
ETH Library

Hardware Accelerated
Trace Analysis for Compiler
Optimizations

Master Thesis

Author(s):
Weingarten, Matthew Edwin

Publication date:
2023-05

Permanent link:
https://doi.org/10.3929/ethz-b-000612599

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000612599
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Master’s Thesis Nr. 441
Systems Group, Department of Computer Science, ETH Zurich

Hardware Accelerated Trace Analysis for Compiler Optimizations

by

Matthew E. Weingarten

Supervised by

Prof. Dr. Timothy Roscoe, Dr. David Cock, Nora Hossle

October 2022–May 2023

Abstract

Profiling an application at runtime with hardware support plays an irreplaceable role in monitoring,
debugging, runtime verification, and optimizing application performance. Most modern processors
are designed with dedicated hardware resources that produce on-the-fly profiling data while incur-
ring negligible overhead. However, the volume of the resulting profiling data can enormous, where a
single core can produce upwards of 100 MB/s of data, leading to high storage and offline processing
costs. Current approaches focus on reducing profiling data bandwidth with sampling-based tech-
niques at the cost of execution details.

In this work, we introduce a hardware-accelerated profile decoder and analyzer for the ARM
Coresight debug and trace architecture that can process execution traces produced by Coresight com-
ponents in real-time. Profiles collected from a CPU are forwarded to a decoder implementation on
a Field Programmable Gate Array (FPGA) that is part of a hybrid FPGA/CPU platform, meaning
profiling data is processed on-chip. This technique can produce richer profiling data, potentially en-
abling more powerful optimizations, while simultaneously eliminating the associated storage and
post-processing costs and avoiding the need for throttling the bandwidth of profile collection.

Our novel trace decoding process can handle the compressed instruction trace data stream that fol-
lows the Embedded TraceMacrocell (ETM) specification at 1 GB/s per core, increasing the throughput
over prior work by 8×. We also greatly increase the reliability of the decoding process by remov-
ing the possibility of dropping data and the requirement for buffers, while keeping the area costs
comparable.

Contents

1 Introduction 10
1.1 Contributions . 11
1.2 Thesis Layout . 11

2 PGO & Profiling Landscape 13
2.1 Profile Collection . 13
2.2 Profile Types . 14
2.3 Typical Optimizations . 15
2.4 Profile Collection in Datacenters . 15
2.5 Profiling Hardware . 16
2.6 Discussion — Architecture vs Compilers . 16

3 Coresight Architecture 18
3.1 Overview . 18
3.2 Embedded Trace Macrocell . 19
3.3 Instrumentation Trace Macrocell and System Trace Macrocell . 20
3.4 Trace Buffers . 21
3.5 Performance Monitoring Unit . 22

3.5.1 PMU Events . 22
3.6 Embedded Cross Trigger subsystem . 24
3.7 Trace Port Interface Unit . 25
3.8 Trace Links . 25
3.9 ROM Table & Device Discovery . 26

4 Implementation 27
4.1 High-level Design Overview . 27
4.2 Implementation Environment . 28

4.2.1 Zynq Ultrascale+ MPSoC Coresight Architecture . 28
4.3 Programming the Tracing Subsystem . 30

4.3.1 Coresight Access Library . 30
4.3.2 Programming the Trace Port Interface Unit . 33

4.4 Handling Frames . 35
4.4.1 Frame Format . 35
4.4.2 Frame Generation . 35
4.4.3 Frame Decoding . 37
4.4.4 Demultiplexing the Trace Stream . 38

4.5 Instruction Trace Decoder . 39
4.5.1 Emedded Trace Macrocellv4.0 Trace Stream Protocol . 39
4.5.2 Design requirements of a hardware trace decoder . 48
4.5.3 Trace Decoding . 50
4.5.4 Trace Decoder — A critical reflection . 55

1

5 Coresight onThunderX 59
5.1 ThunderX Coresight Architecture . 59
5.2 Starting a Tracing Session . 61

6 Evaluation 64
6.1 Resource Utilization . 64
6.2 Operating Frequency & Timing Constraints . 65

6.2.1 Constraining Integer Sizes . 65
6.2.2 Floorplanning . 66

6.3 Performance . 66
6.4 Correctness . 67

7 Related work 68
7.1 Hardware Trace Decoders . 68

7.1.1 PTM Trace Decoders . 68
7.1.2 ETM Trace Decoders . 69

7.2 Monitoring with ECTs and PMU Events . 70
7.3 Collecting Profiles on ARM Processors . 70

8 Future Work 71
8.1 Hardware Trace Decoder System Extensions . 71

8.1.1 Coresight on ThunderX . 71
8.1.2 Completing the AXI-DMA . 71
8.1.3 Tracing with the Program Image . 72
8.1.4 Supporting Speculation Resolution. 73
8.1.5 Supporting Data Tracing . 73
8.1.6 Supporting Instrumentation . 74

8.2 Future Experiments . 74
8.2.1 Evaluating Tracing Overhead . 74
8.2.2 ETM Bandwidth Measurement . 75
8.2.3 Evaluating Performance Monitoring Unit (PMU) Event Consistency . 75
8.2.4 Testing Correctness of the Trace Decoder . 75

8.3 Big picture vision . 76
8.3.1 Runtime Binary Optimizations Performed on the FPGA . 76
8.3.2 Exploring Trace-based Compiler Optimizations . 76
8.3.3 Informing Cluster-wide Scheduling Policies . 76

9 Conclusion 78

2

List of Figures

2.1 Collecting profiles in datacenters. 15
2.2 Intel’s Last Branch Record . 16

3.1 Common Coresight architecture. 19
3.2 PMU on the Cortex-A53. 22
3.3 Timing guarantees of embedded PMU events in the trace stream. 24
3.4 CTI and CTM network to enable the ECT. 24
3.5 Trace Link components block design. 26

4.1 High-level design overview. 28
4.2 Zynq Ultrascale+ MPSoC Coresight architecture. 30
4.3 Basic Coresight topology. 31
4.4 TPIU EMIO Pins . 33
4.5 Zynq Ultrascale+ MPSoC bootflow. 34
4.6 Frame format. 35
4.7 Frame generation finite state machine. 36
4.8 Frame decoding . 37
4.9 Demultiplexing the trace stream. 38
4.10 Example trace stream. 40
4.11 Example trace stream with branch broadcasting. 40
4.12 Long address packet description. 43
4.13 Short address packet description. 43
4.14 Exact match address description. 44
4.15 Address with context and context packet description. 45
4.16 Stream state inter-byte dependency example. 49
4.17 Trace state inter-byte dependency example. 49
4.18 Computing stream state example. 52
4.19 Action code generation example. 53
4.20 Unrolled and pipelined decoder. 55
4.21 Alternative packet-based decoder design. 58

5.1 ThunderX Coresight architecture. 60
5.2 ThunderX trace data path. 62

6.1 Solving timing violations with floorplanning . 66

8.1 Proposed decoder without branch-broadcasting. 72
8.2 Proposed speculation resolution handler. 73

3

List of Tables

3.1 ETM configuration table. 21
3.2 PMU events. 23

4.1 Software versions and device IDs. 28
4.2 TPIU clock speeds. 33
4.3 TPIU pulsewidth error. 33
4.4 Complete instruction trace packet description. 47
4.5 Decoding parameters determined a priori. 57

6.1 Resource utilization. 64
6.2 Decoder performance comparison. 67

4

Listings

4.1 CSAL board struct. 31
4.2 CSAL device struct. 31
4.3 CSAL API . 32
4.4 Extending CSAL to support TMC as HW FIFO . 32
5.1 CSAL Topology scan tool for Thunderx. 61

5

List of Algorithms

1 Address register update procedure. 43
2 Unrolled trace decoding procedure. 50

6

List of Terms

AMBA Avanced Microcontroller Bus Architecture

AOT Ahead Of Time

APB Advanced Peripheral Bus

APSR Application Program Status Register

APU Application Processing Unit

ATB AMBA Trace Bus

ATF Arm Trusted Firmware

AXI Advanced eXtensible Interface

BC Bounded Continuous

BD Block Design

CBC Cache Block Controller

CCPI Coherent Processor Interconnect

CFG Control Flow Graph

CID Context Identifier

CS Coresight

CSAL CoreSight Access Library

CTI Cross Trigger Interface

CTM Cross Trigger Matrix

DAB Debug Access Bus

DAP Debug Access Port

DDR4 Double Data Rate Synchronous 4

DMA Direct Memory Access

DMC Direct Memory Controller

DS Data Sheet

DTX Debug Bus Transmitter

ECI Enzian Coherency Interconnect

7

ECT Embedded Cross Trigger

ELF Executable and Linkable Format

EMIO Extended Multiplexed I/O

ETB Embedded Trace Buffer

ETF Embedded Trace FIFO

ETM Embedded Trace Macrocell

ETR Embedded Trace Router

FDO Feedback-Directed Optimization

FPGA Field-Programmable Gate Array

FS Fixed Size

FSBL First Stage Boot Loader

FSM Finite State Machine

FTM Fabric Trigger Macrocell

GPIO General Purpose Input/Output

GWP Google Wide Profiling

HO Header Only

IoD ID or Data

IP Intellectual Property

IR Intermediate Representation

ISA Instruction Set Architecture

ISB Instruction Synchronization Barrier

ITM Instrumentation Trace Macrocell

JIT Just In Time

JTAG Joint Test Action Group

LBR Last Branch Records

LSB Least Significant Bit

LUT Lookup Table

MM2S Memory Mapped to Stream

MMCM Mixed-Mode Clock Manager

MSB Most Significant Bit

NLP Next Line Prefetcher

OCLA On Chip Logic Analyzer

OO Object Oriented

8

OoO Out of Order

openCSD open source CoreSight Decoding Library

OS Operating System

P0 Control flow instructions, like branch instruction

P1 Load and store instructions

PCIe Peripheral Component Interconnect Express

PE Processing Element

PEBS Processor Event Based Sampling

PGO Profile-Guided Optimization

PL Programmable Logic

PMU Performance Monitoring Unit

PoR Power on Reset

PS Processing Subsystem

PT Processor Trace

PTM Processor Trace Macrocell

QPS Queries Per Second

QSPI Quad Serial Peripheral Interface

ROM Read only Memory

SoC System on a chip

SRAM Static Random Access Memory

STM System Trace Macrocell

tcl The Tool Command Language

TLB Translation Lookaside Buffer

TMC Trace Memory Controller

TPIU Trace Port Interface Unit

TRM Technical Reference Manual

UART Universal Asynchronous Receiver-Transmitter

UC Unbounded Continuous

US+ Zynq Ultrascale+ MPSoC

VMID Virtual Context Identifier

WSC Warehouse Scale Computer

XSA Xilinx Support Archive

XSDB Xilinx System Debugger

9

Chapter 1

Introduction

Collecting the runtime trace of an application is a form of profiling that provides detailed insight into the precise execution
behavior of a program. With a runtime trace, the entire control flow path of an application can be reproduced for a given
input. In other words, a trace provides information on each control flow-changing instruction that has been executed and
how the flow is altered. However, tracing a program is expensive — to make it feasible to collect traces at runtime without
taking an unsustainable hit to performance requires hardware assistance. The Coresight architecture introduced by ARM
specifies a set of dedicated hardware components that are tightly coupled to the processor and provide zero-overhead debug-
ging and tracing functionality for System on a chips (SoCs) [63, 20, 27]. Coresight has garnered attention mostly in the field
of runtime verification [74, 37, 39], debugging [79], and even security [61]. Yet Coresight remains sparsely studied as a tool
for performance optimization. In part, this is because Coresight is not available for many processors used commonly in high-
performance computing or Warehouse Scale Computer (WSC), which is still dominated by Intel and AMD [62]. Furthermore,
different systems that support Coresight may have widely different implementations of the Coresight architecture, requiring
system-specific integration with Coresight, which has been used as an argument against profiling with Coresight [47]. Yet
Coresight remains a compelling source of profiling data, as it provides a very rich set of profiling features that are not found
in other hardware profiling facilities. We predict a growing interest in Coresight as both server-grade ARM processors and
heterogeneous systems become more common.

One of the best use cases for profiling data is feeding them to a compiler, which can then use Profile-Guided Optimizations
(PGOs) to generate more performant code. Profiles generally provide runtime information to a compiler, enabling optimiza-
tions that go beyond more traditional static analysis techniques [68, 86]. PGO traditionally involves a manual three-stage
compilation process: compiling an instrumented binary, running the instrumented binary while collecting profiles, and using
the profiles to apply optimizations while recompiling. Recently, PGO has evolved to continuously profile live applications
and incrementally apply optimizations for new binary releases. This approach is a staple in larger scale datacenters [67, 35].
Recent work has even gone as far as to apply the optimizations during the execution of a program [91]. The large amount
of effort spent on feeding this always-on and data-hungry machine of constant recompilation with freshly acquired profiling
data warrants a re-examination of the current profile collection techniques.

To provide a sense of scale, Google reports collecting around 600GB of compressed profiling data each day, requiring
around 8 hours of post-processing on 400 machines [28]. This data is also heavily cherry-picked, as each machine in the data
center is only profiled for around 10s per day, and only data on the 1000 hottest binaries is considered to be of interest. This
means that only a fraction of the total executed cycles are profiled. Large amounts of profiling data are discarded to reduce
the volume of collected data. This begs the question, can we use hardware acceleration to make this more efficient and to
cut down on storage costs? Furthermore, hardware acceleration for profile decoding and analysis makes it possible to collect
more detailed profiling data. But do more detailed execution profiles result in even more performant code? To the best of
our knowledge, the latter question has not been extensively explored, as current approaches focus on applying optimizations
with as little profile information as possible to keep profiling data volume to a minimum.

For our work, the source of the trace data is an Embedded Trace Macrocell (ETM), a Coresight component that is respon-
sible for tracing the control flow of an application running on a processor. The data from an ETM follows a trace stream
specification, is heavily compressed, and requires multiple expensive post-processing steps to reconstruct the control flow

10

details so that they are actionable to an optimizing compiler. We focus on applying trace analysis in real-time in hardware on
a hybrid CPU/FPGA platform, where the Field-Programmable Gate Array (FPGA) is used as a hardware accelerator to decode
and analyze trace data received from the dedicated trace and profiling components.

The bulk of our efforts have gone into the design of a trace decoder for the ETM specification. The trace data is non-trivial
to parse in hardware at high data rates as the trace data is hard to process in parallel. This is because the trace protocol is
a packet-based protocol that is sent from the processor to the FPGA as a byte stream. Reconstructing packets from the byte
stream has to be done ad-hoc, as the structure of a packet (for example how large a packet is) can in some cases only be
determined once an entire packet is parsed. Additionally, trace data sent out by an ETM relies on internal state registers to
compress the trace stream and the state registers must be mirrored by the trace decoder. Some packets rely on these state
register updates from a previous packet.

All Prior trace decoders have used a buffering-based system to reconstruct packets from the byte stream [90, 74, 89].
However, these implementations suffer from low throughputs for specific packet types and do not always support the full
specification and all possible packet sizes. The trace decoder we introduce in this work solves these problems by parallelizing
the trace data processing with a sophisticated unrolling technique and applying a decoder byte-wise instead of packet-wise.

We additionally gained insights into both the Coresight architecture on the Zynq Ultrascale+ MPSoC and ThunderX. The
Zynq Ultrascale+ MPSoC has a complex topology that requires extending the existing CoreSight Access Library (CSAL), an
API for interacting with the Coresight subsystem maintained by ARM [2]. Large parts of the ThunderX Coresight system is
unique to the ThunderX design and a custom Coresight driver must be written. We elaborate on the internal debug compo-
nents of the ThunderX and outline how the trace data is propagated through the processor. As of now, we are still unable to
access any trace data from the ETMs on ThunderX.

1.1 Contributions
This thesis aims to explore the possibilities of using Coresight as a means of profile collection, which would then be integrated
into an optimizing compiler that performs sophisticated PGOs. Concretely our research question is:

— How can we design a system that can handle the traces produced by the ETM tracing units in real-time on an FPGA?

We list the following contributions:

— An (almost) end-to-end system for collecting and decoding trace data from Coresight components that include pro-
gramming the Coresight infrastructure on the Processing Subsystem (PS) (Section 4.3), driving the trace data to the
Programmable Logic (PL) (Section 4.3.2), demultiplexing the trace data received on the PL into streams of traces from
each core (Section 4.4.1 - Section 4.4.4), and finally decoding the instruction trace stream (Section 4.5).

— A comprehensive guide to the general Coresight architecture (Chapter 3), and device-specific Coresight architectures
of the ThunderX (Chapter 5) and Zynq Ultrascale+ MPSoC (Section 4.2.1) devices.

— An extension to the CSAL to enable trace session on complex Coresight topologies and the programming of intermediate
buffers in hardware FIFO mode.

— An in-depth explanation of the ETMv4 specification and the challenges of implementing a hardware decoder (Sec-
tion 4.5.1).

— A performance and resource utilization evaluation of our trace decoder implementation in comparison to prior work
(Chapter 6). We show a throughput performance increase of 8× over prior implementations (Chapter 7).

1.2 Thesis Layout
Chapter 2 is a survey on current profile collection techniques and what types of optimizations rely on profiling data and Chap-
ter 3 gives background information on the Coresight architecture and Coresight components. We discuss the device-specific
Coresight implementations on the ThunderX in Chapter 5 and on the Zynq Ultrascale+ MPSoC in Section 4.2.1. The imple-
mentation is covered in Chapter 4. This section contains a subsection devoted to the ETM trace decoder implementation,

11

Section 4.5, a section on programming the Coresight components, Section 4.3, and a section handling the raw trace data from
Coresight before passing the trace data to the trace decoders in Section 4.4. Our decoding process is evaluated in Chapter 6 and
compared to prior implementations in Chapter 7. We conclude the thesis in Chapter 9 and discuss future research directions
in Chapter 8.

12

Chapter 2

PGO & Profiling Landscape

Collecting information on the runtime behavior of an application running on a machine or system is referred to as profiling.
The collected runtime information can be used to monitor the program execution, verify runtime properties, break down the
performance characteristics, and ultimately enable either manual or automatic optimizations. Any optimization that relies
on runtime information is called Profile-Guided-Optimization (PGO) or Feedback-Directed Optimization (FDO). This work
involves hardware acceleration of zero-overhead profile collection. In order to understand the design implications of a hard-
ware accelerator, we must be aware of the current landscape of profile collection techniques and to what end these profiles
are used to perform optimizations.

We categorize and describe different profile collection techniques in Section 2.1, discuss commonly collected metrics Sec-
tion 2.2 and survey the most prolific types of optimizations that rely on profiling data Section 2.3. We further describe some
dedicated profiling hardware Section 2.5 and compare this to Coresight, give a system-wide view of profiling systems applied
in datacenters Section 2.4, and conclude with a short discussion on the responsibilities of a compiler vs dedicated hardware
components that also perform a variant of PGO.

2.1 Profile Collection
Traditionally, profile collection techniques fall either under the category of instrumentation-based profiling or sampling-based
profiling [85]. We further add the category of trace-based profiling.

Instrumentation-based profiling. Instrumentation of an application involves injecting instrumentation code that does
bookkeeping, for example, incrementing counters or recording timing metrics. Instrumentation is usually seen as a form of
software profiling and is an architecture-neutral approach to profile collection. The power of instrumentation comes from
being able to collect arbitrary information during runtime. The designer of the instrumentation code has full control over
what metrics to profile. This, however, comes at a cost. Every cycle spent on running the instrumentation code is a cycle
that is not spent on doing “useful” work. On top of this, the injection of instrumentation code can break the structure of
the code and consecutively changes the resulting binary when run through a compiler (if the instrumentation is not inserted
post-compilation). Specifically, instrumentation can cause damage to loop structures, affect inlining decisions made by the
compiler and more. In other words, the profiles collected by instrumented code can only provide an approximation of the
runtime behavior of the non-instrumented application. As a result, instrumentation-based profiling is usually considered
to provide the richest profiling data but has the highest overhead. Of course, this depends on the specific instrumentation
implementation and hardware support for instrumentation is available (see Coresight Instrumentation Trace Macrocell (ITM)
in Section 3.3).

Sampling-based profiling. On the other hand, sampling-based profiling regularly reads from hardware registers that
are designed with profile collection in mind. The most common sampling-based techniques read from the PMU (Section 3.5)
to observe hardware events of the underlying processor. Perf tools [7, 11] provide a software abstraction layer onto the hard-
ware for this. A common profile collection approach is to deploy lightweight daemons constantly running on a machine and

13

collecting data [73, 35, 67]. The main benefit of the sampling-based approaches is the negligible overhead incurred by the
profile collection stages, while still giving reasonable amounts of insight into the performance characteristics.

Trace-based profiling. In addition to sampling and instrumentation approaches, we distinguish a third type of profile
collection, namely the trace-based profiling. A trace records the entire control flow of a running application, meaning the
exact execution path through the Control Flow Graph (CFG) of the binary. The collection of such traces without processor
hardware support is infeasible as it would result in a major performance hit. Dedicated hardware support is available for this
purpose, which includes ARM’s Coresight infrastructure [63], the topic of this thesis, and Intel’s Processor Trace (PT) [49].
However, if the generation of the traces itself has low or zero overhead, processing or storing the collected profiling data is
a daunting task due to the sheer volume of trace data that can be produced by a tracing session, which can be in the range
of hundreds of MB per second per core. Modern sampling-based approaches come quite close to trace-based approaches in
accuracy, especially when aggregated across a large number of runs. Intel’s Last Branch Records (LBR) additionally provides
a further hardware component that can be sampled making it easier to reconstruct control flow. However, sampling-based
approaches still suffer from sampling only the hottest code regions, so the entire execution history cannot necessarily be
reconstructed.

2.2 Profile Types
In section, we discuss exactly what types of profiles a profiler may collect. We break this down into branch frequencies,
hardware events and high-level language constructs.

Branch frequencies. Most commonly a profiler will collect branch frequencies. Branch frequency profiling data will
hold aggregated runtime information on how the program behaves at a given branch. Branch frequency profiles will give an
estimate of how likely the branch will be either taken or not taken. More specifically, for any given control flow changing
instruction b, the profiles give us frequency fe(b), where fe(b) is the frequency a branch is taken and the not-taken frequency
fn(b) is 1− fe(b).

Runtime trace. Runtime traces are a superset of the branch frequency profiling data. A trace gives global branch rela-
tions. Instead of just fe(b), we can compute the frequency a branch is taken based on the execution path p ending in branch
b, so fe(b|p). Usually, the runtime trace is constrained to a subset of the complete execution path, in a window pw of the last
w executed branch instructions of path p, giving us fe(b|pw).

Hardware events. While branch frequencies give information on the execution behavior an application exhibits, profil-
ing hardware counters gives us information on how well an application is using the system resources. For example, a profile
may track counters for cache misses, or memory accesses. Based on the counters, optimizations may be focused on specific
regions of code. Furthermore, tracking hardware events in addition to overall execution time can be used to evaluate how
much an application is benefitting from a given set of optimizations.

High-level language constructs. Often it is beneficial to collect profiling data on high-level language constructs that
provide a language-level abstraction to a developer. An example of this would be polymorphism and virtual calls for C++ or
Java. Polymorphism provides an abstraction layer for writing high-level code but comes at a performance hit if unoptimized.
For one, a jump to the body of a virtual call requires an additional level of indirection through the virtual table lookup, and
second, a compiler is often unable to inline virtual calls, missing out on optimization potential. To combat the overhead of
virtual calls, profiling data is used to determine the likely runtime type of the receiver. If the likelihood is high that a receiver
of a virtual call is always the same type, a compiler may speculatively optimize for this runtime type, a process which has
been dubbed devirtualization [51]. Typically, the best way to get this profiling data is to instrument call sites. Most high-level
language constructs are profiled with instrumentation-based techniques. However, this is not always the case, another option
is to hoist the profiling data to the source code level. However, this is not always possible as some source code information
is lost during compilation and the retranslation is not always possible, or very expensive. This is especially true when the
structure of the code is changed during compilation, like with loop unrolling or code duplication.

14

2.3 Typical Optimizations
In this subsection, we survey some additional common compiler optimizations that also rely on profiling data.

The most common motivation to perform PGO has been to target the ever-growing pressure on instruction caches for
server workloads. Many cycles in data centers are wasted in front-end stalls [53]. A combination of hot-cold code splitting,
code reordering, and software cache prefetching has been used effectively to mitigate this issue [28, 67, 91, 57, 55]. Hot-cold
code splitting makes sure that cache space is not wasted on instructions that rarely get executed, code reordering increases
the hit rate of instruction caches when jumping from one basic block (or function) to another and software cache prefetching
is used to avoid cache misses when the target of long jumps can be predicted with the profiling data. All of these optimiza-
tions cannot be performed without accurate and up-to-date branch frequency profiles and directly benefit frommore accurate
profiling data.

Another source ofmore complex PGO examples can be found in theGraalVM compiler, which is an optimizing compiler for
JavaVM-based languages and performs many optimizations to eliminate the runtime cost of high-level language constructs.
Typically, these languages are Just In Time (JIT) compiled and the runtime environment will collect profiles on the fly and
recompile sections of the code if they are hot. However, GraalVM native image provides the ability to Ahead Of Time
(AOT) compile JavaVM-based languages [87]. Many optimizations typically applied when JIT compiled are lost without
profiling data and native image relies on a manual three-stage compilation process to bring the performance of native image
close to its JIT compiled counterpart. GraalVM relies heavily on profiling data to make inlining choices that enable further
optimizations [70], duplicates and specializes code regions with speculative optimizations based on profile data [76, 64], and
uses profiles in static analysis for reducing heap allocations [83] as a few examples.

2.4 Profile Collection in Datacenters
In Chapter 1 we highlighted some metrics on profiling data collection reported by Google. Here we give a general overview
of how these profile collection techniques work as a system for continuously applying optimizations for new binary releases.
Figure 2.1 shows a simplified profile collection system for large-scale data centers that applies to AutoFDO [35], Google Wide
Profiling (GWP) [73] and Bolt [67].

Binary
Releases

Raw Profiles &

Compiler

binary binary

CollecterTracing Hardware
Sampling Daemon

binary binary

Tracing Hardware
Sampling Daemon

Server

binary binary

Tracing Hardware
Sampling Daemon

Datacenter

Profile &

Traces

Trace processor

Figure 2.1: Collecting profiles in datacenters.

Every server will have a profile collection daemon that samples the tracing or profiling hardware. How often samples are
collected depends on the sampling policies that trade-off profiling data details for profiling data volume. Profiling data is then
collected and stored in a database. Raw profiling data goes through an offline post-processing stage. This post-processing
stage involves symbolizing the profiling data, attaching debug data, and ultimately hoisting the profiling data to a source code
or Intermediate Representation (IR) level. Sometimes more complex post-processing steps are performed, commonly a loop
reconstruction algorithms like Havlaks algorithm [46, 82] are applied in the post-processing stage.

Once the profiling data is brought into the form that is actionable by a compiler, the binary is recompiled with the injected
profiling data. The binary is now adapted to fresh runtime information and is specialized. Therefore the binary is expected to

15

need fewer cycles to perform the same task as before. On average, the runtime improvements are between 6%-15% [35, 67, 28],
but can sometimes reach up to a 30% [35].

