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Abstract 
Heart failure (HF) is the final common pathway of many, usually coexisting, cardiovascular 

diseases (CVDs) that on a global scale affects more than 64 million people. HF results in structural 
and functional impairment of the ventricles, rendering the heart unable to provide sufficient 
cardiac output for organ perfusion. Although advanced therapeutical protocols have been 
developed over the last decades, the absence of adequate monitoring technologies in the 
outpatient setting limits the surveillance of the therapy. This often results in suboptimal patient 
management and severe progression of HF. For these patients, the treatment is limited to only 
two options, namely heart transplantation (HTx) and mechanical circulatory support with 
ventricular assist devices (VADs). Following their technological advancements, approximately 
6.000 VADs are implanted yearly, with the vast majority of the devices being continuous-flow 
turbodynamic pumps. VAD patients nowadays can reach similar survival rates to HTx-recipients, 
however, their quality of life (QoL) is diminished. This shortcoming stems from the remaining 
VAD-related adverse events (AE) that result in high rates of rehospitalizations. These AEs are 
commonly related to the inability of current VADs to imitate the physiological response with 
respect to cardiac output adjustment to changing perfusion demands of the patients. By lacking 
physiological response, VADs are prone to over- or under-pumping conditions that provoke life-
threatening events of suction or overload. To pave the burden of such events, many physiological 
controllers have been proposed for VADs. Although some of these controllers improve the 
responsiveness of the VADs, none has been implemented in the clinical setting. Shortcomings 
that restrict the clinical implementation of physiological controllers are the lack of reliable 
monitoring approaches to provide the feedback parameters, the lack of adaptiveness to changes 
in the time-varying parameters of the cardiovascular system (CVS), and the enormous variability 
in patient characteristics that constitute the identification of universal control parameters 
challenging.  

In this context, the aim of this thesis was the realization of sensory technology that enable 
continuous and accurate monitoring of vascular and hemodynamic properties of HF patients, as 
well as the development of control approaches that restore the physiological response of VADs 
and, at the same time, account for long-term biological changes of the patient. 

To achieve the overall aim, four studies were conducted over the course of this thesis. The 
first study focused on sensing approaches that enable the outpatient surveillance of HF patients 
and provide the necessary parameters for control purposes. Hence, after exploring various sensing 
approaches, an extravascular, magnetic-flux sensing device was developed and validated. The 
sensing device was capable of capturing the waveforms of the arterial wall diameter, arterial 
circumferential strain and arterial blood pressure (ABP) without restricting the arterial wall. 
Based on the continuous ABP waveform, the sensor allowed the deduction of pulse wave velocity, 
respiration frequency, and duration of the systolic phase of the cardiac cycle. The implantable 
sensing device demonstrated unaffected performance after sterilization, immersion in liquid, and 
temperature changes, while it was able to accurately capture the monitored parameters in-vitro 
and in-vivo, under various and extreme physiologic and pathologic conditions induced by 
cardiopulmonary bypass support. The information hidden in the arterial blood pressure waveform, 
as well as other vascular properties captured with the implantable sensing device, could offer new 
capabilities in HF patient management, allowing patient-specific treatment and new prospects in 
the physiological control of VADs. 

The objective of the second study was to develop a novel algorithmic approach that can 
exploit the hemodynamic data provided by the sensing device of the first study, to resolve the 
unmet need for continuous monitoring of the remaining contractility of HF patients and enable 
adaptive physiological controllers. To meet this objective, the estimation of the remaining 
contractility by applying state-of-the-art machine learning models and using left ventricular 
pressure (LVP) signals was assessed. Specifically, LVP data were generated on an in-vitro, hybrid 
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mock circulation for nine contractility levels by varying preload, afterload, pump speed, and heart 
rate parameters. Based on these data, the estimation accuracy of two time series classifiers and 
two graph-based neural networks were evaluated and compared. From the time series classifiers, 
the dynamic time warping nearest neighbor (DTW-NN) classifier and the support vector (SVM) 
classifier were selected, while from the plethora of graph-based neural networks, a pre-trained 
architecture and a custom architecture were implemented. The results showed that all classifiers 
were able to correctly estimate the contractility level, with accuracy higher than 98%; however, 
the SVM showed superior performance. The continuous and accurate estimation of the remaining 
contractility with the developed approach could substantially support patient surveillance, 
treatment adjustments, and real-time adaptation of the control parameters of physiological 
controllers. 

Once the necessary technology and algorithms to allow continuous monitoring of CVS 
hemodynamics and time-varying properties were realized with the first two studies, the third 
study aimed to the development of a physiologic data-driven iterative learning controller (PDD-
ILC) that achieves physiologic, pulsatile, and treatment-driven VAD response. In detail, the PDD-
ILC enabled the generation of preload-adaptive reference pump-flow trajectories based on the 
Frank-Starling mechanism and treatment objectives, such as pulsatility maximization or left 
ventricular stroke work (LVSW) minimization. To eliminate the need for a model of the CVS and 
the pump, the tracking of the reference flow trajectories was achieved by implementing a data-
driven iterative learning controller based on signals of LVP and pump flow. The physiologic 
responsiveness and trajectory tracking of the PDD-ILC was assessed with in-silico experiments 
that emulated various physiologic conditions, and compared with physiological pump flow 
proportional-integrative-derivative controller (PF-PIDC) (developed in this study too) as well as 
the constant speed (CS) control that is the current state-of-the-art in clinical practice. Under all 
experimental conditions, the PDD-ILC as well as the PF-PIDC showed high accuracy in tracking 
the reference pump flow trajectories, outperforming existing model-based iterative learning 
control approaches. Additionally, the developed controllers were able to meet the predefined 
treatment objectives resulting in improved hemodynamics and preload sensitivities compared to 
the CS support. The implementation of the PDD-ILC in current VADs would allow artificial 
pulsatility and patient-specific preload sensitivity, offering new opportunities in VAD patient 
management. 

The realization of the PDD-ILC, which features six control parameters, showed that the 
identification of the control parameters with the non-intuitive, trial-and-error methods that are 
used nowadays results in suboptimal controllers and restricts the development of patient-specific 
controllers. As a result, the fourth study of this thesis was dedicated to the development of an 
optimization framework (GAOF) for VAD control parameters. The GAOF offered the 
opportunity to develop an objective function based on patient characteristics and treatment 
objectives and by using genetic algorithm-based optimization algorithms enabled the 
identification of optimum control parameters.  The efficacy of the GAOF was assessed with three 
control structures of different complexity, two different VAD designs, and various patient disease 
scenarios. The results showed that the optimized controllers outperformed the hand-tuned 
controllers. This highlighted the potential improvement in the performance of any VAD controller 
by deploying the GAOF and, consequently, the possibility to increase the survival rates and 
enhance the quality of life of VAD patients. 

In conclusion, the studies conducted in this thesis contribute to the realization of continuous 
monitoring of the hemodynamic status of HF patients and control algorithms that, through patient- 
and treatment-specific optimization, enhance the pulsatility and the physiological response of 
VADs. The combination and implementation of the developed algorithms and sensory technology 
in the clinical setting may lay the foundation for clinicians to apply and adapt their therapeutic 
protocols and, hence, improve the survival rates and the QoL of HF patients. 
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Zusammenfassung 
Herzinsuffizienz (HI) ist eine häufige Erkrangung, die weltweit mehr als 64 Millionen 

Menschen betrifft. Diese Erkrankung tritt in der Regel gleichzeitig zu einer kardiovaskulären 
Erkrankung auf und führt zur strukturellen und funktionellen Beeinträchtigung des Herzens, die 
zu einer unzureichenden Versorgung der Organe mit Blut führt. Trotz fortgeschrittener Therapie 
gibt es immer noch Herausforderungen bei der Überwachung und Behandlung von HI-Patienten 
im ambulanten Bereich aufgrund des Fehlens geeigneter Überwachungstechnologien. Dies kann 
zu suboptimalem Patientenmanagement und schwerwiegendem Fortschreiten der Erkrankung 
führen. Die verfügbaren Behandlungsmöglichkeiten für Patienten mit HI beschränken sich auf 
Herztransplantation und mechanischer Kreislaufunterstützung mit ventrikulären 
Unterstütyungssystemen (VADs), von denen jedes Jahr etwa 6.000 implantiert werden. Obwohl 
die Überlebensrate von VAD-Patienten ähnlich wie die von Herztransplantations-Patienten ist, 
kann die Lebensqualität durch VAD-bedingte Komplikationen (AE) beeinträchtigt sein, die zu 
hohen Rehospitalisierungensraten führen. Die Entwicklung physiologischer Regelung für VADs 
soll dazu beitragen, die Belastung von Patienten durch solche Ereignisse zu reduzieren. 
Allerdings gibt es nach wie vor Defizite bei der klinischen Implementierung solcher Regelung, 
einschließlich fehlender zuverlässiger Überwachungsmethoden, mangelnder 
Anpassungsfähigkeit an Veränderungen im Herz-Kreislauf-System und der großen Variabilität in 
den Patientencharakteristika, die die Identifizierung universeller Regelparameter erschweren. In 
diesem Zusammenhang war das Ziel dieser Arbeit die  Umsetzung einer Sensorik, die die 
vaskulären und hämodynamischen Eigenschaften von HI-Patienten kontinuierlich und genau 
überwachen, sowie die Entwicklung von Regelungsansätzen, die die physiologische Reaktion von 
VADs wiederherstellen und gleichzeitig die langfristigen biologischen Veränderungen des 
Patienten berücksichtigen kann. 

Um das Gesamtziel zu erreichen, wurden in dieser Arbeit vier Studien durchgeführt. Zunächst 
wurde ein extravaskulärer, magnetischer Durchflussmesser entwickelt und validiert, welcher in 
der Lage ist, die Signaländerung bei sich änderndem des arteriellen Wanddurchmessers, 
arteriellen Umfangsdehnung und arteriellen Blutdrucks (AB) zu erfassen, ohne die Arterienwand 
einzuschränken. Der Sensor ermöglicht auf Basis der kontinuierlichen AB-Wellenform die 
Ableitung der Pulswellengeschwindigkeit, der Atemfrequenz und der Dauer der Systole. Der 
implantierbare Sensor zeigte nach Sterilisation, Eintauchen in Flüssigkeit und 
Temperaturschwankungen keine Leistungseinbußen und war in der Lage, die überwachten 
Parameter in vitro und in vivo unter verschiedenen und extremen physiologischen und 
pathologischen Bedingungen, die durch kardiopulmonale Bypassunterstützung hervorgerufen 
werden, genau zu erfassen. Die Erfassung von Informationen, die in der Wellenform des AB 
verborgen sind sowie andere vaskulären Eigenschaften durch das implantierbare Messgerät 
könnten neue Möglichkeiten für das Management von HI-Patienten bieten. Diese ermöglichen 
eine patientenspezifische Behandlung und bieten neue Perspektiven für die physiologische 
Regelung von VADs. 

Um das Ziel der zweiten Studie zu erreichen, wurde ein neuartiger Ansatz entwickelt, der auf 
den hämodynamischen Daten des Sensors aus der ersten Studie basiert und den Bedarf an einer 
kontinuierlichen Überwachung der Restkontraktilität von HI-Patienten decken und eine adaptive 
physiologische Regeln ermöglichen soll. Die Hypothese, dass die verbleibende Kontraktilität aus 
den Signalen des linksventrikulären Drucks (LVD) durch Machine Learning Modelle geschätzt 
werden kann, wurde geprüft. Dazu wurden LVD-Daten in einem hybriden In-vitro-
Scheinkreislauf für neun Kontraktilitätsniveaus durch Variation der Parameter Vorlast, Nachlast, 
Pumpendrehzahl und Herzfrequenz erzeugt. Die Schätzgenauigkeit von zwei 
Zeitreihenklassifikatoren und zwei graphbasierten neuronalen Netzen wurde anhand dieser Daten 
bewertet und verglichen. Unter den Zeitreihenklassifikatoren wurden der DTW-NN-Klassifikator 
(Dynamic Time Warping Nearest Neighbour) und der SVM-Klassifikator (Support Vector 
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Machine) ausgewählt, während aus der Vielzahl der graphbasierten neuronalen Netze eine 
vortrainierte Architektur und eine benutzerdefinierte Architektur ausgewählt wurden. Die 
Ergebnisse zeigen, dass alle Klassifikatoren das Kontraktilitätsniveau mit einer Genauigkeit von 
über 98 % korrekt schätzen konnten, wobei die SVM die beste Performance zeigte. Durch diesen 
entwickelten Ansatz könnte die kontinuierliche und genaue Schätzung der verbleibenden 
Kontraktilität die Patientenüberwachung, Behandlungsanpassungen und die die Anpassung der 
Parameter physiologisher Regler in Echtzeit wesentlich unterstützen. 

In den ersten beiden Studien wurden die Technologie und die Algorithmen für die 
kontinuierliche Überwachung der Hämodynamik und der zeitlich veränderlichen Eigenschaften 
des CVS entwickelt. Ziel der dritten Studie war es, einen physiologischen, datengesteuerten, 
iterativ lernenden Regler (PDD-ILC) zu entwickeln, der ein physiologisches, pulsatiles und 
behandlungsgeregeltes Ansprechen des VAD ermöglicht. Der PDD-ILC ermöglicht die 
Generierung von vorlastadaptiven Referenz-Pumpenfluss-Trajektorien basierend auf dem Frank-
Starling-Mechanismus und Behandlungszielen wie der Maximierung der Pulsatilität oder der 
Minimierung des LVSW. Die Verfolgung der Referenzfluss-Trajektorien wurde durch die 
Implementierung einer datengesteuerten, iterativ lernenden Regelung auf der Grundlage von 
Signalen der LVD und des Pumpenflusses erreicht, um ein Modell des CVS und der Pumpe zu 
vermeiden. Der PDD-ILC wurde mit dem physiologischen proportional-integrativen-derivativen 
Pumpenflussregler (PF-PIDC) sowie mit der Konstantdrehzahlregelung (CS) verglichen. Der 
PDD-ILC und der PF-PIDC zeigen eine hohe Genauigkeit bei der Verfolgung der Referenz-
Pumpenstromkurven und übertrafen damit die bestehenden modellbasierten iterativ lernenden 
Regelungsansätze. Die Implementierung der PDD-ILC in aktuelle VADs würde eine künstliche 
Pulsatilität und eine patientenspezifische Vorlastsensitivität ermöglichen und damit neue 
Möglichkeiten im VAD-Patientenmanagement eröffnen. Der physiologische Ansprechverhalten 
und die Verfolgung der Trajektorien des PDD-ILC wurden mit In-silico-Experimenten bewertet, 
bei denen verschiedene physiologische Bedingungen nachgebildet wurden. Unter allen 
experimentellen Bedingungen erreichten der PDD-ILC und der PF-PIDC die vordefinierten 
Behandlungsziele und führten im Vergleich zur CS-Unterstützung zu einer verbesserten 
Hämodynamik und Vorlastsensitivität. 

Die Umsetzung des PDD-ILC mit sechs Regelungsparametern hat gezeigt, dass die 
Identifikation der Regelungsparameter durch die heute üblichen, nicht intuitiven Trial-and-Error-
Methoden zu suboptimalen Reglern führt und die Entwicklung von patientenspezifischen Reglern 
einschränkt. Aus diesem Grund war die vierte Studie dieser Arbeit der Entwicklung eines 
Optimierungsrahmens (GAOF) für VAD-Regelungsparameter gewidmet. Die GAOF ermöglichte 
die Entwicklung einer Zielfunktion auf Basis von Patientenmerkmalen und Behandlungszielen 
sowie die Verwendung von auf genetischen Algorithmen basierenden Optimierungsalgorithmen 
zur Ermittlung der optimalen Regelungsparameter. Die Wirksamkeit der GAOF wurde anhand 
von drei unterschiedlich komplexen Regelungstrukturen, zwei verschiedenen VAD-Designs und 
verschiedenen Krankheitsszenarien der Patienten bewertet. Die Ergebnisse zeigten, dass die 
optimierten Regler eine bessere Leistung erzielten als die manuell abgestimmten Regler. Dies 
zeigt das Potenzial zur Verbesserung der Leistung jedes VAD-Reglers durch den Einsatz der 
GAOF und somit die Möglichkeit, die Überlebensraten zu erhöhen und die Lebensqualität von 
VAD-Patienten zu verbessern. 

Zusammenfassend lässt sich sagen, dass die in dieser Arbeit durchgeführten Studien zur 
Realisierung einer kontinuierlichen Überwachung des hämodynamischen Status von HI-Patienten 
und zur Entwicklung von Regelungsalgorithmen beitragen. Durch patienten- und 
behandlungsspezifische Optimierung wird die Pulsatilität und physiologische Reaktion von 
VADs verbessert. Die Kombination und Implementierung der entwickelten Algorithmen und 
Sensoren im klinischen Umfeld kann die Grundlage für die Anwendung und Anpassung der 



xiii 
 

Therapieprotokolle durch die Kliniker bilden und somit die Überlebensraten und die 
Lebensqualität der HI-Patienten verbessern. 
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Acronyms and Abbreviations 

ABP Arterial Blood Pressure 
ACE Angiotensin-converting Enzyme 
ACS Arterial Circumferential Strain 
AD Arterial Wall Diameter 
AE Adverse Events 
BLE Bluetooth Low Energy 
BNP Brain Natriuretic Peptides 
bpm Beats per minute 
BTC Bridge to Candidacy 
BTD Bridge to Decision 
BTR Bridge to Recovery 
BTT Bridge to Transplantation 
BW Body Weight 
CAD Coronary Artery Disease 
cfVADs Continuous flow turbodynamic VADs 
C-GNN Custom Graph-based Neural Network 
CO Cardiac Output 
Co-PF Copulsation Pump Flow 
Counter-PF Counter Pump Flow 
CPB Cardiopulmonary Bypass 
CS Constant Speed 
CSC Constant Speed Control 
CVD Chemical Vapor Deposition 
CVDs Cardiovascular Diseases 
CVS Cardiovascular System 
DAQ Data Acquisition 
DD-ILC Data-driven Iterative Learning Controller 
DH Diseased Heart 
DH-CSC Diseased Heart Constant Speed Control 
DHZB German Heart Institute Berlin 
DOF Degree of Freedom 
DT Destination Therapy 
DTW-NN Dynamic Time Warping Nearest Neighbor 
E Extracted 
EM Extracted Mean value 
ECMO Extracorporeal Membrane Oxygenation 
ED End-diastole 
EDP End-diastolic Pressure 
EDPVR End-diastolic Pressure-volume Relationship 
EF Ejection Fraction 
ES End-systole 
ESPVR End-systolic Pressure-volume Relationship 
FDA Food and Drug Administration 
FDM Fused Deposition Modelling 
FIR Finite Impulse Response 
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GA Genetic Algorithm 
GAOF Genetic Algorithm Optimization Framework 
GNN Graph-based Neural Network 
HBP High Blood Pressure 
HBSD Hall-based Sensing Device 
HD Hall Diameter 
HES Hall-effect Sensor 
HF Heart Failure 
HFmrEF Heart Failure with mildly reduced Ejection Fraction 
HFpEF Heart Failure with preserved Ejection Fraction 
HFrEF Heart Failure with reduced Ejection Fraction 
HH Healthy Heart 
HM3 HeartMate 3 
HMC Hybrid Mock Circulation 
HMCS Human Cardiovascular System 
HR Heartrate 
HSR High Support Ratio 
HTx Heart Transplantation 
HVI Heart Valve Insufficiency 
ICD Implantable Cardioverter Defibrillator 
ILC Iterative Learning Control 
LB Lower Boundary 
LR Linear Regression 
LSR Low Support Ratio 
LV Left Ventricle 
LVAD Left Ventricular Assist Device 
LVP Left Ventricular Pressure 
LVEF Left Ventricular Ejection Fraction 
LVSW Left Ventricular Stroke Work 
MAE Mean Absolute Error 
MAP Mean Arterial Pressure 
maxE Maximum Error  
MCS Mechanical Circulatory Support 
MSR Medium Support Ratio 
MVO Mean Voltage Output 
N48 Neodymium 
NI National Instruments 
VADs Ventricular Assist Devices 
Obj Objective 
OF Objective Function 
OMM Optimal Medical Management 
OOP Optimum Operating Point 
P Proportional 
PDD-ILC Physiologic Data-driven Iterative Learning Controller 
PF-PIDC Pump Flow Proportional-Integrative-Derivative Controller 
P-GNN Pretrained Graphic-based Neural Network 
PI Proportional-Integral 
PID Proportional-Integral-Derivative 
PLA Polylactic acid  
PM Pressure Manipulation 
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PPD Pseudo Partial Derivative 
PS Pump Speed 
PWV Pulse Wave Velocity 
RAAS Renin-Angiotensin-Aldosterone System 
RCC Remaining Cardiac Contractility 
RD Reference Diameter 
RMSE Root-Mean-Square-Error 
rpm Rotations per minute 
RT Respiration Time 
RQ Research Question 
SCOFD Summation of the Cardiac Output Finite Difference 
SLA Selective Laser Stereolithography 
SLM Selective Laser Melting 
SNS Sympathetic Nervous System 
SOT Small Outline Transistor 
SP Systolic Pressure 
ST Systolic Phase Duration 
STD Standard Deviation 
SVM Support Vector 
SW Stroke Work 
TAH Total Artificial Hearts 
TSC Time Series Classifiers 
TSD Time Series Data 
QoL Quality of Life 
UpB Upper boundary 
USA United States of America 
USB Universal Serial Bus 
USZ University Hospital Zurich 
UZH University of Zurich 
  
Latin Symbols  

𝑎, 𝑏, 𝑐,𝑑 Exponential fitting coefficients 
𝐵  Magnetic-flux perpendicular to measuring surface 
𝐷 Diameter 
𝐷  Initial aortic diameter 
𝒆  Predicted PF tracking error used for minimization 
𝐻 Matrix containing operating pressure map of pump 
𝐼 Pump current 
𝐽  Tracking error 
𝐽  Input vector 
𝑘  Preload sensitivity 
𝐿 Fluid inertance 
𝑀  Uniform magnetization 
n number 
𝑛∗  Desired pump speed output 
𝑛 ,
∗  Feedback desired pump speed 
𝑛 ,
∗  Feed forward desired pump speed 
𝑃 Arterial pressure 
𝑝  Pressure downstream of pump 
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𝑝  Pressure upstream of pump 
𝑅 Arterial wall radius 
𝑅  Subject-specific elastic moduli 
𝑄 Flow-rate 
𝑞  Measured pump flow 
𝑞∗  Heart cycle average pump flow 
𝒒𝒃𝒑
∗  Time vector of the desired pump flow trajectory 
𝑟 Misalignment in radial direction 
r Pearson correlation coefficient 
S Sensitivity 
t Time 
𝑇 Matrix containing operating torque map of pump  
V Voltage 
𝑉  Measured voltage 
𝑧 Translation distance 
𝑧  Initial translation distance 
  
Greek Symbols  

𝛾 Pitch misalignment angle 
𝛿 Arterial wall thickness 
𝛥 Denoted change in quantity 
𝜀  Circumferential arterial strain 
𝐸  Elastic Young modulus 
𝜂 Learning gain 
𝛩 Rotor inertia 
𝐾 Ziegler-Nichols approach coefficients 
𝜇 Normalization value 
𝜎  Circumferential strain 
𝜑 Yaw misalignment angle 
𝜱  Estimate of pseudo partial derivative 
𝜔 Rotational speed 
  
Sub/superscript  

a Afterload 
Ben. Benchmarck controller 
cc counterpulsation 
co copulsation 
ds Downstream 
FB Feedback 
FF Feed Forward 
Gn Generation 
us Upstream 
m Measured 
max Maximum 
min Minimum 
mo Multi-objective 
p Preload 
ref Reference 
so Singe objective 
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1 Introduction 

Nearly half of all deaths across Europe are attributed to cardiovascular diseases (CVDs), a 
proportion that is 46 times the cumulative number of deaths from acquired immune deficiency 
syndrome, tuberculosis and malaria. To battle this silent pandemic, important prevention 
strategies and technological improvements in the diagnosis and treatment of CVD have been 
developed during the last decades. However, considering that CVDs are the outcome of an 
interaction between genetic susceptibility, environmental conditions, socioeconomic conditions, 
and lifestyle choices, factors that dictate the modern societies such as poor diet, physical 
inactivity, and the aging population constitute the reduction of CVD prevalence a great challenge. 
To forge extraordinary advances that can decline the burden of CVDs, cross-disciplinary 
collaborations among engineers, cardiologists, radiologists, and pathologists are required.1,2 

Following this line of thought, a multidisciplinary and inter-institutional project has been 
developed among the University of Zurich (UZH), the University Hospital Zurich (USZ), the 
German Heart Institute Berlin (DHZB) and ETH Zurich. This collaborative project, named Zurich 
Heart, aims to develop novel technologies that improve the treatment of heart failure (HF) and 
enhance the physiological and biological response of ventricular assist devices (VADs) used 
nowadays in the clinical setting. This thesis is part of the Zurich Heart project, focusing on the 
development of sensing approaches that enable the implementation of physiological control 
strategies on the next generation of VADs, as well as on the development of control approaches 
that adapt the VAD output to the perfusion needs of the patients and, at the same time, they 
account for long-term biological changes of the patient. 

In this chapter, the necessary background to identify the technological and research 
shortcomings in the treatment of HF patients, along with the aim and the contributions of this 
work are described. In detail, the global burden of CVDs, the etiology of HF, the different HF 
phenotypes and their effect on the hemodynamic physiology of the heart are elaborated in Section 
1.1. In Section 1.2 follows the analysis of the HF treatment options, including pharmacotherapy, 
device therapy, and heart transplantation (HTx). Section 1.3 focuses on the advancements of the 
VAD technology and the outcomes of the VAD therapy regarding survival rates, hospital 
readmission rates, and quality of life (QoL) of the patient. The mechanisms developed and 
deployed by the healthy heart to regulate the cardiac output are provided in Section 1.4, along 
with a thorough review of different control strategies that aim to reproduce some of these native 
regulation mechanisms. The main problems hindering the implementation of these controllers in 
the clinical setting are also explained in this section. Section 1.5 elucidates the state-of-the-art in 
sensory and estimation approaches that are deployed for the measurement of patient’s 
hemodynamic properties to allow the surveillance of the therapy. Finally, the aim and the 
objectives of this work are described in Section 1.6, while the scientific contributions are listed 
in Section 1.7. 

1.1 Cardiovascular Diseases and Heart Failure 
CVDs have been characterized as an emerging epidemic for more than 25 years, with their 
prevalence in a global scale being continuously increasing from approximately 271 million in 
1990 to a staggering 550 million in 2020.2,3 The high prevalence of CVDs is also accompanied 
by the highest mortality rates among all diseases, accounting for about 19.1 million deaths 
worldwide in 2020 alone.2,4 Considering the trends in population growth and ageing, which are  
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Figure 1.1. a) Cardiovascular diseases that result in cardiac remodeling and set a risk factor for heart failure, 
b) Remodeling of left ventricular (LV) walls under heart failure with reduced ejection fraction (HFrEF) and 
heart failure with preserved ejection fraction (HFpEF) phenotypes. 

among the major contributing factors for CVDs development, the already crucial consequences 
of CVDs on health systems and socioeconomic status are expected to aggravate across the globe.1 

Among all CVDs, HF is the most severe and life-threatening disease with more than 64 
million people suffering from it in 2020.5 In general, HF is a complex, chronic syndrome that 
primarily affects the elderly; however, recent statistical data show that HF incidences are also 
increasing among the younger population.6 Pathophysiologically, HF can be defined as a 
progressive procedure encompassing structural and/or functional impairment of the ventricles, 
that constitutes the heart unable to adequately support the end-organs with oxygenated blood to 
meet their metabolic demands.7 The etiology of HF is difficult to be uniquely defined since HF is 
considered the final common pathway of various, usually coexisting, CVDs. Underlying CVDs 
that can result in cardiac remodeling and set a risk factor for HF include cardiac rhythm 
abnormalities (brady- or tachycardia), coronary artery disease, myocarditis, hypertension, 
pericardial disease, valvular disease and hypertrophic obstructive cardiomyopathy (Fig. 1.1a).6–9 
This diversity in the morbidities precipitating HF significantly complicates the diagnosis and 
prognosis of the disease. Nowadays, the diagnosis of HF requires, but is not limited to, patient’s 
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history data, echocardiography, cardiac magnetic resonance imaging, and blood testing to observe 
the level of natriuretic peptides (BNP).8 The prognosis of the disease is highly dependent on the 
phenotype of HF, a classification that is based on the measurement of the left ventricular ejection 
fraction (LVEF). In detail, the first and most severe phenotype corresponds to HF with reduced 
EF (HFrEF), characterized by an LVEF ≤ 40% and systolic myocardial dysfunction. A failing 
heart classified in the HFrEF phenotype demonstrates an enlarged left ventricular (LV) cavity and 
weakened cardiac musculature (Fig. 1.1b) that together reduce the myocardial contraction forces. 
As it can be seen in the LV pressure – volume loops provided in Fig. 1.2, the reduced cardiac 
contractility of the HFrEF phenotype alters the end-systolic pressure-volume relationship 
(ESPVR), resulting in a shallower ESPVR and higher end-diastolic and end-systolic volumes. 
The second phenotype is predominantly characterized by diastolic myocardial dysfunction and 
an LVEF ≥ 50%, named as HF with preserved EF (HFpEF). This phenotype is distinguished by 
the thickened ventricular walls (Fig. 1.1b) that notably reduce the compliance of the heart wall. 
The LV pressure – volume loops for HFpEF (Fig. 1.2) show that the end-diastolic pressure-
volume relationship (EDPVR) alters, resulting in higher end-diastolic pressure and LV overload. 
The last HF phenotype is characterized by an LVEF between the other two classes (40% < LVEF 
< 50%), termed HF with mildly reduced EF (HFmrEF).9,10 

1.2 Management and Treatment of Heart Failure 

The management of HF patients focuses on alleviating their symptoms, improving their QoL, 
reducing hospitalization rates and, consequently, elongating their survival. However, considering 
the multifactorial etiology of HF and the structural differences among the HF phenotypes, the 
development, selection, and optimization of HF therapeutic protocols remains a complex 
procedure.7,11 

In general, the management and treatment of HF patients are stage- and phenotype-dependent, 
incorporating pharmacotherapy, device therapy, and HTx.8,12 At an early stage of HF, where 
diminished cardiac output (CO) due to ventricular impairment occurs, several compensatory 
mechanisms of the human body are activated, including the sympathetic nervous system (SNS), 
the renin-angiotensin-aldosterone system (RAAS), and the brain natriuretic peptides (BNP) 
system. More precisely, the neurohormonal activation of SNS and RAAS aims at increasing  
myocardial contractility, ventricular filling, and the peripheral vasoconstriction, to counteract the 
CO deficit and maintain the end-organ perfusion.11,12 Although activation of the latter systems is 
initially beneficial in maintaining CO, prolonged activation can result in an increased LV 
afterload and preload, aggravating the pathological ventricular remodeling. To counterbalance 
the consequences of chronic overactivation of SNS and RAAS, BNP release is upregulated. 
However, in the long-term, a reduction of available active BNP forms occurs thus attenuating the 
effects of BNP upregulation. The resulting imbalance between the neurohormonal activation and 
the BNP effectiveness promotes further deterioration of the cardiac contractility and leads to 
symptom development and an increased risk of arrhythmias, myocardial hypertrophy, fibrosis, 
and apoptosis.12–14 At this stage, to reduce morbidity and mortality rates, pharmacotherapy is 
considered essential, with the current guidelines suggesting a sequence of pharmacological 
therapies that include diuretics, angiotensin-converting enzyme (ACE) inhibitors, beta-blockers, 
neprilysin inhibitors, and sodium-glucose 2 co-transport inhibitors.7,9,13,14  
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Figure 1.2. Hemodynamic physiology in terms of left ventricular pressure-volume loops for a) healthy heart, 
b) heart failure with reduced ejection fraction, and c) heart failure with preserved ejection fraction. LV, left 
ventricle; ES, end-systole; ED, end-diastole; SW, stroke work; ESPVR, end-systolic pressure-volume 
relationship; EDPVR, end-diastolic pressure-volume relationship; HFrEF, heart failure with reduced 
ejection fraction; HFpEF, heart failure with preserved ejection fraction. 

Evidence from randomized trials over the last decades has demonstrated the efficacy of 
pharmacotherapy in patients with mild symptoms; however, it has been also observed that most 
of the HF patients receive suboptimal doses.7 As a result, HF continues to progress and due to the 
high probability of a sudden death due to arrhythmic events, HF patients often receive 
supplemental treatment with an implantable cardioverter defibrillator (ICD) or cardiac 
resynchronization therapy. The latter device therapies improve substantially the morbidity and 
mortality rates, as well as the QoL of HF patients.13 

When HF patients become refractory to guideline-directed pharmacotherapy and device-
based resynchronization therapies, the progression of HF continues and they suffer from 
persistent, severe symptoms (hemodynamic compromise, cardiogenic shock, life-threatening 
ventricular arrhythmias), need recurrent hospitalizations, and encounter a high risk of 1-year 
mortality.11 For this stage of advanced HF, heart transplantation (HTx) constitutes the gold- 
standard treatment, offering 1-year post-implant survival rates of 80-90%, a median survival of 

Table 1.1. Indications suggesting the use of mechanical circulatory support (MCS) systems9,15 

Usage term Indications for mechanical circulatory support 

Bridge to decision (BTD) 
Use of short-term MCS in patients with cardiogenic shock until 
hemodynamics and end-organ perfusion are stabilized. 

Bridge to candidacy (BTC) 
Use of MCS to improve end-organ function and/or to make an 
ineligible patient eligible for heart transplantation. 

Bridge to transplantation 
(BTT) 

Use of MCS to support patients who are otherwise at high risk 
of death until they are able to proceed to a heart transplantation. 

Bridge to recovery (BTR) 
Use of MCS only for a short period to support patients with 
minimal myocardial damage until cardiac function recovers 
sufficiently to remove MCS. 

Destination therapy (DT) 
Long-term use of MCS to support the failing heart of patients 
that are not eligible for heart transplantation due to age, frailty 
level or other multi-organ dysfunctions. 
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Figure 1.3. Limitations of current volume displacement (left top) and continuous flow (left bottom) 
ventricular assist devices (VADs) causing life-threatening adverse events (middle). 

12.5 years, and substantially improved QoL.9,11,16 Currently, approximately 50.000 patients 
diagnosed with advanced HF can be regarded as candidates for a heart transplantation worldwide 
each year; however, only a fraction of about 6.000 can finally get a HTx.17,18 The notable 
discrepancy between the number of possible recipients and the performed HTx is twofold. In 
detail, a fraction of the advanced HF patients is precluded from HTx due to contradictions, 
including frailty, age (usually above 70 years), morbid obesity, irreversible pulmonary 
hypertension or renal dysfunction, severe cerebrovascular disease, drug or alcohol abuse, and 
malignancy. However, the cornerstone for the limited number of HTx is the shortage of organ 
donors. Although the recently extended criteria for heart organ donors resulted in 3.817 HTx in 
the US in 2021, the highest number ever achieved, the number of candidates continues to 
significantly outpace the supply of donors.9,13,17,18 

To bridge the gap between the available donor organs and the people being in need of a HTx, 
mechanical circulatory support (MCS) systems have been developed as an alternative approach 
to support the failing human heart.19 Those MCS systems comprise total artificial hearts (TAH), 
extracorporeal membrane oxygenation systems (ECMO), and predominantly ventricular assist 
devices (VAD). Depending on the treatment goal (Table 1.1), different MCS systems are used as 
bridge to decision (BTD), bridge to candidacy (BTC), bridge to transplantation (BTT), bridge to 
recovery (BTR), or destination therapy (DT). Over the last decades, MCS systems and especially 
VADs, have been tremendously evolved and nowadays, approximately 6.000 VADs are 
implanted worldwide every year.20 The recipients of VADs reach survival rates of approximately 
81% and 70% at one year and two years, respectively.21 Although these rates are similar to the 
survival rates of patients that underwent heart transplantation, the HF therapy based on VADs is 
still associated with various adverse events, summarized in Fig. 1.3, that either reduce the survival 
rates, or affect the QoL of the patients.22 
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1.3 Ventricular Assist Devices: Evolution and Outcomes 

Ventricular assist devices (VADs) are mechanical pumps that supplement the function of the 
failing ventricles of a HF patient to restore normal blood circulation and maintain the end-organ 
perfusion.7 The evolution of the VAD field originates in the early 1960s, with the pioneering work 
of Spyridon Moulopoulos, Willem Kolff, Adrian Kantrowitz, and Michael DeBakey.23,24 From 
this point in time, a number of devices with different designs and operating principles have been 
investigated with a short overview given in Table 1.2. 

