Trajectory Optimization Framework for Rehabilitation Robots - Supplementary Material

Model

Author(s):

Sommerhalder, Michael (iD; Zimmermann, Yves (D); Simovic, Leonardo; Hutter, Marco (D) Wolf, Peter (D); Riener, Robert

Publication date:

2023-05-23

Permanent link:

https://doi.org/10.3929/ethz-b-000612984

Rights / license:

In Copyright - Non-Commercial Use Permitted

Trajectory Optimization Framework for Rehabilitation Robots with Multi-Workspace Objectives and Constraints Supplementary Material

Michael Sommerhalder*,1 and Yves Zimmermann*,1,2, Leonardo Simovic ${ }^{1}$, Marco Hutter ${ }^{2}$, Peter Wolf ${ }^{1}$, Robert Riener ${ }^{1,3}$

I. Hybrid Differentiation

To calculate the higher-order derivatives of the parameterization, a linear combination between forward and backward finite difference coefficients c of precision 2 was applied [?]. The forward coefficients are:

$$
\begin{align*}
& \boldsymbol{c}_{F 0}=\{1\} \\
& \boldsymbol{c}_{F 1}=\{-1.5,2,-0.5\} \\
& \boldsymbol{c}_{F 2}=\{2,-5,4,-1\} \tag{1}\\
& \boldsymbol{c}_{F 3}=\{-2.5,9,-12,7,-1.5\}
\end{align*}
$$

And the backward coefficients:

$$
\begin{align*}
& \boldsymbol{c}_{B 0}=\{1\} \\
& \boldsymbol{c}_{B 1}=\{0.5,-2,1.5\} \tag{2}\\
& \boldsymbol{c}_{B 2}=\{-1,4,-5,2\} \\
& \boldsymbol{c}_{B 3}=\{1.5,-7,12,-9,2.5\}
\end{align*}
$$

The hybrid differentiation function results in:

$$
\begin{align*}
\left(\frac{\boldsymbol{\delta}^{j} \boldsymbol{q}}{\boldsymbol{\delta}^{j_{t}}}\right)_{k} & =f_{j}\left(\boldsymbol{q}_{k-j-1}, \ldots, \boldsymbol{q}_{k+j+1}\right) \\
& = \begin{cases}A, & \text { if } k<j+1 \\
B, & \text { if } k>N-j-1 \\
\alpha A+\beta B, & \text { else }\end{cases} \tag{3}\\
\beta & =\frac{k-j-1}{N-2 j-2}, \quad \alpha=1-\beta \\
A & =\boldsymbol{c}_{F j}\left[\boldsymbol{q}_{k}, \ldots, \boldsymbol{q}_{k+j+1}\right]^{T} \\
B & =\boldsymbol{c}_{B j}\left[\boldsymbol{q}_{k-j-1}, \ldots, \boldsymbol{q}_{k}\right]^{T}
\end{align*}
$$

The parameterization derivative can also be expressed in dense form with matrix D_{j}, containing the corresponding forward and backward coefficients as elements.
II. CJC to HND Transformation ($\chi_{\text {CJC }}^{\mathrm{HND}}$)

The transformation from CJC and HND can be calculated via forward kinematics. In the following, these abbreviations

[^0]are used for rotations in 3D-space:
\[

$$
\begin{align*}
& \boldsymbol{R}_{x}(\theta):=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right) \\
& \boldsymbol{R}_{y}(\theta):=\left(\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right) \tag{4}\\
& \boldsymbol{R}_{z}(\theta):=\left(\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right)
\end{align*}
$$
\]