In this thesis, we target hardware acceleration for both the collecting of traces and offline post-processing steps. This
could reduce the amount of profiling data that needs to be stored, since raw profiling data is very verbose, or eliminate the
need for storage entirely.

2.5 Profiling Hardware
In this section, we discuss what hardware components are most commonly used for profiling and have seen the most attention
in recent research.

Intel’s LBR has played a profound role in the field of PGO. The LBR can be read from software to collect information on
the last taken branches [49]. Typically, the LBR will hold records of the last 16-32 branches in a ring buffer. Each entry will
hold the target address at and the source address as of a jump (Figure 2.2). Updates to the LBR are made in parallel to the
execution of the branch instructions and do not affect the execution of a processor. When the buffer overflows, the oldest
branch records are overwritten and lost, which makes it ideal for sampling-based profiling techniques. The overhead incurred
by collecting profiles from the LBR depends on the sampling frequency.

The LBR profiles more than just branch frequencies, but essentially shows a snapshot of the runtime trace, allowing us to
compute branch frequencies fe(b|pw), where the window size is between 0 and LBR ring buffer size.

as

at

Figure 2.2: Intel’s Last Branch Record for profiling branch frequencies.

It is not surprising that most runtime profiling systems rely on LBR, as it is very simple to setup an LBR sampler and
branch frequencies can be computed straightforwardly from aggregated LBR values. The authors of Bolt have performed
experiments both with and without access to an LBR and have shown that an LBR is responsible for around 30% of the per-
formance improvements, being on average 6% with LBR and only 4% percent without LBR [67]. Recent efforts have gone into
emulating the ability of an LBR with instrumentation and architecture-neutral approaches [62].

The LBR cannot be directly compared to a Coresight ETM. Instead, Intel also has similar components, Intel Processor
Trace (PT) that can produce profiling data for every instruction and is analogous to an ETM, but with less features [49].

Some Intel processors provide insight into hardware events with Processor Event Based Sampling (PEBS) [50, 49]. This is
somewhat comparable to the Coresight Embedded Cross Trigger Interface combined with a PMU, but also does not provide
nearly the same level of flexibility and has fewer hardware events to track. PEBS generates interrupts on hardware events,
for example, an INSTRUCTION_RETIRED . Custom interrupt handlers can be written to collect profiling data. PEBS has seen
an interesting use case for optimizing indirect branches with runtime binary patching [19]. The Coresight architecture is well
suited for any type of optimizations that rely on PEBS.

2.6 Discussion — Architecture vs Compilers
The name PGO is most commonly used in the context of compiler optimizations. Optimizing compilers such as the LLVM
framework [60], GCC [4], and GraalVM [87] all have some form of PGO support. However, the concept of PGO is not unique

16

to compilers — branch predictors and cache prefetchers may use execution history or knowledge from previous runs to make
predictions and avoid branch mispredictions and cache misses respectively [44, 30, 78, 13].

Examining the case study of instruction cache prefetches, both profile-guided compiler optimizations and hardware
prefetchers aim to solve the same problem, namely improving cache hit rate, which begs the question: What is the main
responsibility of the compiler vs the responsibility of the architecture? Are both required? Can a hardware prefetcher avoid
cache misses that a compiler cannot and vice versa?

A full discussion on this topic is outside of the scope of this work and our knowledge, and there is no clear-cut answer for
every use case. However, from our perspective, architectural components should be viewed as general-purpose optimization
techniques. We speculate that is why the most common prefetchers widely believed to be employed in most server-grade
processors are Next Line Prefetchers (NLPs) [28], meaning they do not “learn” from previous execution behavior. This is
a great example of general-purpose optimizations since NLPs cover the most likely case for any application, as sequential
execution of instructions is much more common than long jumps.

PGO done through compilers should be viewed as application-specfic optimization techniques that can exploit the com-
mon behavior of a single application and disregard the common case. For example, a compiler can insert software prefetches
that an NLP would not be able to handle based on previous profiling runs and knowledge of a specific application [55, 28].

In summary, we wish to draw attention to the fact that using profiling data is not owned by compilers and we clearly
distinguish the purpose of application-specific compiler optimizations as opposed to general-purpose architectural optimiza-
tions.

17

Chapter 3

Coresight Architecture

The ARM Coresight architecture introduces a family of programmable tracing and debug components (or devices) to a hard-
ware system. Coresight’s purpose is to make embedded systems and software engineering for SoC more efficient both in
terms of engineering effort and for assisting in optimizations to enable more efficient use of the underlying hardware [63].
Coresight can enable optimizations that rely on instruction & data tracing, code profiling and observation of hardware events.
While also Coresight’s main selling point, the provided system-wide full execution transparency with a somewhat loose and
extensible specification, comes at a cost — a high barrier of entry and the requirement of system-by-system solutions. Two
seemingly similar SoCs, that both implement the Coresight subsystem may have widely disparate capabilities and topologies.
This chapter is devoted to describing the general purpose architecture and configuration options of Coresight, as it pertains to
(almost) any hardware. For a deep dive into the platform-specific Coresight architecture of the two systems used throughout
this work, refer to Section 4.3 for the Zynq Ultrascale+ MPSoC and Chapter 5 for the Cavium ThunderX. The full instruction
trace protocol is characterized in Section 4.5.1.

3.1 Overview
The Coresight system, shown schematically in Figure 3.1, is best interpreted as a set of components coupled by three distinct
yet overlapping networks: The tracing network, cross-triggering network, and debug network. Generally, each component will
have an Advanced Peripheral Bus (APB) interface to the debug network for accessing registers, a master/slave interface to the
AMBA Trace Bus (ATB) for propagating trace data through the components, and an Embedded Cross Trigger (ECT) interface
to interact with the cross-triggering-network for sending and receiving trigger events.

The main responsibility of the tracing network is to drive trace data from various trace source devices, like an ETM or an
ITM among others, to a trace sink. Possible trace sinks include system memory, an off-chip logic analyzer, or directly from
the PS to the PL.

The cross-triggering network presents an underlying communication interface for devices to communicate when neces-
sary and the debug networks allow an external debugging tool to be hooked up for monitoring and execution steering. We
want to gather data for PGO, which means the most value generated for us by the Coresight system originates from the PMU,
ETM/Processor Trace Macrocell (PTM) and System Trace Macrocell (STM)/ITM. These components generate traces for us to
reconstruct the control flow of an application, support instrumentation, and collect information on hardware events. As such,
in this work, we may largely disregard the debug networks and only lightly touch on cross-triggering.

18

Trace Network: Cross-triggering Network: Debug network:

Cross Trigger Matrix (CTM)

Advanced Trace Bus (ATB)

Debug Control Bus (APB)

Buffer

SRAM

Processor

PMU DBG

 CTI

ETM/PTM

Processor

ETM/PTM PMU DBG

 CTI

Funnel

STM/ITM FTM

Tim
estam

p
G
enerator

ROM Table
ETM 0
PMU 0
DBG 0

Buffer

Trace Collection Strategies

SRAM TPIU to PL TPIU to offchip System Memory

D
ebug

A
cessPort(D

A
P)

 CTI CTI

Figure 3.1: Typical Coresight architecture topology.

3.2 Embedded Trace Macrocell
The ETM acts as a trace source and forms the backbone of the Coresight infrastructure. It traces the execution of the pro-
cessor it is coupled to. The primary function of the ETM is to produce a stream of trace data. The trace data includes the
instruction trace protocol and the data trace protocol. However, the data-trace protocol is an optional feature not supported by
most processors.

The ETM is considered the successor to the PTM which is only able to trace instructions and lacks many features sup-
ported by an ETM. Both the ThunderX and the Zynq Ultrascale+ MPSoC (US+) implement the ETM specification, so we focus
on the instruction trace protocol of the ETM

The goal of the instruction trace protocol is for a trace analyzer to be able to recreate the entire execution flow of a program
(we describe the entire protocol in Section 4.5.1). The ETM achieves this by driving data onto the trace stream whenever a
branch instruction is executed on the processor. A branch instruction acts as a signpost for control flow, from which the
execution of all other instructions can be inferred. Additionally, the ETM generates processing context information, for each
instruction we have the following context:

— Virtual address of the executed branch instructions.

19

— A context identifier, identifying from which process or thread the instruction originates.

— A virtual context identifier, identifying from which guest Operating System (OS) an instruction originates.

— The exception level ∈ {EL0, EL1, EL2, EL3}

— Security State ∈ {Secure, NonSecure}.

For out-of-order processors, a stream of executed branch instructions no longer provide a clear picture of the control flow.
The ETM solves this by only streaming information in program order. When it comes to speculative execution, however, an
ETM lets us peak under the hood, sending out trace information not only for retired instructions but also for speculatively
executed instructions. Whenever a branch instruction is observed in the trace stream, it is assumed to be speculatively exe-
cuted until explicitly committed.

Though in practice rarely implemented, the ETM specification also supports tracing data streams, including the trans-
fer address of load and store instructions and the data transfer value. The instruction and data trace streams are logically
separated and a relative ordering can be rebuilt offline after capture. The relative order is established by synchronization
information sent out over both streams. While no devices used in this thesis support data tracing, we believe this provides
an interesting future work direction and we discuss this in Chapter 8.

Programming the trace unit is done by writing to a set of control and configuration registers. The three most important
registers are the TRCPRGGCTLR to enable the trace unit and start the tracing session, the TRCCONFIGR register to configure
the tracing options, and the TRCVICTLR register that controls instruction filtering (refer to the specification [26] for full
register summary). The steps for the simplest start to a trace session:

— Unlock the software lock by writing 0xC5ACCE55 to TRCSLAR .

— Setup tracing options by writing to TRCCONFIGR . As an example, we can enable global timestamping, cycle counting,
Virtual Context Identifier (VMID), and Context Identifier (CID) tracing by setting TRCCONFIGR to 0x8D0 , assuming
all options are supported by the tracing hardware.

— Set TRCVICTLR to 0x201 to trace everything and set start/stop logic to start.

— Enable trace unit with TRCCONFIGR.EN = 1

One challenge of setting up a trace session for a specific need is due to the wide variety of different implementations for
different systems as vendors may pick and choose which parts of the specification they decide to implement. Before any
design choices are made for setting up a design that relies on trace one should consult the supported capabilities of an ETM
by reading the 14 ID registers TRCIDR0 ... to TRCIDR13 . We provide an overview of tracing options for the devices used
in this thesis, shown in Table 3.1.

The ETM is interconnected with most other Coresight devices, it drives data onto the ATB, which usually propagates data to
a funnel or an Embedded Trace Buffer (ETB) for burst absorption. From this point, the data is forwarded to a sink component
determined by the desired collection strategy, see Figure 3.1.

We have only scratched the surface of the ETM’s capabilities. The ETM enables many customization features to specify
exactly what to trace, for example tracing only certain addresses, sending out trigger events of the cross-triggering-network
and more.

3.3 Instrumentation Trace Macrocell and System Trace Macrocell
The ITM or the successor component, the STM, are further instances of trace source devices. They support “printf-style”
debugging, tracing of OS and application events, and can emit diagnostic information [20, 21]. Both components emit similar
trace data to the ETM in the form of packets. In contrast to the ETM the stimulus of the trace is not processor execution, but
instead, software writes to internal ITM or STM registers. The STM does not work out of the box like the ETM, but requires
code to be instrumented before it can be traced. Any value written into the STM or ITM stimulus registers are packed into

20

Table 3.1: Overview of tracing features and showing supported features of ThunderX(TX), and US+ and difference to PTM

Feature US+ TX PTM Description

Virtual context identifier 3 3 3 Add a virtual context identifier to trace

Context identifier 3 3 3 Add a context identifier to trace

Cycle counting 3 7 3 Add cycle counting information for fine-grained cycle timing to trace

Global Timestamping 3 3 7 Add system-wide global timestamps to trace

Q Elements 7 7 7 Compress the control flow data to reduce the trace bandwidth.

Return stack 3 7 7 Adds implicit address for indirect branches.

Conditional instruction 3 3 3 Add tracing of conditional non-branch instructions to the trace stream.

Branch broadcasting 3 7 7 Add address information for direct branches.

Data trace 7 7 7 Traces load and store instructions, separate data trace stream

Speculative execution tracing 7 7 7 Add tracing of speculatively executed instructions, with commit information

trace packets and sent out over the ATB.

A typical use case for instrumentation would be to profile higher-level constructs other than instructions. For example,
we can trace syscalls by inserting register write before a syscall in our application, or modify the OS to write into these reg-
isters. The same goes for a library function call. In the context of PGO being applied to Object Oriented (OO) programming
languages, the STM could be used to trace object types by instrumenting constructors. Or profile the type of receiver at a
virtual call. The trace data from the ITM or STM can then be correlated to the application code with timestamps and ETM
trace data if necessary.

The STM provides features that the ITM does not support, that is the tracing of hardware events. The STMhas 64 hardware
event input ports that can be emitted onto the STM trace stream. In the case of the US+, the hardware event inputs of the
STM are shared by Cross Trigger Interface (CTI) inputs and the remaining 60 hardware event inputs come from the PL. This
allows an entire system to be traced, a running application on the processor and simultaneously tracing the state of a block
design on the PL.

3.4 Trace Buffers
Coresight supports a variety of buffer types categorized as Trace Memory Controller (TMC)s with dedicated Static Random
Access Memory (SRAM) [22, 20]. The buffers avoid losing trace data that is often bursty and reduce the pin requirements to
drive trace data from a PS, enable reading trace data from software or Joint Test Action Group (JTAG) and further can provide
an Advanced eXtensible Interface (AXI) interface to the system bus for writing directly to system memory. To support the
features the TMC allows for three operational modes and comes in three hardware configurations integrated into the chip
design. To drive trace data from a trace source to a trace sink, all TMCs in the path must be programmed to correctly forward
data.

The operational modes are circular buffer mode, hardware FIFO mode and software FIFO mode. Hardware FIFO mode is
the operational mode to forward data along a source-to-sink path. The TMC in this mode acts solely to buffer trace data and
absorb bursty data. It also guarantees that no trace data is lost by the TMC itself by exerting backpressure on the source,
implying trace data has a single point of overflow potential on the PS side. Both circular buffer and software FIFO mode are
mainly used for either sampling-based profiling or debugging purposes and making sure Coresight has been properly config-
ured. In circular buffer mode, the buffer acts as the final trace sink and stores all trace data in its dedicated SRAM. Even for a
very short trace session the buffer will wrap and trace data will be lost. However, this allows for reading trace data directly
from the associated SRAM after memory mapping. This provides a good starting point for checking ETM configurations or
running sampling-based profiling. In software FIFO mode the data can be read from the APB debug interconnect. This is

21

also not practical for trace sessions, as the throughput requirements will not keep up with generated trace data, but a useful
alternative to circular buffer mode for sampling.

A TMC comes in three hardware configurations, Embedded Trace FIFO (ETF), Embedded Trace Buffer (ETB), and Embed-
ded Trace Router (ETR), each supporting a different set of operation modes. To avoid confusion, we clarify that ETB is both
a hardware configuration of the TMC and the name of the predecessor specification to the TMC, sometimes seen in older
devices. If the TMC is configured as an ETB or ETR, it only supports the circular buffer and software FIFO operation, while
an ETF additionally provides hardware FIFO mode. However, only an ETR has an AXI slave interface for the system bus
and subsequently system memory. Any TMC that is on the path from source to sink must be an ETF and support hardware
FIFO mode. We add TMC support to the CSAL, since it previously only supported programming TMCs as circular buffers
(Section 4.3.1).

3.5 Performance Monitoring Unit
Almost any processer nowadays has a PMU. In a nutshell, the PMUmaintains individual counters for architectural or microar-
chitectural events, such as cache accesses or retiring instructions, and increments the counters for each event occurrence.
When the counter overflows, the PMU triggers an interrupt (nPMUIRQ) which is exported to both the Cross-triggering-
network and to external hardware. The counters can be either sampled from software by reading the event counter registers
or the PMU may drive the events onto the PMU event bus to other Coresight devices.

This hardware is also what is typically used for profiling software like Perf [10] and most profile-collecting systems like
AutoFDO [35] and Bolt [67]. Almost all sampling-based techniques use the PMU in some shape or form.

PMU ETM/PTM

Processor

CTI

Core 0

Cortex A53

PMUEVENT
PMUIRQ

PMUEVENT

external hardware

Figure 3.2: PMU event bus on the Cortex-A53

3.5.1 PMU Events
TheCoresight PMU is tightly coupled to the rest of the Coresight infrastructure and allows for interaction between the devices
that go beyond polling PMU counters. The PMU can export events to the internal debug hardware, typically both the CTI
and the ETM, or to external hardware, including the PL on an SoC. The event bus connections of a Cortex-A53 are illustrated
in Figure 3.2. In this example, the internal PMU events are only sent to the ETM. The overflow event PMUIRQ is internally
only sent to a CTI.

Table 3.2 shows a handful of PMU events that give relevant performance information on a running application. These
events can be used to monitor performance, giving an overview of how well an application is performing or how many

22

Table 3.2: Collection of PMU events of interest for performance profiling available for a Cortex-A53 processor [24].

Event Description

L2D Cache Refill

L1D Cache Refill

L1I Cache Refill

L1D TLB Refill

L1I TLB Refill

L2D Cache Write-Back

L2I Cache Write-Back

L1D Cache Write-Back

L2D Cache Access

L1D Cache Access

L1I Cache Access

A refill event is triggered whenever a miss occurs in a
cache or Translation Lookaside Buffer (TLB). This event
can be used alongside trace to optimize for better cache
performance

Tracking write-back events can estimate the number of
writes to the system memory are made throughout
execution of a code region.

Whenever a cache is access this event triggers. This can
be used to evaluate memory intensive code regions for
example.

of the system resources it is using. It can also judge how many memory accesses are made throughout execution. It is also
applicable for performance profiling, highlighting regions of code with poor cache utilization and subsequently used for PGO.

The ETM can forward the PMU events to the CTI or embed them into the trace data. Embedding events into the trace data
gives context to each event in relation to a running binary of the processor. This allows a trace analyzer to more accurately
answer questions such as “What is causing the hardware event to occur?” or “How many cycles have passed between two
events?”. One limitation of embedding events into the trace stream is that only up to four events can be monitored simulta-
neously during a tracing session.

The ETM interacts with the PMU event bus through its external inputs wires, programmable by two event control registers
TRCEVENTCTRL0R and TRCEVENTCTRL1R . Both these registers need to be configured to start a trace session with embedded
PMU events.

For optimization, it can be beneficial to understand the variance between the ground-truth event occurrence on the pro-
cesser vs the observed embedded event in the trace stream — the more accurate a PMU event is the better cause and effect
analysis can be made by a trace analyzer. Or in other words, in the case of a cache miss, the most useful feedback a trace
analyzer can receive is which exact instruction causes this miss.

The variance of PMU event embeddings is implementation-defined and no guarantees are made by the Coresight specifi-
cation. They do, however, provide a recommendation of when PMU event data should be inserted into the trace data, shown
in Figure 3.3 [26].

If a PMU event occurs after a branch b0, and before or during branch instruction b1, the event should be observable in
the trace stream between branch instructions b0 and bn, where n is the number of instructions a Processing Element (PE) can
execute concurrently. This gives us a guaranteed window of mapping events to a binary that can be used for optimization.
We also propose an experiment in Chapter 8 to empirically narrow down this window.

23

T
im

e

Processor view Trace view

b0

b0
hardware pmu event

b1

bn

b1

bn

Figure 3.3: PMU event embedding into the trace stream timing guarantees.

3.6 Embedded Cross Trigger subsystem
Complex debugging and tracing features require orchestration among the devices. This functionality is provided by the Em-
bedded Cross Trigger (ECT) [20, 24, 25]. The ECT is propagated through the system with multiple Cross Trigger Interface
(CTI) that are distributed across the system that connects to a system-wide Cross Trigger Matrix (CTM). The CTM is an event
broadcasting network making an event from one CTI observable from another. Typically, each PE will have an attached CTI
that is used by the affine PMU, debug device, and trace source.

In abstract terms, a CTI will interact with a device that listens to events on the CTM. Events follow the ECT specification,
shown on the left in Figure 3.4. We again use the ETM as an example of this, which has an EXTIN and EXTOUT wire to the
CTI. This could allow starting a trace based on an ECT for example.

 CTI CTM

CS Device

Trigger

 CTI

 CTI

PL

ETM/PTM

EXTINEXTOUT

Figure 3.4: CTI and CTM network to enable the ECT.

On SoCs with PL, the CTI may also drive the triggers directly to the PL. To access the triggers from the PL, the block
design configuration of the PS will provide an option to expose the triggers to the PL, as is the case with the US+ shown in
Figure 4.2. Sometimes the CTM will also be able to observe and send events on a processor interconnect, specifically on the
ThunderX the CTM is connected to the Coherent Processor Interconnect (CCPI).

24

The CTI topology is usually not described in detail for each device in a Technical Reference Manual (TRM). When plan-
ning on using the CTI for a project, the CSAL provides a CTI topology detection tool that will generate events on each CTI
and observe on which port of which CTI the event is observed [2]. We recommend always starting such a project with the
topology detection algorithm.

3.7 Trace Port Interface Unit
The Trace Port Interface Unit (TPIU) is the last device for any trace collection strategy that drive the trace data anywhere that
is not in the PS [25, 20]. The only situations when a TPIU is not required is either when trace data is collected in an ETB or
in system memory over the ETR AXI interface.

Three output signals are produced by a TPIU, TRC_DATA , TRC_CTL , and a TRC_CLK_OUT signal. TRC_DATA carries the
trace data received by the TPIU over the ATB formatted into frames. The frame format allows the TPIU to multiplex the trace
port for multiple trace sources. The data signal has configurable width of up to 32 bits. The CTL signal is an optional support
signal for legacy trace analyzers to indicate non-valid trace data. The TRC_CLK_OUT is the output clock that a trace analyzer
can orient itself around. A trace analyzer reading data from the TPIU should be phase aligned with the output clock and the
data signal is valid at both edges of the clock. The output clock will be half the frequency of the input clock. The input clock
can also be decoupled from the rest of the system so the PS cannot affect the TPIU frequency and vice versa. Extending this,
the TPIU can be optionally fed by an external clock source. The external clock source can be provided by the trace analyzer
to throttle the TPIU data rate to avoid losing data.

There are three modes of operation for the TPIU, continuous, bypass, and normal. In continuous mode, the TPIU will send
data at every edge of the clock and send “empty” signals when the ATB has no data for the TPIU to send out. Bypass mode
omits formatting entirely and will send out raw trace data. This is only possible if we have a single active trace source in
the system, or data-to-source reconstruction is no longer possible and the trace data is corrupted. Normal mode is similar to
continuous mode but requires the use of the CTL pin.

Internally, the TPIU will always have a pattern generator that can be used to check the pins and test clock speeds and
synchronize the trace analyzer with the TPIU.

3.8 Trace Links
Trace links are connection components for Coresight components that share an ATB slave interface ATB, for our purpose,
consisting of funnels and replicators, block designs in Figure 3.5. A funnel is requiredwhenevermultiple ATBmaster interfaces
share an ATB slave interface (Figure 3.5a). To forward data the funnel filter mask must be set. An additional arbiter allows the
funnel to assign priorities to slave interfaces, assigning a weight to each slave. This can reduce the likelihood more important
trace data is lost if some trace sources are less valuable than others.

25

 Funnel

ATB slaves

Arbiter

Filterm
ask

ATB master

(a) Trace funnel block design.

ATB Slave

ATB Master 0

ATB Master 1

(b) Trace replicator block design.

Figure 3.5: Trace Link components, block designs adapted from [20].

A replicator is the functional reverse of a funnel, connecting two slave interfaces of components that share a ATB master
interface. In the Coresight topology, a replicator is typically seen towards the end of the ATB path, when the ATB is shared
for multiple trace collection strategies. A replicator normally requires no programming.

In some cases, TMC can be classified as a trace link component with a single ATB master and slave interface, but only if
it is a TMC in ETF hardware configuration mode. The TMC then acts solely as a buffer to absorb bursts in the trace stream.

3.9 ROM Table & Device Discovery
The Coresight Read only Memory (ROM) table holds a list of the physical addresses for every Coresight component that is
available in the system. The only requirement before enabling a tracing or debug session is knowing the base physical address
of the ROM table — all further information required can be read from identification registers and gathered with either trial and
error or topology detection algorithms. The CSAL library provides tools for device discovery that dump all the information
from the Coresight ROM table and identification registers [2]. It further includes both an ATB topology detection algorithm
and a CTI detection algorithm that will show what components share a direct connection and both port numbers for each
connection interface.

26

Chapter 4

Implementation

In this section, we describe our complete system implementation on the Zynq Ultrascale+ MPSoC (US+), from enabling the
tracing subsystem on the PS (Section 4.3) and the handling of Coresight trace data on the FPGA (Section 4.4) up to the ETM
instruction trace decoder (Section 4.5). The implementation can be broken down into two parts, namely the implementation
on the Processing Subsystem (PS) and the implementation on the Porgrammable Logic (PL) or Field Programmable Gate Array
(FPGA).

4.1 High-level Design Overview
We begin with a high-level overview of our system trace data and describe the lifecycle of the trace data, from when it is pro-
duced by a trace source on the PS up until it is decoded and the analysis result are passed back to the PS, as shown in Figure 4.1.
Ultimately, the goal of the system is to process the data produced by Coresight hardware components and create profiling
data that is consumable by a compiler to apply PGO. To achieve this, the data that is exported to the FPGA by Coresight needs
to go through multiple decoding and analysis stages.

First and foremost, the Coresight subsystem must be programmed and all the Coresight components must be configured.
Second, all trace data needs to be driven to the FPGA. All trace sources share the same interconnect, requiring the TPIU to
multiplex the trace port, which is the interconnect to the FPGA. Once received on the FPGA, the trace data must be demul-
tiplexed based on the trace source. Each ETM produces trace data that must be handled independently, meaning each trace
source requires a distinct trace decoding and trace analyzing process. Any results of the analysis are then made accessible to
PS via AXI-Direct Memory Access (DMA).

We present a more detailed walkthrough of the system-wide pipeline to be interpreted alongside Figure 3.1:

(1) Processer execution is observed by a trace source and forwarded to the PS ATB.
(2) Trace data is propogated through the ATB, through funnels, TMCs, and replicators until it reaches the TPIU.
(3) The TPIU uses the trace port to direct trace data from the PS to PL in 32 bit TPIU-packets.
(4) The data produced by the TPIU is logically grouped into frames (Section 4.4.1) consisting of 4 TPIU-packets. The TPIU

produces synchronization metadata to mark the starts of frames. The raw TPIU data enters the frame generator that
converts the raw data to physical frames of 128 bits.

(5) The frames contain a mix of trace data bytes and source identifier bytes. The frame decoder handles the conversion
from frames into trace data byte streams and attaches the corresponding source IDs to each data byte. A maximum of
4 bytes per cycle can be sent out to a single trace decoder.

(6) Once the data and ID separation is complete, the demuxer filters data by source ID and the data is passed to its matching
instruction trace decoder. Each source requires a decoding unit.

(7) All data received by the trace decoder is now stripped of any meta-data and only includes raw trace data in the form
of a byte stream with a maximum bandwidth of 4 bytes per cycle. The trace data follows the ETMv4.0 [26] instruction
trace protocol which is a packet-based protocol. The trace decoder is responsible for interpreting the byte stream as
packets and reconstructing the processor behavior from these packets.

