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1 Introduction

The AdS/CFT correspondence relates a UV-complete theory of quantum gravity on Anti-de
Sitter spacetime in d dimensions to a superconformal field theory in d− 1 dimensions. In
the limit in which the string tension is taken to be large, the AdS gravity theory is governed
by the semiclassical limit of supergravity, and the dual theory is described by a strongly-
coupled field theory in one dimension lower. This duality then allows one to calculate
certain quantities in strongly-coupled field theories using semiclassical general relativity. On
the other end of the spectrum of holographic dualities, one can consider a weakly coupled
conformal field theory, which should be dual to a theory for which the characteristic radius
of the spacetime is on the string scale. Since, in this limit, one cannot trust the semiclassical
treatment of the AdS theory in terms of semiclassical geometry, one must rely on the
worldsheet approach to string theory in order to perform any trustworthy calculations.

In recent years, this limit of the AdS/CFT correspondence, dubbed the tensionless limit,
has been shown to be surprisingly rich and possesses the rare quality that both sides of the
duality are analytically tractable. In particular, the tensionless (k = 1) limit of string theory
on AdS3×S3×M with pure NS-NS flux, whereM is either T4 or K3, has a precisely-known
perturbative CFT dual, given by the symmetric orbifold theory SymK(M) of the 2D sigma
model on the internal manifold M. The duality between the symmetric orbifold theory
and the tensionless string has passed a large number of consistency checks, including a
matching of the full (single-particle) partition function and (connected) correlation functions
on both sides [1–9].

The tractability of this instance of the AdS/CFT duality comes from the rather
remarkable fact that the worldsheet path integral localises to worldsheet configurations for
which the string is ‘glued’ to the AdS3 boundary [3], see figure 1.1 For these configurations,
one can consider the worldsheet as covering the AdS3 boundary. Indeed, one can show
that the only worldsheet configurations which contribute in the string theory path integral
arise from holomorphic covering maps Γ : Σ → ∂(AdS3) which are branched at the
appropriate insertion points [3, 4, 6, 11]. These covering spaces are precisely those which are
considered in the construction of correlation functions of twist fields in the symmetric orbifold
theory [12, 13], and thus the localisation of the string theory path integral to these covering
spaces provides the fundamental mechanism for this particular AdS/CFT correspondence.

Although the duality between the tensionless string theory on AdS3 × S3 × T4 and
the symmetric orbifold theory is computationally well understood, it is somewhat lacking
in geometric interpretation. In particular, a description of the bulk degrees of freedom is
almost entirely absent. The reason for this is two-fold. First, as the name suggests, the
tensionless limit of string theory is constructed in the limit where the fundamental strings
have a size comparable to that of the radius of curvature of the background geometry, and
thus a geometric description of the bulk in terms of local fields (which typically emerge from
the point-particle limit of string theory) cannot be expected to exist. Second, because the

1This is related to the fact that in the tensionless limit of string theory on AdS3 × S3 ×M, the only
representations of psu(1, 1|2)1 which appear in the worldsheet partition function correspond to the ‘long
strings’ of [10].
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Figure 1. A worldsheet representing the correlation functions of operators at positions {xi} in the
CFT dual. The strings are localised to the AdS3 boundary and the worldsheet holomorphically
covers the sphere.

string path integral only includes contributions from strings which lie near the boundary,
the exact details of the bulk geometry (if one can be thought to exist) are completely
invisible to the worldsheet. Indeed, it has been shown that correlation functions and
partition functions of the tensionless string are background-independent, in the sense that
two bulk geometries give rise to the same partition functions, so long as they have the same
asymptotic boundaries [11] (at least for a large class of bulk geometries).

It would therefore seem hopeless to expect a reasonable bulk interpretation of the
tensionless string theory, and that in order to pose meaningful questions about the bulk
geometry one would need to deform away from the tensionless limit. However, as we will
show, the bulk geometry of AdS3 can in fact be seen from the point of view of the worldsheet
in the limit that the number of times the worldsheet covers the boundary (i.e. the degree
of the holomorphic map Γ : Σ→ ∂(AdS3)) becomes very large, which we will refer to as
the large-twist limit. This limit has been previously considered in the literature from two
separate perspectives:

Stringy geometry. If one considers the ‘grand canonical’ symmetric orbifold theory

Sym(T4) =
∞⊕
K=0

SymK(T4) , (1.1)

then one can define the grand canonical partition function on a Riemann surface Σ to be

Z(p,Σ) =
∞∑
K=0

pKZSymK(T4)(Σ) . (1.2)
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It was argued in [11] that Z(p,Σ) has poles in the chemical potential p, and behaves near
these poles like

Z(p,Σ) ∼
∑

bulk geometriesM3

Z(M3)
σ + 3i

π Ibulk(M3)
, (1.3)

where the sum is over a set of bulk geometriesM3 which have boundary Σ, Ibulk(M3) is the
gravitational action ofM3, Z(M3) is some suitable one-loop determinant, and p = e2πiσ.

The interpretation of this schematic expression is as follows: a pole in the grand
canonical partition function occurs when the Taylor series in p diverges. At these values of p,
the primary contributions to Z(p,Σ) come from arbitrarily large values of K. From the point
of view of the worldsheet, K counts the number of times the worldsheet holomorphically
covers the boundary Σ.2 Thus, equation (1.3) tells us that bulk geometriesM3 emerge in
the limit that the number K of times the worldsheet(s) cover the boundary is arbitrarily
large. In the language of [11], the large number of string worldsheets ‘condense’ into classical
three-dimensional geometry. Upon condensation, a string which winds a contractible cycle
in the bulk M times generates a conical singularity with deficit angle θ = 2π(1−M−1).

The Strebel programme. From the point of view of the dual symmetric orbifold CFT
SymK(M), the large-twist limit enters in considering sphere correlation functions of the form〈

n∏
i=1
O(wi)
i (xi)

〉
, (1.4)

where O(wi)
i is some state in the wi-cycle twisted sector of the symmetric orbifold. The

analysis of Lunin and Mathur [12] showed that the connected part of this correlation function
can be expressed as a sum over holomorphic maps Γ : Σ → CP1 satisfying ramification
conditions at critical points zi on Σ (see equation (3.4) below). The precise form is given by〈

n∏
i=1
O(wi)
i (xi)

〉
c

=
∑

Γ:Σ→CP1

Kχ(Σ)e−SLiouville[ΦΓ]
〈

n∏
i=1
Oi(zi)

〉
Σ
, (1.5)

i.e. as a sum of seed-theory correlators on covering surfaces Σ, weighted by a usual 1/K
factor in the genus expansion times a conformal factor given by the Liouville action of
the field

ΦΓ = log |∂Γ|2 . (1.6)

The degree of Γ, as a map, is determined via the Riemann-Hurwitz relation by the twists
wi via

deg(Γ) = N = 1− g +
n∑
i=1

wi − 1
2 . (1.7)

In [14], it was noticed that, in the limit that this degree is taken to be infinite, the number of
allowable maps Γ becomes infinite and the finite sum in (1.5) condenses into an integration

2This is actually only true for connected worldsheets. For disconnected worldsheets, K counts the sum of
the number of times each worldsheet covers the boundary.
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Figure 2. Two separate approaches to studying the ‘large-twist’ limit of the tensionless AdS/CFT cor-
respondence.

over the moduli spaceMg,n of curves of genus g. Concretely, the result of the large-twist
analysis is that the correlators in the symmetric orbifold take the suggestively stringy form〈

n∏
i=1
O(wi)
i (xi)

〉
c

=
∞∑
g=0

g2g−2
s

∫
Mg,n

dµ e−SNG

〈
n∏
i=1
Oi(zi)

〉
Σ
, (1.8)

where we have set gs = 1/K. The effective action can be written in terms of a special
meromorphic quadratic differential ϕ on Σ and takes the form

SNG = N2

4π

∫
Σ
|ϕ| , (1.9)

which is the area of a string with metric gzz̄ = |ϕ|/4. The constant of proportionality N2

introduces an ‘effective’ tension
Teff = N2 (1.10)

to the string. In terms of the covering map Γ, the quadratic differential ϕ is given by

ϕ = − 2
N2S[Γ] , (1.11)

where S[Γ] denotes the Schwarzian derivative of the map Γ. The quadratic differential ϕ is
related, in the large-twist limit, to so-called Strebel differentials, which were argued in [15–
17] to be instrumental in the mechanism whereby free field theories arrange themselves into
AdS string theories. In the case of AdS3/CFT2, it was suggested in [14] that it should be
possible to think of the Strebel gauge metric gzz̄ = N2|ϕ|/4 as the pullback of the AdS3
metric onto the worldsheet. If this were the case, then (1.8) would be thought of as the
semiclassical path integral of a string propagating in AdS3.

While the two above approaches are both formulated in the limit in which the worldsheet
covers the AdS3 boundary many times, they do not seem to have much to do with each
other. In the first half of this paper, we explore the relationship between the two above
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observations, attempting to build a bridge between the large-twist limit of the worldsheet in
terms of bulk geometry and the large-twist limit of the symmetric orbifold theory in terms
of the Strebel differential (see figure 2). We will show, in particular, that when the degree
of the covering map Γ : Σ → CP1 describing the motion of the string is large, the string
worldsheet no longer lives entirely at the boundary of AdS3, but instead moves radially
inward toward the bulk (see figure 3). In this limit, the induced metric on the worldsheet,
which is given by the pullback of the AdS3 metric, reproduces precisely the Nambu-Goto
action (1.9), thus making explicit the geometric nature of the expression (1.8). We also
explore the worldsheet contributions to the partition functions in thermal AdS3, which are
represented by unramified coverings of the boundary torus by the worldsheet torus [2, 9].
In this case, when the degree of the covering becomes large, the string worldsheet contracts
to one which lives entirely near the center of AdS3. The string then effectively becomes
a massive particle moving in the bulk of AdS3, thus giving a physical explanation for the
appearance of conical defects in the stringy geometry of [11].

In the second half of the paper, we explore a bit more the consequences of the relationship
between the large-twist limit and the worldsheet theory. One of the hallmarks of the
tensionless string is the realisation of the worldsheet theory in terms of a ‘twistorial’
free field theory on the worldsheet [2, 4]. These worldsheet free fields obtain classical
configurations ‘on-shell’, i.e. on the locus for which a covering map Γ : Σ → CP1 exists.
We show that these classical configurations for the twistorial fields are expressible as the
solutions of a simple differential equation which, in the large-twist limit, relates the twistor
fields to the Strebel differential in a surprisingly simple way. This provides a hint that the
symmetric orbifold theory ‘knows’ about the twistorial construction of the tensionless string.
Armed with this understanding, we comment on the implications of the holographic duals
of generic free CFTs.

As another application of the large-twist limit, we consider the motion of strings in an
AdS3 background in the presence of a totally reflective D1 brane localised in time, which
thus carries the geometry of euclidean AdS2. By analysing the effective action coming from
the Strebel differential in the large-twist limit, we find that, in the limit that we ignore
the directions transverse to the D1 brane, the endpoints of the string are described by an
effective action which formally resembles the one-dimensional Schwarzian action describing
boundary gravitons in Jackiw-Teitelboim (JT) gravity. We thus conjecture a relationship
between the tensionless string and JT gravity in this compactification limit.