The first generation of VADs comprised mainly pneumatically driven, volume displacement 
pumps (Fig. 1.3) that produce a pulsatile flow akin to the flow provided by the human heart. As 
it is shown in Fig. 1.4, these devices significantly improved the one- and two-year survival rates, 
compared to HF patients treated only with pharmacotherapy, and established the VADs as a viable 
therapy for end-stage HF patients. However, the noisy operation of these VADs due to the tilting 
discs and the pneumatic actuator, along with their large size and the high incidence of pump 
dysfunction, pump thrombosis and stroke events, diminished their usage over the years 
(Fig.1.5).25 

 The second generation of VADs was characterized by a revolutionary change in their design 
and operation. More precisely, by exploiting the principles of turbodynamic pumps, this 
generation was based on the deployment of an axial impeller in the blood stream to provide a 
continuous, unidirectional blood flow. The fact that the impeller of these VADs constituted the 
only moving part along with the elimination of valves, substantially decreased the size and 
increased the reliability of the devices. As a consequence, the incorporeal implantation was 
feasible, resulting in less invasive surgical procedures, less power and maintenance needs, and a 
tremendous improvement in the mobility and the QoL of the recipients. These improvements 
constituted the cornerstone to pave the burdens for the FDA to approve the application of the 
second generation of VADs as DT.19,25–27 Although the approval for DT resulted in a dramatic 
increase in the usage of the VADs (Fig. 1.5) and the survival rates of HF patients (Fig. 1.4), 
device-related complications continued to affect the efficacy of the VAD therapy. These 
complications, including strokes, pump thrombosis, and bleeding, are often attributed to the blood 
damage due to the supraphysiologic shear stresses induced from the high rotational speed (6.000 
-15.000 rotations per minute) of the VAD, as well as to clot formations at the bearing site due to 
the stagnant flow regimes developed around the contact point of the impeller.28 

In an attempt to attenuate the adverse events that the second generation could not address, a 
third generation of VADs was developed (Fig. 1.3). This generation, the one predominantly used 
today, was based on sophisticated designs that enabled the contact-free rotation of the impeller 
by exploiting either hydrodynamic or magnetic levitation. By eliminating the mechanical contact 
of the impeller with the casing and allowing for larger clearances, these devices promised reduced 
critical flow regimes and, hence, a lower risk of clot formation.29 Additionally, the third 
generation VADs exchanged the axial impellers with centrifugal impellers. This design-alteration 
resulted in a significant reduction of the rotational speed of the VADs (1.800 – 6.500 rotations 
per minute) with the aim to reduce the shear stresses exerted on the blood cells, and consequently 
reduce the blood damage. To further enhance their hemocompatibility, VADs of the third 
generation used coating materials for the impeller that prevent platelet adherence and thus 
diminish the risk of thrombus formation and hemolysis.23,25,28,30 These technological 
advancements resulted in high implantation rates (Fig. 1.5) and shifted the main application of 
VADs from BTT to DT.31 The high usage slightly increased the survival rates (Fig. 1.4) and 
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improved the QoL of the patients, however, the risk of bleeding remains high,32 highlighting that 
achieving hemocompatibility is not trivial. Nonetheless, a significant reduction of stroke 
incidences has been achieved with the HeartMate 3 (HM3) VAD (Abbott Laboratories, Chicago, 
IL, USA).33 This reduction is attributed not only to the wider gaps that the device offers, but also 
to the artificial pulse that the HM3 applies every 2 seconds to enhance the washout of the flow at 
the separation regions.34 

Table 1.2. Overview of ventricular assist devices (VADs), their location and application characteristics7,25 

Device Pump Location Application 

Pulsatile   

EXCOR Pediatric VAD (Berlin Heart, GmbH, The 
Woodlands, TX) 

Paracorporeal a 

Heartmate I or XVE (Thoratec Corp, Pleasanton, CA) Intracorporeal BTT, DT 

Abiomed AB5000 (Abiomed Inc, Danvers, MA) Paracorporeal BTT, BTR 

Abiomed BVS 5000 (Abiomed Inc., Danvers, MA) Extracorporeal BTT, BTR 

Novacor LVAS (Baxter Healthcare Corporation, Novacor 
Division, Oakland, CA) 

Intracorporeal BTT 

IVAD (Thoratec Corp, Pleasanton, CA) Intracorporeal BTT, BTR 

PVAD (Thoratec Corp, Pleasanton, CA) Paracorporeal BTT, BTR 

Turbodynamic Axial   

Incor VAD (Berlin Heart, GmbH, The Woodlands, TX) Intracorporeal a 

MicroMed Debakey VAD (Micromed Cardiovascular) Intracorporeal BTT 

Heartmate II (Abbott Laboratories, Chicago, IL, USA) Intracorporeal BTT, DT 

Impella 2.5, CP, or 5.0 (Abiomed Inc, Danvers, MA) Intracorporeal BTR 

HeartAssist 5 (MicroMed Cardiovascular) Intracorporeal a 

Jarvik 2000 (Jarvik Heart Inc., New York, NY) Intracorporeal BTT 

Turbodynamic Centrifugal   

Duraheart (Terumo Heart Inc., Ann Arbor, MI) Intracorporeal a 

EvaHeart (Sun Medical Technology Research Corp., 
Nagano, Japan) 

Intracorporeal BTT 

Heartmate III (Abbott Laboratories, Chicago, IL, USA) Intracorporeal BTT, DT 

HeartWare MVAD (HeartWare, Inc., Miami Lakes, FL) Intracorporeal a 

VentrAssist (Ventracor Ltd) Intracorporeal 
BTT (CE 
Marked) 

HeartWare HVAD (HeartWare, Inc., Miami Lakes, 
FL) 

Intracorporeal BTT, DT 

a Investigational device as per FDA 
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Figure 1.4. Historical and current status of survival rates of end-stage heart failure patients based on 
randomized trials of different treatment options. The figure is created based on data retrieved from24,35,36. 
OMM, optimal medical management; *, first generation; **, second generation; ***, third generation. 

The described evolution in VAD technology, along with the improvements made in patient 
selection and management, allowed for the VAD therapy to be more readily adopted in the current 
clinical setting, achieving 27.298 implantations from January 2010 to December 2019 (Fig. 1.5) 
in the USA.31 However, during the same period, the adverse events and hospitalization rates 
continued to remain high, contributing the greatest risk to mortality and questioning the economic 
benefit of VADs.37 The majority of the complications attributed to the VAD therapy, summarized 
in Fig. 1.3, are related to the continuous flow and the constant speed of the VADs that are currently 
used. More precisely, the constant speed operation of VADs do not allow adaptation of the pump 
flow to the perfusion needs of the patient, resulting often to critical condition such as ventricular 
suction or under- and overpumping.25,26,29 It is believed that those unfavorable conditions are 
related to right heart failure and arrhythmia events, which negatively influence the results of the 
therapy.29 On the other hand, the continuous flow provided by the third generation VADs, which 
are primarily used nowadays, significantly attenuates the flow pulsatility and increases the 
pressure downstream the aortic valve. These phenomena can negatively affect the endothelial and 
peripheral vascular function38–40 and, hence, increase the risk of nonsurgical bleeding and aortic 
valve insufficiency, which both affect the therapy outcomes and the QoL of the patients.41 

The remaining complications mentioned above, have been thoroughly investigated over the 
last decades and, based on the better understanding of their causes, novel VAD concepts have 
been conceived and are currently under development. Among the most promising of these 
concepts are the CorWave LVAD (CorWave SA, Clichy, France) and the TORVAD (Windmill 
Cardiovascular Systems Inc., Austin, TX, USA). Both devices offer the benefits of the third 
generation VADs and provide a pulsatile flow that better imitates the function of the native heart. 
However, since the necessary data from clinical trials are missing, it remains questionable 
whether these devices can achieve the long-waited improvements in the clinical setting or they 
will carry the reliability problems from the pulsatile VADs of the first generation. 
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Figure 1.5. Overview of left ventricular assist device implants by pump type and by implant year based on 
data collected by INTERMACS.31,42 LVAD, left ventricular assist device; *, first generation; **, second 
generation; ***, third generation. 

Along with the novel VAD concepts, notable efforts have been made in order to develop 
control schemes that allow the adjustment of the pump speed and restore the physiological 
response and the pulsatility of the currently used VADs.15,43 Some of these approaches and their 
prospects to reduce the life-threatening adverse events related to the VAD therapy are elaborated 
in the next section. 

1.4 Physiologic Control Schemes for Ventricular Assist Devices 

The cardiovascular system and, especially the heart, are complex entities that have 
developed sophisticated mechanisms to regulate the amount of cardiac output (CO) based on the 
end-organ metabolic demands. These regulation mechanisms include the sympathetic and 
parasympathetic systems, which control the cardiac rhythm (heartrate) and the peripheral 
vasoconstriction, but most importantly the Frank-Starling mechanism. Named after Otto Frank 
and Ernest Starling, who were the first physiologists to study it, the Frank-Starling mechanism 
describes the ability of the heart to adjust the contraction force of the ventricular muscles 
depending on the amount of blood volume that returns to the heart at the end of each cardiac cycle 
(venous return).44 

The cumulative effect of the regulation mechanisms on the CO produced by a healthy heart 
(HH) is explained in Fig. 1.6 where the preload and afterload sensitivities (light-blue surface) are 
depicted. More precisely, the CO delivered by the HH is continuously adjusted based on the left 
ventricular end-diastolic pressure (EDP) and the mean arterial pressure (MAP) that express the 
varying preload and afterload conditions against which the heart has to operate. In the same figure 
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it can be observed that the CO of the HH is highly responsive to preload changes but less 
responsive to afterload changes. Based on Fig 1.6a (light-red surface), in patients with severe HF, 
the deteriorated function of the diseased heart (DH) results in a substantial reduction of the overall 
CO, and, at the same time, an alteration of the responsiveness of the heart to preload and afterload 
changes. In these patients, as described in the previous sections, the CO can be restored by 
supporting the DH with a VAD. The majority of the VADs used today in the clinical setting are 
continuous flow turbodynamic VADs of the third generation that are mainly operating with a 
constant rotational speed. The selection of their constant speed is made along with the 
consultation of echocardiography that provides the total CO achieved by the accumulation of the 
pump flow and the blood flow produced by the remaining function of the DH.45 Based on the 
interpatient variabilities, the selected speed and the corresponding interaction with the native DH 
can vary among patients. As it is illustrated in Fig. 1.6b (light-green surface), the DH supported 
with a constant-speed operated VAD presents a preload sensitivity almost three times lower than 
the one of the HH46,47 and an afterload sensitivity  that is almost four times higher than the HH. 
When considering the intrapatient variability in the perfusion needs, the altered CO 
responsiveness can result in a mismatch between the venous return and the total CO produced by 
the VAD supported DH. In the event of such mismatches, critical flow conditions can be 
developed in the LV that result in over- or underpumping occurrences (Fig. 1.7).48,49 In detail, 
overpumping occurs when the metabolic demands are diminished and the selected constant speed 
of the VAD is high enough to produce a blood flow that exceeds the venous return (Fig. 1.7b). In 
this case, the ventricle is completely emptied, creating negative pressure gradients that shift the 
septum and the LV wall towards the inflow canula of the VAD.50 This condition is often referred 
as suction and is related to higher risk of tissue and blood damage, due to contact with the surface 
of the inflow canula and the high shear stress developed at the restricted area, respectively.48,51 In 
contrary, as it is illustrated in Fig. 1.7c, underpumping events occur when the metabolic demands 
increase and the selected constant speed of the VAD is not adequate to propel the amount of blood 
necessary to match the venous return. These events result in LV overload, wherein the higher LV 
pressures increase the risk of blood congestion in the lungs and constitute the patient susceptible 
to pulmonary edema. 

To avoid the life-threatening consequences of over- and underpumping events in the clinical 
setting, the VAD-supported HF patients are subjected to regular CO assessments through 
echocardiography ramp tests and the optimal constant speed of the VAD is adjusted 
accordingly.45 However, between the in-hospital examinations, and most importantly, the long 
intervals once the patient is discharged from the hospital, the rotational speed of the VAD remains 
fixed. During these intervals, the CO demands can vary notably due to changes in the pathological 
state, postural changes, or activity level as the condition of the patient improves. As a 
consequence, when these changes in the perfusion need occur, the fixed rotational speed 
contributes the highest risk to over- and underpumping events.48 

In an attempt to minimize this risk in the out-patient setting or between the examination visits, 
various research groups have been investigating control strategies that restore the physiological 
response of VADs to changes in the perfusion needs. To achieve this, the majority of these 
strategies aims to monitor hemodynamic or pump intrinsic parameters that reveal the state of the 
cardiovascular system. By comparing these parameters with the desired setpoint values, the 
physiological controllers  automatically adjust the output flow of the VAD by adapting its 
rotational speed.15,43,48,49 The selection of the monitored parameters along with the control  
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Figure 1.6. Comparison of preload and afterload sensitivity in (𝐿𝑚𝑖𝑛 𝑚𝑚𝐻𝑔⁄ ) of a healthy heart with a) 
a diseased heart with ejection fraction of 30%, and b) a diseased heart with ejection fraction of 30% supported 
with a continuous flow ventricular assist device (VAD) operating at a constant speed of 4000 revolutions per 
minute. The left ventricular end-diastolic pressure and the mean arterial pressure are used as surrogates of the 
preload and afterload, respectively. The diseased heart presents significant reduction in preload sensitivity 
and a mild increase in afterload sensitivity. The diseased heart supported with the VAD shows significant 
reduction in preload sensitivity and notable increase in afterload sensitivity. The data have been produced by 
the author in an in-silico environment using the cardiovascular system described by Colacino et al.52 and 
implemented by Ochsner et al.53 The ventricular assist device was simulated with the numerical model of a 
non-implantable mixed-flow turbodynamic blood pump (Deltastream DP2, Medos Medizintechnik AG, 
Stolberg, Germany).53 HH, healthy heart; DH, diseased heart; EF, ejection fraction; HR, heartrate; CSC, 
constant speed control; PS, pump speed, EDP, end-diastolic pressure; MAP, mean arterial pressure; CO, 
cardiac output; rpm, rotations per minute. 

objectives dictate the complexity, the performance, and the robustness of the different control 
approaches proposed in the literature. 

At the early stages of the VAD controllers, the necessary feedback for the perfusion need of 
the patient was provided by non-invasive monitoring of hemodynamic and pump parameters 
based on pump intrinsic signals and estimation approaches.15 Although these approaches 
eliminated the need for additional sensory technology, their performance was found to be highly 
affected by changes in the blood hematocrit54 and thrombus formation.55 This lack of robustness 
could provoke unwanted instabilities in the performance of the controller and, hence, set the life 
of the patient at risk. As a result, physiological control algorithms based on feedback provided by 
invasive sensors started to gain interest. These controllers can be grouped into two main 
categories, termed preload- and afterload-based controllers, depending on the hemodynamic 
parameter they use as control variable. For the preload controllers, the major objective is the 
restoration of the Frank-Starling response.15,56–61 To achieve this, they use hemodynamic 
parameters that act as preload surrogates, such as LV systolic pressure,59 LV end-diastolic 
pressure,57,62–64 and LV end-diastolic volume.60 For the afterload controllers, the mean arterial 
pressure and the pressure difference across the pump are the most common control parameters.65–

67 The aim of the afterload controllers is to sustain the controlled parameter constant, such that 
the CO is regulated via the vascular resistance. 

Considering both preload- and afterload-based controllers, various structures have been 
investigated over the years, including proportional (P), proportional-integral (PI), and 
proportional-integral-derivative  (PID)  controllers.15,56–61,66  These  controllers   offer  an  easier  
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Figure 1.7. Schematic representation of critical flow conditions developed in the left ventricle (LV) of a 
diseased heart (DH) supported with continuous flow ventricular assist device (VAD) due to diminished 
responsiveness to preload changes. a) Preload response (Frank-Starling response) of a healthy heart (HH), a 
DH, and a DH supported with a continuous flow VAD operated with constant speed (DH-CSC) during rest 
conditions. The preload response of both the DH, and the DH-CSC are significantly diminished compared to 
the HH. The constant speed is selected to provide a total cardiac output (CO) of 5 L/min at rest, which is 
considered the optimum operating point (OOP). On the bottom layer, a DH with a VAD implanted at the apex 
of the LV is depicted at the optimum operating point of the VAD during rest conditions. b) Response of a 
HH, a DH, and a DH-CSC on a preload reduction during sleeping conditions. The selected constant speed is 
higher than the optimum for these conditions, resulting in overpumping. The effects of overpumping on the 
ventricular walls and the function of the heart are presented on the bottom layer. c) Response of a HH, a DH, 
and a DH-CSC on a preload increase during exercise conditions. The selected constant speed is lower than 
the optimum for these conditions, resulting in underpumping. The effects of underpumping on the ventricular 
walls and the function of the heart are presented on the bottom layer. PF, pump flow. 

clinical implementation. Their operation is based only on a feedback parameter without awaiting 
information about the underlying interactions between the VAD, the DH, and the entire 
cardiovascular system (CVS). Although these controllers can improve the physiological response 
of the VAD to preload and afterload variations, their performance can be substantially affected 
by sudden alterations in the CVS and, consequently, they can be unreliable and prone to suction 
and backflow events.48 To account for these critical problems, various groups have developed 
safety controllers that detect and release suction and backflow events,68,69 as well as more 
complex physiological controllers that pursue multiple objectives concurrently.64,70–73 For 
instance, the multi-objective controller proposed by Petrou et al.64 is based on the LV EDP to 
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imitate the Frank-Starling mechanism, while it also incorporates various estimators and safety 
controllers to achieve aortic valve opening for a predefined time, and prevent LV suction and 
pump backflow. Such controllers not only enable a more physiological response of the VAD, but 
also offer unpreceded opportunities to the clinicians for treatment adaptation. The bottleneck, 
however, for these controllers is the lack of adaptiveness to changes of the time-varying 
parameters of the CVS, such as the heart rate, the remaining contractility of the DH, and the 
vasculature properties (compliance, resistance, and inertance). To counteract this, recent 
approaches investigate the applicability of iterative learning control (ILC) theory in the VAD 
field.74,75 These approaches exploit the repetitive nature of the heart cycles to identify changes of 
the time-varying parameters of the CVS and adapt accordingly the control input for the following 
cycles. Ketelhut et al.75 and Rüschen et al.74 showed that these approaches are promising; 
however, their performance can be restricted by the accuracy of the CVS and VAD models that 
are integrated in the control structure to allow the prediction of the control function. 

The improved responsiveness of the VADs and the potential benefit for the VAD-supported 
HF patients with the deployment of the above-mentioned control strategies has been validated 
through extensive in-silico or in-vitro experiments. In some cases, the performance of the 
controllers has been further proven with in-vivo experiment56,58 or even pilot clinical studies.72,76 
However, all the VADs being currently in clinical usage continue to operate with constant speed. 
Major burdens that restrict the implementation of any of the proposed controllers in the clinical 
setting are the lack of reliable monitoring approaches to provide the feedback parameters, the lack 
of adaptiveness to changes of the time-varying parameters of the CVS, and the enormous 
variability in patients’ characteristics that constitute the identification of universal control 
parameters difficult. 

1.5 Monitoring of Heart Failure Patients: Sensory and estimation approaches 

The management of CVDs and, especially HF, constitutes the cornerstone for the survival and 
the QoL of the patients. To allow the development of an optimum management and timely clinical 
decision-making, a structured and accurate assessment of the progression of the disease and the 
status of the patient constitute prerequisites.77 For this assessment, various vascular and 
hemodynamic properties can provide the necessary information; however, these properties have 
to be continuously monitored. When the VAD-supported patients are considered, except for their 
hemodynamic properties, parameters that reveal the VAD performance are also crucial not only 
to allow adequate treatment, but also to enable the implementation of the control approaches 
described in the previous section. 

In the clinical setting, echocardiography, computer tomography, magnetic resonance imaging, 
electrocardiogram, and fluid-filled catheters are readily available to provide accurate monitoring 
of the remaining contractility of the heart, the ventricular volumes, the blood flow, and  the blood 
pressure.48,78 These hemodynamic data are valuable to the clinicians for the assessment of the 
status of the patient. However, due to the large scale and the high cost of the measuring devices, 
these data can be acquired only during in-hospital treatment or, once the patient is discharged, 
during the predefined clinical examinations. This non-continuous monitoring of the 
hemodynamics limits the surveillance of the therapy, while in the VAD therapy, it precludes the 
implementation of physiological control. Hence, the development of implantable transducers that 
provide continuous monitoring capabilities is paramount to ensure optimum medical management 
and allow real time deployment of physiological control. 
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Over the last decades, various concepts of continuous direct measurement of blood pressure, 
ventricular volume or pump flow have been researched.79–84 In detail, Ruhhammer et al.81 
investigated a magnetic sensor to measure the distension of the aorta and then, estimate ABP. 
Their study showed that the silicone strip used to interlock the sensor on the aorta resulted in 
decreased measurement precision over time, due to silicone fatigue, while it was influenced 
significantly by the sensor implantation procedure and the position of the sensor on the aorta. 
Focusing also on the measurement of the blood pressure, Cleven et al.85 developed a fully-
implantable catheter-based sensor that is permanently implanted at the femoral artery. The initial 
in-vivo validation showed promising results, however, it remains to be seen during chronic 
experiments whether the sensor will be exempted from increased risk of vascular thrombosis, 
infections, and bleeding complications at the access site. Exploiting the advent and rapid 
evolution of stretchable electronics, Dual et al.86  developed a flexible, piezo-resistive strain 
sensor that is placed directly on the outer surface of the heart to provide continuous information 
of the heart volume. The sensor showed high accuracy compared to reference measurement during 
in-vivo experiments; however, it’s performance quickly decayed after several hours, limiting the 
applicability of the sensor for short-term use. Vennemann et al.87 have presented a wireless and 
batteryless implantable flow sensor, however the sensor has been validated only in an in-silico 
environment. Considering the VAD-supported patients, a new approach for integrating a pressure 
sensor at the inflow cannula to measure the LV pressure has been developed by v. Petersdorff-
Campen et al.88. By exploiting the design freedom of additive manufacturing, the latter approach 
offers also pump flow estimation capabilities, showing high potential for translation to the clinical 
setting after its validation in chronic in-vivo experiments. Despite the prospects of the 
aforementioned implantable sensing approaches, none has been reported in the clinical setting. 
This stems from the several obstacles that the implantable transducers have to overcome in order 
to succeed their approval for use in humans. More precisely, any implantable device has to be 
biocompatible, accurate, reliable, free from hardware failure, and resistant to drift.48 

The only implantable technologies that have achieved the readiness level to enter the clinical 
setting are the pressure sensors Titan (ISS Inc., Ypsilanti, MI) and CardioMEMS™ (Abbott AG, 
IL, USA). The Titan sensor is fully implanted in any of the four chambers of the heart to provide 
pressure measurements in a daily basis. This sensor is validated in in-vivo and in pilot clinical 
studies, however, it is not yet FDA approved.89 CardioMEMS™ is the only FDA approved 
implantable system that can be deployed for monitoring the pulmonary arterial pressure. 
CardioMEMS is currently in clinical use, highlighting the potential benefit of outpatient 
monitoring in optimizing the treatment of HF patients;90 however, the sensor can provide only 
daily measurements and a significant reduction in measurement’s precision after only 60 days of 
use has been reported.91 As a result, the sensor requires recalibration. Hence, it can be used for 
monitoring purposes and in-hospital pump speed adaptation, however, it cannot facilitate a 
reliable feedback for the implementation of physiological controllers. Regarding the measurement 
of blood flow, there is no implantable sensor available for the HF patients. However, for the VAD-
supported patients, the newly developed device aVAD (ReliantHeart Inc., Houston, TX, USA) 
features an ultrasonic flow probe embedded into the VAD outflow graft. It remains to be seen 
whether this sensor can be used for the deployment of physiological control, or the common 
problems of flow sensors regarding their sensitivity to fluid viscosity and temperature reduce its 
reliability and applicability. 

To counteract the lack of reliable implantable sensors in the VAD therapy, many researchers 
have investigated indirect approaches to measure hemodynamic properties and pump variables. 
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To achieve this, they exploit the intrinsic signals of the pump (current, rotational speed) and 
estimation approaches.54,92–97 More precisely, Granneger et al.92 used the intrinsic signals of the 
VAD along with the pump hydraulic and electric characteristics to estimate the pump outlet flow. 
This flow estimator achieved the smallest estimation error compared to other, simpler approaches, 
and outperformed the one used clinically on the HVAD system. In an attempt to enable a better 
understanding of the interactions between the DH and the VAD, Petrou et al.98 developed an 
algorithm for the estimation of the total cardiac output (accumulated flow through the pump and 
the aortic valve). The estimation approach showed minimal estimation error, however, it 
necessitates the measurement of the pressure at the inflow cannula of the VAD, limiting the 
application of the algorithm.  

The proposed estimation approaches can support the monitoring of the patients in an out-
patient setting. However, considering the effect of the blood viscosity and thrombus formation on 
the intrinsic signals of the pump, the usage of the estimated variables as feedback parameters for 
physiological controller can result in unpredictable instabilities of the controllers that can be life-
threatening for the patient.49 

1.6 Research Aim and Objectives 

The tremendous impact of CVDs and especially the end-stage HF on the global society and 
economy, along with the shortcomings of the therapeutical protocols and the technology used for 
their treatment have been highlighted in the previous sections. Based on this information, as it is 
depicted in Fig. 1.8, the overall aim of this work is to reduce the hospitalization rates and improve 
the survival, QoL, and recovery rates of VAD-supported HF patients, based on the development 
of novel sensory technology that allows continuous surveillance of the patient status and control 
algorithms that enhance the physiological response of VADs. To make the necessary steps 
towards the achievement of this aim, the following objectives (Obj) are formulated: 

 Obj 1. Develop sensory technology that allows the continuous and robust, over time, 
monitoring of principal vasculature and hemodynamic parameters, such as vascular 
distensibility, vascular strain, blood pressure, cardiac output, and heart rate. 

 Obj 2. Assess the performance and the readiness level of the developed sensory technology 
based on in-vitro, ex-vivo, and in-vivo experiments. 

 Obj 3. Develop algorithmic approaches that exploit the continuously monitored 
hemodynamic parameters and machine learning models to assess the remaining cardiac 
contractility and the overall status of the cardiovascular system. 

 Obj 4. Develop control strategies that improve the physiological response of VADs to 
changes in perfusion needs of the patient, incorporate treatment objectives, and adapt to the 
time-varying properties of the CVS (remaining contractility and vasculature properties). 

 Obj 5. Develop algorithmic approaches that allow the optimization of control parameters 
based on treatment- and patient-specific parameters to enable personalized control 
structures. 
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Figure 1.8. Conceptualization of the overall aim and the respective objectives (Obj) of the thesis. Sensory 
technology (Obj 1-2) allow direct continuous measurement of principal vasculature and hemodynamic 
parameters. These data are used to assess the activity level of the patient by extracting the systolic and end-
diastolic pressure components. The data are also used from the machine learning-based estimator (Obj 3) to 
identify critical flow phenomena, adverse events and the remaining contractility of the diseased heart. This 
information is used directly from the controller, by adjusting the control parameters, but most importantly 
from the clinician to support the decision-making and the adaptation of the treatment protocol. The data from 
the sensor and the estimator are exploited from the data-driven iterative learning controller (PDD-ILC) (Obj 
4) to regulate the pump speed (rpm) and achieve physiological response and adaptive behavior to changes in 
contractility, respectively. Finally, based on the patient characteristics and the treatment objective selected by 
the clinician, an optimization framework (Obj 5) is used to provide optimum, patient- and treatment-specific 
control parameters. 
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1.7 Scientific Contribution 

In an attempt to address some of the shortcomings of the current treatment procedures for 
the VAD-supported HF patients, and following the objectives described in Section 1.6, four 
studies were conducted in the course of this work.  

The first study aimed to fulfill the first two objectives and, hence, it was focused on the lack 
of implantable sensor technology for continuous measurement of vascular and hemodynamic 
parameters. Based on Section 1.5, various direct and indirect sensing approaches have been 
investigated over the last decades with limited success in the clinical setting. The main obstacles 
are issues related to biocompatibility, accuracy, reliability, and, most importantly, resistant to 
drift. In this context, the following research questions (RQ) were formulated: 

RQ I: 
What are the most valuable and most easily derived hemodynamic variables that reflect the 
changes in the overall cardiovascular system? 

 
RQ II: 
How can these variables be accurately and reliably monitored while the use of flexible 
materials that are prone to fatigue and increase the risk for long-term drift are avoided? 

 
RQ III: 
What experimental procedures have to be followed to allow a thorough assessment of 
performance and reliability of the sensing device under conditions that adequately emulate the 
human body?  

To adequately address these questions, Study I reported the design, the characterization and 
the validation of an extravascular, magnetic-flux sensing device, capable of capturing the 
waveforms of the arterial wall diameter, arterial circumferential strain and arterial pressure 
without restricting the arterial wall. The waveforms of the latter variables constituted the basis to 
further deduce pulse wave velocity, respiration frequency, and duration of the systolic phase of 
the cardiac cycle, which could offer new capabilities in CVD treatment management. The 
implantable sensing device, comprising a magnet and a magnetic-flux sensing assembly, showed 
to be reliable, with temperature and cyclic-loading stability. Continuous and accurate monitoring 
of arterial blood pressure and vascular properties was demonstrated with the proposed sensor in-
vitro with a silicone artery model, and validated in-vivo in a porcine model mimicking 
physiologic and pathologic hemodynamic conditions. Revealing the information hidden in the 
arterial blood pressure waveform, as well as other vascular properties, could constitute the 
cornerstone to allow patient-specific treatment in patients suffering from CVDs, and new 
prospects in physiological control of VADs. 

Study I: 
99 Magkoutas, K. et al. Continuous Monitoring of Blood Pressure and Vascular 
Hemodynamic Properties with Miniature Extravascular Hall-Based Magnetic Sensor. JACC 
Basic to Transl. Sci. 1–28 (2023) (accepted for publication) 
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For the second study, the aim was the fulfillment of the third objective described in Section 
1.6. As it was highlighted in the previous sections, time-varying parameters of the CVS, such as 
the remaining contractility of the DH, can have a significant influence on patient management 
and the performance of physiological controllers. Currently, there is no reliable approach to 
continuously monitor such parameters. Hence, considering that a significant amount of 
hemodynamic data can be enabled with Study I, along with the capabilities of machine learning 
algorithms the following research questions were raised:    

RQ IV: 
How does the performance of traditional time series classifiers compare to graph-based neural 
networks when the left ventricular pressure is used to estimate the remaining cardiac 
contractility of a diseased heart?  

 
RQ V: 
Are the classification accuracy and prediction time adequate to be used for real-time 
adaptation of the control parameters of physiological controllers? 

In Study II, the first, preliminary results to address these questions were presented. In detail, 
artificial data of the left ventricular pressure were generated by executing 63 experiments on an 
in-vitro, hybrid mock circulation. To allow the estimation of the remaining contractility, these 
experiments included preload, afterload, pump speed, and heart rate variations and they were 
performed for nine contractility levels. From the plethora of machine learning models, the 
dynamic time warping nearest neighbor (DTW-NN) classifier and the support vector (SVM) 
classifier were selected from the family of time series classifiers, while from the family of graph-
based neural networks a pretrained architecture and a custom architecture were selected. By using 
the generated data of left ventricular pressure, the different machine learning algorithms were 
compared with respect to their accuracy in estimating the remaining contractility. All 
classification methods were able to estimate the remaining contractility with more than 98% 
accuracy; however, the SVM showed superior performance. The continuous and accurate 
estimation of the remaining contractility of the DH could substantially support patient 
surveillance, treatment adjustments, and real-time adaptation of the control parameters of 
physiological controllers. 

Study II: 
100 Magkoutas, K., Wang, F., Forster, O., Meboldt, M. & Schmid Daners, M. CARD9: 
Cardiac Contractility Estimation Based on Left Ventricular Pressure: Comparison of Time 
Series Classifiers and Graph-based Neural Networks. ASAIO J. 68, 48–48 (2022). 

After developing the necessary technology and algorithms in studies I and II to allow 
continuous monitoring of the hemodynamics of the cardiovascular system and its time-varying 
properties, the third study aimed to fulfill the forth objective of this work. Based on Section 1.4, 
a plethora of physiological controllers have been investigated, including simple and complex 
strategies, as well as single and multi-objective strategies. However, the majority of these 
controllers are affected by the changes in cardiac contractility and in patient’s frailty-level, while 
they do not account for the lack of pulsatility. These shortcomings constitute their long-term 
performance and stability questionable, limiting their implementation in the clinical setting. 
Based on these shortcomings, the following research questions were formulated: 
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RQ VI: 
What is the most appropriate control approach to enable adaptive control output based on the 
time-varying properties of the cardiovascular system?  

 
RQ VII: 
How can treatment-based pulsatile pump flow trajectories be designed, implemented and 
accurately tracked while physiological response of the VAD is achieved?   

These research questions were addressed in the third study of this thesis.  Specifically, in 
Study III, a physiological data-driven iterative learning controller (PDD-ILC) was presented. This 
controller accurately tracked predefined pump flow trajectories, aiming to achieve physiological, 
pulsatile and treatment-driven response of continuous flow VADs. The controller has been 
extensively tested in an in-silico environment under various physiological conditions, and 
compared with a physiological pump flow proportional-integrative-derivative controller (PF-
PIDC) (developed in this study too) as well as the constant speed (CS) control that is the current 
state-of-the-art in clinical practice. Additionally, two treatment objectives were investigated to 
achieve pulsatility maximization and left ventricular stroke work (LVSW) minimization by 
implementing copulsation and counterpulsation pump modes, respectively. Under all 
experimental conditions, the PDD-ILC as well as the PF-PIDC demonstrated highly accurate 
tracking of the reference pump flow trajectories, outperforming existing model-based iterative 
learning control approaches. Additionally, the developed controllers achieved the predefined 
treatment objectives and resulted in improved hemodynamics and preload sensitivities compared 
to the CS support. 

Study III: 
101 Magkoutas, K., Arm, P., Meboldt, M. & Schmid Daners, M. Physiologic Data-Driven 
Iterative Learning Control for Left Ventricular Assist Devices. Front. Cardiovasc. Med. 9, 
(2022). 

The last study of this thesis aimed to address the fifth objective described in section 1.6. 
Specifically, based on information that is provided in Section 1.4, the interpatient variability with 
respect to metabolic needs, disease status and progression, and treatment goals, constitutes a 
notable obstacle towards the identification of universal control parameters that result in the 
optimum controller performance. Considering also that the identification process is currently 
conducted with non-intuitive trial-and-error approaches, the achievement of physiological 
controllers that perform optimally to all patients becomes infeasible. As a result, the following 
research question was raised: 

RQ VIII: 
How can we optimize intuitively the control parameters of physiological controllers to 
improve their performance and incorporate treatment- and patient-specific parameters?  

This study describes the development and evaluation of a novel, genetic algorithm-based 
optimization framework (GAOF) that could be deployed to optimize the control parameters of 
ventricular assist devices (VADs). This framework enables the optimization of complex control 
structures based on VAD- and patient-specific characteristics by allowing the selection of the 



20 
 

numerical model of the human cardiovascular system and the VAD to represent the patient 
scenario of interest accurately. Additionally, the GAOF could incorporate treatment-specific 
goals during the definition of the objective functions of the optimization problem and, 
consequently, promoted the development of treatment-specific VAD controllers. The efficacy of 
the GAOF was assessed with one- and two-degree-of-freedom physiologic proportional-integral-
derivative controllers and a physiologic data-driven iterative learning controller. Two VAD 
designs and various patient disease scenarios were used to further explore and evaluate the 
capabilities of the GAOF. The optimized controllers outperformed substantially the hand-tuned 
controller, which was used as the benchmark, in all the investigated cases. This highlighted the 
potential improvement in the performance of any VAD controller by deploying the GAOF and, 
consequently, the possibility to increase the survival rates and enhance the quality of life of VAD 
patients. 

Study IV: 
102 Magkoutas, K., Nunes Rossato, L., Heim, M. & Schmid Daners, M. Genetic Algorithm-
Based Optimization Framework for Control Parameters of Ventricular Assist Devices 
Introduction (under preparation). Biomed. Signal Process. Control (2023). 

Alongside the contributions that shaped this thesis, the author had the chance to collaborate 
with other colleagues of the Zurich Heart consortium and contribute to their work. In detail, Chala 
N., Wu X., and the author collaborated with the aim to enable the integration of various 
technologies that have been developed under the umbrella of the Zurich Heart project. Within this 
project the author developed and operated the mock loop to allow the investigation of endothelial 
monolayer retention on an inflow VAD cannula under the physiologic conditions of a beating 
heart phantom.103 Along with Rebholz M., the author investigated in an in-vivo experimental 
setting the ability to control the ventricular unloading by manipulating the stroke ratio of an 
electrocardiogram‐synchronized pulsatile ventricular assist device.104 An important collaboration 
for the author was developed with von Petersdorff-Campen, K. and Dupuch, M. During this 
collaboration, the design benefits of additive manufacturing were exploited to allow the 
integration of pressure sensors on the tappered surface of an inflow canula of an implantable 
VAD. Based on the configuration of the sensors on the tappered surface, accurate pressure 
measurement and flow estimation were enabled.88,105 Along with his predecessor Petrou A., the 
author worked on a novel framework that enables the estimation of the total cardiac output of a 
VAD-supported HF patient and it holds promises for an online implementation in physiological 
controllers.98 Dual S. collaborated with the author to perform the in-silico validation of an 
implantable strain sensor that is offering continuous monitoring of ventricular volume. Finally, 
along with a number of colleagues, supported the preparation of the backstory of the building 
process of an interdisciplinary program of cardiovascular research. The studies conducted with 
the aforementioned colaborators are not part of this work, however, further information can be 
found in the following references. 

103 Magkoutas, K. et al. In-vitro Investigation of Endothelial Monolayer Retention on an 
Inflow VAD Cannula Inside a Beating Heart Phantom. (2023) 
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104 Magkoutas, K. et al. Control of ventricular unloading using an electrocardiogram‐
synchronized pulsatile ventricular assist device under high stroke ratios. Artif. Organs 44, 
E394–E405 (2020). 

88 von Petersdorff-Campen, K., Dupuch, M. A., Magkoutas, K., Hierold, C. & Schmid Daners, 
M. Pressure and Bernoulli-based Flow Measurement via a Tapered Inflow VAD Cannula. 
IEEE Trans. Biomed. Eng. 9294, 1–1 (2021). 

105 von Petersdorff-Campen, K., Dupuch, M. A., Magkoutas, K., Hierold, C. & Schmid 
Daners, M. BIO8: Cannula Add-On For Pressure And Flow Measurement In VADs. ASAIO 
J. 68, 13–13 (2022). 
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2 Continuous Monitoring of Blood Pressure and Vascular 
Hemodynamic Properties with Miniature Extravascular Hall-
Based Magnetic Sensor 

 

2.1 Introduction 
Cardiovascular diseases (CVDs) affect a large proportion of the western population and 

constitute the dominant cause of mortality, accounting for more than 17 million deaths worldwide 
on a yearly basis.107 In this context, continuous, long-term monitoring of arterial blood pressure 
(ABP) and  properties that reflect changes in the vascular system can provide useful information 
on disease progression, and enable surveillance of patient-compliance and assessment of 
treatment efficacy.108–110 

Over the last years, the advent and rapid evolution of stretchable electronics enabled the 
development of devices that accurately monitor vascular biomechanical properties.86,111–113 These 
properties include pulse wave velocity, as well as arterial compliance, distensibility, strain, stress, 
stiffness, and elasticity.114–116 However, the most valuable and most easily derived variable that 
reflects the changes in the overall cardiovascular system is the ABP.108,117 The waveform of the 
ABP is affected by left ventricular stroke volume, the biomechanical properties of the aorta, as 
well as the compliance and resistance of the entire vascular system. Hence, various underlying 
CVDs alter the ABP waveform (Fig. 2.1a-b), the analysis of which provides remarkable insights 
into the dynamic cardiovascular status.118 

The gold standard method for monitoring ABP is through invasive arterial catheterization, 
typically using the radial or femoral artery.119 Although this method enables accurate acquisition 
of the entire ABP waveform, it cannot be applied long-term or in an ambulatory setting. Invasive 
ABP measurement limits mobilization, bears a risk of vascular thrombosis with downstream 
occlusion, and is associated with infections and bleeding complications at the access site.120 To 
overcome these limitations, new invasive approaches have been investigated that exploit the 
arterial distension and properties of stretchable electronics to provide monitoring of the ABP.79–

83 While these sensing approaches offer accurate measurements of the entire ABP waveform, their 
long-term usage is still complicated by drift, a phenomenon of changing sensor output over time, 
and the need of a tight fixation on the circumference of the aortic wall which may lead to 
unwanted interference with vascular movement and compliance. 
Non-invasive measurement of the ABP by cuff-type sphygmomanometer or wearable devices 
that are directly attached to the skin provide only incremental values.121–126 Although the wearable 
devices have significantly improved the stability of the sensing device, the measurement accuracy 
and reproducibility are highly affected by body posture, movement of the measuring device 
during use, and often by increased ABP at the time of measurement at the clinic (i.e. white coat 
hypertension).127 Additionally, these devices typically estimate the ABP by using the peripheral 
blood pressure and generalized mathematical models that are associated with high 
inaccuracies128,129 and, hence, can increase the risk of potential misdiagnosis and mistreatment116. 