27

(8) How the data output from the trace data decoder is intentionally kept vague and is application specific. Therefore, we
refer to this step as the opaque trace statistics aggregator. Depending on what type of optimizations are intended to be
applied. An example would be to compute branch frequencies.

(9) Results of the whole trace data pipeline can be made accessible again to the PS through AXI DMA. In this work, the
US+ has PL-specific Double Data Rate Synchronous 4 (DDR4).

Opaque Trace Data
 InterpreterOpaque Trace Data
 InterpreterOpaque Trace Data
 Interpreter

Trace Sources

AT
B

TP
IU

AXI DMADDR 4 MIG

AXI HP FPD

(1) (2)

(3)

Frame Decoder

(5)

 Programmable Logic

Frame generator

TPIU-packet

Trace Protocol Decoder

1 per Source

(4)

Frame

Processing Subsystem

Demultiplexer

(6)

trace data

source ID

Trace Protocol Decoder
Trace Protocol Decoder
Trace Protocol DecoderOpaque Trace Data

 Analyzer

(7) trace data

decoded trace data

(8)(9)

AXI stream

Figure 4.1: High-level design overview.

4.2 Implementation Environment
All designs for this project were implemented on the Zynq Ultrascale+MPSoC (US+), with TRMs [18, 16, 17, 43]. TheCoresight
architecture of the US+ is covered in Section 4.2.1. The part identifier is specified in Table 4.1 alongside the Vivado/Vitis tool
suite and Linux versions. The device speed grade is -2i, it has 1 GB of DDR44 SDRAM memory dedicated to the PL and 4
GB of DDR44 SDRAM main memory for PS both running at maximum of 1.2 GHz frequency. It has 4 Cortex-A53 processors
running at a maximum frequency of 1.3GHz and 2 Cortex-R5 processors with a maximum frequency of 533MHz. On the PL
side, the maximum output frequency supported by a Mixed-Mode Clock Manager (MMCM) is 775Mhz.

Table 4.1: Software and device specifications.

Software/Device Version

Vivado & Vitis v2020.1

Zynq Ultrascale+ MPSoC xczu5ev-sfvc784-2-i

Board Mercury XU5 PE1: ME-XU5-5EV-2I-D12E-R1.2

Reference Design (starting point & constraints) ME-XU5-5EV-2I-D12E [8]

Linux Linux buildroot 5.4.0-g751a2e13b

4.2.1 Zynq Ultrascale+ MPSoC Coresight Architecture
In this section, we go over the details of the Coresight topology of the US+. The US+ follows the typical Coresight topology
from Chapter 3 quite closely and the complete topology is shown in Figure 4.2.

28

Each core on the US+ has an ETM, totaling 6 ETMs in the entire system, 2 for Cortex-R5 processors and 4 for the Cortex-
A53 processors. This holds for other Coresight components as well, each core has a PMU, CTI and a debug component. In
this work, we focus only on tracing the Cortex-A53 cores. Tracing of R-5 cores is analogous to tracing the A-53 cores and our
work can be generalized to tracing these cores as well. Additionally, the US+ has one system-wide STM and Fabric Trigger
Macrocell (FTM).

In total, there are two trace sinks, an ETR and a TPIU. Together these components cover all possible trace collection
strategies, including forwarding trace data to the PL through the trace port and writing to system memory with the ETR AXI
interface. It is also possible to do both simultaneously, as the trace data is replicated for the ETR and the TPIU.

The US+ has two interfaces to interact with PL, the Fabric Trigger Macrocell (FTM) and trace port over Extended Mul-
tiplexed I/O (EMIO). The trace data can only be forwarded over the trace port and TPIU, but ECT signals can be sent and
received over either the General Purpose Input/Output (GPIO) pins or dedicated ECT trigger pins. The FTM is not a standard
Coresight component, but an extension to convert PL signals to ECT signals. Our work does not require the use of the FTM
and only the trace port is used to interface with FPGA.

The most important differences to the standard Coresight model are the intermediate funnels and buffers that are placed
between the trace sources and the sink. In total, there are two funnels and two intermediate TMCs. Funnel2 is the last
funnel in the system and all trace data passes through this funnel. Before being replicated to two trace sinks, trace data is
stored in an intermediate TMC ETF2 . The ETMs of the Cortex-A53 also have an additional funnel and TMC shared by the 4
ETMs cores. This is likely because this section of the Coresight topology has the highest trace bandwidth requirements, as the
Cortex-A53 cores run at a higher frequency andwe can trace 4 cores instead of 2. All other sources feed directly into funnel2 .

To start a tracing session on the US+ with a trace collection strategy that requires either the TPIU or the ETR, all the
components must be programmed with the component registers. For tracing the Cortex-A53 cores, this means programming
the ETMs, Funnel1 and Funnel2 , both ETFs ETF1 and ETF2 , the replicator, and either the TPIU, the ETR, or both.
The ETFs must be configured to hardware FIFO mode, as this is the only mode in which an ETF can operate as a link device
instead of a sink device.

29

Advanced Trace Bus (ATB)

Cross Trigger Matrix (CTM)

ETR

Port 0

SRAM

Port 0

Funnel 2

Replicator

Port 2Port 0

STM

Port 0

ETF 2

Port 0

Port 0

Timestamp Generator

2
x
CTI2 x ETM

2 x Cortex-R5

2 x PMU 2 x DBG

 4
x
CTI4 x ETM

Port 0

4 x Cortex-A53

4 x PMU 4 x DBG

CTI

4x

ROM Table
ETM 0
PMU 0
DBG 0

ETF2

Port ? Port ?Port 2

TPIU

Trace Port

GPIO(2x32)

Triggers

 PL

EMIO pl_ps_trc_data

Port 0

SRAM (8KB)

Port 0

Funnel 0

ETF 1

Port 0

Port 0

SRAM

Port 0

Funnel 1

Port 0 Port 1 Port 2 Port 3
CTI FTM

Figure 4.2: Updated Zynq Ultrascale+ MPSoC Coresight Block Diagram with added port numbers from [18], Figure 39-4.

4.3 Programming the Tracing Subsystem
In this section, we describe everything that is required to drive trace data observed by a trace source on a processor up until
it is driven to the PL.

4.3.1 Coresight Access Library
The CSAL provides a set of tools for device discovery and topology detection and an interface for programming the Coresight
devices exposing the device registers [2]. Everything in regards to enabling the trace unit and driving the trace data from
inside the PS up until the trace port is done via the CSAL API. In our case, this includes programming the ETMs, PMUs, CTIs,
funnels, TMCs (buffers), and the TPIU.The TPIU requires additional steps to configure the PS- PL interface and the TPIU runs
in its own clock domain, see Section 4.3.2.

Before programming the devices, the system-specific topology must be registered into the CSAL. This means each phys-
ical address for every component and every connection among components over the ATB, including port numbers, must be
registered. Device addresses are set by either consulting the TRM or scanning the Coresight ROM table. The CSAL supports
a csscan tool to dump information on every Coresight component. Finding the connections between components should
also be specified by the TRM. From our experience, this often proves error-prone, as was the case with the US+ TRM does not

30

ETM/PTM

Funnel

ETM/PTM ETM/PTM ETM/PTM

Advanced Trace Bus (ATB)

Replicator

Buffer

SRAM
TPIU

Figure 4.3: Basic Coresight topology.

specify port numbers1, we provide a more detailed Coresight topology visualized in Figure 4.2 that includes port numbers.
Topology discovery is also supported by a CSAL tool. However, from experience, this will not always work out of the gate
and some details are uncovered through trial and error.

The functionality of the CSAL includes an interface to start a trace session, reading PMU counters, and collecting results
from a buffer. However, the CSAL has quite limited functionality and we need to extend it for our purposes. The CSAL
implements everything in software, and only short trace sessions are supported. Furthermore, the CSAL solely supports the
topology (with any number of trace sources) shown in Figure 4.3. For the Zynq-7000 used in previous work [14, 74], no major
revisions to the CSAL are required. The only change is adding support for TPIU programming. We reuse these changes in
our implementation from the previous work [74], with slight adaptations and integrated the changes into the CSAL.

Still, this is not enough for our needs on the US+, topology shown in Figure 4.2, or any additional complexity in the topol-
ogy. For this work, we modified the CSAL to support a topology of any complexity, enable registering multiple intermediate
TMCs, like the ETF1 from US+ Coresight architecture, programmed as Hardware FIFOs. We also provide a fewmodifications
for tooling support on the ThunderX (Chapter 5).

Omitting some details, every device on the board should be registered either by explicitly calling the cs_device_register
function with the physical address of the Coresight component, or providing the address of the Coresight ROM table. The
device is then stored in a struct cs_device_t (Listing 4.2), which handles the memory mapping and reads the idr registers
to identify the device class, i.e sink, link or source and its capabilities. The ATB topology must be explicitly registered with
cs_atb_register , defining the topology of the trace connections (Listing 4.3).

1 struct cs_devices_t {
2 cs_device_t etm[MAX_APUS];
3 cs_device_t itm;
4 cs_device_t etb;
5 // extended:
6 cs_device_t hw_fifo_tmcs[MAX_TMCS];
7 cs_device_t tpiu;
8 };

Listing 4.1: Board Coresight topology struct [2]

1 struct cs_device_t {
2 /* Memory map bookkeeping */
3 cs_physaddr_t phys_addr;
4 unsigned char volatile *local_addr;
5

6 /* Device class and device affinity */
7 unsigned int devclass;
8 unsigned int devaff0;
9

10 /* ATB topology graph connections */
11 struct cs_device_t *ins[MAX_IN_PORTS];
12 struct cs_device_t *outs[MAX_OUT_PORTS];
13 }

Listing 4.2: Coresight device struct [2]

1some port numbers are marked with ? since we did not need these ports.

31

Once the board setup is complete, the CSAL has an overview of all the devices and the ATB connections. The purpose
of each device for a tracing session, meaning which device should act as the trace sink, and which device acts as a source, is
defined by the fields in a global struct cs_devices_t (Listing 4.1) .

1 /*Setting up a board for Coresight.*/
2 cs_device_t cs_device_register(cs_physaddr_t addr);
3 int cs_atb_register(cs_device_t from, unsigned int from_port, cs_device_t to, unsigned int to_port);
4

5 /*Starting a tracing session.*/
6 int cs_trace_enable(cs_device_t dev);
7 int cs_sink_enable(cs_device_t dev);

Listing 4.3: CSAL tracing and registration API, adapted from [2].

Beginning a trace session on a board requires the configuration of the source device, in our case an ETM, the sink device,
any TMC type for example, and the programming of all the link devices on the path from the trace to the source. This includes
the programming of both buffers and replicators.

Programming replicators and filters is straightforward and typically only requires writing a mask value to a register that
only forwards data from each port based on the given mask.

As mentioned previously, the CSAL supports enabling tracing sessions for simple topologies, but complex topologies are
not supported. More specifically, any topology that has a device on the path from source to sink that is neither a funnel nor
a replicator device is currently unsupported. This includes TMCs, of which we have two on the path from an ETM to a TPIU,
that is ETF1 and ETF 2, see Figure 4.2. We extend the CSAL to add the enabling and disabling of TMCs with the function
definitions shown in Listing 4.4.

The enabling of a TMC involves the following steps:

— Wait until the TMCReady bit is deasserted in the Status register, indicating any previous trace sessions have completed.

— The TMC has a MODE register, which can be set to 0x2 for hardware FIFO mode if the TMC has the ETF hardware
configuration mode.

— The formatter and flush status register (FFSR) must be set to enable formatting. This is required if the TMC has
multiple input trace sources, otherwise, the data cannot be reassoicated with the trace source. The data is formatted
into 16-byte frames, the same as produced by the TPIU shown in Figure 4.6.

— The BUFWM register is set to 0x0 . This register marks the number of 32-bit words that must remain vacant in the
TMC before it asserts being full. Being full is what causes backpressure on a trace source and we wish to minimize the
backpressure generated by the TMC.

— The trace session can begin by setting the enable bit in the CTL register.

The disabling of TMC is almost analogous. However, we wish to avoid losing any trace data that is still being held in the
TMC. To cleanly shut the tracing session down, we must set the device to “stop on flush” in the FFCR and manually trigger a
flush event. We must wait until the flush event is complete before we disable the device. The TMCs should always be disabled
from closest to the source to closest to sink, so no data remains stuck in the TMCs.

1 /*Programs a TMC as a hardware FIFO */
2

3 /* dev must be a TMC in the ETF hardware configuration. */
4 int cs_tmc_hw_fifo_enable(cs_device_t dev);
5 int cs_tmc_hw_fifo_disable(cs_device_t dev);

Listing 4.4: Extension of CSAL to support TMC as HW FIFO

32

To achieve a successful run of a tracing session, the only thing left to do is modify the function cs_source_enable such
that it continues enabling funnels and replicators even if it hits a TMC. This is a small change with a few LOC and consists
only of continuing the recursive call through the ATB.

4.3.2 Programming the Trace Port Interface Unit
The TPIU is a unique component as it exposes an interface to drive trace data off the PS, including off-chip or to the PL. On
the US+ the TPIU requires an external clock, in addition to programming the component with registers. In our internal CSAL
we already have an extension to support TPIU programming provided by Schmid, which we were able to reuse. However, we
encountered some challenges when it came to setup the external clock.

4.3.2.1 Demystifing the Trace Port Interface Unit Clock Speed

The TPIU packetizes data in the form of frames (Section 4.4.1) and may output this data over EMIO to the PL. It runs in
separate clock domain so that it is not coupled to an on-chip clock. This allows a trace analyzer to configure the TPIU clock
based on its supported throughput, see Figure 4.4. Setting up the TPIU clock is surprisingly shrouded in uncertainty, as there
is conflicting information between the US+ TRMs and Vivado US+ PS IP (Table 4.2). Note that TPIU is stated to transmit at
a double data rate, meaning data is produced on each rising and falling edge, implying a maximum data rate of 250Mhz, and
further also suggesting that ps_pl_trc_clk with a maximum clock range of 250Mhz sets the data rate and not the clock
rate. This is in fact the case, even though the implemented design in Vivado will throw a pulse width timing error (Table 4.3).
A pulse width timing error typically occurs when clock frequency passed to an underlying hardware primitive is not encap-
sulated by its valid frequency range [15]. In our case, this can be ignored, and most likely stems from a mistranslation of
constraints between US+ Data Sheet (DS) and the Vivado IP.

To confirm this we ran a simple micro-benchmark to read the data directly from the ps_pl_trc_data pin at varying
TPIU and reader clock speeds. Test pattern generators are supported by the TPIU and a possible test the pattern can generate a
stream of walking zeros, giving a point of reference for the expected data. When the reader is too fast for the TPIU we should
expect to see multiple identical values in succession. Or, we miss values if the the reader is too slow respectively. The experi-
ment confirms that setting both readers and TPIU clocks to 250Mhz is the maximal supported throughput and works correctly.
Setting the TPIU clock speed any less will result in reading duplicate values. We safely disregard the failing timing constraints.

PS Ultrascale+

pl_ps_trc_clk
ps_pl_trc_data

ps_pl_trc_ctl

32

1

trace_clk_out

Figure 4.4: TPIU EMIO Pins

Clock Max Source

PL_PS_TRACE 125 MHz US+ TRM [18]

EMIOTRACE 125 MHz US+ DS [16]

pl_ps_trc 250 MHz Vivado US+ IP

Table 4.2: Reported clock ranges.

Check Type Required Slack

Min Period 8ns -4ns

Low Pulse Width 4ns -2ns

Hight Pulse Width 4ns -2ns

Table 4.3: Pulsewidth error at 250Mhz

4.3.2.2 Applying PS Changes to the Zynq US+

To run our design on the US+ we must program the FPGA with a bitstream and program the PS if any configuration changes
are made on the PS block design in Vivado. The former is seamless with both the Vivado or Vitis toolchain, but we faced some
challenges with the latter. Programming the PS broke the Universal Asynchronous Receiver-Transmitter (UART) terminal
that we relied on. For our design, changes to the PS are necessary to program the TPIU. Failing to apply PS modifications,
like configuring the trace port clock, results in an unpowered TPIU and the system crashes whenever an access is made to
unpowered TPIU registers. In this section, we outline the necessary steps to apply modifications made to the PS while main-
taining an accessible UART terminal to a running Linux OS.

Programming the device from the Vivado hardware manager only writes the bitstream to the PL. Making any changes to
the PS is not realized by this step. For applying changes to the PS, we direct our attention to creating a platform and applica-
tion project with Vitis by exporting the hardware from Vivado with an Xilinx Support Archive (XSA) file. This also generates

33

PMU

CSU

RPU

APU

Time

Release CSU

Load FSBL

FSBL

ATF U-boot Linux

PS Modifications with FSBL

Boot from QSPI

PS Modifications with psu_init.tcl

Figure 4.5: Adapted bootflow from [17].

a set of boot components, including a First Stage Boot Loader (FSBL) and psu_init.tcl script, which are the responsible
components for PS configuration updates. The FSBL is additionally required to load further higher-level boot components
like the Arm Trusted Firmware (ATF), U-boot and ultimately the OS, as illustrated by Figure 4.5. The psu_init.tcl script
directly affects the PS configuration and is invoked by the FSBL (as C code files instead of tcl: psu_init.c/h) [5]. Vitis
provides the option to use either the FSBL or the The Tool Command Language (tcl) script for PS initialization.

A typical order of operations when booting the with new PS configurations executes the following steps: Resets the entire
system, including Application Processing Unit (APU) and PL, programs the PL with a bitstream, initializes the PS with either
the FSBL or Tcl script, holds the processors in reset to download the desired executables (for example a standalone executable
or a boot image), and finally clears the reset to allow the processor to continue. In our case, we have a bootable Linux image
on Quad Serial Peripheral Interface (QSPI) flash from which we wish to boot.

The Vitis toolchain raises some issues for booting into Linux, with both the FSBL and the Tcl script the UART terminal
is unresponsive after initialization. It is unclear whether we have properly entered even U-boot at this point or this is a
UART issue. When using FSBL, UART terminal prints “entering FSBL”, but is unresponsive after. When booting with the Tcl
script, no output is shown at all. However, after various attempts, we found a workaround solution by applying the following
commands:

(1) Connect to the board with a UART terminal
(2) Connect JTAG and target the PSU.
(3) Use Power on Reset (PoR) to restart the sytem.
(4) Hold the processor in reset after entering U-boot.
(5) Run rst -system over JTAG.
(6) Load the Tcl script with source <path-to-tcl-script>/psu_init.tcl generated when creating an application

or platform project with Vitis.
(7) Run psu_init on the JTAG terminal.
(8) Optional check to see if the changes have been applied and in our case TPIU registers are readable with rrd

coresight_soc_tpiu . If successful, this will display register values, for example, supported_port_sizes:
FFFFFFFF , if not, will display supported_port_sizes : N/A .

(9) Run con on the JTAG terminal to allow the processor to resume execution and booting into the Linux kernel.

Once these steps are complete, all PS changes take effect. If no further changes are required, it is sufficient to directly
program the FPGA with the bitstream.

34

4.4 Handling Frames
In this section, we describe all the necessary steps between reading data from the PS through EMIO that is sent out by the
TPIU, up until generating the instruction trace stream that can be interpreted by an instruction trace decoder. The TPIU sends
data in 32-bit chunks that is read from the EMIO and logically form 128-bit frames (Section 4.4.1). This frame data must be
converted into multiple individual trace streams. To this end, we require a frame generation stage (Section 4.4.2), a frame
decoding stage (Section 4.4.3) and finally a demultiplexing stage (Section 4.4.4), producing multiple raw trace stream that are
each driven to their own instruction trace decoder.

4.4.1 Frame Format

Data
(byte 1) FIoD

(byte 0)

Bit 0Bit 31

Data
(byte 3) FIoD

(byte 2)

Data
(byte 5) FID/Data

(byte 4)
Data

(byte 7) FIoD
(byte 6)

Data
(byte 9) FIoD

(byte 8)
Data

(byte 11) FIoD
(byte 10)

Data
(byte 13) FIoD

(byte 12)FIoD
(byte 14)ABCDEGHJ

Mixed ByteAuxiliary byte Data byte

Matching auxiliary bit

Figure 4.6: Frame format containing seven bytes of trace data, seven bytes of either an ID or Data and one auxiliary byte.
The auxiliary bit either completes the data for ID/Data byte, or denotes at which byte the new ID takes effect [27].

The frame format is the logical representation of the data being transmitted by the TPIU. It multiplexes the outgoing trace
port for the trace sources and makes it possible for a trace analyzer to reassociate trace data with the appropriate trace source.
The frame, visualized in Figure 4.6, is made up of 128 bits and contains both source IDs and trace data. More specifically, it
contains eight bytes of mixed ID or Data bytes (IoD), which may be either a new ID or data, and seven always data bytes in
alternation. The last remaining byte is an auxiliary byte. Source IDs are encoded in seven bits, and the Least Significant Bit
(LSB) of an ID or Data (IoD) byte is used to denote whether the byte is a data byte or an ID byte. If an IoD byte contains data,
we are missing the LSB. To recover the entire set of eight bits, the auxiliary byte completes the data held by an IoD byte. If
instead, the IoD byte carries a new ID, the matching bit in the auxiliary byte marks at which point the new ID takes place.
The new ID can take place from either the subsequent data byte or mixed IoD byte after that. The auxiliary bits are matched
to their mixed bytes based on the position in the frame, meaning the first auxiliary bit A belongs to the first mixed IoD byte,
the second auxiliary bit B belongs to the second mixed byte, and so on.

4.4.2 Frame Generation
The TPIU does not directly output frames, but instead, a stream of configurable width TPIU packets every clock cycle. We set
the width to the highest possible width of 32 bits for maximum throughput. The frame generator is the first module in the
pipeline and takes the input directly from ps_pl_trc_data (Figure 4.4) EMIO pin and produces frames, yielding at most
one frame every four cycles.

Depending on which mode the TPIU is running in, the frame generation process may differ slightly. In our case, we use
the TPIU in continuous mode(Section 4.3.2). Synchronization packets (of the form 0x7FFFFFFF) are sent out periodically

35

indicating the start of a frame and half-synchronization packets (of the form 0x7FFF7FFF) are sent out when the TPIU has
not received any data through the ATB from the trace sources at the current cycle.

The Finite State Machine (FSM) is shown in Figure 4.7. We begin frame generation by scanning for a synchroniza-
tion packet. Once synchronized, we begin filtering for valid data, i.e. packets that are neither synchronization nor half-
synchronization packets. Whenever a valid TPIU packet is received, the FSM increments the state and records the valid data.
Once four valid data packets are received, a full frame is created and can be sent out alongside a valid signal. When a half-
synchronization packet is received we must discard it and continue with the current state.

Exactly when the fourth valid data packet has been received, a valid signal is sent alongside accumulated 128 bits of frame
data. In any other scenario, the valid signal is de-asserted. The frame generator gives its consumer a window of a single cycle
to read the data and no ready signal is used. This presents no issue as long as the rest of the pipeline can handle a throughput
of at least 32 bits/cycle.

Receiving a synchronization packet when having only partially processed a frame means something must be misconfig-
ured and usually suggests the design and TPIU configuration should re-examined. From experience, this almost always comes
from a mismatch in TPIU and frame generation clock frequencies. For now, we attempt to resynchronize, but we note that
the Error State in Figure 4.7 has never been observed in practice.

Unsynchronized

Synchronized

Handled 1st TPIU packetHandled 3rd TPIU packet Error State

!SYNCH

SYNCH

SYNCH

SYNCH

HALF_SYNCH

H
A
LF

_S
YN

C
H

H
A
LF_SYN

C
H

SYNCH

OUT_DATA[31:0] <= IN_DATA

OUT_DATA[63:32] <= IN_DATAOUT_DATA[95:64] <= IN_DATA

OUT_DATA[127:96] <= IN_DATA

Handled 2nd TPIU packet

OUT_VALID <= 1

HALF_SYNCH

Figure 4.7: Frame generation FSM shows how to handle the TPIU packets. OUT_VALID is only set to one when receiving
valid data at stage “Handled 3rd TPIU packet”, and is cleared at any other state.

36

4.4.3 Frame Decoding
Once frames are reconstructed, the frame decoder extracts raw trace data and the source IDs for each trace data byte. We
describe the frame decoding implementation in this section.

Registering a frame arrival with an accompanying valid signal from the frame generator kickstarts the frame decoding
process that separates the trace data from the trace source ID encodings. The complete frame is held as a signal while being
processed row-by-row (We refer to the chunks of 32 bits in a frame as a “row”, but this is solely logical and not physical).
Processing an entire frame takes a total of four cycles, complying with the throughput requirements of the frame generator.

The frame format interleaves ID and trace data, where the ID sets the current trace source ID of all subsequent data until a
new ID is seen. In addition, the auxiliary byte is used to either complete the data from a mixed IoD byte, or denote when the
new ID takes effect, so the auxiliary byte must be reused across decoding of all frame rows. The decoding process (Figure 4.8)
can be thought of as a function Decode_Frame : row× auxByte× lastID → outData× outID× valid× newLastID.

1 Frame (128 bits) / 4 cycles

OD3 OD2 OD1 OD0

32 bits of Data, 28 bits of ID, 4 bits of Valid / cycle

Output Data (OD)

OID3 OID2 OID1 OID0

Output IDs (OID)

K3 K2 K1 K0

Valid bits

last ID

Data F0IoD0Data IoD1

byte0byte1byte2byte3

F1

Auxiliary byte

A0A1

Figure 4.8: Row-wise frame decoding.

For each row we produce four keep signals K0 ...K3 informing the consumer which of the four Output Data (OD) signals
OD0 ...OD3 contain valid trace data. OD is only valid if the corresponding byte is a data byte or a mixed byte and the LSB is
zero. The OD is reconstructed with the auxiliary bit if necessary. Formally:

Ki =

1 if (bytei ∈ Data) ∨

(bytei ∈ IoD ∧ bytei[0] = 0)

0 otherwise
ODi =

{
bytei[7 : 1]⊕ aux(bytei) if bytei ∈ IoD
bytei otherwise when bytei ∈ Data

where the ⊕ operation is a bit concatenation operation and aux(bytei) fetches the appropriate auxiliary bit.

Each OD needs an associated trace source ID to pass the trace data to its matching trace decoder, requiring an additional
set of four Output IDs (OID) signals OID0 ...OID3. The OIDs are computed by combinational logic of lastID state, and all
previous mixed IoD bytes in the same row and their respective auxiliary bits. Formally:

37

OID0 = last ID

OID2 =

{
IoD0 if F0 = 1
last ID otherwise

OID1 =

{
IoD0 if F0 = 1 ∨ (F0 = 1 ∧ A0 = 0)
last ID otherwise

lastID = OID3 =

IoD1 if F1 = 1 ∨ (F1 = 1 ∧ A1 = 0)
IoD0 otherwise when F0 = 1
last ID otherwise

To gain some intuition, refer to figure Figure 4.8. If F0, the LSB of the byte0 and first IoD byte, is asserted, byte0[7:1] sets
a new source ID. If the matching auxiliary byte A0 is 0, the new ID takes effect from the byte byte1. This lets us set OID1 to
ID0. If, however, A0 is asserted, the new IDwill only take effect at byte2, meaning OID1 is set to lastID and OID2 is set to IoD0.