The outline of this paper is as follows: in section 2, we review the construction of [14] of
correlation functions of the symmetric orbifold in the large-twist limit, emphasising how (1.8)
arises from a sum over covering maps, and how the Strebel differential naturally emerges.
We also exemplify this analysis by examining the covering maps which contribute to the
(connected) contribution of the genus-one partition function of the symmetric orbifold. In
section 3, we discuss the motion of a classical string in AdS3 in the Wakimoto representation,
and show that the large-twist limit classically describes strings which are allowed to move
radially and thus explore the bulk. In doing so, we naturally recover the Strebel-gauge
metric (1.9) from the semiclassical worldsheet description. In section 4, we relate the
semiclassical description of the worldsheet in terms of Strebel differentials to the twistorial
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deg(Γ)→∞

Figure 3. Left: the worldsheet ‘glued’ to the AdS3 boundary for finite N = deg(Γ). Right: the
semiclassical worldsheet corresponding to the Strebel-gauge metric gzz̄ = N2|ϕ|/4 in the limit
N → ∞. The worldsheet near z = zi is approximated by a semi-infinite tube situated radially
in AdS3.

worldsheet theory of [2, 4], and in particular show that the twistorial fields arise naturally
as solutions to a holomorphic Schrödinger equation with the Strebel differential as the
potential. In section 5, we extend our analysis to a background with a totally reflective
brane with Euclidean AdS2 geometry, and show that, in a certain compactification limit,
the dynamics of the string worldsheet are described by the one-dimensional Schwarzian field
theory of JT gravity. In section 6, we summarise our findings and discuss future directions.
Finally, in appendix A, we review the free field construction of [2, 4], and explore a certain
‘twist’ of the worldsheet theory which more readily meshes in with the analysis of section 4
and for which correlation functions can be defined without the W fields of [4].

2 The large-twist limit of the symmetric orbifold

In this section we review the analysis of [14] in the large-twist limit of symmetric orbifold
correlators. While aiming to be self-contained, we will leave out many details. In particular,
we will not discuss the diagrammatic interpretation of the large-twist limit.

2.1 The scattering equations

As we mentioned in the introduction, if we consider states O(wi)
i in the symmetric orbifold

theory, labelled by some twist wi and auxiliary index i in the seed theory M, we can
consider the correlator of the form 〈

n∏
i=1
O(wi)
i (xi)

〉
. (2.1)

Here, we will consider the theory formulated on the sphere CP1. Such correlation functions
enjoy a diagrammatic expansion in terms of covering spaces Γ : Σ→ CP1, and the ‘connected’

– 6 –
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component can be expressed as a sum over such maps [12, 18], weighted by an appropriate
value of the string coupling and a conformal anomaly〈

n∏
i=1
O(wi)
i (xi)

〉
c

=
∑

Γ:Σ→CP1

g2g−2+n
s e−SL[ΦΓ]

〈
n∏
i=1
Oi(zi)

〉
Σ
, (2.2)

where g is the genus of the covering surface and zi are the critical points of Γ on Σ, i.e.

Γ(z) = xi +O((z − zi)wi) , z → zi . (2.3)

Here, SL is the Liouville action on the covering surface Σ

SL[Φ] = c

48π

∫
Σ

(2∂Φ ∂̄Φ +RΦ) , (2.4)

and ΦΓ is the ‘classical’ Liouville field associated to the covering map Γ

ΦΓ = log |∂Γ|2 . (2.5)

The main point to note is that all of the information about the correlation functions
of twisted correlators in the symmetric orbifold is contained in the correlator of the seed
theory on arbitrary surfaces Σ and in the holomorphic data of the covering map Γ. Thus,
assuming the seed theory is under sufficiently good control, we can reduce the problem of
computing correlators in the symmetric orbifold to the problem of constructing a covering
map with the desired analytic behaviour.3

Generically, given the data {xi}, Σ \ {zi} and {wi}, finding such a covering map is an
algebraically difficult problem, and can only be solved when the moduli of Σ \ {zi} are
finely-tuned. In fact, given points on the sphere {xi} and twists {wi}, there are only finitely
many points in the moduli spaceMg,n for which a covering map Γ : Σ \ {zi} → CP1 \ {xi}
exists with the correct critical behaviour near zi.

For now, let us restrict to the case where our covering surface has genus zero, so that
we are considering branched covering maps Γ : CP1 → CP1. In this case, the degree of Γ
can be determined by the Riemann-Hurwitz formula as

deg(Γ) = N = 1 +
n∑
i=1

wi − 1
2 . (2.6)

Thus, since Γ is a holomorphic function on CP1 (or equivalently a meromorphic function on
C), we can write

Γ(z) = QN (z)
PN (z) (2.7)

for polynomials QN , PN of degree N .4 Let us call the zeroes of PN λa for a = 1, . . . , N .
3Strictly speaking, the Liouville action defined above diverges for Φ = ΦΓ, and so one also needs to

introduce a regularisation scheme, as in [12].
4We are assuming none of the xi and none of the zi lie at infinity.

– 7 –
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Now, let us consider the derivative ∂Γ, which will be a ratio of polynomials of degree
2N . It is easy to see that Γ must be of the form

∂Γ(z) = C

∏n
i=1(z − zi)wi−1∏N
a=1(z − λa)2

, (2.8)

since ∂Γ has zeroes of order wi− 1 at z = zi and poles of order 2 at z = λa. The numerator
has degree 2N − 2 so that ∂Γ(z) ∼ 1/z2 as z →∞. Now, since ∂Γ is a total derivative of a
meromorphic function, its residue at any pole must vanish, since otherwise Γ would have
logarithmic contributions to its Laurent series expansion around z = λa. Demanding that
the residue at λa vanishes leads to the so-called ‘scattering equations’ [19]

n∑
i=1

wi − 1
λa − zi

=
∑
b 6=a

2
λa − λb

, (2.9)

which are the central algebraic constraints for the existence of a covering map (of course,
one also has to demand that Γ(zi) = xi for all i once the scattering equations are solved).

2.2 The matrix model and the spectral curve

The insight of [14] was to rewrite (2.9) in terms of the classical equations of motion of an
N ×N Hermitian matrix model. Indeed, consider the matrix integral∫

dM exp (−V (M)) , (2.10)

where the potential is a so-called Penner-like potential

V (M) = N
n∑
i=1

αi log(M − zi1) . (2.11)

We can now diagonalise M in terms of eigenvalues λa, and recast the matrix integral into
the form ∫

dNλ∆(λ)2 exp
(
−N

N∑
a=1

n∑
i=1

αi log(λa − zi)
)
, (2.12)

where ∆(λ)2 = ∏
a<b(λa − λb)2 is the usual Vandermonde determinant arising upon diag-

onalisation. The inclusion of the Vandermode determinant induces an effective potential
given by

Veff(z) =
n∑
i=1

αi log(z − zi)−
2
N

N∑
a=1

log(z − λa) , (2.13)

such that the partition function of the matrix model can be written as5

∫
dNλ exp

(
−N

N∑
a=1

Veff(λa)
)
. (2.14)

5One needs to be careful with the term log(λa − λa) = −∞ in the effective potential; however, this only
introduces an (infinite) constant, and thus does not affect the dynamics of the theory.

– 8 –
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The matrix model integral is generally computed by first considering the tree-level
contributions, i.e. the configurations such that V ′eff(λa) = 0 for all a (and indeed for N � 1,
these are the dominant contributions). These classical equations of motion are

n∑
i=1

αi
λa − zi

= 2
N

∑
b 6=a

1
λa − λb

. (2.15)

Thus, we recover precisely the scattering equations (2.9) with αi = (wi − 1)/N .6
For N � 1, there are powerful methods for computing the solutions to the saddle-point

equations for matrix models which we now have at our disposal. In particular, we assume
that at large N the eigenvalues λa condense into a curve in the complex plane, which
potentially has many disconnected components. Let C = ⋃m

`=1 C` be the decomposition of
this curve into disjoint segments. Then we can write the scattering equations as

n∑
i=1

αi
λ− zi

= 2P
∫
C

ρ(λ′) dλ′
λ− λ′

, (2.16)

where ρ(λ) is the asymptotic density of eigenvalues along the curve C and P denotes the
principle value of the integral.

Equation (2.16) defines a Riemann-Hilbert problem, whose solution can be found with
the help of a so-called spectral curve. We define an auxiliary function

y(z) =
n∑
i=1

αi
z − zi

− 2
∫
C

ρ(λ) dλ
z − λ

(2.17)

which is holomorphic and globally defined on C \ C. By the scattering equations (2.16),
we see that y(z) = 0 on the endpoints of C. Furthermore, y has square-root branch cuts
along C, and is thus not globally defined on C. However, its square φ(z) = y(z)2 is globally
defined on C. We can therefore think of y as being globally defined on a Riemann surface
Σ̃ defined via the polynomial equation

Σ̃ : y2 = φ(z) . (2.18)

The curve Σ̃ is known as the spectral curve of the matrix model, and is a double cover
of the Riemann sphere ramified at the points ∂C. A natural basis of the homology group
H1(Σ̃,Z) is one in which cycles which surround branch cuts form the A-cycles of Σ̃, while
the remaining cycles form the B-cycles. If C has 2m endpoints, then the genus of Σ̃ is m−1,
since only m− 1 of the A-cycles/B-cycles are independent.

Once the spectral curve is known, it can be used to reconstruct the density ρ(λ), and
thus the solution of the scattering equations. Indeed, since C is essentially just the branch
cut of a function y =

√
φ, it can be chosen arbitrarily such that its endpoints are the

zeroes of the function y. Once we know y, we can then determine the density ρ(λ) via the
6Strictly speaking, the solutions λa to the scattering equations that we are interested in are complex, as

opposed to real solutions one would expect from a Hermitian matrix model. Since the matrix model defined
above is only used as an auxilliary object, this subtlety causes no harm, and we can simply take zi, λa ∈ C.

– 9 –
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Figure 4. Left: non-contractible cycles of a genus-1 spectral curve Σ̃ : y2 = φ(z). Squiggly blue lines
represent the branch cuts, while solid cycles represent the A-cycles of Σ̃ and dashed cycles represent
the B-cycles. Right: the lift of the non-contractible cycles onto the genus-1 covering surface.

Sokhotski-Plemelj theorem, i.e. by taking the difference in the value of y just above/below
a branch cut

ρ(λ) = 1
4πi(y(λ+ iε)− y(λ− iε)) , (2.19)

for λ ∈ C. Furthermore, we can define the so-called filling fractions of the density ρ via
periods of the differential

√
φ. That is,

c` =
∫
C`
ρ(λ) dλ = 1

2πi

∮
C`

√
φ(z) dz , (2.20)

where the integral domain of the second integral is the A-cycle of Σ̃ enclosing the branch
cut C`. In terms of the covering map Γ, the filling fractions determine what fraction of the
poles condense on to the component C` of the curve C.

2.3 The Strebel differential

The differential φ(z) (dz)2 defining the spectral curve above has the following properties:

• By (2.17), near the insertion points z = zi, we have

φ(z)(dz)2 ∼ α2
i (dz)2

(z − zi)2 + · · · . (2.21)

• φ has simple zeroes precisely at the endpoints of the branch-cuts C` (let us call them
a`, b`, with ∂C` = {a`, b`}).

• If γ is a path connecting the zeroes a` and b`, then

1
2πi

∫
γ

√
φ(z) dz ∈ R . (2.22)
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This last point is due to (2.19), since ρ(λ) is taken to be real. These properties identity
what is known in the mathematical literature as a Strebel differential (see appendix A of [20]
for a gentle introduction). Let us define a quadratic differential on Σ via

ϕ(z) = −φ(z) (dz)2 . (2.23)

It is a theorem of Strebel that given values αi ∈ R+, there exists a unique quadratic
differential ϕ satisfying the above properties for any given value of the moduli {zi}. Thus,
for each choice of the moduli {zi}, we find a unique spectral curve, and thus we can uniquely
solve the scattering equations (2.16).

Let us now return to the problem of constructing the covering map. Note that for finite
N , we have

1
N

log ∂Γ(z) =
n∑
i=1

αi log(z − zi)−
2
N

N∑
a=1

log(z − λa) + 1
N

logC (2.24)

which is the effective potential of our matrix model, and we have ignored a constant
contribution. Taking N large, we can write

1
N

log ∂Γ(z) =
n∑
i=1

αi log(z − zi)− 2
∫
C

dλ ρ(λ) log(z − λ) . (2.25)

Finally, we can take the derivative and we find

1
N

∂2Γ
∂Γ =

n∑
i=1

αi
z − zi

− 2
∫
C

ρ(λ) dλ
z − λ

= y(z) . (2.26)

The branch cuts of y can be thought of as arising from the coalescence of poles of Γ along
the curve C.7 Thus, we can relate the spectral curve coordinate y directly to the covering
map. This allows us to immediately write down the Strebel differential (2.23) as

ϕ = − 1
N2

(
∂2Γ
∂Γ

)2

. (2.27)

Finally, as noted in [14], at large N we can approximate ϕ via the Schwarzian derivative
of Γ, i.e.

