀i ∈ [Hr],

where the minimum of (21) coincides with ∥τ⋆∥. One can now
eliminate τ by introducing γi and νj to replace |(A(0)g−b(0))i|
and |gj |, respectively, for every i ∈ [Hr] and j ∈ [Hc].

With the interval uncertainty set, one can directly consider
uncertainties on the raw data and cancel the effects of the
scaling matrices. For instance, when the measurement error of
the i-th output is bounded by ỹi ∈ R≥0 and the input noise
of the i-th input is bounded by ũi ∈ R≥0, we can choose

Ā =


λ

1
2
u 1Tini×Hc ⊗ ũ

λ
1
2
y 1Tini×Hc ⊗ ỹ

R
1
2 1N×Hc ⊗ ũ

Q
1
2 1N×Hc ⊗ ỹ

 and b̄ =


λ

1
2
u 1Tini ⊗ ũ

λ
1
2
y 1Tini ⊗ ỹ

0
0

 . (23)

In the above settings, uncertainties with Hankel structure
cannot be considered. We address this issue in what follows.

D. Structured Uncertainties

Consider (14) with the uncertainties residing within the
following uncertainty set

D = Dstruct := {ξ ∈ Rnξ | ∥ξ∥ ≤ ρs}.

Recall that ξ enters A(ξ) and b(ξ) with affine structures. We
show below how these affine structures allow us to construct a

Hankel structure for the uncertainties. We start by noting that
(14) can be reformulated as

min
g∈G

max
ξ∈D

∥D(g)ξ − c(g)∥2 , (24)

where D(g) and c(g) that are affine functions of g, namely,

D(g) = D(0)+
∑Hc

ℓ=1
D(ℓ)gℓ, and c(g) = c(0)+

∑Hc

ℓ=1
c(ℓ)gℓ.

The equivalence between (14) and (24) directly follows from

(A(0))ℓ =c
(ℓ) ∀ℓ ∈ [Hc], (D(0))j = b(j) ∀j ∈ [nξ],

(A(j))ℓ =(D(ℓ))j ∀ℓ ∈ [Hc] ∀j ∈ [nξ], b
(0) = c(0).

Example 1 (Additive uncertainties with Hankel structure).
Consider uncertainties directly on the inexact data (i.e., ûd,
ûini, ŷd, and ŷini). Let ξ = [ξ1 ∈ RmT ; ξ2 ∈ RpT ; ξ3 ∈
RmTini ; ξ4 ∈ RpTini ] ∈ Dstruct and L = Tini +N such that

[UP(ξ);UF(ξ)] = HL(û
d + α1ξ1) = [ÛP; ÛF] + α1HL(ξ1) ,

[YP(ξ);YF(ξ)] = HL(ŷ
d + α2ξ2) = [ŶP; ŶF] + α2HL(ξ2) ,

uini(ξ) = ûini + α3ξ3 , yini(ξ) = ŷini + α4ξ4 ,

where α1, α2, α3, and α4 are the scaling coefficients. Note
that α1 = α3 = 0 in the absence of input noise.

We now show that (24) with additive uncertainties in the
input/output data matrices (that obey the prescribed Hankel
structure) admit a compact representation. Notice that

[UP(ξ);UF(ξ)]g =[ÛP; ÛF]g + α1HL(ξ1)g

=[ÛP; ÛF]g + α1ML(g)⊗ Imξ1 ,

[YP(ξ);YF(ξ)]g =[ŶP; ŶF]g + α2HL(ξ2)g

=[ŶP; ŶF]g + α2ML(g)⊗ Ipξ2 ,

where ML(x) ∈ RL×(nx+L−1) (x ∈ Rnx ) is defined as

ML(x) =


x1 x2 · · · xL · · · xnx

x1 x2 · · · xL · · · xnx

. . .
. . .

. . .
. . .

x1 x2 · · · xL · · · xnx

.
One can further partition ML(g) into

[MP
L (g) ∈ RTini×T ;M F

L (g) ∈ RN×T ] := ML(g) .

According to the definition of A(ξ) and b(ξ), we then have

D(g) = [D1(g) D2(g)] ,

c(g) = [λ
1
2
u ÛP;λ

1
2
y ŶP;R

1
2 ÛF;Q

1
2 ŶF]g

− [λ
1
2
u ûini;λ

1
2
y ŷini; 0;Q

1
2 r]

(25)

in (24), where

D1(g)=


λ

1
2
u α1M

P
L (g)⊗ Im 0

0 λ
1
2
y α2M

P
L (g)⊗ Ip

R
1
2α1M

F
L (g)⊗ Im 0

0 Q
1
2α2M

F
L (g)⊗ Ip

,

and D2(g) =


λ

1
2
u α3ImTini 0

0 λ
1
2
y α4IpTini

0 0
0 0

 .
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Fig. 2. Data-driven control for a grid-connected converter.

Example 1 shows that the formulation in (24) admits a com-
pact representation of uncertainties with Hankel structure. The
following result explicitly shows how (24) with D = Dstruct

can be solved by considering a semi-definite program.

Proposition IV.5. A vector g⋆ is a minimizer of (24) with D =
Dstruct if and only if there exists a (τ⋆, λ⋆) such that g⋆ also
minimizes the following semi-definite programming problem

min
g∈G,τ,λ

τ

s.t.

τ − λρ2s 0 c(g)⊤

0 λI D(g)⊤

c(g) D(g) I

 ⪰ 0.
(26)

Moreover, the minima of (24) and (26) coincide.

Proof. The result can be proved by referring to [32], [35].

