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While the old academic model addressed primarily the intellectual aspects of learning, the prevailing 

model suggests that we learn with our mind, heart and body. This more holistic view underscores the 

importance of considering all of the learner’s issues. 

—Eric Jensen, Completing the Puzzle 
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Abstract 

This study makes three interrelated contributions pertinent to neurocognition and 

neurophysiology in learning. These contributions were carried out in the form of three projects 

that examined the neural and physiological basis of learning mathematics.  

The first project is a systematic investigation of neural and physiological measurements 

taken while learning. A systematic review was conducted of previous literature documenting 

heartbeats and brain oscillations during different learning processes.  

The second project analyzes neural differences between math experts and novices 

making sense of mathematical demonstrations. This project enabled the investigation of the 

brain oscillation differences between successful (expert) and unsuccessful (novice) performers. 

As the expert-novice literature is well-established, this study allowed for novel insights on the 

processes of advanced cognition through a detailed neural analysis. In addition to the neural 

differences, the second project also enabled the analysis of the differences in heartrates and 

heartrate variability between math experts and novices when exposed to mathematical 

demonstrations.  

The third project is an investigation of the neural and physiological basis of learning 

through problem-solving followed by instruction (PS-I) as entailed in Productive Failure (PF). 

In a PS-I, learners are intentionally confronted with moments of difficulty, and even failure, as 

a means of preparation for improved learning from future instruction. Recent research has 

indicated cognitive mechanisms explaining why students learn better after encountering 

difficulties; however, the neural and physiological mechanisms underpinning this process have 

yet to be explored. This project employed an established PS-I design for the learning of a 

mathematical concept (standard deviation) while neural and physiological data was collected. 

Because moments of difficulty are not just metaphorically but literally felt in the heart, HRV 

may be a promising methodology for exploring the success of instructional designs that 

introduce desirable difficulties, as in PS-I.  

Taken together, these projects allow us to build a deeper explanatory basis of advanced 

mathematical cognition and learning by exploring the connections between cognition, neural 

activity, and physiological activity. 

  



 iv 

Résumé 

Cette thèse apporte trois contributions interdépendantes pertinentes pour la neurocognition et 

la neurophysiologie dans l'apprentissage. Ces contributions ont pris la forme de trois projets 

qui ont étudié les bases neuronales et physiologiques de l'apprentissage des mathématiques.  

Le premier projet est une étude systématique des mesures neuronales et physiologiques 

lors de l'apprentissage. Une revue systématique de la littérature antérieure a été effectuée, 

documentant les battements cardiaques et les processus cérébraux pendant différents processus 

d'apprentissage. 

Le deuxième projet analyse les différences neuronales entre les experts et les novices 

en mathématiques qui analysent des démonstrations mathématiques. Ce projet m'a permis 

d'étudier les différences d'oscillation cérébrale entre les sujets qui réussissent (experts) et ceux 

qui échouent (novices). La littérature spécialisée des études experts-novice étant bien établie, 

cette étude a permis, grâce à une analyse neuronale détaillée, d'apporter de nouveaux éclairages 

sur les processus de la cognition avancée. En plus des différences neuronales, le deuxième 

projet m'a également permis d'analyser les différences de battements cardiaques et de 

variabilité des battements cardiaques entre les experts en mathématiques et les novices pendant 

l'analyse de démonstrations mathématiques. 

Le troisième projet est une étude de la base neuronale et physiologique de 

l'apprentissage par la résolution de problèmes avant l'instruction (PS-I), comme c'est le cas 

dans Productive Failure (PF). Dans une conception PS-I, les apprenants sont délibérément 

confrontés à des moments d'échec afin de se préparer à un apprentissage amélioré à partir de 

l'enseignement futur. Des recherches antérieures ont mis en évidence des mécanismes cognitifs 

qui expliquent pourquoi les élèves apprennent mieux après avoir rencontré des difficultés ; 

cependant, les mécanismes neuronaux et physiologiques qui sous-tendent ce processus 

restaient à explorer. Ce projet a utilisé une conception PS-I bien établie pour l'apprentissage 

d'un concept mathématique (écart-type), tout en recueillant des données neuronales et 

physiologiques. 

En résumé, cette thèse m'a permis de construire une base d'explication plus profonde 

de la cognition mathématique et des processus d'apprentissage en examinant les liens entre la 

cognition, l'activité neuronale et physiologique. 
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Chapter 1 

 Introduction 

Neurocognition, Neurophysiology, and Mathematical Cognition 

Neurocognition and neurophysiology are two disciplines that broadly seek to study, 

investigate, and understand, through different methodologies, the structures of the brain and its 

correlation with the ability of the brain to learn. Learning involves forming and strengthening 

neural connections and networks (e.g. Holtmaat & Caroni, 2016), from a cognitive 

neuroscience perspective. In addition to neural measurements, heart rate variability (HRV) 

analysis is emerging as a measure of learning-related cognitive functions (Forte et al., 2019). 