ϕ = 2
N2S[Γ] = 2

N2

∂ (∂2Γ
∂Γ

)
− 1

2

(
∂2Γ
∂Γ

)2
 . (2.28)

In the large N limit, the first term in the Schwarzian is subdominant, and we are simply
left with (2.27). As we will see later, however, writing the Strebel differential in terms of
the Schwarzian derivative of the covering map allows for a natural interpretation of the
AdS3 worldsheet theory.

7For a simple example of this phenomenon, consider a function f defined by

f(z) = 1
N

N∑
a=1

1
z − a/N .

As N →∞, we have f(z)→ log(1− z) + log(z), which has a branch cut along [0, 1].
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2.4 The Strebel-gauge action

Now let us return to the problem of constructing correlation functions of the symmetric
orbifold, which is computed in terms of the Liouville action of the field ΦΓ = log |∂Γ|2.
Note that one can immediately write the derivative of the Liouville field in terms of the
spectral curve y(z), i.e.

∂ΦΓ = Ny , ∂̄ΦΓ = Nȳ , (2.29)

and thus the Liouville action can be expressed as

SL[ΦΓ] = cN2

24π

∫
Σ
|y|2 = N2

4π

∫
Σ
|ϕ| , (2.30)

where ϕ is the Strebel differential, and in the second equality we have specified to the T4

(or K3) seed theory, i.e. c = 6. If we are working on a covering surface with genus g and
n punctures, there is a unique Strebel differential for each value of αi and each value of
the moduli of the covering space. Thus, we can express the symmetric product orbifold
correlation functions in this limit as an integral overMg,n, namely〈

n∏
i=1
Owii (xi)

〉
c
∼
∞∑
g=0

gn+2g−2
s

∫
Mg,n

exp
(
−N

2

4π

∫
Σ
|ϕ|
)〈

n∏
i=1
Oi(zi)

〉
Σ
. (2.31)

The effective action (2.30) and the integral over Mg,n has an immediate stringy
interpretation. Given a Strebel differential ϕ, one can associate a canonical metric gzz̄ =
|ϕ|/4 such that g is flat except at the poles and zeroes of ϕ, which give curvature singularities
of opposite sign. The action (2.30) then has the interpretation of the Nambu-Goto action
of some minimal area string whose pullback metric is g and whose tension is T = N2. Since
this action arose naturally from a 2D CFT with known AdS3 dual, one would expect that g
is the pullback of the AdS3 metric on the worldsheet. Indeed, in section 3 we will see that
this is the case precisely when one takes N to be large.

2.5 Example: the partition function

In the above subsections, we reviewed the construction of the Strebel differential in the
large-twist limit of the symmetric orbifold. In order to exemplify how this might work, let
us consider the correlation function for which the covering map is as simple as possible: the
genus-one partition function. Here, Γ is an unramified covering map between two tori, the
worldsheet and the boundary of thermal AdS3, and its degree can be taken to be as large
as possible without introducing analytic difficulties.

To compute the partition function, we follow the approach of [21]. In order to keep
track of the twist of the CFT states, we consider the ‘grand canonical’ partition function

Z(p, t) =
∞∑
K=0

pKZSymK(M)(t) , (2.32)

where p is a chemical potential counting the order K, and t is the torus modulus. A
fundamental result in the theory of permutation orbifolds is that this partition function
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can be expressed in terms of Hecke operators

Z(p, t) = exp
( ∞∑
N=1

pNTNZ(t)
)
, (2.33)

where Z(t) is the partition function of the seed theoryM, and the Hecke operators TN are
defined below. Intuitively, the term in the exponential is generated by connected covering
maps of degree w, which are always tori. The part of this partition function which is visible
from the worldsheet theory is the connected component logZ(p, t), and the full partition
function can only be recovered by considering a second quantised theory of strings.

Let us examine the form of the connected component of the partition function at large
N . Recall that the Hecke operator TN acts on modular functions as

TNZ(t) = 1
N

∑
ad=N

d−1∑
b=0

Z

(
at+ b

d

)
. (2.34)

The modulus τ = (at + b)/d is to be interpreted as the modulus of a torus which covers
the original torus with degree N and is therefore interpreted as the modulus of the dual
worldsheet. The number of such covering tori is given by the divisor function of N

∑
ad=N

d−1∑
b=0

1 =
∑
d|N

d = σ1(N) . (2.35)

The growth rate of this function is known to be asymptotically bounded by as
O(N log logN) [22], and so the Hecke operator diverges at worst double logarithmically
as N →∞.8

We can thus, naively, consider the limit in which N → ∞, for which the number
of covering spaces diverges, and it seems reasonable that the space of allowed τ forms a
continuum. To exemplify how this works, we can consider the simple case of N prime. Since
N only has two divisors, 1 and itself, the moduli of the covering tori can be written as{

Nt,
t

N
, . . . ,

t+N − 1
N

}
. (2.36)

As N →∞, we can forget the first element of (2.36) without affecting the sum too much,
and focus simply on the moduli of the form τ = (t+ b)/N . However, these moduli do not all
lie in the fundamental domain, and will generically all lie in different fundamental domains
of SL(2,Z). If we bring them into the fundamental domain, their distribution will be
effectively random, since the modular transformations bringing each modulus into F differ
wildly as we change b (see figure 5 for an example with N = 971). More concretely, the map
H→ F taking a point in the upper-half-plane into its representative in the fundamental
domain exhibits chaotic behaviour as Im(τ)→ 0.

8In fact, assuming the Riemann hypothesis is true, it can be shown that σ1(N) < eγN log logN [23]. If
the reader is uncomfortable with convergence issues, we can simply take N prime, for which σ1(N) = N + 1,
and the Hecke operator converges, assuming Z(τ) is reasonably well-behaved as τ → i∞.
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F F
N →∞

Figure 5. Left: the distribution of covering tori for N = 971 and t = 0.2 + 2i. Moduli with
Im(τ) > 4 have been omitted. Right: the limiting probability distribution as N →∞.

As we increase N (but keeping N prime), we can approximate the Hecke operator TN
as the following integral

TNZ(t) ≈ lim
ε→0

∫ 1

0
dxZ(x+ iε) , (2.37)

where we have defined the small number ε = t/iN . The line x+ iε for x ∈ [0, 1) equidis-
tributes into the fundamental domain F as ε→ 0 with measure d2τ/Im(τ)2 [24].9 Thus,
we have

TNZ(t) −→ 3
π

∫
F

d2τ

Im(τ)2 Z(τ) , (2.38)

where the prefactor is simply Vol(F)−1, which we will ignore from now on. Therefore,
the symmetric orbifold partition function for fixed N approaches the path integral of a
string propagating on the seed theoryM as N →∞, which we will interpret below as the
string propagating only through the origin of AdS3 and only having fluctuations in the
M-direction.

In the language of the Strebel differential, we might try to immediately write down an
answer as ∫

F

d2τ

Im(τ)2 Z(τ)e−SNG(τ) , (2.39)

where the measure dµ is the same as above, since it arises from the density of covering maps
in F as N →∞. The above analysis then seems to suggest that SNG(τ) = 0 for all τ . The
reason for this is quite simple: for the configuration above, the Strebel differential vanishes.10

9We thank Lorenz Eberhardt for pointing this out.
10This naively contradicts the statement that Strebel differential are in one-to-one correspondence to points

in the moduli spaceMg,n ×Rn. However, this statement only holds for surfaces with n+ 2g− 2 > 0, i.e. for
which the space of holomorphic quadratic differentials is non-vanishing. Mathematically, this corresponds to
the stability condition of the moduli spaceMg,n.
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Indeed, as we will argue in a moment, the covering map Γ from the worldsheet torus to the
AdS boundary torus is linear, and thus its corresponding Strebel differential vanishes.

The covering map from the worldsheet torus to the spacetime boundary is given by
Γ(z) = αz for some constant α. The periodicity conditions require Γ(z+1) = Γ(z)+ct+d and
Γ(z+τ) = Γ(z)+at+b for integers a, b, c, d. This requires α = ct+d and τ = (at+b)/(ct+d).
As above, we can take c = 0 and 0 ≤ b ≤ d− 1. Thus, the covering map is Γ(z) = dz. The
integer d determines the number of times the worldsheet wraps the contractible cycle of
AdS3, and in general will be large in the sum.

From the point of view of the worldsheet, the vanishing of the Strebel action is quite
surprising, since we expect it to reproduce the area of some semiclassical string worldsheet
in AdS3. In fact, in the limit in question, this area vanishes. As we will see in the next
section, in the limit of large d this covering map describes a string completely localised
in the center of AdS3, and thus has zero area (see figure 6 below). The only part of the
worldsheet theory where the string has proper dynamics, then, is the internal manifold M,
and so the string partition function is simply the integral of Z(τ) over the moduli space
M1,0.11 We should also note that the string being localised to the center of AdS3 supports
the proposal of [11] that a string wrapping a contractible cycle in the bulk generates a
conical defect, since a string localised to the center of AdS3 simply behaves as a massive
particle, which sources a defect singularity.

3 Semiclassical analysis

In the previous section we reviewed how the correlation functions of the symmetric product
orbifold reorganise themselves into a path integral over string worldsheets whose areas are
given by the Strebel metric ds2 = N2|ϕ|dz dz̄/4. In this section, we explore the large-twist
limit of a classical string sigma model on AdS3 and show how the Strebel differential arises
naturally in this context as the pullback of the AdS3 metric onto the worldsheet, providing
a link between the large-twist limit of the symmetric orbifold and that of the AdS3 theory.

3.1 The worldsheet sigma model

Consider the semiclassical action of (bosonic) string theory on AdS3, whose first-order form
(see, e.g. [3]) can be written as

S = k

4π

∫
Σ

d2z
(
4∂Φ ∂̄Φ + β∂̄γ + β̄∂γ̄ − e−2Φββ̄ − k−1RΦ

)
, (3.1)

where R is the worldsheet curvature, and k is the amount of NS-NS flux (the tensionless
limit corresponds to k = 1). Geometrically, the pair (γ, γ̄) parametrises the motion of the
string along the boundary of AdS3 in complex coordinates, while the scalar Φ is related to
the Poincaré radial coordinate as r2 = e−2Φ, so that Φ→∞ is at the boundary of AdS3.12

11Strictly speaking, the string also propagates in the S3. The motion of the string in this direction should
be apparent if we consider the full supersymmetric generalization of this analysis.

12Note that the normalisation of the radial coordinate r is such that r = 0 is the asymptotic boundary
and r =∞ is the center of AdS.
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Given a holomorphic map Γ : Σ → CP1, one can construct a solution to the classical
equations of motion given by [3]

γ(z, z̄) = Γ(z) , γ̄(z, z̄) = Γ̄(z̄) , Φ(z, z̄) = log 1
ε
− 1

2 log |∂Γ|2 . (3.2)

(There is a corresponding expression for β, but we will not need it). Here, ε is a scaling
parameter which can be thought of as an infrared cutoff. In the limit that ε → 0, the
corresponding classical solution satisfies Φ→∞, and thus the worldsheet is ‘pinned’ to the
boundary. This is precisely the limit in which the action (3.1) becomes free, and so the
path integral expanded around the solution (3.2) becomes a Gaussian integral, and we can
thus expect (3.2) to be valid quantum mechanically, regardless of the value of k.