There is one exception to this rule: if the last byte before the auxiliary byte (byte 14) contains a new ID, the matching
auxiliary bit must be zero and the new ID takes effect immediately at the beginning of the next frame. The frame format also
guarantees that whenever an ID switch is made at least one byte of trace data exists before a future ID switch is made.

Finally, LastID is set to the same value as OID3 to preserve the ID state across both subsequent rows and frames.

4.4.4 Demultiplexing the Trace Stream

32

27

4

DataIDs Keep

MatcherSource ID4

27
4

4

Out Data Source0 ... Source3

4
MatcherSource ID4

27
4

4

4
MatcherSource ID4

27
4

4

4
Matcher4 * Source3 ID

27
4

32

Out Keep Source0 ... Source3

27

Figure 4.9: Demuxing decompressed frames from four trace sources.

After the frame decoder decodes the frames, the demultiplexer receives a stream of bytes, a source ID for each byte and
a keep signal for each byte. Based on these values, each byte of raw trace data must be sent to the trace decoder that is
responsible for handling said trace data byte.

Any trace source, like an ETM, ITM, or STM, requires its own decoder and will have an associated ID. For an ETM, the ID
is set by the TRCTRACEIDR.TRACEID register, which must be encoded into the demultiplexer a priori.

Demultiplexing, as shown in Figure 4.9 is a straightforward process, as the frame decoding does most of the heavy lifting.
The data bytes bypass the demultiplexing process and the demultiplexer sets new keep bits to mark each raw trace data byte
as valid for each decoder. To filter only the valid source ID for each decoder, the demultiplexer has a hardcoded value for each
trace source ID, concatenated four times, in our case forming a total of 27 bits. The results of the matcher are then ANDed
together with the valid data bits received from the frame decoder.

38

4.5 Instruction Trace Decoder
The trace decoder is by far the most complex unit in the system-wide pipeline. A trace decoder must take in a stream of bytes
produced by a single trace source, in our case an ETM, interpret this byte stream as a packet stream, and extract the semantics
of the packet stream into meaningful information. To be clear, by semantics, we mean explicit control flow information of an
executing binary that is being traced. In simple terms, a trace decoder should be able to say: “the CPU has executed a branch
instruction at virtual address a0, has taken the branch, and jumped to virtual address a1.“ After the execution of a binary has
been completed, the entire execution trace, i.e every jump in the program counter, should be traced and decoded.

We start this section by giving a detailed overview of the ETMv4.0 trace protocol specification (Section 4.5.1). We elaborate
on the design challenges in decoding this protocol given our system-level throughput requirements and motivate why our
design was chosen (Section 4.5.2). We conclude this section with a discussion to summarize the key learnings and potential
design mistakes that were made along the way (Section 4.5.4).

4.5.1 Emedded Trace Macrocellv4.0 Trace Stream Protocol
Our work focuses on the ETMv4.0 specification [26], which is the specification implemented on both the US+ and the Thun-
derX.The ETMprotocol is considered the successor to the PTMprotocol [23] and supports a wider range of additional features,
and was the main trace source for previous work done by Schmid [74]. We emphasize at this point that the PTM and ETM
protocols are substantially different and there is no direct extension opportunity from a PTM decoder to an ETM decoder, but
instead must be entirely reimplemented. To avoid confusion, there are three groups of Coresight program trace specifications,
the PTM, the ETMv1.0 to ETMv3.5, and the ETMv4.0 to ETMv4.6 specification. Everything in this section may only hold for
the latter.

The main purpose of a tracing unit is to provide a compressed stream of trace protocol packets, allowing a trace ana-
lyzer to reconstruct the flow of the program. To this end, every single branch instruction encountered during execution is
recognized by a trace source and the information is encoded into a packet. ARM refers to instructions that alter the control
flow of the execution as P0 elements. This includes all branch instructions and, additionally, the Instruction Synchronization
Barrier (ISB) instruction, which flushes the entire instruction pipeline of the processor. From now on, we will use the terms P0
instructions and branch instructions interchangeably. The tracing of P0 instruction is contained in so-called Atom packets,
where an Atom packet holds information off multiple P0 instructions. In the name of precise terminology, we refer to a data
point produced by exactly one P0 instruction as an Atom element, that is subsequently sent out as part of an Atom packet.
An Atom packet can contain 1-24 Atom elements.

Alongside the generation of Atom elements for P0 instructions, the trace source will send out explicit address packets.
The address packets embedded into the trace stream modify address values in the trace state, hence the protocol is a stateful
protocol and some packets can only be decoded in the context of the trace state. This holds for the Atom packets as well.
Alongside three address registers, the trace state, among other things, includes information regarding the processor execution
environment and timestamp information (see Section 4.5.1.1 for more details).

The combination of address packets and Atom packets, of which there are many types, form the backbone of the protocol
and are responsible for tracing the flow of execution. There are many additional packets (Table 4.4), but we provide some
intuition first. Observe a simple step-by-step tracing example shown in Figure 4.10.Tracing begins at instruction address
0x0000 in line 0. This triggers the ETM to send a Trace On packet to inform a trace analyzer that a trace session is be-
ginning. The initial values of the address registers A0 and A1 are undefined. A Long Address packet sets the first address
register to the current instruction address of the first P0 element. Note that the first instruction is a direct branch instruction,
a P0 element, so an Atom packet is generated. Each Atom element in an Atom packet is marked as either executed (E) or
not executed (N). We believe the wording here is somewhat misleading, and we will refer to Atom E elements as taken and
Atom N elements as not taken elements.

Line 1 has an unconditional branch, therefore the branch is taken and produces an Atom E element. The following two
instructions, lines 1 and 2, are not P0 elements, no packets are needed. On line 3 however, we hit another P0 element, namely
a conditional direct branch. In our scenario, the equal flag is not set, the branch is not executed, and an Atom N element
is generated. The following P0 element is more interesting; an indirect branch. An indirect branch must not only produce

39

Trace PacketsInstructionsAddresses

0x0000

0x1000

0x1004

0x2000

0x2004

ADD

CMP

BEQ -> 0x4000

Long Addr 0x0000

1

2

3

6

7

ADD

0

0x1008

B -> 0x1000 Atom E

Trace On

Atom N

BX5 0x100C

ADD

Atom E

Long Addr 0x2000

MOV

4 0x100A

Trace State

- -

0x0000 -

0x2000 0x0000

A0

A0

A0

A1

A1

A1

Figure 4.10: Illustration of trace protocol packets generated per executed instruction

an Atom element, but an address packet as well. Without updated instruction address values, a trace analyzer would not
be able to infer the branch target. In this specific example, the ETM sends out another Long_address packet, causing the
address registers to shift such thatA0 now contains the new address, andA1 the previous address. We omit the third address
register for simplicity. The branch target of an Atom element is always held in the first address register A0.

A standard ETM configuration could produce the trace data shown in Figure 4.10. Notice, that direct branches do not
generate any address information, instead the address can only be inferred with analysis combining both the trace data and
the program image. More specifically, the first P0 element in the control flow at the address 0x0000 causes a jump to
0x1000 . But this is not reflected in the trace packet stream or in the trace state. Indeed, the trace protocol is designed under
the assumption that the program image is available during the decoding process [26]. This defeats the purpose of decoding
online on the PL, or requires the decoding logic to perform the reassociation between the observed P0 elements and their
address offsets using the program image on the fly. We briefly discuss this in Chapter 8, but there is a key feature that enables
interpreting the trace data without the program image, namely branch broadcasting. This feature is part of a trace source and
must be enabled in the configuration register of an ETM and forces the ETM to output address packets for direct branches as
well. Importantly, only the US+ supports branch broadcasting, the ThunderX does not!

Trace PacketsInstructionsAddresses

0x0000

0x1000

0x1004

ADD

CMP

Long Addr 0x0000

1

2

0 B -> 0x1000 Atom E

Trace On

Trace State

- -

0x1000

A0

0x0000

Long Addr 0x1000

A1

A0 A1

Figure 4.11: Example of first three lines with branch broadcasting enabled.

40

In Figure 4.11 we show the first three lines of the same program with branch broadcasting enabled, the address registers
now reflect the jump location of the first P0 element, even though it is not an indirect branch. Even still, if we wish to extract
the semantics of the form: “the CPU has executed a branch instruction at virtual address a0, has taken the branch and jumped
to virtual address a1.“ is still not possible without the program image due to lacking jump source information, in the example
the address a0 is unresolvable. Take the BX instruction on line 5 with the address of 0x100C . If we had the last jump
target address (with branch broadcasting would be 0x1000), to infer 0x100C from the trace data we would need to know
how many instructions have occurred between line 1 and line 5 — information that is simply not available to a trace analyzer
without the program image. Instead, the best semantics we can produce in terms of control flow is: “the CPU has executed
a branch and jumped to target address a1”. In other words, we can reconstruct the exact control flow, but the information is
not precise enough to recreate an entire CFG.

In summary, we have illustrated the basic building blocks of the trace protocol, namely the Atom and address packets.
Together with the branch broadcasting feature, any trace can be decoded without the program image in the PL, giving us
the virtual instruction address of every branch target. For now, our implementation relies on branch broadcasting. Moving
forward, there are around 400 different (structural) packet types in total for the ETMv4.0 specification (compared to the 11
for the previous PTM specification), as reported by Zeinolabedin et al. [89]. The additional packet types build on top of the
flow tracing that is done with Atom and address packets by adding additional tracing features. We continue with describing
the trace state before moving on to highlighting the most important packets and subsequently providing an overview of all
packet types in Table 4.4.

4.5.1.1 Trace State

The trace state holds all the context information between packets in the stream that is required to interpret a packet. It
includes the following values:

— Three address registers A0,A1,A2 ∈ (64 bit address, 2 bit Instruction set). When branch broadcasting is enabled, an
Atom E element always indicates a jump to the address held in A0. If branch broadcasting is not enabled, this only
applies to indirect branches. Address registers A1 and A2 are only used for compressing the trace data stream. The
address registers also hold an additional two bits to identify the Instruction Set Architecture (ISA), which we omit for
this work.

— The last seen Timestamp value (TS) (64 bit)

— Context identifier (CID) (32 bit)

— Virtual context Identifier (VMID) (32 bit)

— Security level (SL) ∈ {Secure, NonSecure}

— Exception level (EL) ∈ {EL0, EL1, EL2, EL3}

There are additional trace state values that we currently do not support, but are required to support resynchronizing
the data trace stream to the instruction trace stream, handling tracing of speculative execution, and matching a conditional
instruction to the result flags of the conditional instruction (Application Program Status Register (APSR)). These values are:

— P0 keys: each P0 element has a key associated with it that is used to match the P0 element to the P1 elements on a
separate data trace stream.

— C and R keys: each conditional instruction will have an associated C key that can be matched to the result flags of the
conditional instruction that each have an R key.

— curr_spec_depth : this value holds the number of P0 elements that have been seen by the trace analyzer that are
speculatively executed but not yet retired.

A trace analyzer is responsible for keeping these values in the trace state up to date, which includes incrementing the keys
and speculation depth when certain packet types are seen. These remain unimplemented for now as they are not required

41

for the ETMs on the ThunderX or the US+.

For parsing a stream we add additional custom values to this trace state. These are not used for used by the official
protocol:

— Cycle count value (CC): this value indicates a lower bound of the number of cycles that have gone by since the last time
this was updated. This value gives more precise cycle timing values than the timestamp value. The timestamp value
gives a global system-wide timing overview, while this gives a fine granularity basic-block timing information. How
often this value is updated depends on the ETM configuration.

From now we refer to the trace state in our decoder as T , which contains all of the above values. Every value in the trace
state is updated by packets produced by the ETM and some packets only exist to update the trace state.

4.5.1.2 Trace Packets

We dive into the details of trace packets. Every packet in the ETM the specification is identified by a header byte. The header
is always exactly one byte and usually contains more information on the subtype of the packet. For example, a Timestamp
packet has the header byte 0b00000010 or 0b00000011 . The LSB identifies the subtype of the packet — sometimes the
timestamp packet will carry up to three bytes of cycle-counting information on top of the timestamp information, in this case
only if the LSB of the header is 1.

A packet may also consist of only a single header byte. We have seen examples of this already in Figures 4.10 and 4.11.
Every Atom packet is only a header and this applies to all 6 formats of the Atom packet.

Most packets, however, contain a payload in addition to the header. A payload is a sequence of bytes, together forming
the packet payload. As a rule of thumb, the payload will generally carry values that update the trace state, as is the case with
Long Address packets we have seen so far.

Each payloadwill have an integer number of bytes, so the beginning of every packet is always byte-aligned. A payloadwill
end either implicitly, meaning a payload has reached the maximum number of bytes for a specific payload type, or explicitly,
meaning the MSB of a payload byte should be interpreted as a continuation bit C , and the continuation bit is set to zero.
Payload sizes are potentially unbounded, so ∈ [0 - ∞]. The termination condition for a packet is different for each packet
type, but we categorized these into three payload types:

— Header Only (HO): These packet types consist only of a header byte.

— Fixed Size (FS): These packet types have a finite maximum size and every packet will always be the same size. There
are no continuation bits in the payload bytes and all 8 bits contain valid data.

— Unbounded Continuous (UC): These packet types have no maximum size and only end if the continuation bit of a
payload byte is 0.

— Bounded Continuous (BC): These packet types have a maximum size, but may have fewer bytes in the payload than
their maximum size. These payloads have two termination conditions, namely if we reach the maximum size or if the
continuation bit is zero. If the payload size is the maximum possible payload size of this packet type, then it has no
continuation bit, in other words, we require the byte index to tell if a payload is ending.

To be clear this categorization is not made in the specification but is crucial for efficient decoding. We continue by giving
an example of FS packet by showing the Long Address packet (Figure 4.12), to give an intuition of the payload types while
simultaneously showing the effects of the packet on the trace state. The Long_address 2 packet will always have exactly 8
bytes of data in the payload. No checking for continuous bits is required to determine when a payload has finished, only the
indices of the bytes.

2There are four different Long addresses packets for different ISAs, our implementation supports all of them.

42

Addr[8:2]

Addr[15:9]

Addr[23:16]

Addr[31:24]

header

byte 0

Long Address header

byte 1

byte 2

byte 3

Addr[39:32] byte 4

Addr[47:40] byte 5

Addr[55:48] byte 6

Addr[63:56] byte 7

Res

Res

Figure 4.12: Long_address packet, adapted from [26]

This packet also modifies the trace state by writing a value to an address register. Whenever any address packet is received
the address register values are shifted, dropping the last address register in the process. Then, the value held by the payload
of the address packet overwrites the first address value. Notice in Figure 4.12 the first 2 bits of the address are not contained
in the payload and are always assumed to be zero, in this case, the ISA has 64-bit instructions.

We formalize the address update in Algorithm 1, the range of address bits contained by the payload, h and l, depend on
the ISA, which will always be encoded into the header of the packet. For the Long Address packet in Figure 4.12, this will
always be from [63:2].

Algorithm 1: Updating the address registers in the trace state.
input : Address registers A1, A2, A3, new address An,

where address An holds bits of new address information in the range [h:l]
output : Updated address registers A′

1, A′
2, A′

3

Procedure shift is
A′

0←A0

A′
1←A0

A′
2←A1

Procedure overwrite is
A′

0[h:l]←An[h:l]
/* For a full packet: */
Procedure updateAddress is

overwrite ◦ shift

Compare the Long_address packet to the Short_address packet in Figure 4.13, which is an example of BC packet
type. This packet is bounded continuous since it may have a maximum of two payload bytes, but also could only have one.
This determination cannot be made solely from analyzing the header byte, but the MSB of byte 0, the continuation bit, needs
to be checked to see if there is another payload byte incoming.

Addr[8:2]

Addr[16:9]

header

byte 0

Short Address header

byte 1

C

Figure 4.13: Short_address packet, adapted from [26]

Packets like the Short_address packet are also the reason why A0 cannot be completely overwritten when seeing a
new address packet. The Short Address packet is way for Coresight to compress the trace bandwidth and avoids sending
out redundant address information. For short jumps the target address will already share many of the more significant bits

43

with the value already stored in A0. If we return to our initial trace example in Figure 4.10, an ETM will likely avoid sending
out the Long_address packet on line 5 in favor of sending out a Short_address packet since the most significant bits
are shared with the address already in A0, which are all zero.

At this point we introduce the last address packet type, the Exact_match_address packet. This packet is another
example of a HO packet type, like the Atom packet, that holds the information in the two least significant bits of the header,
index i ∈ [0,2].

headerExact Match Header i

7 6 5 4 3 2 1 0

Figure 4.14: Exact match address packet, adapted from [26]

The purpose of this packet is similar to the Short_address packet and is meant to minimize the trace bandwidth pro-
duced by a trace source. If an address is already contained in one of the address registers, the ETM will send out an Exact
address packet , where the new An is set to the address in the address register Ai. The trace state update still follows Al-
gorithm 1 as usual, the An depends only on the address registers instead of on any payload data.

In practice, this packet will be observed if we are in a loop with no branches inside the loop and branch broadcasting is
enabled. If we assume that for every loop iteration the source sends out an address packet and an Atom packet, the trace of
each iteration will produce 2 bytes with Exact match address packets as opposed to producing 10 bytes of when only
using Long_address packets, a 5× reduction in trace data.

At this point, after introducing a few different types of packets from the trace protocol, we partially formalize the de-
coding process. Packets modify the trace state T and one aspect of decoding the trace stream is applying the trace state
updates. For a packet p that belongs to the set of all ETM packets P , we can describe the decoding process as a state update
d : P × T → T ′, which handles an entire packet P at a given trace state T a and produces a new trace state T ′.

For the address packets we have observed so far, following the address register update algorithm, it holds that the decod-
ing function d is byte-wise decomposable (Equation (4.1)). By this, we mean that modifications do not have to be applied for
a whole packet, but can be broken down into smaller sequential updates for each byte pbi of a packet p. This is important for
the decoding process, we elaborate in Section 4.5.3.2.

d(p) ≡ d(pbn) ◦ d(pbn−1
) ... ◦ d(pb0) (4.1)

However, we require an extra step to make the updates byte-wise decomposable, we break down the updateAddress
procedure from Algorithm 1 into shift and overwrite. The overwrite procedure can be invoked at each payload byte, while
the shift procedure is invoked before any overwrite procedures are performed, meaning once at the beginning of a packet.

Take any address packet we have introduced, for example, the first byte of both the Long_address or Short_address
packet, which holds the bits [8:2] of the new address packet. The overwrite procedure from Algorithm 1 can be applied for
only this payload byte with h = 8 and l = 2 without consideration of any later bytes in the payload, which can be applied
ad hoc when these payload bytes are observed. Of course, the shift needs to be performed before we start overwriting the
registers.

As a matter of fact, we observe byte-wise decomposability from Equation (4.1) to hold for every single packet type in the
ETM protocol and this observation is critical for our trace decoding process.

We proceed with additional important characteristics of ETM packets. The ETM protocol produces some packets that
consist internally of two different packet types concatenated with each other, so we have a payload for multiple packets
under a single header. We discussed an example of this at the beginning of this section, where a cycle-counting payload is
added to the Timestamp packet payload. Another example is illustrated in Figure 4.15. Notice the first 8 payload bytes of
the Address_with_context packet match the payload of the Long_address packet. The remaining 4 bytes contain the

44

Addr[8:2]

Addr[15:9]

Addr[23:16]

Addr[31:24]

header

byte 0

Address with context header

byte 1

byte 2

byte 3

Addr[39:32] byte 4

Addr[47:40] byte 5

Addr[55:48] byte 6

Addr[63:56] byte 7

Res

Res

C V NS SF Res EL

VMID[7:0]

byte 8

CID[7:0]

CID[15:8]

byte 9

byte 10

byte 11

(a) Address_with_context packet.

C V NS SF Res EL

VMID[7:0]

byte 0

CID[7:0]

CID[15:8]

byte 1

byte 2

byte 3

Context header header

(b) Context packet.

Figure 4.15: Comparison of composite packet Address_with_context packet and Context packet, adapted from [26].

payload of a Context packet (shown in full in Figure 4.15b), that updates the trace state values CID and VMID in addition
to the address registers.

We refer to packets like the Address_with_context packet as composite packets. The existence of composite packets
complicates the design of a trace decoder. From an implementation perspective, this requires large parts of the codebase to
be duplicated and overcomplicates the decoding process. As an alternative, we split all the composite packets into smaller
chunks, such that multiple bytes that update the same values of the trace state form a single packet. Concretely, for the
example of the Address with context packet, the entire packet is split into a Long_address packet, a Context
info packet, a VMID packet and a CID packet. This allows us to reuse the code responsible for decoding a Long_address
packet when decoding a composite packet. As a result, the number of structural packet types and subtypes is greatly reduced.
Some of these packets, like the VMID packet, do not exist as true packet types in the specification. We call these internal
packets and they only exist in our internal decoding process, not at the specification level.

Complicating the decoder even further, the entire structure is not always defined in the header. In most cases, the struc-
ture of a payload can be inferred after parsing the header byte, like in both Short_address packet and Long_address
packet, where the header byte contains information on the ISA and which payload byte corresponds to the which bits in the
new address An. This is not always the case, as sometimes the structural information does not fit entirely into the header.
The packet may include an additional information byte that contains structural information on the packet that is required for
parsing. See, the Context packet in Figure 4.15b. The first payload byte is an informational byte: it contains both informa-
tion that is relevant to the trace state, and to the structure of the packet. The first two bits of information byte, marked EL set
the exception level of the current execution, SF denotes that the processor is either in AArch32 or AArch64 and NS defines
the security level. The bits C and V, however, let the trace analyzer know whether the payload contains VMID and CID data
respectively — this is structural information required to properly decode the Context packet.

We have also abstracted away some details of the address packets. Each address packet will have a subtype according
to the ISA and address size. So for both Short_address , Long_address , there are in reality 4 packet types, namely
Short_address_32bit_IS0 , Short_address_64 IS0 , Short_address_32_IS1 , and so on. We are required to distin-
guish these packet types as they determine the length of the packet, and to which address bits each byte of the packet maps
to. IS0 applies to any ISA that is halfword aligned and 32-bit vs 64-bit differentiates AAarch64 vs AAarch32. The ETM packets
of both ThunderX and Cortex-A53 will both fall under the category of 64-bit IS0.

The ETM protocol is complex and there are a large number of different state components and packet types to keep track

45

of. We condense the key learnings from this section. The packets we have introduced show all the important concepts and
all the requirements to successfully decode the trace data. We repeat that the combination of address and Atom packets are
the most important and only these packet types are required to recreate the program flow. An equally important feature of
the protocol is the fact that the decoding function is decomposable into byte-wise applications of a decoding function. This
gives us flexibility in the trace decoding design, especially important for parallelization.

Before moving on to the main challenges faced with designing a trace decoder, we give an overview of all possible packet
types in Table 4.4. We refrain from showing the same level of detail as we have done for the packet types introduced so far,
and for more details please refer to the protocol specification [26]. We emphasize that the packets we introduce in Table 4.4 do
not match exactly with the specification, as we break down all instances of composite packets and represent them as internal
packets. We show both internal and composite packets in the table, marked by column Composite Type (CT) in Table 4.4.

For each packet, we showwhat effects it has on the trace state, the Packet Format (PF)∈ {FS=Fixed_Size,UC=Unbounded_Con-
tinuous, BC=Bounded_Continuous, Ho=Header_Only}, and the Packet Size (PS). We mark whether a packet is composite or
internal in the CT column∈ {C=Composite, I=Internal, N=None}. Composite packets are only part of the specification and not
part of our decoder. Each composite packet is broken up into internal packets. These packets are not in the specification. If the
CT column is None , the packet is neither composite nor internal, and the decoder and the specification share the interpreta-
tion of the packet. For each packet, we specify whether theThunderX (column TX) or the Zynq Ultrascale+ (column US+) can
produce these packets. The last column (column IM) showswhether the packet can be decoded by our current implementation.

The packets are categorized into packet types based on their semantics. The packet types are synchronization, timing,
address and context, events, atom, speculation, conditional, and miscellaneous. The synchronization packets inform the trace
analyzer of trace stream metadata. For example, the A-Sync packet is always the first packet seen in the tracing session
and it denotes the beginning of the next packet. To start decoding, a trace analyzer must scan for an A-Sync packet, after
which it can interpret the next byte as the header of the next packet. Another example is the event packet type that contains
an event code for the PMU events discussed in Section 3.5.

Some packets have multiple different formats, marked in Table 4.4 with Fx. Each format will have a different packet
structure. Having multiple formats allows for different levels of compression relying on the trace state. For example the
Atom packet has 6 different packet formats that all encode a different number of Atom elements and different sequences of
Atom E and Atom N elements.

46

Table 4.4: Complete list of ETM packets from the perspective of our trace decoder. PF=Packet Format, CT=Composite Type,
PS=Payload Size, TX=producable by ThunderX, US+=producable by US+, IM=Implemeted

Type Packet State Effect PF CT PS US+ TX IM

A-Sync — FS N 11 3 3 3

Discard — FS N 1 3 3 3

Overflow — FS N 1 3 3 3

Trace Info P0 key, curr_spec_depth UC C 1-∞ 3 3 3

Trace Info Plctl — UC I 1-∞ 3 3 3

Trace Info Info — UC I 1-∞ 3 3 3

Trace Info Key P0 key UC I 1-∞ 3 3 3

Trace Info Spec curr_spec_depth UC I 1-∞ 3 3 3

Trace On — H N 0 3 3 3

Timestamp TS BC N, I 1-11 3 3 3

Timestamp with Cycle Count TS, CC BC C 1-11 3 7 3

TS Cycle Count CC BC I 1-3 3 7 3

Cycle Count F1 CC, curr_spec_depth BC C 1-11 3 7 3

Cycle Count F2 CC, curr_spec_depth BC N 1-11 3 7 3

Cycle Count F3 CC, curr_spec_depth HO N 1-11 3 7 3

Context CID, VMID, SL, EL, ISA FS C 0-9 3 3 3

Context Information Byte SL, EL, ISA FS I 1 3 3 3

Context VMID VMID FS I 0-4 3 3 3

Context CID CID FS I 0-4 3 3 3

Address+Context A1,A2,A3,CID, VMID, SL,EL, ISA FS C 5-14 3 3 3

Exact Match Address A1,A2,A3 HO N 0 3 3 3

Short Address 32bit IS0 A1,A2,A3 BC I 1-2 3 3 3

Short Address 64bit IS0 A1,A2,A3 BC I 1-2 3 3 3

Short Address 32bit IS1 A1,A2,A3 BC I 1-2 7 7 3

Short Address 64bit IS1 A1,A2,A3 BC I 1-2 7 7 3

Long Address 32bit IS0 A1,A2,A3 FS I 4 3 3 3

Long Address 64bit IS0 A1,A2,A3 FS I 8 3 3 3

Long Address 32bit IS1 A1,A2,A3 FS I 4 7 7 3

Long Address 64bit IS1 A1,A2,A3 FS I 8 7 7 3

Event — HO N 0 3 3 3

Sy
nc

hr
on

iz
at
io
n

T
im

in
g

A
dd

re
ss
es
&
C
on

te
xt

Ev
en

ts

47

Type Packet State Effect PF CT PS US+ TX Im

Atom F1 curr_spec_depth, P0 key HO N 0 3 3 3

Atom F2 curr_spec_depth, P0 key HO N 0 3 3 3

Atom F3 curr_spec_depth, P0 key HO N 0 3 3 3

Atom F4 curr_spec_depth, P0 key HO N 0 3 3 3

Atom F5 curr_spec_depth, P0 key HO N 0 3 3 3

Atom F6 curr_spec_depth, P0 key HO N 0 3 3 3

Commit curr_spec_depth UC N 1-∞ 7 7 7

Cancel F1 curr_spec_depth UC N 1-∞ 7 7 7

Cancel F2 curr_spec_depth HO N 0 7 7 7

Cancel F3 curr_spec_depth HO N 0 7 7 7

Mispredict curr_spec_depth HO N 0 7 7 7

Conditional Instr F1 C key UC N 1-∞ 3 3 7

Conditional Instr F2 C key HO N 0 3 3 7

Conditional Instr F3 C key FS N 1 3 3 7

Conditional Res F1 C key, R key UC N 1-∞ 7 7 7

Conditional Res F2 C key, R key HO N 0 7 7 7

Conditional Res F3 C key, R key FS N 1 7 7 7

Conditional Res F4 C key, R key HO N 0 7 7 7

Conditional Flush C key HO N 0 7 7 7

Ignore — HO N 0 3 3 3

Function Return curr_spec_depth, P0 key HO N 0 7 7 7

Exception Return curr_spec_depth, P0 key HO N 0 3 3 7

Exception A1,A2,A3, EL UC C 3-12 3 3 7

Q packet curr_spec_depth, P0 key UC N 1-∞ 7 7 7

Numbered Data Sync Mark — HO N 0 7 7 7

Unnumbered Data Sync Mark — HO N 0 7 7 7

A
to
m

Sp
ec
ul
at
io
n

C
on

di
ti
on

al
M
is
ce
ll
an

eo
us

4.5.2 Design requirements of a hardware trace decoder
In this section, we outline the challenges of designing a trace decoder and conclude with a set of requirements our trace
decoder implementation must fulfill. The trace protocol is designed for maximal compression to keep the volume as low
as possible. The compression relies heavily on the trace state. This presents a challenge in parallelizing the trace decoding
process — directly juxtaposed to worst-case throughput requirements of decoding four bytes a cycle when all trace data is
produced by the same source.

