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Abstract

Zero-sum Linear Quadratic (LQ) games are fundamental in optimal control
and can be used (i) as a dynamic game formulation for risk-sensitive or robust
control, or (ii) as a benchmark setting for multi-agent reinforcement learning
with two competing agents in continuous state-control spaces. In contrast to
the well-studied single-agent linear quadratic regulator problem, zero-sum LQ
games entail solving a challenging nonconvex-nonconcave min-max problem
with an objective function that lacks coercivity. Recently, Zhang et al. Zhang
et al. [2021b] discovered an implicit regularization property of natural policy
gradient methods which is crucial for safety-critical control systems since it
preserves the robustness of the controller during learning. Moreover, in the
model-free setting where the knowledge of model parameters is not available,
Zhang et al. proposed the first polynomial sample complexity algorithm
to reach an ε-neighborhood of the Nash equilibrium while maintaining the
desirable implicit regularization property. In this work, we propose a simpler
nested Zeroth-Order (ZO) algorithm improving sample complexity by several
orders of magnitude. Our main results are two-fold: (i) our first result
guarantees a Õ(ε−3) sample complexity under the same assumptions using
a single-point ZO estimator. Furthermore, when the estimator is replaced
by a two-point estimator, our method enjoys even faster convergence with a
Õ(ε−2) sample complexity; (ii) secondly, to the best of our knowledge, we
provide the first last-iterate convergence result for the nested algorithm that
seeks NE of zero-sum LQ games in addition to the diminishing gradient
norms. The complexity analyses are provided for both deterministic and
stochastic cases. Our key improvements in the sample complexity rely on a
more sample-efficient nested algorithm design and finer control of the ZO
natural gradient estimation error. As for the last-iterate convergence results,
the analysis relies on the implicit regularization property of the algorithm,
and the derivation of the sample complexity in the stochastic case reuses our
improvement mentioned earlier.
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Chapter 1

Introduction

While policy optimization has a long history in control for unknown and parameterized
system models (see for e.g., Makila and Toivonen [1987]), recent successes in reinforce-
ment learning and continuous control tasks have renewed the interest in direct policy
search thanks to its flexibility and scalability to high-dimensional problems. Despite these
desirable features, theoretical guarantees for policy gradient methods have remained
elusive until very recently because of the nonconvexity of the induced optimization
landscape. In particular, in contrast to control-theoretic approaches which are often
model-based and estimate the system dynamics first before designing optimal controllers,
the computational and sample complexities of model-free policy gradient methods were
only recently analyzed. We refer the interested reader to a nice recent survey about
learning control policies Hu et al. [2022]. For instance, while the classic Linear Quadratic
Regulator (LQR) problem induces a nonconvex optimization problem over the set of
stable control gain matrices, the gradient domination property Polyak [1963] and the
coercivity of the cost function respectively allow to derive global convergence to opti-
mal policies for policy gradient methods and ensure stable feedback policies at each
iteration Fazel et al. [2018]. As exact gradients are often unavailable when system dynam-
ics are unknown, derivative-free optimization techniques using cost values have been
employed to design model-free policy gradient methods to solve LQR problems Fazel
et al. [2018]. Alternative approaches to solve LQR include system identification Fiechter
[1997], Ljung [1998], iterative solution of Algebraic Riccati Equation Hewer [1971], Lan-
caster and Rodman [1995] and convex semi-definite program formulations Balakrishnan
and Vandenberghe [2003]. However, such methods are not easily adaptable to the
simulation-based model-free setting.

Besides the desired stability constraint, other requirements such as robustness and
risk sensitivity constraints also play an important role in the design of controllers for
safety-critical control systems. Indeed, system perturbations, modeling imprecision,
and adversarial uncertainty are ubiquitous in control systems and may lead to severe
degradation in performance Bhattacharyya and Keel [1995], Campi and James [1996].
Robustness constraints can be incorporated into control design via different approaches
including using statistical models for disturbances such as for linear quadratic Gaussian
design, adopting a game theory perspective via designing ‘minimax’ controllers and
incorporating an H∞ norm bound of input-output operators as in H∞ control Başar and
Bernhard [1995]. Classical linear models for robust control include the LQ disturbances
attenuation problem and the linear exponential quadratic Gaussian problem which are
well-known to be equivalent to zero-sum LQ games Başar and Bernhard [1995], Mageirou
and Ho [1977], Zhang et al. [2021a]. Besides its relevance for robust control problem
formulation, zero-sum LQ games also constitute a benchmark problem for multi-agent
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continuous control problems involving two competing agents. However, solving this
problem faces (at least) two distinct challenges requiring to deal with (a) a constrained
nonconvex-nonconcave problem and (b) lack of coercivity, unlike for the classic LQR
problem for which descent over the objective ensures feasibility and stability of the
iterates during learning.

While the formulation of zero-sum LQ games dates back at least to the seventies Mageirou
and Ho [1977]*, the sample complexity analysis of model-free policy gradient algorithms
solving this problem was only recently explored in the literature Zhang et al. [2021b].
More precisely, Zhang et al. Zhang et al. [2021b] showed that an ε-Nash equilibrium of
finite horizon zero-sum LQ games can be learned via nested model-free Natural Policy
Gradient (NPG) algorithms with polynomial sample complexity in the accuracy ε. Inter-
estingly, the aforementioned algorithms enjoy an Implicit Regularization (IR) property
which maintains the robustness of the controllers during learning Zhang et al. [2021a,b].
In particular, the iterates of the algorithms are guaranteed to stay in some feasible set
where the worst-case cost is finite without using any explicit regularization or projection
operation. In the present work, we show that significantly less samples are required
to guarantee both the IR property and the convergence to an ε-Nash equilibrium of
the zero-sum LQ games problem while only having access to ZO information. Our
contributions can be summarized as follows:

Contributions. Our main result states that our derivative-free nested policy gradient
algorithm requires Õ(ε−3) samples to reach an ε-neighborhood of the Nash equilibrium
(NE) of the zero-sum LQ games problem, improving over the best-known-so-far Õ(ε−9)†

total sample complexity established in Zhang et al. [2021b]. We also show that our
algorithm enjoys the IR property upon choosing adequate values for ZO estimation
parameters such as the batch sizes and the perturbation radius which are less restrictive
compared to prior work Zhang et al. [2021b]. Our improvement follows from (a) a
simpler algorithm design reducing the number of calls to the inner-loop maximizing
procedure, (b) a better sample complexity to solve the inner maximization problem and
(c) an improved sample complexity for solving the resulting minimization problem in
our outer-loop procedure using a careful decomposition of the estimation error caused by
policy gradient estimation. We further improve the sample complexity to Õ(ε−2) using
a two-point ZO estimator under a stronger sampling assumption. (d) We provide the
last-iterate convergence results for both deterministic and stochastic settings, which to
the best of our knowledge are the first convergence results using the last-iterate measure
for zero-sum LQ games.

Thesis organization. The rest of this thesis is structured as follows. In Chapter 1.1, we
discuss related work. In Chapter 1.2, we introduce the stochastic zero-sum LQ games
problem together with useful background. We present our model-free nested natural
policy gradient algorithm to solve the problem in Chapter 2 and Chapter 3 presents
our main results along with a proof sketch to highlight the key steps leading to sample
complexity improvement and the last-iterate convergence. We conclude this thesis with
possible future directions. The proofs of our results and the detailed version of some
results are deferred to Appendix A.

*This formulation is under the continuous-time setting.
†Notice that the total sample complexity was not provided in Zhang et al. [2021b] but can be easily

derived from their results, see Remark 3.6 for more details.
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1.1. Related work

1.1 Related work

Policy optimization for LQ problems. Compared to zero-sum LQ games, policy opti-
mization for single-agent LQ problems is a well-understood topic. Theoretical guarantees
for model-based and model-free algorithms searching for the optimal policy were es-
tablished in Fazel et al. [2018] for the discrete-time infinite-horizon setting. Several
subsequent works improved over the polynomial sample complexity in Fazel et al. [2018]
using single and two-point ZO estimation Malik et al. [2019], Mohammadi et al. [2020].
Additionally, the LQ model has been studied under different settings including finite-
horizon Hambly et al. [2021] and continuous-time Fatkhullin and Polyak [2021], Giegrich
et al. [2022], Mohammadi et al. [2021]. First-order methods have also been recently
investigated for solving LQR Ju et al. [2023], Yang et al. [2019]. In Bu and Mesbahi
[2020], they provided convergence analysis for possibly indefinite infinite-horizon LQR
problems. In Guo and Hu [2022], they designed Goldstein subdifferential algorithms
to solve the nonsmooth H∞ control problem and left sample complexity analysis in the
model-free setting as an important future direction. Other related problems include
Markovian jump systems (Sun and Fazel [2021]), output control design (Fatkhullin and
Polyak [2021], Furieri et al. [2020], Zhao et al. [2022]), decentralized control (Feng and
Lavaei [2019], Li et al. [2020]), receding-horizon policy gradient methods (Zhang and
Başar [2023]), and nonlinear dynamics (Han et al. [2022]). Interested readers are referred
to the thorough review paper Hu et al. [2022] on policy optimization methods for learning
control policies.

Zero-sum LQ games and beyond. Recent research efforts have been devoted to studying
the more challenging zero-sum LQ games problem Bu et al. [2019], Zhang et al. [2019,
2021a,b]. In Zhang et al. [2019], they proposed projected nested gradient-based algorithms
in which the projection step is difficult to implement in practice. Later, Bu et al. [2019]
removed the projection step, but their analysis requires access to the exact solution of
the inner maximization problem and cannot be easily extended to the model-free case.
Meanwhile, Zhang et al. [2021a] introduced a nested natural gradient-based algorithm
that demonstrates the IR property for the infinite-horizon H2/H∞ control problem in
the model-based case, where they utilize the equivalent zero-sum game formulation and
design model-free algorithms without sample complexity analysis. In the model-free
setting, Al-Tamimi et al. [2007] proposed a Q-learning-based method to solve zero-sum
LQ games without providing a sample complexity analysis. In the context of mean-field
games, counterparts of LQR and zero-sum LQ games were developed in Carmona et al.
[2020, 2019], where the formulation of mean-field zero-sum LQ games reduces to two
zero-sum LQ game problems. Recently, a N-player general-sum game formulation of
LQR was studied in Hambly et al. [2022], Mazumdar et al. [2019], Yang [2022]. However,
such a problem in the 2-player case is different from our zero-sum formulation. More
generally, a tabular setting of two-player zero-sum games is considered in Chen et al.
[2023] and the first finite-sample guarantees are provided for independent-learning
algorithms.

Mixed H2/H∞ & Risk-sensitive LQ control. It is well-known that mix H2/H∞ problems
can be formulated as risk-sensitive control problems or zero-sum dynamical games Glover
and Doyle [1988], and the solutions of these two classes of problems oftentimes inspire
each other Zhang et al. [2021a]. A nice presentation on the history of the connection
among them can be found in Başar and Bernhard [1995], Zhang et al. [2021a]. Here we
focus more on recent developments. Before Zhang et al. [2021a,b] provided the first
results on the implicit regularization property and convergence of policy optimization
methods, policy optimization methods had been widely applied to solve mixed H2/H∞
control design problems with great empirical successes. Borrowing ideas from robust
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1.2. Preliminaries

control theory, Zhang et al. [2020] identified the stability issue of the robust adversarial
reinforcement learning problem on LQ systems and proposed a double-loop algorithm
using proper initialization as the solution. Besides the nested natural gradient algorithm,
Cui and Jiang [2022] designed a dual-loop algorithm instead where the outer loop ap-
proximately solves the generalized algebraic Riccati equation iteratively. Their algorithm
also enjoys a last-iterate linear convergence in the deterministic case, which is similar to
our result and can be extended to a model-free version. The continuous-time counterpart
is studied in Cui and Molu [2022], Molu [2023]. In this thesis, we focus on the nested
natural gradient algorithm and reveal more insights into its convergence and sample
complexity properties.

1.2 Preliminaries

Notations. For any matrix M ∈ Rn×n, we denote by ∥M∥ and ∥M∥F its operator and
Frobenius norms respectively. The spectral radius of a matrix M is denoted by ρ(M)
and a matrix is said to be (Schur) stable if ρ(M) < 1, i.e., all the absolute values of
the eigenvalues of the matrix M are (strictly) smaller than 1. The smallest eigenvalue
of a symmetric matrix M is denoted by λmin(M). For N diagonal matrices Xi for i ∈
{0, · · · N − 1} for some integer N ≥ 1, the block-diagonal matrix with diagonal entries
X0, · · · , XN−1 is denoted by diag(X0−(N−1)). The uniform distribution over a set S is
denoted as Unif(S).

Stochastic Zero-Sum Linear Quadratic Dynamic Games. We consider the zero-sum LQ
games problem (following the exposition in Zhang et al. [2021b]) where the system state
evolves as follows:

xh+1 = Ahxh + Bhuh + Dhwh + ξh, h ∈ {0, · · · , N − 1}, (1.1)

where N is a finite nonzero horizon, x0 ∈ Rm is an initial random state and where
for any stage h ∈ {0, · · · , N − 1}, xh ∈ Rm is the system state, uh ∈ Rd and wh ∈ Rn

are the control inputs of the min and max players respectively‡ and ξh is a random
variable describing noisy perturbations to the system while Ah, Bh, Dh are (possibly)
time-dependent system matrices with appropriate dimensions.

Assumption 1.1. The initial state x0 and the noise ξh for h ∈ {0, · · · , N − 1} are indepen-
dent random variables following a distribution with zero-mean and positive-definite covariance.
Moreover, there exists a positive scalar ϑ such that for all h ∈ {0, · · · , N − 1}, ∥x0∥ ≤ ϑ
and ∥ξh∥ ≤ ϑ almost surely.§

Our objective is to solve the following zero-sum game:

inf
(uh)

sup
(wh)

Eξξξ

[
N−1

∑
h=0

(x⊤h Qhxh + u⊤
h Ru

huh − w⊤
h Rw

h wh) + cN

]
(1.2)

where cN := x⊤NQNxN and ξξξ :=
[
x⊤0 , ξ⊤0 , · · · , ξ⊤N−1

]⊤ and the system states follow the
linear time-varying system dynamics described in (1.1) and for every h ∈ {0, · · · , N −
1}, Qh ⪰ 0, Ru

h , Rw
h ≻ 0 are symmetric matrices defining the quadratic objective. In view of

our robust control motivation, the two players can be seen as a min controller and a max

‡These controls depend on the history of state-control pairs at each time step h for now, stationary
control policies will be sufficient as will be mentioned later on.

§The almost sure boundedness can be relaxed to consider sub-Gaussian distributions as noticed in prior
work Furieri and Kamgarpour [2020], Malik et al. [2019].
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1.2. Preliminaries

disturbance. Under standard assumptions which we do not mention here for brevity¶, the
saddle-point control policies solving (1.2) are unique and have the linear state-feedback
form. Thus, we can restrict our search to gain matrices Kh ∈ Rd×m and Lh ∈ Rn×m

such that the controls are given by uh = −Khxh, wh = −Lhxh for h ∈ {0, · · · , N − 1}.
Therefore, we will mainly focus on solving the following min-max policy optimization
problem resulting from (1.2):

min
(Kh)

max
(Lh)

Eξξξ

[
N−1

∑
h=0

x⊤h Mhxh + cN

]
, (1.3)

where Mh := Qh + K⊤
h Ru

hKh − L⊤
h Rw

h Lh and the system state follows the dynamics xh+1 =
(Ah − BhKh − DhLh)xh + ξh for h ∈ {0, · · · , N − 1} .

Compact reformulation To simplify the exposition and our analysis, we rewrite prob-
lem (1.3) under a more compact form following the reformulation proposed in Zhang
et al. [2021b]. Consider the following notations:

xxx := [x⊤0 , · · · , x⊤N ]
⊤, uuu := [u⊤

0 , · · · , u⊤
N−1]

⊤,

www := [w⊤
0 , · · · , w⊤

N−1]
⊤,ξξξ = [x⊤0 , ξ⊤0 , · · · , ξ⊤N−1]

⊤,

AAA :=
[

000m×mN 000m×m
diag(A0−(N−1)) 000mN×m

]
, QQQ := diag(Q0−N),

DDD :=
[

000m×nN
diag(D0−(N−1))

]
, BBB :=

[
000m×dN

diag(B0−(N−1))

]
,

RRRu := diag(Ru
0−(N−1)), RRRw := diag(Rw

0−(N−1)),

KKK :=
[
diag(K0−(N−1)) 000dN×m

]
, (1.4)

LLL :=
[
diag(L0−(N−1)) 000nN×m

]
. (1.5)

We denote by S1 ⊂ RdN×m(N+1) and S2 ⊂ RnN×m(N+1) the matrix subspaces induced by
the sparsity patterns described in (1.4), (1.5) for the gain matrices KKK and LLL respectively.
The subspaces S1, S2 where we search for the NE solution (KKK∗, LLL∗), are of dimensions
dKKK := dmN and dLLL := nmN respectively. Then, problem (1.3) can be rewritten as:

min
KKK∈S1

max
LLL∈S2

G(KKK, LLL) := Eξξξ[xxx⊤(QQQ +KKK⊤RRRuKKK − LLL⊤RRRwLLL)xxx] , (1.6)

where the transition dynamics are described by xxx = AAAxxx + BBBuuu + DDDwww + ξξξ = (AAA − BBBKKK −
DDDLLL)xxx + ξξξ. Notice that our search for gain matrices KKK, LLL is restricted to the matrices of
the form described in (1.4), (1.5) as this set of sparse matrices is sufficient to find the NE
we are looking for. For any gain matrices KKK and LLL, we can rewrite the objective function
value G(KKK, LLL) as follows:

G(KKK, LLL) = Eξξξ[Gξξξ(KKK, LLL)] = Tr(PPPKKK,LLLΣΣΣ0) = Tr
(
(QQQ +KKK⊤RRRuKKK − LLL⊤RRRwLLL)ΣΣΣKKK,LLL

)
,

where Gξξξ(KKK, LLL) := ξξξ⊤PPPKKK,LLLξξξ, ΣΣΣ0 := Eξξξ[ξξξξξξ
⊤] ≻ 0 (see Assumption 1.1) and the matri-

ces PPPKKK,LLL, ΣΣΣKKK,LLL := Eξξξ[diag(x0x⊤0 , · · · , xNx⊤N ] are the unique solutions to the recursive
Lyapunov equations

PPPKKK,LLL = AAA⊤
KKK,LLLPPPKKK,LLLAAAKKK,LLL +QQQ +KKK⊤RRRuKKK − LLL⊤RRRwLLL, (1.7)

ΣΣΣKKK,LLL = AAAKKK,LLLΣΣΣKKK,LLLAAA⊤
KKK,LLL +ΣΣΣ0 , (1.8)

¶See Assumption 2.4 in Zhang et al. [2021b] for instance and the explanations in Remark 2.5 therein for
further details, see also Başar and Bernhard [1995].
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1.2. Preliminaries

where AAAKKK,LLL := AAA − BKBKBK − DLDLDL. The objective G(KKK, LLL) is nonconvex-nonconcave in general
(see Lemma 3.1 in Zhang et al. [2021b]). From the above compact formulation, we observe
that the finite-horizon case can be seen as a special case of infinite-horizon zero-sum
LQ games with special constraints on sparsity patterns of matrices defined in (1.4), (1.5).
Using this perspective, the time-varying case where model parameters such as Ah, Bh
vary over h ∈ {0, · · · , N − 1} is included in the compact formulation as shown in Zhang
et al. [2021b].

Policy Gradients. The gradients of G w.r.t. KKK, LLL (see Zhang et al. [2021b]) are given by
the following expressions:

∇KKKG(KKK, LLL) = 2FFFKKK,LLLΣΣΣKKK,LLL , FFFKKK,LLL := (RRRu + BBB⊤PPPKKK,LLLBBB)KKK − BBB⊤PPPKKK,LLL(AAA − DLDLDL) , (1.9)

∇LLLG(KKK, LLL) = 2EEEKKK,LLLΣΣΣKKK,LLL , EEEKKK,LLL := (−RRRw + DDD⊤PPPKKK,LLLDDD)LLL − DDD⊤PPPKKK,LLL(AAA − BKBKBK) . (1.10)

If PPPKKK,LLL ⪰ 0 and RRRw −DDD⊤PPPKKK,LLLDDD ≻ 0 for a stationary point (KKK, LLL) of G, then this stationary
point is the unique NE of the game (see Lemma 3.2 in Zhang et al. [2021b]).

Remark 1.2. In our finite-horizon scenario, ρ(AAAKKK,LLL) = 0 since AAAN+1
KKK,LLL = 0, see Lemma A.22.

This means that the pair (K, LK, LK, L) defined in (1.4)-(1.5) is always stable. This property leads to the
existence and uniqueness of the solution of the Lyapunov equation, see Lemma A.22.
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Chapter 2

Nested Derivative-Free Natural Policy
Gradient (NPG) Algorithm

In this chapter, we present our model-free and derivative-free nested NPG algorithm
inspired by the recent work Zhang et al. [2021b]. We start with the deterministic exact
version of the algorithm assuming access to exact natural policy gradients.

2.1 Exact Nested NPG Algorithm

To prepare the stage for the model-free setting, we briefly introduce the nested NPG
algorithm in the deterministic setting, i.e., when we have access to the policy gradients
w.r.t. both control variables KKK, LLL as reported in (1.9). This algorithm was considered for
example in Zhang et al. [2021b] and we follow a similar exposition in this subchapter.
We first solve the inner maximization problem in (1.6) for any fixed control gain matrix KKK
to obtain a solution LLL(KKK) before solving the outer-loop minimization problem with
the resulting objective G(KKK, LLL(KKK)). The following proposition that we report here from
Lemma 3.3 in Zhang et al. [2021b] guarantees that there exists a unique solution LLL(KKK) to
the inner maximization problem whenever the control gain matrix KKK lies in a set which
is known to contain the optimal control gain matrix solving the min-max problem.

Lemma 2.1. (Inner-loop well-definedness condition Zhang et al. [2021b]) Consider the Riccati
equation

PPPKKK,LLL(KKK) = QQQ +KKK⊤RRRuKKK + AAA⊤
KKK P̃PPKKK,LLL(KKK)AAAKKK, (2.1)

where AAAKKK := AAA − BKBKBK and P̃PPKKK,LLL(KKK) := PPPKKK,LLL(KKK) + PPPKKK,LLL(KKK)DDD(RRRw − DDD⊤PPPKKK,LLL(KKK)DDD)−1DDD⊤PPPKKK,LLL(KKK)
and define the set

K :=
{

KKK ∈ S1 |(2.1) admits a solution PPPKKK,LLL(KKK) ⪰ 0, and RRRw − DDD⊤PPPKKK,LLL(KKK)DDD ≻ 0
}

* . (2.2)

Then, for any KKK ∈ K, there exists a unique solution LLL(KKK) to the inner maximization problem
in 1.6 given by

LLL(KKK) = (−RRRw + DDD⊤PPPKKK,LLL(KKK)DDD)−1DDD⊤PPPKKK,LLL(KKK)(AAA − BKBKBK).

Moreover, for any KKK ∈ K and any LLL ∈ S2, PPPKKK,LLL ⪯ PPPKKK,LLL(KKK) . The proof is deferred to Ap-
pendix A.7.1.

We are now ready to introduce the nested NPG algorithm which can be written as follows
using positive step-sizes τ1, τ2 and indices k ≥ 0, t ≥ 0 for the inner and outer loops
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2.2. Derivative-Free Nested NPG Algorithm

respectively:

Inner loop: LLLk+1 = LLLk + τ1EEEKKKt,LLLk , k = 0, 1, . . . (2.3)
Outer loop: KKKt+1 = KKKt − τ2FFFKKKt,LLL(KKKt), t = 0, 1, . . . (2.4)

The use of natural policy gradients and the nested structure of the algorithm have an
important IR effect: They guarantee that the iterates remain in the feasible set defining
admissible stable controls without any explicit regularization of the problem, as shown
in Zhang et al. [2021b]. Maintaining the feasibility of the iterates during learning is
important since it translates to preserving the robustness of the controllers in the face of
adversarial perturbations. More formally, it was shown in Theorem 3.7 in Zhang et al.
[2021b] that (a) the sequence (PPPKKKt,LLL(KKKt))t is well-defined, satisfies the conditions in (2.2)
for every t ≥ 0 and is (most importantly) non-increasing and bounded below in the sense
of positive definiteness; and as a consequence (b) for every t ≥ 0, KKKt ∈ K when KKK0 ∈ K.

2.2 Derivative-Free Nested NPG Algorithm

In this subchapter, we describe our algorithm to solve problem (1.6) in the model-free
setting where we do not have access to exact gradients. In this setting for which system
parameters are unknown, namely AAA, BBB, DDD, QQQ, RRRu, RRRw, we can simulate system trajectories,
(xh)h=0,··· ,N , using a pair of control gain matrices (KKK, LLL) and we have access to ZO
information consisting of the (stochastic) cost Gξξξ(KKK, LLL) incurred by this pair of controllers.
In Algorithms 1 and 2, we denote by (1P) and (2P) the single-point and two-point ZO
estimation procedures respectively.