In the tensionless (k = 1) string theory on AdS3 × S3 ×M, the classical solution can
be shown to be the only contribution to the string path integral [3, 4]. In particular, if we
consider vertex operators V wi(xi, zi), where wi labels the spectral flow of the corresponding
state, then the correlation function 〈

n∏
i=1

V wi(xi, zi)
〉

(3.3)

receives only contributions in the path integral from solutions of the form (3.2), where the
holomorphic map Γ satisfies

Γ(z) ∼ xi +O((z − zi)wi) (3.4)

near the worldsheet insertion points. Thus, taking the scaling limit ε→ 0, we are left with
the conclusion that every contribution to the string theory path integral is given by a string
which is completely localised to the boundary of AdS. That is, for tensionless strings on
AdS3 × S3 ×M, we can take seriously the expression (3.2) as the motion of the worldsheet
in the target space.

Naively, one would conclude, then, that the tensionless string theory on AdS3×S3×M
knows nothing about the bulk, since for the solutions (3.2) we have Φ → ∞ and so the
string never probes the spacetime geometry beyond the boundary. For finite values of w,
this is indeed true. However, note that if w is taken to be very large (and, in particular,
parametrically larger than the infrared cutoff 1/ε), then we can actually consider worldsheets
which probe the interior. To see this, let us expand the solution (3.2) around the point
z = zi. We have

Φ(z, z̄) = log 1
εwi
− wi − 1

2 log |z − zi|2 + · · · (3.5)

The radial profile r2 = e−2Φ then takes the form

r2(z, z̄) = ε2|∂Γ|2 ∼ ε2w2
i |z − zi|wi−1 . (3.6)

That is, if we take wi � 1/ε, the radial profile can become non-zero, and the string is
allowed to probe the bulk.

As a simple example, let us consider the classical solutions which arise when computing
the one-loop partition function of the string theory. We consider γ to take values on a torus,
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so that the target space geometry is thermal AdS3 with modular parameter t. Specifically,
that means we consider the identification γ ∼ γ + 1 and γ ∼ γ + t. Furthermore, we take
the worldsheet to be a torus with modular parameter τ . As explained in section 2.5, the
appropriate covering map is now a holomorphic map from the worldsheet torus to the
boundary torus of thermal AdS3 and takes the form Γ(z) = dz for some positive integer
d. Furthermore, we demand τ = (at + b)/d for integers a, b in order for this map to be
well-defined, i.e. so that γ(z) ∼ γ(z + 1) ∼ γ(z + τ) on the AdS3 boundary torus. Here, a
represents the number of times the worldsheet wraps the compact time direction of the AdS3
boundary, and d counts the number of times the worldsheet wraps the angular direction.
For this covering map, the radial profile is given by

r2(z, z̄) = ε2|∂Γ|2 = ε2d2 . (3.7)

If we consider the limit in which the worldsheet wraps the angular direction many times,
i.e. d� 1/ε, we see that the radial profile vanishes, i.e. the string is completely localised to
the center of AdS3. In this limit, the string behaves like a massive particle in the center
of AdS3, which sources a conical defect in the resulting geometry [11], see figure 6. Note
that the existence of conical defects in an effective AdS3 bulk theory is of interest from a
purely gravitational stand-point (see, for instance, [25, 26]), and it has been argued that
the inclusion of these singularities is required for the consistency of the gravitational path
integral [27]. Thus, although our discussion is not related to pure AdS3 gravity, it is satisfying
to see the existence of conical defects arising automatically from a worldsheet theory.

We should emphasize that this limit is very strange from a physical perspective. The
parameter 1/ε represents the UV cutoff in the dual CFT, and the duals of strings with
winding w are states whose conformal weights grow linearly in w. Thus, taking wi � 1/ε
corresponds in the dual CFT to considering states whose energies are higher than the UV
cutoff, which is physically not a meaningful thing to do. Furthermore, the solutions (3.2)
only solve the equations of motion in the limit ε → 0, and we have no reason to expect
wi � 1/ε to be a physically meaningful limiit from the classical sigma model. However,
as we will see below, this limit is useful in explaining schematically how the semiclassical
Nambu-Goto-like action (2.30) emerges from a string moving in AdS3. Thus, we will go
forward with considering correlators in the limit wi � 1/ε, while remembering that this
limit is physically poorly defined, and that we should take it with a rather large grain
of salt.

3.2 The Strebel metric from classical geometry

Consider the semiclassical solutions (3.2) of the previous section, and consider Poincaré
coordinates (r, γ, γ̄) on AdS3. As we mentioned above, the semiclassical solutions give us
an embedding of the string into AdS3 via

r(z, z̄) = e−Φ(z,z̄) , γ(z, z̄) = Γ(z) , γ̄(z, z̄) = Γ̄(z̄) . (3.8)

Now, the Poincaré metric ds2 = (dr2 +dγ dγ̄)/r2 can be pulled back to the string worldsheet
using this embedding. The result is

ds2
worldsheet = (dΦ)2 + e2Φ|∂Γ|2dz dz̄ . (3.9)
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d d� 1/ε

Figure 6. A string in thermal AdS3 which wraps the contractible cycle many times behaves like a
massive particle.

Using the relation r2 = ε2|∂Γ|2 from (3.2), we end up with

ds2
worldsheet =

1
4

∣∣∣∣∣∂2Γ
∂Γ

∣∣∣∣∣
2

+ 1
ε2

 dz dz̄ . (3.10)

In the usual limit ε→ 0, the worldsheet metric is then conformally equivalent to the flat
dz dz̄ metric. However, the Strebel differential

ϕ = 2
N2S[Γ] ∼ − 1

N2

(
∂2Γ
∂Γ

)2

(3.11)

is well-defined as N →∞, and thus we can write the worldsheet metric in this limit as

ds2
worldsheet ∼

(
N2

4 |ϕ|+
1
ε2

)
dz dz̄ . (3.12)

Therefore, if we take the double scaling limit ε→ 0 and Nε→∞, we see that the metric is
dominated by the radial profile of the string motion, and we are left with the Strebel metric

ds2
worldsheet ∼ N2ds2

Strebel = N2

4 |ϕ|dz dz̄ . (3.13)

In this sense, the Strebel metric is the pullback of the AdS3 metric precisely in the large-twist
limit. Thus, we see that the expression (2.30) for correlators in the symmetric orbifold
can be recovered geometrically as the semiclassical motion of a string moving in AdS3 in
the large-twist limit, which was predicted in [14]. In this limit, the Strebel metric comes
entirely from the radial part of the AdS3 metric, and so we see that the worldsheet moves
almost purely in the radial direction of AdS3.

In practice, one wants to compute the Nambu-Goto action

SNG = 1
4πα′

∫
Σ

N2

4 |ϕ| , (3.14)
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z1 z2

z3

a1

a2

a3

a4

Figure 7. The natural coordinate system associated to a Strebel differential ϕ on the worldsheet.
Contours correspond to lines of constant time in the local (y, ȳ) coordinates near each insertion
point. Colored lines correspond to the loci where the local coordinates have to be glued together.
The zeroes ai of the Strebel differential lie on these so-called ‘critical’ trajectories. Figure taken
from [14].

where we have briefly reintroduced the α′ dependence. Since the area of the worldsheet
diverges as N → ∞, it is convenient to introduce an effective parameter α′eff = α′/N2

so that
SNG = 1

4πα′eff

∫
Σ

1
4 |ϕ| , (3.15)

which describes a string with effective tension T = N2/α′. The ‘tensionless’ limit of AdS3
string theory is obtained by taking α′ = 1 (in units of the AdS3 radius). The effect of the
large-twist limit is thus to introduce an effective large string tension, thus allowing the use
of semiclassical methods to study the worldsheet.

Interestingly, there is a natural geometric interpretation of the Strebel gauge metric,
which has wide application in string theory and string field theory [28, 29]. Given a
Strebel differential ϕ, we can locally define ‘natural’ worldsheet coordinates dy = N

2
√
ϕ and

dȳ = N
2
√
ϕ̄, which are defined on Σ \ {z1, . . . , zn}.13 In these coordinates, the worldsheet

metric is given simply by
ds2

worldsheet = dy dȳ , (3.16)

i.e. the natural coordinates (y, ȳ) locally describe a flat worldsheet metric. Near a pole of

13The worldsheet coordinate y is not to be confused with the spectral curve of section 2.
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the Strebel differential located at the insertion point zi in the original coordinates, we have

dy = N

2
√
ϕ ∼ wi/2

(z − zi)
dz , (3.17)

so that
y ∼ wi

2 log(z − zi) . (3.18)

Near z = zi, the worldsheet looks like a semi-infinte tube of circumference wi/2, and the
(y, ȳ) coordinates are the natural cylindrical coordinates on this semi-infinite tube. The
(y, ȳ) coordinates are only locally defined near the poles zi of ϕ, and away from the poles
the different coordinate systems have to be ‘glued’ together along the so-called ‘critical’
trajectories of ϕ (see figure 7).

As was shown in [28], the Strebel-gauge metric can be seen to solve a minimal area
problem. In particular, the worldsheet metric ds2 = N2|ϕ|/4 is the minimal-area metric
among those satisfying the following three criteria:

• The metric is induced by some quadratic differential ϕ.

• Given a puncture zi and a path γi surrounding zi, the length of γi is fixed and given
by 2πNαi/4 = π(wi − 1)/2.

• The metric has at most quadratic poles at z = zi.

The second condition translates in the language of AdS3 to the statement that the worldsheet
winds wi times around its insertion point. The third allows one to define a regularised
area of Σ \ {z1, . . . , zn} (so that the minimal area problem is well-defined).14 Thus, the
Strebel gauge metric can be thought of as the minimal area of a string propagating in AdS3
which winds around its insertion points wi times. In this way, we can really think of the
Strebel-gauge metric as the semiclassical worldsheet minimizing the Nambu-Goto action,
thus justifying the stringy interpretation of (2.30).

In the (y, ȳ) coordinate system, we can calculate the semiclassical motion of the string
in the (r, γ, γ̄) AdS3 coordinates rather easily. In terms of the covering map, we have

dy ∼ i12∂ log ∂Γ (3.19)

and so ∂Γ ∼ e−2iy. Since r2 = ε2|∂Γ|2, we have

r2(y, ȳ) = ε2e4Im(y) . (3.20)

Thus, as Im(y)→ −∞, we see that r2 → 0 and the worldsheet approaches the boundary
of AdS3. As we increase y, r increases and the worldsheet approaches the center of AdS3.
Thus, near z = zi, we see again that the worldsheet resembles a semi-infinite tube which
extends from the boundary of AdS3 deep into the bulk (see figure 3). Each of these tubes
corresponds to a face in the graph of figure 7, and they are glued together in the AdS3 bulk
along the graph of critical trajectories of ϕ.

14The first condition, that the worldsheet metric is induced by a quadratic differential, does not, as far as
the author knows, have a justification in semiclassical string theory. We thus take it as an assumption.
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It is worth noting that the above coordinate system has a natural place in the context
of string field theory, where it is used as a preferred coordinate for the insertion of off-
shell states on the worldsheet [29]. It would be interesting, then, to explore whether the
large-twist limit of the tensionless worldsheet theory could be used to explore closed-string
correlators of off-shell states. This could potentially provide a playground for understanding
closed-string field theory for the tensionless string.

4 Relation to the worldsheet theory

4.1 The free field realisation

The worldsheet theory [2] which is dual to the symmetric orbifold SymK(T4) is most
naturally written in the hybrid formalism of Berkovits, Vafa, and Witten [30], in which
it is expressed in terms of a sigma model on the supergroup PSU(1, 1|2)L × PSU(1, 1|2)R
times a (topologically twisted) sigma model on T4. The resulting WZW model has current
algebra psu(1, 1|2)k ⊕ psu(1, 1|2)k, and the tensionless limit is achieved by taking k = 1.
One reason for the tractibility of the k = 1 theory is that the superalgebra psu(1, 1|2)1
enjoys a realisation in terms of free fields [2, 4]. Let us focus on the bosonic subalgebra
sl(2,R)1 ⊂ psu(1, 1|2)1, since it contains the salient features for our discussion. The free
field realisation consists of two spin −1

2 bosons (λ, µ) and two canonically conjugate spin 3
2

bosons (µ†, λ†) which obey the OPEs

λ(z)µ†(w) ∼ 1
z − w

, µ(z)λ†(w) ∼ 1
z − w

. (4.1)

This theory has two u(1) symmetries obtained by simultaneous rescaling of the fields. In
particular, one such symmetry is given by

(λ, µ)→ α(λ, µ) ,
(µ†, λ†)→ α−1(µ†, λ†) ,

(4.2)

and is generated by a current U . In the full worldsheet theory, one gauges this global
symmetry, and the gauge invariant bilinears of the free fields generate the current algebra
sl(2,R)1. We review this free field theory in detail in appendix A.