The rotation from the torso fixed system to the hand can be calculated as a series of consecutive rotations:

$$
\begin{align*}
\boldsymbol{R}_{\mathrm{POE}} & =\boldsymbol{R}_{z}\left(q_{\mathrm{POE}}\right) \\
\boldsymbol{R}_{\mathrm{AOE}} & =\boldsymbol{R}_{\mathrm{POE}} \boldsymbol{R}_{y}\left(-\frac{\pi}{2}\right) \boldsymbol{R}_{z}\left(q_{\mathrm{AOE}}\right) \\
\boldsymbol{R}_{\mathrm{IER}} & =\boldsymbol{R}_{\mathrm{AOE}} \boldsymbol{R}_{y}\left(-\frac{\pi}{2}\right) \boldsymbol{R}_{z}\left(q_{\mathrm{IER}}\right) \\
\boldsymbol{R}_{\mathrm{EFE}} & =\boldsymbol{R}_{\mathrm{IER}} \boldsymbol{R}_{y}\left(-\frac{\pi}{2}\right) \boldsymbol{R}_{x}\left(-\frac{\pi}{2}\right) \boldsymbol{R}_{z}\left(q_{\mathrm{EFE}}\right) \\
\boldsymbol{R}_{\mathrm{WPS}} & =\boldsymbol{R}_{\mathrm{EFE}} \boldsymbol{R}_{y}\left(\frac{\pi}{2}\right) \boldsymbol{R}_{z}\left(q_{\mathrm{WPS}}\right) \tag{5}\\
\boldsymbol{R}_{\mathrm{WFE}} & =\boldsymbol{R}_{\mathrm{WPS}} \boldsymbol{R}_{x}\left(\frac{\pi}{2}\right) \boldsymbol{R}_{z}\left(q_{\mathrm{WFE}}\right) \\
\boldsymbol{R}_{\mathrm{WUR}} & =\boldsymbol{R}_{\mathrm{WFE}} \boldsymbol{R}_{y}\left(-\frac{\pi}{2}\right) \boldsymbol{R}_{z}\left(q_{\mathrm{WUR}}\right) \\
\boldsymbol{R}_{\mathrm{HND}} & =\boldsymbol{R}_{\mathrm{WUR}} \boldsymbol{R}_{x}(\pi) \boldsymbol{R}_{z}\left(-\frac{\pi}{2}\right)
\end{align*}
$$

And the corresponding hand coordinates w.r.t. the glenohumeral joint in world coordinates:

$$
\begin{gather*}
\boldsymbol{p}_{\mathrm{UA}}=\boldsymbol{R}_{\mathrm{IER}}\left(\begin{array}{c}
0 \\
0 \\
l_{\mathrm{UA}}
\end{array}\right) \\
\boldsymbol{p}_{\mathrm{FA}}=\boldsymbol{p}_{\mathrm{UA}}+\boldsymbol{R}_{\mathrm{EFE}}\left(\begin{array}{c}
l_{\mathrm{FA}} \\
0 \\
0
\end{array}\right) \tag{6}\\
\boldsymbol{p}_{\mathrm{HND}}=\boldsymbol{p}_{\mathrm{FA}}+\boldsymbol{R}_{\mathrm{WUR}}\left(\begin{array}{c}
0 \\
\frac{l_{\mathrm{WR}}}{2} \\
0
\end{array}\right)
\end{gather*}
$$

Here, l_{UA} is the upper arm length, l_{FA} is the forearm length and l_{WR} is the wrist length of the patient. Further, the elbow
swivel angle ϕ is calculated as follows:

$$
\begin{align*}
& r=\frac{1}{1+e^{-1000(\alpha-0.01)}}, \quad \alpha=1-\frac{\left|\boldsymbol{u}_{z} \cdot \boldsymbol{p}_{\mathrm{HND}}\right|}{\left\|\boldsymbol{p}_{\mathrm{HND}}\right\|} \\
& \boldsymbol{n}=r\left(\boldsymbol{u}_{z} \times \boldsymbol{p}_{\mathrm{HND}}\right)+(1-r) \boldsymbol{u}_{x} \tag{7}\\
& \phi=\operatorname{acos}\left(\frac{\boldsymbol{n} \cdot\left(\boldsymbol{R}_{\mathrm{EFE}} \boldsymbol{u}_{z}\right)}{\|\boldsymbol{n}\| \cdot\left\|\boldsymbol{R}_{\mathrm{EFE}} \boldsymbol{u}_{z}\right\|}\right),
\end{align*}
$$