Inner loop ZO-NPG algorithm (see Algorithm 1). In the light of the update rule (2.3)
in the deterministic exact setting, for any fixed matrix KKK and any time index k, we
replace the gradient ∇LLLG(KKK, LLLk) and the covariance matrix ΣΣΣKKK,LLLk by ZO estimates de-
noted as ∇̃LLLG(KKK, LLLk) and Σ̃ΣΣKKK,LLLk respectively. By sampling two independent trajectories
at each sample step, we firstly obtain an unbiased estimate of the gradient w.r.t. LLL
of the smoothed objective Gr1(KKK, LLLk) in the sense that: E[∇̃LLLG(KKK, LLL)] = ∇LLLGr1(KKK, LLLk),
Gr1(KKK, LLLk) := E[G(KKK, LLL + r1UUU)], where UUU is uniformly sampled on a unit ball in S1. Sec-
ondly, we obtain an unbiased estimate of the covariance matrix, i.e., E[Σ̃ΣΣKKK,LLLk ] = ΣΣΣKKK,LLLk . For
any given KKK ∈ K and other proper choices of parameters, Algorithm 1 outputs LLLTin that
satisfies the accuracy requirement. The detailed sampling and computation procedures
can be found in Algorithm 1 of Zhang et al. [2021b] and here we repeat the algorithm as
Algorithm 1 for completeness.

Remark 2.2. In Algorithm 1 of Zhang et al. [2021b], two-point zeroth-order estimation is not
covered but can be easily adapted. Here we include both single-point and two-point estimations in
Algorithm 1.

Outer loop ZO-NPG (see Algorithm 2). Similarly to the inner loop procedure, we now
replace the unknown quantities ∇KKKG(KKKt, LLL(KKKt)) and ΣΣΣKKKt,LLL(KKKt) in (2.4) by ZO estimates.
As for the exact solution LLL(KKKt) to the inner maximization problem, we use the output
of the inner loop ZO-NPG algorithm instead. Notice that the zeroth-order single-point
estimate ∇̃KKKG(KKK, LLL) as defined in Algorithm 2 is an unbiased estimate of the gradient w.r.t.
KKK of the smoothed objective Gr2(KKK, LLL) in the sense that: E[∇̃KKKG(KKK, LLL)] = ∇KKKGr2(KKK, LLL),
Gr2(KKK, LLL) := E[G(KKK + r2VVV, LLL)], where VVV is uniformly sampled on a unit ball in S2.

Comparison to the derivative free NPG algorithm in Zhang et al. [2021b]. We would
like to point out here an important difference between our proposed algorithm and the
zeroth order NPG algorithm in Zhang et al. [2021b] which inspired this work. This
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2.2. Derivative-Free Nested NPG Algorithm

Algorithm 1 (Algorithm 1 in Zhang et al. [2021b]) Inner-loop Zeroth-Order Maximization
Oracle
Input: KKK ∈ K, LLL0, number of iterations Tin, sample size M1, perturbation radius r1,

stepsize τ1, horizon N, dimension dLLL = nmN.
Output: LLLout = LLLTin .

1: for k = 0, 1, · · · , Tin − 1 do
2: Call Algorithm 1 to obtain LLLt.
3: for i = 0, 1, · · · , M1 − 1 do
4: Sample policies

• (1P): Sample LLLi
k = LLLk + r1UUUi where UUUi is uniformly drawn from S2 with

∥UUUi∥F = 1.

• (2P): Sample LLL1,i
k = LLLk + r1UUUi, LLL2,i

k = LLLk − r1UUUi where UUUi is uniformly
drawn from S2 with ∥UUUi∥F = 1.

5: Simulate trajectories
• (1P): Simulate a first trajectory using control (KKK, LLLi

k) for horizon N under
one realization of noises ξξξi and collect the cost Gξξξi(KKK, LLLi

k).

• (2P): Simulate two trajectories using controls (KKK, LLL1,i
k ) and (KKK, LLL2,i

k ) for
horizon N under the same realization of noises ξξξi and collect Gξξξi(KKK, LLL1,i

k ),
Gξξξi(KKK, LLL2,i

k ) .
6: Simulate another independent trajectory using control (KKK, LLLk) for horizon N

starting from x0,i and compute

Σ̃ΣΣ
i
KKK,LLLk

= diag
(
x0,ix⊤0,i, · · · , xN,ix⊤N,i

)
.

7: end for
8: Update LLLk+1 = LLLk + τ1∇̃LLLG(KKK, LLLk)Σ̃ΣΣ

−1
KKK,LLLk

where ∇̃LLLG(KKK, LLLk) equals

(1P):
1

M1

M1−1

∑
i=0

dLLL

r1
Gξξξi(KKK, LLLi

k)UUUi,

(2P):
1

M1

M1−1

∑
i=0

dLLL

2r1

(
Gξξξi(KKK, LLL1,i

k )− Gξξξi(KKK, LLL2,i
k )
)
UUUi,

and Σ̃ΣΣKKK,LLLk =
1

M1
∑M1−1

i=0 Σ̃ΣΣ
i
KKK,LLLk

.
9: end for
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difference lies in the outer loops of the algorithms: namely comparing Algorithm 2 and
Algorithm 2 in Zhang et al. [2021b]. In their work, at each time step t of the outer loop,
Algorithm 1 (which provides an approximate solution of the maximization problem) is
called for each perturbation KKKm

t (for m = 0, · · · , M2 − 1) of the control gain matrix KKKt
(see step 6: in their Algorithm 2) in order to control the gradient estimation error. In
contrast to their work, observe that we only call Algorithm 1 once at each outer loop
iteration t in Algorithm 2 and use the approximate maximizer LLLt to compute our zeroth
order estimates for updating the control gain matrix sequence (KKKt). This observation is
crucial for our sample complexity improvement as will be discussed in the next chapter.

Remark 2.3. The single-point estimation Flaxman et al. [2004] might suffer high variance for a
small smoothing radius r. We can reduce the variance and hence the sample complexity by using
two-point estimation.

Algorithm 2 Outer-loop Nested Natural Policy Gradient

Input: KKK0 ∈ K, number of iterations T, sample size M2, perturbation radius r2, stepsize
τ2, horizon N, dimension dKKK = dmN.

Output: KKKout = KKKi where i ∼ Unif({0, · · · , T − 1}).
1: for t = 0, 1, · · · , T do
2: Call Algorithm 1 to obtain LLLt.
3: for m = 0, 1, · · · , M2 − 1 do
4: Sample policies

• (1P): Sample KKKm
t = KKKt + r2VVVm where VVVm is uniformly drawn from S1 with

∥VVVm∥F = 1.

• (2P): Sample KKK1,m
t = KKKt + r2VVVm, KKK2,m

t = KKKt − r2VVVm where VVVm is uniformly
drawn from S1 with ∥VVVm∥F = 1.

5: Simulate trajectories
• (1P): Simulate a first trajectory using control (KKKm

t , LLLt) for horizon N under
one realization of noises ξξξm and collect the cost Gξξξm(KKK

m
t , LLLt).

• (2P): Simulate two trajectories using controls (KKK1,m
t , LLLt) and (KKK2,m

t , LLLt) for
horizon N under the same realization of noises ξξξm and collect Gξξξm(KKK

1,m
t , LLLt),

Gξξξm(KKK
2,m
t , LLLt) .

6: Simulate another independent trajectory using control (KKKt, LLLt) for horizon N
starting from x0,m and compute

Σ̃ΣΣ
m
KKKt,LLLt

= diag
(
x0,mx⊤0,m, · · · , xN,mx⊤N,m

)
.

7: end for
8: Update KKKt+1 = KKKt − τ2∇̃KKKG(KKKt, LLLt)Σ̃ΣΣ

−1
KKKt,LLLt

where ∇̃KKKG(KKKt, LLLt) equals

(1P):
1

M2

M2−1

∑
m=0

dKKK

r2
Gξξξm(KKK

m
t , LLLt)VVVm,

(2P):
1

M2

M2−1

∑
m=0

dKKK

2r2

(
Gξξξm(KKK

1,m
t , LLLt)− Gξξξm(KKK

2,m
t , LLLt)

)
VVVm,

and Σ̃ΣΣKKKt,LLLt =
1

M2
∑M2−1

m=0 Σ̃ΣΣ
m
KKKt,LLLt

.
9: end for

10



Chapter 3

Sample Complexity and Convergence Analysis

In this chapter, (i) we analyze the sample complexity of the algorithm introduced in
Chapter 2, i.e., the number of samples of system trajectories required to reach an ε-
neighborhood of the NE. (ii) In addition to the average norm of natural gradients, we
will present last-iterate convergence results in terms of cost values.

When using estimated natural gradients, the monotonicity of the sequence (PPPKKKt,LLL(KKKt))t≥0
is violated and the iterates (KKKt) are no longer guaranteed to lie in the set K as we
previously described in Chapter 2.1 for the deterministic counterpart of the algorithm.
In the following, we consider a subset K̂ of K for which we prove that IR holds (with
high probability) similarly to the result we reported in Lemma 2.1 for good enough ZO
estimates as we shall precisely state later in this chapter. Consider an initial point KKK0 ∈ K
and define the set

K̂ :=
{

KKK ∈ S1 | (2.1) admits a solution PPPKKK,LLL(KKK) ⪰ 0

and PPPKKK,LLL(KKK) ⪯ PPPKKK0,LLL(KKK0) +
λmin(HHHKKK0,LLL(KKK0))

2∥DDD∥2 · III
}

, (3.1)

where HHHKKK,LLL := RRRw − DDD⊤PPPKKK,LLLDDD. Notice that K̂ ⊂ K since

RRRw − DDD⊤PPPKKK,LLL(KKK)DDD ⪰ RRRw − DDD⊤(PPPKKK0,LLL(KKK0) +
λmin(HHHKKK0,LLL(KKK0))

2∥DDD∥2 · III)DDD

⪰
λmin(HHHKKK0,LLL(KKK0))

2
· III ≻ 0. (3.2)

As can be observed from (3.1), we need to control the error induced by the inner loop
solver which provides an approximation of LLL(KKK) in order to show the recurrence of the
iterates KKKt in the set K̂ with high probability. This inner maximization problem which
takes the form of an LQR problem has been previously addressed in the literature in
several works using for example a gradient ascent or a natural gradient ascent algorithm
in both model-based and model-free settings Fazel et al. [2018], Malik et al. [2019], Zhang
et al. [2021b]. We report in the next result an informal version of Theorem 4.1 in Zhang
et al. [2021b] for the inner maximization problem in view of deriving the total sample
complexity of our nested algorithm.

Lemma 3.1. (Inner-loop sample complexity Zhang et al. [2021b]) Let δ1, ε1 ∈ (0, 1) and let KKK ∈
K. Using Õ(ε−2

1 log δ−1
1 ) samples, Algorithm 1 outputs with probability at least 1 − δ1 a control

gain matrix LLL satisfying: G(KKK, LLL(KKK))− G(KKK, LLL) ≤ ε1, ∥LLL(KKK)− LLL∥F ≤
√

λ−1
min(HHHKKK,LLL(KKK)) · ε1.

11



3.1. Implicit Regularization

Remark 3.2. This Õ(ε−2
1 ) sample complexity reported in Lemma 3.1 can be further improved

to Õ(ε−1
1 ) using ZO two-point estimation Agarwal and Dekel [2010].

It follows from Lemma 2 that any control gain matrix LLL produced by Algorithm 1 lies in
the following bounded set:

L̂ :=
{

LLL ∈ S2 | ∥LLL(KKK)− LLL∥F ≤ H, KKK ∈ K̂
}

, H := sup
KKK∈K̂

λ−1
min(HHHKKK,LLL(KKK)) ≤ 2λ−1

min(HHHKKK0,LLL(KKK0)).

(3.3)

3.1 Implicit Regularization

Using the sets K̂ and L̂ respectively defined in (3.1) and (3.3), we are now ready to
state the IR of our model-free nested natural gradient algorithm w.r.t. both control
gain matrices KKK and LLL. More specifically, we will prove that the pair of iterates (KKKt, LLLt)
generated by Algorithms 1 and 2 will be maintained in the bounded set K̂ × L̂ with high
probability for every t if we properly choose the batch sample size M2, the smoothing
radius r and the inner-loop accuracy ε1. Before stating the IR result, we state some nice
Lipschitzness properties over the set K̂ × L̂ that will contribute to our analysis.

Proposition 3.3. Let KKK0 ∈ K and consider the corresponding set K̂. For any (KKK, LLL) ∈ K̂ × L̂,
KKK′ ∈ K, LLL′, there exist positive constants D1, D2, l1, l2 such that if we let ∥KKK′ − KKK∥ ≤ D1,
∥LLL′ − LLL∥ ≤ D2 where D1, D2 > 0 are defined in Lemma A.6, then there exist positive constants
l1, l2 such that ∥FFFKKK′,LLL − FFFKKK,LLL∥ ≤ l1∥KKK′ −KKK∥, and ∥FFFKKK,LLL′ − FFFKKK,LLL∥ ≤ l2∥LLL′ − LLL∥. Similar results
also hold when replacing FFFKKK,LLL by EEEKKK,LLL, ΣΣΣKKK,LLL, and PPPKKK,LLL, see Lemma A.9, A.10 and A.11 for the
proofs.

The smoothness and continuity over the set K̂ × L̂ naturally motivate us to borrow the
ideas from stochastic optimization. In particular, it is tempting to follow the analysis of
stochastic nested algorithms for global Lipschitz smooth functions, see for instance Lin
et al. [2020]. Unfortunately, such analysis is not directly applicable since the properties
stated in Proposition 3.3, only hold locally within the set K̂ × L̂, therefore one needs to
ensure that the iterates of Algorithm 2 remain in this set. This can be achieved by con-
trolling the value matrix PPPKKK,LLL(KKK) along the iterations. When the exact (natural) gradients
are available, Zhang et al. [2021b] utilize this idea to show that the sequence (PPPKKKt,LLL(KKKt))
is monotone along the trajectory in the positive semi-definite sense and refer to this
property as implicit regularization. However, in the case when the estimated gradients
(from ZO estimation) are used, the situation is more challenging. Such sequence is no
longer monotone and the deviation from monotonicity must be controlled.

3.2 Sample Complexity Improvement

In this subchapter, we state one of our key technical results, which ensures that the iterates
will remain in the set K̂ × L̂ with high probability. The key technical improvement over
the similar result in Theorem 4.2 of Zhang et al. [2021b] is that we require a much smaller
number of samples for achieving this. This improvement is crucial for achieving our
better total sample complexity stated in Theorems 3.5 and 3.7.

Proposition 3.4. (Implicit regularization using single-point estimation) Let Assumption 1.1
hold. Let KKK0 ∈ K and consider the corresponding K̂ set defined in (3.1). For any δ1 ∈
(0, 1), ε1 > 0 and for any KKK ∈ K, Algorithm 1 with single-point estimation outputs LLL such that
G(KKK, LLL(KKK))− G(KKK, LLL) ≤ ε1 with probability at least 1 − δ1 using Tin M1 = Õ(ε−2

1 ) samples.
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Moreover for any δ2 ∈ (0, 1) and any integer T ≥ 1, if the estimation parameters in Algorithm 2
satisfy M2 = Õ

(
T2), τ2 = O(1), r2 = O(T−1/2), ε1 = O(T−1), δ1 = O(δ2/T), then, it

holds with probability at least 1 − δ2 that KKKt ∈ K̂ for all t = 1, · · · , T.

A detailed version of this proposition and its formal proof can be found in Appendix
A.2. Here we provide a brief proof sketch, outlining the key steps of the proof.

Proof. The key step in the proof is a descent-like inequality for the value matrix se-
quence (PPPKKKt,LLL(KKKt)) (in the positive semi-definite sense) which holds with high probability
(see Lemma A.20 for more details):

PPPKKKt+1,LLL(KKKt+1) − PPPKKKt,LLL(KKKt) ⪯ τ2(c1 · r2
2 + c2 · ε1 + c3 · ∥V(F̃FFKKKt,LLLt)∥) · I − τ2

4
FFF⊤

KKKt,LLL(KKKt)
FFFKKKt,LLL(KKKt)

(3.4)

⪯ τ2(c1 · r2
2 + c2 · ε1 + c3 · ∥V(F̃FFKKKt,LLLt)∥) · I = O

(
1
T

)
· I, (3.5)

where c1, c2, c3 are positive constants and V(F̃FFKKKt,LLLt) := (F̃FFKKKt,LLLt − E[F̃FFKKKt,LLLt ])
⊤(F̃FFKKKt,LLLt −

E[F̃FFKKKt,LLLt ]). From (3.5), we can observe that the deviation can be upperbounded by
three sources of estimation errors: a O(r2

2) bias term induced by the ZO estimate, the
inner-loop error ε1, and a variance-like term induced by the ZO estimation procedure.
Hence, the deviation can be controlled by choosing ε1 = O(1/T), r2 = O(T−1/2) and a
large enough M2 such that V(F̃FFKKKt,LLLt) = O(1/T). This control allows to show that KKKt+1
can be kept in K̂ for t = 0, · · · , T − 1. Inequality (3.4) follows from the Lipschitzness prop-
erties in Proposition 3.3 and borrows ideas from the analysis of stochastic double-loop
algorithms for functions with similar curvature properties such as Lipschitz smoothness
and continuity (see supplementary material of Lin et al. [2020], for example).

Theorem 3.5. Under the setting of Proposition 3.4, for every integer T ≥ 1, it holds with
probability at least 1 − δ2 that

1
T

T−1

∑
t=0

∥FFFKKKt,LLL(KKKt)∥2
F = O

(
1
T

)
.

In other words, Algorithm 2 reaches with high probability an ε-stationary point (i.e., ∥FFFKKKout,LLL(KKKout)∥2
F ≤

ε) and hence an ε-neighborhood of the NE* with a total sample complexity given by T(TinM1 +
M2) = Õ(ε−3). A detailed version of this theorem can be found in Appendix A.3.

Proof. The convergence rate result follows from multiplying (3.4) by Σ0, taking the trace
and summing up the resulting inequality to obtain with high probability:

1
T

T−1

∑
t=0

∥FFFKKKt,LLL(KKKt)∥2
F =

1
T

T−1

∑
t=0

Tr
(

FFF⊤
KKKt,LLL(Kt)Kt)Kt)

FFFKKKt,LLL(KKKt)

)
= O

(
1
T

)
,

We refer the reader to Appendix A.3 for the full proof.

Remark 3.6. Our Õ(ε−3) total sample complexity result improves over the Õ(ε−9) sample
complexity shown in Zhang et al. [2021b]. The improvement of our algorithms comes from three
elements: (a) we have a looser requirement for the inner-loop problem accuracy ε1 = O(T−1)
while in Zhang et al. [2021b] ε1 = O(T−2); (b) we achieve a better sample complexity for the

*Here the correspondence between stationary point and NE can be found in Lemma 3.2 of Zhang et al.
[2021b].
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outer-loop problem using a more careful decomposition of the estimation error caused by the
estimated natural gradients: we only require r2 = O(T−1/2) while Zhang et al. [2021b] chose
r2 = O(T−1) and (c) we reduce the number of inner-loop algorithm calls with a more natural
version of the model-free nested algorithm (see the comparison at the end of Chapter 2). Hence
the outer-loop sample complexity is improved from O(ε−5) to TM2 = Õ(ε−3). Combining all of
these three elements, we improve the total sample complexity provided in Zhang et al. [2021b]
which is given by: T(Tin M1M2 + Tin M1) = O(ε−9)†.

In the following theorem, we utilize the two-point zeroth order estimation method which
enjoys smaller variance and hence leads to improved sample complexity.

Theorem 3.7. (Sample complexity using two-point estimation) Let Assumption 1.1 hold.
Let KKK0 ∈ K and consider the corresponding set K̂ defined in (3.1). For any δ1 ∈ (0, 1), ε1 > 0
and for any KKK ∈ K, Algorithm 1 with two-point estimation outputs LLL such that G(KKK, LLL(KKK))−
G(KKK, LLL) ≤ ε1 with probability at least 1 − δ1 using Tin M1 = Õ(ε−1

1 ) samples. Moreover for
any δ2 ∈ (0, 1) and any integer T ≥ 1, if the estimation parameters in Algorithm 2 satisfy
M2 = Õ

(
T
)
, τ2 = O(1), r2 = O(T−1/2), ε1 = O(T−1), δ1 = O(δ2/T). Then, it holds with

probability at least 1 − δ2 that KKKt ∈ K̂ for all t = 1, · · · , T and 1
T ∑T−1

t=0 ∥FFFKKKt,LLL(KKKt)∥2
F = O

( 1
T

)
.

In other words, Algorithm 2 returns an ε-stationary point (i.e., ∥FFFKKKout,LLL(KKKout)∥2
F ≤ ε) after O(ε−1)

iterations. The total sample complexity is given by T (Tin M1 + M2) = Õ(ε−2). A detailed
version of this theorem can be found in Appendix A.4.

Remark 3.8. (Two-point estimation) In order to obtain Theorem 3.7, we assume to have access to
cost values at two different controllers KKK1

t and KKK2
t under the same realization of noise ξξξm. This

assumption can be limiting since it implies that ξξξm is generated in advance. Recently developed
techniques of first-order estimation for single agent LQR (instead of ZO) Ju et al. [2023] might
help to avoid this assumption in the future.

3.3 Last-iterate Convergence

By now, we adopt the same convergence measure as Zhang et al. [2021b] and improve
upon it. In the following results, we show new last-iterate convergence results using
cost function values. Before we present the result, we prepare readers with the gradient
domination proposition, which plays a crucial role in the proof.

Proposition 3.9. (Gradient domination) Suppose KKK ∈ K̂, then we have the following inequality

G(KKK∗, LLL∗)− G(KKK, LLL(KKK)) ≥ −s2Tr(FFF⊤
KKK,LLL(KKK)FFFKKK,LLL(KKK)),

where s2 := σ−1
min(RRR

u)s4, s4 := supKKK∈K̂ ∥ΣΣΣKKK∗,L̃LLKKK,KKK∗
∥, and

L̃LLKKK,KKK′ := LLL(KKK)− (−RRRw + DDD⊤PPPKKK,LLL(KKK)DDD)−1DDD⊤PPPKKK,LLL(KKK)BBB(KKK
′ −KKK).

Proof. We start from the more general matrix difference result, Lemma A.24. Then for

†Notice that the total sample complexity for inner and outer loops together was not explicitely stated
in Zhang et al. [2021b], but can be inferred from their intermediate results.
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PPPKKK′,LLL(KKK′) and PPPKKK,LLL(KKK) where KKK′ and KKK are arbitrary policies in K, we have

PPPKKK′,LLL′ − PPPKKK,LLL(KKK) = AAA⊤
KKK′,LLL′(PPPKKK′,LLL′ − PPPKKK,LLL(KKK))AAAKKK′,LLL′ + (KKK′ −KKK)⊤FFFKKK,LLL(KKK) + FFF⊤

KKK,LLL(KKK)(KKK
′ −KKK)

+ (KKK′ −KKK)⊤(RRRw + BBB⊤PPPKKK,LLL(KKK)BBB)(KKK
′ −KKK)

+ (LLL′ − LLL(KKK))⊤DDD⊤PPPKKK,LLL(KKK)BBB(KKK
′ −KKK)

+ (KKK′ −KKK)⊤BBB⊤PPPKKK,LLL(KKK)DDD(LLL′ − LLL(KKK))

+ (LLL′ − LLL)⊤(−RRRw + DDD⊤PPPKKK,LLL(KKK)DDD)(LLL′ − LLL).

Again, multiply ΣΣΣ0 at both sides at the same time and take the trace, we have

G(KKK′, LLL′)− G(KKK, LLL(KKK)) = Tr((PPPKKK′,LLL′ − PPPKKK,LLL(KKK))ΣΣΣ0)

= Tr((2(KKK′ −KKK)⊤FFFKKK,LLL(KKK) + (KKK′ −KKK)⊤(RRRu + BBB⊤PPPKKK,LLL(KKK)BBB)(KKK
′ −KKK)

+ (LLL′ − LLL(KKK))⊤(−RRRw + DDD⊤PPPKKK,LLL(KKK)DDD)(LLL′ − LLL(KKK))

+ 2(LLL′ − LLL(KKK))⊤DDD⊤PPPKKK,LLL(KKK)BBB(KKK
′ −KKK))ΣΣΣKKK′,LLL′).

In the second inequality, we apply the dual Lyapunov equation lemma (Lemma A.23)
with

A = AAAKKK′,LLL′ , X = PPPKKK′,LLL′ − PPPKKK,LLL(KKK), V = ΣΣΣ0, W = ΣΣΣKKK′,LLL′ ,

Y = (KKK′ −KKK)⊤FFFKKK,LLL(KKK) + FFF⊤
KKK,LLL(KKK)(KKK

′ −KKK) + (KKK′ −KKK)⊤(RRRw + BBB⊤PPPKKK,LLL(KKK)BBB)(KKK
′ −KKK)

+ (LLL′ − LLL(KKK))⊤DDD⊤PPPKKK,LLL(KKK)BBB(KKK
′ −KKK) + (KKK′ −KKK)⊤BBB⊤PPPKKK,LLL(KKK)DDD(LLL′ − LLL(KKK))

+ (LLL′ − LLL)⊤(−RRRw + DDD⊤PPPKKK,LLL(KKK)DDD)(LLL′ − LLL).

If we choose LLL′ = L̃LLKKK,KKK′ := LLL(KKK) − (−RRRw + DDD⊤PPPKKK,LLL(KKK)DDD)−1DDD⊤PPPKKK,LLL(KKK)BBB(KKK′ − KKK), the
maximum of the RHS is achieved since −RRRw + DDD⊤PPPKKK,LLL(KKK)DDD ≺ 0. Then for the objective
function values,

G(KKK′, L̃LLKKK,KKK′)− G(KKK, LLL(KKK))

= Tr((2(KKK′ −KKK)⊤FFFKKK,LLL(KKK) + (KKK′ −KKK)⊤(RRRu + BBB⊤PPPKKK,LLL(KKK)BBB)(KKK
′ −KKK)

− (KKK′ −KKK)⊤BBB⊤PPPKKK,LLL(KKK)DDD(−RRRw + DDD⊤PPPKKK,LLL(KKK)DDD)−1DDD⊤PPPKKK,LLL(KKK)BBB(KKK
′ −KKK))ΣΣΣKKK′,LLL′).