Geometrically, due to the symmetry (4.2), we can think of the resulting description as
a (first order) sigma model on (λ, µ)/ ∼ = CP1. The daggered fields (µ†, λ†) can then be
thought of as the conjugate momenta of the CP1 coordinates (λ, µ). Conceptually, we think
of (λ, µ) as parametrising the twistor space of two-dimensional field theory, and thus we will
refer to them as twistors. In the full free field construction of psu(1, 1|2)1, we also include
Fermions ψa of spin −1

2 and their conjugates (ψ†)a of spin 3
2 and gauge the symmetry

(λ, µ)→ α(λ, µ) ,
(µ†, λ†)→ α−1(µ†, λ†) ,

ψa → αψa ,

(ψ†)a → α−1(ψ†)a .

(4.3)
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The full supersymmetric model then has coordinates (λ, µ|ψa) which parametrise the
super-twistor space CP1|2.

The relationship between the ‘twistor’ worldsheet fields and the usual description of
AdS3 in terms of a WZW model on SL(2,R) is that one can generate the SL(2,R) currents
in terms of bilinears of the twistor fields with conformal weight h = 1. Specifically, we
can identify

J+ = λ†λ , J− = µ†µ , J3 = 1
2(λ†µ− µ†λ) . (4.4)

There is one more linearly independent combination that can be constructed, and it generates
the gauge symmetry (4.2), see appendix A.

A remarkable feature of the worldsheet theory is that its correlation functions localise
to configurations for which there is a holomorphic covering Γ : Σ → CP1. In fact, the
free fields (λ, µ) provide an explicit representation of this map. Given vertex operators
V wi(xi, zi) describing the emission of a string with worldsheet coordinate zi and ∂AdS3
coordinate xi, we have (see appendix A)〈

λ(z)
n∏
i=1

V wi(xi, zi)
〉

= 1√
∂Γ(z)〈

µ(z)
n∏
i=1

V wi(xi, zi)
〉

= Γ(z)√
∂Γ(z)

.

(4.5)

The interpretation of this statement is that λ = 1/
√
∂Γ and µ = Γ/

√
∂Γ are the ‘classical’

worldsheet coordinates in the AdS3 boundary. Furthermore, unless the moduli of Σ \
{z1, . . . , zn} are situated in such a way that the covering map Γ exists, the correlators of
V wi vanish and equation (4.5) is vacuous. When the covering map does exist, the pair
[λ : µ] = [1 : Γ]/

√
∂Γ is then a choice of (non-canonical) presentation of this map on CP1. It

can be thought of as the pullback of the ‘gauge-fixed’ coordinate [1 : x] onto the worldsheet
by Γ, i.e.

[λ : µ] = Γ∗
( [1 : x]√

dx

)
, (4.6)

where Γ∗ denotes the pullback from the appropriate holomorphic line bundle of CP1 to the
corresponding line bundle on Σ.

4.2 Twistors from the Strebel differential

As it turns out, the worldsheet free fields are deeply connected to the Strebel differential.
Given a covering map Γ, we can consider the holomorphic differential equation

∂2f + 1
2S[Γ]f = 0 . (4.7)

This equation has a two-dimensional family of solutions, which, under coordinate trans-
formations, transform as conformal primaries of weight h = −1

2 (i.e. define sections of the
inverse spinor bundle S−1 for some given spin structure S). Indeed, one can immediately
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write down a pair of solutions for f , which are precisely the classical values of the twistor
fields, namely

λ = 1√
∂Γ

, µ = Γ√
∂Γ

. (4.8)

The fact that the twistor fields (4.8) satisfy the differential equation (4.7) can be seen either
from directly verifying that (4.8) is a solution, or by factorising (4.7) as(

∂2 + 1
2S[Γ]

)
f =

(
∂ − ∂ log

√
∂Γ
) (
∂ + ∂ log

√
∂Γ
)
f , (4.9)

so that λ is the solution obtained by demanding f is annihilated by ∂ + ∂ log
√
∂Γ, and µ is

obtained similarly.
Recalling that, in the large-twist limit, the Strebel differential is related to the

Schwarzian via
ϕ = − 2

N2S[Γ] , (4.10)

we see that the fields λ and µ can be constructed through the solutions of the differen-
tial equation

∂2f = N2

4 ϕf . (4.11)

Thus, there is a natural relationship between the worldsheet free fields and the Strebel
differential, namely

∂2λ

λ
= ∂2µ

µ
= N2

4 ϕ . (4.12)

If we know the explicit form of the covering map Γ, this differential equation is easy to
solve. However, in the large-twist limit, Γ itself is not a well-defined function, and the best
option we have is to implicitly define it through the Strebel differential. We can similarly
recover the worldsheet fields µ, λ in this limit purely through the Strebel differential. To see
this, note that the holomorphic Schrödinger equation (4.11) can be solved via the WKB
approximation in the limit N � 1. Indeed, in a neighbourhood of a regular point z0 (i.e. z0
is not a critical point of Γ), one can immediately write down a pair of approximate solutions
given by

f± = ϕ−1/4 exp
(
±N2

∫ z

z0

√
ϕ

)
. (4.13)

This solution, however, is not valid as we take z very far away from z0. In particular, if z0
is within one of the regions bounded by the critical trajectories of ϕ (see figure 7), then
the above approximation will only be valid within that region. Once z crosses one of the
critical trajectories, √ϕ crosses a zero or a branch cut, and the WKB approximation breaks
down (analogous to when one encounters a ‘turning point’ in one-dimensional quantum
mechanics). That is, the solution to the WKB approximation is only valid locally near
z = zi. A full solution would require gluing the separate solutions together.

Within each region surrounding the insertion, we can interpret the two solutions above
as the combinations λ(z) and µ(z)− xiλ(z). Indeed, near z = zi we have

f± ∼ (z − zi)1/2 exp
(
±wi2

∫ z

z0

1
z − zi

dz
)
∼ (z − zi)

1
2±

wi
2 , (4.14)

which is precisely the asymptotic behaviour of µ(z)− xiλ(z) and λ(z), respectively.
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We note that we can write the above solutions in terms of the natural coordinate system
(y, ȳ) induced by ϕ. Given a base-point z0, we have

y(z) = N

2

∫ z

z0

√
ϕ , ȳ(z̄) = N

2

∫ z̄

z̄0

√
ϕ̄ . (4.15)

In this coordinate system, the metric is simply ds2 = dy dȳ, and is flat unless ϕ is singular.
The solutions f± then take the very simple form

f±(y) ∼ e±y√
dy .

Since we think of f± as giving local coordinates on the target space CP1, we can take their
ratio to get a local coordinate on C ∪ {∞}, namely

f+
f−

= e2y ∼ (z − zi)wi . (4.16)

Of course, this ratio is nothing other that Γ(z)− xi, since f+ = µ− xiλ and f− = λ. The
WKB approximation then simply tells us that the coordinates y and the coordinates Γ− xi
are related to each other by exponentiation.

Finally, let us comment that there is a suggestive relationship between the twistor fields
and the Liouville field Φ. Recall that the relationship between the Strebel differential ϕ
and Φ is given by ∂Φ = iN

√
ϕ, so that

Φ = iN

∫ z

z0

√
ϕ . (4.17)

This allows us to instantly write down the solutions f± in terms of the Liouville field, namely

f± ∼ (∂Φ)−1/2e±Φ/2 . (4.18)

Since, within the coordinate system near z = zi, the solutions f± are related to the free
fields λ, µ, we can think of Φ as the bosonisation of these free fields.15

Let us set xi = 0 for convenience, so that we can identify the two solutions f± with µ
and λ. Then we have explicitly

λ ∼ e−Φ/2
√
∂Φ

, µ ∼ eΦ/2
√
∂Φ

. (4.19)

Now, we can propose a similar relationship between the Liouville field Φ and the daggered
fields µ†, λ†. In particular, it was noted in [3, 31] that Φ can be thought of as the bosonisation
of J3 in the sl(2,R) current algebra, i.e. J3 = ∂Φ, and so naively we can propose

λ†µ− µ†λ = 2J3 = 2∂Φ . (4.20)
15Similar expressions relating the AdS3 free field to the Liouville field Φ are found in, for example,

equation (2.9) of [31]. The difference between their expression and ours is a choice of gauge in the free
field realisation.

– 24 –



J
H
E
P
0
5
(
2
0
2
3
)
0
0
5

Furthermore, since we are imposing the gauge symmetry (4.2), we further propose that the
current corresponding to this symmetry vanishes [31]. Specifically,

λ†µ+ µ†λ = 0 . (4.21)

Thus, we can immediately write down the semiclassical values of µ†, λ† to be

µ† = −(∂Φ)3/2eΦ/2 , λ† = (∂Φ)3/2e−Φ/2 . (4.22)

Furthermore, we can calculate the semiclassical stress-tensor of these expressions, and
we find

T = 1
2
(
µ†∂λ− λ∂µ† + λ†∂µ− µ†∂λ

)
+ · · · ∼ (∂Φ)2 , (4.23)

where · · · represents terms which vanish under the gauge constraint. Since (∂Φ)2 is simply
the Strebel differential (up to a constant), we reproduce the semiclassical result of [31] that
the stress tensor of the free field theory is related to the Strebel differential.16

4.3 Reconstructing the worldsheet

Above, we argued for a suggestive relationship between the Strebel differential appearing in
the large-twist limit of the symmetric orbifold CFT and the twistorial free field description
of the worldsheet. However, let us for a moment assume we know nothing of the worldsheet
theory. Given nothing more than the knowledge that correlators are naturally expressed in
terms of Strebel differentials, how much about the worldsheet theory can we extract?

Let ϕ be a generic Strebel differential on the surface Σ with quadratic residues α2
i at

z = zi. Armed with the hindsight of the above discussions, we might simply postulate
that the worldsheet theory can be described in terms of the solutions to the holomorphic
Schrödinger equation

∂2f = ϕf . (4.24)

What can we say about the solutions f? Near a pole z = zi we have

∂2f ∼ α2
i f

(z − zi)2 . (4.25)

The independent solutions to this differential equation are

f±(z) ∼ (z − zi)
1±ri

2 , r =
√

1 + α2
i . (4.26)

Thus, since α2
i ∈ R+ by construction, one of the solutions has a zero of degree 1+ri

2 at z = zi
and the other has a pole of degree ri−1

2 . If f± are truly to describe worldsheet degrees of
freedom, then the asymptotic behaviours (4.26) should describe their OPEs with vertex
operators Vαi(zi) on the worldsheet. In particular, promoting f± to worldsheet fields, we
should have

f±(z)Vαi(zi) ∼ (z − zi)
1±ri

2 . (4.27)
16As was pointed out in [31], this is not so surprising, and in general stress-tensors of Liouville theories

and Strebel differentials converge in the ‘large-twist’ limit, cf. the discussion in chapter 5 of [32].
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If we assume the existence of a current ∂φ on the worldsheet under which f± have charges
±1

2 , then we can explicitly construct such a vertex operator as17

Vαi(z) ∼ eriφ/2 . (4.28)

The remaining piece of the OPE then tells us that f±(z) |Ω〉 ∼ z 1
2 as z → 0, where |Ω〉 is

the CFT vacuum. This is the hallmark of a conformal field of weight h = −1
2 . The simplest

way to build a worldsheet CFT is then to introduce canonical conjugate fields for the two
h = −1

2 fields, which are of weight h = 3
2 .