We present an improved invasive sensing approach for continuous monitoring of ABP as well 
as arterial wall diameter (AD) and arterial circumferential strain (ACS). The waveforms of the 
latter variables constitute the basis to further deduce pulse wave velocity, respiration frequency, 
and duration of the systolic phase of the cardiac cycle, which can offer new capabilities in CVD 
treatment management. In detail, similar to the work of Ruhhammer et al.81, an extravascular 
sensing device is proposed, which is attached to the outer vascular wall. The device comprises a 
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Figure 2.1. Sensing approach of the hall-based sensing device (HBSD) for cardiovascular disease patient 
management. a) Schematic of the most common CVDs and their influence on the blood pressure (BP) 
waveform. The analysis of the BP waveform contains significant information, which could be used to guide 
the treatment. b) BP waveforms captured with the sensing device during the in-vivo validation. c) Illustration 
of the HBSD attachment and a detailed view showing the components comprising the sensing device. The 
hall-effect sensor (HES) and magnet are completely separated and they are sutured at a predefined distance 
on the outer arterial wall. d) The contraction of the heart creates a pulsating pressure profile P(t) that travels 
through the arterial vessels. Depending on the vascular compliance, this pulsating pressure results in a varying 
vessel diameter D(t) which changes the position of the two sensing components. During systole, the distance 
between the components increases, resulting in a weakened magnetic-flux at the measurement surface of the 
HES and, hence, an increased voltage output V(t) (negative sensitivity selected for the HES). The voltage 
variation is translated to distance changes z(t) via the operation map produced during the calibration of the 
sensor. The distance between the sensing components is used to deduce the arterial diameter, the arterial 
circumferential strain and the pressure waveforms in a continuous manner. ECMO, extracorporeal membrane 
oxygenation. 

magnetic-flux sensor (hall-effect sensor) and a miniature magnet, both fully encapsulated in 3D-
printed biocompatible housings. By eliminating the elastic interconnection between the hall-effect 
sensor (HES) and magnet assemblies, the sensing device not only avoids vascular restriction, but 
also unwanted drift phenomena. The performance of the hall-based sensing device (HBSD) was 
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first evaluated in-vitro using an artificial silicone artery. As a next step, in a proof-of-concept 
study, the translational capabilities of the HBSD were validated in-vivo. In detail, the HBSD was 
tested in a porcine model under physiologic and pathologic hemodynamic conditions, 
demonstrating high accuracy in monitoring the ABP and the vascular properties in all 
experimental settings. 

2.2 Methods 
2.2.1 Design and fabrication 

The proposed HBSD sensor is an extravascular sensing system that enables continuous 
measurement of the ABP, the AD and the ACS. The sensor has been optimized to allow the 
acquisition of changes in the diameter of large vessels such as the ascending aorta (diameter of 
27.2 – 36.6 mm); however, its parametric design would also allow the adaptation of the sensor to 
function accurately even when smaller vessels (minimum diameter of 10 mm) need to be 
monitored. The sensing approach and the device structure are presented in Fig. 2.1c-d. In short, 
the device consists of two distinct components, namely the magnet component and the HES 
component, which are attached to the outer wall of the aorta. With no physical interconnection of 
the components, any vessel constriction and restrain is avoided, while, at the same time, drift 
phenomena due to material fatigue are eliminated. 

The fabrication procedure of the HBSD is presented in more detail in Appendix A2 as well 
as Fig. A2 in the Supplemental appendix, while in Appendix A8 in the Supplemental appendix 
the considerations for the material selection can be found. Briefly, the magnetic component 
embodied a miniature Nickel-plated, Neodymium (N48) permanent magnet (Diameter = 2±0.1 
mm, Height = 1±0.1 mm, Weight = 0.024 g), which was coated with Parylene-C by chemical 
vapor deposition to improve the temperature stability, as well as to ensure chemical and moisture 
resistance. For the HES component, an analog-bipolar HES with a SOT-23 packaging and a 
sensitivity of -45 mV/mT was selected (Length x Height x Thickness = 2.92 mm × 1.30 mm x 
1.15 mm, Weight = 0.3 ±0.01 g). Both components were encapsulated in 3D printed and UV-
cured housings made of Class-I biocompatible resin, which enabled exact positioning of the 
components on the arterial wall. The encapsulated assemblies, along with the copper wires for 
energy and data transmission, were coated with a 3μm layer of Parylene-C via chemical vapor 
deposition to ensure adequate insulation and biocompatibility. By accounting both components 
of the HBSD, the total weight was 1.38±0.02 g, the height was 3.22±0.01 mm, while the footprint 
on the vessel wall was 7±0.02 mm x 8±0.4 mm (longitudinal length x circumferential length). 
The weight distribution of the HBSD on the aortic wall is given in a qualitative form in the 
Supplemental Fig. A9.  

2.2.2 Working principle 
The pulsatile nature of the native heart results in a pulsatile blood flow and, hence, the aorta 

experiences an altering diameter within each cardiac cycle. As illustrated in Fig. 2.1d, the 
variation in the AD, results in a varying distance between the magnet component and the HES 
component of the sensing device. Hence, a varying magnetic field is applied on the HES and, 
consequently, a varying output voltage is measured. By measuring the voltage output of the HES, 
the AD, the ACS, as well as the ABP are calculated. Based on the ABP waveform, the respiration 
frequency and the systolic period of the cardiac cycle can be deduced. When a second sensing 
device is implanted in the proximity of the first sensor, the pulse wave velocity (PWV) can also 
be measured.  

A thorough description of the steps required to obtain the aforementioned properties is given 
in Fig. 2.2. Specifically, the deduction of the AD is based on the working principle of the HES 
since the latter responds linearly to the magnetic-flux induced perpendicular to the measurement 
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surface. Any translation of the permanent magnet, results in alterations of the magnetic-flux 
sensed by the HES and, hence, an alteration in the measured voltage output. Based on the 
predefined and constant sensitivity (S) of the HES, the applied magnetic-flux perpendicular to the 
measuring surface (𝐵 ) can be calculated by the measured output voltage (𝑉 ): 

𝐵
𝑉
𝑆

  𝑇  (1) 

By using the “current model” for the analysis of a permanent magnet polarized along its 
symmetry axis with a uniform magnetization 𝑀 130 (Appendix A1 and Fig. A1, Supplemental 
appendix), the distance between the centers of the magnet component and the HES component of 
the sensing device can be calculated from the magnetic-flux. This approach results in highly 
accurate calculation of the distance and accounts for any misalignment between the centers of the 
components induced by the imprecision of the implantation. Misalignment induced during the 
manufacturing process, or any inherent deviation in the residual flux density of the permanent 
magnet however, could drastically deteriorate the accuracy of the mathematically calculated 
distance. To eliminate the risk for inaccuracies, we conducted a calibration procedure for each 
sensing device (Appendix A6 in Supplemental appendix). Based on the calibration procedure, the 
voltage output to distance relation was acquired for all possible orientations and misalignments 
of the sensing components (Fig. 2.2a), resulting in a “calibration space” for each sensing device 
(Fig. 2.2c). This calibration space is defined by second order exponential equations: 

𝑧 𝑡 𝑎 ∙ 𝑒 ∙ 𝑐 ∙ 𝑒 ∙    𝑚𝑚 ,    

𝑤𝑖𝑡ℎ  𝑎,𝑏, 𝑐,𝑑 ≡ 𝑓 𝜑, 𝛾, 𝑟  
(2) 

where 𝑧 is the distance between the center of the magnet component and the HES component, 𝜑 
the misalignment angle in the yaw plane, 𝛾 the misalignment angle in the pitch plane, 𝑟 the 
misalignment of the magnet and HES centers in the x-y plane expressed as a radius, and 𝑉  the 
measured voltage output. 𝑎, 𝑏, 𝑐, and 𝑑 are exponential coefficients that depend on the 
misalignment parameters. 

In Fig. 2.2d, the usage of the calibration space and the necessary steps to derive the monitored 
variables are depicted. More precisely, during the implantation procedure of the sensing device 
the misalignment angles 𝜑 and 𝛾, as well as the misalignment radius 𝑟 are measured. These 
quantities are then set as input parameters in the calibration space to acquire the appropriate 
voltage output to distance relation, termed the operating map. In case the measured values of 𝜑, 𝛾 
and 𝑟 do not coincide with the calibration values, a spline-based multivariate interpolation is 
conducted. As a next step, based on Fig. 2.2b, the AD can be calculated directly from the distance 
between the magnet component and the HES component by: 

𝐷 𝑡 𝐷
𝑧 𝑡 𝑧
sin 𝑘/2

     𝑚𝑚  (3) 

where 𝑧 𝑡  is the distance between the magnet component and the HES component calculated by 
(2), 𝑧  is the initial distance between the magnet component and the HES component, 𝑘 is the 
angle between the magnet component and the HES component with respect to the center of the 
aorta in the x-y plane, and 𝐷  is the initial aortic diameter. 

The circumferential arterial strain can be calculated from the arterial diameter as: 

𝜀
𝐷 𝑡 𝐷

𝐷
 (4) 
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The calculation of the ABP is based on the Young-Laplace equation defined for thin-walled 
vessels131, given as: 

𝜎 𝑃
𝑅
𝛿

 (5) 

with 𝜎  being the circumferential stress, 𝑃 the arterial pressure, 𝑅 the arterial wall radius and 𝛿 
the arterial wall thickness. When the arterial wall is considered as non-viscous and inertialess 
material with a linear elastic response, the circumferential stress is linearly related to the strain 𝜀  
with the elastic Young modulus 𝐸  (𝜎 𝐸 𝜀 ). However, studies have shown that the arterial 
wall is characterized by a visco-elastic behavior115. In this work, the visco-elastic behavior of the 
arterial wall is taken into consideration by incorporating the effect of the rate of change of strain 
in the stress-strain relation, as proposed by Peterson et al.132 and given by: 

𝜎 𝐸𝜀 𝑅
𝑑𝜀
𝑑𝑡

 (6) 

By substituting equation (6) to (1), the arterial pressure is calculated by: 

𝑃
𝛿
𝑅

𝐸𝜀 𝑅
𝑑𝜀
𝑑𝑡

 (7) 

with 𝐸 and 𝑅  being subject-specific elastic moduli that are identified with in-situ calibration 
during the implantation process. 

The respiratory activity influences the transmural pressure (pressure inside the heart chamber 
minus the intrapleural pressure), resulting in increased or decreased preload and ventricular stroke 
volume during inspiration or expiration, respectively. These alterations in preload and stroke 
volume during the respiration cycles affect the ABP, allowing the deduction of the respiratory 
frequency by the ABP waveform. The latter deduction requires accurate identification of the onset 
of each cardiac cycle. In this study, we identified the cardiac cycle onsets based on the maxima 
of the first derivative of the ABP waveform, when the latter is low-pass filtered with an 18th order, 
zero-phase finite impulse response (FIR) filter with a cut-off frequency of 8 Hz (Appendix A3, 
Fig. A3, Supplemental appendix). The cardiac cycle onsets enable the extraction of the systolic 
pressure (SP). The SP points of the ABP result in a new waveform. By identifying the minima of 
this waveform, the respiration period can be calculated as the time interval between two 
consecutive minima. Consequently, the respiration frequency is deduced as the inverse of the 
respiration period. A detailed flowchart of the described process is given in Fig. A5 in the 
Supplemental appendix. 

For the calculation of the systolic phase of the cardiac cycle, the cycle onset along with the 
dicrotic notch are prerequisites. However, the identification of the dicrotic notch is not trivial. In 
this work, we followed the process described in Fig. A4 in the Supplemental appendix. In short, 
the maxima of the first derivative of the low-pass filtered ABP waveform, which do not 
correspond to the cardiac cycle onsets and the index of which exceeds the SP index, are identified. 
The indexes of these maxima are then used as pivot points to search and identify the regional 
maxima of the original ABP waveform. The regional maxima correspond to the dicrotic notch of 
each cardiac cycle. By calculating the time interval between the onset and the dicrotic notch of 
each cycle, the systolic phase of the cardiac cycle is deduced (Fig. A4, Supplemental appendix). 
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Figure 2.2. Working principle and characterization of the hall-based sensing device (HBSD). a) 
misalignment between the centers of the sensing components during the implantation procedure. 𝜑 is the 
angle in the yaw plane (𝑥 𝑦′), 𝛾 is the angle in the pitch plane (𝑥 𝑧′), 𝑟 is the misalignment of the magnet 
and hall-effect sensor (HES) centers in the yaw plane expressed as a radius. b) schematic of the changing 
distance between the sensing components within a cardiac cycle. 𝑧  is the initial distance between the magnet 
component and the HES component, 𝑘 is the angle between the magnet and the HES with respect to the center 
of the aorta in the yaw plane, R is the arterial radius during diastole, while ΔR and Δz are the change in arterial 
radius and distance, respectively. c) each HBSD is calibrated for a set of 𝜑, 𝛾 and r combinations, resulting 
on the depicted calibration space. The measured misalignment values are used as driving parameters in the 
calibration space to identify the operating relation between the sensor output and the distance between the 
sensing components. d) flowchart of the steps necessary to derive the arterial distension, the arterial 
circumferential strain (ACS) and the arterial blood pressure (ABP). e, HBSDs evaluated for their operation 
robustness when they are immersed in a 0.9% saline bath at 37 °C for seven days. Both sensors show great 
stability with the change in their response being within the initial deviation of the sensor. f) The performance 
of two sensors was evaluated in a temperature ramp test. Temperature changes within the range of 30°C to 44 
°C had no effect on the sensor’s response. 
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The PWV can be measured by attaching a second sensor in the proximity of the first sensor. 
More precisely, the PWV is calculated by the division of the distance between the two sensors 
and the time interval between the cardiac cycle onset on the first sensor and the same cardiac 
cycle onset of the second sensor. 

2.2.3 Characterization of hall-based sensing device 
The HBSD was tested and characterized with respect to its robustness to sterilization, immersion 
into liquid, temperature changes, dynamic cyclic loading, as well as, to misalignment effects 
induced by imprecision of the implantation. In detail, five HBSDs were sterilized by autoclaving 
(121 °C for 20 min) to ensure their robustness in common sterilization procedures. The autoclaved 
sensing devices were mounted on a holding structure that ensured fixed distance between the 
magnet and the HES components. The holding structure with the sensing devices attached was 
immersed in a 0.9% saline solution bath that was kept at 37 °C via a heating element (CorioTM, 
JULABO GmbH, Seelbach, Germany). The sensing devices were directly connected to an NI-
DAQ-USB6210 (National Instruments (NI), 1 kHz sampling frequency) and the data was 
continuously registered in a desktop PC for 7 days. After this period, all sensors were retrieved 
to be examined for swelling. Based on Dual et al. 86, the weight of each sensor was measured on 
a precision scale (ALJ 500-4A, KERN & SOHN GmbH, Balingen, Germany). After applying 
vacuum and heat (100 °C) for 2 hours, the weight of each sensor was measured again on the same 
precision scale. 

The temperature experiments were conducted with the HBSDs (n = 5) being mounted on a 
holding structure and immersed in a 0.9% saline solution bath. The temperature of the bath ranged 
from 30 – 44 °C, in steps of 1 °C and it was measured with a thermistor (MA-100, Amphenol 
Advanced Sensors, St. Marys, PA, USA). The response of the sensing devices, as well as, the 
temperature of the bath, were acquired via an NI-DAQ-USB6210 (NI, 1 kHz sampling 
frequency). For each temperature setting, after the temperature in the bath had stabilized at the 
required level, the data was measured and collected in 30-minutes windows and registered to a 
desktop PC. 

To evaluate the robustness of the sensing devices in long-term cyclic loading, tests were 
performed on a tensile testing machine (AGS-X, Shimadzu Schweiz GmbH, Reinach BL, 
Switzerland). The clamping of the sensing devices on the tensile device required specific 
mountings that have been designed and manufactured out of polylactic acid (PLA) with fused 
deposition modelling (FDM) 3D printing. The cyclic loading emulated the maximum distension 
of 2 mm that the sensing device could measure when implanted on an ascending aorta with a 
diameter of 30 mm. The moving velocity was 4 mmꞏs-1, emulating a heart rate of 60 bpm and 
symmetric systolic and diastolic periods.  

Finally, the assessment of the misalignment effects on the response and accuracy of the HBSD 
was based on the calibration space developed during the HBSD calibration procedure (Appendix 
A6 in Supplemental appendix). 

2.2.4 In-vitro setup and experiments  
The performance of the HBSD in measuring the AD, the ACS and the ABP was first evaluated 

in-vitro. The testbench for the in-vitro tests (shown in Fig. 2.3a) consisted of a linear motor (P01-
37x120F, Linmot, NTI AG LinMot & MagSpring, Spreitenbach, Switzerland), a bellows, two 
unidirectional valves, a waterproof tank made of Plexiglass, an artificial artery molded with 
RTV3040 silicone, two mountings for the artificial artery with pressure measurement ports, two 
pressure sensors (TruWave, Edwards Lifesciences), a laser optical displacement sensor 
(optoNCDT, Micro-Epsilon Messtechnik GmbH & Co. KG, Wittenbach, Switzerland), a flow 
meter (Sonoflow CO.55/190, Sonotec GmbH, Halle, Germany) a thermistor (MA-100, Amphenol 
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Advanced Sensors, St. Marys, PA, USA) and a heating element (CorioTM, JULABO GmbH, 
Seelbach, Germany).  

To adequately mimic the typical expansion and pulsatile nature of the native aorta in the 
ascending region, the artificial artery had an outer diameter of 30 mm (the typical outer diameter 
of the ascending aorta in adults is 27.2 – 36.6 mm)128 and a wall thickness of 2 mm. The silicone 
artery was fabricated based on the process described by Zimmerman et al.133 Five HBSDs were 
attached on the artificial artery with instant adhesive and the artificial artery was mounted on the 
testbench to form a closed loop system. During the in-vitro experiments, the tank was filled with 
a physiologic saline solution and the temperature was controlled at 37 °C. The closed loop system 
was also filled with saline solution; however, its temperature was not controlled. By manipulating 
the stroke length and the velocity of the linear motor, various sinusoidal pressure curves could be 
achieved, accounting for different pressure conditions and various physiologic heart rates. The 
intravascular pressure (measured through the pressure ports before and after the artificial artery) 
and the displacement of the arterial wall (measured with the laser optical displacement sensor) 
were used as reference signals for the evaluation of the performance of the HBSDs. 

2.2.5 In-vivo setup and experiments  
The feasibility of HBSD and its performance were further assessed in-vivo, in a porcine 

model, mimicking more accurately the environment and the arterial motions encountered under 
clinical conditions. In addition, to evaluate the translational readiness, the HBSD was tested under 
physiologic and pathologic hemodynamic conditions, with the latter being mimicked by 
implementing cardiopulmonary bypass (CPB) support. All experiments were conducted on adult 
pigs (n = 12, Swiss large white, female, 96.9± 8.7 kg body weight (BW)) with a diameter of the 
ascending aorta of 23.4±3.3 mm. The experiments were divided into three phases. In detail, the 
first four experiments facilitated the model and device establishment, wherein the design and 
electronics of the HBSDs were iteratively optimized and the experimental protocol was 
established. The second phase, comprised two experiments, dedicated to the optimization of the 
physiologic and hemodynamically deviated animal models as well as to the optimization of the 
overall experimental protocol. Finally, a device validation phase followed, wherein the 
standardized assessment of the optimized device was performed in six animals. The animal 
housing and all procedures and protocols were performed with the ethical approval of the local 
committee for experimental animal research (Cantonal Veterinary Office Zurich) under the 
license number ZH213/2019. 

The experimental procedure of the in-vivo experiments is shown in Fig. 2.4a-b. In detail, after 
the loss of postural reflexes following premedication with ketamine (Ketasol®-100 ad us.vet.; 
Dr. E. Graeub AG, Berne, Switzerland, 15 mg/kg), azaperone (Stresnil®, Elanco Tiergesundheit 
AG, Basel Switzerland2 mg/kg) and atropine (Atropin 1% Kantonsapotheke, Zurich Switzerland 
0.05 mg/kg), anesthesia was induced by a bolus injection of propofol (Propofol ®- Lipuro 1%, B. 
Braun Medical AG; Sempach, Switzerland, 1–2 mg/kg BW), and the animals were intubated. 
Anesthesia was then maintained with 2–3% isoflurane and propofol (2–5 mg/kg/h). Amiodarone 
(Cordarone, Sanofi-Aventis (Suisse) SA, Vernier, Switzerland, 150 mg bolus iv) was 
administered to stabilize the heart rhythm, while administration of buprenorphine (0.01 mg/kg) 
every 4 hours for the duration of the procedure was included for the pain management. 

Once the animal was anesthetized, as it is depicted in Fig. 2.4a-b, a left thoracotomy was 
performed to provide access to the ascending and descending aorta. A perivascular flowmeter 
(T400, Transonic Systems Inc, Ithaca, NY, USA) was implanted at the base of the ascending aorta 
to provide reference measurements of the cardiac output. Specifically designed paper-stencil 
representing the sensors’ exact foot-print was placed at the predetermined site of sensor 
implantation on the aorta and served as a guide for the precise placement of 5-0 Prolene surgical 
sutures (Ethicon, Puerto Rico, USA). Following the suture placement, the needles were cut and 
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sutures threaded through pre-fabricated holes on the HBSD components. The two components of 
each HBSD were then ‘sided’ along their corresponding sutures into the thoracic cavity and then 
fixed onto the aortic wall by knotting the suture’s free ends. The position of the HBSD 
components was radial (perpendicular to the longitudinal axis of the aortic wall), allowing the 
distance between the two components to freely follow the pulsatile changes of the aortic diameter 
(the implantation process is demonstrated in the Supplemental video “ImplantationHBSD.mp4”). 
After fixing the HBSD components, as shown in Supplemental Figure A7, a fluoroscopy image 
in latero-lateral projection was taken and the alignment of the two components was assessed. 
When the HBSD alignment met the acceptance criteria (Appendix 7, Supplemental Figure A8, 
Supplemental appendix), the voltage output of the sensor was measured for 20 s, otherwise one 
of the HBSD components was repositioned and the process was repeated. The mean value of the 
20-second measurement was compared to the voltage output identified during the calibration 
process for the same distance and alignment. In case the voltage deviation exceeded 5% 
(Appendix A7, Supplemental Figure A8, Supplemental appendix), the HBSD was replaced. In a 
next step, an intravascular fluid-filled blood pressure measuring catheter (Infiniti 5F PIG 145 .038 
125cm, Cordis Corporation, Miami Lakes, USA) was inserted through the femoral artery and 
under fluoroscopic guidance carefully positioned at the height of the HBSD at the ascending aorta, 
and connected to a commercial blood pressure sensor to provide the necessary reference signal. 
All the reference sensors and the HBSDs were connected directly to a data acquisition card and 
the data was continuously recorded. 

To demonstrate the full capabilities of the HBSD, a number of different hemodynamic 
conditions were emulated during all animal experiments. Specifically, after a baseline 
measurement at stable resting conditions, adrenergic stimulation using Dobutamine (0.5 mg/mL) 
was performed to achieve a systolic pressure (SP) of approximately 130 mmHg for a pre-specified 
period of 5 minutes. These settings allowed the evaluation of the HBSD under increased blood 
pressure levels (up to 150 mmHg), as well as, increased heart rates (up to 130 beats-per-minute). 
Additionally, to investigate the effect of the respiration induced movement on the HBSD 
performance, 15-20 seconds of apnea conditions were conducted. 

To test the capabilities of the HBSD in hemodynamic conditions present in patients with heart 
failure (e.g. volume overload) or in case of low pulse pressures (e.g. heart failure patients 
supported with ventricular assist devices), the animals were connected to a cardiopulmonary 
bypass (CPB) circuit. To achieve this, after heparinization (ACT>300s), cannulation of the aortic 
arch (inflow) and the pulmonary artery (outflow) was performed and the pig was connected to the 
CPB circuit (Fig. 2.4c). The performance of the HBSD was assessed under various CPB support 
levels, with and without pharmacological stimulation (Dobutamine). 

During the in-vivo experiments, the intravascular pressure, the voltage output of the HBSD 
and the aortic flow were acquired with an NI-DAQ-USB6210 (2 kHz sampling frequency), driven 
by a MATLAB 2020b (The MathWorks, Natick, USA) script. 

 On the completion of the study procedure, all animals were euthanized by the administration 
of an overdose of pentobarbital while still under general anesthesia according to the animal study 
protocol.  
2.2.6 Data post-processing. 

The data collected during the in-vitro and in-vivo experiments was filtered with an 18th order, 
zero-phase finite impulse response (FIR) filter with cut-off frequency of 30 Hz and 14 Hz, 
respectively. Post-processing was conducted with MATLAB 2020b (The MathWorks, Natick, 
USA) scripts. 

2.2.7 Statistical analysis. 
The data are presented as time sequences, as well as with the mean ± standard deviation (SD) 

of the difference between the reference measurements and the measurements conducted with the 
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HBSD. The comparison of the reference and HBSD measurement approaches is based on the 
intraclass correlation coefficient (ICC) with its 95% confidence intervals (CIs), using the model 
of absolute agreement with single measurements (A-1)134 implemented by Salarian.135 
Additionally, the data are compared with the Bland- Altman plots of differences with the 
representation of the mean difference, the limits of agreement from -1.96 SD to +1.96 SD, and 
95% CI. All statistical analyses were performed in MATLAB R2020b. 

2.3 Results 
2.3.1 Characterization of HBSD 

The conventional sterilization process, conducted by autoclaving the sensing device at 121 
°C for 20 min, had no influence on the operation of the hall-effect-based sensor. The response of 
two sensors immersed for seven days in a physiologic (0.9%) saline solution bath at 37 °C, 
simulating the environment within the human body, is shown in Fig. 2.2e. The change in the mean 
voltage output (MVO) and the standard deviation (STD) with respect to the initial voltage output 
V0 was infinitesimal over the course of the experiment. Following the immersion in liquid, the 
sensors were examined for the presence of swelling of the 3D-printed encapsulation structure. 
Both sensing devices presented a weight increase of <1%. 

In Fig. 2.2f, the effect of temperature changes on the response of the HBSD are presented, by 
means of the MVO with respect to the initial voltage output V0. During the ramp up of the 
temperature from 30 °C to 44 °C, the MVO was unchanged, while the STD remained in the initial 
range. This response indicates the robustness of the HBSD to temperature changes in a range 
much broader than the one expected inside the human body. 

The novelty of the proposed HBSD stems from the absence of an elastic interconnecting part 
between the sensing components. Any elastic component would be prone to cyclic fatigue and, 
consequently, long-term drift of the sensor. To prove the robust operation of the HBSD over time, 
long cyclic loading experiments were conducted on a tensile device. As it can be seen in Fig. A6 
in the Supplemental appendix, the response of the sensor after 30’000 cycles is identical to the 
initial response as expected. 

In addition, the influence of misalignment among the two sensing components of the HBSD, 
was examined. The response and resolution of the sensor was adequate as long as φ<2°, γ<2° and 
r<0.5 mm, while the limit in z-distance for the investigated design was 2.25 mm. In case the 
induced misalignments exceed the latter limits, the sensor position needs to be adjusted. 

2.3.2 In-vitro performance validation 
By using the in-vitro setup shown in Fig. 2.3a, five HBSD were mounted on the surface of the 
artificial artery (Fig. 2.3a) and various physiologic conditions (Fig. 2.3b) were emulated by 
varying the loading range [peak systolic pressure ≈ 30-220 mmHg] and the heartrate [60-160 
bpm]. In Fig. 2.3c, a comparison of the diameter measured with the HBSD and the reference 
sensor is shown for the applied operating conditions. The profile of the diameter was almost 
identical to the reference profile in all conditions. Similarly, the pressure profiles acquired with 
the HBSD indicated high accuracy when compared to the reference pressure profiles (Fig. 2.3c). 
In Fig. 2.3d, association between the reference values and the values measured via the HBSD is 
illustrated. The ICCs for the diameter and pressure measurements were 0.9995 (95% CI: 0.9995-
0.9995) and 0.9944 (95% CI: 0.9892-0.9965), respectively. Although the time-sequence data of  
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Figure 2.3. In-vitro setup and performance validation of the hall-based sensing device (HBSD). a) Setup 
for the in-vitro evaluation of the HBSD, comprised of 1) a linear motor, 2) a bellows that enables a volume 
change, 3) two unidirectional valves, 4) a flow meter, 5) an artificial silicone artery, 6) five HBSDs, 7) a laser 
sensor measuring the reference diameter, 8) a waterproof tank, 9) a heating element  and a thermometer, 10) 
a port for reference pressure measurement, and 11) tubing to circulate the saline solution. b) The applied 
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diameter and pressure conditions to emulate different operating scenarios. In time-windows 1-3 the heartrate 
remained at 60 beats per minute (bpm), with varying loading conditions, while in windows 4 and 5, the 
heartrate was set to 90 and 160 bpm, respectively. c, Detailed depiction of the measurements during the 
operating conditions 1-5, shown in b. The arterial diameter and pressure measured with the HBSD is compared 
with the reference diameter and pressure measurements, while the systolic and diastolic values are presented 
for all signals. d) Linear association between the diameter measured with the HBSD and the RD, as well as 
the pressure measured with the HBSD and the RP. The intraclass correlation coefficients for the diameter and 
pressure measurements were 0.9995 (95% CI: 0.9995-0.9995) and 0.9944 (95% CI: 0.9892-0.9965), 
respectively. e, Difference of the systolic and diastolic values measured with the HBSD and the reference 
sensors, including all different operating conditions. The difference in diameter is expressed as a percentage 
of the initial diastolic aortic diameter. f, Bland-Altman plot of differences between the HBSD and the RD, 
with the representation of the mean difference, the limits of agreement (dashed line) from -1.96 seconds to 
+1.96 seconds, and 95% CI. (G) Bland-Altman plot of differences between the HBSD and RP, with the 
representation of the mean difference, the limits of agreement (dashed line) from -1.96 seconds to +1.96 
seconds, and 95% CI. EDP, end-diastolic pressure; HP, hall pressure; MAP, mean arterial pressure; SP, 
systolic pressure. 

diameter and pressure contain crucial information about the condition of a patient, it is of 
paramount importance to extract the values obtained during systole (SP) and diastole (EDP), as 
well as the mean ABP (MAP). The mean error between the reference diameter and the diameter 
measured via the HBSD, expressed as a percentage of the initial diastolic aortic diameter, was –
0.10%±0.29% and 0.19%±0.34% during diastole and systole, respectively (Fig. 2.3e). The mean 
error in the EDP, SP, and MAP (Fig. 2.3e) was 0.03±0.79 mmHg, 0.25±0.59 mmHg and 
0.10±0.38 mmHg, respectively. Under all conditions examined, the absolute pressure error was 
below 3 mmHg. The results of the Bland- Altman plot in Fig. 2.3f and 2.3g also indicate that the 
HBSD has a mean bias of 0 mm, with limits of agreement (LoA) of 0.16 mm, compared to the 
reference laser sensor, and a mean bias of -1.39 mm Hg, with LoA of -6.79 − 4.01 mm Hg, 
compared to the reference pressure sensor. 

2.3.3 In-vivo performance validation 
To demonstrate the full capabilities of the HBSD and assess its translational readiness an 

extensive in-vivo experimental protocol has been designed and executed in a porcine model. In 
Fig. 2.4d, a comparison of the reference pressure and the pressure measured via the HBSD is 
illustrated for one of the animal experiments. The pressure signal provided by the HBSD 
accurately captured the highly varying pressure profiles, regardless of the pressure level and the 
heart rate. In Fig. 2.4f, the linear association between the reference pressure values and the values 
measured via the HBSD is depicted for the entire experiment. The high association between the 
two measuring approaches is confirmed by the high ICC that was 0.9856 (95% CI: 0.9855-
0.9858). The mean error and the STD in the EDP, SP and MAP (Fig. 2.4g) was –
2.62±3.17 mmHg, 0.43±2.39 mmHg, and -1.60 ±2.28 mmHg, respectively. Additionally, in the 
Bland-Altman plot (Fig. 2.4j) it is indicated that the HBSD has a mean bias of 0 mmHg, with 
LoA of 4.08 mmHg, compared to the reference pressure sensor. 

A cumulative analysis of the entire in-vivo dataset, is provided in Fig. 2.5a-c. From the 24 
sensors implanted in all in-vivo experiments, 15 were eligible for further evaluation. The rest of 
the sensors were excluded due to corrupted reference measurements (2 sensors), animal 
complications (2 sensors), or sensor malfunction including sensor detachment or wire breakage 
(5 sensors). In Fig. 2.5a, boxplots with the difference between the EDP, SP and MAP values 
measured with the HBSDs and the reference sensors are depicted for stable resting conditions. 
All sensors demonstrated accurate measurement of EDP, SP and MAP, with the mean absolute  
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Figure 2.4. In-vivo setup and performance validation of the HBSD. a) Setup for the in-vivo evaluation of 
HBSD. Under general anesthesia, the ascending aorta was surgically accessed through a left thoracotomy. 
Further, the two components of the HBSD were carefully fixed on the vessel, in a transversal direction, with 
surgical sutures.  Through a femoral access, an intravascular catheter was placed in the ascending aorta to 
provide the reference pressure values. b) Image of the in-vivo setup with the HBSD 1 and HBSD 2 being 
sutured on the ascending and descending aorta, respectively. c, Image of the in-vivo setup after the insertion 
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of the inlet and outlet CPB tubing. d) Comparison of the ABP measured via the HBSD and the reference 
intravascular pigtail catheter during the in-vivo experiment. The HBSD was able to accurately capture the 
varying loading conditions, which were achieved by administering adrenergic medical stimulation.  e) 
Comparison of the ABP measured via the HBSD and the reference intravascular pigtail catheter during the 
CPB support. The HBSD was able to accurately capture the varying loading conditions, which were achieved 
by administering boluses of Dobutamine and different support ratios. f) The intraclass correlation coefficient 
for the ABP measured with the HBSD and the reference ABP was 0.9856 (95% CI: 0.9855-0.9858). g, 
Difference of the EDP, SP, and MAP values measured with the HBSD and the reference sensor, including all 
different operating conditions. h, The intraclass correlation coefficient for the ABP measured with the HBSD 
and the reference ABP during the CPB support was 0.9587 (95% CI: 0.9583-0.9590). i, Difference of the 
EDP, SP, and MAP values measured with the HBSD and the reference sensor, including all different CPB 
support ratios and pressure conditions. j, Bland-Altman plot of differences between the HBSD and the 
reference pressure, with the representation of the mean difference, the limits of agreement (dashed line) from 
-1.96 seconds to +1.96 seconds, and 95% CI. k, Bland-Altman plot of differences between the HBSD and the 
reference pressure during CPB, with the representation of the mean difference, the limits of agreement (dashed 
line) from -1.96 seconds to +1.96 seconds, and 95% CIs. CPB, cardiopulmonary bypass; HBSD, hall-based 
sensing device; HSR, high support ratio; LSR, low support ratio; MSR, medium support ratio; PM, pressure 
manipulation; other abbreviations as in Fig. 2.3. 
 
error (MAE) being below 5 mmHg compared to reference. Overall, HBSDs showed slightly lower 
accuracy in SP measurements, with increased MAE and STD values. The same boxplots are given 

in Fig. 2.5b for the experimental section where blood pressure and heartrate stimulation were 
performed. During these conditions, although all HBSDs demonstrated a MAE below 5 mmHg 
in EDP and MAP measurements, five HBSDs showed MAE above 5 mmHg in SP measurement. 
In addition, during the blood pressure stimulation the STD was increased for all HBSDs. In Fig. 
2.5c, boxplots of the difference between the EDP, SP and MAP values measured with the HBSDs 
and the reference sensors during apnea are depicted. Under apnea, a significant reduction in both 
MAE and STD is demonstrated for all of the examined HBSDs. However, the samples size (given 
on the lower right corner of each boxplot) was significantly lower compared to the other sections. 
Furthermore, for HBSD 5 and 6, the apnea section was not completed due to animal 
complications. 

In Fig. 2.4e, a comparison of the reference pressure and the pressure measured via the HBSD 
is illustrated during the CPB support. Independent of the pressure level, the CPB support level 
and, hence, the effective pulse pressure, the pressure signal provided by the HBSD captured 
accurately the highly varying pressure profiles. In Fig. 2.4h, the linear association between the 
reference pressure values and the values measured via the HBSD is depicted for the entire 
experiment under CPB support. The ICC for the ABP measured with the HBSD and the reference 
ABP during the CPB support was 0.9587 (95% CI: 0.9583-0.9590), confirming the high 
association between the two measuring approaches. The mean error in the EDP, SP and MAP 
(Fig. 2.4i) was 3.0±4.75 mmHg, -4.65±4.4 mmHg, and 0.46±3.92 mmHg, respectively. 
Additionally, in the Bland-Altman plot (Fig. 2.4k) it is indicated that during the CPB support, the 
HBSD has a mean bias of 0.03 mmHg, with LoA of 8.50 mmHg, compared to the reference 
pressure sensor. In Fig. 2.5d, the boxplots showing the difference between the EDP, SP and MAP 
values measured with the HBSDs and the reference sensors during the CPB support are illustrated. 
A total of eleven sensors were assessed during this experimental section, four sensors were again 
excluded due to animal complications or sensor malfunctions (sensor detachment or wire 
breakage) after the CPB implantation. The examined sensors demonstrated high accuracy in EDP, 
SP and MAP measurement regardless of the CPB support level. Except for two HBSDs, the 
analyzed HBSDs showed a MAE lower than 5 mmHg for all measurement; however, in some  
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Figure 2.5. Cumulative analysis of HBSD performance in-vivo, identification of cycle critical 
components and PWV calculation. Difference of the EDP, SP and MAP values measured with 15 HBSDs 
and the reference sensor during the in vivo experiments: a) rest/stable animal condition. b) apnea. c) pressure 
manipulation, d) CPB support. At the bottom-right corner of each sensor block the number of evaluated 
samples is given. The patch colors correspond to Fig. 2.4d. The dashed red lines show the boundaries for 
pressure measurement device certification. e) identification of cardiac cycle onset/EDP, dicrotic notch and SP 
from the ABP waveform provided from the HBSD and the reference sensor. The systolic phase of the cardiac 
cycle is calculated as the time interval between the onset and the dicrotic notch of each cardiac cycle. The 
respiration period and, hence the respiration frequency is calculated by the time interval between the minim 
of the SP values (Appendix 3-5, Fig. A3-5 in Supplemental appendix). f) PWV calculation based on the ABP 
waveforms of two consecutive HBSDs. The reference flow and pressure are also depicted to validate the 
changes in the PWV. CC, cardiac cycle; CPB, cardiopulmonary bypass machine; EDP, end diastolic 
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pressure; HBSD, hall-based sensing device; MAP, mean arterial pressure; PM, pressure manipulation; PWV, 
pulse wave velocity; RT, respiration time; SP, systolic pressure; ST, systolic phase duration.  

cases the number of outliers has been increased due to misdetections during the identification of 
the EDP value. 