Moreover, let KKK′ = KKK∗ ∈ K̂, we have

G(KKK∗, LLL∗)− G(KKK, LLL(KKK)) ≥ G(KKK∗, L̃LLKKK,KKK∗)− G(KKK, LLL(KKK)) (3.6)

= Tr((2(KKK∗ −KKK)⊤FFFKKK,LLL(KKK) + (KKK∗ −KKK)⊤(RRRu + BBB⊤PPPKKK,LLL(KKK)BBB

+ BBB⊤PPPKKK,LLL(KKK)DDD(RRRw − DDD⊤PPPKKK,LLL(KKK)DDD)−1DDD⊤PPPKKK,LLL(KKK)BBB)(KKK
∗ −KKK))ΣΣΣKKK∗,L̃LLKKK,KKK∗

)

(a)
≥ −Tr(FFF⊤

KKK,LLL(KKK)(RRR
u + BBB⊤PPPKKK,LLL(KKK)BBB

+ BBB⊤PPPKKK,LLL(KKK)DDD(RRRw − DDD⊤PPPKKK,LLL(KKK)DDD)−1DDD⊤PPPKKK,LLL(KKK)BBB)
−1FFFKKK,LLL(KKK)ΣΣΣKKK∗,L̃LLKKK,KKK∗

)

≥ −Tr(FFF⊤
KKK,LLL(KKK)(RRR

u)−1FFFKKK,LLL(KKK)ΣΣΣKKK∗,L̃LLKKK,KKK∗
)

(b)
≥ −σ−1

min(RRR
u)∥ΣΣΣKKK∗,L̃LLKKK,KKK∗

∥Tr(FFF⊤
KKK,LLL(KKK)FFFKKK,LLL(KKK)),

where (a) holds since

(KKK∗ −KKK − M−1FFFKKK,LLL(KKK))
⊤M(KKK∗ −KKK − M−1FFFKKK,LLL(KKK)) ⪰ 0,
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3.3. Last-iterate Convergence

where M := RRRu + BBB⊤PPPKKK,LLL(KKK)BBB + BBB⊤PPPKKK,LLL(KKK)DDD(RRRw − DDD⊤PPPKKK,LLL(KKK)DDD)−1DDD⊤PPPKKK,LLL(KKK)BBB. And in
(b), we apply RRRw − DDD⊤PPPKKK,LLL(KKK)DDD ≻ 0 since KKK ∈ K. Here ∥ΣΣΣKKK∗,L̃LLKKK,KKK∗

∥ is bounded since

∥L̃LLKKK,KKK∗∥ ≤ ∥LLL∗∥+ ∥LLL(KKK)∥+ σ−1
min(RRR

w − DDD⊤PPPKKK,LLL(KKK)DDD)∥DDD∥∥PPPKKK,LLL(KKK)∥∥BBB∥∥KKK∗ −KKK∥
≤ ∥LLL∗∥+ σ−1

min(RRR
w − DDD⊤PPPKKK0,LLL(KKK0)DDD)∥DDD∥∥PPPKKK0,LLL(KKK0)∥∥AAA − BBBKKK∥

+ σ−1
min(RRR

w − DDD⊤PPPKKK0,LLL(KKK0)DDD)∥DDD∥∥PPPKKK0,LLL(KKK0)∥∥BBB∥∥KKK∗ −KKK∥.

Hence when KKK ∈ K̂, hence there exists a positive constant s4 such that ∥ΣΣΣKKK∗,L̃LLKKK,KKK∗
∥ ≤ s4

where s4 := supKKK∈K̂ ∥ΣΣΣKKK∗,L̃LLKKK,KKK∗
∥ holds for any KKK ∈ K̂. Hence let s2 := σ−1

min(RRR
u)s4, we have

G(KKK∗, LLL∗)− G(KKK, LLL(KKK)) ≥ −s2Tr(FFF⊤
KKK,LLL(KKK)FFFKKK,LLL(KKK)). (3.7)

Theorem 3.10. (Last-iterate linear convergence in deterministic setting) Suppose KKK0 ∈ K and
consider the nested natural gradient algorithm in the deterministic case: KKKt+1 = KKKt − τ2FFFKKKt,LLL(KKKt),
let the stepsize τ2 be a small enough constant. Then the iterates converge linearly in the sense that

G(KKKt+1, LLL(KKKt+1))− G(KKK∗, LLL∗) ≤ q(G(KKKt, LLL(KKKt))− G(KKK∗, LLL∗))

where the constant q ∈ [0, 1)‡ is the contractive coefficient. A detailed version of this theorem can
be found in Appendix A.5.

Proof. Here we provide a proof sketch for this theorem. Consider one-step update of
the algorithm: KKK′ = KKK − τ2FFFKKK,LLL(KKK). The key steps are to show the sufficient decrease and
the gradient domination properties of the cost function, which are standard in proving
linear convergence in optimization literature. More exactly, by choosing a small enough
constant stepsize τ2 we show that

Sufficient decrease: G(KKK′, LLL(KKK′))− G(KKK, LLL(KKK)) ≤ −s1τ2 Tr(FFF⊤
KKK,LLL(KKK)FFFKKK,LLL(KKK))

Gradient domination: G(KKK∗, LLL∗)− G(KKK, LLL(KKK)) ≥ −s2 Tr(FFF⊤
KKK,LLL(KKK)FFFKKK,LLL(KKK)),

where s1, s2 are positive constants. Combine these two inequalities, we obtain

G(KKK′, LLL(KKK′))− G(KKK∗, LLL∗) ≤ (1 − s1τ2

s2
)(G(KKK, LLL(KKK))− G(KKK∗, LLL∗)),

where we require τ2 ≤ s2
s1

in addition to the upperbound of τ2 that ensures the sufficient
decrease and gradient domination inequalities hold. We refer the reader to Appendix
A.5 for the full proof.

Theorem 3.11. (Last-iterate convergence in stochastic setting) Let Assumption 1.1 hold. Let
KKK0 ∈ K and consider the corresponding set K̂ defined in (3.1). For any δ1 ∈ (0, 1), ε1 > 0 and
for any KKK ∈ K, Algorithm 1 with single-point estimation outputs LLL such that G(KKK, LLL(KKK))−
G(KKK, LLL) ≤ ε1 with probability at least 1 − δ1 using Tin M1 = Õ(ε−2

1 ) samples. Moreover,
for any δ2 ∈ (0, 1) and any accuracy requirement ε ≥ 0, if the estimation parameters in
Algorithm 2 satisfy T = O(log(ε−1)), M2 = Õ(ε−2), τ2 = O(1), r2 = O(ε−1/2), ε1 =
O(ε), δ1 = O(δ2/T). Then it holds with probability at least 1 − δ2 that KKKt ∈ K̂ for all
t = 1, · · · , T and G(KKKT, LLL(KKKT))− G(KKK∗, LLL∗) ≤ ε. The total sample complexity is given by
O(T(Tin M1 + Tout M2)) = Õ(ε−2). A detailed version of this theorem is deferred to Appendix
A.6.

‡Note here choosing τ2 such that q is arbitrarily close to 0 might not be possible since some upperbounds
of τ2 are required for the above contractive inequality to hold.
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3.3. Last-iterate Convergence

Proof. The proof of Theorem 3.11 is a generalization of the proof of Theorem 3.10. We
apply Proposition 3.4 to guarantee the implicit regularization property of iterates. The
key steps are also divided into two parts, sufficient decrease inequality (Inequality (3.4))
and gradient domination inequality (Proposition 3.9) are guaranteed with proper choice
of constant stepsize τ2:

Sufficient decrease: G(KKK′, LLL(KKK′))− G(KKK, LLL(KKK)) ≤ −c1τ2 Tr(FFF⊤
KKK,LLL(KKK)FFFKKK,LLL(KKK)) + error

Gradient domination: G(KKK∗, LLL∗)− G(KKK, LLL(KKK)) ≥ −c2 Tr(FFF⊤
KKK,LLL(KKK)FFFKKK,LLL(KKK)),

where c1, c2 are positive constants. Here an extra error term is introduced because of the
estimated natural gradients. Combine these two inequalities and we obtain

G(KKK′, LLL(KKK′))− G(KKK∗, LLL∗) ≤ q(G(KKK, LLL(KKK))− G(KKK∗, LLL∗)) + error.

where q ∈ [0, 1) is the contractive coefficient. Then this recursive inequality leads to the
final convergence result. The complete proof is deferred to Appendix A.6.

Remark 3.12. Note here we don’t use the two-point estimation assumption in Remark 3.8 to
obtain the same sample complexity as Theorem 3.7 with a different convergence measure. More
importantly, to the best of our knowledge, this is the first global last-iterate convergence result for
policy optimization algorithms in search of the NE of zero-sum LQ games.
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Chapter 4

Simulations

In this chapter, we present simulation results* to further validate our contribution. We
mainly present simulation results to show (i) convergence of Algorithm 2 in Zhang
et al. [2021b] (benchmark algorithm, see Appendix A.10 for the complete algorithm) and
Algorithm 2 when solving the same zero-sum LQ game using the same set of algorithm
parameters; (ii) Algorithm 2 is more sample-efficient compared to the benchmark algo-
rithm; (iii) the nested natural gradient algorithm has global linear last-iterate convergence
in the deterministic case and Algorithm 2 demonstrates global last-iterate convergence.

Simulation setup. All the experiments are executed with Python 3.8.5 on a high-
performance computing cluster where the reserved memory for executing experiments
is 2000 MB. For the sake of comparison, we adopt the same set of model parameters
as Zhang et al. [2021b]. Here we repeat the setting for completeness. The horizon length
H is set to 5 and At = A, Bt = B, Dt = D, Qt = Q, Ru

t = Ru, and Rw
t = Rw, where

A =

 1 0 −5
−1 1 0
0 0 1

 , B =

 1 −10 0
0 3 1
−1 0 2

 , D =

0.5 0 0
0 0.2 0
0 0 0.2

 ,

Q =

 2 −1 0
−1 2 −1
0 −1 2

 , Ru =

 4 −1 0
−1 4 −2
0 −2 3

 , Rw = 5 · I.

Applying the Nash equilibrium solution (KKK∗, LLL∗) of the above game, G(KKK∗, LLL∗) ≈ 3.2330
and λmin(HHHKKK∗,LLL∗) ≈ 4.2860. For the purpose of comparison, we choose the same set of
parameters for both Algorithm 2 in Zhang et al. [2021b] and Algorithm 2 in this thesis.
We choose ΣΣΣ0 = 0.05 · I and the other parameters as follows

KKK0 =
[
diag(K, K, K, K, K) 00015×3

]
, K :=

−0.08 0.35 0.62
−0.21 0.19 0.32
−0.06 0.10 0.41

 , LLL0 = 00015×18,

r2 = 0.08, M2 = 5 × 105, ε1 = 10−4, τ1 = 0.1, τ2 = 4.67 × 10−4.

The experiments are executed using the above set of parameters and the single-point
estimation without additional explanation.

Sample complexity improvement. As in Zhang et al. [2021b], we adopt the following
two realizations: the inner-loop problem is solved using (i) the exact solutions and

*The codes can be found at https://drive.google.com/drive/folders/1SVPAwxLAiC7K6EPhSKQXQZ_
iyXXaZfoc?usp=sharing
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(a) Comparison of convergence between Algorithm 2 and the benchmark algorithm when using exact inner-loop natural gradient and
estimated outer-loop natural gradients.
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(b) Comparison of convergence between Algorithm 2 and the benchmark algorithm when using exact inner-loop solutions and estimated
outer-loop natural gradients.
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(c) Comparison of convergence between Algorithm 2 and the benchmark algorithm when using exact inner-loop natural gradient and
estimated outer-loop natural gradients with M2 = 2.5 × 105 and τ2 = 1 × 10−3.
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(d) Comparison of convergence between Algorithm 2 and the benchmark algorithm when using a fixed number of inner-loop iterations, exact
inner-loop natural gradient, and estimated outer-loop natural gradients with M2 = 5 × 105, τ1 = 0.1, τ2 = 2 × 10−3, r2 = 0.02, and Tin = 10.

Figure 4.1: Comparisons of Algorithm 2 and the benchmark algorithm under various settings. In the left, middle, and
right figure, we show the convergence in terms of G(KKK, LLL), λmin(HHHKKK,LLL), and T−1 ∑T−1

t=0 ∥FFFKKKt ,LLL(KKKt)∥2
F respectively.

(ii) exact natural gradients for efficiency†. From Figure 4.1a and 4.1b, we can see our
algorithm shows a comparable convergence rate compared to the benchmark algorithm
using the same set of parameters. In Figure 4.1c, we show that with smaller sample
sizes M2 = 2.5 × 105 and larger stepsize τ2 = 1 × 10−3, Algorithm 2 also demonstrates
convergence to G(KKK∗, LLL∗) and λmin(HHHKKK∗,LLL∗) with a comparable convergence rate compared
with the benchmark algorithm. These results indicate Algorithm 2 is more sample-
efficient than the benchmark algorithm. As in the benchmark algorithm (see Algorithm
3), an inner-loop problem still needs to be solved using samples at each sample step
m = 0, · · · , M2 − 1 when the exact inner-loop solutions are not accessible.

†In the codes, we assume exact access to the solution of the inner-loop problem given each perturbed KKKm
t ,

i.e., LLL(KKKm
t ) m = 0, · · · , M2 − 1. This practice is for the efficiency of the simulations and has an instrumental

effect on the performance of the benchmark algorithm.
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Figure 4.2: Last-iterate convergence results of Algorithm 2. We choose r1 = 0.5, M1 = 106, ε1 = 0.1, and τ1 = 0.04.

Last-iterate convergence. To validate the convergence results in Theorem 3.10 and
Theorem A.5, we conduct experiments using two sets of settings (i) exact solutions to
the inner-loop problem and the exact outer-loop natural gradients and (ii) estimated
inner-loop and estimated outer-loop natural gradients. Figure 4.2a displays the linear
convergence rate of the cost difference and the linear curves support our last-iterate
linear convergence result in the deterministic case. Figure 4.2b shows the last-iterate
convergence of Algorithm 2 in the stochastic case where we run simulations using
estimated inner-loop & outer-loop natural gradients. Moreover, in Figure 4.2c, we see
the convergence of Algorithm 2 while the benchmark algorithm cannot complete one
outer-loop iteration using the same number of sample sizes.

Fixed inner-loop iteration number. Besides using ε1 to determine when to terminate
the inner-loop iterations, we use a constant number of inner-loop iterations, Tin. This
setting is closer to the practical scenario. We choose Tin = 10, exact inner-loop natural
gradients, and estimated outer-loop natural gradients. In Figure 4.1d, we again observe
similar convergence rates of Algorithm 2 and the benchmark algorithm. This observa-
tion supports the sample efficiency improvement of Algorithm 2 with a more realistic
implementation.
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Chapter 5

Conclusion

In this work, we showed a Õ(ε−3) sample complexity for a derivative-free nested natural
policy gradient algorithm for solving the stochastic zero-sum linear quadratic dynamic
game problem, improving over prior work. We further improved this sample complexity
to Õ(ε−2) using zeroth order two-point estimation. Moreover, we provide the global
last-iterate convergence result of nested algorithms for zero-sum LQ games in both
deterministic and stochastic cases, which were not provided for zero-sum LQ games.
Possible future research directions include (a) extending our analysis to continuous-time
and infinite-horizon settings beyond our finite-horizon setting using techniques such as
sensitivity analysis for stable continuous-time Lyapunov equations Hewer and Kenney
[1988], (b) improving the dependence on problem dimensions and considering more
general noise distributions since the boundedness of noises is not required by the stability
constraint under the finite-horizon setting, and (c) establishing lower bounds for solving
this problem. Designing theoretically grounded single-loop algorithms for zero-sum LQ
games and considering more involved dynamics such as certain nonlinear dynamics Han
et al. [2022, 2023] offer avenues of future research that merit further investigation.
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Convergence and sample complexity of gradient methods for the model-free linear–
quadratic regulator problem. IEEE Transactions on Automatic Control, 67(5):2435–2450,
2021.

24



Bibliography

Lekan Molu. Mixed H2/H∞-policy learning synthesis, 2023.

Boris Polyak. Gradient methods for the minimisation of functionals. USSR Computational
Mathematics and Mathematical Physics, page 864–878, 1963.

Yue Sun and Maryam Fazel. Learning optimal controllers by policy gradient: Global
optimality via convex parameterization. In 2021 60th IEEE Conference on Decision and
Control (CDC), page 4576–4581. IEEE, Dec 2021.

Huining Yang. Policy gradient methods for linear quadratic problems. PhD thesis, University
of Oxford, 2022.

Zhuoran Yang, Yongxin Chen, Mingyi Hong, and Zhaoran Wang. On the global con-
vergence of actor-critic: A case for linear quadratic regulator with ergodic cost. arXiv
preprint arXiv:1907.06246, Jul 2019.

Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. Policy optimization provably converges
to nash equilibria in zero-sum linear quadratic games. Advances in Neural Information
Processing Systems, 32, 2019.

Kaiqing Zhang, Bin Hu, and Tamer Basar. On the stability and convergence of robust
adversarial reinforcement learning: A case study on linear quadratic systems. Advances
in Neural Information Processing Systems, 33:22056–22068, 2020.
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Appendix A

Proofs and Auxiliary Results

A.1 Summary of Notations

Let KKK0 ∈ K and consider the following set

K̂ :=
{

KKK | (2.1) admits a solution PPPKKK,LLL(KKK) ⪰ 0,

and PPPKKK,LLL(KKK) ⪯ PPPKKK0,LLL(KKK0) +
λmin(HHHKKK0,LLL(KKK0))

2∥DDD∥ · III
}

.

Below is a summary of the intensely used notations for convenient lookup.

φ := λmin(ΣΣΣ0)

HHHKKK,LLL := RRRw − DDD⊤PPPKKK,LLLDDD

EEEKKK,LLL := (−RRRw + DDD⊤PPPKKK,LLLDDD)LLL − DDD⊤PPPKKK,LLL(AAA − BKBKBK)

FFFKKK,LLL := (RRRu + BBB⊤PPPKKK,LLLBBB)KKK − BBB⊤PPPKKK,LLL(AAA − DLDLDL)

GGGKKK,LLL(KKK) := RRRu + BBB⊤P̃PPKKK,LLL(KKK)BBB

G := sup
KKK∈K̂

∥GGGKKK,LLL(KKK)∥

P̃PPKKK,LLL(KKK) := PPPKKK,LLL(KKK) + PPPKKK,LLL(KKK)DDD(RRRw − DDD⊤PPPKKK,LLL(KKK)DDD)−1DDD⊤PPPKKK,LLL(KKK)

AAAKKK,LLL := AAA − BKBKBK − DLDLDL

LLL(KKK) := arg max
LLL

G(KKK, LLL) = (−RRRw + DDD⊤PPPKKK,LLL(KKK)DDD)−1DDD⊤PPPKKK,LLL(KKK)(AAA − BKBKBK)

Φ(KKK) := G(KKK, LLL(KKK))

F̃FFKKK,LLL :=
1
2
∇̃KKKG(KKK, LLL)Σ̃ΣΣ

−1
KKK,LLL

∇KKKGr2(KKK, LLL) := E[∇̃KKKG(KKK, LLL)] = ∇KKKEVVV [G(KKK + r2VVV, LLL)],

FFFr
KKK,LLL := E[F̃FFKKK,LLL]

V(F̃FFKKK,LLL) := (F̃FFKKK,LLL − FFFr
KKK,LLL)

⊤(F̃FFKKK,LLL − FFFr
KKK,LLL)

dΣΣΣ := m2(N + 1), dKKK := d m N, dLLL := n m N, dPPP := m2(N + 1)

H := sup
KKK∈K̂

λ−1
min(HHHKKK,LLL(KKK))

ε l := sup
KKK∈K̂

{√
λ−1

min(HHHKKK,LLL(KKK)) · ε1

}
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A.2. Proof of Implicit Regularization

The following notations are defined for h = 0, · · · , N − 1.

AKh,Lh := Ah − BhKh − DhLh

RKh,K′
h

:= (K′
h − Kh)

⊤FKh,L(Kh) + F⊤
Kh,L(Kh)

(K′
h − Kh)

+ (K′
h − Kh)

⊤(Ru
h + B⊤

h P̃Kh+1,L(Kh+1)Bh)(K′
h − Kh)

Gh := Ru
h + B⊤

h P̃Kh+1,L(Kh+1)Bh

Fr
Kh,Lh

:= E[F̃Kh,Lh ]

V(F̃Kh,Lh) := (F̃Kh,Lh − Fr
Kh,Lh

)⊤(F̃Kh,Lh − Fr
Kh,Lh

)

ΞKh,K′
h

:= −(Rw
h − D⊤

h PKh+1,L(Kh+1)Dh)L(K′
h)− D⊤

h PKh+1,L(Kh+1)(Ah − BhK′
h)

EKh,Lh := (−Rw
h + D⊤

h PKh+1,Lh+1 Dh)Lh − D⊤
h PKh+1,Lh+1(Ah − BhKh)

FKh,Lh := (Ru
h + B⊤

h PKh+1,Lh+1 Bh)Kh − B⊤
h PKh+1,Lh+1(Ah − DhLh)

FKh,L(Kh)
:= (Ru

h + B⊤
h P̃Kh+1,L(Kh+1)Bh)Kh − B⊤

h P̃Kh+1,L(Kh+1)Ah

P̃Kh+1,L(Kh+1)
:= PKh+1,L(Kh+1) + PKh+1,L(Kh+1)Dh(Rw

h − D⊤
h PKh+1,L(Kh+1)Dh)

−1D⊤
h PKh+1,L(Kh+1)

Assumption 1.1 ensures that ΣΣΣ0 ≻ 0 and hence φ > 0.

A.2 Proof of Implicit Regularization

Proposition A.1. (Detailed version of Proposition 3.4) Let Assumption 1.1 hold. Let KKK0 ∈ K and
consider the corresponding K̂ set defined in (3.1). For any δ1 ∈ (0, 1), ε1 > 0 and for any KKK ∈ K,
Algorithm 1 with single-point estimation outputs LLL such that G(KKK, LLL(KKK))− G(KKK, LLL) ≤ ε1 with
probability at least 1 − δ1 using M1 = Õ(ε−2

1 ) samples. Moreover for any δ2 ∈ (0, 1) and any
integer T ≥ 1, if the estimation parameters in Algorithm 2 satisfy

τ2 ≤ min
{

λmin(HHHKKK0,LLL(KKK0))

6∥DDD∥2 , 1/(8G), B2/(
√

m(N + 1)B4), B1/(
√

m(N + 1)B4), 1
}

,

r2 ≤ min
{

D1,
√

1/(Tc1)

}
, ε1 ≤ min

{
D3,

1
Tc2

}
, δ1 ≤ δ2/(2T),

M2 ≥ max
{

MΣΣΣ(φ/2, δ2/(4T)), MΣΣΣ(
φ2

4O1
·
√

2
c3T

, δ2/(4T)), MV(
φ

4
·
√

2
c3T

, δ2/(4T))
}

= Õ
(
T2),

where MΣΣΣ(ε, δ), MV(ε, δ) are defined in Lemma A.19 and A.18 respectively. G, B1, B2, B4, are
defined in Lemma A.6, A.8, A.7, A.17. D1, D3 are defined in Lemma A.6. Then, it holds with
probability at least 1 − δ2 that KKKt ∈ K̂ for all t = 1, · · · , T.

Proof. The results for solving the inner-loop problem have been discussed in Theorem
3.8 of Zhang et al. [2021b] and hence omitted here. For the outer-loop algorithm, we
firstly consider one step update from KKK0 ∈ K to KKK1 with KKK1 = KKK0 − τ2F̃FFKKK0,LLL0 where LLL0
is the output of the max-oracle given KKK0. We already know that using exact outer-loop
natural gradients, 2FFFKKKt,LLL(KKKt), we can ensure the non-increasing monotonicity of PPPKKKt,LLL(KKKt)

Zhang et al. [2021b]. While in the model-free setting, the estimated gradients will lead to
deviations, we will prove shortly that the deviation can be well-controlled (within set K̂)
using good approximations.