where r estimates the elbow condition to prevent singularities when the arm is fully extended. \boldsymbol{u}_{x} and \boldsymbol{u}_{z} are unit vectors in x and z direction respectively. The final HND coordinates result in:

$$
\left(\begin{array}{c}
\boldsymbol{p}_{\mathrm{HND}, x} \tag{8}\\
\boldsymbol{p}_{\mathrm{HND}, y} \\
\boldsymbol{p}_{\mathrm{HND}, z} \\
\phi \\
Q\left(\boldsymbol{R}_{\mathrm{HND}}\right)_{w} \\
Q\left(\boldsymbol{R}_{\mathrm{HND}}\right)_{x} \\
Q\left(\boldsymbol{R}_{\mathrm{HND}}\right)_{y} \\
Q\left(\boldsymbol{R}_{\mathrm{HND}}\right)_{z}
\end{array}\right)
$$

with Q being the conversion from rotation matrix to quaternion.

III. HND to CJC Transformation ($\chi_{\mathrm{HND}}^{\mathrm{CJC}}$)

The normal vector of the elbow triangle \boldsymbol{n} can be determined by the following system of equations

$$
\left\{\begin{array}{l}
\boldsymbol{n} \cdot \boldsymbol{z}_{n}=\cos (\theta) \tag{9}\\
\boldsymbol{n} \cdot \boldsymbol{p}_{\mathrm{FA}}=0 \\
\|\boldsymbol{n}\|=1
\end{array}\right.
$$

which, when solving analytically, yields two solutions \boldsymbol{n}_{1} and n_{2} for a possible positive and negative θ :

$$
\begin{align*}
a & =\frac{\boldsymbol{p}_{\mathrm{FA}, \mathrm{y}} z_{n, z}-\boldsymbol{p}_{\mathrm{FA}, \mathrm{z}} z_{n, y}}{\boldsymbol{p}_{\mathrm{FA}, \mathrm{x}} z_{n, y}-\boldsymbol{p}_{\mathrm{FA}, \mathrm{y}} z_{n, x}} \\
b & =\frac{-\cos (\theta) \boldsymbol{p}_{\mathrm{FA}, \mathrm{y}}}{\boldsymbol{p}_{\mathrm{FA}, \mathrm{x}} z_{n, y}-\boldsymbol{p}_{\mathrm{FA}, \mathrm{y}} z_{n, x}} \\
c & =\frac{\boldsymbol{p}_{\mathrm{FA}, z} z_{n, x}-\boldsymbol{p}_{\mathrm{FA}, \mathrm{x}} z_{n, z}}{\boldsymbol{p}_{\mathrm{FA}, \mathrm{x}} z_{n, y}-\boldsymbol{p}_{\mathrm{FA}, \mathrm{y}} z_{n, x}} \\
d & =\frac{\cos (\theta) \boldsymbol{p}_{\mathrm{FA}, \mathrm{x}}}{\boldsymbol{p}_{\mathrm{FA}, \mathrm{x}} z_{n, y}-\boldsymbol{p}_{\mathrm{FA}, \mathrm{y}} z_{n, x}} \tag{10}\\
e & =\sqrt{c^{2}\left(1+c^{2}-d^{2}-b^{2}\left(c^{2}+1\right)\right)} \\
\boldsymbol{n}_{1, x} & =b, \quad \boldsymbol{n}_{1, y}=\frac{d-e}{c^{2}+1}, \quad \boldsymbol{n}_{1, z}=-\frac{e+c^{2} d}{c^{3}+c} \\
\boldsymbol{n}_{2, x} & =b, \quad \boldsymbol{n}_{2, y}=\frac{d+e}{c^{2}+1}, \quad \boldsymbol{n}_{2, z}=\frac{e-c^{2} d}{c^{3}+c}
\end{align*}
$$