Thus, from the (as yet unjustified, but motivated by the example of the tensionless
string) postulate that the worldsheet degrees of freedom are given by solutions to the
holomorphic Schrödinger equation with ϕ as the potential, we can deduce the OPEs (4.27)
and the fact that the worldsheet fields have conformal weight h = −1

2 , assuming that the
vertex operators can be expressed as exponentials of a scalar φ, under whose current ∂φ
the worldsheet fields f± come with charge ±1

2 .
Of course, these properties are nearly those of the worldsheet dual of the symmetric

orbifold CFT.18 However, it has been argued [15–17] that the worldsheet dual to generic
free (holographic) gauge theories should also be expressible naturally in terms of Strebel
differentials. Thus, it would not be unreasonable to assume that the above discussion
generalises to the worldsheet dual of any holographic free CFT, not just the symmetric
orbifold. The conclusion would be that the worldsheet dual of a generic free CFT is, at least
partially, describable in terms of worldsheet fields which formally resemble those of the free
field realisation of psu(1, 1|2)1. This is indeed true for the case of the worldsheet dual of free
N = 4 super Yang-Mills [33, 34], and has also recently shown to be true for a large class of
free N = 2 quiver gauge theories dual to tensionless string theory on AdS5×(S5)/ZN [35]. It
would thus be interesting to explore further the connection between twistor-like worldsheet
theories and the stringy duals to free holographic CFTs.

5 Comments on AdS2

In this section, we explore the relationship between the tensionless string on AdS3 in the
large-twist limit and gravity on Euclidean AdS2 via a particular dimensional reduction. In
particular, we show that the dynamics of a string which ends on a certain type of D-brane
in AdS3 is seemingly governed by a one-dimensional Schwarzian action in the large-twist
limit, suggesting a potential connection to Jackiw-Teitelboim gravity [36] in two dimensions.

5.1 Branes in AdS3

In [37], the duality between tensionless strings on AdS3×S3×T4 and the symmetric orbifold
theory was extended to include gravitational backgrounds with D-branes. In particular,
branes in the AdS3 bulk which are localised at a specific point in time (so-called spherical

17For the tensionless AdS3 theory, the appropriate current is ∂φ = J3, and the exponential eriφ/2 is the
spectral flow operator, see appendix A.

18It is not obvious, however, how to see the gauging of the scaling symmetry in equation (4.2).
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x1

x2

x3

Figure 8. Left: a ‘spherical’ brane localised at time t = t0 in AdS3. The induced metric on
the brane is that of Euclidean AdS2. Right: the worldsheet configuration associated to the CFT
three-point function 〈O(w1)

1 (x1)O(w2)
2 (x2)O(w2)

2 (x2)‖ψ〉〉.

branes in the parlance of [38]), depicted in figure 8, were shown to be dual to boundary
states in the symmetric orbifold theory which are ‘maximally symmetric’, in the sense that
they share the same boundary conditions in all copies of the T4 seed theory.

Let us denote such a boundary state in the symmetric orbifold as ‖ψ〉〉. We can consider
correlation functions in the presence of such a boundary state〈

n∏
i=1
O(wi)
i (xi)

〉
ψ,D

:=
〈

n∏
i=1
O(wi)
i (xi)

∣∣∣∣∣
∣∣∣∣∣ψ
〉〉

D

. (5.1)

Specifically, we model the base space of the CFT as the disk D = {z ∈ C : |z| ≤ 1} and
impose the boundary condition corresponding to ‖ψ〉〉 on the boundary |z| = 1. It was
argued in [37] that these correlation functions enjoy a similar construction in terms of
covering maps Γ : Σ → D which cover the disk D with some Riemann surface Σ with
boundary. Schematically, we can associate to each of these covering surfaces an Euler
characteristic χ(Σ) = 2− 2g − n− b, where b is the number of boundary components of Σ,
and the correlation function (5.1) can be expressed as〈

n∏
i=1
O(wi)
i (xi)

〉
ψ,D

=
∑

Γ:Σ→D
Kχ(Σ)e−SL[ΦΓ]

〈
n∏
i=1
Oi(zi)

〉
ψ,Σ

, (5.2)

where in the right-hand-side zi are the branch points of Γ with Γ(zi) = xi, Oi are the seed
theory operators defined on the covering surface Σ, and SL[ΦΓ] is the same Liouville action
we introduced previously, except now defined on a Riemann surface with boundary

SL[ΦΓ] = 1
8π

∫
Σ

(2∂ΦΓ∂̄ΦΓ +RΦ) , (5.3)

and ΦΓ, as usual, is given by ΦΓ = log |∂Γ|2.
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Just as in the case of the symmetric orbifold on the sphere, there is a natural construction
to associate a Strebel differential ϕ to each covering space Γ : Σ→ D. The simplest such
method is to consider the compact double cover Σc of Σ, for which there exists an orientation
preserving diffeomorphism ι : Σc → Σc such that Σ ∼= Σc/ι, where the boundary of Σ is
identified with the fixed-point set of ι. We can then consider the covering map Γc : Σc → CP1

which maps zi to xi and ι(zi) to −1/x̄i with branching wi. Taking the degree of Γc to be
large, the Schwarzian derivative S[Γ] converges to a Strebel differential ϕc defined on Σc.
Letting i : Σc → Σ be the projection map associated to ι, we can then define a Strebel
differential on Σ by i∗ϕc.

By the arguments in section 2, we can then relate the symmetric orbifold correlator
to an integral over the moduli spaceMn,g,b of surfaces of genus g with n punctures and b
boundary components19 as〈

n∏
i=1
O(wi)
i (xi)

〉
ψ,D

∼
∑
g,b

K2−2g−n−b
∫
Mn,g,b

e−
N2
4π

∫
Σ |ϕ|

〈
n∏
i=1
Oi(zi)

〉
Σ
. (5.4)

This has the holographic interpretation of an open string propagating in the background of
figure 8, where N2|ϕ|/4 is the pullback of the effective AdS3 metric.

5.2 Dimensional reduction and the Schwarzian

Let us now consider a particular dimensional reduction from AdS3 to Euclidean AdS2 in
the above setup. We do this by treating the endpoints of the string as individual objects
which move only in the plane t = t0 and writing down their dynamics. The effect of the
‘dimensional reduction’ on the covering map is to consider only the boundary covering map
Γ : ∂Σ → S1 which maps the boundary of the worldsheet to the boundary circle of the
spherical brane, and as such parametrizes the motion of the string endpoint. For now let us
consider b = 1 and g = 0 (i.e. take the worldsheet topology to be a disk) since this is the
leading contribution in 1/N . Since the boundary circle can be thought of as the complex
numbers with unit modulus, we have Γ(τ) = eiθ(τ), where τ is the boundary angle on the
covering space and θ is the angle on the Euclidean AdS2 boundary circle.

In this limit, we can explicitly calculate the Strebel differential. We have

∂ΦΓ ∂̄ΦΓ →
( d

dτ log dθ
dτ

)2
=
(
θ′′

θ′

)2
, (5.5)

where we have ignored constants coming from the compactification. Taking the limit in
which the degree of θ is large (i.e. for which θ : S1 → S1 wraps the circle many times), we
can approximate the above kinetic term via(

θ′′

θ′

)2
∼ −2{θ, τ} , (5.6)

where {θ, τ} := S[θ](τ) is the Schwarzian derivative of θ with respect to τ . Therefore, the
Nambu-Goto action of (5.4) can be written schematically as∫

∂Σ
dτ {θ, τ} , (5.7)

19This is a moduli space of real dimension dimR(Mg,n,b) = 2n+ 6g − 6 + 3b.
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i.e. the dynamics are governed by a one-dimensional Schwarzian theory. Holographically,
since we consider the covering space Σ to be the worldsheet, the above action describes the
motion of the endpoints of the string along the brane. The motion of the endpoints defines
a function θ : ∂Σ→ S1, and the above action describes the effective dynamics of the string
endpoints in the large-twist limit.20

Amazingly, the above action is precisely of the form of the action which defines the
boundary dynamics of Jackiw-Teitelboim gravity in two dimensions [41], thus hinting
that, in this compactification limit, gravitational dynamics in the effective two-dimensional
Euclidean theory has a subsector which is governed by a theory which formally resembles
JT gravity. If we restore constants and take the central charge c of the dual CFT to be
generic, the effective action of the string endpoint is

Seff = − c

12π

∫
dτ {θ, τ} . (5.8)

In JT gravity, the constant prefactor out front is given by a/16πG(2)
N , where G(2)

N is the two-
dimensional Newton constant and a is a dimensionless parameter controlling the asymptotics
of the diliton (see, for instance, section 2.3.1 of [42]). Relating this to the prefactor c/12π
above gives

G
(2)
N = 3a

4c . (5.9)

Now, the 2D Newton constant in string theory is schematically related to the 3D Newton
constant via G(2)

N = 2G(3)
N `s, where `s is the string length. In the tensionless limit of string

theory on AdS3, the string length is equal to the AdS3 radius RAdS, and so

G
(3)
N = a

3RAdS
2c , (5.10)

which, up to the overall dimensionless constant a, is the famous Brown-Henneaux formula
for the AdS3 dual of a CFT with central charge c [43]. Thus, not only does the effective
action (5.8) schematically reproduce the Schwarzian action for JT gravity, the constant
prefactor can also be produced, assuming that the Newton constant G(3)

N is related to the
central charge of the boundary theory by the Brown-Henneaux formula.21

There is a clear difference between (5.7) and the usual Schwarzian theory. In the context
of JT gravity, the Schwarzian field θ : S1 → S1 is a one-to-one diffeomorphism from the
boundary circle onto itself, whereas in our case θ defines an N -to-one map. Such Schwarzian
theories are considered in the literature, and are known to describe the dynamics of JT
gravity with an ZN conical defect inserted in the bulk [44]. Retrospectively, the appearance
of a conical defect in the effective 2D theory is not surprising, since it was argued in [11]
and in section 3 that, in the large-twist limit, the string generates a conical defect around
any contractible cycle wound by the worldsheet.

Actually, the existence of a relationship between a dimensional reduction of the ten-
sionless string and the Schwarzian theory of JT gravity can be justified in another way. Let
us consider JT gravity on the disk. The fundamental degrees of freedom of the theory are

20The Schwarzian action as the semiclassical Nambu-Goto action of an open string in AdS3 was also
recovered in [39, 40].

21It is not clear however what the role of the genus-counting parameter S0 of JT gravity is in this setup.
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Figure 9. Left, a boundary cutoff in JT induced by the boundary diffeomorphism f : S1 → S1.
Right, the boundary cutoff defined by the endpoint motion of a covering map Γ : ∂Σ → S1 with
deg(Γ) = 2.

boundary gravitons, which correspond to diffeomorphisms of the boundary circle, up to a
global Möbius transformation. Such a large diffeomorphism can be expressed in terms of a
function θ : S1 → S1. In particular, one considers the partition function of JT gravity on
the disk with a finite cut-off defined by a curve in the disk given by [45]

θ = θ(τ) , r = ε
dθ
dτ (τ) . (5.11)

Here, r is the hyperbolic radial coordinate (i.e. r →∞ is the boundary of the disk). The
parameter ε is some infrared cutoff, which can be made arbitrarily small, so that the cutoff
approaches the boundary. The Schwarzian theory is then considered by evaluating the
JT action on the appropriate cutoff geometry, and then considering the path integral over
Diff(S1)/SL(2,R).

The relationship to the string worldsheet in AdS3 is that (5.11) can be thought of as
the projection of the classical worldsheet solution (3.2) into Euclidean AdS2. That is, we
can consider θ to be the value of the covering map Γ along the Euclidean AdS2 brane in
figure 8. The primary difference, however, is that the worldsheet covering map is not a
one-to-one map, but rather an N -to-one map (see figure 9).

The realisation of JT gravity as coming from the dimensional reduction of a brane
setup in AdS3 was also recently pointed out in [46–48]. It is thus interesting to see that
such a realisation seems to naturally arise in the context of the tensionless string theory on
AdS3. It would be worth exploring this relationship further to see if the Schwarzian form of
the action (5.7) is truly an indication of some JT-like behaviour of strings in the presence of
the spherical AdS2 brane, or if it is simply a coincidence (perhaps due to the universality of
the Schwarzian theory [49]). This would likely require a much better understanding of the
effective bulk field theory describing the tensionless string, which is still poorly understood.