We try to control the deviation of PPPKKKt,LLL(KKKt) from non-increasing monotonity. We start
from the upperbound we developed in Lemma A.15 for difference between matrices
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A.2. Proof of Implicit Regularization

PPPKKK1,LLL(KKK1) and PPPKKK0,LLL(KKK0):

PPPKKK′,LLL(KKK′) − PPPKKK,LLL(KKK) ⪯
N

∑
i=0

(AAA⊤
KKK′,LLL(KKK′))

i(eee1,KKK,KKK′ + eee2,KKK,KKK′ + eee3,KKK,KKK′)(AAAKKK′,LLL(KKK′))
i − τ2

4
FFF⊤

KKK,LLL(KKK)FFFKKK,LLL(KKK),

where eee1,KKK,KKK′ , eee2,KKK,KKK′ , eee3,KKK,KKK′ are errors terms that we try to upperbound. Recall

eee1,KKK,KKK′ := (4τ2 + 4τ2
2 ∥GGGKKK,LLL(KKK)∥)(FFFr

KKK,LLL − FFFKKK,LLL)
⊤(FFFr

KKK,LLL − FFFKKK,LLL)

eee2,KKK,KKK′ := τ2(FFFKKK,LLL(KKK) − FFFKKK,LLL)
⊤(FFFKKK,LLL(KKK) − FFFKKK,LLL)

eee3,KKK,KKK′ := (2τ2 + τ2
2 ∥GGGKKK,LLL(KKK)∥)V(F̃FFKKK,LLL),

where FFFr
KKK,LLL := E[F̃FFKKK,LLL], V(F̃FFKKK,LLL) := (F̃FFKKK,LLL − E[F̃FFKKK,LLL])

⊤(F̃FFKKK,LLL − E[F̃FFKKK,LLL]). We can observe
from the above definitions that eee1,KKK,KKK′ is caused by biased estimation of the natural
gradients, eee2,KKK,KKK′ is from the errors in solving the inner-loop problem, and eee3,KKK,KKK′ is the
variance-like term that can be controlled by choosing proper sample sizes M2. The first
two error terms can be controlled by choosing proper parameters r2 and ε1. Apply
Lemma A.20, we know that by choosing

τ2 ≤ min
{

1/(8G), B2/(
√

m(N + 1)B4), B1/(
√

m(N + 1)B4), 1
}

, r2 ≤ D1,

ε1 ≤ D3, M2 ≥ max{MΣΣΣ(φ/2, δ/2), MV(1, δ/2)}.

Then with probability at least (1 − δ1)(1 − δ), we have KKK′ ∈ K and

PPPKKK1,LLL(KKK1) − PPPKKK0,LLL(KKK0) ⪯ τ2 · (c1 · r2
2 + c2 · ε1 + c3 · ∥V(F̃FFKKK0,LLL0)∥) · I. (A.1)

To further constrain KKK1 within K̂ set, we choose small r2, small τ2, and large enough M2

such that V(F̃FFKKK0,LLLKKK0
) is small: we require

c1 · r2
2 ≤ 1, c2 · ε1 ≤ 1, c3 · ∥V(F̃FFKKK0,LLL0)∥ ≤ 1.

Additionally, let τ2 ≤ λmin(HHHKKK0,LLL(KKK0)
)

6∥DDD∥2 , then we have

PPPKKK1,LLL(KKK1) ⪯ PPPKKK0,LLL(KKK0) +
λmin(HHHKKK0,LLL(KKK0))

2∥DDD∥2 · I.

Hence KKK1 ∈ K̂ is guaranteed. Now by applying the above reasoning recursively: by
choosing

τ2 ≤ min
{

λmin(HHHKKK0,LLL(KKK0))

6∥DDD∥2 , 1/(8G), B2/(
√

m(N + 1)B4), B1/(
√

m(N + 1)B4), 1
}

,

r2 ≤ min
{

D1,
√

1/(Tc1)

}
, ε1 ≤ min

{
D3,

1
Tc2

}
, δ1 ≤ δ2/(2T),

M2 ≥ max
{

MΣΣΣ(φ/2, δ2/(4T)), MΣΣΣ(
φ2

4O1
·
√

2
c3T

, δ2/(4T)), MV(
φ

4
·
√

2
c3T

, δ2/(4T))
}

= Õ
(
T2),

where we apply Lemma A.18 for the choice of M2 to control ∥V(F̃FFKKK,LLL0)∥, we obtain that

c1 · r2
2 · T ≤ 1, c2 · ε1 · T ≤ 1, c3 ·

T−1

∑
t=0

∥V(F̃FFKKKt,LLLt)∥ ≤ 1,
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hold with probability at least 1 − δ2. Then we can compute the telescoping sum of (A.1)

PPPKKKt,LLL(KKKt) ⪯ PPPKKK0,LLL(KKK0) + τ2 ·
T−1

∑
t=0

(c1r2
2 + c2ε1 + c3∥V(F̃FFKKKt,LLLt)∥) · I

⪯ PPPKKK0,LLL(KKK0) +
λmin(HHHKKK0,LLL(KKK0))

2∥D∥2 · I,

hold for t = 0, · · · , T with probability at least 1 − δ2, i.e., KKK0, · · · , KKKT stay in K̂ with
probability at least 1 − δ2.

A.3 Proof of Sample Complexity Improvement with 1-Point
Estimation

Theorem A.2. (Detailed version of Theorem 3.5: Improved Sample Complexity for Outer-loop
Algorithm in Zhang et al. [2021b]) Let Assumption 1.1 hold. Let KKK0 ∈ K and consider the
corresponding K̂ set defined in (3.1). For any δ1 ∈ (0, 1), ε1 > 0 and for any KKK ∈ K, Algorithm 1
with single-point estimation outputs LLL such that G(KKK, LLL(KKK))− G(KKK, LLL) ≤ ε1 with probability at
least 1− δ1 using Tin M1 = Õ(ε−2

1 ) samples. Moreover for any δ2 ∈ (0, 1) and any integer T ≥ 1,
if the estimation parameters in Algorithm 2 satisfy

τ2 ≤ min
{

λmin(HHHKKK0,LLL(KKK0))

6∥DDD∥2 , 1/(8G), B2/(
√

m(N + 1)B4), B1/(
√

m(N + 1)B4), 1
}

,

r2 ≤ min
{

D1,
√

1/(Tc1)

}
, ε1 ≤ min

{
D3,

1
Tc2

}
, δ1 ≤ δ/(2T),

M2 ≥ max
{

MΣΣΣ(φ/2, δ/(4T)), MΣΣΣ(
φ2

4O1
·
√

1
c3T

, δ/(4T)), MV(
φ

4
·
√

1
c3T

, δ/(4T))
}

= Õ
(
T2),

where MΣΣΣ(ε, δ), MV(ε, δ) are defined in Lemma A.19 and A.18 respectively. Here G, B1, B2, B4
are defined in Lemma A.6, A.8, A.7, A.17. And D1, D3 are defined in Lemma A.6. Constants
c1, c2, c3 are defined in Lemma A.20. Then, it holds with probability at least 1 − δ2 that KKKt ∈ K̂
for all t = 1, · · · , T. Moreover, if we require

ε =
λmin(HHHKKK0,LLL(KKK0))

τ2φT∥DDD∥ Tr(ΣΣΣ0),

Algorithm 2 returns an ε-stationary point of φ(KKK) in the sense that

1
T

T−1

∑
t=0

∥FFFKKKt,LLL(KKKt)∥2
F ≤ ε.

And hence the sample complexity is of order Õ(ε−3).

Proof. The first part of the theorem is proved in Appendix A.2. As for the convergence
rate, multiply the descent inequality with ΣΣΣ0 and take the trace:

PPPKKKt+1,LLL(KKKt+1) − PPPKKKt,LLL(KKKt) ⪯
N

∑
i=0

(AAA⊤
KKKt+1,LLL(KKKt+1)

)ieeeKKKt,KKKt+1(AAAKKKt+1,LLL(KKKt+1))
i − τ2FFF⊤

KKKt,LLL(KKKt)
FFFKKKt,LLL(KKKt),

eeeKKKt,KKKt+1
:= eee1,KKKt,KKKt+1 + eee2,KKKt,KKKt+1 + eee3,KKKt,KKKt+1
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By computing the telescoping sum, we can see that

Φ(KKKT)− Φ(KKK0) ≤
T−1

∑
t=0

Tr(
N

∑
i=0

(AAA⊤
KKKt+1,LLL(KKKt+1)

)ieeeKKKt,KKKt+1(AAAKKKt+1,LLL(KKKt+1))
iΣΣΣ0)

− τ2 Tr(FFF⊤
KKKt,LLL(KKKt)

FFFKKKt,LLL(KKKt)ΣΣΣ0),

1
T

T−1

∑
t=0

∥FFFKKKt,LLL(KKKt)∥2
F ≤ 1

T

T−1

∑
t=0

Tr(FFF⊤
KKKt,LLL(KKKt)

FFFKKKt,LLL(KKKt))

≤ 1
τ2φT

(
Φ(KKK0)− Φ(KKKT)

+
T−1

∑
t=0

Tr
( N

∑
i=0

(AAA⊤
KKKt+1,LLL(KKKt+1)

)ieeeKKKt,KKKt+1(AAAKKKt+1,LLL(KKKt+1))
iΣΣΣ0

))

≤ 1
τ2φT

((
λmin(HHHKKK0,LLL(KKK0))

2∥DDD∥2

+
T−1

∑
t=0

∥∥∥∥ N

∑
i=0

(AAA⊤
KKKt+1,LLL(KKKt+1)

)ieeeKKKt,KKKt+1(AAAKKKt+1,LLL(KKKt+1))
i
∥∥∥∥)Tr(ΣΣΣ0)

)

≤ 1
τ2φT

(
λmin(HHHKKK0,LLL(KKK0))

∥DDD∥2 Tr(ΣΣΣ0)

)
.

where in the fifth inequality, we apply the same reasoning in Appendix A.2: by the same
choice of parameters, we can control the deviation:

T−1

∑
t=0

∥∥∥∥ N

∑
i=0

(AAA⊤
KKKt+1,LLL(KKKt+1)

)ieeeKKKt,KKKt+1(AAAKKKt+1,LLL(KKKt+1))
i
∥∥∥∥ ≤

λmin(HHHKKK0,LLL(KKK0))

2∥DDD∥2

with high probability. Conclusively, we obtain high probability sublinear convergence in
the measure of

1
T

T−1

∑
t=0

∥FFFKKKt,LLL(KKKt)∥2
F ≤ 1

T
· 1

τ2φ

(
λmin(HHHKKK0,LLL(KKK0))

∥DDD∥2 Tr(ΣΣΣ0)

)
.

If we choose

ε =
λmin(HHHKKK0,LLL(KKK0))

τ2φT∥DDD∥ Tr(ΣΣΣ0),

then we have

1
T

T−1

∑
t=0

∥FFFKKKt,LLL(KKKt)∥2
F ≤ ε.

Let Tin · M1 be the sample complexity of the inner problem, M2 be the number of samples
required for each iteration of the outer loop. From Zhang et al. [2021b], we already know
the sample complexity of the inner-loop is Õ(ε−2

1 ) · T. From the choice of ε1, ε, we know
that ε1 = O(ε) = O(T−1). Then the total complexity can be computed as

T · (Tin · M1 + M2) = Õ(ε−1(ε−2
1 + M2)) = Õ(ε−3).
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A.4 Proof of Sample Complexity Improvement with 2-Point
Estimation

Theorem A.3. (Detailed version of Theorem 3.7) Let Assumption 1.1 hold. Let KKK0 ∈ K and
consider the corresponding K̂ set defined in (3.1). For any δ1 ∈ (0, 1), ε1 > 0 and for any KKK ∈ K,
Algorithm 1 with two-point estimation outputs LLL such that G(KKK, LLL(KKK))− G(KKK, LLL) ≤ ε1 with
probability at least 1 − δ1 using Tin M1 = Õ(ε−1

1 ) samples. Moreover for any δ2 ∈ (0, 1) and
any integer T ≥ 1, if the estimation parameters in Algorithm 2 satisfy

τ2 ≤ min
{

λmin(HHHKKK0,LLL(KKK0))

6∥DDD∥2 , 1/(8G), B2/(
√

m(N + 1)B4), B1/(
√

m(N + 1)B4), 1
}

,

r2 ≤ min
{

D1,
√

1/(Tc1)

}
, ε1 ≤ min

{
D3,

1
Tc2

}
, δ1 ≤ δ/(2T),

M2 ≥ max
{

MΣΣΣ(φ/2, δ/(4T)), MΣΣΣ(
φ2

4O1
·
√

1
c3T

, δ/(4T)), M′
V(

φ

4
·
√

1
c3T

, δ/(4T))
}

= Õ
(
T
)
,

M′
V(ε, δ) := (

O′
2

ε
)2 · log(

2dKKK

δ
), O′

2 := dKKK(N + 1)ϑ2l5 + O1,

where positive constant O1 is defined in Lemma A.18, MΣΣΣ(ε, δ), MV(ε, δ) are defined in Lemma
A.19 and A.18 respectively. Here G, B1, B2, B4 are defined in Lemma A.6, A.8, A.7, A.17. And
D1, D3 are defined in Lemma A.6. Constants c1, c2, c3 are defined in Lemma A.20. Then, it holds
with probability at least 1 − δ2 that KKKt ∈ K̂ for all t = 1, · · · , T. Moreover, if we require

ε =
λmin(HHHKKK0,LLL(KKK0))

τ2φT∥DDD∥ Tr(ΣΣΣ0),

Algorithm 2 returns an ε-stationary point of φ(KKK) in the sense that

1
T

T−1

∑
t=0

∥FFF⊤
KKKt,LLL(KKKt)

∥2
F ≤ ε.

And the sample complexity is of order Õ(ε−2).

Proof. Here the main steps are the same as Proposition 3.4 and Theorem 3.5. The
difference now is the relationship between the variance of gradient estimation and the
sample size, in other words, Lemma A.18 needs adaptations for the two-point estimation
method. By using two-point estimation, we do not have variance ∝ r−2

2 . As in Lemma
A.18, we consider random variable dKKK

2r2
(Gξξξ(KKK + r2VVV, LLL)− Gξξξ(KKK − r2VVV, LLL))VVV where VVV is

sampled uniformly randomly from the unit sphere.∥∥∥∥ dKKK

2r2
(Gξξξ(KKK + r2VVV, LLL)VVV − Gξξξ(KKK − r2VVV, LLL)VVV)

∥∥∥∥
F

=

∣∣∣∣ dKKK

2r2
ξξξ⊤(PPPKKK+r2VVV,LLL − PPPKKK−r2VVV,LLL)ξξξ

∣∣∣∣ ≤ dKKK

2r2
∥ξξξ∥2 (∥PPPKKK+r2VVV,LLL − PPPKKK,LLL∥+ ∥PPPKKK,LLL − PPPKKK−r2VVV,LLL∥)

≤ dKKK

2r2
(N + 1)ϑ2l5 · r2 · 2 = dKKK(N + 1)ϑ2l5,

with probability at least 1− δ1. In the second inequality, we apply Lemma A.9 and choose

r2 ≤ D1, ε1 ≤ D3.
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Hence dKKK
r2
G(KKK + r2VVV, LLL)VVV −∇KKKGr2(KKK, LLL) is bounded for any VVV with probability at least

1 − δ1, and hence norm-subGaussian with probability at least 1 − δ1. Then we apply
Corollary 7 in Jin et al. [2019], with probability at least (1 − δ1)(1 − δ), we have

∥∇̃KKKG(KKK, LLL)−∇KKKGr2(KKK, LLL)∥F

=

∥∥∥∥ 1
M2

M2−1

∑
m=0

dKKK

2r2
(Gξξξm(KKK + r2VVVm, LLL)VVVm − Gξξξm(KKK − r2VVVm, LLL)VVVm)−∇KKKGr2(KKK, LLL)

∥∥∥∥
F

≤ 1
M2

·
√

M2 · (dKKK(N + 1)ϑ2l5 + O1) ·
√

log(
2dKKK

δ
),

where positive constant O1 is defined in Lemma A.18. Hence when we sample

M2 ≥ max{M′
V(

√
2ε · φ

4
,

δ

2
), MΣΣΣ(φ/2, δ/2)},

M′
V(ε, δ) := (

O′
2

ε
)2 · log(

2dKKK

δ
) = O(

1
ε2 · log(

1
δ
)), O′

2 := dKKK(N + 1)ϑ2l5 + O1,

we have

∥∇̃KKKG(KKK, LLL)−∇KKKGr2(KKK, LLL)∥2 · ∥Σ̃ΣΣ
−1
KKK,LLL∥2 ≤ ∥∇̃KKKG(KKK, LLL)−∇KKKGr2(KKK, LLL)∥2

F · ∥Σ̃ΣΣ
−1
KKK,LLL∥2 ≤ ε

2
,

with probability at least (1 − δ1)(1 − δ). Moreover, apply Lemma A.19 and choose

M2 ≥ max
{

MΣΣΣ(φ/2, δ/2), MΣΣΣ(
φ2
√

2ε

4O1
, δ/2)

}
We can bound

∥∇KKKGr2(KKK, LLL)∥2 · ∥Σ̃ΣΣ
−1
KKK,LLL −ΣΣΣ−1

KKK,LLL∥2 ≤ ∥∇KKKGr2(KKK, LLL)∥2 · ∥Σ̃ΣΣ
−1
KKK,LLL∥2∥Σ̃ΣΣKKK,LLL −ΣΣΣKKK,LLL∥2∥ΣΣΣ−1

KKK,LLL∥2

≤ 4
φ4 (O1)

2∥Σ̃ΣΣKKK,LLL −ΣΣΣKKK,LLL∥2 ≤ ε

2

with probability at least (1 − δ1)(1 − δ/2). In conclusion, by sampling

M2 ≥ max
{

MΣΣΣ(φ/2, δ/2), MΣΣΣ(
φ2
√

2ε

4O1
, δ/2), M′

V(

√
2εφ

4
, δ/2)

}
= O(

1
ε
· log(

1
δ
) + ε−1 · log(

1
δ
)),

we have

∥V(F̃FFKKK,LLL)∥ ≤ ∥∇̃KKKG(KKK, LLL)−∇KKKGr2(KKK, LLL)∥2 · ∥Σ̃ΣΣ
−1
KKK,LLL∥2 + ∥∇KKKGr2(KKK, LLL)∥2 · ∥Σ̃ΣΣ

−1
KKK,LLL −ΣΣΣ−1

KKK,LLL∥2

≤ ε/2 + ε/2 = ε,

with probability at least (1 − δ1)(1 − δ). Here to adapt the proof of Proposition 3.4 and
Theorem 3.5, substitute the relationship between the sample size M2 and ∥V(F̃FFKKK,LLL)∥F in
Lemma A.18 with the proof above, the other parts still apply and hence omitted here.

From Malik et al. [2019], we know the inner-loop problem be solved by sample size
M1 = O(ε−1

1 ) using two-point estimation. Hence let Tin · M1 be the sample complexity
of the inner problem, M2 be the number of samples required for each iteration of the
outer loop. From the choice of ε1, ε, we know that ε1 = O(ε) = O(T−1). Then the total
complexity can be computed as

T · (Tin · M1 + M2) = Õ(ε−1(ε−1
1 + ε−1)) = Õ(ε−2).
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A.5 Proof of Last-iterate Convergence (Deterministic)

Theorem A.4. (Detailed version of Theorem 3.10) Let KKK0 ∈ K. For any KKK ∈ K, we assume
access to the exact solution of the inner-loop problem, LLL(KKK). Consider the nested natural gradient
algorithm using the exact natural gradients: KKKt+1 = KKKt − τ2FFFKKKt,LLL(KKKt). Let stepsize τ2 satisfy

τ2 ≤ min
{

1
∥GGGKKK0,LLL(KKK0)∥

,
s2

φ

}
,

where

s2 := σ−1
min(RRR

u)s4, s4 := sup
KKK∈K̂

∥ΣΣΣKKK∗,L̃LLKKK,KKK∗
∥,

L̃LLKKK,KKK′ := LLL(KKK)− (−RRRw + DDD⊤PPPKKK,LLL(KKK)DDD)−1DDD⊤PPPKKK,LLL(KKK)BBB(KKK
′ −KKK).

We have linear convergence as follows

G(KKKt+1, LLL(KKKt+1))− G(KKK∗, LLL∗) ≤ (1 − φτ2

s2
)(G(KKKt, LLL(KKKt))− G(KKK∗, LLL∗)).

Proof. The proof is divided into two main parts: (i) proving sufficient decrease and (ii)
gradient domination respectively. Then we conclude the linear convergence rate using
these two properties, which is standard in optimization.

Sufficient decrease. We firstly consider one step update KKK′ = KKK − τ2FFFKKK,LLL(KKK) where
KKK ∈ K. We start from the matrix difference lemma for PPPKKK,LLL(KKK) (see Lemma B.1 in Zhang
et al. [2021b] for example)

PPPKKK′,LLL(KKK′) − PPPKKK,LLL(KKK) = AAA⊤
KKK′,LLL(KKK′)(PPPKKK′,LLL(KKK′) − PPPKKK,LLL(KKK))AAAKKK′,LLL(KKK′) +RRRKKK,KKK′

−ΞΞΞ⊤
KKK,KKK′(RRRw − DDD⊤PPPKKK,LLL(KKK)DDD)−1ΞΞΞKKK,KKK′

where

RRRKKK,KKK′ := diag(RK0,K′
0
, · · · ,RKN−1,K′

N−1
, 000m×m), ΞΞΞKKK,KKK′ :=

[
000m×nN

diag(ΞK0,K′
0
, · · · , ΞKN−1,K′

N−1
)

]
.

Then from Lemma A.23 and

RRRKKK,KKK′ −ΞΞΞ⊤
KKK,KKK′(RRRw − DDD⊤PPPKKK,LLL(KKK)DDD)−1ΞΞΞKKK,KKK′ ⪯ RRRKKK,KKK′ ,

we know PPPKKK′,LLL(KKK′) − PPPKKK,LLL(KKK) is upperbounded by the solution of the Lyapunov equation
below

PPPKKK′,LLL(KKK′) − PPPKKK,LLL(KKK) = AAA⊤
KKK′,LLL(KKK′)(PPPKKK′,LLL(KKK′) − PPPKKK,LLL(KKK))AAAKKK′,LLL(KKK′) +RRRKKK,KKK′ .

If we compute the product of PPPKKK′,L(K′) − PK,L(K) and ΣΣΣ0, and take the trace, we have

G(KKK′, LLL(KKK′))− G(KKK, LLL(KKK)) ≤ Tr(RRRKKK,KKK′ΣΣΣKKK′,LLL(KKK′))

= Tr((−2τ2FFF⊤
KKK,LLL(KKK)FFFKKK,LLL(KKK)

+ τ2
2 FFF⊤

KKK,LLL(KKK)(RRR
u + BBB⊤P̃PPKKK,LLL(KKK)BBB)FFFKKK,LLL(KKK))ΣΣΣKKK′,LLL(KKK′)).

From the implicit regularization property of the nested natural gradient method (see
Theorem 3.7 in Zhang et al. [2021b]), by choosing τ2 ≤ 1/∥GGGKKK0,LLL(KKK0)∥, we obtain the
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monotonically non-increasing sequence (PPPKKKt,LLL(KKKt))t and lowerbounded by 000. Then since
KKK0 ∈ K, we can bound P̃PPKKKt,LLL(KKKt) for any t ≥ 0

∥P̃PPKKKt,LLL(KKKt)∥ ≤ ∥PPPKKK0,LLL(KKK0)∥+ ∥PPPKKK0,LLL(KKK0)∥2∥DDD∥2σ−1
min(RRR

w − DDD⊤PPPKKK0,LLL(KKK0)DDD) =: f3.

Hence by choosing τ2 ≤ 2
∥RRRu∥+s3∥BBB∥2 , we have

− 2τ2FFF⊤
KKK,LLL(KKK)FFFKKK,LLL(KKK) + τ2

2 FFF⊤
KKK,LLL(KKK)(RRR

u + BBB⊤P̃PPKKK′,LLL(KKK′)BBB)FFFKKK,LLL(KKK)

⪯ −2τ2FFF⊤
KKK,LLL(KKK)FFFKKK,LLL(KKK) + τ2

2 (∥RRRu∥+ s3∥BBB∥2)FFF⊤
KKK,LLL(KKK)FFFKKK,LLL(KKK) ⪯ 0.

Hence

Tr((−2τ2FFF⊤
KKK,LLL(KKK)FFFKKK,LLL(KKK) + τ2

2 FFF⊤
KKK,LLL(KKK)(RRR

u + BBB⊤P̃PPKKK′,LLL(KKK′)BBB)FFFKKK,LLL(KKK))ΣΣΣKKK′,LLL(KKK′))

≤ Tr((−2τ2FFF⊤
KKK,LLL(KKK)FFFKKK,LLL(KKK) + τ2

2 FFF⊤
KKK,LLL(KKK)(RRR

u + BBB⊤P̃PPKKK′,LLL(KKK′)BBB)FFFKKK,LLL(KKK))ΣΣΣ0)

≤ φ Tr(−2τ2FFF⊤
KKK,LLL(KKK)FFFKKK,LLL(KKK) + τ2

2 FFF⊤
KKK,LLL(KKK)(RRR

u + BBB⊤P̃PPKKK′,LLL(KKK′)BBB)FFFKKK,LLL(KKK))

≤ −φτ2 Tr(FFF⊤
KKK,LLL(KKK)FFFKKK,LLL(KKK)),

where in the first inequality, we apply Lemma A.27, and in the second inequality, we
apply Lemma A.29. In summary:

G(KKK′, LLL(KKK′))− G(KKK, LLL(KKK)) ≤ −φτ2 Tr(FFF⊤
KKK,LLL(KKK)FFFKKK,LLL(KKK)). (A.2)

Gradient domination. Since we know that the sequence (PPPKKKt,LLL(KKKt))t is non-increasing in
deterministic case, KKKt ∈ K̂ is ensured. Apply Proposition 3.9, we have

G(KKK∗, LLL∗)− G(KKK, LLL(KKK)) ≥ −s2Tr(FFF⊤
KKK,LLL(KKK)FFFKKK,LLL(KKK)).

Convergence rate. Combining (A.2) and (3.7), we have

1
s2
(−G(KKK∗, LLL∗) + G(KKK, LLL(KKK))) ≤ Tr(FFF⊤

KKK,LLL(KKK)FFFKKK,LLL(KKK)) ≤
1

φτ2
(−G(KKK′, LLL(KKK′)) + G(KKK, LLL(KKK)))

⇔ G(KKK′, LLL(KKK′))− G(KKK∗, LLL∗) ≤ (1 − φτ2

s2
)(G(KKK, LLL(KKK))− G(KKK∗, LLL∗)).