By capturing the entire ABP waveform, as shown in Fig. 2.5e, the HBSD enables the 
identification of the cardiac cycle onsets, EDP, SP, and dicrotic notch through post-processing. 
Based on the time-index of the dicrotic notch and the onset of a specific cardiac cycle, the systolic 
phase of the cardiac cycle can be determined. In the same figure, the points used for the calculation 
of the respiration frequency are showed; however, a detailed flowchart of the calculation is given 
in the Supplemental appendix (Appendix A5 and Fig A5, Supplemental appendix). In Fig A5, the 
calculated respiration frequency is compared with the reference respiration frequency which was 
set as default value on the ventilator used during the experiments (20 breaths/min). 

In Fig. 2.5f, the calculated PWV along with the reference flowrate and ABP is illustrated. 
Although there was not a reference measurement for the PWV, the calculated PWV was in the 
physiologic range of the animal model used129. Additionally, as it is illustrated in Fig. 2.5f, the 
PWV followed correctly the pressure and flow variations, confirming its accuracy. 

2.4 Discussion 
In this work, the design, characterization as well as in-vitro and in-vivo performance of an 

implantable HBSD for continuous monitoring of ABP, AD, and ACS have been demonstrated 
under various hemodynamic conditions. The HBSD consists of a HES and a miniature magnet, 
which are both embedded in 3D printed biocompatible housings and then coated with Parylene-
C. The design of the sensing device allows for optimization of the housings based on the vascular 
diameter, ensuring safe attachment and accurate measuring capabilities. 

The extravascular nature of the HBSD diminishes the risk of thrombosis, blood cell damage 
and flow obstruction, which constitute common problems that current intravascular sensors 
encounter.136 The lack of connective material between the components of the HBSD, along with 
the minimal footprint and weight (<1.4 g) of the HBSD, ensure that neither relevant restriction 
on the distension, nor gravitational forces due to the device’s mass are applied on the arterial wall. 
Hence, compared to the majority of extravascular sensors that have been proposed for the 
measurement of vascular and hemodynamic properties,79–82,86,111–113 the HBSD may substantially 
reduce the risk of adverse events. 

The robustness of the HBSD was demonstrated during autoclaving procedures, immersion in 
liquid environment, and temperature changes. Additionally, the sensing device showed excellent 
response under dynamic cyclic loading. The latter characteristic stems from the avoidance of any 
elastic connective material, which are prone to fatigue and often the main source of sensor drift. 
Eliminating drift is a major step towards the achievement of long-term monitoring of CVD 
patients and constitutes a fundamental benefit compared to the majority of other extravascular or 
wearable sensing technologies.137 
The in-vitro tests of the HBSD demonstrated its capabilities to monitor the AD, the ACS and the 
ABP. The HBSD was able to accurately capture all applied changes in diameter and pressure of 
the artificial artery. Comparison of the data produced by the HBSD with the reference data 
showed high association and agreement, independent of the emulated hemodynamic state. 
Compared to published data, the HBSD outperforms the existing extravascular sensing 
approaches in regards of accuracy.81,83,112 

The performance of the HBSD was further evaluated in-vivo under various hemodynamic 
conditions (e.g. physiologic, pathologic) in a pig model. The pressure waveforms provided by the 
HBSD demonstrated high association and agreement with the reference pressure waveforms 
measured by the intravascular catheter during the entire experiment and, independent of the 
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pressure range and the heartrate changes. For the sensors analyzed in this work, the mean error 
between the EDP, SP and MAP values provided by the two sensing approaches was in all cases 
significantly smaller than in existing, similar sensing approaches.81,83 Additionally, the mean error 
was comparable or smaller than for the only FDA approved implantable sensor,91 applicable only 
in the pulmonary artery. 

In eight of the twelve animals, the hemodynamic conditions were altered by CPB in order to 
mimic deviation from physiologic hemodynamic properties. In this context, the performance of 
the HBSD was assessed under low pulse pressure and various loading conditions similar to those 
of end-stage heart failure patients supported by ventricular assist devices (VADs). The 
comparison of the ABP waveforms provided by the HBSD demonstrated high association and 
agreement with the reference pressure waveforms during the entire experiment, independent of 
the level of CPB support. Considering that the HBSD design was optimized for higher pressure 
and distension levels, further improvement in the measurement accuracy could be achieved with 
HBSDs specifically designed for CPB conditions. In this setting, the HBSD could provide the 
necessary hemodynamic input parameters for the clinical implementation of physiologic control 
algorithms developed for VADs and, hence, improve the performance of such systems and the 
management of end-stage heart failure patients.15,64,138 

In addition, it has been shown that the ABP waveforms captured by HBSD enable the accurate 
extraction of the cardiac cycle onset/EDP, SP and dicrotic notch. Based on these quantities, the 
duration of the systole and the respiration frequency can be calculated. The continuous monitoring 
of the systolic period of the cardiac cycle can support the calculation of the ejection fraction139 
and, hence assist in heart failure therapy guidance. Continuous monitoring of the respiration 
frequency could be used as an input in the prediction of progressive heart failure.140,141 

The calculation of the PWV when two HBSD are implanted has been also demonstrated. 
Although the lack of reference values during the experiments, the PWV was in physiologic range 
and followed the pressure and flowrate variations. The acquisition of the PWV, could enable the 
monitoring of biomechanical properties of the vessel that the HBSD is attached and, hence, 
support the surveillance of CVD patients. In addition, the PWV, combined with the calculated 
AD, can offer new possibilities for indirect estimation of the cardiac output. The latter, could 
further facilitate the clinical implementation of physiologic control algorithms developed for 
VADs.15,64,101   

We recognize that the deviation between the HBSD and the reference pressure measurements 
is higher in the in-vivo than in the in-vitro experiments, especially in systole. Based on the results 
obtained during apnea, the main attributor to this discrepancy is the respiration induced movement 
of the aortic wall, which was not simulated in-vitro. This behavior shows that the HBSD lacks in 
selectivity and, hence, the measured signal is prone to respiratory artifacts. Although these 
artifacts can be used to deduce the respiration frequency as described before, due to the distinct 
difference between respiration and heart frequency, a correction against these artifacts could be 
implemented if necessary.  

The proper function of HBSD requires highly accurate surgical placement of the two sensing 
components since implantation induced misalignment can affect the sensing accuracy. Hence, a 
delivery tool that allows for automatic fixation of the sensing components at predefined positions 
on the vascular wall and minimizes the invasiveness of the implantation procedure is currently 
under development. Moreover, data and energy transmission of the presented HBSD was 
achieved through copper wires. Being aware that this approach may increase the risk of infections 
at the skin exiting site and device malfunctions, a wireless transmission unit is under 
development. In this unit, a Bluetooth Low Energy (BLE) communication protocol is used to 
transfer data from the sensor to an external receiver. The sensor and the BLE module are powered 
through a rechargeable lithium-ion coin-cell battery, with the battery being recharged every 72 
hours through inductive coils. This system is currently tested in an in-vitro setting and we envision 
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its usage to achieve a fully implantable version of the HBSD with transcutaneous energy and data 
transmission. 

The HBSD in its current design can be exclusively used during open heart procedures, 
requiring a sternotomy or lateral thoracotomy for surgical access like left ventricular assist device 
implantation, coronary artery bypass graft surgery, etc. Hence, considering that the fixation of the 
sensor requires only routine placement of non-resorbable superficial sutures to the adventitia of 
the aorta, the implantation of HBSD would not affect greatly the invasiveness of the existing 
surgical procedures. After such a cardiac surgical procedure, the pericardium is (at least partially) 
closed and the epicardial fat layer lands itself on top. Within a few weeks after the index procedure 
adhesions will be formed between the aorta and the covering layer. These adhesions would 
possibly lead to sensor encapsulation, which along with the non-resorbable sutures, should 
enhance the positional stability of the HBSD and render its detachment unlikely. Although the 
aforementioned encapsulation and the possible vascular scar formation or tissue ingrowth may 
impact the HBSD’s long term performance, considering that the strength of the magnetic field is 
not influenced by tissue, the response of the sensor should not be affected. Despite the validation 
of the HBSD with an extensive in-vitro and in-vivo experimental protocol, the performance in 
closed chest setting that would allow the assessment of the latter effects, as well as the potential 
impact during animal movement have not been investigated yet. In order to evaluate such scenario 
and assess long-term device performance, chronic animal trials are planned.  

Removal of the current HBSD is not envisioned since the risk of a reoperation for the sensor 
retrieval would not be justifiable, unless this was mandated in the rare event of a device infection. 
Hence, in case of a failing sensor, the HBSD would be deactivated and it would stay inside the 
body, similar to the process that is currently followed for the CardioMEMS. 

We acknowledge also that the changes in the biomechanical properties of the vasculature 
might affect the relation between the diameter and the pressure over time and, hence, deteriorate 
the accuracy of the ABP measurements. However, we have shown that a two-sensor measurement 
approach enables the PWV derivation, which is highly related with the biomechanical 
properties.116,142 We foresee the exploitation of the PWV to implement an online recalibration 
process. 

Finally, it has to be mentioned that although the current hardware implementation is 
considered sufficient to prove the functionality of the HBSD in an acute setting, the design of the 
HBSD and the implantation procedure are still in the early developmental phase and further 
optimization is necessary to allow its use in humans. 

2.5 Conclusions/Outlook 
Continuous measurement of ABP and properties that reflect vascular status have the potential 

to monitor cardiovascular disease progression and to closely observe and adjust for the treatment 
effects of antihypertensive and heart failure medications. This proof-of-concept study provides 
evidence that the ABP, AD, and ACS waveforms can be accurately and continuously monitored 
via the proposed sensing approach. Based on the ABP waveform, insights about PWV, respiration 
frequency and the systolic phase of the cardiac cycle can be derived. The HBSD demonstrated 
unaffected performance after sterilization, immersion in liquid, and temperature changes, while 
it was able to accurately capture the monitored parameters in-vitro and in-vivo, under various and 
extreme physiologic and pathologic conditions, induced by cardiopulmonary bypass support. 
While the current system requires a cable connection for data and energy transmission, a wireless 
version with remote monitoring capabilities is currently under development to enable the 
evaluation of the HBSD in long-term in-vivo experiments and allow the translation to the clinical 
setting. 
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2.6 Competency in Patient Care and Procedural Skills 
Revealing the information hidden in the arterial blood pressure waveform, as well as other 

vascular properties, can constitute the cornerstone to allow better patient-compliance surveillance 
and treatment management in patients suffering from CVDs. In this study, we demonstrate the 
development and validation of a miniature extravascular hall-based magnetic sensor that allows 
continuous measurement of arterial blood pressure waveform, the waveforms of arterial diameter 
and circumferential strain, allowing to derive also the pulse wave velocity, respiration frequency 
and duration of the systolic phase of the cardiac cycle. Due to the invasiveness of the implantation 
procedure of the current device, CVD patients following major cardiovascular surgery such as 
ventricular assist device implantation could benefit the most. However, after improving the 
data/power transmission and implantation procedure of the device, its usage in the clinical setting 
and the insights of the measured properties would allow for monitoring disease progression of 
various CVDs as well as remote monitoring and adjustment of treatment effects. 

2.7 Translational Outlook 
This proof-of-concept study provides evidence that the proposed HBSD can accurately 

measure the arterial blood pressure waveform under various physiologic and pathologic 
conditions, while it enables the acquisition of various vascular and hemodynamic variables. This 
is an important initial step to allow the translation of the HBSD toward clinical applications; 
however, to further enhance the translational capabilities of the HBSD, improvements in device 
design, data/power transmission and implantation procedure have to be considered. Finally, prior 
to testing the feasibility and safety of the HBSD in humans, chronic animal trials are required to 
investigate the performance of the sensor in a closed chest environment and to address the 
consequences of potential tissue ingrowth on the long-term performance of the HBSD. 
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3 Cardiac Contractility Estimation Based on Left Ventricular 
Pressure: Comparison of Time Series Classifiers and Graph-based 
Neural Networks 

 

3.1 Introduction 
In heart failure therapy, the real-time estimation of remaining cardiac contractility (RCC) can 

facilitate patient management, as well as, the performance of physiological controllers for 
ventricular assist devices (VAD). In this study, the real-time estimation of RCC based on time 
series data (TSD) of the left ventricular pressure (LVP) was investigated by exploiting two 
traditional time series classifiers (TSC) and two graph-based neural networks (GNN). All 
classifiers were assessed with respect to their RCC estimation accuracy and their applicability for 
real-time VAD control. 

3.2 Methods and Materials 
For the RCC estimation (Fig. 3.1), LVP TSD was generated using a hybrid mock circulation 

(HMC).53 On the HMC instantaneous pressure, volume, and flowrate values were computed by a 
numerical model of the human cardiovascular system (HMCS) and applied through a hydraulic 
interface on the inlet and outlet mixed-flow blood pump. The experimental protocol for the 
acquisition of the LVP TSD included 63 experiments, where preload, afterload, pump speed, and 
heart rate variations were performed for nine RCC values. The data was pre-processed by 
segmenting and normalizing the TSD, producing 6300 cardiac cycle samples, which were used 
for the TSC approaches. The TSCs comprised the dynamic time warping nearest neighbor (DTW-
NN) classifier and the support vector (SVM) classifier. Furthermore, the maturity of two GNN 
approaches was explored, including a simple custom architecture (C-GNN) and a pretrained 
architecture (P-GNN) provided by the KERAS library (Inception V3). The C-GNN comprised a 
convolutional layer with 32 filters of size 3x3, a maxpooling layer with filter size 2x2, a dense 
layer with 128 units, and a dense layer with nine units for the classification output. For the TSD 
to be used in the GNN frameworks, two different image encoders (IE), namely direct plot and 
recurrence plot encoders, were used and assessed. The data was split 80/20 for network training 
and validation. 

3.3 Results 
All four classifiers, DTW-NN, SVM, C-GNN (IE: recurrence plot) and the P-GNN (IE: direct 

plot) achieved an accuracy of at least 98%. The SVM had the highest accuracy (99.9%) and the 
shortest prediction time (63 μs per sample). The prediction time of DTW-NN was on average 
4.84 s per sample, prohibiting the implementation in real-time VAD control. Both GNN 
architectures achieve high accuracy and short prediction time, however, their performance does 
not reach the benchmark set by the SVM. A comparison of the image encoders showed that both 
the direct plot and the recurrence plot encoder lead to similar classification performances when 
using the same GNN, but different performances between the two investigated GNNs. 
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Figure 3.1. Schematic of the sequential steps for the estimation of the remaining cardiac contractility from 
time series data (TSD) of the left ventricular pressure (LVP). a) LVP TSD is produced through a hybrid mock 
circulation, where the human cardiovascular system is simulated and the pressures, volume, and flowrates 
calculated are applied on the inlet and outlet of a ventricular assist device in real-time via a hydraulic interface. 
LVP TSD was acquired for various physiologic conditions. b) Pre-processing of the data, including cardiac 
cycle segmentation and time normalization. c) Translation of the TSD to images through different image 
encoders. d) Time series classifiers, including dynamic time warping nearest neighbor (DTW-NN) and the 
support vector (SVM) classifiers. e) Graph-based neural networks (GNN). f) Classified cardiac contractility.  
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3.4 Conclusions 
All classification methods provided accurate RCC estimation with the SVM showing superior 

performance and being the most promising for real-time clinical implementation. These 
estimation approaches could substantially support patient surveillance and physiologic VAD 
control approaches. 
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4 Physiologic Data-Driven Iterative Learning Control for Left 
Ventricular Assist Devices 

 

4.1 Introduction 
The prevalence of advanced heart failure (HF), a complex heart syndrome that has long been 

associated with significant mortality and morbidity rates, has been continuously rising worldwide 
over the last decades.6,143,144 For the afflicted patients who account for approximately 1-2% of 
the general adult population,6 heart transplantation (HT) is considered the gold standard therapy; 
however, despite the increased number of heart transplantations performed yearly, the number of 
recipients continues to significantly outpace the supply of donors.18  

An alternative surgical treatment to mitigate donors’ shortage and allow better management 
of end-stage HF patients is the implantation of ventricular assist devices (VADs).22,145 VADs are 
mechanical pumps that relieve the native heart and restore a fragment of the cardiac output. Their 
major deployment is complementary, serving as bridge to transplantation or bridge to recovery.146 
However, recent studies have shown that VADs are increasingly used as destination therapy, 
achieving 1- and 2-year survival rates of 82.3% and 73.1%, respectively, which are comparable 
to HT.31,147  

Since their initial approval, VADs have been evolved and matured, with the continuous flow 
turbodynamic VADs (cfVADs) superseding the bulky and failure-prone volume displacement, 
pulsatile VADs.25,148 Despite the notably improved reliability and implantability, cfVADs are 
still associated with right-heart failure, gastrointestinal bleeding, hemorrhagic strokes, and aortic 
valve insufficiency, which reduce the survival rates and increase hospital readmissions.145,149–151 
These adverse events are often related to the inability of the currently used cfVADs to respond 
physiologically to the changing perfusion demands of the patients. To ameliorate this, various 
research groups have been investigating cfVAD control strategies that restore the physiological 
response of cfVADs.15,43 The majority of these strategies aim to imitate the Frank-Starling 
mechanism44 by adapting the rotational speed of the cfVAD based on feedback provided by 
hemodynamic parameters that act as preload surrogates.57,60,61,152 More complex strategies utilize 
norm-optimal iterative learning control62,75 to regulate the end-diastolic volume. They exploit the 
repetitive nature of the heart and, hence, use information of previous cycles to deduce the control 
input for the new cycle. These approaches are promising; however, their performance can be 
restricted by the accuracy of the cardiovascular system and cfVAD models that are integrated in 
the control structure to allow the prediction of the control function. 

All control strategies mentioned above improve the responsiveness of VADs, however, they 
do not address the diminished blood pulsatility induced by cfVADs support. Whether or not the 
diminished pulsatility is among the major contributors of adverse events of cfVADs is still a 
controversial issue.153 Nonetheless, recent studies have reported strong evidence that the lack of 
pulsatility can negatively affect the endothelial and peripheral vascular function38–40 and, hence, 
increase the risk of nonsurgical bleeding.41 Additionally, various studies highlight the better 
control of ventricular unloading and patient’s hemodynamics when VADs that effectively 
resemble the pulsatile flow conditions are deployed.104,154–156 

In an attempt to imitate the pulsatile blood pressure and flow waveforms, while exploiting 
the reliability and implantability of cfVADs, various approaches of cfVAD speed modulation 
have been proposed in literature.64,157–161 A recent review shows that predefined speed profiles 
implemented in synchrony with the native heart can systematically manipulate the ventricular 
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load and the pulsatility in the arterial tree, confirming the positive effect of speed modulation.162 
These approaches focus on the modulation of the speed-profile which is readily available in the 
clinical setting. However, cfVAD speed-profiles are greatly influenced by the VAD design, 
hindering the deduction of a direct relation to hemodynamics, as well as, their transferability to 
different VADs. A more intuitive approach is the modulation of cfVAD speed based on 
predefined pump flow-profiles. By utilizing an iterative learning control (ILC) scheme, Rüschen 
et al.74 provided evidence that accurate tracking of optimized pump flow-profiles can be 
achieved, resulting in a significant reduction of the left ventricular stroke work (LVSW). For the 
latter study, a detailed model of the VAD is necessary to enable the accurate flow-profile 
tracking. 

In this study, we introduce a physiologic data-driven iterative learning controller (PDD-ILC) 
for left ventricular cfVADs. The proposed PDD-ILC enables the generation of preload-adaptive 
reference pump-flow trajectories based on the Frank-Starling mechanism and treatment 
objectives, such as pulsatility maximization or LVSW minimization, selected by the clinicians. 
The tracking of the reference flow trajectories is achieved by measuring left ventricular pressure 
(LVP) and pump flow (PF), and then implementing the data-driven ILC (DD-ILC). The DD-ILC 
exploits the recurrent nature of the heart cycle to incorporate the errors identified in previous 
cycles to the control input of the new cycle and, hence, enhance the tracking performance without 
requiring a system model. Finally, to enable feedback in the time-domain, a proportional-
derivative controller is coupled with the PDD-ILC. The performance of the proposed PDD-ILC 
was assessed with respect to physiologic responsiveness and trajectory tracking with in-silico 
experiments that emulated various physiologic conditions, and compared with a constant speed 
(CS) controller and a newly developed physiological pump flow proportional-integrative-
derivative controller (PF-PIDC). 

4.2 Methods and materials 
4.2.1 Cardiovascular system model 

In this work, the performance of the PDD-ILC was assessed solely with in-silico experiments, 
wherein the deployed human cardiovascular system (CVS) was modelled based on the lumped-
parameter representation proposed by Colacino et al.52 In this representation, the systemic and 
pulmonary circulations were divided into the arterial and venous systems. The arterial and venous 
systems were modelled with five-element and classic Windkessel models, respectively. The CVS 
model incorporated autoregulatory mechanisms for the adaptation of the flow resistance in the 
systemic and pulmonary arterial systems, as well as the adaptation of the unstressed volume in 
the systemic veins. All four chambers of the heart were included as actively contracting elements 
and they were defined by a nonlinear time-varying elastance model and an energy dissipation 
term. A detailed description of the model and its validation in physiological and pathological 
states can be found in the work of Colacino et al.52 In all simulations, the pathologic conditions 
defined by Ochsner et al.53 were used. 

4.2.2 Numerical models of blood pumps 
The conditions of a cfVAD supported patient were imitated by coupling the CVS model 

described above with a numerical model of a non-implantable mixed-flow turbodynamic blood 
pump (Deltastream DP2, Medos Medizintechnik AG, Stolberg, Germany). The later model was 
based on the work of Amacher et al.160 In detail, the mathematical description includes two 
differential equations that define the acceleration of fluid (1) and the acceleration of the rotor (2): 
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𝑑𝑄
𝑑𝑡

 
1
𝐿
𝐻 𝑄 𝑡 ,𝜔 𝑡 𝑝 𝑡 𝑝 𝑡  (1) 

𝑑𝜔
𝑑𝑡

 
1
𝛩

𝛵 𝑄 𝑡 ,𝜔 𝑡 𝑘 ∙ 𝐼 𝑡  (2) 

where 𝑄, 𝜔 , and 𝐼 are the flow-rate, the rotational speed and the current of the pump, respectively. 
𝑝  and 𝑝  are the pressures downstream and upstream of the pump, which correspond to the 
aortic and left ventricular pressures, respectively. 𝐿 and 𝛩 are the fluid inertance and the rotor 
inertia, while 𝑘 is the torque-constant of the pump motor. 𝐻 and 𝛵 are matrices containing two-
dimensional maps of the pressure across the pump and the hydraulic torque applied on the shaft. 
The values of the these parameters were retrieved from Amacher et al.160. 

 

Figure 4.1. Schematic overview of the physiological data-driven iterative learning controller. The input 
signals LVP and PF are filtered and the EDP and SP indices are extracted from the LVP. Based on the Frank-
starling mechanism, the desired average PF is calculated based on the LV-EDP that is used as a preload 
surrogate, and the reference pulsatile PF trajectory is obtained based on the objectives of the therapy. A data-
driven iterative learning controller is implemented to achieve accurate tracking of the reference PF without 
requiring modelling of the CVS or the pump. Finally, a proportional-derivative (PD) controller and a safety 
controller are coupled, to enable feedback in the time-domain and prevent suction events, respectively. The 
desired pump speed is the output of the controller. Bold letters define vectors. LVP, left ventricular pressure; 
EDP, end-diastolic pressure; SP, systolic pressure; PF, pump flow; 𝑞 , measured pump flow; 𝑞∗ , heart 

cycle average pump flow, 𝒒𝒃𝒑
∗ , time vector of the desired pump flow trajectory; 𝑛 ,

∗ , feed forward desired 

pump speed; 𝑛 ,
∗ , feedback desired pump speed; 𝑛∗ ,  desired pump speed output. 

4.2.3 Overview of PDD-ILC 
The proposed PDD-ILC scheme for LVADs aims to provide an accurate reference tracking 

of predefined, therapy-oriented, PF profiles while it achieves physiological VAD response when 
preload changes are encountered. A schematic overview of the PDD-ILC structure is depicted in 
Fig. 4.1 and it can be divided into four main subsystems, namely, signal processing and feature 
extraction, reference PF trajectory generator, DD-ILC, and time-domain PD-controller. 

4.2.3.1 Signal processing and feature extraction 
The function of the PDD-ILC is based on the LVP, specifically the end-diastolic (LV-EDP) 

value, and the PF. The acquisition of these parameters is envisaged by integrating two pressure  
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Figure 4.2. Schematic representation of the LV-EDP extraction process and the extension for the 
minimization of misdetections. a) Identification of all local minima (cyan circles) and inflection points 
(yellow rectangles) as LV-EDP candidates. The inflection points with large first LVP derivative (dLVP/dt > 
40 mmHg/s) are excluded and the candidate with the smaller distance from the SP index (dtmin) is identified 
as the LV-EDP. b) Comparison of the identified LV-EDP (filled circles) with the LV-EDP estimated (filled 
rectangles) based on linear regression of the LV-EDP extracted on the previous three heartbeats. If the 
identified LV-EDP is within the boundaries, it is extracted as LV-EDP value. c) Based on the comparison 
described in b, if the identified LV-EDP is outside the boundaries it is considered an outlier and the mean 
value of the last three LV-EDPs is extracted as LV-EDP (filled triangles) of the investigated heartbeat. The 
outliers are stored in memory and if three consecutive identified LV-EDPs constitute outliners a flag is raised 
and the new LV-EDP estimate is based on the outliers (LRn+3) instead of the extracted LV-EDPs. In this way, 
physiological rapid changes in preload are not obscured. LVP, left ventricular pressure; EDP, end-diastolic 
pressure; LR, linear regression; EM, extracted mean value; E, extracted; UpB, upper boundary; LB, lower 
boundary. 

sensors into a tapered inflow cannula and exploiting the difference in the dynamic pressure 
component between the measuring ports to estimate the PF, as proposed by von Petersdorff-
Campen et al.88 However, in this in-silico study, the simulated signals were used instead and white 
noise was added in specified experiments to emulate a realistic sensor signal and challenge the 
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PDD-ILC, as described in the section “Experiments for Performance evaluation”. Both LVP and 
PF signals were low-pass filtered with a first-order filter with cut-off frequency of 25 Hz. 

The extraction of the LV-EDP and left ventricular systolic pressure (LV-SP) from the entire 
time sequence of the LVP was based on the work of Petrou et al.64 In detail, the LVP was further 
low-pass filtered with a second-order filter with a cut-off frequency of 8 Hz. From the timeseries 
data, the indices of the local maxima corresponding to the LV-SP were extracted and the heartbeat 
was defined as the interval between two consecutive LV-SP indices (Fig. 4.2a). As it is shown in 
Fig. 4.2a, for each heartbeat, the local minima of the LVP as well as the points of inflection, where 
the curvature changed from concave to convex, were identified as possible LV-EDP candidates. 
From the inflection points, only the points where the first derivative of the LVP was below a 
certain threshold (here 40 mmHg/s) were qualified as possible LV-EDP candidates. From all 
candidates, the one closest to the LV-SP index was identified as LV-EDP. 

Although this approach is accurate, the changes in the LVP waveform due to the in-cycle 
speed modulation of the cfVAD can increase the LV-EDP misdetections. To address this, an 
extension for the LV-EDP extraction process was developed in this work. Specifically, as it can 
be seen in Fig. 4.2, the LV-EDP values identified in the last three heartbeats are used to estimate 
through linear regression the LV-EDP value of the new heartbeat. The LV-EDP identified for the 
new heartbeat is compared with the estimate and if it lies within predefined boundaries (here ± 1 
mmHg) it is extracted as the LV-EDP. When the identified LV-EDP lies outside the boundaries 
(Fig. 4.2c), it is considered an outlier and the mean LV-EDP value of the last three heartbeats is 
extracted as LV-EDP of the new cycle. The latter value is used along with the LV-EDP of the 
previous two heartbeats for the estimation of the LV-EDP of the next heartbeat. The outlier is 
saved in memory and if three consecutive outliers have been identified, a flag is created that the 
LV-EDP has indeed changed significantly and the new LV-EDP estimate is projected from these 
three outliers (Fig. 4.2c). The latter step is incorporated to ensure that rapid changes in the LV-
EDP are not obscured. 

4.2.3.2 Reference pump flow trajectory generator 
In this work, reference PF trajectories were used to modulate the pump speed since they 

provide more intuitive control of the hemodynamics and the interactions between the cfVAD and 
the CVS,74,163 while at the same time, they are highly transferable to different cfVAD designs 
when a sufficiently accurate tracking performance is guaranteed. The generation of these 
trajectories followed a two-step approach. As a first step, the Frank-Starling mechanism was 
imitated to obtain a physiological preload response of the cfVAD. More precisely, the LV-EDP 
extracted at each heartbeat was used as a surrogate of the preload (𝐸𝐷𝑃 ) and, by assuming that 
the flow from the aortic valve is negligible and the PF approximates the cardiac output (CO), the  
linear part of the starling-relationship between the LV-EDP and the CO was used to provide the 
necessary average PF (𝑞∗ ) as follows:  

𝑞∗  𝑞 , 𝑘 𝐸𝐷𝑃 𝐸𝐷𝑃 ,  (3) 

Here 𝑞 ,  and 𝐸𝐷𝑃 ,  are reference values for the PF and LV-EDP, respectively, identified 

from the healthy heart at rest conditions and a CO of 5 L/min during calibration. The 
parameter 𝑘  denotes the preload sensitivity which can be selected by the clinician. This ability 
to directly select the preload sensitivity is paramount to achieve a patient-specific response of the 
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controller and constitutes a major advantage compared to speed-based controllers, where the 
control gain needs to be tuned to reach a satisfying preload sensitivity. 

 

Figure 4.3. Reference PF trajectories that incorporate a physiological response to preload changes based on 
the Frank-Starling mechanism and therapy-oriented pulsatile PF profiles. A copulsation and a 
counterpulsation PF trajectory along with the LVP for one cardiac cycle are depicted. For both PF trajectories, 
the minimum PF is 𝑞 ,

∗ 20 𝑚𝐿/𝑠 and the maximum PF is calculated based on the 𝑞 ,
∗  and the 

necessary average PF provided by the starling-relation (𝑞∗ ). PF, pump flow; LVP, left ventricular pressure; 
Co-PF, copulsation pump flow; Counter-PF, counterpulsation pump flow. 

The second step to obtain the reference PF trajectories was to incorporate an in-cycle pulsatile 
profile that enables the accomplishment of treatment-based objectives selected by the clinician. 
These pulsatile trajectories were based on trapezoidal profiles, wherein the minimum PF was 
selected to be 𝑞 ,

∗ 20 𝑚𝐿/𝑠 to provide a safety margin against backflow, and the maximum 

PF was calculated based on the 𝑞 ,
∗  and the necessary average PF provided by the starling-

relation (𝑞∗ ).  For each trajectory, the minimum flow was applied for 30% of the cardiac cycle, 

the maximum flow for 50% of the cardiac cycle, while each transition phase had a duration of 
10% of the cardiac cycle. This proportion was chosen to prevent short spikes of desired maximum 
flow, since such trajectories could not be tracked using cfVADs and would be susceptible to high 
blood damage. For the pulsatile trajectories, various phase shifts164 with respect to the onset of 
cardiac cycle can be applied to achieve different concurrent objectives; however, in this work, 
only copulsation and counterpulsation trajectories were investigated to achieve maximization of 
the aortic pulse pressure and minimization of LVSW, respectively, as proposed by Ising et al.163 
The maximum PF was applied during the entire systole for the copulsation trajectory, whereas 
for the counterpulsation trajectory the maximum PF was applied during diastole. In Fig. 4.3 the 
reference PF trajectories for an average PF of 85 mL/s are depicted.  

4.2.3.3 Data-Driven iterative learning controller (DD-ILC) 
To achieve the desired response of the PDD-ILC, accurate reference tracking of the PF 

trajectory is required. Considering the repeating disturbances applied on the cfVAD in each 
cardiac cycle by the changes in the head pressure (difference between pressure at the outlet and 
pressure at the inlet of the cfVAD) from the remaining heart function, as well as the periodic 
changes in the preload, ILC schemes are suitable for reference trajectory tracking. More precisely, 
in repetitive process, ILC strategies can exploit the knowledge obtained in previous iterations to 
produce a feed-forward control input that progressively enhances the tracking performance. In 
this study, the DD-ILC was developed based on the approach proposed by Chi et al.,165 wherein 
a pseudo partial derivative (PPD) computed from the input and output signals serves as system 
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model in the iteration domain, where one iteration stands for one heartbeat. The model is then 
used in a quadratic optimization procedure to minimize a cost function subject to input and output 
constraints. 

The implementation of the DD-ILC is illustrated in Fig. 4.4. Initially, a memory block is 
incorporated to store the per-cycle vectors of the pump speed setpoint 𝒏∗  and the PF 𝒒 , with 

varying number of samples 𝑁: 

𝒏 ,
∗ 𝑛 ,

∗ 0 ,𝑛 ,
∗ 1 , … ,𝑛 ,

∗ 𝑁 1 ,𝑛 ,
∗ 𝑁  (4) 

𝒒 , 𝑞 , 0 , 𝑞 , 1 , … , 𝑞 , 𝑁 1 , 𝑞 , 𝑁  (5) 

These vectors contain the information of the entire time sequences of the previous cycles 
(iterations). They are used to obtain a representation of the CVS and the cfVAD system in the 
iteration domain through dynamic linearization. Specifically, the dynamic linearization model is 
based on the identification of the PPD 𝜱  by relating the difference in the output signal 𝒒  and 

the input signal 𝒏∗  between consecutive iterations: 

𝛥𝒒 , 𝜱 𝛥𝒏 ,
∗  (6) 

𝑤𝑖𝑡ℎ          𝛥𝒒 , 𝒒 , 𝒒 ,  ,    𝛥𝒏 ,
∗ 𝒏 ,

∗ 𝒏 ,
∗   

where 𝑗 denotes the iteration index. Since the system is causal, 𝜱  is a lower triangular matrix. 

To compute an estimate of the PPD, denoted as 𝜱 , the update formula described by Chi et al.165 
was used: 

𝜑 𝜑
𝜂 𝛥𝒒 , 𝑘 1 𝜑 𝛥𝒏 ,

∗ 𝑘 𝛥𝒏 ,
∗ 𝑘

𝜇 𝛥𝒏 ,
∗ 𝑘

 (7) 

where 𝜑  denotes the nonzero vector of the 𝑡 1  row of 𝜱 . Accordingly, 𝒏 ,
∗ 𝑘  

contains the PF setpoints at iteration 𝑗 up to time index 𝑘 and based on equation (4) is a varying 
dimension vector with 𝑘 elements. The learning process can be tuned by selecting the 
normalization value 𝜇 and the learning gain 𝜂. The values of the later parameters were identified 
through the controller gain optimization described in section 2.6.  

For the first iteration, the initial values for the pump speed setpoint, the PF and the PPD 
required from the algorithm were selected as: 

𝜱 10

1 0
1 1

… 0
… 0

⋮ ⋱
1 1

⋱ 0
… 1

, 𝒏 ,
∗

0
0
⋮
0

, 𝑞 ,
∗

0
0
⋮
0

  (8) 

Hence, no model knowledge is required to initialize the controller. none of the previously 
converged solutions were used in the initialization procedure, and no model knowledge was 
included. 
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As a next step, the estimated PPD is used in a quadratic optimization problem to minimize 
the predicted PF tracking error under actuator constraints. The cost function in this optimization 
problem comprises two terms, namely the predicted PF tracking error (𝐽 ) and the change in the 

input vector (𝐽 ). The 𝐽  cost component provides robustness against undesirably high changes in 
the pump speed setpoint during the transient behavior of the learning algorithm. The predicted PF 
tracking error to be minimized is described as: 

𝒆 𝒒 ,
∗  𝒒 ,

∗  (9) 

where 𝒒 ,
∗  denotes the predicted PF at cycle 𝑗 1 using the updated PPD given by: 

𝒒 ,
∗ 𝒒 ,

∗ 𝜱  𝛥𝒏 ,
∗  (10) 

Hence, by combining the two cost components, the cost function can be written as: 

𝐽 𝐽 , 𝐽 , 𝒆 𝑸 𝒆 𝛥𝒏 ,
∗ 𝑹𝛥𝒏 ,

∗  (11) 

where 𝑸 and 𝑹 are positive definite weighting matrices that, in this work, are identified during 
the controller gain optimization described in section 2.6. 

Additionally, to avoid unrealistic pump speed setpoints, the pump speed is constrained 
between a minimum and maximum value defined based on the pump design. Hence, the final 
optimization problem can be written as: 

min
𝒏 ,
∗

 𝐽  (12) 

𝑠. 𝑡.    𝛥𝒏 ,
∗ 𝒏 , 𝒏 ,

∗  (13) 

           𝛥𝒏 ,
∗ 𝒏 , 𝒏 ,

∗  (14) 

The optimization problem is solved using MATLAB’s quadprog function. The optimized 
change in the pump speed setpoint vector is added to the speed setpoint vector of the previous 
iteration to provide the new control input vector as: 

𝒏 , 𝒏 , 𝛥𝒏 ,
∗  (15) 

Finally, since the dynamic linearization and the quadratic optimization are executed only at 
the beginning of each cycle, an additional module that operates at the full control frequency 
extracts the feedforward pump speed setpoint 𝑛 ,

∗  at every time index. 
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Figure 4.4. Schematic overview of the DD-ILC algorithm. The pump speed setpoint and the PF are stored in 
a memory block. Then, they are used at the beginning of each cycle to update the system model through 
dynamic linearization. The model is used in a quadratic optimization problem to minimize the PF tracking 
error under pump speed constraints. The time index counter operates continuously to extract and output the 
feedforward pump speed setpoint at every time step within an iteration. Bold letters define vectors. 𝒏 ,

∗ , 

pump speed setpoint vector of the 𝑗  cycle; 𝒒 , , measured PF vector of the 𝑗  cycle; 𝜱 , pseudo partial 

derivative denoting the linearized system model; 𝒒 ,
∗ , PF reference trajectory; 𝑛 ,

∗ , feedforward pump 

speed setpoint in the time domain. 