First and foremost, the trace data is received in the form of a byte stream and needs to be reconstructed as a packet stream
or at least the packet-information needs to be known by the trace decoder. While the state updates can be applied on a byte-
by-byte basis, as we have discussed in Section 4.5.1.2, this process requires knowing the context of each byte in relation to

48

the packet the byte belongs to (payload index for example). The same challenges are shared whether we wish to first entirely
reconstruct packets from the byte stream before updating states or applying updates directly after each byte.

This leads us to the first challenge: dealing the context of each byte in the trace data. To process a byte bi, the previous
byte bi−1 must be processed. This applies to both a packet representation and byte representation. The reason for this is
twofold: First, We require some form of stream state to keep track of which bytes make up a payload of a packet and which
bytes are header bytes. Take Figure 4.16, where three of the four bytes received in a single cycle contain a full Short Address
packet. As a reminder, a ShortAddress packet may contain either one or two payload bytes, denoted by the MSB of the
first payload byte. It is impossible to know whether the second byte is a header for a new packet or contains the final payload
byte before, at least partially, processing the first byte.

Short Address Header Addr[8:2]

byte0 byte1

C

contnue payload?

Addr[16:9]

byte2

Figure 4.16: A short address bounded continuous packet that requires checking Most Significant Bit (MSB) of byte 1 to
decode byte 2.

Our second challenge, the protocol itself has a trace state. The most prominent being the three address registers we
covered. When an Atom element is sent, it relies on the fact that all previous address packets have been decoded and the
registers hold the proper addresses. Combinedwith the possibility of receivingmultiple header-only packets in succession, we
are forced into a strong sequential processing requirement. Take the input data as demonstrated by Figure 4.17. The address
of the branching instruction represented by the Atom element in the second byte is directly determined by the Exact Match
Address packet, which may point to one of the three address registers in the state. Being able to handle multiple sequential
header-only packets is crucial to meet throughput requirements, as Zeinolabedin et al. observe that around 40% of all packets
observed throughout their tracing sessions were header-only packets [89].

Exact Match Address Atom Element

byte0 byte1

Figure 4.17: Two single byte packets with direct dependency between byte 0 and byte 1.

In the same vein, these properties make the protocol very susceptible to crashing and burning when data is dropped. Even
losing a single byte will result in an incorrect stream state, effectively garbling everything up until the next A-Sync packet,
after which we can restore the stream state.

Making things worse, even if we resync the stream state and once again correctly decipher packet boundaries, if any
previous packet has been processed incorrectly, the address registers could be in an incorrect state. This may corrupt the
trace state indefinitely for any packet that relies on the address registers until the values in the register are replaced by newer
address registers. It remains unclear to us whether the protocol provides a “clean slate” to the trace state after an A-Sync
packet, as it is not explicitly stated in the documentation. It’s plausible that an A-Sync packet does not rely on any state
modifications that occurred prior to the A-Sync , or something akin to this procedure, but this remains speculation and
would have to be tested in practice.

Recapping the requirements, the decoder must (1) be able to handle four bytes of data per cycle at a data rate of 250 MHz,
(2) each byte must be processed sequentially since there exists a byte-by-byte interdependency, the same applies to each
packet, and (3) we should avoid dropping bytes at any cost or the trace state may be indefinitely corrupted.

49

Running the decoder to process a single byte per cycle at 1000MHz would fulfill requirements (2) and (3), but not (1), as
it exceeds the maximum possible clocking frequency of the Zynq Ultrascale+, being slightly below 800 MHz [16]. A possi-
ble remedy would be adding a buffer and working under the assumption that the data rate from an individual source only
reaches a data rate of four bytes per cycle in rare scenarios, and bursts can be absorbed. This (admittedly weakly) violates
requirement (3) and is a fool’s errand if we wish to expand the design to the ThunderX running at much higher clock speeds
than the Cortex-A53 processors on the Zynq Ultrascale+.

Another design option is to hold trace data bytes in a buffer until a complete packet is observed, decode the entire packet
in one cycle, and repeat. This is very similar to all prior ETM and PTM parsers [74, 84, 89], but this design has two problems:
It cannot deal with unbounded payload sizes, and the worst-case throughput suffers. The worst-case throughput suffers when
we see successive header-only packets. To deal with this, we must implement some form of parallel processing of packets, at
which point we have the same problem as we started with.

4.5.3 Trace Decoding
In this section we introduce a trace decoder that fulfills all the requirements we outlined in Section 4.5.2. The key idea behind
our trace decoder is to process the trace data sequentially byte-by-byte, but simultaneously in parallel with an unrolled byte
stream. In other words, if we have a decoding function d that can process a single byte b and we want to handle 4 bytes in
one cycle, the decoding function is applied once to b1, twice to b2 and so on. This way we can fulfill the strong sequential
requirements and state dependencies between each byte while also achieving high enough throughput.

First, to be able to process the trace data byte-by-byte we need a stream state S that provides context information of the
current byte to be handled. Second, the goal of the trace data is not only to reproduce the trace state updates, but also extract
semantics from trace data — we want to be able to follow the control flow and retain the processer execution environment.
Each byte might encode an action taken by the processor, like executing a branch instruction and jumping to an address a0.
This information is contained in the output produced by the decoder, we refer to this abstractly as O. At a high level, the
decoding function of a single byte can be interpreted as a function:

d : S × T × b → S ′ × T ′ ×O (4.2)

and the decoding of an entire byte stream of n bytes b0 ... bn is just the sequential chaining of decoding functions
d(bn) ◦ d(bn−1) ... ◦ d(b0), where only the stream state and trace state are required for processing the next state and the
control flow can be reconstructed using the outputs of the decoding function O0 ...On.

Using the singe-byte decoding function, we can build a parallelized, or unrolled decoding function (Algorithm 2), that can
handle 4 bytes in one cycle. In simple terms, to process 4 bytes simultaneously, we are duplicating the circuit that parses and
decodes a byte of raw trace data 10 times onto the FPGA.

Algorithm 2: Unrolling the byte stream.
input : bytes b0 ... b3, initial trace state T0,initial stream state S0
output : updated trace state T0, stream state S0, after processing all input bytes,

four output values for each processed byte O0 ...O3

/* With a throughput of 4 b/cycle: */
Procedure decode_unrolled is
S1, T1,O0←d(b0)
S2, T2,O1←d(b1) ◦ d(b0)
S3, T3,O2←d(b2) ◦ d(b1) ◦ d(b0)
S0 = S4, T0 = T4,O3 ← d(b3) ◦ d(b2) ◦ d(b1) ◦ d(b0)

The advantage of this decoder design is we no longer require any buffering, it can never drop any data as long as the
frequency is the same as the TPIU, and high throughput through parallelization can be achieved – the only the remaining
difficulty is for the design to be simple enough such that the longest timing path of 4 successive decoding circuits is less than

50

4 ns (for 250MHz).

Somewhat surprisingly, the longest path of a naive implementation of 4 chained decoding functions takes around 7
nanoseconds, giving us a maximum operating frequency of around 140MHz and giving us a throughput of 560MB/s, al-
ready beating most of the existing trace decoders, but still cannot keep up with the worst-case scenario of handling 4 cycles
per second produced by a single trace source.

To achieve high decoding throughput, we additionally pipeline the unrolled trace decoding algorithm. To understand the
pipelining, we first introduce the stream state that we require for decoding and subsequently show each stage of the decoding
pipeline.

4.5.3.1 Stream State

We introduce the stream state as an additional state component separate from the trace state to the trace decoder. The stream
state consists of bookkeeping information, allowing the decoder to interpret each byte as part of a packet. To achieve this
goal, we track the following information in the stream state:

— Stream mode ∈ { Synchronization , Expecting_Header , Payload_Unbounded_Continuous ,
Payload_Bounded_Continuous, Payload_Fixed_Size , Information_Byte }

— Current header type, where the header type is one of the header types in Table 4.4

— Current payload index (pi), denoting the index of the current payload byte in the packet. Only used when in one of the
payload modes.

— Payload size (ps), indicating the end of a packet of in either Payload_Bounded_Continuous or Payload_Fixed_Size
mode.

— Three lookahead states that each include all the above values. We switch to the next lookahead state when a complete
package is processed. This is required to handle composite packets as multiple internal packets, that no longer have a
header associated with them.

We show the stream state values that the decoding processwill carry at every bytewhen decoding an Address_with_context
packet in Figure 4.18.

Initially, all previous packets have been completely parsed, indicated by the stream state being in Expecting_header
mode. This lets the decoder know that the next byte should be interpreted as a header of a new packet.

Decoding the header gives us most of the structural information on the entire packet, the decoder knows at this point
everything it should see up until the information byte of the composite Context packet. The stream state switches to
Payload_Fixed_Size mode with a payload size of 8 and sets the header value to Long_address . The payload index is
initialized to 0 and incremented for each payload byte until a termination condition is reached. Note that the decoder behaves
the same way as if it had seen a Long_address packet on the trace stream and the decoder has no notion of the composite
Address_with_context packet, except for the lookahead values in the stream state.

The key to distinguishing the Long_address and the Address_with_context packet types in the decoding process
is the lookahead field. Based on the header byte, the decoder knows to expect an internal Context packet (with no header)
after the internal address packet is fully decoded. As soon as the termination condition is reached for the Long_address
packet, the stream state adopts the state held in the lookahead state and consumes it. Every packet type that is not internal
or composite will always have the first lookahead stream mode to be Expecting_Header .

The Context packet is one of the few packet types that require an information byte to fully determine the structure. The
processing of information bytes has a separate stream mode — the lookahead stream mode is set to the Information_byte
and the lookahead header type is Context . We cannot set any further lookahead values, since the future structure is unclear
until we read the information byte.

51

Addr[8:2]

header

byte 0

Address with context header

Addr[63:56]byte 7

Res

C V NS SF Res EL

VMID[7:0]

byte 8

CID[7:0]

CID[15:8]

byte 9

byte 10

byte 11

Stream state Trace stream

pi ps lookaheadstream mode header

Expecting_Header

Payload_FS

—

Long Address

— — —

0 8 Information_Byte,Context

Payload_FS Long Address 1 8 Information_Byte,Context

8 Information_Byte,Context

-

Payload_FS Long Address 6

Information_Byte Context - -

Payload_FS, CID | Expecting_HeaderPayload_FS VMID(Internal) 0 1

Payload_FS CID(Internal) 0 2 Expecting_Header

Payload_FS CID(Internal) 1 2 Expecting_Header

Expecting_Header — — — —

Figure 4.18: Streamstate at before and after processing each byte of an Address_with_context packet. We omit everything
but the stream mode and header type in the lookahead field, but this will include payload size as well. We show only one of
three lookahead fields.

Once the information byte (byte 8) is processed, the packet structure is fully known until the next header. In our example,
both bits C and V are set in the information byte and we can expect one byte of VMID and two bytes of CID data. Both of these
are internal packet types and the boundary between the packets is not denoted by a header so we rely on the lookahead once
more. This time we set the lookahead state to the state required for decoding the internal CID packet. The second lookahead
will be Expecting_Header , indicating the full packet is processed after the internal CID packet and the decoding process
repeats for the next byte available on the stream.

The stream state contains all the information required to handle updates to the trace state. Take the stream state before
byte 11. The stream state holds the header type of the packet (CID) and the payload index. Based on the stream state, the
trace state bits[15:8] of the field holding the CID can be overwritten with the received byte.

The lookahead fields in the stream state are not strictly necessary for a decoding process but ease the required program-
ming efforts greatly. The packet Trace_info is similar to the Context packet, but has four different internal packets that
may or may not be present indicated by an information byte, whereas the Context packet only has two, the CID and VMID
packets. Without the lookahead functionality, we would have to split up the trace info into 24 packet types, instead of just
setting upto 3 lookahead states. This reduction combats the reported requirements by Zeinolabedin et al. from around 400
structural packet types to somewhere between ∼30-40.

4.5.3.2 Udating the Trace State

Handling stream state allows us to interpret the place each byte has with respect to the packet it belongs to. In this section,
we cover how updates to the trace state are computed from the stream state.

The stream state at bi−1 alongside the value of byte bi uniquely identifies the update that must be performed on the trace
state at byte bi. Each update operation can be encoded into action code, that uniquely identifies the trace state update. We

52

show the actions that can be applied to a trace state:

— shift_address : This action shifts the address registers according to the shift procedure from Algorithm 1. This
action can be applied whenever the stream state has stream mode Expecting_header and byte bi has a value of any
address packet header.

— exact_address_x : This action shifts the address registers, while also putting the address held by the previous address
register Ax into the first address register A0.

— update_address_h_l : This action applies the overwrite procedure from Algorithm 1. The stream state header type,
index, and stream mode are all used to generate this action code. There is an action encoding for each possible h and l
values from all address packet types.

— update_xxx_h_l : This action applies an update to a trace state value similarly to the way the address update occurs.
We group these together for brevity, but this includes actions such as update_vmid_h_l , update_cid_h_l and
update_timestamp_h_l .

We show the same example from Figure 4.18 in Figure 4.19, omitting the lookahead states, but instead showing the gener-
ated action codes. Note that the bytes are still required when generating the action codes. The trace state updates are omitted
but self-explanatory from the action codes.

Stream state

pi psstream mode header

Expecting_Header

Payload_FS

—

Long Address

— —

0 8

Payload_FS Long Address 1 8

8Payload_FS Long Address 6

Information_Byte Context - -

Payload_FS VMID(Internal) 0 1

Payload_FS CID(Internal) 0 2

Payload_FS CID(Internal) 1 2

Expecting_Header — — —

Action Code

shift_address

update_address_8_2

update_address_63_56

update_address_15_9

—

update_vmid_7_0

update_cid_7_0

update_cid_15_8

—

Addr[8:2]

header

byte 0

Address with context header

Addr[63:56]byte 7

Res

C V NS SF Res EL

VMID[7:0]

byte 8

CID[7:0]

CID[15:8]

byte 9

byte 10

byte 11

Trace stream

Figure 4.19: Action codes generated based on stream states and trace stream byte.

Observe the first line in the stream state. The stream mode is Expecting_Header . In this mode, the action applied
to the trace state depends on the resolved header type. In this case, we have an address header. More specifically, an
Address_with_context header. From the specification, we know that the following payload bytes will contain address
values, but the address registers must first be shifted. From the stream state, we generate the action code shift_address .

The stream state for the next line is in Payload_FS mode, meaning we are inside a payload. The action code can be
determined without the header lookup and only depends on the header value in the stream state and the index of the payload.

53

Based on the specification, the decoder can determine that the first 7 bits of the current byte must overwrite the first address
register bitsA0[8:2]. Which bits to overwrite depend also on the subtype of the Long_address packet (IS0 or IS1). Overall,
this is enough information for the decoder to generate the action code update_addres_8_2 . The action code encodes all
parameters required to perform the overwrite procedure in Algorithm 1.

Action codes are generated in the same way for the rest of the payload bytes of Long_address packet, until we reach
the internal Context packet. The information byte in our example requires no state updates and a nop action code is
generated. For a full implementation of the specification, this would generate an action code that updates the exception level
and security level, but as of now this is not implemented in our design. Moving on, the payloads of the internal packets
vmid and cid are processed similarly to the payload of the address packet, and generate the respective action codes of
update_vmid_7_0 , update_cid_7_0 . and update_cid_15_8 .

Once the action codes are generated, updating the trace state is straightforward and follows naturally from the action
codes.

4.5.3.3 Producing Output

Once an action is processed we can produce a valid output O. We keep this intentionally vague for now, as what the output
should contain may depend on the use case of the tracing session. To avoid producing any intermediate output, the decoder
should only produce output when a complete packet is processed. In other words, each packet should appear atomic to the
consumer of the decoded trace stream. Any trace state should only be observed after processing a complete packet, so when-
ever the stream mode is Expecting_Header . The output O contains a valid signal for this purpose.

An example of a possible output would be to output the target addresses of an Atom element. This would involve sending
out the first address register A0 when receiving an Atom element HO packet. Additionally, one could include some context
information of the trace state at this point, for example including timestamping information, CID and VMID.

A further relevant metric is events for the embedded PMU events in the packet stream. These come in the form Event HO
packets that have four bits to encode PMU event. Resolving events based on these four bits cannot be done on the fly without
prior hard coding of the values, as the encoding depends on the ETM configuration. By resolving the event, we mean being
able to map these four bits into a concrete hardware events the PMU can produce. An example event is L1I_Cache_Refill
. For now, we just output the event code directly into O and leave the event resolving to future stages.

4.5.3.4 Pipelining the unrolled decoder

In this section, we describe how we can pipeline the unrolled trace decoder from Algorithm 2. We mentioned that without
pipelining the decoding process will take around 7ns on the worst timing path, limiting our maximum operating frequency.
This follows from 4 applications of the decoding circuit in one cycle, resulting in a path that must traverse somewhere around
30 levels. We avoid nested logic as much as possible and break down the decoding process into minimal self-contained pro-
cessing chunks.

There is an inherent limitation to the possible pipelining that can be done due to sequential requirements between states
of the protocol. Each process that requires information from the previous byte cannot be broken down into stages without
breaking the sequential requirement. This is most prevalent when processing the stream state, as the stream state at each
byte will always depend on the previous stream state.

We break the decoding down into the following stages:

— Header preprocessing: Assuming the byte is a header, resolve the header type.

— Stream state process: Perform the same steps as shown in Figure 4.18. Each byte is computed from the previous stream
state and the header type of the current byte (only required if we are expecting a header).

54

— Generate action code process: Based on the current stream state and header type of the current byte, resolve how the
trace state should bemodified and encoded into an action code, for example, update_address_8_2 or shift_address
used in Figure 4.19.

— Action process: This will perform the action on the trace state based on the action code and the byte to be processed,
for example, perform the shift from Algorithm 1 when we see the code shift_address .

The final circuit is visualized in Figure 4.20.

S0

Header preprocessing stage Stream state handling stage Action code generation stage Action handling stage

b0

b1

b2

b3

HP

HP

HP

HP

SSP

SSP

SSP

SSP

SSP

SSP

SSP

SSP

SSP SSP

S1, h0

S2, h1

S3, h2

S4, h3

b1, h1

b2, h2

b0, h0

b3, h3

AGP

AGP

AGP

AGP

a0

a1

a2

a3

T0

AP

AP

AP

AP

AP

AP

AP

AP

AP AP

T1,O1

T2,O2

T3,O3

T4,O4

HP = Header pre-Process

AGP

SSP = Stream State Process

AP = Action Process

= Register = Pipeline stage

=Action Generation Process

 (1 cycle)

Figure 4.20: Full trace decoding process after unrolling and pipelining

Notice that only the stream state process and the action process are unrolled in the sense that they must be applied
multiple times. As we have discussed in Section 4.5.2, both the trace state and the stream state have a strong sequential
requirement. When computing a stream state Si or a trace state Ti, Si−1 or Ti−1 must be fully resolved to make any progress.
Both the header preprocessing stage and the action code generation stage precompute any values of use that can be “pulled
out” of this strong sequential requirement. In the case of the header preprocessing stage, the header of byte bi is resolved
speculatively. In other words, if the current byte should be interpreted as a header, which can only be determined after the
stream state process, the header type lookup is already done. The same concept is applied to the action code generation stage,
as each action code ai can always be uniquely resolved by the stream state and Si−1 header type hi−1, values that are already
available when starting the action code generation stage.

For maximal performance, any computation that is not part of the sequential requirement should be computed in parallel
outside of the circuit that must be duplicated (SSP and AP). The benefit of pulling out all computations is a reduction in the
size of the duplicated circuits and consequently a reduction in resource utilization. More importantly, this also reduces the
nesting depth of each process meaning the total delay of critical clock paths is reduced and the maximum operating frequency
can be increased. We discuss this more in-depth in Section 6.2.

4.5.4 Trace Decoder — A critical reflection
We take a moment to reflect on the proposed trace decoding design as some lessons were learned while implementing the
design that we were unaware of at the beginning.

4.5.4.1 Unbounded payload sizes

Throughout the previous chapters, we emphasized multiple times that an ETM packet may be of unbounded size. However,
this is true only if the ETM capabilities are unknown. This is not obvious at first glance based on the header types. From the
specification, all packets that may be unbounded are:

55

— Trace_Info

— Cycle_Count F1

— Commit

— Cancel_F1

— Conditional_Result_F1

— Conditional_Instruction_F1

— Q_packet

Unbounded payload sizes only exist if the ETM supports speculative execution tracing, data tracing (with synchronization
algorithm), or Q packets.

For tracing speculative execution, an ETM has a maximum possible speculation depth that the hardware supports, which,
in practice limits the size of speculation resolution packets Commit , Cancel_F1 and Cycle_Count_F1 . The Cycle_Count_F1
packet is only affected because it has an internal Commit packet. In short, the specification itself does not put an upper
bound on the payload size, but the hardware most assuredly does.

The packets may contains key values that are of unbounded size. The reason for this is (omitting some details) the resyn-
chronization algorithm for the separate instruction and data trace streams. Resynchronization is also required when the data
trace entry needs to be associated with the instruction in the program image that caused the data trace entry in the stream.
The resynchronization follows a specific algorithm matching the store and load instructions (P1 elements) to their P0 ele-
ments [26]. The algorithm relies on both the synchronization packets (Numbered Data Sync Mark for example) and keys
for both P0 and P1 elements. A P0 is a parent of a P1 element if they have the same key. A similar key-based algorithm is
used to associate conditional instructions with their result APSR flags, if tracing of these flags is supported by the tracing
hardware. Usually, it is the responsibility of the trace analyzer, or in our case the trace decoder, to increment the key value for
each P0 and P1 element. However, the trace Trace Info packet will send out the explicit key value for the next P0 element
at the beginning of the trace. Once again, this is not bounded by the ETM specification, but it is finite and predetermined by
the hardware. The same thing applies to both the condition packets mentioned above.

For both the unbounded key packets and speculation resolution packets, the size of the packet will remain small, as the
payload will carry an integer value. So if the max key or max speculation depth is less than 32, the payload size will be 1 byte.

The only true exception to this is the Q element packet. Q elements provide a way to reduce trace bandwidth by com-
pressing Atom packets . An arbitrary number of P0 elements can be encoded into a Q element, sacrificing precise flow
information in order to reduce bandwidth. The Q packet ends with an unbounded continuous packet indicating the number
of P0 instructions that are implied by the Q element. We cannot put a strict upper bound on this value, even in the context
of the system. We do expect the size to be reasonably small for the same reasons as with speculation resolution packets, as it
holds an integer value. In practice, we do not expect Q elements to be used with a hardware trace decoder, as full control flow
cannot be reconstructed if Q elements are enabled. A conservative approach is to disallow generating Q elements to ensure
an upper bound of packet sizes or set an upper bound based on empirical evidence.

In summary, the specification allows for unbounded payload size, but realistically a tight upper bound can be set com-
fortably; it is hard to imagine the max speculation depth or max key size to go far beyond a few bytes. We did not realize this
until we gained a deeper understanding of the protocol and the unbounded packet sizes are somewhat misleading.

On top of this, for both the US+ and the ThunderX, data tracing is not supported, the maximum speculation depth of the
ETMs are 0, and the tracing of conditional result flags is not supported. This means no form of speculation resolution packets
or key value packets will ever be sent out on the trace stream in the first place. There is no requirement to handle unbounded
packet sizes for either of the hardware targets we have, only if we wish to decode the trace of an arbitrary trace source, and
even then the maximum payload size will be reasonably small. We can no longer in good faith use the unbounded packet
sizes as an argument in favor of a byte-wise decoder vs a buffering-based and packet-wise decoder.

56

Table 4.5: Hardware values that must be known for trace decoding. Column M marks which values are mandatory and must
be encoded into the trace decoding implementation to work properly. Optional values affect the trace stream but are not
required in our implementation to decode the trace. The C column stands for configurable, meaning these registers can be
set before a tracing session. In this case, we need to make sure the decoder and the registers agree on the set the values

Value Register Packets effected M C

VMIDSIZE TRCIDR2.VMIDSIZE All context packets, or our internal VMID packet 3 7

CIDSIZE TRCIDR2.CIDSIZE All context packets, or our internal CID packet 3 7

MAX_SPEC_DEPTH TRCIDR8.MAXSPEC Unbounded speculation resolution packets 7 7

P0_KEY_MAX TRCIDR9.NUMP0KEY Only the Trace info tpacket 7 7

COND_KEY_MAX TRCIDR12.NUMCONDKEY &
TRCIDR12.NUMCONDSPEC

Unbounded conditional packets 7 7

CC_THRESHHOLD TRCCTLR.THRESHOLD No effect on packet size, instead cycle estimations 7 3

ETM IDs TRCTRACEIDR.TRACEID Trace source IDs 3 3

PMU event IDs TRCEVENTCTRL0R &
TRCEVENTCTRL1R

Event packet 7 3

4.5.4.2 Device parameters of the trace decoder

Similarly deceptive, there are fixed-size packets that allow for different sizes based on the ETM hardware configuration, mean-
ing the size of a packet cannot be determined a priori without the context of the hardware the trace unit is running on. For
example, Context packet we have seen in Figure 4.15b has 1 byte of VMID data in its payload. However, this depends on
the ETM register TRCIDR2 that stores the VMIDSIZE value, where the VMIDSIZE can be between 0-32 bits. This makes the
portability of the trace decoder more involved than simply copying the Intellectual Property (IP) from one system to another.
The trace decoder cannot determine this size on the fly, as there are no continuation bits and no information regarding the
packet size is encoded into either the header or the information bytes. For convenience, we list all the values that must be
known to the decoder before deploying it to the system as far as we are aware in Table 4.5. These values include the necessary
information for defining an upper bound for packet sizes (without Q packets).