Here to make the above inequality meaningful, we further choose τ2 < s2
φ . Then we

conclude the linear convergence rate.

A.6 Proof of Last-iterate Convergence (Stochastic)

Theorem A.5. (Detailed version of Theorem 3.11) Let Assumption 1.1 holds. Let KKK0 ∈ K and
consider the corresponding K̂ set defined in (3.1). For any δ1 ∈ (0, 1), ε1 > 0 and for any KKK ∈ K,
Algorithm 1 with single-point estimation outputs LLL such that G(KKK, LLL(KKK))− G(KKK, LLL) ≤ ε1 with
probability at least 1 − δ1 using Tin M1 = Õ(ε−2

1 ) samples. Moreover for any δ2 ∈ (0, 1) and
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any accuracy requirement ε ≥ 0, if the estimation parameters in Algorithm 2 satisfy

τ2 ≤ min
{

λmin(HHHKKK0,LLL(KKK0))

6∥DDD∥2 , 1/(8G), B2/(
√

m(N + 1)B4), B1/(
√

m(N + 1)B4), 1
}

,

T ≥ log(ε/2(G(KKK0, LLL(KKK0))− G(KKK∗, LLL∗)))
log(1 − φτ2/4s2)

= O(log ε−1)

r2 ≤ min
{

D1,
√

ε/(2c1)

}
, ε1 ≤ min

{
D3,

ε

2c2

}
, δ1 ≤ δ/(2T),

M2 ≥ max
{

MΣΣΣ(φ/2, δ/(4T)), MΣΣΣ(
φ2

4O1
·
√

ε

2c3
, δ/(4T)), M′

V(
φ

4
·
√

ε

2c3
, δ/(4T))

}
= Õ

(
ε−1),

M′
V(ε, δ) := (

O′
2

ε
)2 · log(

2dKKK

δ
), O′

2 := dKKK(N + 1)ϑ2l5 + O1,

where positive constant O1 is defined in Lemma A.18, MΣΣΣ(ε, δ), MV(ε, δ) are defined in Lemma
A.19 and A.18 respectively. Here G, B1, B2, B4 are defined in Lemma A.6, A.8, A.7, A.17. And
D1, D3 are defined in Lemma A.6. Constants c1, c2, c3 are defined in Lemma A.20. Then, it holds
with probability at least 1 − δ2 that KKKt ∈ K̂ for all t = 1, · · · , T and we have

G(KKKT, LLL(KKKT))− G(KKK∗, LLL∗) ≤ ε,

with probability at least 1 − δ2 using a total sample complexity O(T(Tin M1 + Tout M2)) =
O(T · ε−2) = Õ(ε−2).

Proof. The proof is a generalization of Theorem A.4. Here we try to develop almost
sufficient decrease and gradient domination properties of the objective function under
the stochastic setting.

Gradient domination. In this part we can follow the same proof as Theorem A.4. We
have

G(KKK∗, LLL∗)− G(KKK, LLL(KKK)) ≥ −s2Tr(FFF⊤
KKK,LLL(KKK)FFFKKK,LLL(KKK)) (A.3)

where the positive constant s2 is defined in Theorem A.4.

Sufficient decrease. We firstly consider one step update KKK′ = KKK − τ2FFFKKK,LLL(KKK) where
KKK ∈ K. We start from the following inequality which is already proved in Theorem A.4

G(KKK′, LLL(KKK′))− G(KKK, LLL(KKK)) ≤ Tr(RRRKKK,KKK′ΣΣΣKKK′,LLL(KKK′)).
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If we choose τ2 ≤ min{1/(8G), 1} where G is defined in Lemma A.6, we have

G(KKK′, LLL(KKK′))− G(KKK, LLL(KKK)) ≤ Tr(RRRKKK,KKK′ΣΣΣKKK′,LLL(KKK′))

≤ Tr(((4τ2 + 4τ2
2 ∥GGGKKK,LLL(KKK)∥)(FFFr

KKK,LLL − FFFKKK,LLL)
⊤(FFFr

KKK,LLL − FFFKKK,LLL)

+ τ2(FFFKKK,LLL(KKK) − FFFKKK,LLL)
⊤(FFFKKK,LLL(KKK) − FFFKKK,LLL)

+ (2τ2 + τ2
2 ∥GGGKKK,LLL(KKK)∥)V(F̃FFKKK,LLL)−

τ2

4
FFF⊤

KKK,LLL(KKK)FFFKKK,LLL(KKK))ΣΣΣKKK′,LLL(KKK′))

= Tr(((4τ2 + 4τ2
2 ∥GGGKKK,LLL(KKK)∥)(FFFr

KKK,LLL − FFFKKK,LLL)
⊤(FFFr

KKK,LLL − FFFKKK,LLL)

+ τ2(FFFKKK,LLL(KKK) − FFFKKK,LLL)
⊤(FFFKKK,LLL(KKK) − FFFKKK,LLL)

+ (2τ2 + τ2
2 ∥GGGKKK,LLL(KKK)∥)V(F̃FFKKK,LLL))ΣΣΣKKK′,LLL(KKK′))

− τ2

4
Tr(FFF⊤

KKK,LLL(KKK)FFFKKK,LLL(KKK)ΣΣΣKKK′,LLL(KKK′))

≤ Tr(((4τ2 + 4τ2
2 ∥GGGKKK,LLL(KKK)∥)(FFFr

KKK,LLL − FFFKKK,LLL)
⊤(FFFr

KKK,LLL − FFFKKK,LLL)

+ τ2(FFFKKK,LLL(KKK) − FFFKKK,LLL)
⊤(FFFKKK,LLL(KKK) − FFFKKK,LLL)

+ (2τ2 + τ2
2 ∥GGGKKK,LLL(KKK)∥)V(F̃FFKKK,LLL))ΣΣΣKKK′,LLL(KKK′))

− τ2φ

4
Tr(FFF⊤

KKK,LLL(KKK)FFFKKK,LLL(KKK)),

where in the second inequality, we apply the upperbound for RRRKKK,KKK′ in the proof of
Lemma A.15 and in the third inequality, we apply Lemma A.29. Then we obtain the
following inequality, which is a counterpart of (A.2) in stochastic setting

G(KKK′, LLL(KKK′))− G(KKK, LLL(KKK)) ≤ − φτ2

4
Tr(FFF⊤

KKK,LLL(KKK)FFFKKK,LLL(KKK))

+ Tr(((4τ2 + 4τ2
2 ∥GGGKKK,LLL(KKK)∥)(FFFr

KKK,LLL − FFFKKK,LLL)
⊤(FFFr

KKK,LLL − FFFKKK,LLL)

+ τ2(FFFKKK,LLL(KKK) − FFFKKK,LLL)
⊤(FFFKKK,LLL(KKK) − FFFKKK,LLL)

+ (2τ2 + τ2
2 ∥GGGKKK,LLL(KKK)∥)V(F̃FFKKK,LLL))ΣΣΣKKK′,LLL(KKK′)). (A.4)

Convergence rate and sample complexity. Combine (A.3) and (A.4), we obtain

1
f2
(−G(KKK∗, LLL∗) + G(KKK, LLL(KKK)))

≤ Tr(FFF⊤
KKK,LLL(KKK)FFFKKK,LLL(KKK))

≤ 4
φτ2

(−G(KKK′, LLL(KKK′)) + G(KKK, LLL(KKK)))

+
4

φτ2

(
Tr(((4τ2 + 4τ2

2 ∥GGGKKK,LLL(KKK)∥)(FFFr
KKK,LLL − FFFKKK,LLL)

⊤(FFFr
KKK,LLL − FFFKKK,LLL)

+ τ2(FFFKKK,LLL(KKK) − FFFKKK,LLL)
⊤(FFFKKK,LLL(KKK) − FFFKKK,LLL)

+ (2τ2 + τ2
2 ∥GGGKKK,LLL(KKK)∥)V(F̃FFKKK,LLL))ΣΣΣKKK′,LLL(KKK′))

)
⇔G(KKK′, LLL(KKK′))− G(KKK∗, LLL∗)

≤ (1 − φτ2

4 f2
)(G(KKK, LLL(KKK))− G(KKK∗, LLL∗))

+ Tr(((4τ2 + 4τ2
2 ∥GGGKKK,LLL(KKK)∥)(FFFr

KKK,LLL − FFFKKK,LLL)
⊤(FFFr

KKK,LLL − FFFKKK,LLL)

+ τ2(FFFKKK,LLL(KKK) − FFFKKK,LLL)
⊤(FFFKKK,LLL(KKK) − FFFKKK,LLL)

+ (2τ2 + τ2
2 ∥GGGKKK,LLL(KKK)∥)V(F̃FFKKK,LLL))ΣΣΣKKK′,LLL(KKK′)).
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To control the deviation term in the above inequality, we apply the implicit regularization
property, Proposition 3.4. Then we know that by choosing M2 = Õ

(
T2), τ2 = O(1),

r2 = O(T−1/2), ε1 = O(T−1), δ1 = O(δ2/T), then, it holds with probability at least 1− δ2
that KKKt ∈ K̂ for all t = 1, · · · , T. Hence by controlling τ2 < 4s2/φ, we have the following
convergence result

G(KKKT, LLL(KKKT))− G(KKK∗, LLL∗) ≤ (1 − φτ2

4s2
)T(G(KKK0, LLL(KKK0))− G(KKK∗, LLL∗))

+
T−1

∑
t=0

(1 − φτ2

4s2
)tτ2(c1 · r2

2 + c2 · ε1 + c3V)

≤ (1 − φτ2

4s2
)T(G(KKK0, LLL(KKK0))− G(KKK∗, LLL∗))

+
4s2

φ
(c1r2

2 + c2ε1 + c3V),

where V denotes the variance-like term. Hence to achieve an accuracy of G(KKKT, LLL(KKKT))−
G(KKK∗, LLL∗) ≤ ε, firstly we choose

T ≥ log(ε/2(G(KKK0, LLL(KKK0))− G(KKK∗, LLL∗)))
log(1 − φτ2/4s2)

such that

(1 − φτ2

4s2
)T(G(KKK0, LLL(KKK0))− G(KKK∗, LLL∗)) ≤ ε/2

Moreover, apply Lemma A.18 and choose

τ2 ≤ min
{

λmin(HHHKKK0,LLL(KKK0))

6∥DDD∥2 , 1/(8G), B2/(
√

m(N + 1)B4), B1/(
√

m(N + 1)B4), 1
}

,

r2 ≤ min
{

D1,
√

φε/(8s2c1)

}
, ε1 ≤ min

{
D3,

φε

8s2c2

}
, δ1 ≤ δ/(2T),

M2 ≥ max
{

MΣΣΣ(φ/2, δ/(4T)), MΣΣΣ(
φ2

4O1
·
√

φε

8s2c3
, δ/(4T)), M′

V(
φ

4
·
√

φε

8s2c3
, δ/(4T))

}
= Õ

(
ε−1),

we further have
4s2

φ
(c1r2

2 + c2ε1 + c3V) ≤ ε/2,

with probability at least 1 − δ2. Hence the total sample complexity is O(T(Tin M1 +

Tout M2)) = Õ(ε−2).

A.7 Structural Properties of Zero-sum LQ Games

This section summarizes basic results for LQ games, some of which are similar to results
in Fazel et al. [2018], Zhang et al. [2019], and Zhang et al. [2021b]. Before we introduce
the lemmas for zero-sum LQ games, we define the following bounds:

Lemma A.6. (Uniform bounds over K̂ × L̂) Let KKK0 ∈ K and consider the following set

K̂ :=
{

KKK | (2.1) admits a solution PPPKKK,LLL(KKK) ⪰ 0,

and PPPKKK,LLL(KKK) ⪯ PPPKKK0,LLL(KKK0) +
λmin(HHHKKK0,LLL(KKK0))

2∥DDD∥ · III
}

.
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For any (KKK, LLL) ∈ K̂ × L̂, the following amounts are positive and well-defined.

D1 := inf
(KKK,LLL)∈K̂×L̂

min
{

1,
φ

2 Tr(ΣΣΣKKK,LLL)∥BBB∥(2∥AAAKKK,LLL∥+ ∥BBB∥)

}
,

D2 := inf
(KKK,LLL)∈K̂×L̂

min
{

1,
φ

2 Tr(ΣΣΣKKK,LLL)∥DDD∥(2∥AAAKKK,LLL∥+ ∥DDD∥)

}
,

D3 := inf
(KKK,LLL)∈K̂×L̂

min
{

1, H−1, H−1
(

φ

2 Tr(ΣΣΣKKK,LLL)∥DDD∥(2∥AAAKKK,LLL∥+ ∥DDD∥)

)2}
,

G := sup
KKK∈K̂

∥GGGKKK,LLL(KKK)∥,

where GGGKKK,LLL(KKK) and H are defined in Appendix A.1. These uniform bounds will contribute to the
proof of IR property.

Proof. The proof is immediate from the boundedness of K̂, L̂ as well as Lemma A.16
since

Tr(ΣΣΣKKK,LLL) ≤ m(N + 1)∥ΣΣΣKKK,LLL∥ ≤ m(N + 1)
N

∑
i=0

(∥AAAKKK,LLL∥)2i∥ΣΣΣ0∥,

∥AAAKKK,LLL∥ ≤ ∥AAA∥+ ∥BBB∥∥KKK∥+ ∥DDD∥∥LLL∥.

Lemma A.7. (Lemma B.9 in Zhang et al. [2021b]) For any KKK ∈ K, there exists some B2,KKK > 0
such that all KKK′ satisfying ∥KKK′ −KKK∥F ≤ B2,KKK satisfy KKK′ ∈ K. Then for any KKK ∈ K̂ with KKK0 ∈ K,
there exists a positive constant B2 such that all KKK′ satisfying ∥KKK′ −KKK∥F ≤ B2 satisfy KKK′ ∈ K.

Lemma A.8. (Lemma B.7 in Zhang et al. [2021b]: Local Lipschitz continuity of ΣΣΣKKK,LLL(KKK), LLL(KKK),
PPPKKK,LLL(KKK)) For any KKK, KKK′ ∈ K, there exist some B1,KKK, BPPP,KKK, BLLL(KKK),KKK, BΣΣΣ,KKK > 0 that are continuous
functions of KKK such that all KKK′ satisfying ∥KKK′ −KKK∥F ≤ B1,KKK satisfy

∥PPPKKK′,LLL(KKK′) − PPPKKK,LLL(KKK)∥F ≤ BPPP,KKK · ∥KKK′ −KKK∥F,

∥ΣΣΣKKK′,LLL(KKK′) −ΣΣΣKKK,LLL(KKK)∥F ≤ BΣΣΣ,KKK · ∥KKK′ −KKK∥F,

∥LLL(KKK′)− LLL(KKK)∥F ≤ BLLL(KKK),KKK · ∥KKK′ −KKK∥F.

Especially, we define the following positive constants

B1 := inf
KKK∈K̂

B1,KKK, BPPP := sup
KKK∈K̂

BPPP,KKK, BΣΣΣ := sup
KKK∈K̂

BΣΣΣ,KKK, BLLL(KKK) := sup
KKK∈K̂

BLLL(KKK),KKK.

Even though four constants are defined above, only B1, BΣΣΣ are used in our proof.

Lemma A.9. (Local Lipschitz continuity of PK,L) Let KKK0 ∈ K and consider the following set

K̂ :=
{

KKK | (2.1) admits a solution PPPKKK,LLL(KKK) ⪰ 0,

and PPPKKK,LLL(KKK) ⪯ PPPKKK0,LLL(KKK0) +
λmin(HHHKKK0,LLL(KKK0))

2∥DDD∥ · III
}

.

For any (KKK, LLL) ∈ K̂ × L̂ with structures defined in (1.4) and (KKK′ ∈ K, LLL′) that satisfy

∥KKK′ −KKK∥ ≤ D1, ∥LLL′ − LLL∥ ≤ D2,

where D1, D2 are defined in Lemma A.6. Then there exist positive constants l5, l6 such that

∥PPPKKK′,LLL − PPPKKK,LLL∥ ≤ l5∥KKK′ −KKK∥, ∥PPPKKK,LLL′ − PPPKKK,LLL∥ ≤ l6∥LLL′ − LLL∥.
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Proof. For the simplicity of the proof, we use ∆KKK := KKK′ −KKK and ∆LLL := LLL′ − LLL hereafter.
We apply Lemma A.22 and sensitivity analysis in Lemma A.26 with F = AAAKKK′,LLL, M =
QQQ + (KKK′)⊤RRRu(KKK′)− LLL⊤RRRvLLL, HHH is the solution of the following Lyapunov equation

I + AAA⊤
KKK,LLLHHHAAAKKK,LLL = HHH.

and X = PPPKKK′,LLL. Then if let ∥HHH∥∥BBB∆KKK∥(2∥AAAKKK,LLL∥+ ∥BBB∆KKK∥) < 1, we have

∥PPPKKK′,LLL − PPPKKK,LLL∥ ≤ (1 − ∥HHH∥∥BBB∆KKK∥(2∥AAAKKK,LLL∥+ ∥BBB∆KKK∥))−1∥HHH∥
· (∥(KKK′)⊤RRRu∆KKK + ∆⊤

KKK RRRuKKK∥+ ∥BBB∆KKK∥(2∥AAAKKK,LLL∥+ ∥BBB∆KKK∥)∥PPPKKK,LLL∥)
≤ (1 − ∥HHH∥∥BBB∆KKK∥(2∥AAAKKK,LLL∥+ ∥BBB∆KKK∥))−1∥HHH∥ · ((∥KKK∥+ ∥∆KKK∥)∥RRRu∥
+ ∥RRRu∥∥KKK∥+ ∥BBB∥(2∥AAAKKK,LLL∥+ ∥BBB∥∥∆KKK∥)∥PPPKKK,LLL∥) · ∥∆KKK∥.

When we apply Lemma A.25 to bound ∥HHH∥ and choose KKK′ such that ∥∆KKK∥ ≤ D1, then

∥HHH∥∥BBB∆KKK∥(2∥AAAKKK,LLL∥+ ∥BBB∆KKK∥) ≤ ∥HHH∥∥BBB∥∥∆KKK∥(2∥AAAKKK,LLL∥+ ∥BBB∥∥∆KKK∥) < 1.

Then we can ensure that

∥PPPKKK′,LLL − PPPKKK,LLL∥ ≤ 2 Tr(ΣΣΣKKK,LLL)/φ · ((∥KKK∥+ 1)∥RRRu∥
+ ∥RRRu∥∥KKK∥+ ∥BBB∥(2∥AAAKKK,LLL∥+ ∥BBB∥)∥PPPKKK,LLL∥) · ∥∆KKK∥.

For LLL′ and LLL, the proof is similar and hence omitted

∥PPPKKK,LLL′ − PPPKKK,LLL∥ ≤ 2 Tr(ΣΣΣKKK,LLL)/φ · ((∥LLL∥+ 1)∥RRRv∥
+ ∥RRRv∥∥LLL∥+ ∥DDD∥(2∥AAAKKK,LLL∥+ ∥DDD∥)∥PPPKKK,LLL∥) · ∥∆LLL∥,

when ∥∆LLL∥ ≤ D2. Since ∥KKK∥, ∥LLL∥, ∥PPPKKK,LLL∥, ∥ΣΣΣKKK,LLL∥ are bounded over K̂ × L̂, we can define
positive constants l5 and l6 as follows

l5 := sup
(KKK,LLL)∈K̂×L̂

2 Tr(ΣΣΣKKK,LLL)/φ · ((∥KKK∥+ 1)∥RRRu∥+ ∥RRRu∥∥KKK∥+ ∥BBB∥(2∥AAAKKK,LLL∥+ ∥BBB∥)∥PPPKKK,LLL∥),

l6 := sup
(KKK,LLL)∈K̂×L̂

2 Tr(ΣΣΣKKK,LLL)/φ · ((∥LLL∥+ 1)∥RRRv∥+ ∥RRRv∥∥LLL∥+ ∥DDD∥(2∥AAAKKK,LLL∥+ ∥DDD∥)∥PPPKKK,LLL∥).

Lemma A.10. (Lipschitz continuity of EEEKKK,LLL, FFFKKK,LLL) Let KKK0 ∈ K and consider the following set

K̂ :=
{

KKK | (2.1) admits a solution PPPKKK,LLL(KKK) ⪰ 0,

and PPPKKK,LLL(KKK) ⪯ PPPKKK0,LLL(KKK0) +
λmin(HHHKKK0,LLL(KKK0))

2∥DDD∥ · III
}

.

For any (KKK, LLL) ∈ K̂ × L̂ and (KKK′ ∈ K, LLL′) with structures defined in (1.4), (1.5) that satisfy

∥KKK′ −KKK∥ ≤ D1, ∥LLL′ − LLL∥ ≤ D2,

where D1, D2 are positive constants defined in Lemma A.6. There exist positive constants l1, l2,
l3, and l4 such that

∥FFFKKK′,LLL − FFFKKK,LLL∥ ≤ l1∥KKK′ −KKK∥, ∥FFFKKK,LLL′ − FFFKKK,LLL∥ ≤ l2∥LLL′ − LLL∥,
∥EEEKKK′,LLL − EEEKKK,LLL∥ ≤ l3∥KKK′ −KKK∥, ∥EEEKKK,LLL′ − EEEKKK,LLL∥ ≤ l4∥LLL′ − LLL∥.
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Proof. For the simplicity of the proof, we use ∆KKK := KKK′ −KKK and ∆LLL := LLL′ − LLL. We start
from the explicit expression of EEEKKK,LLL and FFFKKK,LLL

∥FFFKKK′,LLL − FFFKKK,LLL∥ = ∥BBB⊤(PPPKKK′,LLL − PPPKKK,LLL)(BKBKBK′ + DLDLDL − AAA) + (RRRu + BBB⊤PPPKKK,LLLBBB)(KKK′ −KKK)∥
≤
(
∥BBB∥l5(∥AAAKKK,LLL∥+ ∥BBB∥) + ∥RRRu∥+ ∥BBB∥2∥PPPKKK,LLL∥

)
· ∥KKK′ −KKK∥

= l1∥KKK′ −KKK∥.

For the first inequality, we apply Lemma A.9. Then we require ∥∆KKK∥ ≤ D1, and apply
Lemma A.6. Following the same spirit of proving, we have

∥FFFKKK,LLL′ − FFFKKK,LLL∥ = ∥ − BBB⊤(PPPKKK,LLL′ − PPPKKK,LLL)AAAKKK,LLL′ + BBB⊤PPPKKK,LLLDDD(LLL′ − LLL)∥
≤ (l6∥BBB∥(∥AAAKKK,LLL∥+ ∥DDD∥) + ∥BBB∥∥PPPKKK,LLL∥∥DDD∥) · ∥LLL′ − LLL∥,

∥EEEKKK′,LLL − EEEKKK,LLL∥ = −DDD⊤(PPPKKK′,LLL − PPPKKK,LLL)AAAKKK′,LLL + DDD⊤PPPKKK,LLLBBB(KKK′ −KKK)
≤ (l5∥DDD∥(∥AAAKKK,LLL∥+ ∥BBB∥) + ∥DDD∥∥PPPKKK,LLL∥∥BBB∥) · ∥KKK′ −KKK∥,

∥EEEKKK,LLL′ − EEEKKK,LLL∥ = ∥ − DDD⊤(PPPKKK,LLL′ − PPPKKK,LLL)AAAKKK,LLL′ + (−RRRw + DDD⊤PPPKKK,LLLDDD)(LLL′ − LLL)∥
≤
(
l6∥DDD∥(∥AAAKKK,LLL∥+ ∥DDD∥) + ∥RRRw∥+ ∥DDD∥2∥PPPKKK,LLL∥

)
· ∥LLL′ − LLL∥,

when we also require ∥∆LLL∥ ≤ D2. The constant coefficients are defined as

l1 := sup
(KKK,LLL)∈K̂×L̂

l5∥BBB∥(∥AAAKKK,LLL∥+ ∥BBB∥) + ∥RRRu∥+ ∥BBB∥2∥PPPKKK,LLL∥

l2 := sup
(KKK,LLL)∈K̂×L̂

l6∥BBB∥(∥AAAKKK,LLL∥+ ∥DDD∥) + ∥BBB∥∥PPPKKK,LLL∥∥DDD∥

l3 := sup
(KKK,LLL)∈K̂×L̂

l5∥DDD∥(∥AAAKKK,LLL∥+ ∥BBB∥) + ∥DDD∥∥PPPKKK,LLL∥∥BBB∥

l4 := sup
(KKK,LLL)∈K̂×L̂

l6∥DDD∥(∥AAAKKK,LLL∥+ ∥DDD∥) + ∥RRRw∥+ ∥DDD∥2∥PPPKKK,LLL∥

Bounds are well-defined since ∥KKK∥, ∥LLL∥, ∥PPPKKK,LLL∥, ∥ΣΣΣKKK,LLL∥ are bounded over K̂ × L̂.

Lemma A.11. (Local Lipschitz continuity of ΣΣΣKKK,LLL) Let KKK0 ∈ K and consider the following set

K̂ :=
{

KKK | (2.1) admits a solution PPPKKK,LLL(KKK) ⪰ 0,

and PPPKKK,LLL(KKK) ⪯ PPPKKK0,LLL(KKK0) +
λmin(HHHKKK0,LLL(KKK0))

2∥DDD∥ · III
}

.