4.2.3.4 Time-domain proportional-derivative (PD) controller 
The DD-ILC incorporates feedback in the iteration domain; however, it is a feedforward 

controller in the time domain. Therefore, an additional PD controller that operates in parallel to 
the DD-ILC is introduced (Fig. 4.1). The PD controller showed to deteriorate the convergence 
speed of the DD-ILC during transient phases. However, it restricts the tracking error to become 
unbounded when the desired average PF changes rapidly due to changes in LV EDP. Hence, to 
exploit the latter characteristic without compromising convergence, the time domain PD 
controller is only activated if the desired average PF changes by at least 1 mL/s  and, therefore, 
it is described as: 

𝑛 ,
∗ 𝑘

 𝑘 𝑞∗ 𝑘 𝑞 𝑘 𝑘
𝑑 𝑞∗ 𝑘 𝑞 𝑘

𝑑𝑘
    𝑖𝑓 𝑞 ,

∗ 𝑞 ,
∗ 1

        0                                                        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(16) 

Finally, by incorporating the feedback in the iteration domain provided by the DD-ILC and 
the feedback in the time domain provided by the PD controller, the pump speed setpoint at time 
index 𝑘 is given by: 

𝑛∗ 𝑘 𝑛 ,
∗ 𝑘 𝑛 ,

∗ 𝑘   (17) 

4.2.4 Physiological flow PID controller 

A PID controller was also developed to achieve PF tracking and it was used to further evaluate 
the performance of the PDD-ILC. This controller uses the LVP and the PF to regulate the pump 
speed and achieve a physiological response to preload changes while it tracks specific PF profiles. 
The signal processing and feature extraction blocks, as well as the flow trajectory generator are 
the same as described for the PDD-ILC. As it can been seen in Fig. 4.5, a time index counter is 
used after the flow trajectory generator to extract the feedforward PF setpoint at every time step. 
The measured PF is compared with the PF setpoint and the error is used as feedback to the PID 
controller. The output of the PID controller corresponds to the desired change in the pump speed. 
This change is added to a pump speed constant and the desired pump speed is defined. The pump  
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Figure 4.5. Schematic overview of the physiological flow PID controller. The input signals LVP and PF are 
filtered and the EDP and SP indices are extracted from the LVP. Based on the Frank-Starling mechanism, the 
average PF is calculated based on the LV-EDP that is used as a preload surrogate, and the reference pulsatile 
PF trajectory is obtained based on the objectives of the therapy. A time index counter operates continuously 
to extract and output the feedforward PF setpoint at every time step. A PID flow controller (included in the 
yellow dashed-line box) provides the necessary change in the pump speed setpoint based on the error between 
the measured and the desired PF. A safety controller is coupled at the end, to prevent suction events. The 
desired pump speed is the output of the controller. Bold letters define vectors. LVP, left ventricular pressure; 
EDP, end-diastolic pressure; SP, systolic pressure; PF, pump flow; 𝑞 , measured pump flow; 𝑞∗ , heart 

cycle average pump flow, 𝒒𝒃𝒑
∗ , time vector of the desired pump flow trajectory; 𝑞 ,

∗ , feed forward desired 

pump flow; 𝑒 , , feedback error between the measured and the desired PF; 𝛥𝑛∗ , desired pump speed 

change; 𝑛 , , pump speed constant; 𝑛∗ , desired pump speed output. 

speed is not constrained between a minimum and maximum value as in the PDD-ILC, however, 
the step-change in pump speed is constraint to 2500 rotations per minute. 

4.2.5 Experiments for performance evaluation 
The assessment of the PDD-ILC was based on in-silico experiments that simulate a pathologic 

CVS supported by a cfVAD, using the numerical models described in sections 2.1 and 2.2. 
Additionally, to allow a detailed evaluation, several clinical conditions and everyday scenarios 
emulating resting (Exp0), preload variations (Exp1), afterload variations (Exp2), sleep-to-wake 
(Exp3), contractility variations (Exp4) as well as rest-to-exercise (Exp5), were tested with the 
PDD-ILC regulating the cfVAD speed. The parameters of the CVS, as well as the specific values 
used to simulate the aforementioned conditions are based on the experimental procedure 
described by Petrou et al.61 and they are given in Supplemental Table B1-3 of the supplemental 
material. To test the robustness of the PDD-ILC when real measured signals are used instead of 
the simulated ones, all experiments were repeated with white noise with a variance of 0.86 
mmHg2 (Exp0n-5n) and 1.72 mmHg2 (Exp0nn-5nn) on the LVP or/and a variance of 0.86 (mL/s)2 
(Exp0n-5n) and 1.72 (mL/s)2 (Exp0nn-5nn) PF signals. 

To benchmark the performance of the proposed PDD-ILC in comparison to the state-of-the-
art, the same experiments have been conducted with a simulated healthy heart (HH), wherein the 
contractility parameter was set to 1, a constant speed controller (CS), and the developed PF-PIDC. 
All experiments were executed on MATLAB/Simulink R2020b (The MathWorks Inc., Natick, 
MA, USA) for 200 s. 

4.2.6 Optimization of controller parameters 
The performance of the PDD-ILC, as well as the benchmark flow PID controller, is highly 

dependent on the selection of the control parameters. Although for PID controllers the Ziegler-
Nichols approach166 is most commonly used to fine-tune their parameters (𝐾 ,𝐾 ,𝐾 ), its 
applicability to non-linear, time-variant systems, such as the CVS system, is prohibited. For the 
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developed PDD-ILC, which includes six control parameters (𝜇, 𝜂,𝑄,𝑅, 𝑘 , 𝑘 ), there is no 
intuitive method to fine-tune these parameters. 

In this work, the genetic algorithm-based optimization framework (GAOF) described by 
Magkoutas et al.102 was used to obtain a set of optimal parameters for each controller. In this 
framework, the user defines the VAD control structure, the numerical model of the CVS coupled 
with the numerical model of the selected VAD, the objective function (OF) to be evaluated, the 
experiments for the evaluation of the OF, and the genetic algorithm (GA) parameters. During the 
execution, each individual, defined as a set of control parameters, is fed to the controller and the 
numerical model of the VAD-supported heart is simulated. The simulation results are used for the 
evaluation of the OF and the obtained value is assigned to the respective individual as “score”. 
As long as the convergence criterion of the optimization problem is not met and the maximum 
number of generations (each generation includes multiple individuals) is not achieved, the scores 
of the individuals are fed to the genetic algorithm. Based on those scores, the GA uses genetic 
operations, namely elitism, crossover, and mutation, to create new individuals for the next 
generation. The process continues for each individual and each generation until an optimum (or 
multiple) set of control parameters has been identified. 

To enable the execution of the GAOF for the PDD-ILC and the PF-PIDC, the numerical 
model of the CVS and the cfVAD described in sections 2.1 and 2.2 were used. The contractility 
parameter of the CVS was set to 34% of the value described for the healthy heart, emulating a 
pathological circulation. The experiments Exp1-Exp5 described in section 2.5 were used for the 
evaluation of the OF. 
For each controller, a two-objective optimization problem was defined, aiming to minimize the 
overall error in tracking the reference PF trajectory. For the first objective, the root-mean-square-
error (RMSE) of the tracking error was initially calculated for each cardiac cycle by: 

𝑅𝑀𝑆𝐸
∑ 𝑞 , 𝑘  𝑞 ,

∗ 𝑘

𝑁
 (18) 

where 𝑗 denotes the index of the cardiac cycle, 𝑘 denotes the time index and 𝑁 the total number 
of time indices within the cardiac cycle 𝑗. As a next step, to ensure that only converged cycles are 
considered, the last 80 cycles of each experiment (𝑚) were obtained and the mean value of 𝑅𝑀𝑆𝐸 
was calculated as: 

𝑅𝑀𝑆𝐸
∑ 𝑅𝑀𝑆𝐸

80
 (19) 

Hence, the first objective function including the mean value of the 𝑅𝑀𝑆𝐸 for the six 
experiments was defined as: 

𝐽 𝑎 𝑅𝑀𝑆𝐸 𝑎 𝑅𝑀𝑆𝐸 𝑎 𝑅𝑀𝑆𝐸 𝑎 𝑅𝑀𝑆𝐸 𝑎 𝑅𝑀𝑆𝐸 𝑎 𝑅𝑀𝑆𝐸  (20) 

where 𝑎 0.2, 𝑎 0.2, 𝑎 0.15, 𝑎 0.15, 𝑎 0.15, and 𝑎 0.15 are weighting 
factors corresponding to experiments Exp1-6. The latter factors allow the experiments, which 
simulated conditions that account for a major fraction of the everyday life of a patient, to have a 
greater influence on the value of the OF. 
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The second objective of the optimization problem was developed to evaluate the individuals 
regarding the convergence of the tracking error. Hence, the standard deviation of the 𝑅𝑀𝑆𝐸 in 
the last 80 cycles of each experiment (𝑚) was calculated as: 

𝑠𝑡𝑑
∑ 𝑅𝑀𝑆𝐸 𝑅𝑀𝑆𝐸

80
 (21) 

Accounting the terms of all experiments and using the weighting factors, the second objective 
function is defined as: 

𝐽 𝑎 𝑠𝑡𝑑 𝑎 𝑠𝑡𝑑 𝑎 𝑠𝑡𝑑 𝑎 𝑠𝑡𝑑 𝑎 𝑠𝑡𝑑 𝑎 𝑠𝑡𝑑  (2

To avoid unrealistic control parameters, their values were constrained between a minimum 
and a maximum value given in Supplemental Table B4 in the supplemental material. Hence, the 
final optimization problem for the PDD-ILC was described as: 

min
𝒙

 𝐽 𝒙 , 𝐽 𝒙  (23) 

𝑠. 𝑡.   𝜇 𝜇 𝜇  (24) 

         𝜂 𝜂 𝜂  (25) 

              𝑄 𝑄 𝑄  (26) 

         𝑅 𝑅 𝑅  (27) 

           𝑘 , 𝑘 𝑘 ,  (28) 

           𝑘 , 𝑘 𝑘 ,  (29) 

where 𝒙 denotes the set of control parameters (𝜇, 𝜂,𝑄,𝑅, 𝑘 , 𝑘 . The optimization problem for 

the PF-PIDC, wherein the set of control parameters was 𝑥 𝐾 ,𝐾 ,𝐾 , was described as: 

min
𝒙

 𝐽 𝒙 , 𝐽 𝒙  (30) 

𝑠. 𝑡.   𝐾 , 𝐾 𝐾 ,  (31) 

      𝐾 , 𝐾 𝐾 ,  (32) 

      𝐾 , 𝐾 𝐾 ,  (33) 

where the a minimum and a maximum constraint values are given in Supplemental Table B4 in 
the supplemental material. 

The solution of the described two-objective optimization problem did not provide a single 
optimum solution, but a set of nondominated solutions (pareto front) that were chosen as optimal 
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if any of the objectives could not be improved without sacrificing the other objective. Hence, 
from the several individuals included in the pareto front of each controller, the final control 
parameters (Table 4.1) were selected after evaluating the overall performance of several sets of 
optimum parameters under the dynamic tests described in section 2.5. 

For both controllers, the optimization problem was solved by using the multi-objective genetic 
algorithm provided in the global optimization toolbox of MATLAB. The default parameters of 
the genetic algorithm were applied for the genetic operations, while the initial population and the 
size of each generation was 500 individuals. The convergence criteria were met when for 15 
consecutive generations any new individual was included in the pareto front, or when a maximum 
number of 50 generations was reached 

Table 4.1. Optimized control parameters for PDD-ILC and flow PID controllers 

PDD-ILC Flow PID 

𝝁 0.7315 𝑲𝑷 401.23 

𝜼 0.7859 𝑲𝑰 67.51 

𝑸 120.7388 𝑲𝑫 19.15 

𝑹 0.1365   

𝒌𝒑 3.2155   

𝒌𝒅 3.1926   

 

4.3 Results 
4.3.1 Trajectory tracking and convergence 

The performance of the PDD-ILC and the PF-PIDC in tracking the PF reference trajectories 
was evaluated under all physiological conditions simulated with the experiments described in 
section 2.5 for copulsation and counterpulsation modes (Fig. 4.6-8). In Fig. 4.6, the tracking 
performance during rest conditions (Exp0, Supplemental Table B1, supplemental material) is 
shown for one cardiac cycle with both controllers being converged. When the copulsation mode 
is selected (Fig. 4.6a), both controllers show excellent performance with the minimum and 
maximum PF values being achieved without overshoot and time delay. During the 
counterpulsation mode the tracking is accurate and without time delays in the transition phases 
(Fig. 4.6b). However, the highly changing pressure conditions applied on the cfVAD during the 
contraction of the LV deteriorate the tracking performance in the region of low PF of both 
controllers. 

In Fig. 4.7, the RMSE calculated based on (18) as well as the maximum instantaneous tracking 
error computed for each cardiac cycle are depicted for all physiological experiments (Ex0-5, 
Supplemental Table B1, supplemental material) under copulsation mode. During the rest-
conditions experiment (Exp0), the PDD-ILC obtained an RMSE below 0.33 𝐿 𝑚𝑖𝑛  after 30  
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Figure 4.6. Reference trajectory tracking performance of the PDD-ILC and the PF-PIDC during one cardiac 
cycle of the rest-conditions experiment (Exp0, Supplemental Table B1, supplemental material) under a) 
copulsation and b) counterpulsation. The reference trajectories, along with the left ventricular pressure profile 
that corresponds to the main source of disturbance are given for both modes. Both controllers are able to track 
accurately the reference trajectory during copulsation, reaching the maximum and minimum PF values 
without time lag. During the counterpulsation, the high disturbance of the fast change in LVP cannot be 
compensated completely from any of the controllers, however, the overall tracking is adequate. PDD-ILC, 
physiologic data-driven iterative learning controller; PF-PIDC, pump flow proportional-integrative-
derivative controller; Ref. Traj., reference trajectory; LVP, left ventricular pressure. 

iterations and converged to 0.07 𝐿 𝑚𝑖𝑛  after 100 iterations (Fig. 4.7a). Except for the initial 10 
iterations, wherein the system was not settled, the maximum tracking error remained below 
1.21 𝐿 𝑚𝑖𝑛  and reduced continuously to achieve 0.19 𝐿 𝑚𝑖𝑛  after convergence. During the 
same experimental conditions, the PF-PIDC obtained an RMSE of 0.06 𝐿 𝑚𝑖𝑛  and a maximum 
error of 0.11 𝐿 𝑚𝑖𝑛 . During the preload variations (Exp1), the controllers showed an increase 
in both the RMSE and the maximum error during the transition phases of the experiment, however 
after the last transition (at about 75 s) both reached the error values achieved in Exp0, with the 
PDD-ILC converging in less than 60 iterations to. As depicted in Fig. 4.7c, the PF-PIDC showed 
a slightly increased RMSE of 0.24  𝐿 𝑚𝑖𝑛  during the afterload experiment (Exp2). In this 
setting, the PDD-ILC also presented higher RMSE and maximum error throughout the entire 
experiment, achieving an RMSE of 0.87  𝐿 𝑚𝑖𝑛 at the end of the experiment. During the sleep-
to-wake (Exp3) and contractility variation (Exp4) settings both controllers showed excellent 
tracking performance, resulting in RMSE and maximum error values similar to the rest-conditions 
experiment (Fig. 4.7d-e). In Fig. 4.7f, the tracking performance during the rest-to-exercise 
experiment is illustrated for both controllers. During this experiment, wherein the pump has to 
provide the major fraction of the CO, the RMSE obtained with the PF-PIDC remained at a level 
of 1.56  𝐿 𝑚𝑖𝑛 , while the maximum error converged to 4.63 𝐿 𝑚𝑖𝑛 . The PDD-ILC although 
showed a reduction in the tracking accuracy, it considerably outperformed the PF-PIDC. More 
precisely, the RMSE and the maximum error obtained by the PDD-ILC after convergence was 
0.68  𝐿 𝑚𝑖𝑛  and 2.46  𝐿 𝑚𝑖𝑛 , respectively. 
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Figure 4.7. Transient performance of the PDD-ILC and the PF-PIDC in terms of RMSE and maximum 
instantaneous error in tracking the reference trajectory under all physiological conditions and scenarios 
executed with the copulsation mode. a) Rest-conditions (Exp0): The PDD-ILC converged after 100 iterations, 
obtaining an RMSE of 0.07 𝐿 𝑚𝑖𝑛  and maximum error of 0.19 𝐿 𝑚𝑖𝑛 . The PF-PIDC obtained an RMSE 
of 0.06 L 𝑚𝑖𝑛  and maximum error of 0.11 𝐿 𝑚𝑖𝑛 . b) Preload variation (Exp1): Last variation at 85 
seconds. The converged RMSE and maximum error for the PDD-ILC was 0.07 𝐿 𝑚𝑖𝑛  and 0.23 𝐿 𝑚𝑖𝑛 , 
respectively. The RMSE and maximum error for the PF-PIDC was 0.05 𝐿 𝑚𝑖𝑛  and 0.08 𝐿 𝑚𝑖𝑛 , 
respectively. c) Afterload variation (Exp2): Last variation at 85 seconds. The converged RMSE and maximum 
error for the PDD-ILC was 0.20 𝐿 𝑚𝑖𝑛  and 0.73 𝐿 𝑚𝑖𝑛 , respectively. The RMSE and maximum error 
for the PF-PIDC was 0.11 𝐿 𝑚𝑖𝑛  and 0.38 𝐿 𝑚𝑖𝑛 , respectively. d) Sleep-to-wake (Exp3): Last variation 
at 85 seconds. The converged RMSE and maximum error for the PDD-ILC was 0.05 𝐿 𝑚𝑖𝑛  and 
0.21 𝐿 𝑚𝑖𝑛 , respectively. The RMSE and maximum error for the PF-PIDC was 0.06 𝐿 𝑚𝑖𝑛  and 
0.11 𝐿 𝑚𝑖𝑛 , respectively. e) Contractility variation (Exp4): Last variation at 85 seconds. The converged 
RMSE and maximum error for the PDD-ILC was 0.05 𝐿 𝑚𝑖𝑛  and 0.18 𝐿 𝑚𝑖𝑛 , respectively. The RMSE 
and maximum error for the PF-PIDC was 0.06 𝐿 𝑚𝑖𝑛  and 0.10 𝐿 𝑚𝑖𝑛 , respectively. f) Rest-to-exercise 
(Exp5): Last variation at 85 seconds. The converged RMSE and maximum error for the PDD-ILC was 
0.68 𝐿 𝑚𝑖𝑛  and 2.46 𝐿 𝑚𝑖𝑛 , respectively. The RMSE and maximum error for the PF-PIDC was 
1.56 𝐿 𝑚𝑖𝑛  and 4.63 𝐿 𝑚𝑖𝑛 , respectively. RMSE, root mean square error; maxE, maximum error; PDD-
ILC, physiologic data-driven iterative learning controller; PF-PIDC, pump flow proportional-integrative-
derivative controller. 

The tracking performance of the controllers under counterpulsation mode is illustrated in Fig. 
4.8 for the conducted simulations. During Exp0 (Fig. 4.8a), the PF-PIDC reached an RMSE and 
maximum error of 0.42 𝐿 𝑚𝑖𝑛  and 1.32 𝐿 𝑚𝑖𝑛 , respectively. In this setting, the PDD-ILC 
required 50 iterations to converge at an RMSE and maximum error of 0.88 𝐿 𝑚𝑖𝑛  and 
2.64 𝐿 𝑚𝑖𝑛 , although it obtained similar error values already after the thirtieth iteration. During 
Exp1 (Fig. 4.8b), Exp3 (Fig. 4.8d), and Exp4 (Fig. 4.8e) both controllers obtained tracking errors 
similar to those in Exp0 after convergence, however, the tracking error was increased during the 
transition phases of the experiments. During Exp2 both controllers converged to error values 
lower than Exp0 (Fig. 4.8c). More precisely, the PDD-ILC converged to an RMSE and maximum 
error of 0.50 𝐿 𝑚𝑖𝑛  and 1.67 𝐿 𝑚𝑖𝑛  and the PF-PIDC to 0.19 𝐿 𝑚𝑖𝑛  and 0.50 𝐿 𝑚𝑖𝑛 ,  



62 
 

 
Figure 4.8. Transient performance of the PDD-ILC and the PF-PIDC in terms of RMSE and maximum 
instantaneous error in tracking the reference trajectory under all physiological conditions and scenarios 
executed with the counterpulsation mode selected. a) Rest-conditions (Exp0): The PDD-ILC converged after 
50 iterations, obtaining an RMSE of 0.88 𝐿 𝑚𝑖𝑛  and maximum error of 2.64 𝐿 𝑚𝑖𝑛 . The PF-PIDC 
obtained an RMSE of 0.42 𝐿 𝑚𝑖𝑛  and maximum error of 1.32 𝐿 𝑚𝑖𝑛 . b) Preload variation (Exp1): Last 
variation at 85 seconds. The converged RMSE and maximum error for the PDD-ILC was 0.94 𝐿 𝑚𝑖𝑛  and 
2.60 𝐿 𝑚𝑖𝑛 , respectively. The RMSE and maximum error for the PF-PIDC was 0.43 𝐿 𝑚𝑖𝑛  and 
1.32 𝐿 𝑚𝑖𝑛 , respectively. c) Afterload variation (Exp2): Last variation at 85 seconds. The converged RMSE 
and maximum error for the PDD-ILC was 0.50 𝐿 𝑚𝑖𝑛  and 1.67 𝐿 𝑚𝑖𝑛 , respectively. The RMSE and 
maximum error for the PF-PIDC was 0.19 𝐿 𝑚𝑖𝑛  and 0.50 𝐿 𝑚𝑖𝑛 , respectively. d) Sleep-to-wake 
(Exp3): Last variation at 85 seconds. The converged RMSE and maximum error for the PDD-ILC was 
0.90 𝐿 𝑚𝑖𝑛  and 2.30 𝐿 𝑚𝑖𝑛 , respectively. The RMSE and maximum error for the PF-PIDC was 
0.43 𝐿 𝑚𝑖𝑛  and 1.34 𝐿 𝑚𝑖𝑛 , respectively. e) Contractility variation (Exp4): Last variation at 85 seconds. 
The converged RMSE and maximum error for the PDD-ILC was 1.08 𝐿 𝑚𝑖𝑛  and 2.36 𝐿 𝑚𝑖𝑛 , 
respectively. The RMSE and maximum error for the PF-PIDC was 0.48 𝐿 𝑚𝑖𝑛  and 1.41 𝐿 𝑚𝑖𝑛 , 
respectively. f) Rest-to-exercise (Exp5): Last variation at 85 seconds. The converged RMSE and maximum 
error for the PDD-ILC was 1.61 𝐿 𝑚𝑖𝑛  and 3.06 𝐿 𝑚𝑖𝑛 , respectively. The RMSE and maximum error 
for the PF-PIDC was 1.88 𝐿 𝑚𝑖𝑛  and 4.18 𝐿 𝑚𝑖𝑛 , respectively. RMSE, root mean square error; maxE, 
maximum error; PDD-ILC, physiologic data-driven iterative learning controller; PF-PIDC, pump flow 
proportional-integrative-derivative controller. 

respectively. Similar to the copulsation mode, during the rest-to-exercise experiment (Exp5), 
the tracking error was increased for both controllers. As it can be seen in Fig. 4.8f, the PDD-ILC 
obtained an RMSE and maximum error of 1.61 𝐿 𝑚𝑖𝑛  and 3.06 𝐿 𝑚𝑖𝑛 , outperforming the 
PF-PIDC that converged to 1.88 𝐿 𝑚𝑖𝑛  and 4.18 𝐿 𝑚𝑖𝑛 , respectively. 

The addition of noise in the simulated LVP and PF signals had infinitesimal effect on the 
reference trajectory tracking. In the supplemental material, the detailed results for white noise of 
0.86 variance can be found in Fig. B1 for all experiments under copulsation and Fig. B2 under 
counterpulsation, while for white noise of 1.72 variance can be found in Fig. B3 for all 
experiments under copulsation and Fig. B4 under counterpulsation. 
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4.3.2 Ventricular unloading, pulsatility and hemodynamic response 
In this study, the reference PF trajectories were obtained by using copulsation and 
counterpulsation as support modes, aiming to increase the pulsatility or reduce the LVSW, 
respectively. The influence of both modes on the LVSW is illustrated in Fig. 4.9 for the executed 
experiments and is compared with the LVSW produced by the simulated diseased heart (DH) and 
the DH supported with a cfVAD with a constant speed controller (CS). During the experiments 
Exp0 (Fig. 4.9a), Exp3 (Fig. 4.9d), Exp4 (Fig. 4.9e) and Exp5 (Fig. 4.9f), using copulsation mode, 
both the PDD-ILC and the PF-PIDC controller followed the LVSW values obtained with the CS 
controller. In the same experiments, under counterpulsation, both the PDD-ILC and the PF-PIDC 
controller reduced the LVSW by 54.3%, 55.9%, 69.8% and 24% compared to the CS support. 
During the preload variation (Fig. 4.9b), the PDD-ILC and the PF-PIDC controller showed similar 
responses, reducing the LVSW by 56% compared to the CS and by 57.2% compared to the 
copulsation modes. However, during the low preload conditions, applied after the last transition 
point of Exp1, the CS reduced the LVSW by 26.3% compared to the PDD-ILC and PF-PIDC 
controller under counterpulsation. As it can be seen in Fig. 4.9c, during low afterload conditions 
(between 40 and 80 seconds), the PDD-ILC and the PF-PIDC controller under counterpulsation, 
as well as the CS controller, obtained similar LVSW values, while the copulsation modes resulted 
in 31.2% higher LVSW values. However, during the high afterload conditions in Exp 2 (after 80s 
in Fig. 4.9c), the PDD-ILC and the PF-PIDC controller under counterpulsation resulted in 75.7% 
and 72.7%, respectively, compared to CS support. Overall, both the PDD-ILC and the PF-PIDC 
achieved the intended LVSW reduction during counterpulsation modes. 

  

 
Figure 4.9. Influence of the copulsation and counterpulsation modes on the left ventricular stroke work 
(LVSW) of the diseased heart (DH) during: a) Rest-conditions (Exp0), b) Preload variation (Exp1 c) Afterload 
variation (Exp2) d) Sleep-to-wake (Exp3) e) Contractility variation (Exp4) f) Rest-to-exercise (Exp5). DH, 
diseased heart; CS, constant speed control; PDD-ILCco, physiologic data-driven iterative learning controller 
copulsation; PF-PIDCco, pump flow proportional-integrative-derivative controller copulsation; PDD-
ILCcc, physiologic data-driven iterative learning controller counterpulsation; PF-PIDCcc, pump flow 
proportional-integrative-derivative controller counterpulsation. 
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Figure 4.10. Influence of the copulsation and counterpulsation modes on the aortic pulse pressure (PP) of the 
diseased heart (DH) during: a) Rest-conditions (Exp0), b) Preload variation (Exp1) c) Afterload variation 
(Exp2) d) Sleep-to-wake (Exp3) e) Contractility variation (Exp4) f) Rest-to-exercise (Exp5). HH, healthy 
heart; DH, diseased heart; CS, constant speed control; PF-PIDCco, pump flow proportional-integrative-
derivative controller copulsation; PDD-ILCcc, physiologic data-driven iterative learning controller 
counterpulsation; PF-PIDCcc, pump flow proportional-integrative-derivative controller counterpulsation. 

The influence of the copulsation and the counterpulsation modes on the pulsatility is evaluated 
based on the aortic pulse pressure (PP = systolic aortic pressure – diastolic aortic pressure) and is 
illustrated in Fig. 4.10 for all experiments. During Exp0 (Fig. 4.10a) and Exp3 (Fig. 4.10d) the 
CS diminishes significantly the pulsatility, obtaining a PP of only 10.1 mmHg. Both the PDD-
ILC and the PF-PIDC under the counterpulsation mode increased the PP to 16.2 and 17.9 mmHg 
for Exp0 and Exp3, respectively, while under copulsation, the PDD-ILC and the PF-PIDC further 
increased the PP to 21.1 and 20.9 mmHg for Exp0 and Exp3, respectively. During the preload 
experiment (Fig. 4.10b) and after the convergence of all controllers, the CS resulted in the lowest 
PP of 4.0 mmHg, the PDD-ILC resulted in 14.6 and 15.2 mmHg for counterpulsation and 
copulsation, respectively, while the PF-PIDC resulted in 9.4 and 11.6 mmHg for counterpulsation 
and copulsation. During the transition phases of the afterload experiment (Fig. 4.10c), the CS 
reduced the PP to only 4.1 mmHg, however, the PDD-ILC resulted in significantly increased PP 
values of 8.4 and 18.7 mmHg with counterpulsation and copulsation, respectively. During the 
same settings, the PF-PIDC increased further the PP with respect to CS and PDD-ILC, achieving 
a PP of 13.8 and 29.9 mmHg under counterpulsation and copulsation, respectively. At high 
afterload conditions in Exp2 (after 110 s in Fig. 4.10c), all controllers resulted in similar PP value 
of approximately 14.9 mmHg. During the Exp4 (Fig. 4.10e) both the PDD-ILC and the PF-PIDC 
with copulsating mode resulted in PP of 19.8 mmHg, while the CS, as well as the PDD-ILC and 
the PF-PIDC under counterpulsation showed reduced pulsatility, obtaining a PP of 10.5, 20.0 and 
18.9 mmHg, respectively. The PDD-ILC presented an oscillating PP when the contractility 
reached 17% of that of the HH. During the rest-to-exercise experiment (Fig. 4.10f), the PDD-ILC 
with counterpulsation resulted in the lowest PP of 17.5 mmHg, while the CS and the PF-PIDC 
resulted in 19.5 and 19.1 mmHg. Under the same settings, the PID-controller and the PDD-ILC 
under copulsation increased significantly the PP achieving 28.0 and 30.0 mmHg, respectively. 
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4.3.3 Preload and afterload sensitivity 
The sensitivity of the developed controllers in preload and afterload changes was evaluated in 
Exp1 and Exp2, respectively, and it was compared with the sensitivities of the CS controller and 
the HH. Based on the equations given in Appendix B1 in the supplemental material, the end-
diastolic LV pressure and the mean aortic pressure (MAP) were used as surrogates of the preload 
and the afterload, respectively, and a summary of all sensitivities is provided in Table 4.2. As it 
can be seen in Table 4.2, both the PDD-ILC and the PF-PIDC showed physiological sensitivities 
compared to the HH, while the CS support resulted in highly non-physiological sensitivities in all 
cases. More precisely, during preload increase the HH showed a sensitivity of 0.502 
𝐿𝑚𝑖𝑛 /𝑚𝑚𝐻𝑔. The PDD-ILC in copulsation mode followed closely this value, resulting in 
0.496 𝐿𝑚𝑖𝑛 /𝑚𝑚𝐻𝑔, while the PF-PIDC showed 0.488 𝐿𝑚𝑖𝑛 /𝑚𝑚𝐻𝑔 and 0.470 
𝐿𝑚𝑖𝑛 /𝑚𝑚𝐻𝑔 under copulsation and counterpulsation, respectively. The PDD-ILC in 
counterpulsation mode had a lower preload sensitivity of 0.177 𝐿𝑚𝑖𝑛 /𝑚𝑚𝐻𝑔 and the CS 
showed a highly non-physiologic sensitivity of 0.039 𝐿𝑚𝑖𝑛 /𝑚𝑚𝐻𝑔. Similar to preload 
increase, during preload decrease the developed controllers followed closely the sensitivity of the 
HH, while the CS showed again a sensitivity of 0.040 𝐿𝑚𝑖𝑛 /𝑚𝑚𝐻𝑔. The sensitivity of the HH 
was -0.015 𝐿𝑚𝑖𝑛 /𝑚𝑚𝐻𝑔 and -0.016 𝐿𝑚𝑖𝑛 /𝑚𝑚𝐻𝑔 during afterload increase and decrease, 
respectively. The PDD-ILC in copulsation mode showed a sensitivity of -0.019 𝐿𝑚𝑖𝑛 /𝑚𝑚𝐻𝑔 
and -0.024 𝐿𝑚𝑖𝑛 /𝑚𝑚𝐻𝑔 during afterload increase and decrease, while in counterpulsation 
showed high sensitivity values of -0.030 𝐿𝑚𝑖𝑛 /𝑚𝑚𝐻𝑔 in all afterload changes. The PF-PIDC 
in copulsation and counterpulsation modes responded with a sensitivity of -0.018 𝐿𝑚𝑖𝑛 /
𝑚𝑚𝐻𝑔 and -0.011 𝐿𝑚𝑖𝑛 /𝑚𝑚𝐻𝑔 to afterload increase, and with a sensitivity of -0.026 
𝐿𝑚𝑖𝑛 /𝑚𝑚𝐻𝑔 and -0.019 𝐿𝑚𝑖𝑛 /𝑚𝑚𝐻𝑔 to afterload decrease. The CS controller showed 
more than three times higher afterload response that the HH, resulting in sensitivities of -0.046 
𝐿𝑚𝑖𝑛 /𝑚𝑚𝐻𝑔 and -0.057 𝐿𝑚𝑖𝑛 /𝑚𝑚𝐻𝑔 to afterload increase and decrease, respectively. 

Table 4.2. Preload and afterload sensitivity of the healthy heart (HH), the constant speed (CS) controller, the 
PDD-ILC, and the PF-PIDC calculated in experiments Exp1 and Exp2. 

System 

Preload 
(increase) 
(𝐿𝑚𝑖𝑛 /
𝑚𝑚𝐻𝑔) 

Preload 
(decrease) 
(𝐿𝑚𝑖𝑛 /
𝑚𝑚𝐻𝑔) 

Afterload 
(increase) 
(𝐿𝑚𝑖𝑛 /
𝑚𝑚𝐻𝑔) 

Afterload 
(decrease) 
(𝐿𝑚𝑖𝑛 /
𝑚𝑚𝐻𝑔) 

Healthy heart 0.502 0.481 -0.015 -0.016 

CS controller 0.039 0.040 -0.046 -0.057 

PDD-ILCco 0.496 0.466 -0.019 -0.024 

PDD-ILCcc 0.177 0.386 -0.030 -0.030 

PF-PIDCco 0.488 0.377 -0.018 -0.011 

PF-PIDCcc 0.470 0.411 -0.026 -0.019 

4.4 Discussion 
In the current work, we presented a data-driven iterative learning physiological controller and 

a pump flow PID-controller that accurately track predefined pump flow trajectories, aiming to 
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achieve physiological, pulsatile and treatment-driven response of cfVADs. A trajectory generator, 
which can be incorporated as a standalone block in other cfVAD control approaches, was also 
developed and by exploiting the LV-EDP it provided preload adaptive reference trajectories. In 
the case of the PDD-ILC, the reference PF trajectories were tracked by a model-free, data-driven 
ILC that used the time-sequences of LVP and PF to obtain a model. To the best of our knowledge, 
this is the first application of such a DD-ILC for cfVAD control. Both control approaches have 
been extensively tested in an in-silico environment under various physiological conditions, 
including rest, pre- and afterload variations, contractility variations, as well as everyday scenarios 
like sleep-to-wake and rest-to-exercise. Additionally, two treatment objectives were investigated, 
termed minimization of LVSW (counterpulsation) and maximization of pulsatility (copulsation). 
Under all experimental conditions, the PDD-ILC and the PF-PIDC demonstrated highly accurate 
tracking of the reference PF trajectories, outperforming existing model-based iterative ILC 
approaches,74 while they also achieved the predefined treatment objectives and resulted in 
improved hemodynamics and preload sensitivities compared to a CS controller that is the current 
state-of-the-art in the clinical practice (Table 4.2).47 

The reference trajectories constituted a critical component of the DD-IILPC and the PF-PIDC 
since they were responsible to provide preload adaptivity and incorporate the treatment 
objectives. To obtain preload adaptivity, the Frank-Starling mechanism was imitated by selecting 
the preload sensitivity of the controller in equation (3). To our knowledge, this is the first time 
that the preload sensitivity can be directly selected based on clinical input, constituting a great 
improvement compared to CS controllers and speed-based controllers, where fine-tuning of the 
control gains is necessary to achieve adequate sensitivity.61,64,167. Based on the results in section 
3.3, the PDD-ILC and the PF-PIDC were able to follow the set value and provide preload 
sensitivities similar to the healthy heart, while the CS controller showed infinitesimal sensitivity. 
Hence, based on our approach, a patient-specific preload sensitivity is feasible for both 
controllers, offering new opportunities in cfVAD treatment management. 

The treatment objectives incorporated in the reference trajectories were the minimization of 
LVSW and the maximization of pulsatility. To minimize the LVSW, a counterpulsating pump 
modulation with respect to the native heart has been applied as proposed in the literature.158,160,163 
By accurately tracking the counterpulsation PF trajectories developed in section 2.3.2, the PDD-
ILC and the PF-PIDC were able to substantially reduce the LVSW by more than 50% compared 
to the CS support in the majority of the investigated physiological conditions. This is important 
when treatment approaches for LV training are considered. To maximize the pulsatility, a 
copulsation trajectory was developed and tracked by the PDD-ILC and the PF-PIDC controller. 
During all physiological conditions studied, both controllers increased drastically the PP 
compared to the CS support. These results agree with the literature158,160,163 and, consequently, 
they can be implemented to enhance the pulsatility and investigate its effects and its necessity on 
cfVAD supported patients. It is important to mention that the effectiveness of our pipeline in 
reducing the LVSW and increasing the PP is mainly dependent on the developed PF reference 
trajectories. The difference in LVSW reduction and PP increase between the PDD-ILC and the 
PFPIDC are a result of their slightly different tracking performance. By exploiting the accurate 
trajectory tracking achieved from both the PDD-ILC and the PF-PIDC, various phase shifts can 
be investigated to deduce a better understanding of the interactions between the cfVAD and the 
native heart to improve the treatment of heart failure patients. 