4.5.4.3 Practical performance implications

A lot of effort has gone into our design to make sure we are able to handle 4 bytes per cycle. This is arguably overkill, as
it is unlikely for a trace source to produce enough data that will reach this worst-case scenario. Ideally, before we began
designing the decoder, a rigorous test suite would be established and the decoder would have been designed based on more
realistic requirements. Unfortunately, it is non-trivial to design a Coresight trace bandwidth experiment, and it is unclear
what type of binary in practice will produce the largest amounts of trace bandwidth and a lack of time led to us designing
for the worst-case scenario3. The ETM configuration space is also very large and we expect the configurations to have a
significant impact on trace bandwidth. We discuss this more in the context of future experiments in Chapter 8.

Nevertheless, we argue that this decoding design has little to no downsides when compared to other implementations. We
believe a byte-wise decoder is simpler than a packet-wise decoder, both on a conceptual level and for programming the trace
decoder. Our (partial) implementation of the ETM protocol is around ∼2K LOC as opposed to ∼3K LOC of our predecessor
packet-based PTM parser, which has far fewer packet requirements and less state4.

Our design is also adaptable to real-world bandwidth requirements with little to no change to the algorithm. This may
be beneficial if PL resources are scarce. Both the unrolling factor and clock frequency are meta-parameters of our implemen-
tation. The unrolling factor and clock frequency are inversely correlated and can be chosen based on the use case. As an

3A judgment call was made that the implementation for worst-case throughput requirements is not much more difficult than an implementation for less
throughput.

4We stress that LOC is not the determining factor in how complex a piece of code is, sometimes even the opposite.

57

example, we could trade off throughput by reducing the unrolling factor and optionally adding a small buffer in front of the
trace decoder to absorb trace bursts — this may already be enough for most real-world use cases. On the other hand, if the
trace data is used for verification, where dropping trace data can be catastrophic, it could be beneficial to guarantee no trace
data is dropped, and our design with unroll factor four provides this.

4.5.4.4 Modularity & alternative design

Our trace decoder consumes the trace stream and extracts semantics received on the received data. We take the perspective
from applying PGO-based compiler optimizations. This may not cover all use cases and discard otherwise useful information
on the trace stream that was not considered. On top of this, whenever the trace analysis has different requirements, the
trace decoder will potentially have to be partially reimplemented. Zeinolabedin et al. use the decoder only to transform the
byte stream into a packet stream [89]. We offer an alternative design of how our current trace decoder could be modified
to generate only packets without consuming the ETM specification that is built on top of the stream state processor and
unrolling in Figure 4.21 and relies on an upper bound of packet sizes.

S0

Stream state handling stage

SSP

SSP

SSP

SSP

SSP

SSP

SSP

SSP

SSP SSP

S1, h0

S2, h1

S3, h2

S4, h3

Packet buffers

h0b1b2

h0b1b2

h0

h0b1b2

Hardware MonitorPacket resolver

h0b0b1

h1b0b2

h2

h3b1b2

P0

P1

P2

P3

b 0
-b

3

b2

b1b2b3

Figure 4.21: Alternative decoder that only reconstructs packets into buffers.

This design only uses the stream state, passing the stream state alongside the trace bytes to a packet resolver, which
can push the bytes to packet buffers P0 to P3. Packet boundaries can always be resolved based only on our stream state5.
A monitor that relies on full trace packets can read the buffers and parse each packet individually. This design achieves a
level of modularity that is otherwise hard to achieve with the Coresight specification. Of course, the monitor would be now
responsible for handling everything regarding the trace state. Also, the packet buffer sizes can be made generic to support a
specific device based on the maximum speculation depth and key sizes.

5We would also need an extra step to distinguish internal packet types from packet types that are part of the specification.

58

Chapter 5

Coresight onThunderX

Originally the goal of this project was to produce a working Coresight system running on a Cavium ThunderX as part of the
hybrid CPU/FPGA Enzian platform [38]. The ThunderX-1 machine is a server-class CPU with 48 ARMv8 cores running at
a maximum of 2.5 GHz. Enzian couples the ThunderX with a Xilinx Virtex Ultrascale+ XCVU9P-3 FPGA through the high-
throughput and low latency Enzian Coherency Interconnect (ECI) [72].

In this section, we start by discussing the unique Coresight architecture of ThunderX. Unfortunately, as of writing this
thesis, we were unable to achieve an up-and-running Coresight system. The propagation of the trace data is custom for
ThunderX does not follow the standard ATB interface. Our running hypothesis is that trace data is lost in this custom trace
bus layer. We are still unsure how to solve this issue, as we have a lack of documentation on the inner working of the custom
trace bus. We offer instead a comprehensive guide to our current understanding of the architecture and outline the key
learnings that were made throughout this work that might kickstart future attempts.

5.1 ThunderX Coresight Architecture
The ThunderX implements the Coresight infrastructure but does not follow the standard model as we covered in Chapter 3,
the full Coresight topology is visualized in Figure 5.1 to the best of our knowledge. The figure shows one cluster of 12 cores,
which is present four times on the ThunderX. We also recognize common Coresight components, namely ETMs, CTIs, PMUs,
and debug components. However, the topology and link components are very different from the examples we have seen so
far in Figures 3.1 and 4.2 and the ATB is replaced by the custom Debug Bus Transmitters (DTXs).

Most prominently, the ThunderX foregoes most link and sink devices one typically expects from a Coresight implemen-
tation and replaces these with an On Chip Logic Analyzer (OCLA). The OCLA is not only applicable to Coresight but may
be used for other purposes as well. In the context of tracing, however, the idea behind the OCLA is to either forfeit the re-
quirement of an off-chip analyzer entirely and perform analysis on-chip, or at least partially unburden the off-chip analyzer.
This can reduce, or even eliminate, the need to ship a high-bandwidth stream of data off-chip and removes strain from the
chip’s surroundings, that being either network bandwidth, Peripheral Component Interconnect Express (PCIe), or in the case
of Enzian the ECI.

To be more specific, there is no longer a TPIU or any TMCs and the OCLA subsumes the functionality of both. OCLA
can emulate all TMC configurations as it has an in-block SDRAM storage that can hold trace data. It further provides the
ability to overflow into both the L2 cache and system memory, similar to an ETR. The OCLA has two parallel FSM that can
be programmed in tandem to support handling of complex expressions. How this may benefit Coresight trace analysis is left
for future work. A likely first step would be to use the FSM to format the trace data into the same frames used by the TPIU.
This would allow our current system to be integrated quickly on Enzian. However, the OCLA gives us the ability to explore
other options since it is fully customizable.

59

DTX

APU 0 APU 1

DBG PMU

 Cross Trigger Matrix (CTM)

DBG PMU

APU 5

DBG PMU

APU 6

DBG PMU

APU 7

DBG PMU

APU 12

DBG PMU

CBC

ET
M
/P
TM

ET
M
/P
TM

OCLA

Coherent Processor Interconnect (CCPI)

Debug Access Bus(DAB)

Debug Access Bus(DAB)

CTI

CTI CTI

CTI

D
eb

ug
A
cc
es
sP

or
t(D

A
P)
/C

or
e
A
cc
es
s

D
eb

ug
Bu

sT
ra
ns

m
itt

er
s(
D
TX

)

DTX_XXX DTX_L2C_CBC DTX_XXX

72

Figure 5.1: Coresight architecture for a single cluster on the ThunderX, adapted from experience, internal TRM and internal
documentation from kernel module repository thunderx_trace.

The Coresight devices that remain identical to typical architectures are the CTIs, attached debug cores, PMUs and ETMs,
specifically ETMv4.0s. However, while each processor has a PMU, CTI and debug core, the ETMs are shared by six cores,
and in total, we have eight ETMs. An OCLA is shared by two ETMs, with four OCLAs in total. There is an additional fifth
OCLA on the ThunderX, but this OCLA is not connected to any of the ETMs and is of no use for trace capturing. A group of
12 APUs forms a cluster, where each cluster has two ETMs and one OCLA. An ETM can only trace a processor that is in its
cluster, restricting the possible tracing configurations — There is no way for a trace session to capture more than two cores
per cluster at the same time.

The supported ETM configurations are shown in Section 3.2. A key configuration of both the work done by us and by
Schmid [74] rely on, namely branch broadcasting, is not supported on theThunderX.We show the effects of trace data without

60

branch broadcasting in Figures 4.10 and 4.11 and show an example of control flow reconstruction without branch broadcast-
ing in Figure 8.1. To check if branch broadcasting is available the ETM register TRCIDR0 must be read [26].

A good place to start and verify the topology is the device detection script we provide in our internal CSAL repository
csscan.py . We modified the script (Listing 5.1) to work on the ThunderX as it does not exactly follow the Coresight speci-
fication and does not work out the gate.

1 python3 csscan.py -v -thunderx --status --all-status 0x87A000000000

Listing 5.1: CSAL Topology scan tool for Thunderx.

The address 0x87A000000000 passed to the script as a parameter is the base address of the Coresight ROM table. This
also will dump all the idr registers and inform the user of all device capabilities and device affinities.

The way in which the trace data propagates through the system is custom for the ThunderX processor and we suspect
this is where the problem currently lies. The ThunderX has a set of DTXs that drive data from different processor regions
distributed throughout the system to the OCLA. Each region has its own DTX. For example, there are two NIC DTXs. For
trace capturing, the OCLA expects the trace data to be fed over the L2C_CBC_DTX , of which there are four in the entire
system — one per cluster or one per OCLA. The path the trace data takes in our current understanding is:

(1) The ETMs chooses which processor to trace, confined to APUs in the cluster, and produces trace data.
(2) The data from the ETM is driven to the L2C_CBC_DTX .
(3) The L2C_CBC_DTX feeds 72-bits of data to the OCLA.

Step (3) is documented in our internal TRM and we have a working implementation in an internal kernel module repository.
Step (1) is very well documented by the Coresight specification [26], except for the way in which a trace source chooses which
processor to trace. Only step (2) remains unclear, we found no details or documentation regarding these steps.

5.2 Starting a Tracing Session
In this section, we go through the necessary steps to start tracing the execution of an APU. Cavium, now Marvell, has pro-
vided a patch to the ATF and a kernel module implementation for trace capture. The ATF patch is required to access the
OCLA registers to program the OCLA. Without the patch reading or writing to these registers causes an abort. The kernel
module instantiates a character device driver from which trace data can be continuously read. The device driver configures
the ETM to capture trace data, programs the DTX to drive the data to the OCLA and programs the OCLA FSMs. The device
driver is available in an internal repository. Currently, no trace data is ever observed. We discuss each step individually and
highlight the issues in order to narrow down what may cause the issue.

Every DTX has two programmable control registers and one read-only data register. The data register can be used to read
the raw data coming into the DTX before any internal masking or selecting is applied to the data. The two control registers
are ENA and SEL . All the registers, including raw registers, are split into low and high registers, each with 36 bits, and
together form the complete 72-bit connection. The ENA register is used to mask the 36-bit values, the SEL register steers
which bits should be driven to the low and high bits respectively. Additionally, there are two more registers, CTL and
BCST_RSP that configure the operation mode and enable the DTX. The CTL register is used for different DTX modes and
diagnostics.

We go through all failed attempts to try and detect the problem. To test if any raw data is observed on the DTX we run a
kernel thread that polls the raw registers, which are the only observable points on the trace data path (Figure 5.2). Each test
runs a workload on every one of the 48 cores, in case the ETM does not choose the APU we expect it to. All of the following
attempts were run with this workload and polling thread.

We further were able to confirm that both the L2C_CBC_DTX and the OCLA work. To test the DTX, we can set the CTL
register to ECHOEN . This drives the value of the mask value in ENA into the DTX instead of the bus data. The data can then

61

L2C_CBC_DTX

ET
M
/P
TM

OCLA

DTX_L2C_DAT OCLA_RAW

stage 1 stage 2 stage 3

APU

Figure 5.2: Path of trace data from the ETM to the OCLA. The only observable points along this path are the two registers
DTX_L2C_DAT and OCLA_RAW , splitting the path into stages 1-3.

be observed in raw OCLA raw registers, and is propogated through the OCLA as expected.

Another way to test the OCLA is to zero out the “matcher compare value registers” of the OCLA. The OCLA will take in
any data it observes in the raw data registers. If no data is passed to the OCLA in the first place, it will read a constant stream
of zeros. Essentially, this step removes the check for valid data received from the DTX.

One important note, when the module is inserted into the kernel without modifications as we have received from Cav-
ium/Marvell, the kernel will crash with Internal error: synchronous external abort: 96000250 [1] SMP .
Decoding the error message did not yield any useful information, it is just a data abort. The cause of the abort is during
the DTX setup, namely the write to any high DTX register. The low register works fine. We checked the ATF code, but all
the DTX registers seem to be properly registered. Keep in mind that if only the low register is configured we will miss up
to half the data sent over the DTX, but there should still be observable data in the low registers. This hints towards some
misconfiguration for the DTX, but the cause of this is still unclear.

We highlight the approaches and experiments that were undertaken to run a tracing session on the ThunderX:

— We double and triple check the ETM configuration. Everything except for the TRCPROCSELR follows the Coresight
specification exactly and has worked for the ETMs on the US+ device. All registers show the same value if we read
them back after writing, indicating the write to the registers is completed successfully and the ETMs are powered. This
also includes making sure the OS lock is correctly unlocked in TRCOSLAR and making sure TRCSTATR shows the ETM
as idle when writing to registers. If it is not idle, the specification states the behavior is undefined. We also dumped
the entire 4KB trace block that contains all ETM registers and went through them, checked the addresses and if they
contain correct values.

— The ETM is confirmed to be powered on, and this value can be checked in the TRCPDSR registers. We also checked
the powered state of the debug register DBGEDPRSR .

— Fuzzing all values of TRCPROCSELR . As a reminder, the TRCPROCSELR tells the ETM which APU it should begin
tracing. The TRCPROCSELR follows a custom selection scheme on the ThunderX and there are a few comments in
the kernel module that mentions a workaround solution for something that does not work as intended. We tried all
possible values of the first three bits and see if any trace data is observed (the rest of the bits are reserved).

— Checking all DTX registers — theThunderX has a few dozen DTXs that can drive data to the OCLA. Usually, all of these
are disabled by the kernel module before we start a tracing session. We extended the polling kernel thread to check the
raw registers for every DTX and make sure the trace data is not misplaced.

— We ran all the CSAL topology detection tests. Unfortunately, as the ThunderX does not use a standard topology so this
can only give limited information, in our case, it only registers a connection between the CTIs.

— Similarly, we built the kernel with all Coresight configurations turned on. Naturally, this does nothing to help us as
this also expects a standard Coresight topology [7].

— We found evidence to suggest that the Coresight tracing system may have trouble when an APU starts idling [12]. To
avoid this, we configured the Enzian grub file to turn off idling with cpuidle.off=1 .

62

— The patched ATF contains a few differences to the Enzian ATF. We applied the patch (a few LOC) directly on a branch in
the Enzian ATF. We scanned the diff between the provided ThunderX ATF and Enzian ATF. There are only very minor
differences between the two and this most likely is not what is causing the problem.

During development and experience gained during the work with Coresight infrastructure on the US+ we had additional
ideas that are worth testing. The ETM has integration mode control registers. In the TRM they are marked reserved or read-
only, so we initially discarded them and assumed that they were not supported. However, it seems running the topology
detection algorithm provided by the CSAL [2] does not crash when it enables integration testing mode. The integration mode
is implementation-defined, so there is no guarantee it will work, but it might be worth testing the exact code from the CSAL
from inside the kernel module while polling registers. If data can be seen in the raw registers, we have narrowed down the
issue to an ETM configuration problem.

During the design of the trace decoder, we found there is an entire chapter that gives a good overview of access permis-
sions (chapter 7.2 [26]) for the ETM for different power states in and an overview of power domain models (chapter 3.3 [26])
the ETMv4.0 specification that we were unaware of when attempting to get the Coresight system on the ThunderX to work.
The diagram shows that the power domain of the ETM registers are split between core power domains and debug power
domains, so ETM registers could be powered and programmable (which we checked), but might still not drive trace data to
the rest of the system. These chapters could be of interest if this is a power domain problem. The TRM for the ThunderX
states, however, that there is only one debug power domain, and that is the always-on domain.

For future work on the ThunderX, we recommend reproducing all the steps we outlined and seeing if the same behavior
is observed. Subsequently, continue debugging from there. For debugging Coresight configurations on the US+ it was very
helpful to have access to all device registers over JTAG as well, which we recommend setting up.

Concluding our ThunderX chapter, we have ruled out problems on OCLA, DTX and stages 2 and 3 from Figure 5.2. We
believe that there is either something misconfigured or kaputt in the way the ETM chooses the APU, the APU-ETM link,
or the connection between the ETM and DTX. It is possible that the ETM itself is not set up correctly, however, this seems
to be the least likely scenario and the exact same configuration is shown to work on other devices. We include the ETM
misconfiguration as a possible scenario since there is no experiment that we were able to perform to unequivocally rule out
the possibility.

63

Chapter 6

Evaluation

The key evaluation metrics we consider in this section are the worst-case throughput our decoder can handle compared to
prior work (Section 6.3), the resource utilization of the decoder on the US+ (Section 6.4) and verifying the correctness of the
decoding process (Section 6.4). We further discuss floor planning aspects to meet timing constraints, and what the bottlenecks
in the decoding pipeline are that limit the maximum operating frequency, and a breakdown of the critical path (Section 6.2).

6.1 Resource Utilization
In this section, we report on the device utilization of our implementation on the US+ for each component in our system-wide
pipeline. We omit parts of the pipeline that require less than 0.1% of the overall FPGA resources, like the frame generator
and trace stream demultiplexer. We add the L1 and L2 decoder from related work [89]. Here, the L1 decoder is equivalent
to all parts in our system between the TPIU and the trace decoders. The L2 decoder is equivalent to our trace decoder. We
emphasize that the L1 and L2 decoder utilization report comes from the implementation on a different device than the US+
and that direct comparison across devices cannot be made. Nevertheless, we include them to highlight a few points and
provide a ballpark comparison. Furthermore, our decoder does not implement the entire specification, only around 60% of all
packets (Table 4.4). We discuss the L1 and L2 implementations in the related work Chapter 7.

To make sure Vivado would not optimize away any unwired outputs we connected every value in the trace state T1 ... T4
and each output wire O0 ...O3 to an external submodule.

Table 6.1: Resource utilization table, with added utilization report of L1 and L2 decoder from [89]. The percentage is calculated
based on total FPGA resources. We emphasize that the L1 and L2 decoders are on a different device than our implementation,
device id in Table 6.2.

Util L1 Decoder Frame Decoder L2 Decoder Unrolled Decoder Single-byte decoder

LUT 225(0.48%) 195(.17%) 3160(1%) 2899(2.48%) 273(0.23%)

Registers 378(0.41%) 203(.09%) 1006(1%) 2605(1.11%) 677(0.29%)

F7 Mux 0 0 0 42(0.07%) 16(0.03%)

F8 Mux 0 0 0 0 2(0.01%)

Block Ram 0 0 8(5%) 0 2(0.01%)

In Table 6.1 unsurprisingly shows the most expensive part of the system is the trace decoder. We compare also the un-
rolled decoder from Figure 4.20 to an implementation of the decoding function of a single byte. As a reminder, we expect
the circuit for the single-byte decoder to be duplicated 10 times in the unrolled version. The resource utilization seems to
accurately reflect this when it comes Lookup Tables (LUTs) with around a 10× increase between the single-byte and unrolled
decoder. Surprisingly, this does not hold for the rest of the resources and the Vivado tool suite seems successful at optimizing

64

away the redundancies in the unrolled circuit.

To support a system with a trace decoder for each Cortex-A53 we would need four trace decoders, requiring around∼10%
of the FPGA (using the unrolled decoder) for the most dominant resource, that being the LUTs. Taking this into consideration,
the rest of the components are negligible in terms of utilization.

Our unrolled decoder seems to be comparable in terms of resource usage to the L2 decoder. We refrain from commenting
on this anymore than this due to the implementations being on different devices.

What we can highlight, however, is that our decoder does not require any block RAM when compared to the L2 decoder.
This is a direct consequence of being able to always handle 4 bytes no matter what, instead of buffering data and processing
the trace stream packet-wise. This may be important if we have multiple trace decoders on our system (including data trace
decoders that require the same amount of block RAM). Putting four instances of both data trace decoders and instruction
trace decoders into the bitstream will already use 40% of the block RAM on their Virtex xc6vcx75t-2ff784 FPGA device.

6.2 Operating Frequency & Timing Constraints
For the unrolled decoder we have introduced, the key to performance is passing the timing constraints. This is no easy task,
as the unrolled decoder must essentially perform the entire decoding process four times in one cycle. If the the target clock
frequency of the decoding process is 250MHz, and the total clock delay of the critical path must be under 4 ns. All discussions
on timings assume an unroll factor of 4, which supports any trace data that can be produced on the US+.

To this effect, there are two things that we must minimize, the logic nesting levels and integer sizes of state values. Both
of these will have a direct effect on the path levels in the critical path, increasing both net delay and logic delay.

Minimizing the logic nesting is done by pipelining the decoder into four stages we already covered in Section 4.5.3.4. For
an initial naive and un-pipelined implementation, the total delay of the worst timing path is ∼7ns and has paths with 35-40
levels. Pipelining the decoder brings the maximum level in all paths down to 12 and the worst total timing delay down to
∼4ns. Both of these have optimized integer sizes already, which we discuss in the following section.

The main bottleneck in terms of timing is the stream state handling stage. Everything else is comfortably below the 4ns
mark. More specifically, the critical timing path is the path that leads through the termination condition and checks for the
ending of payloads four times.

6.2.1 Constraining Integer Sizes
The integer sizes, or how many bits we used to represent these integers, used in the stream state for the indices and for the
packet sizes have a significant impact on the total delay of timing paths. In the stream state handling stage, a timing path
leads through four stream state processes, meaning there exists a path that traverses the termination condition logic four
times. The termination condition of packets that are classified as FS or BC requires checking if the index of the current byte
is equal to the max payload size. This equal check quickly becomes expensive the larger the possible integer size is. The
larger the integer size, the more carry8 components are required to perform this check, causing critical paths to get longer
(have higher levels), increasing both net delay and logic delay, and as a result the total delay. If we do not constrain our in-
teger sizes, the total delay of theworst path in the stream state handling stage is∼6ns and has 20 levels — far from our 4ns goal.

The key to eliminating this timing failure is constraining our integer sizes, but how can this be done if we have unbounded
packet sizes? This is the major influencing point when deciding to distinguish between unbounded and bounded continuous
packets. Each BC and FS packet is finite and we can determine an upper bound. For UC the payload index is not required
for the termination condition, therefore not needed at all. Additionally, there is no unbounded packet type that requires the
indices of the payload to determine the trace state action code, meaning we can completely disregard these packets when
choosing an upper bound for the integer size, while still being able to accurately decode the trace stream for an unbounded
payload. From all packet types, the max integer required is 11 for the A-Sync packet, any larger packet is either unbounded

65

and we d not require an upper bound, or is a composite packet broken down into smaller internal packets.

6.2.2 Floorplanning
The combined efforts of pipelining and constraining integer sizes bring us very close to our 4ns goal, but we remain off target
by around 0.3ns for around 10 paths (depending on the implementation run). In reality, this is likely to only cause problems
in very rare scenarios, but we attempt to avoid it nonetheless. All the timing violations still come from the paths that go
through termination condition checks. We show in this section that with very minimal floorplanning intervention we can
circumvent the timing issues.

(a) Critical paths without floorplanning. (b) Critical paths with floorplanning.

Figure 6.1: Solving timing violations with floorplanning

Figure 6.1 shows the critical paths before and after assigning them to a pblock. A Pblock is an area containing cells spec-
ifying the placement of the components used by the design on the FPGA. Doing this avoids all the timing violations, it just
requires a few extra steps to achieve. The assignment to Pblocks may have to be repeated a few times as the move may affect
other paths as well. The Pblock must be small enough to decrease the net delays, but large enough to fit in all the critical paths.

In conclusion, with pipelining, integer constraining and minimal floorplanning the total delay of any path on the decoder
is brought under 4ns and our target is achieved.

6.3 Performance
In this section, we analyze and compare the throughputs of our trace decoder in Table 6.2. Trace decoders from prior work
are included as comparisons. We specify the devices they were implemented on. More details on the implementation of the
other trace decoders are discussed in Chapter 7. We add the device ID on which each decoder was evaluated, as the device
could affect the maximum operating frequency and as such a direct comparison should be taken only for bytes/cycle. We add
the PTM decoder by Schmid [74] even though it supports a different specification. The different specifications should not be
directly compared without caution as they are completely different protocols. However, some of the basic building blocks,
i.e. packet structure and even some packet types are similar enough to warrant a comparison.

66

Table 6.2: Comparing out trace decoder to prior work. The details of the implementations are discussed in Chapter 7. We
use the worst-case scenario for bytes/cycle and throughput. We compare our decoder to the decoder proposed by Weiss et al.
with one decoding window and our implementation with unroll factor four. B=requires buffering, U=supports unbounded
packet sizes.

Decoder Device Specification bytes/cycle Max frequency Throughput B U

unrolled_decoder xczu5ev-sfvc784-2-i ETMv4 4 bytes/cycle 250 MHz 1 GB/s 7 3

Zeinabolin et al. xc6vcx75t-2ff784 ETMv4 1 byte/cycle 125MHz 125 MB/s 3 3

Weiss et al. — ETMv3.5/PTM 1 byte/cycle >100MHz > 100 MB/s 3 7

Schmid xc7z04 PTM 1 byte/cycle 125Mhz 125MB/s 3 7

The throughput is evaluated theoretically based on the implementation and not empirically. The bytes per cycle are cho-
sen for the worst-case scenario, meaning what is the sequence of packets that causes the least amount of throughput. All
decoders are unable to achieve more than 1 byte per cycle in the worst case, as they have no form of parallelizing the decoding
of multiple bytes at the same time. The decoder by Schmid and Weiss et al. struggle when receiving multiple subsequent
HO address packets and the L2 decoder by Zeinabolin et al. struggles when receiving successive variable-sized packets. Our
decoder can handle both these cases without a hit to throughput due to the combination of the fact that our decoder processes
byte-wise and unrolls the byte stream. In summary, our decoder has 4× improvement in bytes per cycle and a 2× improve-
ment in the maximum operating frequency, leading to a total of 8× improvement in trace bandwidth the decoder can support
compared to all previous designs.