For any (KKK, LLL) ∈ K̂ × L̂ and (KKK′ ∈ K, LLL′) with structures defined in (1.4), (1.5) that satisfy

∥KKK′ −KKK∥ ≤ D1, ∥LLL′ − LLL∥ ≤ D2,

where D1, D2 are defined in Lemma A.6. Then there exist positive constants l7, l8 such that

∥ΣΣΣKKK′,LLL −ΣΣΣKKK,LLL∥ ≤ l7∥KKK′ −KKK∥, ∥ΣΣΣKKK,LLL′ −ΣΣΣKKK,LLL∥ ≤ l8∥LLL′ − LLL∥.

Proof. For the simplicity of notations, we use ∆KKK := KKK′ −KKK and ∆LLL := LLL′ − LLL. Here we
apply Lemma A.22 and Lemma A.26 with F = AAA⊤

KKK,LLL, M = ΣΣΣ0, X = ΣΣΣKKK,LLL, and HHH is the
solution of the Lyapunov equation below

I + AAAKKK,LLLHHHAAA⊤
KKK,LLL = HHH.
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Then if let ∥HHH∥∥BBB∆KKK∥(2∥AAAKKK,LLL∥+ 2∥BBB∆KKK∥) < 1, we have

∥ΣΣΣKKK′,LLL −ΣΣΣKKK,LLL∥ ≤ (1 − ∥HHH∥∥BBB∆KKK∥(2∥ΣΣΣKKK,LLL∥+ ∥BBB∆KKK∥))−1

· ∥HHH∥∥BBB∆KKK∥(2∥ΣΣΣKKK,LLL∥+ ∥BBB∆KKK∥)∥ΣΣΣKKK,LLL∥.

Hence when we choose KKK′ such that ∥∆KKK∥ ≤ D1, then

∥HHH∥∥BBB∆KKK∥(2∥ΣΣΣKKK,LLL∥+ 2∥BBB∆KKK∥) ≤ ∥HHH∥∥BBB∥∥∆KKK∥(2∥ΣΣΣKKK,LLL∥+ 2∥BBB∥∥∆KKK∥) < 1.

Again, we apply Lemma A.25 to guarantee the above requirement for ∆KKK. We have

∥ΣΣΣKKK′,LLL −ΣΣΣKKK,LLL∥ ≤ 2 Tr(ΣΣΣKKK,LLL)/φ · ∥BBB∥(2∥ΣΣΣKKK,LLL∥+ ∥BBB∥)∥ΣΣΣKKK,LLL∥∥∆KKK∥.

Similarly, we can prove that by choosing ∥∆LLL∥ ≤ D2,, we have

∥ΣΣΣKKK,LLL′ −ΣΣΣKKK,LLL∥ ≤ 2 Tr(ΣΣΣKKK,LLL)/φ · ∥DDD∥(2∥ΣΣΣKKK,LLL∥+ ∥DDD∥)∥ΣΣΣKKK,LLL∥∥∆LLL∥.

The positive constant coefficients are defined as

l7 := sup
(KKK,LLL)∈K̂×L̂

2 Tr(ΣΣΣKKK,LLL)/φ · ∥BBB∥(2∥ΣΣΣKKK,LLL∥+ ∥BBB∥)∥ΣΣΣKKK,LLL∥,

l8 := sup
(KKK,LLL)∈K̂×L̂

2 Tr(ΣΣΣKKK,LLL)/φ · ∥DDD∥(2∥ΣΣΣKKK,LLL∥+ ∥DDD∥)∥ΣΣΣKKK,LLL∥.

Coefficients are well-defined since ∥KKK∥, ∥LLL∥, ∥PPPKKK,LLL∥, ∥ΣΣΣKKK,LLL∥ are bounded over K̂ × L̂.

Lemma A.12. (Local Lipschitz continuity of ∇KKKG(KKK, LLL),∇LLLG(KKK, LLL)) Let KKK0 ∈ K and consider
the following set

K̂ :=
{

KKK | (2.1) admits a solution PPPKKK,LLL(KKK) ⪰ 0,

and PPPKKK,LLL(KKK) ⪯ PPPKKK0,LLL(KKK0) +
λmin(HHHKKK0,LLL(KKK0))

2∥DDD∥ · III
}

.

For any (KKK, LLL) ∈ K̂ × L̂ and (KKK′ ∈ K, LLL′) with structures defined in (1.4), (1.5) that satisfy

∥KKK′ −KKK∥ ≤ D1, ∥LLL′ − LLL∥ ≤ D2,

where D1, D2 are defined in Lemma A.6. Then the following inequalities hold

∥∇KKKG(KKK′, LLL)−∇KKKG(KKK, LLL)∥ ≤(2l1∥ΣΣΣKKK,LLL∥+ 2l1 · l7 + 2l8∥FFFKKK,LLL∥)∥KKK′ −KKK∥
∥∇KKKG(KKK, LLL′)−∇KKKG(KKK, LLL)∥ ≤(2l2∥ΣΣΣKKK,LLL∥+ 2l2 · l8 + 2l8∥FFFKKK,LLL∥)∥LLL′ − LLL∥
∥∇LLLG(KKK′, LLL)−∇LLLG(KKK, LLL)∥ ≤(2l3∥ΣΣΣKKK,LLL∥+ 2l3 · l7 + 2l7∥EEEKKK,LLL∥)∥KKK′ −KKK∥
∥∇LLLG(KKK, LLL′)−∇LLLG(KKK, LLL′)∥ ≤(2l4∥ΣΣΣKKK,LLL∥+ 2l4 · l8 + 2l8∥EEEKKK,LLL∥)∥LLL′ − LLL∥,

where l7, l8 are defined in Lemma A.11. And l1, l2, l3, and l4 are defined in Lemma A.10. This
lemma is important for controlling the estimation bias caused by using ZO estimation.

Proof. We use the explicit expressions of ∇KKKG(KKK, LLL) and ∇LLLG(KKK, LLL)

∥∇KKKG(KKK′, LLL)−∇KKKG(KKK, LLL)∥ = ∥2FFFKKK′,LLLΣΣΣKKK′,LLL − 2FFFKKK,LLLΣΣΣKKK,LLL∥
= ∥2FFFKKK′,LLLΣΣΣKKK′,LLL − 2FFFKKK,LLLΣΣΣKKK′,LLL + 2FFFKKK,LLLΣΣΣKKK′,LLL − 2FFFKKK,LLLΣΣΣKKK,LLL∥
≤ 2∥FFFKKK′,LLL − FFFKKK,LLL∥∥ΣΣΣKKK′,LLL∥+ 2∥FFFKKK,LLL∥∥ΣΣΣKKK′,LLL −ΣΣΣKKK,LLL∥
≤ (2l1∥ΣΣΣKKK′,LLL∥+ 2l7∥FFFKKK,LLL∥)∥KKK′ −KKK∥
≤ (2l1∥ΣΣΣKKK,LLL∥+ 2l1 · l7 + 2l7∥FFFKKK,LLL∥) · ∥KKK′ −KKK∥,
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where in the last inequality we use the fact that D1 ≤ 1. In the second inequality, we
apply Lemma A.10, A.11 and require

∥KKK′ −KKK∥ ≤ D1, ∥LLL′ − LLL∥ ≤ D2,

where D1, D2 are defined in Lemma A.6. The rest inequalities can be obtained similarly
and hence omitted.

Lemma A.13. (Bound for Natural Gradients) Let KKK0 ∈ K and consider the following set

K̂ :=
{

KKK | (2.1) admits a solution PPPKKK,LLL(KKK) ⪰ 0,

and PPPKKK,LLL(KKK) ⪯ PPPKKK0,LLL(KKK0) +
λmin(HHHKKK0,LLL(KKK0))

2∥DDD∥ · III
}

.

For KKK ∈ K̂ and LLL be the output of Algorithm 1 given KKK with structures defined in (1.4). If we
choose ε1 ≤ D3, there exists a positive constant B3 such that ∥FFFKKK,LLL∥ ≤ B3 with probability at
least 1 − δ1.

Proof. Apply Lemma A.16

∥FFFKKK,LLL∥ = ∥(RRRu + BBB⊤PPPKKK,LLLBBB)KKK − BBB⊤PPPKKK,LLL(AAA − DLDLDL)∥
≤ (∥RRRu∥+ ∥BBB∥2(∥PPPKKK,LLL(KKK)∥+ 1/φ))∥KKK∥+ ∥BBB∥(∥PPPKKK,LLL(KKK)∥+ 1/φ)

· (∥AAA∥+ ∥DDD∥∥LLL(KKK)∥+ ∥DDD∥),
B3 := sup

KKK∈K̂
(∥RRRu∥+ ∥BBB∥2(∥PPPKKK,LLL(KKK)∥+ 1/φ))∥KKK∥+ ∥BBB∥(∥PPPKKK,LLL(KKK)∥+ 1/φ)

· (∥AAA∥+ ∥DDD∥∥LLL(KKK)∥+ ∥DDD∥).

The bound B3 over K̂ is well-defined because of the compactness of K̂.

In the next lemma, we essentially discuss a different way to upperbound PPPKKK′,LLL(KKK′)−PPPKKK,LLL(KKK)
from Zhang et al. [2021b] by developing a careful upperbound of RKh,K′

h
. Here RKh,K′

h
is

a term in the difference between PPPKKK′,LLL(KKK′) − PPPKKK,LLL(KKK), which is crucial to upperbound the
difference and hence keep KKK′ in K̂.

Lemma A.14. (An upperbound for RKh,K′
h
) Let KKK0 ∈ K. Assume KKK ∈ K̂, KKK′ ∈ K with

KKK′ = KKK − τ2F̃FFKKK,LLL, F̃FFKKK,LLL := 1
2∇̃KKKG(KKK, LLL)Σ̃ΣΣ

−1
KKK,LLL. If we choose τ2 ≤ 1/(8G) where G is defined in

Lemma A.6, then for

RKh,K′
h

:= (K′
h − Kh)

T FKh,L(Kh) + FT
Kh,L(Kh)

(K′
h − Kh)

+ (K′
h − Kh)

T(Ru
h + BT

h P̃Kh+1,L(Kh+1)Bh)(K′
h − Kh).

P̃Kh+1,L(Kh+1)
:= PKh+1,L(Kh+1) + PKh+1,L(Kh+1)Dh(Rw

h − DT
h PKh+1,L(Kh+1)Dh)

−1DT
h PKh+1,L(Kh+1),

we have

RKh,K′
h
⪯ Wh −

τ2

4
F⊤

Kh,L(Kh)
FKh,L(Kh),

Wh := (4τ2 + 4τ2
2 ∥Gh∥)(Fr

Kh,Lh
− FKh,Lh)

⊤(Fr
Kh,Lh

− FKh,Lh)

+ τ2(FKh,L(Kh) − FKh,Lh)
⊤(FKh,L(Kh) − FKh,Lh)

+ (2τ2 + τ2
2 ∥Gh∥)V(F̃Kh,Lh). (A.5)

holds for h = 0, · · · , N − 1 where

Fr
Kh,Lh

:= E[F̃Kh,Lh ], V(F̃Kh,Lh) := (F̃Kh,Lh − Fr
Kh,Lh

)⊤(F̃Kh,Lh − Fr
Kh,Lh

).
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Proof. Consider the recursive inequality of PKh,L(Kh) for h = 0, · · · , N − 1 from Lemma
B.1 of Zhang et al. [2021b], we know that for any KKK, KKK′ ∈ K

PK′
h,L(K′

h)
− PKh,L(Kh) = A⊤

K′
h,L(K′

h)
(PK′

h+1,L(K′
h+1)

− PKh+1,L(Kh+1))AK′
h,L(K′

h)

+RKh,K′
h
− Ξ⊤

Kh,K′
h
(Rw

h − D⊤
h PKh+1,L(Kh+1)Dh)

−1ΞKh,K′
h
,

holds for h = 0, · · · , N − 1. Here K′
h = Kh − τ2F̃Kh,Lh and LLL is the output of Algorithm 1.

We denote Ru
h + B⊤

h P̃Kh+1,L(Kh+1)Bh as Gh.

RKh,K′
h
= (K′

h − Kh)
⊤FKh,L(Kh) + F⊤

Kh,L(Kh)
(K′

h − Kh) + (K′
h − Kh)

⊤Gh(K′
h − Kh)

= −τ2F̃T
Kh,Lh

FKh,L(Kh) − τ2F⊤
Kh,L(Kh)

F̃Kh,Lh + τ2
2 F̃⊤

Kh,Lh
Gh F̃Kh,Lh

= −τ2(F̃Kh,Lh − Fr
Kh,Lh

+ Fr
Kh,Lh

)⊤FKh,L(Kh)

− τ2F⊤
Kh,L(Kh)

(F̃Kh,Lh − Fr
Kh,Lh

+ Fr
Kh,Lh

)

+ τ2
2 (F̃Kh,Lh − Fr

Kh,Lh
+ Fr

Kh,Lh
)⊤Gh(F̃Kh,Lh − Fr

Kh,Lh
+ Fr

Kh,Lh
).

We denote the expectation E[F̃Kh,Lh ] as Fr
Kh,Lh

where expectation is taken w.r.t. the
randomness when estimating the natural gradient 2FKh,Lh .

RKh,K′
h
⪯ −τ2(F̃Kh,Lh − Fr

Kh,Lh
)⊤FKh,L(Kh) − τ2F⊤

Kh,L(Kh)
(F̃Kh,Lh − Fr

Kh,Lh
)

− τ2(Fr
Kh,Lh

)⊤FKh,L(Kh) − τ2F⊤
Kh,L(Kh)

Fr
Kh,Lh

+ τ2
2 ∥Gh∥(F̃Kh,Lh − Fr

Kh,Lh
)⊤(F̃Kh,Lh − Fr

Kh,Lh
)

+ τ2
2 ∥Gh∥(F̃Kh,Lh − Fr

Kh,Lh
)⊤Fr

Kh,Lh
+ τ2

2 ∥Gh∥(Fr
Kh,Lh

)⊤(F̃Kh,Lh − Fr
Kh,Lh

)

+ τ2
2 ∥Gh∥(Fr

Kh,Lh
)⊤Fr

Kh,Lh

⪯ (2τ2 + τ2
2 ∥Gh∥)(F̃Kh,Lh − Fr

Kh,Lh
)⊤(F̃Kh,Lh − Fr

Kh,Lh
)︸ ︷︷ ︸

(1)

−τ2(Fr
Kh,Lh

)⊤FKh,L(Kh) − τ2F⊤
Kh,L(Kh)

Fr
Kh,Lh︸ ︷︷ ︸

(2)

+
τ2

2
F⊤

Kh,L(Kh)
FKh,L(Kh)︸ ︷︷ ︸

(3)

+ 2τ2
2 ∥Gh∥(Fr

Kh,Lh
)⊤Fr

Kh,Lh︸ ︷︷ ︸
(4)

.

In the first inequality, we apply Lemma A.27. In the second inequality, we apply
Lemma A.31 and use

(F̃Kh,Lh − Fr
Kh,Lh

)⊤Fr
Kh,Lh

+ (Fr
Kh,Lh

)⊤(F̃Kh,Lh − Fr
Kh,Lh

) ⪯ (F̃Kh,Lh − Fr
Kh,Lh

)⊤(F̃Kh,Lh − Fr
Kh,Lh

)

+ (Fr
Kh,Lh

)⊤Fr
Kh,Lh

,

−(F̃Kh,Lh − Fr
Kh,Lh

)⊤FKh,L(Kh) − F⊤
Kh,L(Kh)

(F̃Kh,Lh − Fr
Kh,Lh

) ⪯ 2(F̃Kh,Lh − Fr
Kh,Lh

)⊤(F̃Kh,Lh − Fr
Kh,Lh

)

+
1
2

F⊤
Kh,L(Kh)

FKh,L(Kh).

We use the following notation for term (1)

V(F̃Kh,Lh) := (F̃Kh,Lh − Fr
Kh,Lh

)⊤(F̃Kh,Lh − Fr
Kh,Lh

).
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To control (2), we apply Lemma A.31 and M⊤N + N⊤M = M⊤M + N⊤N − (M −
N)⊤(M − N).

(2) = −τ2(Fr
Kh,Lh

− FKh,Lh)
⊤FKh,L(Kh) − τ2F⊤

Kh,L(Kh)
(Fr

Kh,Lh
− FKh,Lh)

− τ2F⊤
Kh,Lh

FKh,L(Kh) − τ2F⊤
Kh,L(Kh)

FKh,Lh

⪯ τ2

(
4(Fr

Kh,Lh
− FKh,Lh)

⊤(Fr
Kh,Lh

− FKh,Lh) +
1
4

F⊤
Kh,L(Kh)

FKh,L(Kh)

)
− τ2

(
F⊤

Kh,L(Kh)
FKh,L(Kh) + F⊤

Kh,Lh
FKh,Lh − (FKh,L(Kh) − FKh,Lh)

⊤(FKh,L(Kh) − FKh,Lh)
)

= 4τ2(Fr
Kh,Lh

− FKh,Lh)
⊤(Fr

Kh,Lh
− FKh,Lh)−

3τ2

4
F⊤

Kh,L(Kh)
FKh,L(Kh)

− τ2F⊤
Kh,Lh

FKh,Lh + τ2(FKh,L(Kh) − FKh,Lh)
⊤(FKh,L(Kh) − FKh,Lh).

As for (4), we use (M + N)⊤(M + N) ⪯ 2M⊤M + 2N⊤N and obtain

(4) = 2τ2
2 ∥Gh∥(Fr

Kh,Lh
− FKh,Lh + FKh,Lh)

⊤(Fr
Kh,Lh

− FKh,Lh + FKh,Lh) ⪯
4τ2

2 ∥Gh∥[(Fr
Kh,Lh

− FKh,Lh)
⊤(Fr

Kh,Lh
− FKh,Lh) + F⊤

Kh,Lh
FKh,Lh ].

Now we organize terms and obtain

RKh,K′
h
⪯ (4τ2 + 4τ2

2 ∥Gh∥)(Fr
Kh,Lh

− FKh,Lh)
⊤(Fr

Kh,Lh
− FKh,Lh)

− τ2

4
F⊤

Kh,L(Kh)
FKh,L(Kh) + (4τ2

2 ∥Gh∥ −
τ2

2
)F⊤

Kh,Lh
FKh,Lh

+ τ2(FKh,L(Kh) − FKh,Lh)
⊤(FKh,L(Kh) − FKh,Lh)

+ (2τ2 + τ2
2 ∥Gh∥)V(F̃Kh,Lh).

By choosing τ2 ≤ 1/(8G) ≤ 1/(8∥GGGKKK,LLL(KKK)∥) ≤ 1/(8∥Gh∥), we have for h = 0, · · · , N − 1

RKh,K′
h
⪯ Wh −

τ2

4
F⊤

Kh,L(Kh)
FKh,L(Kh),

Wh := (4τ2 + 4τ2
2 ∥Gh∥)(Fr

Kh,Lh
− FKh,Lh)

⊤(Fr
Kh,Lh

− FKh,Lh)

+ τ2(FKh,L(Kh) − FKh,Lh)
⊤(FKh,L(Kh) − FKh,Lh)

+ (2τ2 + τ2
2 ∥Gh∥)V(F̃Kh,Lh).

Lemma A.15. (Descent-like inequality) Let KKK0 ∈ K and consider the following set

K̂ :=
{

KKK | (2.1) admits a solution PPPKKK,LLL(KKK) ⪰ 0,

and PPPKKK,LLL(KKK) ⪯ PPPKKK0,LLL(KKK0) +
λmin(HHHKKK0,LLL(KKK0))

2∥DDD∥ · III
}

.

For KKK ∈ K̂, KKK′ ∈ K defined in with KKK′ = KKK − τ2F̃FFKKK,LLL and F̃FFKKKt,LLLt := 1
2∇̃KKKG(KKKt, LLLt)Σ̃ΣΣ

−1
KKKt,LLLt

. If we
choose

τ2 ≤ min{1/(8G), 1},

where G is defined in Lemma A.6. Then we have the following inequality

PPPKKK′,LLL(KKK′) − PPPKKK,LLL(KKK) ⪯
N

∑
i=0

(AAA⊤
KKK′,LLL(KKK′))

i(eee1,KKK,KKK′ + eee2,KKK,KKK′ + eee3,KKK,KKK′)(AAAKKK′,LLL(KKK′))
i − τ2

4
FFF⊤

KKK,LLL(KKK)FFFKKK,LLL(KKK),

eee1,KKK,KKK′ := (4τ2 + 4τ2
2 ∥GGGKKK,LLL(KKK)∥)(FFFr

KKK,LLL − FFFKKK,LLL)
⊤(FFFr

KKK,LLL − FFFKKK,LLL)

eee2,KKK,KKK′ := τ2(FFFKKK,LLL(KKK) − FFFKKK,LLL)
⊤(FFFKKK,LLL(KKK) − FFFKKK,LLL)

eee3,KKK,KKK′ := (2τ2 + τ2
2 ∥GGGKKK,LLL(KKK)∥)V(F̃FFKKK,LLL),
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where

FFFr
KKK,LLL := E[F̃FFKKK,LLL], V(F̃FFKKK,LLL) := (F̃FFKKK,LLL − E[F̃FFKKK,LLL])

⊤(F̃FFKKK,LLL − E[F̃FFKKK,LLL]).

This descent inequality is similar to the smooth inequality if we only look at eeeKKK,KKK′ on the RHS.

Proof. We try to develop an upperbound for PPPKKK′,LLL(KKK′) − PPPKKK,LLL(KKK). We start by discussing
the difference between PKh,L(Kh) and PK′

h,L(K′
h)

, which can be obtained by computing the
difference between two Lyapunov equations and reorganizing the terms (see Lemma B.1
in Zhang et al. [2021b] for example).

PK′
h,L(K′

h)
− PKh,L(Kh) = AT

K′
h,L(K′

h)
(PK′

h+1,L(K′
h+1)

− PKh+1,L(Kh+1))AK′
h,L(K′

h)

+RKh,K′
h
− ΞT

Kh,K′
h
(Rw

h − DT
h PKh+1,L(Kh+1)Dh)

−1ΞKh,K′
h
, h = 0, · · · , N − 1,

and PKN ,L(KN) = PK′
N ,L(K′

N)
= QN . Here ΞKh,K′

h
and RKh,K′

h
are defined in Appendix A.1.

For the simplicity of notations and proof, we write the above equation in a compact
matrix form

PPPKKK′,LLL(KKK′) − PPPKKK,LLL(KKK) = AAA⊤
KKK′,LLL(KKK′)(PPPKKK′,LLL(KKK′) − PPPKKK,LLL(KKK))AAAKKK′,LLL(KKK′) +RRRKKK,KKK′

−ΞΞΞ⊤
KKK,KKK′(RRRw − DDD⊤PPPKKK,LLL(KKK)DDD)−1ΞΞΞKKK,KKK′

where

RRRKKK,KKK′ := diag(RK0,K′
0
, · · · ,RKN−1,K′

N−1
, 000m×m), ΞΞΞKKK,KKK′ :=

[
000m×nN

diag(ΞK0,K′
0
, · · · , ΞKN−1,K′

N−1
)

]
.

Then apply Lemma A.23, we observe that in order to upperbound PPPKKK′,LLL(KKK′) − PPPKKK,LLL(KKK),
we only need to upperbound RRRKKK,KKK′ −ΞΞΞ⊤

KKK,KKK′(RRRw − DDD⊤PPPKKK,LLL(KKK)DDD)−1ΞΞΞKKK,KKK′ . Here we choose
the step size τ2 ≤ min{1/(8G), 1} where G is defined in Appendix A.6. Then from the
upperbound we developed for RRRKKK,KKK′ in Lemma A.14 and the fact that RRRw −DDD⊤PPPKKK,LLL(KKK)DDD ≻
0, we know

RRRKKK,KKK′ −ΞΞΞ⊤
KKK,KKK′(RRRw − DDD⊤PPPKKK,LLL(KKK)DDD)−1ΞΞΞKKK,KKK′ ⪯ RRRKKK,KKK′ ⪯ diag(W0, · · · , WN−1, 000m×m)

− τ2

4
FFF⊤

KKK,LLL(KKK)FFFKKK,LLL(KKK).

Hence we can upperbound PPPKKK′,LLL(KKK′) −PPPKKK,LLL(KKK) with the solution to the Lyapunov equation
below

PPPKKK′,LLL(KKK′) − PPPKKK,LLL(KKK) = AAA⊤
KKK′,LLL(KKK′)(PPPKKK′,LLL(KKK′) − PPPKKK,LLL(KKK))AAAKKK′,LLL(KKK′) + diag(W0, · · · , WN−1, 000m×m)

− τ2

4
FFF⊤

KKK,LLL(KKK)FFFKKK,LLL(KKK).

Then apply Lemma A.22, we have

PPPKKK′,LLL(KKK′) − PPPKKK,LLL(KKK) ⪯
∞

∑
i=0

(AAA⊤
KKK′,LLL(KKK′))

i(diag(W0, · · · , WN−1, 0m×m)

− τ2

4
FFF⊤

KKK,LLL(KKK)FFFKKK,LLL(KKK))(AAAKKK′,LLL(KKK′))
i.