The tracking performance of the DD-ILC and the PF-PIDC was excellent for the copulsation 
mode, regardless of the physiological conditions applied and the rapid changes in the 
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hemodynamics and the heartbeat. During the counterpulsation, both controllers demonstrated 
lower tracking accuracy in all experiments compared to the copulsation. However, they 
significantly outperformed existing ILC approaches.74 The inferior tracking performance of the 
controllers under counterpulsation can be attributed to two reasons. Firstly, during the 
counterpulsation, a rapid change of head pressure is applied on the pump from the heart 
contraction, which cannot be counteracted by the slower dynamic response of the pump. 
Secondly, the controller parameters were optimized for the copulsation mode, hence better 
tracking performance during counterpulsation could be achieved with the further optimization of 
the control parameters. 

The control parameters have a strong influence on the stability and the tracking performance 
of both the PDD-ILC and the PF-PIDC; hence, their selection is of high importance. In this work, 
we implemented the genetic-algorithm-based optimization framework proposed by Magkoutas et 
al.102 to obtain the optimum parameter sets for our control approaches. By using the latter 
optimization framework, intuitive tuning of the control parameters can be achieved based on the 
selection of the objective functions to be minimized. Hence, by exploiting the GAOF, the gains 
of the PDD-ILC and the PF-PIDC controller can be further optimized to facilitate patient-specific 
treatment goals and, consequently, enhance the prognosis of cfVAD supported patients. However, 
it has to be mentioned that, depending on the selected objective functions and the experiments in 
the optimization process, the development phase of the controller can be prolonged since the 
completion of the optimization might take up to 20 days. 

Although the superiority of the PDD-ILC and the PF-PIDC over the CS controller with respect 
to hemodynamics and pre- and afterload sensitivities has been demonstrated, the proposed control 
approaches have also limitations. The development of the reference trajectories assumes 
negligible flow through the aortic valve, however, when a phase shift between the pump pulsation 
and the native heart has to be incorporated in the reference trajectory (e.g. counterpulsation) the 
assumption of negligible flow through the aortic valve is violated. This affects the development 
of a feasible PF trajectory. Additionally, the assumption of negligible aortic valve flow results in 
reference trajectories that aim to achieve the necessary CO only through the cfVAD operation. 
Consequently, the flow through the aortic valve is minimized and the risk of aortic valve 
insufficiency increases. Although such pathological consequences were not within the scope of 
this study, to ameliorate the risk of aortic valve insufficiency we envisage the addition of a support 
level parameter to manipulate the percentage of the CO delivered by the pump and the CO 
expected from the remaining contraction of the native heart. 

The excellent tracking performance of both the PDD-ILC and the PF-PIDC necessitates the 
accurate measurement of LVP and PF signals. We are aware that no reliable, long-term blood 
pressure and flow sensors are currently available for cfVADs; however, the approach developed 
by von Petersdorff-Campen et al.88 is promising and could pave the way towards the realization 
of LVP and PF measurements. In this study, we have accounted for the inherent noise of real 
measurement and its effect on the tracking performance by assessing the PDD-ILC and the PF-
PIDC tracking ability when white noise was added on the LVP and the PF signals. Additionally, 
the overall performance of the proposed control approaches has been evaluated only in an in-
silico environment with a numerical model of a non-implantable mixed-flow turbodynamic blood 
pump. In-silico, studies with the numerical model of the current state-of-the-art blood pump 
HeartMate 3 have to be also performed. Furthermore, to prove the performance of the controllers 
in the real-time setting and allow the translation of the controllers into the clinical practice, in-
vitro and in-vivo studies have to be conducted. 
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Finally, considering the high complexity of the presented control schemes, suction prevention 
features were not included in the main control structures. Although no suction events were 
identified in the executed experiments, safety controllers similar to those proposed by Petrou et 
al.64 could be incorporated.   
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5 Genetic Algorithm-Based Optimization Framework for Control 
Parameters of Ventricular Assist Devices 

5.1 Introduction 
Ventricular assist devices (VADs) have been established as an important option in severe 

acute and chronic heart failure treatment,168 complementing the cardiac output produced by the 
native heart. Their deployment most often aims to support end-stage heart failure patients as 
bridge-to-transplantation or bridge-to-recovery,146 however, the increasing pool of patients in 
need of transplantation along with the scarcity of available organs have progressively expanded 
the usage of VADs as destination therapy.169  

The progress of VADs in size, reliability, and implantability is substantial since their 
advent,25,168 with the patients supported by third-generation continuous-flow VADs (cfVADs) 
appreciating nowadays significant improvement in their quality of life170 and 1- and 2-year post-
implantation survival rates of 82.3% and 73.1%, respectively.31,147 Nonetheless, the burden of 
cfVAD-related adverse events (AE) remains significant,171 resulting in hospital readmission of 
38.6% and 72.2% of the patients in 90 days and 12 months after the VAD implantation, 
respectively.31 These AE include gastrointestinal bleeding, right-heart failure, 
hemorrhagic/ischaemic strokes, and aortic valve insufficiency.29,84 The exact mechanisms 
triggering the AE are not fully understood. However, the flow balancing issues between the left 
and right ventricles as well as the diminished flow pulsatility provoked by the fixed pump-speed 
operation and the continuous flow of the state-of-the-art cfVADs, are among the major 
contributors.29,84,151,172  

To pave the way for a VAD therapy free of cfVAD-related AE, the integration of 
physiological controllers that automatically adapt the pump speed based on the perfusion demand 
of the patient can constitute the cornerstone.173 In this context, numerous research groups have 
been developing control strategies that exploit hemodynamic parameters and intrinsic signals of 
the pump to improve the physiological response of VADs.15,61,174–176 These strategies include 
proportional (P), proportional-integral (PI), and proportional-integral-derivative (PID) 
controllers,56–58,66 as well as more complex, multi-objective64,73 and iterative-learning 
controllers.74,75,101  

Although the aforementioned controllers improve notably the responsiveness of VADs, their 
performance is highly dependent on the selection of their control parameters. The identification 
of the optimal control parameters for PID controllers is often conducted with the Ziegler-Nichols 
approach,166 however, the latter approach is not applicable to complex control strategies and, most 
importantly, to non-linear and time-variant systems such as the human cardiovascular system 
(CVS). Hence, the control parameters of VAD controllers are selected through non-intuitive, trial 
and error methods, resulting in suboptimal controllers that are strongly dependent on the patient 
characteristics and the conditions that have been used during the selection process. To allow an 
intuitive optimization of the control parameters based on specific criteria and multi-objective 
goals, metaheuristic optimization approaches177 can be used. For instance, the swarm-based 
optimization approach has been successfully used to identify the optimal PID parameters and, 
hence, improve the dynamic response of a pressure-based PID controller for artificially ventilated 
human respiratory systems.178 Similarly, genetic algorithm (GA) optimization has been 
implemented to improve the performance of an electrohydraulic servo control system179 or a 
robotic manipulator180 by identifying the optimum control parameters of their PID controllers. 
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Figure 5.1. Overview of the genetic algorithm-based optimization framework (GAOF). *This is an exemplary 
electrical analog of the CVS retrieved from Simaan et al.181. The CVS used in the current study is from 
Colacino et al.52 and it is described in section 5.2.2.  CVS, cardiovascular system; VAD, ventricular assist 
device; Gen, generation; PID, proportional-integral-derivative; Kp, proportional gain; Ki, integral gain; Kd, 
derivative gain. 

In this work, we present a genetic algorithm-based optimization framework (GAOF) that 
allows the identification of optimal control parameters of VAD controllers based on pump-, 
patient-, and treatment-specific characteristics. The GAOF incorporates the numerical model of 
the CVS, the numerical model of a VAD, the control strategy, the objective function (OF) to 
evaluate the performance of the controllers, the experiments for the evaluation of the OF, and the 
genetic algorithm (GA) that provides the set of optimal parameters for each controller. The 
performance of the GAOF has been assessed in an in-silico environment, with the optimization 
of one- and two-degree-of-freedom physiologic PID controllers, as well as a physiologic data-
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driven iterative learning controller (PDD-ILC). Additionally, the GAOF has been deployed for 
the optimization of the one- and two-degree-of-freedom physiologic PID controller, when 
different VAD designs, patient characteristics, and OF are selected to assess the performance of 
the GAOF in achieving patient-specific control strategies. 

5.2 Materials and Methods 
5.2.1 Framework overview 

The GAOF constitutes an optimization framework that improves the performance of VAD 
controllers by identifying optimum sets of control parameters based on pump, patient, and 
treatment characteristics. To achieve this, as shown in Fig. 5.1, the GAOF-user (e.g. the control 
engineer or the VAD specialist) has to provide the control structure along with the control 
parameters to be optimized. 

Based on the allowable range of each control parameter, a design space is formed for the 
controller. Considering each set of control parameters as an “individual”, an initial population of 
N individuals is produced (generation 0), aiming to cover all the areas of the design space. As a 
next step, each individual is tested in an in-silico environment, where the GAOF-user has to select 
the numerical model of the CVS and the VAD that are coupled to allow the simulation of a 
diseased heart supported by the controlled VAD. The in-silico experiments include various 
hemodynamic conditions, such as preload or afterload manipulations, and daily scenarios, such 
as wake-to-sleep or rest-to-exercise, based on the selection of the GAOF-user. At the end of each 
round of simulations, a “score” is assigned to each individual by computing the OF defined by 
the GAOF-user. The individual scores serve as input for the genetic algorithm, which aims to 
identify the optimal set of control parameters by using genetic operations (elitism, crossover, and 
mutation) to propagate the features of the best individuals, and eliminate or mutate the poor ones. 
Based on the genetic operations, a new, optimized generation of individuals is produced and the 
in-silico experimentation is initiated again for each individual. This process is repeated until the 
convergence criterion or the maximum number of generations has been reached, concluding the 
optimal individual. 

5.2.2 Numerical model of the human cardiovascular system 
The mathematical representation and the complexity of the numerical model of the CVS in 

the GAOF can be chosen arbitrarily by the GAOF-user. In this work, the lumped-parameter model 
originally described and validated by Colacino et al.52 was used to simulate realistic physiologic 
and pathological conditions of the human heart, based on the MATLAB/Simulink (The 
MathWorks, Natick, MA, USA) implementation presented by Ochsner et al.53 The model, which 
is elaborated also in Appendix C3 “Numerical Model of the Cardiovascular System”, comprises 
the systemic and pulmonary circulations, a fully contracting heart as well as an extension to allow 
the simulation of ventricular suction.182 Each of the systemic and pulmonary circulations is 
segmented into an arterial and venous system, modeled with five-element and classic Windkessel 
models, respectively. The contracting heart consists of two active atria and two active ventricles 
modeled based on the principle of time-varying elastance. Additionally, the model incorporates 
three independent autoregulatory mechanisms to regulate arterial pressure, pulmonary pressure, 
and cardiac output. 

5.2.3 Numerical model of ventricular assist devices 
The design and the dynamic response of the VAD have a strong influence on the VAD-heart 

interactions, necessitating the optimization of the control parameters based on the VAD 
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characteristics. In the GAOF, the emulation of a VAD-supported heart has been achieved by 
coupling the CVS model with the numerical model of a VAD that operates in parallel with the 
left ventricle. The GAOF-user can select the numerical model of any VAD, however, in this study, 
two blood pump designs have been investigated. Specifically, the numerical model of a non-
implantable mixed-flow turbodynamic blood pump (Deltastream DP2, Medos Medizintechnik 
AG, Stolberg, Germany) and the numerical model of the state-of-the-art implantable centrifugal 
turbodynamic blood pump (HeartMate 3 (HM3), Abbott, Abbott Park, IL, USA). The 
mathematical representation of the Deltastream and the HM3 were retrieved from the work 
conducted by Amacher et al.160 and Boës et al.183, respectively, and they were implemented in 
MATLAB/Simulink. Both models are elaborated in the Supplemental material (Appendix C1, 
Appendix C2) 

5.2.4 Control strategies for ventricular assist devices 
The efficacy of the GAOF in identifying the optimum set of control parameters was 

investigated by optimizing three physiologic controllers of different complexity. More precisely, 
the optimized control schemes included a physiologic one-degree-of-freedom PID (1DOF-PID), 
a physiologic two-degree-of-freedom PID (2DOF-PID), and a physiologic data-driven iterative 
learning controller101 (PDD-ILC). All control schemes aimed to improve the response of the VAD 
and avoid over- and under-pumping during manipulations of the hemodynamic conditions of the 
patient. 

5.2.4.1 Proportional-integral-derivative (PID) controllers 
The 1DOF-PID controller aims at imitating the Frank-Starling mechanism and, hence, 

achieving a physiologic response of the VAD during preload changes. To monitor the preload, 
the left-ventricular  end-diastolic pressure (LV-EDP) extracted via the feature extraction 
algorithm presented by Magkoutas et al.101 is used as a surrogate. As depicted in Fig. 5.2a, the 
difference between the extracted LV-EDP and the reference LV-EDP is calculated and it serves 
as input in the PID controller. Based on the proportional (𝐾 ), integral (𝐾 ), and derivative (𝐾 ) 
gains of the PID controller, the necessary change in the rotational speed of the VAD is computed 
and added to the reference VAD speed to identify the setpoint speed for the VAD. Hence, the 
overall performance of the 1DOF-PID depends on the selection of the three gains, which in this 
work were optimized by using the GAOF. 
The 2DOF-PID controller, in addition to the Frank-Starling mechanism, aims at imitating the 
systemic arterial baroreflex to allow an improved afterload response of the VAD. The preload 
component of the 2DOF-PID controller is the same as in the 1DOF-PID controller, where the LV-
EDP is used as input in the first PID; however, a second component that is using the mean arterial 
pressure (MAP) is added to account for the afterload changes. In the latter component of the 
control structure, as is shown in Fig. 5.2b, the difference between the extracted MAP and the 
reference MAP is used as input in the second proportion-derivate (PD) controller, and based on 
the selected gains a change in the VAD speed is calculated. The changes in the VAD speed 
proposed by the preload PID and the afterload PD are added to the reference speed, defining the 
setpoint speed for the VAD. Based on the structure of the 2DOF-PID, the five gains of the PID 
and PD controllers constitute the parameters to be optimized with the GAOF. 
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Figure 5.2. Overview of the control structures. a) One-degree of freedom proportional-integral-derivative 
(1DOF-PID) controller. The end diastolic left ventricular pressure (LV-EDP), extracted from the left 
ventricular pressure (LVP) that is the only measured variable, constitutes the input parameter of the 1DOF-
PID. Based on the instantaneous LV-EDP and the reference LV-EDP, an error term is calculated that is used 
by the 1DOF-PID to regulate the rotational speed of the blood pump (n(t)) and, hence, achieve physiologic 
preload response of the blood pump. b) Two-degree of freedom proportional-integral-derivative (2DOF-PID) 
controller. The 2DOF-PID incorporates a PID and a PD controller which aim to achieve physiologic preload 
and afterload response of the blood pump. The PID controller of the 2DOF-PID operates similar to the 1DOF-
PID, while the PD component of the 2DOF-PID uses the mean arterial pressure (MAP) as input to regulate 
the speed n(t) with regards to the afterload changes. The changes in n(t) suggested from the two PIDs are 
added to the reference speed to calculate the setpoint speed. c) Physiologic data-driven iterative learning 
controller (PDD-ILC). In the PDD-ILC the LV-EDP extracted from the LVP is used to calculate the desired 
average pump flow (PF) based on the Frank-starling mechanism. Based on the objectives of the therapy a 
reference pulsatile PF trajectory is formulated and stored as a vector in the memory block of the DD-ILC 
along with the pump speed setpoint vector. These vectors are used to update the system model at each cardiac 
cycle (iteration) through dynamic linearization. The model is used in a constrained quadratic optimization 
problem to minimize the PF tracking error. The time index counter extracts and outputs the feedforward pump 
speed setpoint at every time step within a cardiac cycle. To enable feedback in the time domain the PD 
component is added in the controller structure. The desired instantaneous pump speed is the output of the 
PDD-ILC. AOP, aortic pressure; e, error; n, blood pump speed; ref, reference, p, preload; a, afterload; j, 
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iteration (cardiac cycle); 𝑞 , measured blood pump flow; 𝑞∗ , desired average blood pump flow; 𝒒∗  desired 

blood pump flow trajectory vector; 𝛷, pseudo partial derivative denoting the linearized system model; 𝒏∗ , 
feed forward desired pump speed vector; 𝑛∗ , feed forward desired pump speed in the time domain; 𝛥𝑛∗ , 
feedback desired pump speed change. 

The reference values of the LV-EDP (𝐿𝑉 𝐸𝐷𝑃 ), MAP (𝑀𝐴𝑃 ) and the VAD speed 

(𝑁 ) used in the 1DOF-PID and 2DOF-PID are obtained by a calibration process. In the latter 
process, the pump speed that results in a total cardiac output of 5 L/min under rest conditions of 
the simulated patient is identified as 𝑁 , while the LV-EDP and MAP values observed during 

this setting serve as 𝐿𝑉𝐸𝐷𝑃  and 𝑀𝐴𝑃 , respectively. 

5.2.4.2 Physiologic data-driven iterative learning controller (PDD-ILC) 
The physiologic data-driven iterative learning controller (PDD-ILC) used in this work aims 

at achieving physiologic, pulsatile, and treatment-driven response of VADs. A detailed 
description of the PDD-ILC structure and assessment has been given by Magkoutas et al101, 
however, in brief, the PDD-ILC (Fig. 5.2c) imitates the Frank-starling mechanism by calculating 
the necessary average pump flow based on the LV-EDP that is used as a preload surrogate. In the 
next step, considering treatment objectives selected by the clinicians, a reference pulsatile pump 
flow trajectory is obtained. The accurate tracking of this reference pump flow trajectory is 
achieved by implementing a data-driven iterative learning controller, which eliminates the need 
for a model of the CVS and the pump. Finally, a proportional-derivative (PD) controller is coupled 
to enable feedback in the time domain and provide the pump speed as the output of the controller. 
Due to the higher complexity of the PDD-ILC, its performance is dependent on the selection of 
six parameters, four for the iterative learning controller and two for the PD controller. 

5.2.5 Dynamic experiments 
The process of identifying the optimum set of control parameters for a given control structure 

in the GAOF requires an extensive evaluation of each control individual. To allow this, a series 
of in-silico experiments that simulate a pathological CVS supported by a VAD is conducted. The 
in-silico experiments include several hemodynamic conditions emulating resting (𝑆 ), 
contractility variations (𝑆 ), preload variations (𝑆 ), and afterload variations (𝑆 ), as well as 
everyday scenarios that change the perfusion need of the patient, such as sleep-to-wake (𝑆 ) and 
rest-to-exercise (𝑆 ). Based on the work of Petrou et al.61, to simulate the various experimental 
conditions, the unstressed venous volume (UVV), the systemic vascular resistance (SVR), and 
the heartrate (HR) of the CVS were manipulated, with the specific values for each experiment 
given in Supplemental Table C1 in Supplemental material. For the 1DOF-PID and 2DOF-PID 
controllers, the duration of each simulation ranged between 60 and 120 seconds, while for the 
PDD-ILC the duration was 200 seconds. The difference in the duration of the simulations stems 
from the fact that the PDD-ILC requires more cycles to achieve initial convergence. 

5.2.6 Controller optimization 

5.2.6.1 Genetic algorithm configuration 
To allow the identification of the optimum set of control parameters, regardless of the 

complexity of the VAD control structure, the GAOF uses the genetic algorithm (GA) provided 
by the “Global Optimization Toolbox” in MATLAB/Simulink. By considering a set of parameters 
as a candidate solution (individual) for the given optimization problem, and evaluating the 
individuals according to their fitness, the GA starts from an initial generation of individuals, 



75 
 

simulates the biological evolution process by employing genetic operations to generate 
increasingly better candidate solutions, and terminates when the convergence criteria are met.177 
The genetic operations include a) elitism, where a fixed, small number of the fittest individuals 
advances unchanged to the next generation of candidate solutions, b) crossover, where random 
parameters of two “parent” individuals, which are selected with a probability increasing with their 
fitness, are exchanged to form a new individual in the next generation of candidate solutions, and 
c) mutation, where individuals advance to the next generation of candidate solutions with random 
portions of their parameter representation replaced with random new values.184 The evaluation of 
the individuals with respect to their fitness is based on the computation of OFs that incorporate 
the aims of the optimization problem. The OFs used in this work vary depending on the control 
structure and the optimization problem, and they are elaborated in following subsections. 

For the genetic operations, the default parameters of MATLAB’s GA were applied with 
elitism being 5% of the population size, crossover being 80% of the remaining population, and 
the mutation probability being 1%, while the optimization configuration for each controller is 
given in Table 5.1. The convergence criteria were met when any new individual was included in 
the family of the fittest individuals (Pareto front) for a number of consecutive generations, or the 
maximum number of generations was reached. The number of consecutive and maximum 
generations are provided in Table 5.1 for each optimization problem. 
 
Table 5.1: Setup of the genetic-algorithm framework to optimize the VAD controller parameters. so, single 
objective; mo, multi-objective 

Parameter 
1DOF-
PIDso 

1DOF-
PIDmo 

2DOF-PIDso 
2DOF-
PIDmo 

PDD-ILC 

Simulation 
Time Step (s) 

0.0001 0.0001 0.0001 0.0001 0.0001 

Number of 
Parameters (-) 

3 3 5 5 6 

Initial 
Population (-) 

400 400 400 400 500 

Generation 
Size (-) 

400 400 400 400 500 

Consecutive 
Generations (-) 

5 5 5 5 15 

Maximum 
Generations (-) 

30 30 30 30 50 

 
5.2.6.2 Definition of optimization problems and objective functions (OFs) 

The main component of the optimization problem is the OF that is used to evaluate the fitness 
of the individuals and, hence, its definition drastically affects the results of the optimization 
process. For the VAD controllers, the definition of the OF and, hence, the optimization problem 
is not trivial and it can be adapted based on the structure of the controller and, most importantly, 
the aims of the treatment. In this study, depending on the controller at hand, single- and multi-
objective optimization problems have been defined and investigated within the GAOF. 

In detail, for the 1DOF-PID and 2DOF-PID controllers, the optimization problem aimed to 
minimize under varying hemodynamic conditions the deviation between the CO produced by the 
diseased heart supported by the controlled VAD (𝐶𝑂 ) and the CO produced by the healthy heart 
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(𝐶𝑂 ), as well as the CO oscillations. To achieve this, the dynamic experiments 𝑆 -𝑆  were 
conducted and the CO data were retrieved from the simulation results. In the next step, the CO 
data from each experiment were classified into steady-state (𝑠𝑠) data and transition-state (𝑡𝑠) data 
to consider the distinct characteristics of each state.  

The assessment of the CO deviation was based on the root-mean-square-error (RMSE) of the 
𝐶𝑂  and 𝐶𝑂 , calculated by: 

𝑅𝑀𝑆𝐸
∑ 𝐶𝑂 , 𝐶𝑂 ,

𝑁
 (1) 

where 𝑖 is the time index of the simulation and 𝑁 is the total number of time indices for each 
experiment and state. Hence, by considering the dynamic experiments 𝑆 -𝑆  and the different 
states, the two OFs to be satisfied for the minimization of the CO deviation are formulated as: 

𝐽 𝑏 ∙ 𝑅𝑀𝑆𝐸 ,  (2) 

𝐽 𝑏 ∙ 𝑅𝑀𝑆𝐸 ,  (3) 

with 𝑗 denoting the number of the dynamic experiment and 𝑏  being the weighting factor for each 
dynamic experiment that aim to increase the influence of the experiments that the patient 
encounters more frequently in the everyday life in the optimization process. The values of the 
weighting factors are provided in Supplemental Table C2 in the Supplemental material. 

The second aim of the optimization problem for the 1DOF-PID and 2DOF-PID controllers 
was the minimization of the CO oscillations, which are evaluated differently based on the state of 
the experiment. More precisely, during the steady-state phases of the dynamic experiments, the 
CO oscillations are quantified by the standard deviation (𝑆𝑇𝐷) of the CO, while during the 
transition-state phases by the summation of the cardiac output finite difference (𝑆𝐶𝑂𝐹𝐷). The 
latter is calculated as: 

𝑆𝐶𝑂𝐹𝐷 1
∑ 𝐶𝑂 , 𝐶𝑂 ,

∑ 𝐶𝑂 , 𝐶𝑂 ,
 (4) 

where 𝑖 is the time index of the simulation and 𝑁 is the total number of time indices for each 
experiment and state. Hence, the OFs for the minimization of the CO oscillations were formulated 
as: 

𝐽 𝑏 ∙ 𝑆𝑇𝐷  (5) 

𝐽 𝑏 ∙ 𝑆𝐶𝑂𝐹𝐷  (6) 

where 𝑗 denotes the number of the dynamic experiment and 𝑏 , as explained above, is the 
weighting factor of each dynamic experiment. 

By considering the described OFs, the multi-objective optimization problem for the 1DOF-
PID and 2DOF-PID controllers can be defined as: 
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𝑚𝑖𝑛 ̅ 𝐽 𝑥 , 𝐽 𝑥 , 𝐽 𝑥 , 𝐽 𝑥  (7) 

𝑠. 𝑡. 𝑥 𝑥 𝑥  (8) 

where 𝑥 denotes the vector of control parameters for each controller, hence, being 𝑥
𝐾 ,𝐾 ,𝐾  for the 1DOF-PID and 𝑥 𝐾 , ,𝐾 , ,𝐾 , ,𝐾 , ,𝐾 ,  for the 2DOF-PID. The 

vectors 𝑥  and 𝑥  correspond to the constraint vectors that were used to reduce the search 
space and avoid unrealistic values for the control parameters. The specific constraint values for 
each controller are given in Supplemental Table C3 in the Supplemental material. 

The solution of the optimization problem defined in equations (7-8), provides a family of 
optimal individuals, termed the Pareto front. Hence, the GAOF-user has the flexibility to select 
and test several of the individuals included in the Pareto to conclude the optimal one, based on 
their preferences.  

To reduce the involvement of the GAOF-user in the selection of the optimal individual, the 
multi-objective optimization problem defined in equations (7-8) was formulated as a single-
objective optimization problem by considering a weighting factor for each OF. Hence, the second 
optimization problem for the 1DOF-PID and 2DOF-PID controllers is defined as: 

𝑚𝑖𝑛 ̅ 𝑎 ∙ 𝐽 𝑥 𝑎 ∙ 𝐽 𝑥 𝑎 ∙ 𝐽 𝑥 𝑎 ∙ 𝐽 𝑥  (9) 

𝑠. 𝑡. 𝑥 𝑥 𝑥  (10) 
with 𝑥, 𝑥 , and 𝑥  denoting the vector of control parameters and the constraint vectors for 
each controller, while the weighting factors are 𝑎 0.5, 𝑎 0.3, 𝑎 0.1, and 𝑎 0.1. The 
selection of the aforementioned weighting factors was based on the importance of each OF. 

For the PDD-ILC, the aim of the optimization problem was the minimization of the overall 
error in tracking the desired pump flow trajectory under varying hemodynamic conditions. To 
achieve this, two OFs were defined, with the first objective evaluating the mean root-mean-

square-error (𝑅𝑀𝑆𝐸) of each PDD-ILC individual. In detail, the simulation results from the 
dynamic experiments 𝑆 -𝑆  were retrieved and split into cardiac cycles. For each cardiac cycle, 
the root-mean-square-error (𝑅𝑀𝑆𝐸) of the measured pump flow (𝑞 ) and the desired pump flow 

(𝑞∗ ) were calculated and then, by using the last 80 cardiac cycles of each experiment to ensure 

that the PDD-ILC convergence has been achieved, the mean RMSE for each experiment was 
calculated as: 

𝑅𝑀𝑆𝐸
∑

∑ 𝑞 , 𝑖 𝑞 ,
∗ 𝑖

𝑁
80

 

(11) 

where 𝑗 is the number of the dynamic experiment, 𝑘 is the index of the cardiac cycle, 𝑖 is the time 
index, and 𝑁 is the total number of time indices within the cardiac cycle 𝑘. By considering the 
six dynamic experiments, the first OF of the optimization problem for the PDD-ILC can be 
defined as: 

𝐽 𝑏 ∙ 𝑅𝑀𝑆𝐸  (12) 
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with 𝑗 denoting the number of the dynamic experiment and 𝑏  the weighting factor of each 
dynamic experiment provided in Supplemental Table C2 in the Supplemental material. 

The second objective for the optimization problem of the PDD-ILC aimed to assess the 
convergence of the tracking error for each PDD-ILC individual by quantifying the standard 
deviation (𝑆𝑇𝐷) of the 𝑅𝑀𝑆𝐸 of the last 80 cycles of each dynamic experiment. Hence, by 
accounting for all dynamic experiments, the second OF can be formulated as: 

𝐽 𝑏 ∙ 𝑆𝑇𝐷  (13) 

with 𝑗 denoting the number of the dynamic experiment and 𝑏  the weighting factor of each 
dynamic experiment as described above. 

Finally, by considering the two objectives, the optimization problem for the PDD-ILC can be 
described as: 

𝑚𝑖𝑛 ̅ 𝐽 𝑥 , 𝐽 𝑥  (7) 

𝑠. 𝑡. 𝑥 𝑥 𝑥  (8) 
  

where 𝑥 denotes the vector of control parameters, hence, being 𝑥 𝜇, 𝜂,𝑄,𝑅, 𝑘 ,𝑘 , while 
𝑥  and 𝑥  correspond to the minimum and maximum constraint vectors, respectively, given 
in Supplemental Table C3 in the Supplemental material. 

The execution of the GAOF for all the optimization problems was performed on a high-
performance computer cluster (Euler cluster ETH). 

5.2.7 Interpatient variability 
The capabilities of the GAOF in achieving patient-specific control strategies were further 

explored with the 2DOF-PID controller, by comparing the performance of a “generic” optimized 
controller and a patient-specific optimized controller when interpatient variability is considered. 
More precisely, by extracting information from literature, a database with the physiological range 
of the CVS model parameters was developed. By manipulating these parameters within the 
physiological range, artificial patients emulating different pathologies associated with heart 
failure, such as coronary artery disease (CAD), high blood pressure (HBP), and heart valve 
insufficiency (HVI) were generated. Each pathology was modeled with different severity levels, 
termed low, mild, and high, while artificial patients with combined diseases were also developed. 
The manipulated parameters and their specific values used for each artificial patient in this work 
are given in Supplemental Tables C4-7 in the Supplemental material.  

The “generic” optimized controller constitutes a controller that has been optimized with the 
GAOF, based on the multi-objective problem described in (9)-(10), with the contractility 
parameter of the CVS being set to 34% of the value described for the healthy heart to emulate a 
pathological circulation as described by Ochsner et al.53 In contrary, the patient-specific 
optimized controllers were identified by using the parameters of each artificial patient in the CVS 
model of the GAOF. Hence, by comparing the performance of the “generic” optimized controller 
when it operates on a different artificial patient with the performance of the controller optimized 
specifically for this patient, the assessment of the GAOF usage in achieving patient-specific 
control strategies is enabled.  



79 
 

5.2.8 Characterization of optimum controllers 
The comparison and characterization of the optimum controllers were based on the previously 

elaborated cost components, termed 𝑅𝑀𝑆𝐸, 𝑆𝑇𝐷, and 𝑆𝐶𝑂𝐹𝐷, depending on the investigated 
control structure. Furthermore, the response of all controllers was assessed when two magnitudes 
of white noise variance were added to the signals that are used as input parameters of the 
controllers, namely LV-EDP, MAP, and 𝑞  to simulate real measured signals (0.86 mmHg2 and 
1.72 mmHg2 for the pressure signals and 0.86 (mL/s)2 and 1.72 (mL/s)2 for the flow signals). 

 

5.3 Results 
5.3.1 1DOF-PID and 2DOF-PID controllers 

5.3.1.1 Single-objective optimization problems 
The optimization problem defined in equations (9-10) for the 1DOF-PID and 2DOF-PID 

aimed to improve the response of the controllers with regards to the total CO produced by the 
controlled VAD and the diseased heart, by minimizing a single OF. The execution of the GAOF 
for both controllers was terminated when the maximum number of 30 generations was reached 
and the total duration was approximately 2 days. 
The evolution of the control parameters for the 1DOF-PID is provided in Fig. 5.3a, where the 
initial generation, the 15th generation, and the final generation are depicted. Over the progression 
of the optimization process the space occupied by the individuals of the new generations reduces 
significantly, with the individuals forming the final generation to be squeezed in an infinitesimal 
area. In Fig. 5.3b, a parallel coordinate plot with the control parameters of all the generations and 
their nondimensionalized value is provided.  Fig. 5.3b shows that the control parameters explored 
during the entire optimization process (grey lines), cover the majority of the design space, 
however, in each successive generation they converge to specific values that result in the 
minimum value of the OF. Based on the last generation (black lines), the “good” individuals tend 
to have high values of 𝐾  and 𝐾 , while they have infinitesimal values of 𝐾 . The optimum control 
parameters are given in Table 5.2. 

The progression of the nondimensionalized value of the OF retrieved from the best individual 
of each generation is depicted in Fig. 5.3c. In this figure, it is evident that the value of the OF 
reduces excessively in the first 10 generations and then approaches with reduced speed the 
minimum value. 

The performance of the optimized 1DOF-PID is evaluated against the performance of the 
constant speed controller (CS), a hand-tuned proportional controller (benchmark) adapted from 
the work of Petrou et. al64, and the response of a healthy heart (HH) (Fig. 5.3d). The optimized 
1DOF-PID is able to accurately follow the response of the HH during the dynamic experiments 
𝑆 𝑆 , outperforming notably the CS controller. During the preload variation (𝑆 ) and the rest-
to-exercise (𝑆 ) experiments, the 1DOF-PID outperforms also the benchmark controller, by 
reducing the CO error by 42% and 23%, respectively. However, during the afterload variation 
(𝑆 ) and the sleep-to-wake (𝑆 ) experiments the two controllers have similar behaviour.  
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Figure 5.3. Performance of GAOF in optimizing the 1DOF-PID and the 2DOF-PID when a single-objective 
optimization problem is formulated. a) Evolution of the individuals of the 1DOF-PID. In the last generation, 
the values of the control parameters converge to an infinitesimal area. b) Parallel coordinate plot of the control 
parameters of the 1DOF-PID, normalized with the respective maximum value of the parameter (the range of 
each parameter is given in parenthesis). The gray lines correspond to the entire population of individuals, 
while the individuals of the 15th generation are depicted with green lines. The last generation and the optimum 
controller are depicted with black and yellow lines, respectively. c) Evolution of the value of the objective 
function (OF) based on the score of the best individual of each generation for the 1DOF-PID. d) Comparison 
of the performance of the optimized 1DOF-PID against the constant speed controller, the benchmark 
controller and the physiological response of a healthy heart during the dynamic experiments 𝑆 𝑆 . e) 
Parallel coordinate plot of the 2DOF-PID control parameters, normalized with the respective maximum value 
of the parameter (the range of each parameter is given in parenthesis). The colors of the lines correspond to 
the ones of the caption of plot B. f) Evolution of the value of the OF based on the score of the best individual 
of each generation for the 2DOF-PID. g) Comparison of the performance of the optimized 2DOF-PID against 
the constant speed controller, the benchmark controller and the physiological response of a healthy heart 
during the dynamic experiments 𝑆 𝑆 . Gn, generation; Param, parameter; CO, cardiac output; HH, 
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healthy heart; CS, constant speed controller; Ben, benchmark controller (P-controller not optimized); so, 
single objective. 

In Fig.5.3e, a parallel coordinate plot with the entire population of the control parameters of 
the 2DOF-PID is provided. Similar to the 1DOF-PID, the design space of the 2DOF-PID is 
adequately explored by the GAOF. Following the progression of the optimization process, in the 
final generation (black lines) the control parameters converge to certain values. Based on these 
lines and the ranges given for each parameter, it can be deduced that the best individuals share 
𝐾 ,  values of 185-200 rpm/mmHg, high values of 𝐾 ,  in the range of 550-600 rpmꞏs/mmHg, 
and low values for the rest of the parameters. 

 
Table 5.2: Optimized sets of control parameters identified by solving the single- and multi-objective 
optimization problems for the 1DOF-PID and 2DOF-PID. so, single objective; mo, multi-objective; P, 
proportional; I, integral; D, derivative; p, preload; a, afterload. 

Controllers 
Parameters 

𝐾  𝐾  𝐾  - - 

Benchmark 300 - - - - 

1DOF-PIDso  572 14 517 - - 

1DOF-PIDmo 558 15 523 - - 

 𝐾 ,  𝐾 ,  𝐾 ,  𝐾 ,  𝐾 ,  

2DOF-PIDso 190 77 571 -10 -16 

2DOF-PIDmo 226 106 530 -8 -17 

The OF, as it can be observed by the nondimensional values in Fig. 5.3f, reduces rapidly in 
the nine first generations and then reduces incrementally until its minimum value that it is 
achieved in the final generation. The control parameters resulting in the minimization of the OF 
are given in Table 5.2. By implementing these optimum control parameters, as it can be seen in 
Fig. 5.3g, the response of the 2DOF-PID compared to the HH is excellent under all the 
hemodynamic conditions. During the experiments 𝑆  and 𝑆 , the optimized 2DOF-PID reduces 
the CO error by 49% and 36%, respectively, compared to the benchmark controller. During the 
same experiments, the CO error reduces by 82% and 75%, respectively, when the optimized 
2DOF-PID is compared against the CS controller. The response of the 2DOF-PID and the 
benchmark controller is similar during the experiments 𝑆  and 𝑆 , however, both controllers 
outperform notably the CS controller.  

5.3.1.2 Multi-objective optimization problems 
The multi-objective optimization problem defined in equations (7-8) for the 1DOF-PID and 

2DOF-PID had the same aim as the single-objective problem, however, instead of a single 
optimum controller, the multi-objective optimization problem provides a set of optimum 
solutions, allowing the GAOF-users to specify the final controller based on their decision. The 
execution of the GAOF for the 1DOF-PID was terminated when the maximum number of 30 
generations was reached, while for 2DOF-PID after 20 generations due to unaltered Pareto for 
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five consecutive generations. The total duration of the execution was approximately 2 days for 
the 1DOF-PID and 1.5 days for the 2DOF-PID. 

The sets of control parameters explored by the GAOF are depicted in Fig. 5.4a (grey lines), 
where the maximum value of the design space for each parameter has been used to 
nondimensionalize the respective parameter. In addition, the same figure presents the 10 
individuals achieving the best value for each one of the OFs 𝐽 𝐽 . It can be observed that, 
although in the initial generation the best individuals of each OF show high discrepancy, in the 
final generation the individuals minimizing each of the OFs follow a clear pattern. Specifically, 
all OFs to be minimized require a high value for the proportional parameter 𝐾 , ranging between 
419 and 600 rpm/mmHg, and a minimal value for the integral parameter 𝐾 , ranging between 6 
and 33 rpm/(mmHgꞏs). The 𝐾  parameter contributes to the minimization of 𝐽  when a value 
between 550 and 600 rpmꞏs/mmHg is selected, while for the minimization of the other three OFs, 
a value between 320 and 420 rpmꞏs/mmHg is more preferable. Following these patterns, the 
optimum control parameters selected for the 1DOF-PID are given in Table 5.2. 