6.4 Correctness
Every submodule in our system is tested for correctness with a simulation test bench. The trace decoder, however, only has
a test bench for the single-byte decoding function, and not the fully unrolled decoding function. For each submodule, we
used data observed from the trace stream directly. This is an admittedly weak correctness test suite, and ideally, the entire
pipeline from ETM to trace decoding output would be used as the unit under test and compared to existing software Coresight
decoders. We leave this as future work due to lack of time and discuss the best way to approach this in Section 8.2.

67

Chapter 7

Related work

There exists a staggering amount of related work in the field of PGO optimizations, software profile collection strategies
and tracing techniques. We covered many aspects of these works in Chapter 2. We focus our efforts in this section mostly
on Coresight-specific or ARM-specific projects. We cover prior implementations of trace decoders in hardware for both the
ETM and PTM specifications and compare them to our approach (Section 7.1). We continue by comparing our approach
to a memory-monitoring system built on Coresight using only PMU events (Section 7.2), and we conclude this section by
describing recent efforts to collect profiles on ARM processors for PGO (Section 7.3).

7.1 Hardware Trace Decoders
To the best of our knowledge, there are only three other hardware trace decoders and only two that support the ETM spec-
ification. We discuss how these implementations differ from ours and how our implementation has improved on the prior
work in this field.

7.1.1 PTM Trace Decoders
Schmid introduces a runtime verification system that feeds Coresight trace stream from PTMs and an ITM to a runtime ver-
ifier that is implemented on an FPGA [74]. His work shares many of the same Coresight processing elements, including the
TPIU-PL interface, a frame parser, a stream demultiplexer and trace decoder. His work is done on a Zynq-7000 device instead
of the US+. The Zynq-7000 has a different Coresight subsystem implementation, namely, it uses PTMs instead of ETMs and
has a simpler topology, similar to the one shown in Figure 4.3. His decoder is also not directly portable to theThunderX, since
the ThunderX requires an ETM protocol decoder.

From a design perspective, the main difference between our work and the work done by Schmid is that our implementa-
tion supports the newer Coresight specification, namely the ETMv4.0 specification.

The Zynq-7000 exhibits the same TPIU and PL interface through EMIO to the US+. While the implementation is func-
tionally the same, Schmid adds a conversion from TPIU trace data to AXI stream before passing the trace data to his frame
decoder. Furthermore, we decided not to reuse his code for frame decoding since it has a different input type, namely an AXI
stream instead of raw TPIU data. He also has implemented his pipeline with synchronized buffers between frame decoding
and trace decoding stages, and he adds additional timestamping metadata to frames before he decodes the frame that he needs
for the later verification steps.

The interesting differences come when discussing the different trace decoding implementations. Unfortunately, his de-
scriptions of the decoding process are very sparse — around 3K lines of VHDL code for trace decoding are described in less
than a page in his thesis. The decoding process is also only described in what it does and not how it does the decoding. We
try our best to convey the ideas of his work faithfully from the source code.

68

The PTM parser, as implemented by Schmid, uses a buffer to store all the stream data and processes it packet-by-packet.
His implementation relies on the finite size of packets. As an example, a timestamping packet (same in the PTM and ETM
specification) is a packet of type BC, meaning it can have a payload size between 1-7. When parsing a timestamping packet,
the PTM parser first resolves the header type of the packet to be processed, then, if necessary, scans the entire buffer to resolve
the packet size. This means it checks the MSB of every payload byte up to the maximum payload size and checks if the packet
is ending. This way, the parser can determine ahead of time the size of the payload. Changes to the trace state can be applied
in one go for an entire packet. Our implementation improves this and scales to an unbounded packet size, which is required
for an ETM parser.

The throughput requirements for Schmid’s PTM parser are the same as ours and require the processing of 4 bytes per
cycle. A packet-based parser is not able to achieve this for successive single-byte packets. His solution for this problem is to
add an optimization step that can parse multiple sequential Atom packets at the same time. This is easily parallelizable, as
the Atom packets require no state handling, meaning there is no dependency between the packets as long as the ordering
of the output is maintained. Also, in the PTM protocol Atom packets and address packets1 are the only possible single-byte
packets. And his implementation separates address parsing into an earlier pipeline stage that always occurs before the trace
decoding.

However, his solution does not entirely eliminate the problem, even if it handles many practical scenarios. It is hypothet-
ically possible for the PTM parser to overflow the buffer and not be able to keep up with 4 bytes per cycle. To overflow the
buffer, the trace source would have to generate many successive two-byte (one payload byte and one header byte) packets in
succession. This is possible, if we constantly see a mix of two-byte Atom packets2 and other packet types. This is a realistic
scenario, since all packet types may have payload sizes of one [23]. In this situation, the worst-case throughput of this design
is 2 bytes per cycle.

Additionally, single-byte address packets are possible in the PTM protocol and we were unable to find any evidence that
Schmid’s implementation supports handling multiple sequential single-byte address packets the same way as the Atom pack-
ets. For a PTM parser, this is important, as enabling branch broadcasting will no longer generate any Atom E elements
(only not executed Atom packets) and replace them with address packets containing the target address. In a scenario with
many sequential short jumps, a source would send out non-stop single-byte address packets. A jump is short only if the first
7 to 5 bits of the currently held last seen address need to be changed to resolve the target address. It subsequently fits into
the header byte [23]. The exact number of bits depends on the ISA. Taking this worst case, the address parser stage in his
pipeline will become a bottleneck, only handling one byte per cycle.

In conclusion, our trace decoder, which works on the newer and more complex ETM protocol, solves the problem of
parsing unbounded packet sizes and does not rely on buffering. We improve the reliability of the decoding process, as it
is no longer possible to lose data in the parser. On top of all this, we increase the supported throughput of the decoding
process by 2× from the 500MB/s throughput to 1GB/s, when considering the best-case scenario for Schmid’s decoder. Being
pedantic, the theoretical worst-case throughput is increased by 8× from 125MB/s to also 1Gb/s if we only see single-byte
address packets.

7.1.2 ETM Trace Decoders
To the best of our knowledge the only other hardware implementations of Coresight trace decoders are introduced by Weiss
et al. [84] that is also used in online trace analysis and verification systems [39, 42, 37] and Zeinolabedin et al. [89, 90], intro-
ducing both an instruction trace and data trace decoder. In these implementations, they refer to the frame decoder as an L1
decoder and the L2 decoder is analogous to our trace decoder. We stress that their L2 decoder only contains a subset of the
functionality of our trace decoder, as the purpose of this decoding step is to extract complete Coresight packets and separate
any semantic extraction into a different submodule, or a monitoring stage.

The trace decoder introduced by Weiss et al. exhibits a similar issue during the decoding process introduced by Schmid
and can only process finite-sized packets. The decoder relies on resolving the size of a packet based on an observation win-

1Keep in mind that both the address packets and the atom packets have a different layout as compared to the ETM protocol.
2This is only possible in the PTM protocol not the ETM protocol.

69

dow, that would have to be reconfigured to fit the largest possible payload size. From our understanding, a packet can only
be decoded if the entire packet is contained in an observation window. In the worst-case scenario of single-byte packets, one
byte per cycle can be processed. Their technique to achieve higher throughputs is to have eight parallel windows, but we
are not sure how the state is resolved in this scenario or how state dependency is resolved. We believe this parallelization
technique only applies to their PTM decoder.

Zeinolabedin et al. improve on the L2 decoding algorithm by Weiss et al. by splitting up the processing of variable-sized
packets and fixed-sized packets that can be processed simultaneously. Variable payloads are also processed sequentially, al-
lowing for the decoding of unbounded packet sizes. Internally they use a Control Core that is somewhat similar to our stream
state to keep track of current payload indices, crucially, without unrolling. This is reflected in the worst-case scenario for this
decoder: receiving only variable-sized payload packets. In this case, they can only process one byte per cycle. With their
maximum operating frequency of 125Mhz, this leads to a supported data rate of 125 MB/s [89].

Summarizing the related work of trace decoders, all previous work relies on buffering of trace data, increasing area re-
quirements or block RAM requirements on the device, and the only other decoder that can support unbounded packets is
the L2 decoder by Zeinolabedin et al. The unrolling of the trace stream allows processing of 4 bytes per cycle with no excep-
tions, which is not possible for any other algorithm and provides safety against dropping packets in worst-case packet streams.

7.2 Monitoring with ECTs and PMU Events
As an alternative approach to sending the entire trace data stream to the PL, Baryshnikov uses the Coresight subsystem, also
on an US+, to monitor the number of memory accesses that are made from a processor [31]. For this purpose, he only uses
the ETM as a memory event generator on the cross-triggering network. This event is then forwarded to the PL over the CTM
and then over the PS to the PL trigger interface (see Figure 4.2). He uses the L2_CACHE_REFILL event that we mentioned
as well in Section 3.5 to mark a cache miss, and therefore a memory access. The ETM is only used for forwarding triggers to
the CTI. This a lightweight approach to memory monitoring that does not use the instruction trace at all (compared to a full
trace decoding and analysis process). With this approach, however, it is no longer possible to reassoicate the memory access
event with the basic block that triggered this memory event.

7.3 Collecting Profiles on ARM Processors
We mentioned that most work in profile collection for optimization purposes uses LBR that is only available on Intel proces-
sors. Some work has gone into emulating capabilities of LBR on ARM processors. For example, AutoFDO added support for
the collection of ETM trace data [3] that relies on simpleperf [11] and the Linux Coresight driver module. This data collection
only uses the ETB to trace data, meaning it may only be able to trace very short sessions before becoming full. If an ETR is
available, it will also support writing to larger regions of system memory, providing the ability for longer tracing sessions or
higher sampling rates. This, however, can cause overhead when memory bus contention is high. The trace data is then run
through the Open source CoreSight Decoding Library (openCSD) with the program and kernel image before branch frequen-
cies are injected to the IR at higher abstraction levels, creating actionable feedback for the compiler.

On the other hand, some of the authors of AutoFDO further moved on to create an architecture-neutral and lightweight
instrumentation technique specifically to support LBR-like profile collection for the growing number of AMD and ARM pro-
cessors [62]. On ARM, this PMU is part of Coresight, but their system does not directly interact with the Coresight features
such as ETMs or ETBs. Instead, they use the debug capabilities of the processer, which is part of Coresight, to set breakpoints
at instructions that modify the control flow and the target address cannot be resolved statically. The breakpoint handler is
modified to hold a buffer of the last branches, emulating an LBR.

In conclusion, it remains unclear how Coresight fits into the larger context of AutoFDO, where AutoFDO is representative
of the most common cases of PGO applications.

70

Chapter 8

Future Work

In this section, we discuss extending the system to support more features of Coresight (Section 8.1), further we discuss some
planned experiments that were not performed due to time constraints (Section 8.2). We conclude with further research
opportunities and practical applications of online and on-chip tracing and analysis systems (Section 8.3). Section 8.3 should
be considered more speculative and open-ended than the rest of this section.

8.1 Hardware Trace Decoder System Extensions
We begin discussing possible direct extensions to the current system to add more features and support trace analyzers on
different hardware configurations.

8.1.1 Coresight onThunderX
As of writing this thesis, we are unable to receive any trace data in the DTX from the ETMs on the ThunderX. We hope
insights gained throughout this work aid a future attempt. A working Coresight subsystem would make the platform more
interesting for future projects we discuss here. We also believe that theThunderX problems are not due to a lack of knowledge
of the Coresight system, but missing documentation of the inner workings of the debug system. It may be worth considering
tracking someone down who had a working tracing session running on the ThunderX, as the existence of internal documen-
tation we have received suggests that tracing sessions have been successfully performed in the past.

TheThunderX, classified as a server-grade processor, presents a more applicable environment for collecting profiling data
for PGO than the processors on mobile SoCs, since PGO is mostly applied to server workloads. Most research efforts have
gone into Intel-specific profile collection techniques and the space remains open when it comes to PGO on ARM.

The OCLA on the ThunderX has two programmable FSMs that have access to the trace data before the ThunderX drives
trace data away from the PS. An open question is how much of the decoding logic can be pushed to these FSMs to minimize
trace volume or aid the decoding process. For an initial trace analyzer design on the ThunderX, the OCLAs should be used
to format the trace data into frames so the data can be demultiplexed on the PL. This is because there are no Coresight com-
ponents on the ThunderX that are capable of wrapping the data into frames, as the ThunderX has no TPIUs or TMCs. From
this point, it is worth exploring different use cases for the OCLAs.

8.1.2 Completing the AXI-DMA
We planned to write trace data that has gone through the processing stages on the PL to the PS memory via AXI DMA. The
US+ has a PL specific memory that can be accessed by the PS through a high-performance AXI interface. This has been im-
plemented in the block design, and verified to work with the simple test suite including drivers provided Xilinx [1]. However,
for now, this only works when running the DMA test as a standalone application and not when booting into the Linux kernel.
Here the next step would be to either write a simple AXI DMA driver, or build the kernel with the existing drivers provided

71

by Xilinx [6]. Once this is configured, the experiments outlined in Section 8.2 can be performed as an end-to-end system.
In hindsight, this should have been implemented very early on, providing more practical and concrete requirements for a
Coresight decoding implementation. This ties into the discussion in Section 4.5.4.

8.1.3 Tracing with the Program Image
The ETM instruction trace protocol is designed for decoding under the assumption that the trace analyzer has access to the
program image. This means address packets are sent out explicitly only for indirect branches. Only if branch broadcasting is
supported are address packets sent out over the trace stream for direct branches. The ETMs on the ThunderX do not support
branch broadcasting! It is therefore not possible to reconstruct the execution flow from the trace without the program image
on the ThunderX. Also, even if we have branch broadcasting, if we wish to have the source address, address a0 of a jump in
the form: “jump from address a0 to address a1”, we need the program image.

The only way to properly reconstruct the execution path is to use the program image of the program that generated the
trace stream. To allow for trace analysis for arbitrary ETM configurations, we propose an additional processing step in the
pipeline that has access to a copy of the program image (or multiple images) currently running and, feeds the images alongside
decoded trace data to a trace execution reconstructor that can regenerate the full execution trace, even of direct branches,
see Figure 8.1.

Trace decoder

PI PI

post-processing

AXI

PL DDR / BRAM

Trace execution

reconstruction

Figure 8.1: Handling profile trace analysis without branch-broadcasting, where PI is the program image.

It may represent quite a challenge to keep up with the trace decoder in terms of throughput. This reconstructor would
have to essentially “chase down” addresses on each indirect branch, walk through each basic block in the code based on the
received Atom packets, and replace Atom packets with explicit addresses — while potentially handling multiple packets in
each cycle. In practice, we imagine this to look something like this:

— The program image can be compressed in a preprocessing stage, as the only things we need from program images are
P0 instructions and the offset address of these instructions in the binary. All other instructions can be discarded. This
preprocessing step would also require rewriting the jump addresses to reflect the compressed image.

— The compressed program images are then made available to the PL in the PL memory region connected with some form
of AXI interface such that the trace reconstructor is able to request data at a given program counter offset. This requires
a form of address translation between the compressed image and uncompressed image.

Alternatively, the program images can be stored in BRAM if enough space is available.

— The reconstructor only handles two packet types received by the trace decoder: Atom packets and Address packets.
An address packet requires the reconstructor to fetch a chunk of the program image based on this address packet. Each
Atom packet is then used to walk through the compressed program image and resolve target and source addresses for
jumps.

This remains solely an idea, and the requirements may change based on later challenges. It remains unclear whether this
can be implemented in a way that keeps up with decoding throughput, or bottlenecks the system.

72

8.1.4 Supporting Speculation Resolution.
As a reminder, if speculative tracing is enabled and supported by the hardware, the trace protocol sends out Atom packets
that have been speculatively executed. They remain speculative until either a Cancel , Commit or Mispredict packet
is sent out. The number of speculatively executed instructions depends on the max speculation depth that is held in an ETM
register.

As of now, this feature is not supported by our decoder, nor is it implemented for the US+ or ThunderX. However, this
feature could be built on top of our current decoder. To do so, it makes sense to add a submodule after the trace decoder in the
system-wide pipeline (not in the trace decoding pipeline, although this could be done as well). In a nutshell, the speculation
resolver should be able to buffer max_spec_depth number of Atom packets, and hold these packets. This submodule has
to be inserted after the trace decoding process, otherwise, the semantics of the byte stream cannot be interpreted.

The proposed speculation resolver keeps a buffer of trace decoding output that extracts meaning from Atom packets.
Only once a speculation resolution packet is received and decoded, is the output produced by the held Atom element released
from the speculation resolver. We sketch our idea in Figure 8.2.

 Speculation resolver

 Buffer
Trace decoder

jump to ai−n jump to ai−1

jump to address ai

commit n jumps speculation profile

resolved decoder trace stream

Figure 8.2: Additonal stage for speculation resolution where n = max_spec_depth .

This example is somewhat simplified and does not account for the fact that up to 24 Atom elements can be sent by a
single packet, meaning we could get 96 Atom elements per cycle, similarly for commit packets.

8.1.5 Supporting Data Tracing
As discussed, the ETM specification also supports data tracing in addition to instruction tracing. While this is not implemented
on the US+ orThunderX, we believe data tracing can enable even more interesting optimizations than just instruction tracing,
discussed some more in Section 8.3. Extending the system to support data trace requires first a data trace decoder similar to
the instruction trace decoder. The data trace protocol is much simpler than the instruction trace protocol and we can reuse
parts of the design for the data trace decoder, meaning we can keep the same framework as the instruction trace decoder.
Most of the stream state handling can be reused without changes, we only have to add the headers and related payload sizes.
For the rest of the trace decoding, we merely need to add the new action codes and add the logic associated with each action.
Furthermore, the data trace state is very similar to the instruction trace state, containing three address registers, a timestamp
value and a few additional state components.

The challenge, in this case, is re-associating the data trace with the instruction trace. The ETM provides an algorithm that
must be followed [26]. Without getting lost in the details, it tries to match trace data P0 elements to P1 elements. The algo-
rithm involves scanning for data synchronization markers in both streams simultaneously. At first glance, matching these
keys might prove difficult for a hardware implementation since it involves moving both backwards and forwards through
the trace streams looking for keys — this could be a very hard problem to solve efficiently. As for as we know, the data trace
stream and instruction stream has to be generated as two separate streams by the ETM, so the resynchronization algorithm
is unavoidable. We leave this implementation as future work.

73

Additionally, the data trace stream internally requires a similar resynchronization algorithm to reconstruct the relation-
ships between P1 and P2 elements, where P2 elements are the traced values of a load or store instruction. Zeinabolin et al.
introduce a hardware implementation for resynchronizing the P1 and P2 elements in [90]. Synchronizing P1 and P2 elements
is easier than synchronizing P0 and P1 elements, because P1 elements have a one-to-one relationship to P2 elements, but a
many-to-one relationship to P0 elements. To the best of our knowledge, there currently exists no hardware implementation
for synchronizing P0 elements to P1 elements.

A further question is how quickly the TPIU could become a bottleneckwhen collecting both streams. To reduce bandwidth
it would make sense to filter the stream and scan for the most interesting data instead of collecting everything always, so we
would have to design policies on what to trace. The details of such policies need to be made based on real-world bandwidth
requirements and should be tested in practice first.

8.1.6 Supporting Instrumentation
The STM/ITM has its own trace protocol specification [21] and requires a separate trace decoder. The protocol is similar in
spirit to the ETM protocol and some elements like the synchronization packets are the same. The number of packets is much
smaller, as the packets mostly propagate the values that are written to the STM/ITM registers or hardware events. We suggest
using the same technique for the instrumentation trace as with the instruction trace. Here we also have the opportunity to
lower the unroll factor and simplify the decoder as we expect a lower bandwidth for the instrumentation trace stream than
the instruction trace stream. This entirely depends on how the code is instrumented and should be adapted to each use case.

8.2 Future Experiments
In this section we describe a set of benchmarks we deem interesting and may guide future research directions that were
planned on being performed once a full system implementation is complete. Originally, the tracing analysis data was meant
to be hooked into the GraalVM compiler and to be evaluated on existing PGO techniques [87]. This presents a problem as
the AOT compiled GraalVM native image with PGO is, for one, closed source and may only be applied with a valid enter-
prise license, and second, would require hoisting of profiling data to high levels of abstraction, as the insertion point for the
profiling data is on the IR level, requiring a lot of custom post-processing of analysis results. From our understanding, most
of this would have to be implemented from scratch, as GraalVM uses instrumentation-based-profiling and not sampling- or
trace-based profiling.

Nevertheless, collecting trace data is compiler agnostic — GraalVM community edition native image has a builtin bench-
mark suite, which includes ScalaBench [75], Java DaCapo [32] and Renaissace [71] that contain a more representative set
of benchmarks than, for example, the solely SPEC CPU benchmarks [41, 69] for server grade workloads. Finagle-http, sim-
ulating a server workload used by Twitter, the page-rank algorithm implemented on top of Apache Spark framework, or
neo4j-analytics are a few notable examples used by the Renaissance suite are the types of workloads PGO is typically applied
to and renaissance benchmarks are widely used across related work [56, 77, 54, 57, 55]. Other representative workloads may
include long-running server database processes, like MySQL or MongoDB used by other PGO evaluations [91].

8.2.1 Evaluating Tracing Overhead
First and foremost, one of the most important aspects of hardware tracing is the minimal impact on processing speeds. The
first step for a proper evaluation requires quantifying precisely the overhead incurred by a tracing session, ideally, this would
be <1% to compete with LBR sampling-based techniques. This may seem straightforward but may depend widely on both
the running binary and the tracing configuration. It is also unclear whether backpressure generated by the Coresight devices
affects only the trace source, or may also exert backpressure on the CPU in the case of ETMs. Hardware-assisted tracing is
dubbed “zero-overhead”, yet still should be empirically reestablished.

74

8.2.2 ETM Bandwidth Measurement
Similar to evaluating the overhead of tracing, the bandwidth depends heavily on the application, namely the density of direct
branch statements that generate Atom packets and indirect branches generating both Atom packets and some form of
address packet. Code with loops that require a small number of cycles per loop iteration step will produce significantly more
trace packets on the stream than code with cycle-heavy branch-less computation.

Also affecting bandwidth, maybe even more than the application, is the configuration of the source device configuration.
As an example, if a trace session is enabled with cycle counting, the threshold for the number of cycles that occur before a
new cycle-count packet must be sent out can be configured. If this threshold is set very low, we expect a significant increase
in trace bandwidth. Similarly for branch broadcasting, a requirement for our system at the moment, that incurs an overhead
of additional address packets for every direct branch. Currently, to the best of our knowledge, there is no comprehensive
study on trace data bandwidth, only general rules of thumb and anecdotal reports.

A trace bandwidth evaluation on the US+ can be used to extrapolate bandwidth requirements for a hardware tracing
design on the ThunderX. This can be valuable for design choices, as the ThunderX has no TPIU, so the current system bot-
tleneck on the US+ can be eliminated with higher throguhput CPU to FPGA interconnects. The Cortex-A53 on the US+ runs
at around half the speed, running at 1.3GHz compared to ThunderX at 2.5GHz. Measuring the bandwidth of data received
at trace decoder on US+ and linearly scaling the results based on the clock frequencies to the ThunderX should give a rough
estimate of the required bandwidth requirements, assuming the same ETM configuration and running application.

8.2.3 Evaluating PMU Event Consistency
Profiling hardware events to inform compiler optimizations that rely on precise PMU event data. Accurate timing information
of an observed hardware event can inform a compiler how well a binary is performing and where to apply transformations.
There is uncertainty present in determining the root cause of an event, say a cache miss, especially for PMU sampling-based
techniques and some research has gone into improving the precision of hardware event association with basic blocks and
IRs [36, 88].

The ETM specification supports embedding of events into the trace stream. The specification recommends implementing
guarantees on the timing of event embeddings (Section 3.5). We propose performing an experiment to test the precision of
event embeddings by running many trace sessions on a binary and observing any variability in the ordering of events in the
packet stream and the variability in the cycle distances. Once a statistical analysis is made, the trace analysis can provide
guarantees of event occurrences to a compiler, which could otherwise not be made, allowing for more sophisticated cause-
and-effect inference between negative hardware events, like a cache miss, and the event-causing instructions.

This experiment requires multiple iterations on both warm- and cold-starting states to reproduce the same execution
environment across iterations. Building on top of this, understanding how deterministic the general trace from steady-state
trace session beginnings can make an interesting experiment when compared to sampling-based profiling.

8.2.4 Testing Correctness of the Trace Decoder
For now, all the testing is done through a set of simulation test benches in Vivado. Each submodule has its own test bench,
usually where we feed a set of representative trace packets and check the output that has been precomputed by hand based
on the Coresight specification. For end-to-end testing without a AXI-DMA we used a Microblaze connected to the output
of trace decoder through the Microblaze AXI interface. This was made more for intermediate “printf-style” debugging and
sanity checking. Ideally, to check for correctness, we would compare the trace data results produced by our processing stages
in the PL to the results of feeding the same trace data to the OpenCSD [9]. The experiment would work as follows:

— Configure the tracing session as usual, including outputting the trace data over the TPIU to the PL. At the same time,
use the ETR on the US+ to write the pure trace data to system memory. This works concurrently.

— Results of the trace decoder are written back to PL memory over AXI-DMA and is accessible from the Cortex-A53s.

75

— The trace data written to system memory from the ETR is passed to the OpenCSD. This acts as our trace decoding
oracle.

— Wemay have different requirements and output data for our trace decoder, as we attempt to extract semantics. Therefore
this step would involve also a piece of translation software to either extract the same meaning from the results of the
trace decoder or translate our decoded data to the same format as the OpenCSD.

8.3 Big picture vision
We explore some more practical applications of an online trace analyzer in this section. These project possibilities are larger
in scop than direct system extension and we believe these topics are worthy of further discussions.

8.3.1 Runtime Binary Optimizations Performed on the FPGA
The recently published paper Ocolos applies code layout optimizations at runtime. It does so by continuously collecting pro-
files, pausing the execution of the running binary to perform optimizations. During the pauses, Ocolos uses the collected
profiles to reorder basic blocks or functions by duplicating certain code sections, updating relevant pointers in the binary,
and subsequently resume the execution of the binary [91]. Why not take this a step further and perform these steps on the
PL? While the PL is not suited for more sophisticated static analysis or CFG traversals, code reordering may be feasible to
perform on an FPGA. An FPGA could read the memory section holding the program image as a stream of data, and then write
back the updated stream back into the PS memory. This could increase the benefits reported by Ocolos, as the system would
no longer have to overcome the lost cycles spent pausing execution and performing updates, as the overhead is pushed to the
PL and the CPU can continuously perform useful work.

8.3.2 Exploring Trace-based Compiler Optimizations
The case for PGO has been well made, and encouraged numerous solutions, especially in reducing L1-I and I-TLB [58, 59, 33,
66, 65, 77, 56, 91, 67, 35, 28], however all of these apply to branch frequency profiling data. Trace data allows for a greater set
of optimizations that are not feasible with sampling-based approaches. The concept of trace-based optimizations is nothing
new, especially in the world of JIT compilers [45, 34, 48, 29]. However, the meaning of trace-based optimizations should be
interpreted differently from the optimizations we wish to explore in this area AOT compilation. In the context of a JIT, trace-
based optimizations try to produce machine code for the hottest paths, in other words, the execution path that is executed
most frequently. If a colder path is taken, execution is deoptimized back into the interpreter.