6 Summary and discussion

6.1 Summary

In this paper, we explored the tensionless AdS3/CFT2 correspondence in the limit that
all operator insertions have large twist with respect to the CFT2 symmetric orbifold. We
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determined that, in this limit, one can recover the bulk geometry of the classical AdS3
spacetime, despite the fact that naively the strings are ‘pinned’ to the boundary sphere,
and confirmed the postulate of [14] that the Strebel differential can be recovered from the
pullback of the AdS3 metric to the worldsheet. We also discussed the relationship between
the large-twist limit and the description of the AdS3 worldsheet theory in terms of free
twistorial fields, and in particular showed that the classical values of these fields obey a
holomorphic Schrödinger equation whose potential is the Strebel differential. Finally, we
considered the consequence of this analysis to the dynamics of a string which ends on a
temporally localised brane, and found that the resulting worldsheet theory approximately
reproduces the Schwarzian theory of JT gravity with conical singularities.

6.2 Discussion

The end goal of the analysis of this paper is to elucidate the bulk nature of tensionless string
theory, which naively seems to have no bulk degrees of freedom. Because tensionless string
theory is under such good analytic control, then, one would hope that one would be able to
utilise this regime of the AdS/CFT correspondence to quantitatively and precisely explore
questions in holography which are typically only accessible in the supergravity regime. We
list a few of these potential directions below.

Black hole physics. On of the great triumphs of holography is its ability to explain the
microstate structure of (extremal) black holes through entropy calculations in the dual
(strongly coupled) field theory [50]. It would therefore be interesting to study Lorentzian
black-hole geometries in AdS3 in the tensionless limit, and determine if the typical entropic
properties remain. Such black holes would necessarily be string-scale since, in the tensionless
limit, the string length is of order of the spacetime geometry. It might also be possible to
explore black holes as the extreme large-twist limit,22 in which the conical defects created
by highly-twisted strings form a BTZ geometry [26].

Information entropy and bulk reconstruction. Recent developments in holography
have attempted to reconstruct the bulk geometry of Anti-de Sitter spacetimes using infor-
mation entropy in the dual CFT. In particular, the Ryu-Takayanagi (RT) formula relates
the information entropy of a spacial region A to the minimal area of a codimension 2 surface
M(A) which extends into the AdS bulk and which asymptotically ends on the boundary
of A [51]. The formula itself, however, is dependent on the existence of bulk semiclassical
geometry, which in the tensionless string doesn’t seem to exist aside from in the large-twist
limit. Thus, it would be interesting to see if one could reproduce something analogous to
the RT entropy in this limit.

Apart from the application of the large twist limit to more ‘classical’ questions of holog-
raphy, there are generalisations of this construction which would be interesting to explore.

Extension to higher dimensions. Just as in AdS3 × S3 ×M, there also exists an
analogous tensionless description of string theory on AdS5 × S5 whose worldsheet spectrum

22That is, the limit where the degree of the covering map Γ is the same as the degree K of the symmetric
orbifold, which are then both taken to infinity.

– 31 –



J
H
E
P
0
5
(
2
0
2
3
)
0
0
5

precisely reproduces the single-trace spectrum of N = 4 super Yang-Mills in four dimen-
sions [33, 34]. Moreover, an analogous construction for correlation functions to that of
the symmetric orbifold in two dimensions seems to exist [31], with an honest worldsheet
derivation currently under exploration [52]. Since the analogue of the twist w in SYM is
the number of letters in a single trace operator Tr(Φ1 · · ·Φw), one could hope, then, that
a similar geometric picture in terms of some generalisation of Strebel differentials could
arise in N = 4 SYM in the limit that the operators involved are traces of very many letters.
Such an analysis would be very similar to the so-called ‘large p’ analysis of [53] to the limit
of vanishing ’t Hooft coupling.

Deforming away from the orbifold point. The tensionless limit of string theory is
an unusually well-behaved holographic theory because its dual CFT is free. In order to
understand less well-behaved examples of AdS/CFT, it would be useful to move beyond
the tensionless limit, i.e. worldsheet theories with k > 1 units of NS-NS flux. The proposed
CFT dual is given by a symmetric orbifold CFT deformed by a certain twist-2 field σ2 [54].
In conformal perturbation theory, the perturbation of correlation functions 〈∏i V

wi〉 is
computed schematically by considering correlators

∫ 〈
(σ2)k∏i V

wi
〉
, where the positions of

the σ2 insertions are integrated over.23 Such a correlator will be represented by a covering
map Γk which has usual critical points of order wi at zi, as well as k ‘extra’ simple critical
points at the insertions of the deformation operators. In general, constructing a covering
map Γk from the original covering map Γ0 (without deformation operators) is a very tricky
task. However, in the large-twist limit, we can think of adding a simple critical point to the
covering map as a kind of perturbation in 1/deg(Γ). In particular, it would be interesting
to explore how the Strebel differential ϕk associated to the covering map Γk is related to
the un-deformed differential ϕ0.24 This would potentially allow for an analytic check of the
duality for k > 1 strings [54] in the large-twist limit.

Ensemble averaging. Another way to explore the bulk geometry in more detail would
be to consider an ensemble average of symmetric orbifold theories. In particular, one can
average quantities in the symmetric orbifold theory SymK(T4) over the Narain moduli
space of 2D sigma models with target space T4.25 In the non-orbifolded case, the resulting
averaged partition function has an interpretation in terms of a U(1)4×U(1)4 Chern-Simons
theory coupled to an exotic topological theory of gravity which performs a sum over
bulk geometries [56]. Moreover, Narain-averaged orbifolds of the form TD/ZN have been
considered, and their interpretation includes an orbifolded Chern-Simons theory coupled to
an even more exotic theory of gravity which sums over bulk geometries with codimension-2
orbifold defects [57], whose topologies are restricted to so-called ‘rational tangles’ (see
also [58]). In the symmetric orbifold case, one could expect a bulk interpretation in terms

23More precisely, the deforming operator is a G−1/2 descendant of the twice spectrally-flowed vacuum V (2).
24The number of such coverings is given by the ELSV formula [55], which is written in terms of integrals

of certain characteristic classes over the compactified moduli space Mg,n, and thus an understanding of the
ELSV formula at large-twist would potentially be necessary.

25Averaging the symmetric orbifold theory was already discussed in [11], however the resulting bulk theory
has not yet been explored in detail.
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of a supersymmetric Chern-Simons theory whose gauge group contains the discrete orbifold
group SK as a factor. Indeed, such a bulk interpretation is currently under consideration [59].

Relation to JT gravity. In section 5 we hinted at a potential relationship between
a compactification of the tensionless string to euclidean AdS2 and JT gravity in two
dimensions. In particular, we found that the effective action of the endpoints of the string
are described by the Schwarzian derivative of the endpoint coordinates, which is identical
to the effective action of boundary gravitons in JT gravity. It would be interesting to study
this relationship further. Since JT gravity is known to be dual to a matrix model [60], it
would be particularly interesting to study the large-twist limit of the symmetric orbifold
CFT with boundary and see if there exists of a subsector of the symmetric orbifold which
recovers the matrix model of JT gravity.
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A The tensionless worldsheet theory

In this appendix, we review the free field construction of [2, 4] for the tensionless string
theory on AdS3×S3×T4, focusing almost exclusively on the bosonic sector which generates
AdS3. We also demonstrate that an equivalent worldsheet theory, related to the ‘old’ theory
by a twist in the stress-tensor, leads to a more natural definition of correlation functions,
and allows for the realisation of the worldsheet free fields as solutions to the holomorphic
Schrödinger equation considered in section 4.

A.1 The free field construction of psu(1, 1|2)1

We consider the free field realisation consisting of two pairs (λ, µ†) and (µ, λ†) of h = 1
2 free

fields on the worldsheet satisfying the OPEs26

λ(z)µ†(w) ∼ 1
z − w

, µ(z)λ†(w) ∼ 1
z − w

. (A.1)

This defines two λ = 1
2 βγ systems, for which we can write the action

S =
∫

(λ∂̄µ† + µ∂̄λ†) (A.2)

26Relative to the conventions of [4, 6], we have defined λ = ξ+, µ = −ξ−, λ† = η+, and µ† = η−. This is
to make our notation closer to that of [33].
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as well as the stress tensor

T = 1
2
(
µ†∂λ− λ∂µ† + λ†∂µ− µ∂λ†

)
. (A.3)

Bilinears in the fields (λ, µ, λ†, µ†) generate the Kac-Moody algebra sp(4)1 [61]. The currents

J+ = λ†λ , J− = µ†µ , J3 = 1
2
(
λ†µ− µ†λ

)
(A.4)

generate the subalgebra sl(2,R)1 ⊂ sp(4)1, while the current

U = 1
2
(
λ†µ+ µ†λ

)
(A.5)

generates a u(1) orthogonal to the sl(2,R). Gauging the free field theory by the current U
leaves only the sl(2,R) degrees of freedom.

If we think of the free fields as two βγ systems, then each comes equipped with a
conserved current corresponding to the U(1) symmetry of the OPEs. These currents are
given by

J1 = λ†µ , J2 = µ†λ . (A.6)

Thus, the currents J3 and U are given by

J3 = 1
2(J1 − J2) , U = 1

2(J1 + J2) . (A.7)

Due to the fact that the βγ systems have conformal weight λ = 1
2 , neither of the currents

J1, J2 are anomalous.

A.2 Twisting the free field realisation

The realisation above certainly has advantages, specifically the non-anomalous behaviour
of the currents J3, U . However, as we have seen through the investigation of correlation
functions, it also has its problems. In particular, it seems to be the case [4] that in order to
define non-vanishing correlators, one has to introduce n+ 2g − 2 auxiliary fields W , whose
physical significance is unclear.

It turns out that there is an alternative formulation of the sl(2,R)1 theory which
eliminates these problems and which, from the point of view of the correlation functions,
leads to much more natural results. We accomplish this by ‘twisting’ the theory via the
new stress tensor27

T ′ = T + 2∂U . (A.8)

Since physical states in the theory will satisfy Un |ϕ〉 = 0 for all n ≥ 0, this twisting can not
have an effect on the spectrum. However, it does have the effect of changing the conformal
weights of the free fields. In particular, the new conformal weights are

λ, µ , h = −1
2 ,

λ†, µ† , h = 3
2 .

(A.9)

27In the full supersymmetric theory, we instead twist by adding the term ∂Z, where Z is the current
defined in [4]. Since Z is itself a null-current, this twisting will have no effect on the central charge of
the system.
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Thus, the twisting effectively results in considering two βγ systems with λ = −1
2 as opposed

to λ = 1
2 . Indeed, the new stress tensor is

T ′ = 1
2
(
µ†∂λ− λ∂µ† + λ†∂µ− µ∂λ†

)
+ ∂(λ†µ) + ∂(µ†λ) , (A.10)

which is precisely the stress tensor of two λ = −1
2 βγ theories.

The effect of this twist is that not all of the currents are non-anomalous. For example,
the OPE between the stress-tensor and the current U is given by

T ′(z)U(w) ∼ 1
(z − w)2 + ∂U(w)

z − w
+ 2∂U(z)U(w)

∼ − 2
(z − w)3 + 1

(z − w)2 + ∂U(w)
z − w

,

(A.11)

and so the current U is no longer a primary field of weight h = 1, but instead carries a
‘background charge’ of Q = −2. Practically, this implies that any correlation function〈∏

i

ϕi

〉
(A.12)

vanishes unless the total U -charge carried by the states ϕi is 2− 2g. As we will see below,
this actually becomes an advantage when computing correlation functions.