The structured uncertainty set in Example 1 is tighter than
the other uncertainty sets when Hankel matrices are used
as predictors, and thus it leads to less conservative results.
However, it involves solving a semi-definite program, which
usually reqires more computational effort. We will show that
though the unstructured set is conservative, it can generally
lead to satisfactory performance.

V. SIMULATION RESULTS

In this section, we provide simulation results to illustrate the
effectiveness of robust DeePC. We refer to the preprint of this
paper [35] for more detailed simulations. We consider a grid-
connected power converter in Fig. 2, and apply robust DeePC
to regulate active/reactive power. Conventionally, power regu-
lation is achieved by PID controllers. However, the power grid
is highly complex, featuring variable load and generation, and
in general unknown from the perspective of a converter, which
significantly affects the performance of (fixed) PID controllers
and may result in instabilities [36]. As a remedy, we use robust
DeePC to perform data-driven, robust, and optimal control.

We choose active and reactive power to be the outputs, and
robust DeePC provides control inputs for current references
Irefd , Irefq ; see Fig. 2. The inputs/outputs are all in per-
unit values (p.u.). In our simulations, we use the nonlinear
converter model; the same trends in the results are, however,
also observed if one uses a linearization. The sampling time of
robust DeePC is 1ms, and the main parameters are: Tini = 5,
N = 25, T = 120, R = I , Q = 105I , λu = λy = 105,

Fig. 3. Time-domain responses of the converter (a) during data collection
and (b) with robust DeePC activated at t = 0s (control horizon k = 5).

Fig. 4. Comparison of robust DeePC with structured set and unstructured set
when the uncertainty samples are drawn from a structured set.

and r = 1N ⊗ [P0;Q0], where P0 and Q0 are respectively
the active and reactive power references. In robust DeePC, we
assume that the output data is inexact and the input data is
exact, while we show the exact data when demonstrating the
results. Before activating robust DeePC, persistently exciting
white noise signals are injected into the system through Irefd

and Irefd for 0.12s to collect data, as shown in Fig. 3 (a).
Fig. 3 (b) shows the active power responses of robust DeePC
with different uncertainty sets: a) the upper/lower bounds of
the considered interval set are ±ρi (ρi = 0.001); b) we choose
ρu = 23.49, ρA = 2.45 × 1Hc

, and ρs = 0.016, which are
the smallest values such that the corresponding uncertainty
sets contains the interval set; c) the outputs are subject to
measurement noise (variance: 4×10−7); and d) P0 steps from
0 to 0.1(p.u.) at t = 0.2s and back to 0 at t = 0.4s. We observe
that the converter has excellent performance in all cases [35].

We next compare the average realized cost of applying the
open-loop optimal control sequence (of length N ) obtained
at t = 0.2s. We start with a study where Hankel matrices
are used as predictors. Theoretical intuition from Section IV
suggests that when Hankel matrices are used, robust DeePC
with structured set should be less conservative than that with
unstructured set. To test this intuition, we assume that the
output data ŷd and ŷini are affected by uncertainties residing in
a structured set with ρs = 0.016, and draw 1000 samples that
are uniformly-distributed over this set. Fig. 4 plots the results
of applying robust DeePC with structured set and unstructured
set (compactly containing the structured set). It shows that
robust DeePC with structured set performs better than that
with unstructured set, which confirms our intuition.

Section IV suggests that column-wise set and interval set
are more appropriate choices when Page matrices are used. To
validate this, we next consider Page matrices as predictors, by
collecting a longer trajectory such that the constructed Page
matrices have the same dimensions as the Hankel matrices.
We assume that the output data is affected by uncertainties
residing in an interval set with ρi = 0.001. We consider 1000
samples uniformly-distributed over this interval set. We still
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choose for the column-wise set ρA = 2.45 × 1Hc
and ρu =

23.49 for the unstructured set, and we observe that robust
DeePC with column-wise and unstructured sets achieve similar
performance, while the average realized cost is improved by
20% when incorporating the interval set (a tighter estimate).

One advantage of column-wise uncertainties is that one
can compactly consider different bounds for different columns
in the data matrices. To demonstrate this, we use trajectory
matrices as predictors and test the performance of robust
DeePC when the columns in the trajectory matrices are sub-
ject to different levels of uncertainties, which could be the
case when the columns are from different experiments. We
consider 1000 uncertainty samples uniformly-distributed over
the column-wise set where for all i ∈ [Hc]: (ρA)i = 0.63i and
ρb = 0.63Hc. We choose ρu = 324.73 for the unstructured
set so that it contains the considered column-wise set. Under
this setting, we observe that the performance of applying the
column-wise set in robust DeePC is 8.5% better than the un-
structured set, thanks to the tighter uncertainty representation.

VI. CONCLUSIONS

This paper proposed a robust DeePC framework to perform
data-driven, robust, and optimal control in a receding-horizon
manner. Robust DeePC solves a min-max optimization prob-
lem to robustify the control sequence against uncertainties in
data that is used for predictions. We showed that by applying
robust DeePC, the realized cost of the system is bounded if
the considered uncertainty set captures the exact data. We
explicitly derived tractable formulations for robust DeePC
when different geometries of uncertainty sets are incorporated.
In particular, when Hankel matrices are used as predictors,
we illustrated how uncertainties with Hankel structure can be
taken into account in a structured uncertainty set to reduce the
conservativeness. We confirm that 2-norm (1-norm) regular-
ization corresponds to an inherent unstructured (column-wise)
uncertainty set and plays a vital role in robustification. Future
work should include closed-loop performance, feasibility, and
stability certificates of robust DeePC.
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