We also easily observe from the definition of Wh, (A.5), that

diag(W0, W1, · · · , WN−1, 0m×m) ⪯ (4τ2 + 4τ2
2 ∥GGGKKK,LLL(KKK)∥)(FFFr

KKK,LLL − FFFKKK,LLL)
⊤(FFFr

KKK,LLL − FFFKKK,LLL)

+ τ2(FFFKKK,LLL(KKK) − FFFKKK,LLL)
⊤(FFFKKK,LLL(KKK) − FFFKKK,LLL)

+ (2τ2 + τ2
2 ∥GGGKKK,LLL(KKK)∥)V(F̃FFKKK,LLL).
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Hence we conclude that

PPPKKK′,LLL(KKK′) − PPPKKK,LLL(KKK) ⪯
∞

∑
i=0

(AAA⊤
KKK′,LLL(KKK′))

i(eee1,KKK,KKK′ + eee2,KKK,KKK′ + eee3,KKK,KKK′)(AAAKKK′,LLL(KKK′))
i − τ2

4
FFF⊤

KKK,LLL(KKK)FFFKKK,LLL(KKK)

=
N

∑
i=0

(AAA⊤
KKK′,LLL(KKK′))

i(eee1,KKK,KKK′ + eee2,KKK,KKK′ + eee3,KKK,KKK′)(AAAKKK′,LLL(KKK′))
i − τ2

4
FFF⊤

KKK,LLL(KKK)FFFKKK,LLL(KKK),

eee1,KKK,KKK′ := (4τ2 + 4τ2
2 ∥GGGKKK,LLL(KKK)∥)(FFFr

KKK,LLL − FFFKKK,LLL)
⊤(FFFr

KKK,LLL − FFFKKK,LLL)

eee2,KKK,KKK′ := τ2(FFFKKK,LLL(KKK) − FFFKKK,LLL)
⊤(FFFKKK,LLL(KKK) − FFFKKK,LLL)

eee3,KKK,KKK′ := (2τ2 + τ2
2 ∥GGGKKK,LLL(KKK)∥)V(F̃FFKKK,LLL).

where in the first inequality, we apply ∑∞
i=1(AAA

⊤
KKK′,LLL(KKK′))

iFFF⊤
KKK,LLL(KKK)FFFKKK,LLL(KKK)(AAAKKK′,LLL(KKK′))

i ⪰ 0 and
in the first equation, we apply the fact that (AAAKKK′,LLL(KKK′))

N+1 = 000, see Lemma A.22.

The following lemma shows that: the output LLL of the inner-loop algorithm that satisfies
the accuracy requirement not only implies the boundedness of G(KKK, LLL) and LLL but also
the boundedness of PPPKKK,LLL and ΣΣΣKKK,LLL.

Lemma A.16. (Bounded output of the inner-loop algorithm) Let KKK0 ∈ K and consider the
following set

K̂ :=
{

KKK | (2.1) admits a solution PPPKKK,LLL(KKK) ⪰ 0,

and PPPKKK,LLL(KKK) ⪯ PPPKKK0,LLL(KKK0) +
λmin(HHHKKK0,LLL(KKK0))

2∥DDD∥ · III
}

.

Let KKK ∈ K̂ and LLL be the output of Algorithm 1 given KKK with structures defined in (1.4), which
satisfies

G(KKK, LLL(KKK))− G(KKK, LLL) ≤ ε1,

with probability at least 1 − δ1. Let ε1 satisfy ε1 ≤ D3 where D3 is defined in Lemma A.6. Then
we have

∥PPPKKK,LLL∥ ≤ ∥PPPKKK,LLL(KKK)∥+ ε1/φ ≤ ∥PPPKKK,LLL(KKK)∥+ 1/φ,

∥ΣΣΣKKK,LLL∥ ≤ ∥ΣΣΣKKK,LLL(KKK)∥+ l8
√

λ−1
min(HHHKKK,LLL(KKK)) · ε1 ≤ ∥ΣΣΣKKK,LLL(KKK)∥+ l8,

with probability at least 1 − δ1.

Proof. Consider

∥PPPKKK,LLL∥ ≤ ∥PPPKKK,LLL(KKK)∥+ ∥PPPKKK,LLL(KKK) − PPPKKK,LLL∥ ≤ ∥PPPKKK,LLL(KKK)∥+ Tr(PPPKKK,LLL(KKK) − PPPKKK,LLL)

≤ ∥PPPKKK,LLL(KKK)∥+ φ−1 Tr((PPPKKK,LLL(KKK) − PPPKKK,LLL)ΣΣΣ0)

≤ ∥PPPKKK,LLL(KKK)∥+ φ−1(G(KKK, LLL(KKK))− G(KKK, LLL))
≤ ∥PPPKKK,LLL(KKK)∥+ ε1/φ ≤ ∥PPPKKK,LLL(KKK)∥+ 1/φ

In the second inequality, we utilize the optimality of PPPKKK,LLL(KKK) (see Lemma 2.1) and
Lemma A.32. In the third inequality, we apply Lemma A.29. For the second result, since
output LLL of the max-oracle satisfies

∥LLL(KKK)− LLL∥F ≤
√

λ−1
min(HHHKKK,LLL(KKK)) · ε1
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with probability at least 1 − δ1. Then apply Lemma A.11 and choose ε1 ≤ D3 where D3
is defined in Lemma A.6. We have

∥ΣΣΣKKK,LLL −ΣΣΣKKK,LLL(KKK)∥ ≤ l8
√

λ−1
min(HHHKKK,LLL(KKK)) · ε1

∥ΣΣΣKKK,LLL∥ ≤ ∥ΣΣΣKKK,LLL(KKK)∥+ l8
√

λ−1
min(HHHKKK,LLL(KKK)) · ε1 ≤ ∥ΣΣΣKKK,LLL(KKK)∥+ l8

holds with probability at least 1 − δ1.

A.7.1 Proof of Optimality

In this subsection, we provide the proof of Lemma 2.1 indicating the optimality of PPPKKK,LLL(KKK).

Proof. The proof is an immediate result by applying Lemma A.24. Since KKK is fixed and
EEEKKK,LLL(KKK) = 0, the difference can be simplified below

PPPKKK,LLL − PPPKKK,LLL(KKK) = AAA⊤
KKK,LLL(PPPKKK,LLL − PPPKKK,LLL(KKK))AAAKKK,LLL

+ (LLL − LLL(KKK))⊤(−RRRw + DDD⊤PPPKKK,LLL(KKK)DDD)(LLL − LLL(KKK))

⇒ PPPKKK,LLL − PPPKKK,LLL(KKK) ⪯ 0

PPPKKK,LLL ⪯ PPPKKK,LLL(KKK).

In the first inequality, we use the fact that −RRRw +DDD⊤PPPKKK,LLL(KKK)DDD ≺ 0 and apply Lemma A.23.

A.8 Minibatch Approximation

Lemma A.17. (Bounded gradient estimates) Let KKK0 ∈ K and consider the following set

K̂ :=
{

KKK | (2.1) admits a solution PPPKKK,LLL(KKK) ⪰ 0,

and PPPKKK,LLL(KKK) ⪯ PPPKKK0,LLL(KKK0) +
λmin(HHHKKK0,LLL(KKK0))

2∥DDD∥ · III
}

.

Let LLL be the output of Algorithm 1 given KKK ∈ K̂, by choosing

r2 ≤ D1, ε1 ≤ D3,

M2 ≥ max{MΣΣΣ(φ/2, δ/2), MV(1, δ/2)} = O(
1
r2

2
· log(

1
δ
) + log(

1
δ
)),

where D1, D3 are defined in Lemma A.6, and MΣΣΣ(·, ·), MV(·, ·) are defined in Lemma A.19, A.18
respectively. Then we have

∥F̃FFKKK,LLL∥F ≤ B4,

B4 := sup
(KKK,LLL)∈K̂×L̂

(
1 + (2l1 · ∥ΣΣΣKKK,LLL∥+ 2l1 · l7 + 2l7∥FFFKKK,LLL∥) · m(N + 1) + ∥∇KKKG(KKK, LLL)∥F

)
· 1

φ
,

hold with probability at least (1 − δ1)(1 − δ). Hence by choosing the proper stepsize, we can
maintain the iterates within the desired set such as K with high probability.
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Proof. Since F̃FFKKK,LLL = 1
2∇̃KKKG(KKK, LLL)Σ̃ΣΣ

−1
KKK,LLL, we discuss the bound for ∥∇̃KKKG(KKK, LLL)∥F first. Con-

sider

∥∇̃KKKG(KKK, LLL)∥F = ∥∇̃KKKG(KKK, LLL)−∇KKKGr2(KKK, LLL) +∇KKKGr2(KKK, LLL)−∇KKKG(KKK, LLL) +∇KKKG(KKK, LLL)∥F

≤ ∥∇̃KKKG(KKK, LLL)−∇KKKGr2(KKK, LLL)∥F + ∥∇KKKGr2(KKK, LLL)−∇KKKG(KKK, LLL)∥F

+ ∥∇KKKG(KKK, LLL)∥F,

where ∇KKKGr2(KKK, LLL) := E[∇̃KKKG(KKK, LLL)], the expectation is taken w.r.t. all the randomness
in estimating the gradients. Apply Lemma A.12 and (A.6)-(A.8) in Lemma A.18. If we
choose

r2 ≤ D1, M2 ≥ MV(1, δ/2),

we have

∥∇̃KKKG(KKK, LLL)∥F ≤ 1 + (2l1 · ∥ΣΣΣKKK,LLL∥+ 2l1 · l7 + 2l7∥FFFKKK,LLL∥) · m(N + 1) + ∥∇KKKG(KKK, LLL)∥F,

holds with probability at least (1 − δ1)(1 − δ/2). Then we apply Lemma A.19 and
conclude that when

ε1 ≤ D3, M2 ≥ max
{

MΣΣΣ(φ/2, δ/2), MV(1, δ/2)
}

,

we obtain

∥F̃FFKKK,LLL∥F ≤
(

1 + (2l1 · ∥ΣΣΣKKK,LLL∥+ 2l1 · l7 + 2l7∥FFFKKK,LLL∥) · m(N + 1) + ∥∇KKKG(KKK, LLL)∥F

)
· 1

φ

≤ sup
(KKK,LLL)∈K̂×L̂

(
1 + (2l1 · ∥ΣΣΣKKK,LLL∥+ 2l1 · l7 + 2l7∥FFFKKK,LLL∥) · m(N + 1)

+ ∥∇KKKG(KKK, LLL)∥F

)
· 1

φ
=: B4,

holds with probability at least (1 − δ1)(1 − δ).

Lemma A.18. (Natural gradient estimation variance and sample size) Let KKK0 ∈ K and consider
the following set

K̂ :=
{

KKK | (2.1) admits a solution PPPKKK,LLL(KKK) ⪰ 0,

and PPPKKK,LLL(KKK) ⪯ PPPKKK0,LLL(KKK0) +
λmin(HHHKKK0,LLL(KKK0))

2∥DDD∥ · III
}

.

In Algorithm 2, input KKK ∈ K̂, and LLL is the output of Algorithm 1 given KKK. For δ1 ∈ (0, 1), ε1 > 0,
LLL satisfies

G(KKK, LLL(KKK))− G(KKK, LLL) ≤ ε1, ∥LLL(KKK)− LLL∥F ≤
√

λ−1
min(HHHKKK,LLL(KKK)) · ε1,

with probability at least 1 − δ1. If we choose

r2 ≤ D1, ε1 ≤ D3,

M2 ≥ max
{

MΣΣΣ(φ/2, δ/2), MΣΣΣ(
φ2
√

2ε

4O1
, δ/2), MV(

√
2εφ

4
, δ/2)

}
= O(r−2

2 ε−1 · log(
1
δ
) + ε−1 log(

1
δ
)),
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where D1, D3 are defined in Lemma A.6 and

MV(ε, δ) := ε−2(
O2

r2
+ O1)

2 · log(
2dKKK

δ
) = O(

1
r2

2ε2
· log(

2
δ
)),

O1 := sup
(KKK,LLL)∈K̂×L̂

(N + 1)(d + m)(2l1∥ΣΣΣKKK,LLL∥+ 2l1 · l7 + 2l7∥FFFKKK,LLL∥) + 2∥FFFKKK,LLLΣΣΣKKK,LLL∥F,

O2 := sup
KKK∈K̂

dKKK(l5 + ∥PPPKKK,LLL(KKK)∥+ 1/φ)ϑ2(N + 1),

and MΣΣΣ(·, ·) is defined in Lemma A.19. Positive constants l1, l5, l7 are defined in Lemma A.9,
A.10, A.11. Then We have

∥V(F̃FFKKK,LLL)∥ ≤ ε,

holds with probability at least (1 − δ1)(1 − δ). This lemma describe the relationship between the
sample size M2 and the algorithm parameters r2, ε1, and will be important for determining the
total sample complexity.

Proof. According to Algorithm 2,

V(F̃FFKKK,LLL) =
1
2
(∇̃KKKG(KKK, LLL)Σ̃ΣΣ

−1
KKK,LLL −∇KKKGr2(KKK, LLL)ΣΣΣ−1

KKK,LLL)
⊤ · (∇̃KKKG(KKK, LLL)Σ̃ΣΣ

−1
KKK,LLL −∇KKKGr2(KKK, LLL)ΣΣΣ−1

KKK,LLL)

=
1
2
(∇̃KKKG(KKK, LLL)Σ̃ΣΣ

−1
KKK,LLL −∇KKKGr2(KKK, LLL)Σ̃ΣΣ

−1
KKK,LLL +∇KKKGr2(KKK, LLL)Σ̃ΣΣ

−1
KKK,LLL −∇KKKGr2(KKK, LLL)ΣΣΣ−1

KKK,LLL)
⊤

· (∇̃KKKG(KKK, LLL)Σ̃ΣΣ
−1
KKK,LLL −∇KKKGr2(KKK, LLL)Σ̃ΣΣ

−1
KKK,LLL +∇KKKGr2(KKK, LLL)Σ̃ΣΣ

−1
KKK,LLL −∇KKKGr2(KKK, LLL)ΣΣΣ−1

KKK,LLL)

⪯ (∇̃KKKG(KKK, LLL)Σ̃ΣΣ
−1
KKK,LLL −∇KKKGr2(KKK, LLL)Σ̃ΣΣ

−1
KKK,LLL)

⊤(∇̃KKKG(KKK, LLL)Σ̃ΣΣ
−1
KKK,LLL −∇KKKGr2(KKK, LLL)Σ̃ΣΣ

−1
KKK,LLL)

+ (∇KKKGr2(KKK, LLL)Σ̃ΣΣ
−1
KKK,LLL −∇KKKGr2(KKK, LLL)ΣΣΣ−1

KKK,LLL)
⊤(∇KKKGr2(KKK, LLL)Σ̃ΣΣ

−1
KKK,LLL −∇KKKGr2(KKK, LLL)ΣΣΣ−1

KKK,LLL).

For the first inequality, we apply Lemma A.31. Furthermore, since V(F̃FFKKK,LLL) ⪰ 0

∥V(F̃FFKKK,LLL)∥ ≤ ∥∇̃KKKG(KKK, LLL)Σ̃ΣΣ
−1
KKK,LLL −∇KKKGr2(KKK, LLL)Σ̃ΣΣ

−1
KKK,LLL∥2

+ ∥∇KKKGr2(KKK, LLL)Σ̃ΣΣ
−1
KKK,LLL −∇KKKGr2(KKK, LLL)ΣΣΣ−1

KKK,LLL∥2

≤ ∥∇̃KG(KKK, LLL)−∇KKKGr2(KKK, LLL)∥2 · ∥Σ̃ΣΣ
−1
KKK,LLL∥2 + ∥∇KKKGr2(KKK, LLL)∥2 · ∥Σ̃ΣΣ

−1
KKK,LLL −ΣΣΣ−1

KKK,LLL∥2.

Consider random variable dKKK
r2
Gξξξ(KKK + r2VVV, LLL)VVV −∇KKKGr2(KKK, LLL) where VVV is sampled uni-

formly from the unit sphere and ξξξ is sampled following distribution D.∥∥∥∥dKKK

r2
Gξξξ(KKK + r2VVV, LLL)VVV −∇KKKGr2(KKK, LLL)

∥∥∥∥
F
≤ dKKK

r2
∥Gξξξ(KKK + r2VVV, LLL)VVV∥F︸ ︷︷ ︸

(1)

+ ∥∇KKKGr2(KKK, LLL)∥F︸ ︷︷ ︸
(2)

.
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For term (1), we have

(1) =
dKKK

r2
∥Gξξξ(KKK + r2VVV, LLL)VVV∥F =

dKKK

r2
|Gξξξ(KKK + r2VVV, LLL)|

≤ dKKK

r2
∥PPPKKK+r2VVV,LLL∥∥ξξξξξξ⊤∥

≤ dKKK

r2
(∥PPPKKK+r2VVV,LLL − PPPKKK,LLL∥+ ∥PPPKKK,LLL∥)∥ξξξξξξ⊤∥F

≤ dKKK

r2
(l5 · r2 + ∥PPPKKK,LLL∥)∥ξξξξξξ⊤∥F

≤ dKKK

r2
(l5 · r2 + ∥PPPKKK,LLL∥)ϑ2(N + 1)

≤ dKKK

r2
(l5 + ∥PPPKKK,LLL(KKK)∥+ 1/φ)ϑ2(N + 1)

holds with probability at least 1 − δ1. In the fifth inequality, we apply Lemma A.16. In
the third inequality, we apply Lemma A.9 and require

r2 ≤ D1, ε1 ≤ D3

where D1, D3 are defined in Lemma A.6. For term (2), we have

(2) = ∥∇KKKGr2(KKK, LLL)−∇KKKG(KKK, LLL) +∇KKKG(KKK, LLL)∥F

≤ ∥∇KKKGr2(KKK, LLL)−∇KKKG(KKK, LLL)∥F + ∥∇KKKG(KKK, LLL)∥F

≤ (N + 1)(d + m)(2l1∥ΣΣΣKKK,LLL∥+ 2l1 · l7 + 2l7∥FFFKKK,LLL∥) · r2 + 2∥FFFKKK,LLLΣΣΣKKK,LLL∥F

≤ (N + 1)(d + m)(2l1∥ΣΣΣKKK,LLL∥+ 2l1 · l7 + 2l7∥FFFKKK,LLL∥) + 2∥FFFKKK,LLLΣΣΣKKK,LLL∥F

≤ sup
(KKK,LLL)∈K̂×L̂

(N + 1)(d + m)(2l1∥ΣΣΣKKK,LLL∥+ 2l1 · l7 + 2l7∥FFFKKK,LLL∥) + 2∥FFFKKK,LLLΣΣΣKKK,LLL∥F =: O1

holds with probability at least 1 − δ1. In the second inequality, we apply Lemma A.12.
Summarizing the above inequalities we have∥∥∥∥dKKK

r2
G(KKK + r2VVV, LLL)−∇KKKGr2(KKK, LLL)

∥∥∥∥
F
≤ sup

KKK∈K̂

dKKK

r2
(l5 + ∥PPPKKK,LLL(KKK)∥+ 1/φ)ϑ2(N + 1) + O1

=
O2

r2
+ O1,

O2 =: sup
KKK∈K̂

dKKK(l5 + ∥PPPKKK,LLL(KKK)∥+ 1/φ)ϑ2(N + 1),

holds with probability at least 1− δ1. In the first inequality, we apply Lemma A.16. When
the output of Algorith 1, LLL, satisfies the accuracy requirement, term dKKK

r2
G(KKK + r2VVV, LLL)VVV −

∇KKKGr2(KKK, LLL) is bounded, and hence norm-subGaussian w.r.t. random variable VVV. Then
we apply Corollary 7 in Jin et al. [2019], with probability at least (1 − δ1)(1 − δ), we have

∥∇̃KKKG(KKK, LLL)−∇KKKGr2(KKK, LLL)∥F =

∥∥∥∥ 1
M2

M2−1

∑
m=0

(
dKKK

r2
G(KKK + r2VVVm, L)VVVm −∇KKKGr2(KKK, LLL))

∥∥∥∥
F

≤ 1
M2

·
√

M2 · (
O2

r2
+ O1) ·

√
log(

2dKKK

δ
)

Hence when we sample

M2 ≥ max
{

MΣΣΣ(φ/2, δ/2), MV(

√
2εφ

4
, δ/2)

}
= O(

1
r2

2ε
· log(

1
δ
)), (A.6)

MV(ε, δ) := ε−2(
O2

r2
+ O1)

2 · log(
2
δ
), (A.7)
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we have

∥∇̃KKKG(KKK, LLL)−∇KKKGr2(KKK, LLL)∥2 · ∥Σ̃ΣΣ
−1
KKK,LLL∥2 ≤ ∥∇̃KKKG(KKK, LLL)−∇KKKGr2(KKK, LLL)∥2

F · ∥Σ̃ΣΣ
−1
KKK,LLL∥2

≤ (

√
2εφ

4
)2 · ( 2

φ
)2 ≤ ε

2
, (A.8)

with probability at least (1 − δ1)(1 − δ). Moreover, apply Lemma A.19, by sampling

M2 ≥ max
{

MΣΣΣ(φ/2, δ/2), MΣΣΣ(
φ2
√

2ε

4O1
, δ/2)

}
= O(ε−1 · log(

1
δ
)),

we can bound

∥∇KKKGr2(KKK, LLL)∥2 · ∥Σ̃ΣΣ
−1
KKK,LLL −ΣΣΣ−1

KKK,LLL∥2 ≤ ∥∇KKKGr2(KKK, LLL)∥2 · ∥Σ̃ΣΣ
−1
KKK,LLL∥2 · ∥Σ̃ΣΣKKK,LLL −ΣΣΣKKK,LLL∥2 · ∥ΣΣΣ−1

KKK,LLL∥2

≤ 4
φ4 (O1)

2∥Σ̃ΣΣKKK,LLL −ΣΣΣKKK,LLL∥2 ≤ ε

2
,

with probability at least (1 − δ1)(1 − δ/2). In conclusion, by sampling

M2 ≥ max
{

MΣΣΣ(φ/2, δ/2), MΣΣΣ(
φ2
√

2ε

4O1
, δ/2), MV(

√
2εφ

4
, δ/2)

}
= O(

1
r2

2ε
· log(

1
δ
) + ε−1 log(

1
δ
)),

we have

∥V(F̃FFKKK,LLL)∥F ≤ ∥∇̃KKKG(KKK, LLL)−∇KKKGr2(KKK, LLL)∥2
F · ∥Σ̃ΣΣ

−1
KKK,LLL∥2

F + ∥∇KKKGr2(KKK, LLL)∥2
F · ∥Σ̃ΣΣ

−1
KKK,LLL −ΣΣΣ−1

KKK,LLL∥2
F

≤ ε/2 + ε/2 = ε,

holds with probability at least (1 − δ1)(1 − δ).

Lemma A.19. (Bounded estimated covariance matrix) For any sampled trajectory following
policies KKK, LLL defined in (1.4), (1.5), we have

∥Σ̃ΣΣKKK,LLL,ξξξ∥ ≤ Tr(ΣΣΣKKK,LLL) · m(N + 1)2ϑ/φ, a.s.

holds for any initial condition ξξξ that satisfies Assumption 1.1. Especially, consider KKK ∈ K̂ and LLL
is the output of the max-oracle given KKK. Moreover, if we require ε1 ≤ D3 where D3 is a positive
constant defined in Lemma A.6. Then by sampling

M2 ≥ MΣΣΣ(ε, δ) = O(ε−2 · log(
1
δ
)),

MΣΣΣ(ε, δ) := sup
KKK∈K̂

ε−2(m2(N + 1)2ϑ2/φ +
√

m(N + 1))2(∥ΣΣΣKKK,LLL(KKK)∥+ l8)2 log(
2dΣΣΣ

δ
),

independent trajectories in Algorithm 2, we can guarantee

∥Σ̃ΣΣKKK,LLL −ΣΣΣKKK,LLL∥ ≤ ∥Σ̃ΣΣKKK,LLL −ΣΣΣKKK,LLL∥F ≤ ε,

with probability at least (1 − δ1)(1 − δ). And by choosing ε ≤ φ/2, we have

λmin(Σ̃ΣΣKKK,LLL) ≥ φ/2 ⇒ ∥Σ̃ΣΣ
−1
KKK,LLL∥ ≤ 2

φ
.

Here positive constant l8 is defined in Lemma A.11.
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Proof. As for the upperbound, since we assume that ∥x0∥, ∥ξh∥ ≤ ϑ almost surely for
h = 0, 1, · · · , N − 1 in Assumption 1.1. Then for any sampled trajectory, as long as
∥KKK∥, ∥LLL∥ are bounded almost surely, ∥Σ̃ΣΣKKK,LLL∥ is also bounded almost surely. For any
sampled ξξξ, apply Lemma A.22 and we have

ΣΣΣKKK,LLL,ξξξ = AAAKKK,LLLΣΣΣKKK,LLL,ξξξ + AAA⊤
KKK,LLL + ξξξξξξ⊤,

ΣΣΣKKK,LLL,ξξξ :=
N

∑
h=0

AAAh
KKK,LLLξξξξξξ

⊤(AAA⊤
KKK,LLL)

h ⪯ ∥ξξξξξξ⊤∥ ·
N

∑
h=0

AAAh
KKK,LLL(AAA

⊤
KKK,LLL)

h,

∥ΣΣΣKKK,LLL,ξξξ∥F ≤ ∥ξξξξξξ⊤∥ ·
∥∥∥∥ N

∑
h=0

AAAh
KKK,LLL(AAA

⊤
KKK,LLL)

h
∥∥∥∥

F
≤ Tr(ξξξξξξ⊤) · Tr(ΣΣΣKKK,LLL)/φ

= Tr(ξξξ⊤ξξξ) · Tr(ΣΣΣKKK,LLL)/φ ≤ Tr(ΣΣΣKKK,LLL) · m(N + 1)ϑ2/φ a.s..