A.3 Highest-weight representations

Defining states in the twisted free field theory is almost identical to the untwisted theory,
up to a couple of subtleties. Recall that for a field ϕ of conformal weight h, the NS-vacuum
|Ω〉 satisfies

ϕr |Ω〉 = 0 , ∀r ≥ 1− h . (A.13)
Thus, for our free fields, we have

λr |Ω〉 = µr |Ω〉 = 0 , ∀r ≥ 3
2 ,

λ†r |Ω〉 = µ†r |Ω〉 = 0 , ∀r ≥ −1
2 .

(A.14)

Furthermore, the Ramond sector similarly satisfies
λr |ϕ〉 = µr |ϕ〉 = 0 , ∀r ≥ 2 ,
λ†r |ϕ〉 = µ†r |ϕ〉 = 0 , ∀r ≥ 0 .

(A.15)

The ‘zero modes’ of the twisted free fields are identified with λ1, µ1 and λ†−1, µ
†
−1. We can

define the J3 quantum number m and the U quantum number j − 1
2 , which generate the

Cartan of the free field realisation. With respect to this basis, the bottom of the Ramond
representation takes the form

λ1 |m, j〉 = |m+ 1
2 , j −

1
2〉 , µ†−1 |m, j〉 = −(m− j) |m− 1

2 , j + 1
2〉 ,

µ1 |m, j〉 = |m− 1
2 , j −

1
2〉 , λ†−1 |m, j〉 = (m+ j) |m+ 1

2 , j + 1
2〉 .

(A.16)

Defining the vertex operators Vm,j(z) in the obvious way, we can read off the OPE

λ(z)Vm,j(0) ∼ O(z−
1
2 ) (A.17)

and similarly for all other fields.
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A.4 Spectral flow and picture number

Spectral flow is defined precisely as before, in terms of two operators σ(+) and σ(−) which
separately spectrally flow the two βγ systems, namely

σ(+)(µr) = µr+ 1
2
, σ(+)(λ†r) = λ†

r− 1
2

(A.18)

and
σ(−)(λr) = λr− 1

2
, σ(−)(µ†r) = µ†

r+ 1
2
. (A.19)

It should also be noted that if we bosonise the U(1) currents J1 = ∂φ1 and J2 = ∂φ2, then
the spectral flow operators are simply

σ(+) = eφ1/4 , σ(−) = e−φ2/4 . (A.20)

Furthermore, we can consider the combinations σ = σ(+)σ(−) and σ̂ = σ(+)(σ(−))−1, or
equivalently, if we bosonise J3 = ∂φ and U = ∂β, we have

σ = eφ/2 , σ̂ = eβ/2 . (A.21)

Indeed, σ raises the J3 eigenvalue by 1/2 and σ̂ raises the U eigenvalue by 1/2.
Given a state ϕ in the Ramond sector, we can define an array of spectrally flowed states

by acting with σ and σ̂. Specifically, we define

ϕ(p,q) = σp ◦ σ̂q (ϕ) = eφp/2eβq/2ϕ = eβq/2σw(ϕ) . (A.22)

Due to the analogy with the usual βγ superdiffeomorphism ghost system, we will refer to
the spectral flow in the σ̂ direction as the picture number of the state (a similar observation
was made in [8], cf. equation (2.4)).28

Given a HW state in the (p, q) sector, we have the mode relations

λr |ϕ〉(p,q) = 0 , ∀r ≥ 2 + p− q
2

µr |ϕ〉(p,q) = 0 , ∀r ≥ 2− p+ q

2
λ†r |ϕ〉

(p,q) = 0 , ∀r ≥ p+ q

2
µ†r |ϕ〉

(p,q) = 0 , ∀r ≥ −p− q2 .

(A.23)

It should be noted that the q = 2 picture essentially recovers the original formulation of
the Ramond sector. Indeed, consider p = 0 and q = 2. Then the above mode relations all
coincide to say that R-sector ground states in the q = 2 picture are annihilated by only
the positive modes of the free fields, and the zero modes move the states around in the
representation. As we will see later, the q = 2 picture number is also the ‘natural’ one to
consider for defining correlation functions.

28Note that the current U is defined with a relative minus sign to the standard βγ current, and so the
picture number also carries a relative minus sign, as well as a relative factor of two since σ̂ only carries a
U -charge of 1/2.
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For completeness, we note the OPEs

λ(z)ϕ(p,q)(0) ∼ z
q−p−1

2 , µ(z)ϕ(p,q)(0) ∼ z
q+p−1

2 ,

λ†(z)ϕ(p,q)(0) ∼ z−
p+q+1

2 , µ(z)ϕ(p,q)(0) ∼ z
p−q−1

2 .
(A.24)

Specifically, for p = w and q = 2, we have

λ(z)ϕ(w,2)(0) ∼ z−
w−1

2 , µ(z)ϕ(w,2)(0) ∼ z
w+1

2 ,

λ†(z)ϕ(w,2)(0) ∼ z−
w+3

2 , µ†(z)ϕ(w,2)(0) ∼ z
w−3

2 .
(A.25)

A.5 Correlation functions

Now that we have discussed spectral flow and representations of the free field theory, we
are in position to define correlation functions. The following treatment will be somewhat
imprecise. In particular, the full definition of correlation functions requires the technology
of the hybrid formalism of Berkovits, Vafa, and Witten [30], see also section 3 of [4]. Here
we will only review the salient features.

In the unflowed Ramond sector, physical states satisfy the condition U0 |m, j〉 = 0,
or j = 1

2 . However, as we know, in order to define a correlation function in the hybrid
formalism, we need to include n + 2g − 2 PCOs, whose overall effect (from the Bosonic
viewpoint) is lowering the value of j by one. Thus, let j̃ be the value of j after picture
changing. Then the correlator 〈

n∏
i=1

V wi
mi,j̃i

(xi, zi)
〉

(A.26)

satisfies
n∑
i=1

(
j̃i −

1
2

)
= −(n+ 2g − 2) . (A.27)

However, such a correlator must vanish, since the sum of all U -charges must be 2− 2g. We
can remidy this, however, by artificially increasing the U -charge of all n states by 1. The
simplest way to do this is to consider states in the q = 2 picture. That is, we define

Ṽ w
m,j = V

(w,2)
m,j = eβV w

m,j . (A.28)

Such a state is indistinguishable from V w
m,j at the level of the sl(2,R) theory, but now carries

a U -charge j + 1
2 = (j − 1

2) + 1. Thus, the correlator〈
n∏
i=1

Ṽ wi
mi,j̃i

(xi, zi)
〉

(A.29)

satisfies
n∑
i=1

Ui =
n∑
i=1

(
j̃ + 1

2

)
= 2− 2g , (A.30)

and thus is generically nonzero. Furthermore, note that this charge conservation condition
can be written as

n∑
i=1

j̃i = 2− 2g − n

2 = 1
2(n+ 2g − 2)− (n+ 3g − 3) , (A.31)
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which is precisely the so-called ‘j-constraint’ of [3] required for sl(2,R)1 correlation functions
to have a localising solution. Note, furthermore, that we were able to define such a correlation
function without introducing the W -fields of [4].29

A.6 Localisation

We now argue that the worldsheet correlators in the free field theory localize to covering maps
from the worldsheet to CP1. For now, let us keep ji generic, taking them to their critical
values only as a last step, and consider the sections of S−1 (the bundle of half-differentials
f(z)(dz)−1/2 on the worldsheet)

L(z) =
〈
λ(z)

n∏
i=1

Ṽ wi(xi, zi)
〉
, M(z) =

〈
µ(z)

n∏
i=1

Ṽ wi(xi, zi)
〉
. (A.32)

By the OPEs in (A.25), we see that L and M both have poles of order wi−1
2 at z = zi.

Thus, we have

div(L) = −
n∑
i=1

wi − 1
2 zi + ∆− , div(M) = −

n∑
i=1

wi − 1
2 zi + ∆+ , (A.33)

where ∆± are divisors of order 1− g +∑n
i=1

wi−1
2 = N . Thus, M/L is a function of order

N which satisfies
M

L
(z)− xi ∼ (z − zi)wi (A.34)

at all z = zi. Thus, M/L = Γ is the covering map. Furthermore, we see that ∆− is
the divisor of poles of Γ and ∆+ is the divisor of zeroes. The only sections of S−1 with
divisors (A.33) are

L ∝ 1√
∂Γ

, M ∝ Γ√
∂Γ

, (A.35)

up to an overall constant.

A.7 The daggered fields

We have now shown that the correlators of this theory localise by using the analyticity
properties of the undaggered half of the symplectic Boson theory. It is also instructive to
look at the daggered fields. However, for these fields, analyticity and Ward identities are
not enough to fully narrow down their behaviour. The primary reason for this is that these
fields have conformal weight h = 3

2 , and thus their correlation functions are sections of a
line bundle with higher degree than that of the (λ, µ) fields. If we consider the correlators
given by

L†(z) =
〈
λ†(z)

n∏
i=1

Ṽ wi(xi, zi)
〉
, M †(z) =

〈
µ†(z)

n∏
i=1

Ṽ wi(xi, zi)
〉
, (A.36)

29Strictly speaking, our construction is identical to placing a W -field at the location z = zi for each vertex
operator. The difference between this approach and that of [4] is that there are only n such insertions and
that there are canonical locations, i.e. the locations of these operators are not free parameters.
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we see that L†,M † have poles of order wi+3
2 , and so the divisors

∆− = div(L†) +
n∑
i=1

wi + 3
2 zi , ∆+ = div(M †) +

n∑
i=1

wi + 3
2 zi , (A.37)

have degree

deg(∆±) =
n∑
i=1

wi + 3
2 + 3g − 3 = N + 2(n+ 2g − 2) . (A.38)

That is, the fields L†,M † have 2(n+ 2g − 2) extra degrees of freedom each, which cannot
be constrained by the Ward identities.

Another way to see this is to consider the definitions

L† = φ1√
∂Γ

, M † = Γφ2√
∂Γ

, (A.39)

where φ1, φ2 ∈ H0(K2,Σ) are quadratic differentials on the worldsheet. In order for L†,M †
to have poles of order wi+3

2 at z = zi, we need that φ1, φ2 have double poles at those
locations. That is,

φ1, φ2 ∼
(dz)2

(z − zi)2 + · · · . (A.40)

In terms of divisors, we can define

D− = div(φ1) + 2
n∑
i=1

zi , D+ = div(φ2) + 2
n∑
i=1

zi , (A.41)

which have degree
deg(D±) = 2(n+ 2g − 2) . (A.42)

That is, the ‘extra’ degrees of freedom we cannot solve for are contained in the quadratic
differentials φ1, φ2.

A.8 Including fermions

Finally, for completion, we describe how the full supersymmetric theory works. We include,
in addition to the bosonic fields (λ, µ) and (µ†, λ†) a pair of free fermions ψa of weight
h = −1

2 and their canonical conjugates (ψ†)a of weight h = 3
2 with a = 1, 2. Specifically, we

have the OPEs
ψa(z)(ψ†)b(w) ∼ δab

z − w
. (A.43)

The chiral half of the theory has the action

S =
∫

(λ∂̄µ† + µ∂̄λ† + ψa∂̄(ψ†)a) . (A.44)

The central charge of the full theory is given by c = 0, since the bosonic and fermionic
parts of the theory are identical except for their statistics. The psu(1, 1|2)1 model is then
obtained by gauging the symmetry

(λ, µ)→ α(λ, µ) , (µ†, λ†)→ α−1(µ†, λ†) ,
ψa → αψa , (ψ†)a → α−1(ψ†)a .

(A.45)
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This symmetry is generated by the current

Z = 1
2
(
λ†µ+ µ†λ+ ψa(ψ†)a

)
, (A.46)

and the construction defined here is related to that of [2, 4] via the twist

Tnew = Told + 2∂Z . (A.47)

Since Z is null, this twist does not change the conformal weight of the gauged psu(1, 1|2)1
worldsheet theory, and thus it is still critical once one includes the T4 and ghost contributions.
Unlike in the bosonic case, the conservation of Z is not anomalous, but the conservation of
the conjugate current

Y = 1
2
(
λ†µ+ µ†λ− ψa(ψ†a)

)
(A.48)

is anomalous.
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