In Fig. 5.4b, the values of the four OFs, normalized with the respective maximum value, are 
presented for the entire population, as well as, for the 15th generation, the 30st generation, and the 
set of optimum control parameters. This parallel coordinate plot shows that although all the 
objectives are significantly minimized with the progression of the optimization process, the CO 
RMSE during the transition phases (OF 𝐽 ) remains at relatively high values and, hence, 
deteriorates the performance of the controllers. 
The response of the optimized 1DOF-PID during the dynamic experiments 𝑆 𝑆  is illustrated 
in Fig. 5.4c and it is compared to the CS controller, the benchmark controller and the response of 
a HH. During the experiments 𝑆 , 𝑆 , and 𝑆 , the optimized 1DOF-PID reduces the CO error 
more than 80% with respect to the CO error of the CS controller, while compared to the 
benchmark controller, the optimized 1DOF-PID reduces the CO error more than 42%. During the 
experiment 𝑆 , the optimized 1DOF-PID results in a reduction of 31% in CO error compared to 
the benchmark controller and 38% compared to the CS controller. 

For the 2DOF-PID, the distribution of the entire population of control parameters is illustrated 
in Fig. 5.4d (grey lines), along with the 10 best individuals for each one of the OFs 𝐽 𝐽 , 
retrieved from the final generation of the optimization process. Based on this figure, to achieve a 
“good” individual for the 2DOF-PID controller, the pattern of low 𝐾 , , low 𝐾 , , and high 𝐾 ,  

values should be followed. For the 𝐾 ,  and 𝐾 , , there is a big range of values that result in the 
minimization of different OFs and, hence, there is not a clear pattern to support the selection of 
their value. The optimum control parameters selected for the 2DOF-PID comply with the 
aforementioned pattern and they are given in Table 5.2. 

The values of the four OFs, normalized with the respective maximum value, are depicted for 
the entire population, the 10th generation, the 20st generation, and the optimum control parameters 
in Fig. 5.4e in a parallel coordinate plot. As it can be seen in this figure, the optimized controller 
achieves sufficiently low values for all OFs, except for OF 𝐽 . Additionally, it can be observed 
that, in contrary to the optimization of the 1DOF-PID, in the case of the 2DOF-PID the values of 
the OFs achieved by the individuals of the last generation (black lines) vary enormously and a 
significant number of individuals cannot be considered as “good” candidates. 
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Figure 5.4. Performance of GAOF in optimizing the 1DOF-PID and the 2DOF-PID when a multi-objective 
optimization problem is formulated. a) Parallel coordinate plot of the control parameters of the 1DOF-PID in 
the initial and the last generation, normalized with the respective maximum value of the parameter (the range 
of each parameter is given in parenthesis). The gray lines represent the entire population of individuals, while 
the other lines correspond to the 10 best individuals for the objective function (OF) 𝐽  (black lines), 𝐽  (green 
lines), 𝐽  (blue dashed-lines), and 𝐽  (yellow lines), as they formulated in equations (2-3) and (5-6). b) Parallel 
coordinate plot of the values of the four OFs, normalized with the respective maximum value (the range of 
each parameter is given in parenthesis). The gray lines correspond to values achieved from the entire 
population of individuals, while the values of the OFs achieved in the 15th and 30st generation, as well as the 
optimum controller are depicted with green, black and yellow lines, respectively. c) Comparison of the 
performance of the optimized 1DOF-PID against the constant speed controller, the benchmark controller and 
the physiological response of a healthy heart during the dynamic experiments 𝑆 𝑆 . d) Parallel coordinate 
plot of the control parameters of the 2DOF-PID of the last generation, normalized with the respective 
maximum value of the parameter (the range of each parameter is given in parenthesis). The different color 
lines correspond to subfigure a. e) Parallel coordinate plot of the values of the four OFs, normalized with the 



84 
 

respective maximum value (the range of each parameter is given in parenthesis). The different color lines 
correspond to subfigure b. f) Comparison of the performance of the optimized 2DOF-PID against the constant 
speed controller, the benchmark controller and the physiological response of a healthy heart during the 
dynamic experiments 𝑆 𝑆 . Gn, generation; Param, parameter; Optim, set of optimum control parameters; 
CO, cardiac output; HH, healthy heart; CS, constant speed controller; Ben, benchmark controller (P-
controller not optimized); so, single objective. 

In Fig. 5.4f, the performance of the optimized 2DOF-PID is assessed based on the response 
of the CS controller, the benchmark controller and the HH. In this figure, it can be noticed that 
the optimized controller follows accurately the response of the healthy heart, independent of the 
hemodynamic changes emulated during the experiments 𝑆 𝑆 . Additionally, when compared 
to the CS controller and the benchmark controller, the optimized 2DOF-PID is able to reduce the 
CO error during the preload variation by 80% and 50%, respectively, while during the rest-to-
exercise experiment the same comparison shows a reduction of 76% and 38% in the CO error. 
During the experiments 𝑆  and 𝑆  the optimized 2DOF-PID and the benchmark controller present 
similar behavior, while they both outperform the CS controller. 

5.3.2 Optimization of PDD-ILC 
The optimization problem for the PDD-ILC incorporated two OFs that aimed to minimize the 

error in tracking the desired reference trajectory and ensure the convergence of the ILC 
component. The execution of the GAOF was terminated when the maximum number of 50 
generations was reached and the total duration was 25 days. 

In Fig. 5.5a, it can be seen that the initial population (Gn0) resulted in high scores for both 
OFs with only 11 out of 500 individuals showing acceptable behaviour (individuals inside the 
“zoom-in” window). However, over the progression of the optimization process the number of 
“good” individuals with minimal scores for both 𝐽  and 𝐽  increased substantially, with only few 
individuals remaining outside the “zoom-in” window mainly due to the mutation applied on the 
individuals. A cumulative representation of all the combinations of scores for 𝐽  and 𝐽  achieved 
by the entire population of individuals is given in Fig. 5.5b (grey circles). In the same figure, the 
final generation (Gn50) is superimposed (black dots) to emphasize the improvement of the 
individuals along the progression of the optimization process. 

To understand the behavior of each control parameter towards the minimization of both OFs, 
a parallel coordinate plot with the nondimensionalized value of each control parameter is given 
in Fig. 5.5c. In this figure, the grey lines, corresponding to the entire population of individuals, 
range among all possible parameter combinations and, hence, the exploration of the vast majority 
of the design space has been achieved by the GAOF. The individuals included in the Pareto front, 
depicted with black lines, show that the “good” individuals are more probable to have high values 
of 𝜂 and low values of 𝑅 and 𝑘 . The remaining control parameters do not show an evident 
pattern. The optimum controller, depicted with yellow, follows the pattern of the “good” 
individuals, while the hand-tuned controller, shown with blue, shows extremely different pattern. 
The values of the optimum control parameters are 𝜇 0.7315, 𝜂 0. 7859,𝑄 120.7388,𝑅
0.1365, 𝑘 3.2155, and 𝑘 3.1926, while for the hand-tuned controller they are 𝜇
1.0, 𝜂 7 ∙ 10 ,𝑄 100,𝑅 0.5, 𝑘 1.0, and 𝑘 0. 
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Figure 5.5. Performance of GAOF in optimizing the control parameters of the PDD-ILC. a) Evolution of the 
individuals towards the minimization of the objective functions 𝐽  and 𝐽  over the successive generations. 
Within the plot of each generation, a “zoom-in” view is given to highlight the transition of the individuals in 
the area of minimal 𝐽  and 𝐽 . b) Cumulative representation of the “scores” achieved by all the individuals 
being explored by the optimizer. In the “zoom-in” view the significant improvement of the individuals of the 
last generation (black dots) over the entire population (grey circles) is highlighted. c) Parallel coordinate plot 
of the control parameters, normalized with the respective maximum value of the parameter (the range of each 
parameter is given in parenthesis). The gray lines, correspond to the entire population of individuals, while 
the individuals included in the Pareto front are depicted with black lines. The optimum controller is depicted 
with a yellow line, while the hand-tuned controller is depicted with the blue line. d) Comparison of the 
reference tracking performance of the optimized (orange line) and the hand-tuned (black line) PDD-ILC after 
the convergence of the ILC component. The depicted tracking performance is achieved during the 𝑆 (rest) 
experiment under copulsation mode of the controller. The optimized controller parameters result in significant 
improvement of the PDD-ILC. e)   Comparison of the tracking error of the optimized and the hand-tuned 
PDD-ILC over the entire duration of the dynamic experiments 𝑆  (rest) and 𝑆  (preload variation). Gn, 
generation; GAOptim, optimum PDD-ILC identified with the GAOF; NonOptim, hand-tuned PDD-ILC. 

In Fig. 5.5d, the desired reference trajectory of the pump flow for one cardiac cycle (blue line) 
is depicted along with the pump flow trajectory achieved by the VAD controlled with the 
optimized PDD-ILC (orange line) and the hand-tuned PDD-ILC (black line). The trajectories 
were retrieved from the dynamic experiment simulating rest conditions (𝑆 ) after the convergence 
of the ILC component of both controllers. The optimized PDD-ILC follows excellent the 
reference trajectory throughout the entire cardiac cycle, outperforming significantly the hand-
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tuned PDD-ILC that shows slow dynamic behavior that results in excessive overshoot and 
undershoot. Additionally, as it can be seen in Fig. 5.5e, after the convergence of the ILC 
component, the optimized PDD-ILC achieves an RMSE of 0.07 L/min and a  

Table 5.3: Optimized sets of control parameters identified for the 2DOF-PID by solving the multi-objective 
optimization problem for the generic patient and the disease cases C1(C), C2(HVSM + CADH), and-C3(HBPM 
+ HVSM), explained in Table C7 in the supplemental material. gOC, generic optimized controller; Opt, 
optimized. 

Controller 
Control parameters 

𝐾 ,  𝐾 ,  𝐾 ,  𝐾 ,  𝐾 ,  

gOC 226 106 530 -8 -17 

C1-Opt  220 1.2 492 -7.8 -24.8 

C2-Opt 411 1 585 -1 -17 

C3-Opt 279 1 553 -1 -25 

max-error of 0.22 L/min during the rest conditions (experiment 𝑆 ), and an RMSE of 0.11 L/min 
and a max-error of 0.47 L/min during preload variation (experiment 𝑆 ). The hand-tuned PDD-
ILC achieved an RMSE of 0.78 L/min and a max-error of 1.88 L/min during the 𝑆  experiment, 
while during 𝑆  achieved an RMSE of 1.25 L/min and a max-error of 3.05 L/min. The latter 
results highlight the significant improvement of the PDD-ILC performance after the optimization 
of its control parameters. 

5.3.3 Interpatient variability 
The hemodynamic performance of optimized controllers interacting with a diseased heart has 

been investigated and presented in the Supplementary Figures C3-6 of the Appendix C. The 
results were compared with the hemodynamics of a HH, an unsupported diseased heart (DH), a 
continuous CS controller, and a benchmark controller under the various experimental conditions. 
The results show that compared to the HH, the CS was unable to maintain physiological aortic 
pressure (AOP) during high preload conditions and resulted in suction events during rapid preload 
decrease. On the other hand, the benchmark controller and optimized 1DOF and 2DOF controllers 
achieved physiological responses in both preload increase and decrease. The hand-tuned PDD-
ILC also resulted in excessive suction under low preload conditions, but the optimized PDD-ILC 
successfully avoided suction and emulated the hemodynamics of the HH better. Furthermore, the 
CS, benchmark, 1DOF, and 2DOF controllers resulted in reduced pulsatility of the AOP due to 
the continuous VAD operation. However, the hand-tuned PDD-ILC and optimized PDD-ILC 
significantly increased the pulsatility by incorporating the objective of pulsatility augmentation 
into their reference trajectories. 

5.3.4 Interpatient variability 
To consider the interpatient variability and evaluate the efficacy of the GAOF in optimizing 

the 2DOF-PID controller to the patient-specific characteristics, the disease-cases C1-C3, 
presented in Supplemental Table CS7, were used. By solving the multi-objective optimization 
problem defined in equations (7-8) for each of the disease-cases, the patient-specific control 
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parameters given in Table 5.3 were identified as optimum for the 2DOF-PID controller. As it can 
be seen in the latter table, the patient-specific controllers tend to reduce the 𝐾 ,  parameter in all 
cases investigated. 

 
Table 5.4: Cumulative performance analysis of the three patient-specific optimized 2DOF-PID controllers 
and the generic optimized controller in terms of RMSE, STD, and SCOFD of the CO, MAP and LV-EDP. 
Each cost component is calculated by the summation of the specific cost component in the dynamic 
experiments S2 – S5. Sum, summation; Opt, optimized;  

Cost 
Component 

C1: HBPM + CADH C2: HVSM + CADH C3: HBPM + HVSM 

Sum. Cost (S2 
-S5) % 

Red. 

Sum. Cost (S2 -
S5) % 

Red. 

Sum. Cost (S2 -
S5) % 

Red
. gOC 

C1-
Opt 

gOC 
C2-
Opt 

gOC 
C3-
Opt 

RMSE CO 5.806 
5.18

8 
-10.6 5.844 5.568 -4.7 5.610 5.288 -5.7 

RMSE LV-
EDP 

13.37
0 

10.8
38 

-19.0 14.465 
12.70

5 
-12.2 

13.33
7 

13.09
8 

-1.8 

RMSE 
MAP 

67.23
7 

62.5
32 

-7.0 66.980 
64.07

1 
-4.3 

64.28
4 

61.80
7 

-3.8 

STD CO 1.564 
1.46

7 
-6.2 1.554 1.512 -2.7 1.443 1.458 1.0 

SCOFD 
CO 

0.977 
0.91

6 
-6.2 1.058 0.982 -7.2 0.810 1.029 -5.1 

 
The performance of the patient-specific optimized controllers was evaluated against the 

generic-optimized controller (gOC) that corresponds to the 2DOF-PID controller presented 
previously as the optimum solution to the multi-objective optimization problem. In detail, in 
Table 5.4, a cumulative analysis of the cost components, termed RMSE, STD, and SCOFD of the 
CO, MAP, and LV-EDP is provided for all the controllers and disease cases. As it can be seen in 
the latter table, the controllers optimized for the C1 and C2 disease cases, C1-Opt and C2-Opt 
respectively, outperform the gOC in all cost components, highlighting the benefit of developing 
patient-specific controllers. In the disease case C3, the optimized controller C3-Opt minimizes all 
the cost components, except for the STD CO which is slightly increased. This minimal increase 
stems from the selection of the control parameters of the C3-Opt from the individuals included in 
the Pareto front, where the minimization of the RMSE CO was the most critical cost component 
to be minimized. To better understand the effect of the cost components, the response of the 
patient-specific optimized controllers and the gOC is presented in Supplemental Figure C1 in the 
Supplemental material for the dynamic experiments 𝑆 𝑆 . 

 

5.3.5 Controller optimization for specific VAD characteristics 
The interactions between the diseased heart and the VAD are highly affected by the design 

and the dynamic response of the VAD. Hence, the VAD controller, depending on the VAD 
design, has to operate adequately on a plant with different response. In this context, the 
performance of an optimized controller can be significantly deteriorated if it is applied to a 
different VAD. This can be seen in Supplemental Figure C2, where the response of the 2DOF-
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PID controller optimized for the Deltastream (DTS-Opt), is used to regulate the HM3. In the same 
figure, the response of the HM3 is shown when the 2DOF-PID controller is specifically optimized 
for the HM3 (HM3-Opt), along with the response of a HH. The HM3-Opt allows a faster response 
of the VAD during the hemodynamic manipulations, while it results in the minimization of the 
CO error with respect to the HH. 

In Table 5.5, the sets of optimum parameters for the DTS-Opt and HM3-Opt are provided. In 
this table, it is evident that the HM3-Opt necessitates an increase of the absolute value for all the 
control parameters.  

Table 5.5: Optimized sets of control parameters identified for the 2DOF-PID by solving the multi-objective 
optimization problem for the generic patient coupled with the blood pump model of the Deltastream and the 
HeartMate3. DTS-Opt, optimized controller for Deltastream; HM3-Opt, optimized controller for HeartMate3. 

Controller 
Control parameters 

𝐾 ,  𝐾 ,  𝐾 ,  𝐾 ,  𝐾 ,  

DTS-Opt 226 106 530 -8 -17 

HM3-Opt 587 402 550 -12 -25 

5.4 Discussion 
In this work, a novel framework for the optimization of the control parameters of VADs has 

been developed and evaluated. This genetic-algorithm based framework, allows the selection of 
the numerical model of the CVS and the VAD that accurately represent the patient scenario of 
interest and, hence, it enables the optimization of complex control structures based on pump- and 
patient-specific characteristics. Additionally, the GAOF allows the consideration of treatment-
specific goals during the definition of the objective functions of the optimization problem, paving 
the way for the development of patient- and treatment-specific VAD controllers. The efficacy of 
the GAOF was assessed with three control structures of different complexities, termed 1DOF-
PID, 2DOF-PID and PDD-ILC, as well as with different VAD designs and patient scenarios. The 
optimized controllers outperformed the hand-tuned controller used as benchmark in all the 
investigated cases, highlighting the potential improvement in the performance of any VAD 
controller by deploying the GAOF. 

The identification of the control parameters for VADs is a difficult and time-consuming task 
due to the non-linear and time-varying characteristics of the CVS. Hence, the selection of the 
control parameters for many of the VAD controllers proposed in literature is conducted with trial 
and error methods.56,57,66,74,75,174 By using the GAOF, the selection of the control parameters  
becomes intuitive not only by allowing the objective function of the optimization problem to be 
arbitrarily defined based on the goals that the GAOF-user aims to achieve, but also by using the 
results of the optimization process to assess the effect of the control parameters on the 
performance of the controller. The importance of the information hidden in the optimization 
results can be understood by analyzing the parallel coordinate plots (e.g. Fig. 5.4a-b) provided for 
all the optimization problems of the study that show the distribution of the control parameters 
among the different generations of the optimization. More precisely, these plots allow the 
identification of patterns with respect to the values of the control parameters that result in “good” 
controllers and patterns for the minimization of a specific OF in the case of multi-objective 
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problems. Hence, by exploiting these patterns, not only decision-based selection of the control 
parameters can be achieved, but also new optimization procedures with a better-defined design 
space for the control parameters can be launched. For instance, by considering the patterns 
revealed from the single- and multi-objective optimization problems for the 1DOF-PID, the 
integral component of the controller can be omitted without impacting the performance of the 
1DOF-PID.     

The interpatient variability can substantially affect the performance of the VAD controllers,63 
however, usually this is not considered during the development phase of the controllers. In this 
study, we showed that different cardiovascular diseases or combinations of them alter the 
response of the controller. Hence, by using the GAOF, the specific characteristics of the disease 
can be included in the optimization process and a more suitable controller can be developed. In 
this way, the potential of a more patient-specific treatment is increased. Similarly, the majority of 
the VAD controllers available in literature, have been developed and evaluated based on a specific 
VAD design.56–58,64,66,74,75,174 However, considering that the controller should perform accurately 
when it is used with a different pump, the ability to optimize the control parameters for each VAD 
design is highlighted. More precisely, when the GAOF was used to identify the new, optimum 
control parameters specifically for the HM3, the performance of the HM3 was enhanced. 

  The benefit of using the GAOF to improve the performance of any controller and provide 
pump-, patient-, and treatment-specific controllers has been proven in all the investigated 
scenarios. However, our system has also limitations. Specifically, the duration of the optimization 
process was between 1.5 and 2 days for the 1DOF-PID and 2DOF-PID controllers and up to 25 
days for the PDD-ILC. This shows that the execution of the GAOF can be computationally 
expensive. In addition, to allow the usage of the GAOF in a clinical setting, the long execution 
time should be considered and, hence, data considering the patient characteristics, the disease 
state, the VAD design and the treatment objectives have to be provided before the VAD 
implantation. In acute cases where that this is not applicable, the optimized controller could be 
deployed after the discharge of the patient. One further limitation of the study is the fact that the 
evaluation of the controllers was based on the experimental conditions that were also used also in 
the optimization process. This could result in an overestimation of the improvement in the 
performance of the optimized controllers and, consequently more experiments that are not part of 
the optimization process should be conducted during the evaluation. Additionally, considering 
that the GAOF provides optimum parameters based solely on in-silico data, in-vitro and in-vivo 
evaluations of the optimized and non-optimized should be conducted to assess the achieved 
improvement in conditions that better emulate the clinical setting. Last but not least, the settings 
of the genetic algorithm of the GAOF were the default ones given by MATLAB, however, 
significant reduction of the execution time may be possible with more appropriate settings for the 
optimizer, usage of hybrid optimization schemes, and different optimization approaches such as 
swarm optimization. Hence, a study for the optimization of the settings and the exploration of 
different optimizers should be performed in the future. 

5.5 Conclusions 
In conclusion, this study presents a novel framework for optimizing the control parameters of 

VADs. The genetic algorithm-based framework, referred to as GAOF, offers a means to select 
the most appropriate numerical model of the CVS and VAD to reflect the patient's pathology. As 
a result, it enables the optimization of complex control structures tailored to the unique 
characteristics of the patient and the VAD design. Furthermore, the GAOF facilitates the 
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integration of treatment-specific goals into the definition of the optimization problem's objective 
functions, providing a path towards the development of personalized VAD controllers for 
individual patients and treatments.
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6 Conclusion and Outlook 
The scope of this thesis was the development of novel technologies that enable continuous 

outpatient surveillance of HF patients, as well as improved physiological response and 
adaptability of VADs. Following this line of thought, the focus was laid on monitoring approaches 
for continuous measurement of patient’s hemodynamics, and physiological controllers for VADs. 
This chapter concludes the four studies comprising this work by reflecting on the main findings 
and providing an outlook for potential future research to advance the developed technologies. 

6.1 Conclusion 
To realize the continuous outpatient surveillance of HF patients, the first study demonstrated 

the development of an implantable, extravascular magnetic sensor, named HBSD. This study, 
provided also evidence that the HBSD can accurately measure the arterial blood pressure 
waveform under various physiologic and pathologic conditions, while it enables the acquisition 
of various vascular and hemodynamic properties. In the in-vitro setting, compared to reference 
data, the HBSD showed high linearity and agreement, with an absolute pressure error below 3 
mmHg and independent of the emulated hemodynamic conditions. In the in-vivo setting, the mean 
error was in the range of 5 mmHg, which was in all cases smaller than in existing, similar sensing 
approaches, and comparable or smaller than for the only FDA approved implantable sensor. 
Based on these results, the usage of the HBSD in the clinical setting and the respective insights 
of the measured properties would allow for monitoring disease progression of various 
cardiovascular diseases, adjustment of therapeutical protocols, and the acquisition of control 
parameters for the implementation of physiological control for VADs. However, to enable the 
translation of the HBSD in the clinical setting, long-term animal experiments, as well as design 
modifications to ease the implantation process, and wireless data and energy transmission are 
necessary. 

The second study aimed to further enhance the continuous outpatient monitoring of HF 
patients by focusing on the continuous, real-time estimation of the remaining cardiac contractility 
of the diseased heart. Hence, in this preliminary study, it was demonstrated that traditional time 
series classifiers and graph-based neural networks can be applied to estimate the remaining 
cardiac contractility based on time series data of the left ventricular pressure. The support vector 
classifier, from the family of time series classifiers, showed superior performance; however, all 
classification methods provided accurate contractility estimation with real-time implementation 
capabilities.  The usage of these estimation approaches could substantially support patient 
monitoring and adaptive physiologic VAD control approaches. Further studies, however, are 
needed to support these findings with animal time series data and data from VAD supported 
patients. 

After fulfilling the need for monitoring technologies with the first two studies, the third study 
aimed to the development of a responsive and adaptive physiological controller (PDD-ILC) for 
VADs. Hence, in this study, a data-driven iterative learning physiological controller that 
accurately tracks predefined pump flow trajectories was demonstrated. The pump flow 
trajectories are generated based on the Frank-Starling mechanism and treatment objectives. The 
PDD-ILC tracks these trajectories by a model-free, data-driven iterative learning controller that 
uses the time-sequences of the left ventricular pressure and the pump flow to obtain a model 
representation. The controller has been extensively tested in an in-silico environment under 
various physiological conditions, showing high accuracy in tracking the reference pump flow 
trajectories, while it outperformed existing model-based iterative learning control approaches. 
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Additionally, the PDD-ILC achieved the predefined treatment objectives and resulted in 
improved hemodynamics, pulsatility levels and preload sensitivities compared to the constant 
speed support that is the current state-of-the-art in the clinical practice. Finally, the PDD-ILC 
showed excellent robustness against noisy input signals from the pressure and flow sensors. Thus, 
the PDD-ILC overcomes the majority of the shortcomings of existing controllers and broadens 
the potential for VAD control in the clinical setting. However, to prove the performance of the 
PDD-ILC in the real-time setting and allow the final translation of the PDD-ILC into the clinical 
setting, in-vitro and in-vivo studies have to be conducted. 

The last study of this work, demonstrated a novel, genetic algorithm-based optimization 
framework (GAOF) that enables the optimization of control parameters based on patient 
characteristics and treatment objectives. The benefit of using the GAOF was evaluated with two 
different VAD designs, various patient disease scenarios, and three control structures of different 
complexity, with the PDD-ILC constituting the most challenging with six control parameters. In 
all the experimental settings, the optimized controllers outperformed the hand-tuned, generic 
controllers. This is the first time that optimization approaches are used to achieve patient and 
treatment-specific controllers based on the selection of the control parameters. Hence, the GAOF 
is considered a valuable tool for potential improvement in the performance of any VAD controller 
and, consequently, improved survival rates and quality of life of VAD patients. 

As an overall conclusion, this thesis contributes two sensory technologies for continuous 
direct and indirect monitoring of the patient’s status in an outpatient setting, an adaptive and 
physiologically responsive controller for VADs, and an optimization framework for the 
development of patient and treatment-specific VAD controllers. The implementation in the 
clinical practice of all the developed technologies together, holds a great potential to overcome 
the shortcomings of the current management of end-stage HF patients supported with VADs, 
resulting in improved survival rates and QoL of the patients. 

 

6.2 Outlook 
Over the last decades, advanced pharmaceutical and device therapies have been developed 

with the aim to alleviate the symptoms, reduce hospitalization rates and, consequently, improve 
the QoL and survival of HF patients. However, the diagnosis and management of HF-patients are 
still heavily based on patient history and physical examination, necessitating regular follow-ups 
in the hospital. Such periodic in-hospital examinations are a significant limitation for the clinical 
decision-making and timely intervention, while in the case of VAD-supported patients they also 
preclude the prevention of adverse events. Hence, to achieve adequate surveillance of the therapy 
and a better patient management, the development of reliable monitoring technologies and, 
enabled from these technologies, adaptive physiological controllers are prerequisites. In this 
work, covering both areas of interest, novel sensory and control strategies have been 
demonstrated, however, further steps can be investigated in the future to allow the final translation 
of these strategies in the clinical practice. 

Focusing on the HBSD, the main considerations that could be further investigated in the future 
are the data/power transmission and the long-term reliability of the sensor in the human body. In 
detail, the energy and data transmission of the HBSD are currently accomplished transcutaneously 
by copper wires. This approach increases the risk of infections at the access site, as well as, the 
risk of sensor detachment and malfunction due to contact with the surrounding organs. Hence, 
future studies should focus on the development of an electronic circuit that is embedded into the 
body of the HBSD and enables wireless data and energy transmission. The author has conducted 
the first steps in this direction with an electronic circuit that uses a low energy Bluetooth (BLE) 
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protocol to transmit the data and is primarily powered with a rechargeable battery that is recharged 
transcutaneously through inductive coils. To confirm the safety of the HBSD to be implanted in 
humans, the long-term performance of the sensor should be tested in chronic animal trials to 
assess the effect of the surrounding organs in a closed-chest environment and to identify any 
performance degradation due to potential tissue ingrowth. 

Based on the information provided in Section 1.5, one of the most useful properties for the 
assessment of the patient’s status, but most importantly, for the implementation of physiological 
control, is the cardiac output. In Section 2, it was described that the implantation of two HBSD 
in close proximity allows the calculation of the PWV, which is often used to calculate the blood 
flow in a vessel. Hence, further investigations should be conducted to enable the estimation of the 
cardiac output by combining the continuous waveform of the aortic diameter and the PWV that 
are provided by HBSD. 

The estimation of the remaining contractility by applying time series classification approaches 
on the time series data of the left ventricular pressure (Section 3) demonstrated very promising 
results. However, the applicability of the times series classification and, hence, the estimation 
accuracy should be further investigated with artificial data produced for a VAD-supported patient, 
but most importantly with animal data that provide realistic variability. 

The PDD-ILC demonstrated excellent physiological response, adaptiveness, and stability in 
an extensive experimental protocol (Section 4). However, the experiments have been conducted 
only in an in-silico environment with one specific combination of VAD design and model of the 
cardiovascular system. Hence, to ensure the safety of the PDD-ILC its assessment should be 
extended with different VAD designs and model of the cardiovascular system. Finally, further 
studies should be conducted in an in-vitro and in-vivo environments, to prove the applicability of 
the PDD-ILC in real-time settings and assess its performance under conditions that emulate more 
realistic the human body. 
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Appendix 
 

A. Continuous Monitoring of Blood Pressure and Vascular 
Hemodynamic Properties with Miniature Extravascular Hall-
Based Magnetic Sensor 

 

Supplemental methods 
 

Appendix A1. Magnetic field expressions 
In this work, the magnetic field in the proximity of the cylindrical magnet of the hall-based 

sensing system constitutes the first step towards the calculation of the distance between the 
magnet and the hall-element components. The magnetic field inside and outside a cylindrical 
magnet of finite size and uniform magnetization along its symmetry axis can be obtained by 
considering the cylindrical body as an ideal solenoid (a collection of current loops). In this case, 
the total magnetization is 𝑀 ≡  nI, with I being the current per loop and n being the number of 
loops per unit length185. Derby and Olbert186, by applying the Biot–Savart law, provided 
algebraically convenient derivations of the magnetic field of a cylindrical magnet by using a 
combination of general elliptic integrals. Those derivations are presented here: 

𝐵 𝐵 𝑅 𝐶 𝑘 , 1,1, 1 𝑅 𝐶 𝑘 , 1,1, 1  S1.1 
And 

𝐵
𝐵 𝑅
𝑅 𝜌

𝛽 𝐶 𝑘 , 𝑗 , 1, 𝛾 𝛽 𝐶 𝑘 , 𝑗 , 1, 𝛾  S1.2 

With 

𝐵  
𝜇
𝜋
𝑀 S1.3 

where 𝐵  and 𝐵  are the radial and axial components of the magnetic-flux density, respectively, 

𝜇  is the permeability of vacuum and 𝑅 is the radius of the cylinder. The generalized complete 
elliptic integral 𝐶 and the supportive variables  𝛼 ,𝛽 ,𝑘 , 𝑧  and 𝑗 are given by: 

𝐶 𝑘 , 𝑝, 𝑐, 𝑠  
𝑐 ∙ cos 𝜑 𝑐 ∙ 𝑠𝑖𝑛 𝜑 𝑑𝜑

cos 𝜑 𝑝 ∙ 𝑠𝑖𝑛 𝜑 cos 𝜑 𝑘 ∙ 𝑠𝑖𝑛 𝜑

/

 S1.4 

 

𝑧 𝑧 𝑏 S1.5 
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𝑅
𝑅

𝑧 𝜌 𝑅
 

S1.6 

𝛽
𝑧

𝑧 𝜌 𝑅
 

S1.7 

𝑗
𝑅 𝜌
𝑅 𝜌

 S1.8 

𝑘
𝑧 𝜌 𝑅

𝑧 𝜌 𝑅
 S1.9 

where 𝑏 is half the height of the cylinder, 𝑧 and 𝜌 are the axial and radial components of the 
position where the magnetic field is calculated (Supplemental Figure A1).  

Based on the cartesian coordinates of the position where the magnetic field is calculated, the 
angle 𝜃 in the x-y plane is calculated by: 

𝜃 arctan 𝑦/𝑥  S1.10 

and the radial components of the magnetic-flux density is analyzed to 𝐵  and 𝐵  by: 

𝐵 𝐵 cos𝜃 , 𝐵 𝐵 sin𝜃 S1.11 

Hence, the vector of the magnetic field for the position A(x,y,z) is defined as: 

�⃗� �⃗� , �⃗� , �⃗�  S1.12 

By implementing the above equations for all possible z-positions, since the x and y is defined 
during the implantation, the voltage to distance response can be derived. However, the hall-
element measures only the component of the magnetic field that is perpendicular to its 
measurement surface. Hence, based on Supplemental Figure A1, the last step to mathematically 
derive the magnetic field sensed by the hall element is to rotate the magnetic field vector in the 
Euclidean space such that its z component is perpendicular to the measurement surface of the 
hall-sensor for all z-positions. After determining the yaw (𝜑), pitch (𝛾), and roll (𝛿) angles in the 
3D-space (Supplemental Figure A1), induced during the implantation process, a rotation matrix 
is defined: 

𝑅 𝑅 𝛿 𝑅 𝛾 𝑅 𝜑 → S1.13 
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𝑅
cos 𝛿 sin 𝛿 0
sin 𝛿 cos 𝛿 0

0 0 1

cos 𝛾 0 sin 𝛾
0 1 0

sin 𝛾 0 cos 𝛾

1 0 0
0 cos𝜑 sin𝜑
0 sin𝜑 cos𝜑

 S1.14 

By applying the rotation matrix 𝑅  to the vector of the magnetic field �⃗�, the vector of the 
magnetic field expressed on the new coordination system is: 

�⃗� 𝑅 �⃗� 𝑅 �⃗� , �⃗� , �⃗�  �⃗� , �⃗� , �⃗�  S1.12 

 Finally, the magnetic field measured by the hall sensor is 𝐵  
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Appendix A2. Fabrication procedure of the HBSD 
The hall-effect based sensing device (HBSD) proposed in this work, is an extravascular sensing 

system that consists of two distinct components, namely the magnet component and the hall-
sensor (HS) component. These components are not interconnected and they are attached on the 
outer wall of the aorta. Each of the two components requires the design and manufacturing of 
housings that facilitate the encapsulation, the implantation procedure, as well as, the robustness 
and the biocompatibility of the HBSD. 

During the project, successive HBSD generations were produced and tested in order to 
optimize the design, the performance, and the robustness of the HBSD and, finally, reach the 
translational level for the in-vivo evaluation. In Supplemental Figure A2, two fabrication 
processes that resulted in the HBSDs used in the final in-vitro and in-vivo evaluation are 
illustrated. The initial step for both approaches is the identification of the design space of the 
HBSD (Supplemental Figure A2a). In this step, based on the diameter of the vessel that the sensor 
is intended to be used, the range of wall distension is estimated. Since the dimensions of the HS 
are constrained by the SOT-23 packaging protocol we selected, the wall distension range along 
with the vessel diameter (VD) contribute to the selection of the size of the magnet and the 
sensitivity of the hall-sensor so that the resolution and the accuracy of the sensor are optimized 

After the selection of the optimum magnet and HS sensitivity, the two components are pre-
processed (Supplemental Figure A2b). In detail, to improve the temperature stability, as well as 
to ensure chemical and moisture resistance, the magnet is coated with a 3μm layer of Parylene-C 
via chemical vapor deposition (CVD). To allow the energy and data transmission, copper wires 
are soldered on the hall-sensor under the microscope with the use of soldering paste. At this stage, 
the magnet and the HS are stored until the assembling process of the HBSD. 

The magnet and HS housings of the first generation (G1) of HBSDs, as it can be seen in 
Supplemental Figure A2c (left), have a simple design with the necessary component-slots, a wide 
basis and four suturing holes. The wide basis, although increases the HBSD’s footprint, it was 
necessary to allow an accurate and stable sensor attachment. Both housings were 3D-printed 
(Supplemental Figure A2d) from biocompatible nickel alloy Ti-6Al-4V powder via selective laser 
melting (SLM). After the printing, the remaining support structures were removed and careful 
post-processing was conducted under a microscope to clean and polish all surfaces. The polished 
housings were immersed in deionized water (DW) and dried for 5 minutes at 30 °C in a 
temperature-controlled oven (Supplemental Figure A2e). As a next step, the coated magnet and 
the HS were assembled with the magnet and HS housings, respectively (Supplemental Figure 
A2f). To fully encapsulate and insulate the magnet and the HS, as it is shown in Supplemental 
Figure A2h, the exposed surfaces of the housings were carefully filled with biocompatible epoxy 
glue and let to cure for 1.5 hours at 100 °C. In Supplemental Figure A2i (left), the final HBSDs 
are shown and compared with a 50-cent Swiss franc coin. 

The second generation (G2) of HBSDs was improved based on the evaluation of G1. As it can 
be seen in Supplemental Figure A2c, the design of the contacting area of the housings was 
rounded, following the exact diameter of the VD. This design change enhanced the attachment of 
the HBSD on the vessel wall and minimized the misalignment of the two housings, induced by 
the wall curvature. Additionally, each housing of G2 consisted of a main part and a lit. The 
addition of the lit aimed to minimize the exposition of the magnet and the HS. The housings of 
G2 were 3D-printed (Supplemental Figure A2d) from Class-I biocompatible resin DS3000 via 
selective laser stereolithography (SLA). The new material and 3D-printing method resulted in 
higher manufacturing precision, reduced printing time, but most importantly, significant 
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reduction if the weight of the HBSD. The later achievement was crucial for the minimization of 
the gravitational forces applied on the vessel wall due to the HBSD’s mass. After printing, a 
significantly faster and simpler post-processing face was necessary, wherein the housings were 
immersed in phosphate buffered saline, dried for 5 minutes at 30 °C in a temperature-controlled 
oven, immersed in DW and cured under ultraviolet light for 3 minutes (Supplemental Figure A2e). 
The housings were then assembled with the magnet and the HS (Supplemental Figure A2f). As a 
next step, the main parts and the lit of the assemblies were carefully glued with biocompatible 
epoxy and cured for 1.5 hours at 100 °C. As it is shown in Supplemental Figure A2h, the final 
step of the post-process included the coating of the entire assemblies with a 3μm layer of 
Parylene-C via CVD to ensure an adequate insulation and biocompatibility. The final HBSDs of 
G2 are depicted in Supplemental Figure A2i (right), along with a 50-cent Swiss franc coin for 
size comparison. 