We suggest exploring a similar concept with AOT compilation. For trace-based optimizations, sampling-based profiles
are not adequate to make any informed decisions. The reasons are twofold: sampling-based profiling gives us only branch
frequencies. We can view branch frequencies as local profile information. It is local in the sense that the only information
we have at branch b is how likely the branch will be taken/not taken. In contrast, with tracing data, we have a global view
of the system, meaning given we are at branch bn, how likely are we to take the branch given that our execution path has
been bn−1 ... b0. Of course, the number of paths in the system is theoretically infinite and not all paths have been observed.
Yet, this still enables us to observe deep branch correlations. Second, sampling-based techniques will not be able to properly
collect data from colder code regions, and some parts of an execution path are likely to be missed due to infrequent execution.
This means the execution path can not be properly reconstructed for paths that contain both cold and hot code.

To the best of our knowledge, we are not aware of any research in this exact direction. It remains interesting to examine
if deep correlations between branches exist and if this is a pattern we can optimize for.

8.3.3 Informing Cluster-wide Scheduling Policies
An immense body of work has gone into cluster data center-wide schedulers and managers. Without going into too much
detail, most schedulers rely on profiling data to make decisions on which jobs to collocate onto the same machine in or-
der to both maximize cluster utilization and minimize interference between jobs while abstracting away the need to specify

76

resources from the user. Interference comes from sharing memory, caches, and CPU time and an application may cause
slowdowns of other applications running on the same machine if they have similar resource requirement characteristics. As
an example, Quasar [40] performs an interference classification step, among others, on applications before scheduling them.
Here, profiles collected consist mostly only of runtime measurements, i.e how long did a job take to complete, or for example,
how many Queries Per Second (QPS) a service can complete. This profiling information could be enhanced with trace-based
analysis produced by our trace decoder, as more fine-grain performance information is made available to a scheduler.

Another example is when making scheduling opportunities, cloud providers would want to provision resources in the
Goldilocks zone — like provision just the right amount of memory for a serverless application. This can be a challenging
objective to solve, even more so considering language runtimes with memory management come into play [52]. This is a pos-
sible use case for a combined instruction and data trace, that gives detailed insight into the memory usage of an application.
Collecting trace data from a large number of runs for an application may provide very detailed memory requirements that
go far beyond merely measuring peak memory usage or other memory use profiling.

Taking things a step further, the trace could be used to throttle code regions that have high memory requirements, taking
an approach of fitting the application to the resource it’s given as opposed to fitting the resources to the application. Some-
thing akin to this has been done before, [80, 81], but instead uses solely (Intel) PMU counters to measure the bandwidth
requirements of code regions. A limitation of this work, mentioned by the authors, is the inability to measure cache usage
only from PMUs, which is precisely what a data trace could solve. Furthermore, reassociating memory bandwidth mea-
surements with the instructions causing reads and writes to memory is fairly coarse-grained, essentially matching each 1ms
interval with the most frequently executed basic block in that 1ms interval. Coresight could offer potentially basic-block-level
precision otherwise not achievable.

In summary, an online Coresight tracing technique as we have implemented could aid in estimating resource utilization
more precisely than previous techniques can, which may result in better resource assignment policies. We believe this would
be most interesting to study on a device that enables data tracing as well as instruction tracing and would require a full
Coresight decoding system for both streams.

Unfortunately, as far as we are aware, the only mainstream processor that supports data tracing is the Cortex-M3, so
this would have very limited use cases. This begs the question, if we run an application on a Cortex-M3 processor with
data and instruction trace and analyze the trace, how applicable are the analysis results of the same application running on
another processor? In theory, the data trace produced by an application is not processor specific unless it has been compiled
differently for the architecture. This, however, remains an unanswered question. Nevertheless, we believe that Coresight
may have interesting applications in the field of resource estimation for cloud workloads, and an instruction and data trace
analyzer implemented completely in hardware would make this type of resource analysis feasible in practice.

77

Chapter 9

Conclusion

In this work we have introduced a novel ETMv4 instruction trace decoder implementation running on a Zynq Ultrascale+
MPSoC xczu5ev-sfvc784-2-i that can handle up to 4 bytes/cycle at 250MHz, giving a total throughput of 1 GB/s per core,
an improvement of 8× over any prior work. The three key ideas to achieve this are, first, performing the decoding process
byte-wise with the introduction of the stream state, while breaking down the ETM specification into internal packet types
such that the specification is more amenable to decoding in hardware. Second, unrolling the byte stream is the only way
to parallelize the decoding process fully, regardless of packet types in the trace stream. Lastly, once the decoding process is
unrolled, pipelining optimizations need to be applied to support the target operating frequency of 250MHz. The design is also
adaptable to specific performance needs and can be tuned by adjusting the unroll factor. With an unroll factor of four and a
trace decoder for each of the four cores on the US+, the trace decoders would use up around 10% of the device in the most
dominant resource (LUT).

We further designed modular subcomponents for frame generation, frame decoding, and demultiplexing the trace streams
that can be reused for any device with a TPIU. We also extended the CSAL to support using TMCs as intermediate buffers in
hardware FIFO mode. We cleared up what seems to be a bug in the constraint translation of the Zynq Ultrascale+ MPSoC in
regard to the TPIU clock speeds and showed how to apply configuration changes of the PS block design on the US+.

We further provide a comprehensive guide to Coresight in general and specifically for both theThunderX and Zynq Ultra-
scale+ MPSoC implementations of Coresight, and the ETM instruction trace stream specification that can be used as a guide
for future research in this area. While we have not yet achieved a running Coresight trace session the ThunderX, we have at
least narrowed down the problem to a specific stage in the path from the trace source to the OCLA, being the propagation of
trace data from the ETM to the DTX.

Working with Coresight proved more challenging than initially expected, especially on the ThunderX. Updates to the
CSAL were required and designing the trace decoder took more time than we had foreseen. This is becuase there is no clear
path from a PTM, decoder to an ETM decoder, which therefore had to be implemented from scratch. Because of this, many of
the experiments and more practical applications of trace data that were planned are still left for future work. In Chapter 8, we
outlined in which directions we envisioned future work in this area to commence. Possible directions we described include
using Coresight trace data for more sophisticated compiler optimizations that could not be performed with sampling-based
techniques, applying code layout optimizations during runtime using the FPGA, or using the traces to get a better idea of
resource utilization for cluster-wide scheduling and resource assignment.

Furthermore, this work is foundational to any project that relies on real-time trace data using any system with an ETM,
e.g. the ThunderX processor on the hybrid CPU/FPGA Enzian platform. An important takeaway is that previous approaches
to tracing an application, proposed both in this work and in the work done by Schmid [74] are not directly applicable to the
ThunderX without substantial changes to the trace decoding process, as it does not support the branch-broadcasting mode.

A possible direct next step is completing the system by finishing the AXI-DMA to write back the results to PSmemory, and
using this for end-to-end testing. Another possibility is adapting the same decoding function to support ITM trace decoder and
a data trace stream decoder. Once a data trace decoder is implemented, hardware implementations of the resynchronization

78

algorithms between the data trace stream and instruction trace stream should be examined. Finally, a possible project could
include adding analysis stages of the decoded trace stream in hardware to extract actionable profiles that can be fed directly
into a compilation toolchain.

79

Acknowledgements

First and foremost, I would like to thank my supervisor Nora Hossle for guiding me throughout
this thesis and keeping me grounded and focused on the task at hand without losing myself in out-
landish ideas. I wish to extend my gratitude to the entire Systems Group at ETH Zurich, the journey
has been very insightful and I cannot recall a time in which I have learned so much in such a short
period of time. As such, I am thankful to Prof. Dr. Ana Klimovic and Prof. Dr. Timothy Roscoe for
allowing me to write my thesis in this group and allowing me to explore a topic I am passionate about.
Lastly, I am grateful to Dr. David Cock, Daniel Schwyn, Adam Turowski, and Dr. Michael Giardino
for lending a helping hand when I was blocked or for joining the debugging sessions attempting to
get a Coresight trace session to work on the ThunderX machine.

80

Bibliography

[1] Axi dma standalone driver. https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842100/AXI+DMA+
Standalone+Driver. Accessed: 2023-12-4.

[2] Coresight access library. https://github.com/ARM-software/CSAL. Accessed: 2023-5-4.

[3] Coresight AutoFDO collect etm data for autofdo. https://android.googlesource.com/platform/system/extras/
+/master/simpleperf/doc/collect_etm_data_for_autofdo.md. Accessed: 2023-4-4.

[4] Gcc, the gnu compiler collection. https://gcc.gnu.org/. Accessed: 2023-10-4.

[5] Hsi debugging and optimization techniques. https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/
18841693/HSI+debugging+and+optimization+techniques. Accessed: 2023-10-4.

[6] Linux dma from user space 2.0. https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/1027702787/
Linux+DMA+From+User+Space+2.0. Accessed: 2023-13-4.

[7] Linux Kernel Coresight hw assisted tracing on arm. https://docs.kernel.org/trace/coresight/index.html.
Accessed: 2023-4-4.

[8] Mercury xu5 pe1 refernce design. https://github.com/enclustra/Mercury_XU5_PE1_Reference_Design. Ac-
cessed: 2023-10-4.

[9] Opencsd - an open source coresight™ trace decode library. https://github.com/Linaro/OpenCSD. Accessed: 2023-
5-4.

[10] perf - performance analysis tools for linux. https://man7.org/linux/man-pages/man1/perf.1.html. Accessed:
2023-5-4.

[11] Simpleperf. https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/
README.md. Accessed: 2023-4-4.

[12] The Linux Kernel - CoreSight - ARM Hardware Trace . https://docs.kernel.org/trace/coresight/index.html.
Accessed: 2023-5-4.

[13] Adve, S. V., Burger, D., Eigenmann, R., Rawsthorne, A., Smith, M. D., Gebotys, C. H., Kandemir, M. T., Lilja, D. J.,
Choudbary, A., Fang, J. Z., et al. Changing interaction of compiler and architecture. Computer 30, 12 (1997), 51–58.

[14] AMD Xilinx Inc. Zynq-7000 all programmable soc UG585, 2012.

[15] AMD Xilinx Inc. Vivado design suite user guide design analysis and closure techniques UG906, 2021.

[16] AMD Xilinx Inc. Zynq ultrascale+ mpsoc data sheet DS891, 2022.

[17] AMD Xilinx Inc. Zynq ultrascale+ mpsoc software developer guide UG1137, 2022.

[18] AMD Xilinx Inc. Zynq ultrascale+ device technical reference manual UG1085, 2023.

[19] Amit, N., Jacobs, F., and Wei, M. Jumpswitches: Restoring the performance of indirect branches in the era of spectre.
In USENIX Annual Technical Conference (2019), vol. 150.

81

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842100/AXI+DMA+Standalone+Driver
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842100/AXI+DMA+Standalone+Driver
https://github.com/ARM-software/CSAL
https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/collect_etm_data_for_autofdo.md
https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/collect_etm_data_for_autofdo.md
https://gcc.gnu.org/
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841693/HSI+debugging+and+optimization+techniques
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841693/HSI+debugging+and+optimization+techniques
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/1027702787/Linux+DMA+From+User+Space+2.0
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/1027702787/Linux+DMA+From+User+Space+2.0
https://docs.kernel.org/trace/coresight/index.html
https://github.com/enclustra/Mercury_XU5_PE1_Reference_Design
https://github.com/Linaro/OpenCSD
https://man7.org/linux/man-pages/man1/perf.1.html
https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/README.md
https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/README.md
https://docs.kernel.org/trace/coresight/index.html

[20] ARM Ltd. Coresight™ components DDI0314H, 2009.

[21] ARM Ltd. Coresight™ system trace macrocell DDI0444B, 2010.

[22] ARM Ltd. Coresight™ trace memory controller DDI0461B, 2010.

[23] ARM Ltd. Coresight™ program flow trace™pftv1.0 and pftv1.1architecture specification IHI0035B , 2011.

[24] ARM Ltd. Arm® cortex®-a53 mpcore processor DDI0500D, 2014.

[25] ARM Ltd. Arm® coresight™ soc-400 DDI0480G, 2015.

[26] ARM Ltd. Embedded trace macrocell architecture specification etmv4.0 to etm4.6 ARM IHI0064H, 2020.

[27] ARM Ltd. Arm® coresight™ architecture specification v3.0 ARM IHI0029F, 2022.

[28] Ayers, G., Nagendra, N. P., August, D. I., Cho, H. K., Kanev, S., Kozyrakis, C., Krishnamurthy, T., Litz, H., Moseley,
T., and Ranganathan, P. Asmdb: understanding and mitigating front-end stalls in warehouse-scale computers. In
Proceedings of the 46th International Symposium on Computer Architecture (2019), pp. 462–473.

[29] Bala, V., Duesterwald, E., and Banerjia, S. Transparent dynamic optimization. Tech. rep., Citeseer, 1999.

[30] Barnes, R., Chaiken, R., and Gillies, D. Feedback-directed data cache optimizations for the x86. In 2nd ACM Workshop
on Feedback-Directed Optimization (FDO) (1999).

[31] Baryshnikov, M. Fpga-based support for predictable execution model in multi-core cpu. Master’s thesis, Czech Tech-
nical University in Prague, Prague, Czech Republic, 2018.

[32] Blackburn, S. M., Garner, R., Hoffmann, C., Khang, A. M., McKinley, K. S., Bentzur, R., Diwan, A., Feinberg, D.,
Frampton, D., Guyer, S. Z., et al. The dacapo benchmarks: Java benchmarking development and analysis. In Proceed-
ings of the 21st annual ACM SIGPLAN conference on Object-oriented programming systems, languages, and applications
(2006), pp. 169–190.

[33] Boehm, O., Citron, D., Haber, G., Klausner, M., and Levin, R. Aggressive function inlining with global code reorder-
ing. IBM Technical Paper (2006).

[34] Bolz, C. F., Cuni, A., Fijalkowski, M., and Rigo, A. Tracing the meta-level: Pypy’s tracing jit compiler. In Proceedings
of the 4th workshop on the Implementation, Compilation, Optimization of Object-Oriented Languages and Programming
Systems (2009), pp. 18–25.

[35] Chen, D., Li, D. X., and Moseley, T. Autofdo: Automatic feedback-directed optimization for warehouse-scale applica-
tions. In Proceedings of the 2016 International Symposium on Code Generation and Optimization (2016), pp. 12–23.

[36] Chen, D., Vachharajani, N., Hundt, R., Liao, S.-w., Ramasamy, V., Yuan, P., Chen, W., and Zheng, W. Taming
hardware event samples for fdo compilation. In Proceedings of the 8th annual IEEE/ACM international symposium on
Code generation and optimization (2010), pp. 42–52.

[37] Chen, W., Ray, S., Bhadra, J., Abadir, M., and Wang, L.-C. Challenges and trends in modern soc design verification.
IEEE Design & Test 34, 5 (2017), 7–22.

[38] Cock, D., Ramdas, A., Schwyn, D., Giardino, M., Turowski, A., He, Z., Hossle, N., Korolija, D., Licciardello, M.,
Martsenko, K., Achermann, R., Alonso, G., and Roscoe, T. Enzian: An open, general, cpu/fpga platform for systems
software research. In Proceedings of the 27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (New York, NY, USA, 2022), ASPLOS ’22, Association for Computing Machinery,
p. 434–451.

[39] Decker, N., Dreyer, B., Gottschling, P., Hochberger, C., Lange, A., Leucker, M., Scheffel, T., Wegener, S., and
Weiss, A. Online analysis of debug trace data for embedded systems. In 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE) (2018), IEEE, pp. 851–856.

[40] Delimitrou, C., and Kozyrakis, C. Quasar: Resource-efficient and qos-aware cluster management. ACM SIGPLAN
Notices 49, 4 (2014), 127–144.

82

[41] Dixit, K. M. New cpu benchmark suites from spec. In Digest of Papers COMPCON Spring 1992 (1992), IEEE, pp. 305–310.

[42] Dreyer, B., Hochberger, C., Lange, A., Wegener, S., andWeiss, A. Continuous non-intrusive hybrid wcet estimation
using waypoint graphs. In 16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016) (2016),
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[43] Enclustra GmbH. Mercury XU5 SoC Module user manual, 2021.

[44] Fisher, J. A., and Freudenberger, S. M. Predicting conditional branch directions from previous runs of a program.
ACM SIGPLAN Notices 27, 9 (1992), 85–95.

[45] Gal, A., Probst, C. W., and Franz, M. Hotpathvm: An effective jit compiler for resource-constrained devices. In
Proceedings of the 2nd international conference on Virtual execution environments (2006), pp. 144–153.

[46] Havlak, P. Nesting of reducible and irreducible loops. ACM Transactions on Programming Languages and Systems
(TOPLAS) 19, 4 (1997), 557–567.

[47] Iannillo, A. K., Natella, R., Cotroneo, D., and Nita-Rotaru, C. Chizpurfle: A gray-box android fuzzer for vendor
service customizations. In 2017 IEEE 28th International Symposium on Software Reliability Engineering (ISSRE) (2017),
IEEE, pp. 1–11.

[48] Inoue, H., Hayashizaki, H., Wu, P., and Nakatani, T. A trace-based java jit compiler retrofitted from a method-based
compiler. In International Symposium on Code Generation and Optimization (CGO 2011) (2011), IEEE, pp. 246–256.

[49] Intel Corporation. Intel 64 and ia-32 architectures software developer’s manual., 2022.

[50] Intel Corporation. Intel. 2020. intel® vtune™ profiler, 2023.

[51] Ishizaki, K., Kawahito, M., Yasue, T., Komatsu, H., and Nakatani, T. A study of devirtualization techniques for a
java just-in-time compiler. In Proceedings of the 15th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications (2000), pp. 294–310.

[52] Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C.-C., Khandelwal, A., Pu, Q., Shankar, V., Carreira, J., Krauth,
K., Yadwadkar, N., et al. Cloud programming simplified: A berkeley view on serverless computing. arXiv preprint
arXiv:1902.03383 (2019).

[53] Kanev, S., Darago, J. P., Hazelwood, K., Ranganathan, P., Moseley, T., Wei, G.-Y., and Brooks, D. Profiling a
warehouse-scale computer. In Proceedings of the 42nd Annual International Symposium on Computer Architecture (2015),
pp. 158–169.

[54] Khan, T. A., Brown, N., Sriraman, A., Soundararajan, N. K., Kumar, R., Devietti, J., Subramoney, S., Pokam, G. A.,
Litz, H., and Kasikci, B. Twig: Profile-guided btb prefetching for data center applications. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture (2021), pp. 816–829.

[55] Khan, T. A., Sriraman, A., Devietti, J., Pokam, G., Litz, H., and Kasikci, B. I-spy: Context-driven conditional instruc-
tion prefetching with coalescing. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)
(2020), IEEE, pp. 146–159.

[56] Khan, T. A., Ugur, M., Nathella, K., Sunwoo, D., Litz, H., Jiménez, D. A., and Kasikci, B. Whisper: Profile-guided
branch misprediction elimination for data center applications. In 2022 55th IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO) (2022), IEEE, pp. 19–34.

[57] Khan, T. A., Zhang, D., Sriraman, A., Devietti, J., Pokam, G., Litz, H., and Kasikci, B. Ripple: Profile-guided
instruction cache replacement for data center applications. In 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA) (2021), IEEE, pp. 734–747.

[58] Kumar, R., Grot, B., and Nagarajan, V. Blasting through the front-end bottleneck with shotgun. ACM SIGPLAN
Notices 53, 2 (2018), 30–42.

[59] Kumar, R., Huang, C.-C., Grot, B., and Nagarajan, V. Boomerang: Ametadata-free architecture for control flow deliv-
ery. In 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA) (2017), IEEE, pp. 493–504.

83

[60] Lattner, C., and Adve, V. Llvm: A compilation framework for lifelong program analysis & transformation. In Inter-
national symposium on code generation and optimization, 2004. CGO 2004. (2004), IEEE, pp. 75–86.

[61] Lee, Y., Lee, J., Heo, I., Hwang, D., and Paek, Y. Using coresight ptm to integrate cra monitoring ips in an arm-based
soc. ACM Transactions on Design Automation of Electronic Systems (TODAES) 22, 3 (2017), 1–25.

[62] Marin, G., Alexandrov, A., and Moseley, T. Break dancing: low overhead, architecture neutral software branch
tracing. In Proceedings of the 22nd ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools
for Embedded Systems (2021), pp. 122–133.

[63] Mijat, R. Better trace for better software: introducing the new arm coresight system trace macrocell and trace memory
controller. ARM, White Paper (2010).

[64] Mosaner, R., Leopoldseder, D., Stadler, L., and Mössenböck, H. Using machine learning to predict the code size
impact of duplication heuristics in a dynamic compiler. In Proceedings of the 18th ACM SIGPLAN International Conference
on Managed Programming Languages and Runtimes (2021), pp. 127–135.

[65] Newell, A., and Pupyrev, S. Improved basic block reordering. IEEE Transactions on Computers 69, 12 (2020), 1784–1794.

[66] Ottoni, G. Hhvm jit: A profile-guided, region-based compiler for php and hack. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation (2018), pp. 151–165.

[67] Panchenko, M., Auler, R., Nell, B., and Ottoni, G. Bolt: a practical binary optimizer for data centers and beyond. In
2019 IEEE/ACM International Symposium on Code Generation and Optimization (CGO) (2019), IEEE, pp. 2–14.

[68] Pettis, K., and Hansen, R. C. Profile guided code positioning. In Proceedings of the ACM SIGPLAN 1990 conference on
Programming language design and implementation (1990), pp. 16–27.

[69] Phansalkar, A., Joshi, A., Eeckhout, L., and John, L. K. Measuring program similarity: Experiments with spec cpu
benchmark suites. In IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS 2005.
(2005), IEEE, pp. 10–20.

[70] Prokopec, A., Duboscq, G., Leopoldseder, D., and Wïrthinger, T. An optimization-driven incremental inline sub-
stitution algorithm for just-in-time compilers. In 2019 IEEE/ACM International Symposium on Code Generation and Op-
timization (CGO) (2019), IEEE, pp. 164–179.

[71] Prokopec, A., Rosa, A., Leopoldseder, D., Duboscq, G., Tuma, P., Studener, M., Bulej, L., Zheng, Y., Villazon, A.,
Simon, D., et al. Renaissance: benchmarking suite for parallel applications on the jvm. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation (2019), pp. 31–47.

[72] Ramdas, A., Cock, D., Roscoe, T., and Alonso, G. The enzian coherent interconnect (eci): opening a coherence protocol
to research and applications. LATTE ‘21 (2021).

[73] Ren, G., Tune, E., Moseley, T., Shi, Y., Rus, S., and Hundt, R. Google-wide profiling: A continuous profiling infras-
tructure for data centers. IEEE micro 30, 4 (2010), 65–79.

[74] Schmid, P. Runtime verification with tessla on enzian. Master’s thesis, ETH Zurich, 2019.

[75] Sewe, A., Mezini, M., Sarimbekov, A., and Binder, W. Da capo con scala: Design and analysis of a scala benchmark
suite for the java virtual machine. In Proceedings of the 2011 ACM international conference on Object oriented programming
systems languages and applications (2011), pp. 657–676.

[76] Shabalin, D., and Odersky, M. Interflow: interprocedural flow-sensitive type inference and method duplication. In
Proceedings of the 9th ACM SIGPLAN International Symposium on Scala (2018), pp. 61–71.

[77] Song, S., Khan, T. A., Shahri, S. M., Sriraman, A., Soundararajan, N. K., Subramoney, S., Jiménez, D. A., Litz, H.,
and Kasikci, B. Thermometer: profile-guided btb replacement for data center applications. In Proceedings of the 49th
Annual International Symposium on Computer Architecture (2022), pp. 742–756.

84

[78] Srinath, S., Mutlu, O., Kim, H., and Patt, Y. N. Feedback directed prefetching: Improving the performance and
bandwidth-efficiency of hardware prefetchers. In 2007 IEEE 13th International Symposium on High Performance Computer
Architecture (2007), IEEE, pp. 63–74.

[79] Su, A. P., Kuo, J., Lee, K.-J., Huang, J., Jian, G.-A., Chien, C.-A., Guo, J.-I., and Chen, C.-H. Multi-core software/hard-
ware co-debug platform with arm coresight™, on-chip test architecture and axi/ahb bus monitor. In Proceedings of 2011
International Symposium on VLSI Design, Automation and Test (2011), IEEE, pp. 1–6.

[80] Tang, L., Mars, J., and Soffa, M. L. Compiling for niceness: Mitigating contention for qos inwarehouse scale computers.
In Proceedings of the Tenth International Symposium on Code Generation and Optimization (2012), pp. 1–12.

[81] Tang, L., Mars, J., Wang,W., Dey, T., and Soffa, M. L. Reqos: Reactive static/dynamic compilation for qos in warehouse
scale computers. ACM SIGPLAN Notices 48, 4 (2013), 89–100.

[82] Wei, T., Mao, J., Zou, W., and Chen, Y. A new algorithm for identifying loops in decompilation. In Static Analysis:
14th International Symposium, SAS 2007, Kongens Lyngby, Denmark, August 22-24, 2007. Proceedings 14 (2007), Springer,
pp. 170–183.

[83] Weingarten, M. E., Theodoridis, T., and Prokopec, A. Inlining-benefit prediction with interprocedural partial escape
analysis. In Proceedings of the 14th ACMSIGPLAN InternationalWorkshop on VirtualMachines and Intermediate Languages
(2022), pp. 13–24.

[84] Weiss, A., and Lange, A. Trace-data processing and profiling device, Mar. 15 2016. US Patent 9,286,186.

[85] Whaley, J. A portable sampling-based profiler for java virtual machines. In Proceedings of the ACM 2000 conference on
Java Grande (2000), pp. 78–87.

[86] Wicht, B., Vitillo, R. A., Chen, D., and Levinthal, D. Hardware counted profile-guided optimization. arXiv preprint
arXiv:1411.6361 (2014).

[87] Wimmer, C., Stancu, C., Hofer, P., Jovanovic, V., Wögerer, P., Kessler, P. B., Pliss, O., andWürthinger, T. Initialize
once, start fast: application initialization at build time. Proceedings of the ACM on Programming Languages 3, OOPSLA
(2019), 1–29.

[88] Yi, J., Dong, B., Dong, M., and Chen, H. On the precision of precise event based sampling. In Proceedings of the 11th
ACM SIGOPS Asia-Pacific Workshop on Systems (2020), pp. 98–105.

[89] Zeinolabedin, S. M. A., Partzsch, J., andMayr, C. Real-time hardware implementation of arm coresight trace decoder.
IEEE Design & Test 38, 1 (2020), 69–77.

[90] Zeinolabedin, S. M. A., Partzsch, J., and Mayr, C. Analyzing arm coresight etmv4. x data trace stream with a real-
time hardware accelerator. In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) (2021), IEEE,
pp. 1606–1609.

[91] Zhang, Y., Khan, T. A., Pokam, G., Kasikci, B., Litz, H., and Devietti, J. Ocolos: Online code layout optimizations. In
2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO) (2022), IEEE, pp. 530–545.

85