In the third inequality, we apply Lemma A.25. As an a.s. bounded random variable, we
know Σ̃ΣΣKKK,LLL is norm-subGaussian Jin et al. [2019]. Hence we know that with probability at
least 1 − δ

∥Σ̃ΣΣKKK,LLL −ΣΣΣKKK,LLL∥F =

∥∥∥∥ 1
M2

M2−1

∑
m=0

ΣΣΣKKK,LLL,ξξξm −ΣΣΣKKK,LLL

∥∥∥∥
F
=

1
M2

∥∥∥∥M2−1

∑
m=0

(ΣΣΣKKK,LLL,ξξξm −ΣΣΣKKK,LLL)

∥∥∥∥
F

≤ 1
M2

·
√

M2 · (Tr(ΣΣΣKKK,LLL) · m(N + 1)ϑ2/φ + ∥ΣΣΣKKK,LLL∥F) ·
√

log(
2dΣΣΣ

δ
).

When LLL is the output of Algorithm 1 given KKK, apply Lemma A.16 and require ε1 ≤ D3,
then we have

∥LLL − LLL(KKK)∥ ≤ ∥LLL − LLL(KKK)∥F ≤
√

λ−1
min(HHHKKK,LLL(KKK)) · ε1 ≤ D2, w.p. ≥ 1 − δ1,

where D3, D2 are defined in Lemma A.6. We choose

M2 ≥ sup
KKK∈K̂

ε−2(m2(N + 1)2ϑ2/φ +
√

m(N + 1))2(∥ΣΣΣKKK,LLL(KKK)∥+ l8)2 log(
2dΣΣΣ

δ
)

=: MΣ(ε, δ) = O(
1
ε2 · log(

2
δ
))

≥ ε−2(Tr(ΣΣΣKKK,LLL) · m(N + 1)ϑ2/φ + ∥ΣΣΣKKK,LLL∥F)
2 log(

2dΣΣΣ

δ
).

In the first inequality, we apply Lemma A.16 to bound ∥ΣΣΣKKK,LLL∥F and Tr(M) ≤ √
n∥M∥F

where M ∈ Rn×n. Conclusively we have

∥Σ̃ΣΣKKK,LLL −ΣΣΣKKK,LLL∥F ≤ ε,

with probability at least (1 − δ1)(1 − δ). Specially, by choosing ε = φ/2, we have

∥Σ̃ΣΣKKK,LLL −ΣΣΣKKK,LLL∥ ≤ ∥Σ̃ΣΣKKK,LLL −ΣΣΣKKK,LLL∥F ≤ φ

2
.

Then

Σ̃ΣΣKKK,LLL = ΣΣΣKKK,LLL − (Σ̃ΣΣKKK,LLL −ΣΣΣKKK,LLL) ≥ ΣΣΣKKK,LLL − ∥Σ̃ΣΣKKK,LLL −ΣΣΣKKK,LLL∥ · I ≥ φ

2
· I

⇒ λmin(Σ̃ΣΣKKK,LLL) ≥
φ

2
⇒ ∥Σ̃ΣΣ

−1
KKK,LLL∥ ≤ 2

φ
,

where in the second inequality, we use the fact that ΣΣΣKKK,LLL ⪰ ΣΣΣ0.
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Lemma A.20. (Descent-like inequality) For KKK ∈ K̂ with KKK0 ∈ K, KKK′ with KKK′ = KKK − τ2F̃FFKKK,LLL
where LLL is the output of the max oracle given KKK. If we require

τ2 ≤ min
{

1/(8G), B2/(
√

m(N + 1)B4), B1/(
√

m(N + 1)B4), 1
}

, r2 ≤ D1,

ε1 ≤ D3, M2 ≥ max{MΣΣΣ(φ/2, δ/2), MV(1, δ/2)},

where G is defined in Lemma A.6, D1 and D3 are defined in Lemma A.6, B1, B2, B4 are defined
in Lemma A.8, A.7, A.17. Then with probability at least (1 − δ1)(1 − δ), we have KKK′ ∈ K and
positive constants c1, c2, c3 such that

PPPKKK′,LLL(KKK′) − PPPKKK,LLL(KKK) ⪯ τ2 · (c1 · r2
2 + c2 · ε1 + c3 · ∥V(F̃FFKKK,LLL)∥),

c1 := sup
(KKK,LLL)∈K̂×L̂

(4 + 4G)/φ3 · (l1∥ΣΣΣKKK,LLL∥+ l1 · l7 + l7∥FFFKKK,LLL∥)2

· (∥ΣΣΣKKK,LLL(KKK)∥F + BΣΣΣ),

c2 := sup
KKK∈K̂

(l2)2 · H(∥ΣΣΣKKK,LLL(KKK)∥F + BΣΣΣ)/φ,

c3 := sup
KKK∈K̂

(2 + G) · (∥ΣΣΣKKK,LLL(KKK)∥F + BΣΣΣ)/φ.

In other words, in this Lemma, we decompose the deviation from monotonicity into three sources:
(a) biased estimation term with r2

2; (b) estimation error caused by using approximate solution of
the inner-loop problem; (c) variance-like term that can be controlled via large enough sample size.

Proof. Apply Lemma A.17, we know that by sampling

M2 ≥ max{MΣΣΣ(φ/2, δ/2), MV(1, δ/2)},

we can ensure ∥F̃FFKKK,LLL∥ ≤ B4 with probability at least (1 − δ1)(1 − δ). We can choose

τ2 ≤ min{1, B2,KKK,B1,KKK}/(
√

m(N + 1)B4) ⇒ ∥KKK′ −KKK∥F ≤ min{1, B2, B1}.

This ensures KKK′ ∈ K with probability at least (1 − δ1)(1 − δ) by applying Lemma A.7.
Recall from Lemma A.15,

eee1,KKK,KKK′ ⪰ 0, eee2,KKK,KKK′ ⪰ 0, eee3,KKK,KKK′ ⪰ 0.

Then via Lemma A.30, we have

eee1,KKK,KKK′ ⪯ (4τ2 + 4τ2
2 ∥GGGKKK,LLL(KKK)∥)∥FFFr

KKK,LLL − FFFKKK,LLL∥2 · I,

eee2,KKK,KKK′ ⪯ τ2∥FFFKKK,LLL(KKK) − FFFKKK,LLL∥2 · I,

eee3,KKK,KKK′ ⪯ (2τ2 + τ2
2 ∥GGGKKK,LLL(KKK)∥)∥V(F̃FFKKK,LLL)∥ · I.

To bound these errors, we apply Lemma A.12 and choose r, ε1 such that

r2 ≤ D1, ε1 ≤ D3,

where D1, D3 are defined in Lemma A.6. Recall that E[∇̃KKKG(KKK, LLL)] = ∇KKKGr2(KKK, LLL) =
∇KKKEVVV [G(KKK + r2VVV, LLL)] and FFFr

KKK,LLL = ∇KKKGr2(KKK, LLL)ΣΣΣ−1
KKK,LLL. Then we have

eee1,KKK,KKK′ ⪯ (2τ2 + 2τ2
2 ∥GGGKKK,LLL(KKK)∥)∥∇KKKGr2(KKK, LLL)ΣΣΣ−1

KKK,LLL −∇KKKG(KKK, LLL)ΣΣΣ−1
KKK,LLL∥2 · I

⪯ (4τ2 + 4τ2
2 ∥GGGKKK,LLL(KKK)∥)/φ2 · (l1∥ΣΣΣKKK,LLL∥+ l1 · l7 + l7∥FFFKKK,LLL∥)2r2 · I

eee2,KKK,KKK′ ⪯ τ2∥FFFKKK,LLL(KKK) − 2FFFKKK,LLL∥2 · I ⪯ τ2(l2)2 · Hε1 · I

⇒ ∥eeeKKK,KKK′∥ ≤ (4τ2 + 4τ2
2 ∥GGGKKK,LLL(KKK)∥)/φ2 · (l1∥ΣΣΣKKK,LLL∥+ l1 · l7 + l7∥FFFKKK,LLL∥)2r2

+ τ2(l2)2 · Hε1 + (2τ2 + τ2
2 ∥GGGKKK,LLL(KKK)∥)∥V(F̃FFKKK,LLL)∥,
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holds with probability at least (1 − δ1)(1 − δ) where eeeKKK,KKK′ = eee1,KKK,KKK′ + eee2,KKK,KKK′ + eee3,KKK,KKK′ .
Moreover

N

∑
t=0

(AAA⊤
KKK′,LLL(KKK′))

teeeKKK,KKK′(AAAKKK′,LLL(KKK′))
t ⪯ ∥eeeKKK,KKK′∥

N

∑
t=0

(AAA⊤
KKK′,LLL(KKK′))

t(AAAKKK′,LLL(KKK′))
t

⪯ ∥eeeKKK,KKK′∥
φ

N

∑
t=0

(AAA⊤
KKK′,LLL(KKK′))

tΣΣΣ0(AAAKKK′,LLL(KKK′))
t

⪯ ∥eeeKKK,KKK′∥
φ

∥∥∥∥∥ N

∑
t=0

(AAA⊤
KKK′,LLL(KKK′))

tΣΣΣ0(AAAKKK′,LLL(KKK′))
t

∥∥∥∥∥ · I

=
∥eeeKKK,KKK′∥

φ

∥∥∥∥∥ N

∑
t=0

(AAAKKK′,LLL(KKK′))
tΣΣΣ0(AAA⊤

KKK′,LLL(KKK′))
t

∥∥∥∥∥ · I

⪯ ∥eeeKKK,KKK′∥(∥ΣΣΣKKK,LLL(KKK)∥F + BΣΣΣ∥KKK′ −KKK∥F)/φ · I.

In the first and second inequality, we apply Lemma A.27 and Lemma A.30. For the third
inequality, we apply Lemma A.25. In the first equation, we apply the fact that ∥AA⊤∥ =
∥A⊤A∥. In the fourth inequality, we apply Lemma A.8 and require ∥KKK′ − KKK∥F ≤ B1.
Hence, we obtain the following inequality holds with probability at least (1 − δ1)(1 − δ)

PPPKKK′,LLL(KKK′) − PPPKKK,LLL(KKK) ⪯
N

∑
t=0

(AAA⊤
KKK′,LLL(KKK′))

teeeKKK,KKK′(AAAKKK′,LLL(KKK′))
t − τ2

4
FFF⊤

KKK,LLL(KKK)FFFKKK,LLL(KKK)

⪯
(
(4τ2 + 4τ2

2 ∥GGGKKK,LLL(KKK)∥)/φ2 · (l1∥ΣΣΣKKK,LLL∥+ l1 · l7 + l7∥FFFKKK,LLL∥)2r2

+ τ2(l2)2 · Hε1 + (2τ2 + τ2
2 ∥GGGKKK,LLL(KKK)∥)∥V(F̃FFKKK,LLL)∥

)
· (∥ΣΣΣKKK,LLL(KKK)∥F + BΣΣΣ)/φ · I − τ2

4
FFF⊤

KKK,LLL(KKK)FFFKKK,LLL(KKK)

⪯ τ2 · (c1 · r2
2 + c2 · ε1 + c3 · ∥V(F̃FFKKK,LLL)∥)−

τ2

4
FFF⊤

KKK,LLL(KKK)FFFKKK,LLL(KKK).

where the first inequality is the descent-like inequality in Lemma A.15. The positive
constants are defined as

c1 := sup
(KKK,LLL)∈K̂×L̂

(4 + 4G)/φ3 · (l1∥ΣΣΣKKK,LLL∥+ l1 · l7 + l7∥FFFKKK,LLL∥)2 · (∥ΣΣΣKKK,LLL(KKK)∥F + BΣΣΣ),

c2 := sup
KKK∈K̂

(l2)2 · H(∥ΣΣΣKKK,LLL(KKK)∥F + BΣΣΣ)/φ, c3 := sup
KKK∈K̂

(2 + G) · (∥ΣΣΣKKK,LLL(KKK)∥F + BΣΣΣ)/φ.

where G, H, φ are defined in Appendix A.1.

A.9 Useful Technical Lemma

Basic Results of LQ Problems

Lemma A.21. (Dual Lyapunov equations) Let matrix A be Schur stable, and X be the solution
to the Lyapunov equation

A⊤XA + W = X.

Let Y be the solution to the dual Lyapunov equation

AYA⊤ + V = Y.

Then Tr(XV) = Tr(YW).
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Proof. The solutions to these two Lyapunov equations satisfy

X =
∞

∑
i=0

(A⊤)iWAi, Y =
∞

∑
i=0

AiW(A⊤)i,

Tr(XV) = Tr(
∞

∑
i=0

(A⊤)iWAiV) = Tr(
∞

∑
i=0

WAiV(A⊤)i) = Tr(WY) = Tr(YW).

Lemma A.22. The solution to the Lyapunov equation

XXX = AAA⊤
KKK,LLLXXXAAAKKK,LLL +ZZZ,

is unique and has the explicit expression

XXX =
N

∑
i=0

(AAA⊤
KKK,LLL)

iZZZ(AAAKKK,LLL)
i,

for any KKK, LLL defined in (1.4), (1.5), ZZZ is an arbitrary real matrix with proper dimensions.

Proof. First of all, we can easily verify that the explicit expression is a solution to the
Lyapunov equation. Then assume we have two different solutions XXX1, XXX2

XXX1 = AAA⊤
KKK,LLLXXX1AAAKKK,LLL +ZZZ, XXX2 = AAA⊤

KKK,LLLXXX2AAAKKK,LLL +ZZZ.

Then we know

XXX1 −XXX2 = AAA⊤
KKK,LLL(XXX1 −XXX2)AAAKKK,LLL.

Then, iteratively

XXX1 −XXX2 = (AAA⊤
KKK,LLL)

N+2(XXX1 −XXX2)(AAAKKK,LLL)
N+2 = 0.

Here we observe that for any KKK, LLL with the structure defined in (1.4), (1.5), we have

AAAN+1
KKK,LLL = 000.

To see this, we can easily compute AAAKKK,LLL and observe that

AAAKKK,LLL =

[
0m×mN 0m×m

diag(A0−(N−1)) 0mN×m

]
+

[
0m×dN

diag(B0 − (N − 1))

] [
diag(K0−(N−1)) 0dN×m

]
−
[

0m×nN
diag(D0−(N−1))

] [
diag(L0−(N−1)) 0nN×m

]
=

[
0m×mN 0m×m

diag(AK0,L0 − AKN−1,LN−1) 0mN×m

]
.

Note AKh,Lh ∈ Rm×m and hence diagonal entries of AAAKKK,LLL are all zeros. Then we conclude
that AAAKKK,LLL is nilpotent.

Therefore, we have XXX1 = XXX2 which contradicts our assumption. Hence the solution is
unique and has the explicit expression above. We can easily see the same result holds for
AAA⊤

KKK,LLL by replacing AAAKKK,LLL with AAA⊤
KKK,LLL in the above proof.

Lemma A.23. Let Q1 ≻ Q2 and X1, X2 be solutions to the solutions to Lyapunov equations:

X1 = A⊤X1A + Q1, X2 = A⊤X2A + Q2.

where A is stable. Then X1 ≻ X2.
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Lemma A.24. (Value matrix difference Zhang et al. [2019]) For any KKK, KKK′ ∈ K, LLL, LLL′ defined in
(1.4), (1.5), we have the following equation

PPPKKK′,LLL′ − PPPKKK,LLL = (AAA − BKBKBK′ − DLDLDL′)⊤(PPPKKK′,LLL′ − PPPKKK,LLL)(AAA − BKBKBK′ − DLDLDL′)

+ (KKK′ −KKK)⊤FFFKKK,LLL + FFF⊤
KKK,LLL(KKK

′ −KKK) + (KKK′ −KKK)⊤(RRRu + BBB⊤PPPKKK,LLLBBB)(KKK′ −KKK)

+ (LLL′ − LLL)⊤EEEKKK,LLL + EEE⊤
KKK,LLL(LLL

′ − LLL) + (LLL′ − LLL)⊤(−RRRw + DDD⊤PPPKKK,LLLDDD)(LLL′ − LLL)

+ (LLL′ − LLL)⊤DDD⊤PPPKKK,LLLBBB(KKK′ −KKK) + (KKK′ −KKK)⊤BBB⊤PPPKKK,LLLDDD(LLL′ − LLL).

Proof. The proof can be easily obtained by subtracting two Lyapunov equations and basic
algebraic computations.

PPPKKK′,LLL′ = (AAA − BKBKBK′ − DLDLDL′)⊤PPPKKK′,LLL′(AAA − BKBKBK′ − DLDLDL′) +QQQ + (KKK′)⊤RRRuKKK′ − (LLL′)⊤RRRwLLL′,

PPPKKK,LLL = (AAA − BKBKBK − DLDLDL)⊤PPPKKK,LLL(AAA − BKBKBK − DLDLDL) +QQQ +KKK⊤RRRuKKK − LLL⊤RRRwLLL.

Lemma A.25. (Preliminary Lemma for Bounded Perturbation) For any control pair (KKK, LLL)
defined in (1.4), (1.5), let HHH, HHH′ be the solution of the following Lyapunov equation*

I + AAA⊤
KKK,LLLHHHAAAKKK,LLL = HHH, (A.9)

I + AAAKKK,LLLHHH′AAA⊤
KKK,LLL = HHH′. (A.10)

we know

∥HHH∥ = ∥HHH′∥ ≤ Tr(ΣΣΣKKK,LLL)/φ.

Proof. Then apply Lemma A.21 and consider the following dual Lyapunov equation
of (A.9) with solution ΣΣΣKKK,LLL

ΣΣΣKKK,LLL = AAAKKK,LLLΣΣΣKKK,LLLAAA⊤
KKK,LLL +ΣΣΣ0.

Apply Lemma A.21, we have

Tr(ΣΣΣKKK,LLL) = Tr(HHHΣΣΣ0) ≥ λmin(ΣΣΣ0) · Tr(HHH) ≥ λmin(ΣΣΣ0) · ∥HHH∥F ≥ λmin(ΣΣΣ0) · ∥HHH∥.

In the first inequality, we apply Lemma A.29. Since ∥AA⊤∥ = ∥A⊤A∥, the proof for H′

is immediate.

Sensitivity Analysis for Stable Discrete-time Lyapunov Equations With the stability
of Lyapunov equations discussed in Remark 1.2, we can always apply the result of the
sensitivity analysis in Gahinet et al. [1990] to our case for the local Lipschitz continuity
of our objective function. Here we include this result for the sake of completeness. For
any stable F and discrete-time Lyapunov equation,

M = X − F⊤XF, (A.11)

we have the following sensitivity analysis result for Lyapunov equation A.11. We
respectively define the norms of an arbitrary linear operator Θ : Rn×n → Rn×n as

∥Θ∥F = max
M∈Rn×n,∥M∥F=1

∥Θ(M)∥F, ∥Θ∥ = max
M∈Rn×n,∥M∥=1

∥Θ(M)∥.

*The solutions of the above Lyapunov equations uniquely exist by applying Lemma A.22. Hence HHH, HHH′

are well-defined.
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Lemma A.26. Consider two stable Lyapunov equations that admit unique solutions

M = X − F⊤XF,

M + ∆M = X + ∆X − (F + ∆F)⊤(X + ∆X)(F + ∆F).

If ∥U∥∥∆F∥(2∥F∥+ ∥∆F∥) < 1, then we have

∥∆X∥ ≤
(
1 − ∥U∥∥∆F∥(2∥F∥+ ∥∆F∥)

)−1 ·
(
∥U∥∥∆M∥+ ∥U∥∥∆F∥(2∥F∥+ ∥∆F∥)∥X∥

)
,

where U is the unique solution of X − F⊤UF = I.

This result will become useful when we try to control the error caused by the estimated
output of the inner-loop oracle.

Proof. When F is stable, we know that the discrete-time Lyapunov operator ΩF(X) :=
X − F⊤XF is a nonsingular linear operator Gahinet et al. [1990]. And the Lyapunov
equation has a unique solution

ΩF(X) = M, X =
+∞

∑
k=0

(F⊤)k MFk,

where M is an arbitrary matrix with proper dimensions. When perturbed F, i.e., F + ∆F
is also stable, assume X + ∆X is the solution of the Lyapunov equation below

ΩF+∆F(X + ∆X) = M + ∆M.

We apply Lemma 2.3 in Gahinet et al. [1990] and obtain

∥∆X∥ ≤ ∥Ω−1
F ∥(∥∆M∥+ ∥∆Ω∥∥X + ∆X∥),

where ∆Ω = ΩF+∆F − ΩF. Then we apply Lemma 2.4 in Gahinet et al. [1990] to bound
∥∆Ω∥ with

∥∆Ω∥ ≤ ∥∆F∥(2∥F∥+ ∥∆F∥).

Note that the above result holds both for the Frobenius norm and the spectral norm.
Finally, we apply Theorem 4.1 in Gahinet et al. [1990] which says ∥Ω−1∥ = ∥U∥ and
obtain

∥∆X∥ ≤ ∥U∥
(
∥∆M∥+ ∥∆F∥(2∥F∥+ ∥∆F∥)∥X + ∆X∥

)
≤ ∥U∥

(
∥∆M∥+ ∥∆F∥(2∥F∥+ ∥∆F∥)(∥X∥+ ∥∆X∥)

)
.

Hence when ∥U∥∥∆F∥(2∥F∥+ ∥∆F∥) < 1, we have

∥∆X∥ ≤
(
1 − ∥U∥∥∆F∥(2∥F∥+ ∥∆F∥)

)−1 · ∥U∥
(
∥∆M∥+ ∥∆F∥(2∥F∥+ ∥∆F∥)∥X∥

)
.

Our proof slightly adapts the proof of Theorem 2.6 in Gahinet et al. [1990] and removes
their assumption that M + ∆M ̸= 0.
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Matrix inequalities This subsection summarizes some basic matrix inequalities used in
our proofs. Some proofs of well-known results are omitted and can be found in Horn
and Johnson [2012].

Lemma A.27. For any matrix M, N such that M ⪰ N, for any real matrix A with proper
dimensions, we have

AT MA ⪰ AT NA.

Lemma A.28. For any real matrix M ∈ Rd1×d2 , if we know ∥M∥ ≤ c. Then we have

MT M ⪯ c2 · Id2 , MMT ⪯ c2 · Id1 .

where Id2 denotes the identity matrix of dimension d2 and Id1 denotes the d1 dimension identity
matrix.

Proof. Since both MT M and MMT are positive semi-definite matrices, and for any positive
semi-definite matrix A we know that A ⪯ ∥A∥ · I, and hence

MT M ⪯ ∥MT M∥ · I ⪯ ∥M∥2 · I ⪯ c2 · I

MMT ⪯ ∥MMT∥ · I ⪯ ∥M∥2 · I ⪯ c2 · I

Lemma A.29. For any positive semi-definite matrices M, N with proper dimensions, we have

λmin(N) · Tr(M) ≤ Tr(MN) ≤ λmax(N) · Tr(M)

Lemma A.30. For any real and symmetric matrix M, if we know ∥M∥ ≤ c where c is a positive
constant, then we have

−c · I ⪯ M ⪯ c · I

Proof. We know that any real symmetric matrix is similar to a diagonal matrix D with
diagonal elements being the eigenvalues of M. Moreover, we know that maxi |λi(M)| ≤ c.
Then

M + c · I = PDPT + c · PPT = P(D + c · I)PT ⪰ 0

M − c · I = PDPT − c · PPT = P(D − c · I)PT ⪯ 0

where P is an orthogonal matrix.

Lemma A.31. For any matrix M, N with proper dimensions, we have

MT N + NT M ⪯ γMT M + γ−1NT N

where γ > 0 is an arbitrary constant

Lemma A.32. (Trace and norms) For any matrix M ⪰ 0, we have

Tr(M) ≥ ∥M∥F ≥ ∥M∥

A.10 Benchmark Algorithm

In this section, we repeat Algorithm 2 of Zhang et al. [2021b] for completeness. Different
parts are colored in red for easier comparison.
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Algorithm 3 (Algorithm 2 of Zhang et al. [2021b]) Benchmark Outer-loop Nested Natural
Policy Gradient Algorithm

Input: KKK0 ∈ K, number of iterations T, sample size M2, perturbation radius r2, stepsize
τ2, horizon N, dimension dKKK = dmN.

Output: KKKout = KKKi where i ∼ Unif({0, · · · , T − 1}).
1: for t = 0, 1, · · · , T do
2: Call Algorithm 1 to obtain LLLt.
3: for m = 0, 1, · · · , M2 − 1 do
4: Sample KKKm

t = KKKt + r2VVVm where VVVm is uniformly drawn from S1 with ∥VVVm∥F = 1.

5: Call Algorithm 1 to obtain L̃LL(KKKm
t ) such that G(KKKm

t , L̃LL(KKKm
t )) ≥ G(KKKm

t , LLL(KKKm
t ))− ε1.

6: Simulate a first trajectory using control (KKKm
t , L̃LL(KKKm

t )) for horizon N under one
realization of noises ξξξm and collect the cost Gξξξm(KKK

m
t , L̃LL(KKKm

t )).
7: Simulate another independent trajectory using control (KKKt, LLLt) for horizon N

starting from x0,m and compute

Σ̃ΣΣ
m
KKKt,LLLt

= diag
(
x0,mx⊤0,m, · · · , xN,mx⊤N,m

)
.

8: end for
9: Update KKKt+1 = KKKt − τ2∇̃KKKG(KKKt, LLLt)Σ̃ΣΣ

−1
KKKt,LLLt

where ∇̃KKKG(KKKt, LLLt) equals

1
M2

M2−1

∑
m=0

dKKK

r2
Gξξξm(KKK

m
t , L̃LL(KKKm

t ))VVVm,

and Σ̃ΣΣKKKt,LLLt =
1

M2
∑M2−1

m=0 Σ̃ΣΣ
m
KKKt,LLLt

.
10: end for
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