 

Appendix A3. Extraction of cardiac cycle onset/EDP and systolic 
pressure  

In this study, the extraction of onsets, end-diastolic pressure (EDP), and systolic pressure (SP) 
of the cardiac cycle was performed with the process depicted in Supplemental Figure A3. 
Specifically, the raw pressure signal derived by the HBSD (Supplemental Figure A3a) was low-
pass filtered with an 18th-order, zero-phase finite impulse response (FIR) filter and a cut-off 
frequency of 8 Hz (Supplemental Figure A3b). In a next step, the first derivative of the low-pass 
filtered pressure waveform was calculated and its maxima were identified (Supplemental Figure 
A3c). The index of these maxima, laid on the upslope of the pressure waveform and, hence, it 
was always between the onset (or EDP since they are considered the same point on the pressure 
waveform) and SP values of each cardiac cycle (Supplemental Figure A3d). By using the index 
of the later maxima as pivot points, a backward search window with size 10% of the previous 
cycle-duration was applied and the minimum of the raw pressure signal in this window was 
identified. This minimum corresponded to the index of the onset and EDP of the cardiac cycle. 
Similarly, starting from the index of the maxima of the first derivative, a forward search window 
with size 30% of the previous cycle-duration was applied and the maximum of the raw pressure 
signal in this window was identified. This maximum corresponded to the index of the SP of the 
cardiac cycle (Supplemental Figure A3e). 

 

Appendix A4. Extraction of dicrotic notch and systolic phase 
The process for the extraction of the dicrotic notch constituted an extension of the extraction 

approach of the cycle onsets/EDP and SP. More precisely, as it can be seen in Supplemental 
Figure A4, after applying the zero-phase FIR filtering on the raw pressure signal, all the maxima 
of the first derivative were identified by changing the thresholds for the maxima selection. From 
the entire pull of maxima, the indexes used for the extraction of the onset were excluded. The 
remaining maxima correspond to the middle of the upslope that defines the dicrotic notch 
(Supplemental Figure A4d). By using the index of the later maxima as pivot point, a forward 
search window with size 5% of the previous cycle-duration was applied and the maximum of the 
raw pressure signal in this window was identified (Supplemental Figure A4e). The raw pressure 
signal along with all the critical components are shown in Supplemental Figure A4f. By 
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calculating the time interval between the onset and the dicrotic notch of each cycle, the systolic 
phase of the cardiac cycle is deduced (Supplemental Figure A4e). 

 

Appendix A5. Calculation of respiration frequency 
The transmural pressure (pressure inside the heart chamber minus the intrapleural pressure) 

is affected from the respiratory activity. In detail, during inspiration or expiration the preload and 
ventricular stroke volume are increased or decreased, respectively. These alterations in preload 
and stroke volume during the respiration cycles affect the arterial blood pressure (ABP), allowing 
the deduction of the respiratory frequency by the ABP waveform. 

In this study, to deduce the respiratory frequency, the previously identified SP values 
(Appendix 3, Supplemental Figure A3 and Supplemental Figure A5a) are exploited. Specifically, 
by isolating the SP values of the ABP, a new waveform is produced (Supplemental Figure A5b). 
By identifying the minima of this waveform, the respiration period can be calculated as the time 
interval between two consecutive minima (Supplemental Figure A5c) by: 

𝑅𝑃 𝑡 𝑡  S1.1 

Consequently, the respiratory frequency is calculated as the inverse of the RP by: 

𝑅𝐹
1
𝑅𝑃

∗ 60 𝑏𝑟𝑒𝑎𝑡ℎ𝑠/𝑚𝑖𝑛  
S1.2 

In Supplemental Figure A5 the flowchart of the described process is given and in Supplemental 
Figure A5d a comparison with the set respiration value through the ventilation system is given. 

 

Appendix A6. Calibration procedure of the HBSD 
The HBSD was calibrated on a high precision 4-axis sliding table. The angle in the yaw plane 

(𝜑) and the angle in the pitch plane (𝛾) (based on their definition in Figure 2 in the main text) 
were varied between +3 and -3 degrees with steps of 0.2 degrees. Additionally, the radial position 
was varied from 0 to 1 mm (which was the radius of the magnet) in steps of 0.1 mm. For all 
combinations of the aforementioned parameters, the response of the sensor (voltage output – V) 
was register for all z-distances between 0 and 5mm, in steps of 0.1 mm. By combining the data 
for all calibration points, the a “calibration map” for each sensor was produced. 
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Appendix A7. Acceptance criteria 
The criteria set to determine sensors’ quality are summarized in Supplemental Table A1 and 

Figure A8 and were focusing on their manufacturing process, their robustness (unaffected 
performance after sterilization, immersion in liquid, temperature changes) and their resolution of 
the HBSD. More precisely, all the 3D printed casings were assessed under the microscope to 
identify any fracture, breakage or incomplete printing events. The casings that showed any of the 
unwanted events were excluded. The magnets were assessed with respect to their magnetic-flux 
strength before their integration in the casing. Specifically, by using the calibration station and a 
simplified version of casing, the magnet was attached on the calibration setup and the magnetic 
field sensed by the hall sensor was measured when the distance of the magnet was changed from 
0.5 mm to 4 mm with steps of 0.1mm. This process was conducted before and after the deposition 
of Parylene-C and the magnets were accepted if the deviation of the magnetic-flux was smaller 
than 2% at all measured points. Since the assembling procedure was based on several steps, after 
mounting the assemblies, each sensor was assessed with respect to its robustness to immersion in 
water. Similar to the process described in the manuscript, the HBSDs were mounted with a fixed 
distance between the two sensing components and they were immersed in a 0.9% saline bath at 
37 °C for one day with the output voltage of the HBSD being continuously measured. To accept 
the quality of the HBSD as sufficient, the deviation of the measured mean output voltage 
compared to the initial mean output voltage should not exceed 2% and the standard deviation 
should not exceed 5% of the initial standard deviation. Additionally, each sensor underwent a 
temperature ramp test with the temperature changing within the range of 30 and 44 °C. To accept 
the HBSD as sufficient, the deviation of the measured mean output voltage at each temperature 
step compared to the initial mean output voltage at room temperature (21±1) should not exceed 
2% and the standard deviation should not exceed 5% of the initial standard deviation. Similarly, 
each sensor underwent autoclave sterilization. The deviation in the measured mean output voltage 
post-sterilization compared to the initial mean output voltage should not exceed 2% and the 
standard deviation post-sterilization should not exceed 5% of the initial standard deviation. 
Finally, the criterion for the resolution of the HBSD was based on the calibration process of the 
sensor. Specifically, based on the operating line with zero misalignment, the resolution of the 
HBSD was assessed for a linear distance of 1.5 to 2 mm between the two elements. Since this is 
the optimal distance for the two components, a resolution of at least 0.6 V/mm was the criterion 
to accept the sensor. Sensors that failed the above-mentioned steps were excluded from the in-
vitro and in-vivo experiments. 

During the in-vivo experiments and after the implantation of the sensors, the positioning of the 
two sensing elements was assessed based on the criteria mentioned in the manuscript (φ<2°, γ<2° 
and r<0.5 mm, and limit in z-distance 2.25 mm). Once an alignment that meets the criteria was 
achieved, the voltage output of the sensor was measured for 20 s and the mean value was 
compared to the voltage output identified during the calibration process for the same distance and 
alignment. To qualify the HBSD for analysis, the deviation should not exceed 5%. 

After the completion of the experiment, the calibration setup was used to acquire the operating 
line for a linear distance of 1.5 mm to 2mm between the two elements with zero misalignment. 
The resolution of the HBSD for this operating line was compared to the resolution that was 
acquired during the calibration prior to the experiment. A deviation greater than 10% of the pre-
and post-operative resolution resulted in disqualification of the sensor. 

After the completion of the experiment, the calibration setup was used to acquire the operating 
line for a linear distance of 1.5 mm to 2mm between the two elements with zero misalignment. 
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The resolution of the HBSD for this operating line was compared to the resolution that was 
acquired during the calibration prior to the experiment. A deviation greater than 10% of the pre-
and post-operative resolution resulted in disqualification of the sensor. 

Appendix A8. HBSD material selection 
The selection of the materials used for the manufacturing of the sensing components of the sensor 
was based on tissue compatibility, non-magnetic characteristics, chemical stability, and ability to 
be produced by rapid prototyping approaches. In detail, to achieve an adequate interaction with 
the aortic tissue and the surrounding organs the materials for the casings of the sensing elements 
(biocompatible resin DS-3000) and their coating (Parylene-C) were selected to reduce cytotoxins, 
toxicological or allergic reactions, as well as the inflammatory processes when in contact with the 
tissue. The material of the casings (biocompatible resin DS-3000) allows the minimization of the 
overall weight of the sensor, and hence, it results in reduced effect on the mechanical properties 
of the host tissue. Additionally, due the non-magnetic characteristics of the biocompatible resin 
DS-3000 the interference with the magnetic field produced by the magnet (nickel-plated 
neodymium magnet) is minimized. Although our material selection met all the requirements 
during the acute in-vivo experiments, it should be considered preliminary and its usage in humans 
should be avoided. 
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Supplemental tables 
 

Supplemental Table A1. HBSD acceptance criteria. 𝑉, HBSD voltage output; 𝑉 , initial HBSD 
voltage output; 𝛥𝑉% | 𝑉 𝑉 𝑉⁄ | ∙ 100, 𝛥𝑠𝑡𝑑% | 𝑠𝑡𝑑 𝑉 𝑠𝑡𝑑 𝑉 𝑠𝑡𝑑 𝑉⁄ | ∙ 100; 
S, linear distance in z-direction (1.5 mm-2 mm); 𝜑, misalignment angle in yaw plane; 𝛾, 
misalignment angle in pitch plane; 𝑟, misalignment of the magnet and HES centers in the x-y 
plane expressed as a radius. 

Process Pass Criteria 

Pre-experiment 

Fabrication No cracks, Complete printing 

Autoclave 𝛥𝑉% 2%, 𝛥𝑠𝑡𝑑% 5% 

Liquid immersion 𝛥𝑉% 2%, 𝛥𝑠𝑡𝑑% 5% 

Temperature ramp 𝛥𝑉% 2%, 𝛥𝑠𝑡𝑑% 5% 

Resolution @ zero 
misalignment 

𝛥𝑉 𝛥𝑆⁄ 0.6 V/mm  

During the Experiment 

Alignment φ < 2°, γ < 2°, r < 0.5 mm, z-distance < 2.25 mm 

Response 𝛥𝑉% 5% 

Post-experiment 

Resolution @ zero 
misalignment 

𝛥𝑉 𝛥𝑆⁄ 𝛥𝑉 𝛥𝑆⁄ / 𝛥𝑉 𝛥𝑆⁄ ∙ 100
10% 
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Supplemental figures 
 

 

Supplemental Figure A1. Magnetic field calculation. a) Schematic representation of a 
cylindrical magnet of finite size and uniform magnetization along its symmetry axis. Point A (x’, 
y’, z’) corresponds to a random point where the magnetic field is calculated based on the equations 
S1.1-1.12. R is the radius of the cylinder and b is half of its length. b) Schematic representation 
of a magnet and a hall-sensor along with their coordinate systems (CS). The point A corresponds 
to the center of the measuring surface of the hall-sensor and defines the origin of the CS of the 
hall-sensor, which has the z-axis perpendicular to the measuring surface. c) Analysis of the origin 
of the hall-sensor’s coordinate system on the CS of the cylinder and calculation of the magnetic 
field. d) Rotate of the magnetic field vector in the Euclidean space such that its z component is 
perpendicular to the measurement surface of the hall sensor. The letters 𝝋, 𝜸, and 𝜹 define the 
yaw, pitch, and roll angles in the 3D-space, respectively. 
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Supplemental Figure A2. Fabrication procedure of the HBSD. a) Identification of the design 
space based on the VD, MD and the magnetic-flux sensitivity of the hall sensor. b) Magnet 
coating with Parylene-C via CVD and soldering of the transmission copper cables on the hall-
sensor. c) Design of the support structures for each HBSD generation. d) Fabrication of the HBSD 
magnet and hall-element structures. For HBSD generation one (G1), SLM printing with Ti-6Al-
4V. For the second HBSD generation (G2), SLA printing with biocompatible resin DS-3000. e) 
After the removal of the support structures, the G1 structures were milled and polished under the 
microscope, cleaned in a bath of DW and dried for 5 minutes at 30° in a temperature-controlled 
oven. The G2 structures were immersed in a PBS bath, dried for 5 minutes at 30°, immersed in 
DW and cured under UV-light. f) Assembling of all components. h) Post-processing of HBSD. 
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The G1 underwent insulation with MED-OD2002 epoxy glue and curing in a temperature-
controlled oven at 100° for 1.5 hours. The G2 included the same process and, further Parylene-C 
coating via CVD. i) Final HBSDs from G1 and G2. HBSD, hall-based sensing device; VD, vessel 
diameter; MD, magnet diameter; S, axial distance; HS, high sensitivity; MS, medium sensitivity; 
LS, low sensitivity; SLM, selective laser melting; SLA, selective laser stereolithography; DMD, 
digital micromirror device; CVD, chemical vapor deposition; PBS, phosphate buffered saline; 
DW, deionised water, UV, ultraviolet.  
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Supplemental Figure A3. Extraction of cardiac cycle onset/EDP and systolic pressure. a) 
Raw pressure signal derived by the HBSD. b) Pressure signal low-pass filtered with an 18th-order, 
zero-phase finite impulse response (FIR) filter and a cut-off frequency of 8 Hz. The raw signal is 
also included for comparison. c) First derivative of the filtered pressure signal. The black circles 
correspond to the maxima of the first derivative. d) Detailed depiction of the raw pressure, the 
first derivative and the maxima of the first derivative for three cardiac cycles. e) Illustration of 
the search windows for the extraction of the onset/EDP and the SP based on the index of the 
maximum of the first derivative. For the onset/EDP, starting from the index of the maximum of 
the first derivative a backward search window with size 10% of the previous cycle-duration is 
defined, while for the SP a forward search window with size 30% of the previous cycle-duration 
is defined. The onset/EDP and the SP extracted are also illustrated. f) Raw pressure signal with 
all the extracted onsets/EDPs and SPs. 
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Supplemental Figure A4. Extraction of dicrotic notch and systolic phase. a) Raw pressure 
signal derived by the HBSD. b) Pressure signal low-pass filtered with an 18th order, zero-phase 
finite impulse response (FIR) filter and a cut-off frequency of 8 Hz. The raw signal is also 
included for comparison. c) First derivative of the filtered pressure signal. The black circles with 
the red perimeter correspond to the maxima that have been used for the onset extraction and, 
hence, they are excluded. The black circles with black perimeter correspond to the usable maxima. 
d) Detailed depiction of the raw pressure, the first derivative and the maxima of the first derivative 
for three cardiac cycles. e) Illustration of the search window for the extraction of the DN based 
on the index of the maximum of the first derivative. For DN a forward search window with size 
5% of the previous cycle-duration is defined. The extracted DN along with the calculation of the 
duration of the systolic phase are also depicted. f) Raw pressure signal with all the extracted 
onsets/EDPs, SPs, and DN. 
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Supplemental Figure A5. Extraction of respiration frequency. a) Pressure signal derived by 
the HBSD along with the extracted SP values. b) Waveform created from the isolated SP values. 
c) Extraction of the SP-waveform minima. The orange region indicates the RP based on two 
consecutive SP values. d) Superposition of the estimated RF and the set RF value through the 
ventilation system. SP, systolic pressure; RP, respiration period; Estim, estimated. 
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Supplemental Figure A6. Response of HBSD under cycling loading conditions. To prove the 
robust operation of the HBSD over time, cyclic loading experiments were conducted on a tensile 
device. For the attachment of the HBSD on the tensile device dedicated mounting parts were 
produced. a) Response of a HBSD for 30’000 cycles of loading. The implemented cycles had the 
same duration for “expansion” and “contraction” phases. No hysteresis between “expansion” and 
“contraction” was present during the experiment. b) Detailed depiction and comparison of three 
cycles early on the experiment (5000-5003) and three cycles on the at the late experiment (25000-
25003). The response of the HBSD is identical to the initial response, verifying the claim of no 
cyclic fatigue. 
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Supplemental Figure A7. Distance and misalignment quantification after implantation. a) 
Image under fluoroscopy. b) Post processed image for the identification of the position of the 
sensing components. c) Detailed picture of the position of the first sensor. The center of each 
component, along with the known size of the base of the sensing components, are used to quantify 
the alignment and the z-distance among the two components. 
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Supplemental Figure A8. Roadmap of HBSD acceptance.  
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Supplemental Figure A9. Qualitative distribution of HBSD weight along the vascular wall 
surface. 
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B. Physiologic Data-Driven Iterative Learning Control for Left Ventricular Assist Devices 
 

Supplemental tables 
 

Supplemental Table B1. Parameter sets of the experiments used in this Work. SVR, systemic vascular resistance; PVR, pulmonary vascular 
resistance; UVV, unstressed venous volume; HR, heart rate; LVP, left ventricular pressure; PF, pump flow. The contractility is expressed as a 
percentage of the healthy heart value. 

Experiment Scenario Time [s] 
SVR 

[mmHgs/mL] 
PVR 

[mmHgs/mL] 
UVV [ml] 

HR 
[bpm] 

Contractility 
[%] 

Noise 
LVP 

Noise 
PF 

Exp0 Rest [0 200] 1.11 0.1 2520 60 34 0 0 

Exp1 
Preload 
variation 

[0, 35, 
40, 55, 

65, 200] 
1.11 0.1 

[2520, 2520, 
2270, 2270, 
2720, 2720] 

90 34 0 0 

Exp2 
Afterload 
variation 

[0, 35, 
40, 55, 

65, 200] 

[1.11, 1.11, 
0.51, 0.51, 
1.91, 1.19] 

0.1 2520 90 34 0 0 

Exp3 
Sleep to 

wake 
[0, 35, 

40, 200] 
[1.65, 1.65, 
1.11, 1.11] 

0.1 
[2740, 2740, 
2520, 2520] 

90 34 0 0 

Exp4 
Contractility 

variation 

[0, 50, 
100, 150, 

200] 
1.11 0.1 2520 90 

[34, 34, 51, 
51, 17] 

0 0 

Exp5 
Rest to 
exercise 

[0, 35, 
40, 200] 

[0.98, 0.98, 
0.5, 0.5] 

[0.08, 0.08, 
0.03, 0.03] 

[2520, 2520, 
2020, 2020] 

[60 60 
80 80] 

34 0 0 
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Supplemental Table B2. Parameter sets of the experiments used in this Work. SVR, systemic vascular resistance; PVR, pulmonary vascular 
resistance; UVV, unstressed venous volume; HR, heart rate; LVP, left ventricular pressure; PF, pump flow. The contractility is expressed as a 
percentage of the healthy heart value. 

Experiment Scenario Time [s] 
SVR 

[mmHgs/mL] 
PVR 

[mmHgs/mL] 
UVV [ml] 

HR 
[bpm] 

Contractility 
[%] 

Noise 
LVP 

Noise 
PF 

Exp0n Rest [0 200] 1.11 0.1 2520 60 34 0.86 0.86 

Exp1n 
Preload 
variation 

[0, 35, 
40, 55, 

65, 200] 
1.11 0.1 

[2520, 
2520, 2270, 
2270, 2720, 

2720] 

90 34 0.86 0.86 

Exp2n 
Afterload 
variation 

[0, 35, 
40, 55, 

65, 200] 

[1.11, 1.11, 
0.51, 0.51, 1.91, 

1.19] 
0.1 2520 90 34 0.86 0.86 

Exp3n 
Sleep to 

wake 
[0, 35, 

40, 200] 
[1.65, 1.65, 
1.11, 1.11] 

0.1 
[2740, 

2740, 2520, 
2520] 

90 34 0.86 0.86 

Exp4n 
Contractility 

variation 

[0, 50, 
100, 
150, 
200] 

1.11 0.1 2520 90 
[34, 34, 51, 

51, 17] 
0.86 0.86 

Exp5n 
Rest to 
exercise 

[0, 35, 
40, 200] 

[0.98, 0.98, 0.5, 
0.5] 

[0.08, 0.08, 
0.03, 0.03] 

[2520, 
2520, 2020, 

2020] 

[60 60 
80 80] 

34 0.86 0.86 

 



117 
 

Supplemental Table B3. Parameter sets of the experiments used in this Work. SVR, systemic vascular resistance; PVR, pulmonary 
vascular resistance; UVV, unstressed venous volume; HR, heart rate; LVP, left ventricular pressure; PF, pump flow. The contractility is 
expressed as a percentage of the healthy heart value. 

Experiment Scenario Time [s] 
SVR 

[mmHgs/mL] 
PVR 

[mmHgs/mL] 
UVV [ml] 

HR 
[bpm] 

Contractility 
[%] 

Noise 
LVP 

Noise 
PF 

Exp0nn Rest [0 200] 1.11 0.1 2520 60 34 1.72 1.72 

Exp1nn 
Preload 
variation 

[0, 35, 
40, 55, 

65, 200] 
1.11 0.1 

[2520, 
2520, 
2270, 
2270, 
2720, 
2720] 

90 34 1.72 1.72 

Exp2nn 
Afterload 
variation 

[0, 35, 
40, 55, 

65, 200] 

[1.11, 1.11, 
0.51, 0.51, 1.91, 

1.19] 
0.1 2520 90 34 1.72 1.72 

Exp3nn 
Sleep to 

wake 
[0, 35, 

40, 200] 
[1.65, 1.65, 
1.11, 1.11] 

0.1 

[2740, 
2740, 
2520, 
2520] 

90 34 1.72 1.72 

Exp4nn 
Contractility 

variation 

[0, 50, 
100, 
150, 
200] 

1.11 0.1 2520 90 
[34, 34, 51, 

51, 17] 
1.72 1.72 

Exp5nn 
Rest to 
exercise 

[0, 35, 
40, 200] 

[0.98, 0.98, 0.5, 
0.5] 

[0.08, 0.08, 
0.03, 0.03] 

[2520, 
2520, 
2020, 
2020] 

[60 60 
80 80] 

34 1.72 1.72 
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Supplemental Table B4. Upper and lower limits of the control parameters of the PDD-ILC 
and the PF-PIDC used in the minimization problem of the genetic algorithm-based optimization 
framework. 

PDD-ILC PF-PIDC 

Parameter Minimum Maximum Parameter Minimum Maximum 

𝜇 0 2 𝐾  0 1000 

𝜂 0 1 𝐾  0 100 

𝑄 0 600 𝐾  0 100 

𝑅 0 1    

𝑘  0 7    

𝑘  0 7    
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Supplemental figures 
 

 

Supplemental Figure B1. Transient performance of the PDD-ILC and the PFPIDC in terms of 
RMSE and maximum instantaneous error in tracking the reference trajectory under all 
physiological conditions and scenarios executed with the copulsation mode and white noise of 
0.86 variance added on the left ventricular pressure and pump flow signals. a) Rest-conditions 
(Exp0n) b) Preload variation (Exp1n) c) Afterload variation (Exp2n) d) Sleep-to-wake (Exp3n) 
e) Contractility variation (Exp4n) f) Rest-to-exercise (Exp5n). RMSE, root mean square error; 
maxE, maximum error; PDD-ILC, physiologic data-driven iterative learning controller; PF-
PIDC, pump flow proportional-integrative-derivative controller. 
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Supplemental Figure B2. Transient performance of the PDD-ILC and the PFPIDC in terms of 
RMSE and maximum instantaneous error in tracking the reference trajectory under all 
physiological conditions and scenarios executed with the counterpulsation mode and white noise 
of 0.86 variance added on the left ventricular pressure and pump flow signals. a) Rest-conditions 
(Exp0n) b) Preload variation (Exp1n) c) Afterload variation (Exp2n) d) Sleep-to-wake (Exp3n) 
e) Contractility variation (Exp4n) f) Rest-to-exercise (Exp5n). RMSE, root mean square error; 
maxE, maximum error; PDD-ILC, physiologic data-driven iterative learning controller; PF-
PIDC, pump flow proportional-integrative-derivative controller. 
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Supplemental Figure B3. Transient performance of the PDD-ILC and the PFPIDC in terms of 
RMSE and maximum instantaneous error in tracking the reference trajectory under all 
physiological conditions and scenarios executed with the copulsation mode and white noise of 
1.72 variance added on the left ventricular pressure and pump flow signals. a) Rest-conditions 
(Exp0n) b) Preload variation (Exp1n) c) Afterload variation (Exp2n) d) Sleep-to-wake (Exp3n) 
e) Contractility variation (Exp4n) f) Rest-to-exercise (Exp5n). RMSE, root mean square error; 
maxE, maximum error; PDD-ILC, physiologic data-driven iterative learning controller; PF-
PIDC, pump flow proportional-integrative-derivative controller. 
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Supplemental Figure B4. Transient performance of the PDD-ILC and the PFPIDC in terms of 
RMSE and maximum instantaneous error in tracking the reference trajectory under all 
physiological conditions and scenarios executed with the counterpulsation mode and white noise 
of 1.72 variance added on the left ventricular pressure and pump flow signals. a) Rest-conditions 
(Exp0n) b) Preload variation (Exp1n) c) Afterload variation (Exp2n) d) Sleep-to-wake (Exp3n) 
e) Contractility variation (Exp4n) f) Rest-to-exercise (Exp5n). RMSE, root mean square error; 
maxE, maximum error; PDD-ILC, physiologic data-driven iterative learning controller; PF-
PIDC, pump flow proportional-integrative-derivative controller. 
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C. Genetic Algorithm-Based Optimization Framework for Control 
Parameters of Ventricular Assist Devices 

 

Appendix C1. Numerical model of Deltastream 

The numerical model of the Deltastream (Deltastream DP2, Medos Medizintechnik AG, 
Stolberg, Germany)VAD was retrieved from the work of Amacher et al.160 In this model, the 

pressure upstream (𝑝𝑢𝑠) and downstream (𝑝𝑑𝑠) of the pump, the fluid inertance (𝐿), the rotor 

inertia (𝛩), the current of the pump (𝐼), the torque-constant of the pump motor (𝑘), as well as the 
two-dimensional matrices of the pressure across the pump (𝐻) and the hydraulic torque applied 
on the shaft (𝑇) are used to define the fluid and rotor acceleration by computing the following 
differential equations: 

𝑑𝑄

𝑑𝑡

1

𝐿
𝐻 𝑄 𝑡 , 𝜔 𝑡 𝑝𝑑𝑠 𝑡 𝑝𝑢𝑠 𝑡  S3.1 

𝑑𝜔

𝑑𝑡

1

𝛩
𝛵 𝑄 𝑡 , 𝜔 𝑡 𝑘 ∙ 𝐼 𝑡  S3.2 

with 𝑄 and𝜔 being the flowrate and the rotational speed of the pump. The values of the 
constants used in S3.1 and S3.2 were retrieved from Amacher et al.160 

Appendix C2. Numerical model of HeartMate 3 

The mathematical representation of the state-of-the-art HeartMate 3 pump (HM3, Abbott, 
Abbott Park, IL, USA) was developed based on the universal hydraulic model for blood pumps 
described by Boës et al.183 This model, exploits turbomachinery principles to enable the 
estimation of the pump flow rate based on the head pressure across the pump (𝐻) and the 
rotational speed of the pump (𝜔), while it accounts for frictional and incidence losses, part-load 

recirculation, and fluid inertia. More precisely, the discretized estimate of the pump flow (𝑄𝑒𝑠𝑡) 
is given by: 

𝑄𝑒𝑠𝑡 𝑘 1 𝑄𝑒𝑠𝑡 𝑘

𝑇𝑠

𝐿
𝛼𝜔2 𝑅1𝜔𝑄𝑒𝑠𝑡 𝑘 𝑅2𝑄𝑒𝑠𝑡

2 𝑘 𝐻 𝑘

0, 𝑄𝑒𝑠𝑡 𝑘 𝑞𝑖𝑛𝑓

𝑅𝑟𝑒𝑐 𝑄𝑒𝑠𝑡 𝑞𝑖𝑛𝑓
2

, 𝑄𝑒𝑠𝑡 𝑘 𝑞𝑖𝑛𝑓
 

 

S3.3 

where 𝑘 ranges from 1 to the number of samples acquired minus 1 and 𝑇𝑠 is the sampling time. 

The values of the constants 𝐿,𝛼,𝑅 ,𝑅 ,𝑅 and 𝑞𝑖𝑛𝑓 were retrieved from Boës et al.183. 
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Appendix C3. Numerical model of the cardiovascular system 
In the present study, a numerical model of the cardiovascular system (CVS) was employed to 
imitate both physiological and pathological conditions of the human heart. The model, which was 
obtained from Colacino et al.67, and was implemented in MATLAB/Simulink as described by 
Ochsner et al.53, is detailed in these sources. The subsystems of the numerical CVS are represented 
using lumped parameter models, and their electrical analogs utilized to implement and solve the 
corresponding differential equations are depicted in Supplementary Figure C7. The model 
encompasses both systemic and pulmonary circulations, which are modeled using five-element 
Windkessel models for the arterial systems and classic Windkessel models for the venous 
systems. The pressure in the arterial systems is regulated through a baroreflex mechanism, while 
the unstressed volume of the systemic veins is regulated by cardiac output autoregulation, and the 
resistance of the systemic veins is adapted through Rsv autoregulation. The contracting heart, 
which is comprised of two active atria and two active ventricles, is modeled based on the principle 
of time-varying elastance. An extension to the model described by Ochsner et al.182 allows also 
the simulation of ventricular suction. 
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Supplemental Tables 
 

Supplemental Table C1. Parameter sets of the experiments used in the study. SVR, systemic vascular resistance; PVR, 
pulmonary vascular resistance; UVV, unstressed venous volume; HR, heart rate; LVP, left ventricular pressure; PF, pump flow. The 
contractility is expressed as a percentage of the healthy heart value. 

Experiment Scenario 
Time 

(s) 
SVR 

(mmHgs/mL) 
PVR 

(mmHgs/mL) 
UVV 
(ml) 

HR 
(bpm) 

Contractility 
(%) 

Noise 
LVP (-

) 

Noise 
PF (-) 

Exp0 Rest [0 200] 1.11 0.1 2520 60 34 0 0 

Exp1 
Preload 
variation 

[0, 35, 
40, 55, 

65, 200] 
1.11 0.1 

[2520, 
2520, 
2270, 
2270, 
2720, 
2720] 

90 34 0 0 

Exp2 
Afterload 
variation 

[0, 35, 
40, 55, 

65, 200] 

[1.11, 1.11, 
0.51, 0.51, 
1.91, 1.19] 

0.1 2520 90 34 0 

0 
 
 
 
 
  

Exp3 
Sleep to 

wake 
[0, 35, 

40, 200] 
[1.65, 1.65, 
1.11, 1.11] 

0.1 

[2740, 
2740, 
2520, 
2520] 

90 34 0 0 
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Exp4 
Contractility 

variation 

[0, 50, 
100, 
150, 
200] 

1.11 0.1 2520 90 
[34, 34, 51, 

51, 17] 
0 0 

Exp5 
Rest to 
exercise 

[0, 35, 
40, 200] 

[0.98, 0.98, 
0.5, 0.5] 

[0.08, 0.08, 
0.03, 0.03] 

[2520, 
2520, 
2020, 
2020] 

[60, 
60, 80, 

80] 
34 0 0 
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Supplemental Table C2. Weighting factors for each dynamic experiment that aim to 
increase the influence of the experiments that the patient encounters more frequently in the 
everyday life in the optimization process. The subscript numbers correspond to the number of the 
dynamic experiments described in Table C1. so, single objective; mo, multi-objective. 

Parameter 1DOF-PIDso  1DOF-PIDmo  2DOF-PIDso  2DOF-PIDmo  
PDD-
ILC 

𝑏  - - - - 0.2 

𝑏  - - - - 0.2 

𝑏  0.4 0.4 0.4 0.4 0.15 

𝑏  0.3 0.3 0.3 0.3 0.15 

𝑏  0.15 0.15 0.15 0.15 0.15 

𝑏  0.15 0.15 0.15 0.15 0.15 

 

Supplemental Table C3. Constraint values for the control parameters of each controller 
and optimization problem. so, single objective; mo, multi-objective. 

1DOF-PIDso,mo 2DOF-PIDso,mo PDD-ILC 

0 𝐾𝑃 600         0 𝐾𝑃,𝑝 600 0 𝜇 2       

0 𝐾 600        0 𝐾 , 600 0 𝜂 1       

0 𝐾 600         0 𝐾 , 600 0 𝑄 600 

 100 𝐾 , 100 0 𝑅 1      

 100 𝐾 , 100 0 𝑘𝑃 7    

  0 𝑘 7    
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Supplemental Table C4. Patient-specific parameters for the generation of artificial patients 
suffering from high blood pressure (HBP). CVS, cardiovascular system. 

Manipulated 
CVS Parameter  

Severity 

Initial 
Value 

Low (HBPL) Mild (HBPM) High (HBPH) 

Value 
% of 

change  
Value 

% of 
change  

Value 
% of 

change  
Aortic valve 

resistance 
(mmHgꞏs/mL) 

0.01935 0.02129 10 0.02903 50 0.03871 100 

Aortic valve 
inertance 

(mmHgꞏs2/mL) 
0.00042 0.00046 10 0.00057 35 0.00072 70 

Mitral valve 
resistance 

(mmHgꞏs/mL) 
0.00750 0.00825 10 0.01126 50 0.01501 100 

Mitral valve 
inertance 

(mmHgꞏs2/mL) 
0.00056 0.0006 10 0.00067 20 0.00073 30 
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Supplemental Table C5. Patient-specific parameters for the generation of artificial 
patients suffering from Aortic and mitral valve stenosis (HVS). CVS, cardiovascular system. 

Manipulated 
CVS Parameter  

Severity 

Initial 
Value 

Low (HVSL) Mild (HVSM) High (HVSH) 

Value % of 
change  

Value 
% of 

change  
Value 

% of 
change  

Systemic 
arterial 

resistance 
(mmHgꞏs/mL) 

0.11650 0.12815 10 0.17475 50 0.23300 100 

Systemic 
arterial 

inertance 
(mmHgꞏs2/mL) 

0.05015 0.05516 10 0.07522 50 0.10030 100 

Arterial 
compliance 

(mL/mmHg) 
0.95166 0.85650 -10 0.47583 -50 0.19033 -80 

Systemic 
arterial 

compliance 
 (mL/mmHg) 

0.77200 0.69480 -10 0.38600 -50 0.15440 -80 

 

 

Supplemental Table C6. Patient-specific parameters for the generation of artificial 
patients suffering from Aortic and mitral valve stenosis (HVS). CVS, cardiovascular system. 

Manipulated 
CVS 

Parameter  

Severity 

Initial 
Value 

Low (CADL) Mild (CADM) High (CADH) 

Value 
% of 

change  
Value 

% of 
change  

Value 
% of 

change  
Contractility 

(-) 
1.0 0.45 -55 0.35 -65 0.25 -75 
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Supplemental Table C7. Disease-specific cases generated by combining high blood 
pressure (HBP), heart valve insufficiency (HVI) and the coronary artery disease (CAD). CVS, 
cardiovascular system. 

Cases Combined diseases 

C1 Medium severity HBP and high severity CAD (HBPM + CADH) 

C2 Medium severity HVS and high severity CAD (HVSM + CADH) 

C3 Medium severity HBP and medium severity HVS (HBPM + HVSM) 
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Supplemental Figures 
 

 

Supplemental Figure C1. Comparison of the performance of the 2DOF-PID controller 
optimized for the specific disease case with the performance of the generic optimized 2DOF-PID 
controller (gOC), the constant speed controller (CS), and the response of the healthy heart (HH) 
during the dynamic experiments 𝑆 𝑆 . A) Disease case C1, where medium severity HBP and 
high severity CAD is simulated. B) Disease case C2, where medium severity HVS and high 
severity CAD is simulated. C) Disease case C3, where medium severity HBP and medium 
severity HVS is simulated. HH, healthy heart; CS, constant speed control; C1-Opt, controller 
optimized for the disease case C1; C2-Opt, controller optimized for the disease case C2; C3-Opt, 
controller optimized for the disease case C3; gOC, generic optimized controller; HBP, high blood 
pressure; HVS, heart valve insufficiency; CAD, coronary artery disease. 
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Supplemental Figure C2. Evaluation of the performance of the 2DOF-PID controller optimized 
for the Deltastream and the Heartmate 3 VAD models, when it is implemented to control the 
Heartmate 3 VAD. The performance is assessed against the physiological response of a healthy 
heart during the dynamic experiments 𝑺𝟐 𝑺𝟓. 

  



135 
 

 
Supplemental Figure C3. Assessment of the hemodynamic performance of the healthy heart, 
the diseased heart, and the controllers developed and optimized during the dynamic experiments 
of preload variation (𝑺𝟐). The constant speed controller and the hand tuned PDD-ILC present 
suction event (LVP < 0 mmHg) during low preload conditions. LVP, left ventricular pressure; 
AOP, aortic pressure; LV-EDP, left ventricular end-diastolic pressure; MAP, mean aortic 
pressure; so, single-objective optimization; mo, multi-objective optimization; ht, hand-tuned.  
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Supplemental Figure C4. Assessment of the hemodynamic performance of the healthy heart, 
the diseased heart, and the controllers developed and optimized during the dynamic experiments 
of afterload variation (𝑺𝟑). LVP, left ventricular pressure; AOP, aortic pressure; LV-EDP, left 
ventricular end-diastolic pressure; MAP, mean aortic pressure; so, single-objective optimization; 
mo, multi-objective optimization; ht, hand-tuned.  
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Supplemental Figure C5. Assessment of the hemodynamic performance of the healthy heart, 
the diseased heart, and the controllers developed and optimized during the dynamic experiments 
of sleep-to-wake scenario (𝑺𝟒). LVP, left ventricular pressure; AOP, aortic pressure; LV-EDP, 
left ventricular end-diastolic pressure; MAP, mean aortic pressure; so, single-objective 
optimization; mo, multi-objective optimization; ht, hand-tuned.  
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Supplemental Figure C6. Assessment of the hemodynamic performance of the healthy heart, 
the diseased heart, and the controllers developed and optimized during the dynamic experiments 
of rest-to exercise scenario (𝑺𝟓). LVP, left ventricular pressure; AOP, aortic pressure; LV-EDP, 
left ventricular end-diastolic pressure; MAP, mean aortic pressure; so, single-objective 
optimization; mo, multi-objective optimization; ht, hand-tuned  
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Supplemental Figure C6. The electrical analog of the numerical circulation model is depicted 
in this figure, with the inclusion of the VAD circulation block to demonstrate the interface 
between the two numerical models. Detailed description and validation of the model can be found 
in reference.67 
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