Further, the upper arm position $\boldsymbol{p}_{\mathrm{UA}}$ can be found:

$$
\begin{align*}
r & =\frac{\boldsymbol{n} \times \boldsymbol{p}_{\mathrm{FA}}}{\left\|\boldsymbol{n} \times \boldsymbol{p}_{\mathrm{FA}}\right\|} \cdot \frac{\sqrt{s\left(s-l_{\mathrm{FA}}\right)\left(s-l_{\mathrm{UA}}\right)\left(s-\left\|\boldsymbol{p}_{\mathrm{FA}}\right\|\right)}}{2\left\|\boldsymbol{p}_{\mathrm{FA}}\right\|}, \\
h & =\frac{\boldsymbol{p}_{\mathrm{FA}}}{\left\|\boldsymbol{p}_{\mathrm{FA}}\right\|} \cdot \frac{\sqrt{s\left(s-l_{\mathrm{FA}}\right)\left(s-l_{\mathrm{UA}}\right)\left(s-\left\|\boldsymbol{p}_{\mathrm{FA}}\right\|\right)}}{2\left\|\boldsymbol{p}_{\mathrm{FA}}\right\| \cdot \tan \left(\operatorname{acos}\left(\frac{l_{\mathrm{UA}}+\left\|\boldsymbol{p}_{\mathrm{FA}}\right\|^{2}-l_{\mathrm{FA}}^{2}}{2 l_{\mathrm{UA}}\left\|\boldsymbol{p}_{\mathrm{FA}}\right\|}\right)\right)}, \\
\boldsymbol{p}_{\mathrm{UA}} & =r+h \tag{11}
\end{align*}
$$

Having the elbow position, the first two clinical joints can be determined:

$$
\begin{align*}
& q_{\mathrm{POE}}=\operatorname{atan} 2\left(\left(\frac{\boldsymbol{p}_{\mathrm{UA}}}{l_{\mathrm{UA}}}\right)_{y},\left(\frac{\boldsymbol{p}_{\mathrm{UA}}}{l_{\mathrm{UA}}}\right)_{x}\right) \tag{12}\\
& q_{\mathrm{AOE}}=\operatorname{acos}\left(-\frac{\boldsymbol{p}_{\mathrm{UA}}}{l_{\mathrm{UA}}} \cdot \boldsymbol{e}_{z}\right)
\end{align*}
$$

The rotation from the torso fixed system to the AOE frame $\boldsymbol{R}_{\text {AOE }}$ can be calculated as seen in eq. (5). Next, the third and fourth clinical joints can be determined:

$$
\begin{align*}
\boldsymbol{u} & =\boldsymbol{R}_{\mathrm{AOE}}^{T} \boldsymbol{p}_{\mathrm{FA}} \\
q_{\mathrm{IER}} & =\operatorname{atan} 2\left(\boldsymbol{u}_{z}, \boldsymbol{u}_{y}\right) \tag{13}\\
q_{\mathrm{EFE}} & =\operatorname{acos}\left(\frac{l_{\mathrm{FA}}^{2}+l_{\mathrm{UA}}^{2}-\left\|\mathbf{p}_{\mathrm{FA}}\right\|^{2}}{2 l_{\mathrm{FA}} l_{\mathrm{UA}}}\right)-\pi
\end{align*}
$$

The wrist joints can be determined by finding the Euler ZYX coordinates from the resulting rotation matrix:

$$
\begin{equation*}
R_{D}=\mathbf{R}_{\mathrm{EFE}}^{T} \mathbf{R}_{\mathrm{WUR}} \tag{14}
\end{equation*}
$$

[^0]: *The first two authors contributed equally to this paper.
 ${ }^{1}$ The author is with Sensory-Motor Systems Lab, ETH Zurich, Switzerland. somichae@ethz.ch
 ${ }^{2}$ The author is with Robotic Systems Lab, ETH Zurich, Switzerland.
 ${ }^{3}$ The author is with Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland. rriener@ethz.ch
 This research was supported in part by Innosuisse, the Swiss Innovation Agency, ID 33759.1 IP-LS.