In this sense, research confirms what we intuitively sense: the palpitations of the heart are 

related to excitement and anxiety we sometimes associate with everyday problem solving. Yet 

recent findings indicate that HRV may act as an objective measure even in advanced problem 

solving, such as when generating solutions to complex problems. HRV is thus a promising yet 

underutilized measurement in the cognitive and learning sciences field. My doctoral work aims 

to systematically investigate heartbeats in the context of advanced mathematical cognition and 

learning.  

In addition to heartbeat measurements, I collected measures of neural brain activity 

(Electroencephalography; EEG) during the learning process. Two different approaches were 

put in place, aiming to look at the neural signature of learning. The first study was based on 

math cognition with experts versus novices making sense of mathematical demonstrations. The 

second study evaluated the neural basis of learning through investigating the neural signature 

of learning through problem-solving followed by instruction (PS-I). For both studies, we were 

interested in the neural brain activity, which was recorded via 

Electroencephalography/Electroencephalogram (EEG). EEG is the record of the electric 

signals generated by the action of brain cells and measured by means of electrodes that are 

placed on the scalp (Blinowska & Durka, 2006).  

The learning of mathematics was chosen as the basis of this study. The importance of 

mathematics is not only crucial for scientists or engineers but for every individual as it helps 

develop valuable skills, such as analyzing data, or describing and understanding phenomena 

(Niss, 1994). Because some people may have difficulties learning mathematical and abstract 
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concepts, the present study is essential in understanding if these learning challenges have 

references to the brain. 

The first EEG study was based on math cognition, using university students 

participating in a series of challenges with experts versus novices making sense of 

mathematical demonstrations. The study analyzed the differences between novices and experts 

in terms of the frontal alpha and theta brain activity. The differences in heart rates were also 

considered. The main goal for this first study is to see the differences in the heartbeat and the 

neural brain between experts and novices while exposed to mathematical proofs and whether 

and how stress and nervousness could affect the heartbeat of the novices and experts. 

The second study evaluated the neurophysiological basis of the learning design called 

problem-solving followed by instruction (PS-I). Studies investigating PS-I have been 

suggesting cognitive mechanisms involved, but the neural signature has not yet been studied. 

This study focuses on the latter via EEG. PS-I is a learning design that entails conditions for 

learners to persist in generating and exploring representations and solution methods for solving 

complex problems, prior to formal instructions. Such a process may initially lead to failure 

(i.e., failing to generate canonical results). The heartbeat and neural differences between the 

different phases that students go through when being exposed to problems without having any 

instruction and background, compared to students who are getting the instruction, were 

analyzed. 

Investigating physiological responses (heartbeats and brain waves) to teaching methods 

is indirect but might provide a less subjective measure as a proxy for cognitive engagement. 

The goal is to contribute to cognitive neuroscience and education research by translating the 

neuro-physiological mechanisms of learning to educational practice and understanding the 

effects of education and, more specifically, instructional designs on the learner’s brain. By 

translating insights about the heart rate as an indirect and more objective measure of cognitive 

load, learning could be made more efficient by improving the student’s mindfulness, inner 

balance, and calmness (e.g., lowering the heart rate).  

Neuroscience and Education 

Education is essential to any individual. Education impacts economic, political, and cultural 

development in today’s modernizing world (Chabbott & Ramirez, 2000). Empirical studies in 

the field of education show that there is a positive relationship between the forms of education 

and an individual’s economic, political, and cultural development (Chabbott & Ramirez, 2000). 
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Therefore, research in the field of education has become increasingly important.  

Education has been referred to helping and increasing the productivity of human labor 

through acquiring the necessary knowledge. A general rationale constructs education as a 

human right. Education has been linked to the basis for human beings to improve their skills, 

which then allows them to participate in the economy, politics, and culture of society. 

Education and learning are tied to the notions of equality and human rights (Chabbott & 

Ramirez, 2000).  

Neuroscience has become increasingly important during the past century, as many 

aspects of physiology, biochemistry, and the structure of the vertebrate brain have been 

uncovered (Goswami, 2004). Neuroscience is concerned with studying the cognitive, 

attentional, and emotional (among other) mechanisms, which are important when studying 

learning processes and education. The correlation between the brain, education, and the 

learning process can be studied with neuroimaging techniques, which allow us to study the 

human brain at work in vivo. Neuroimaging allows us to deepen our understanding of learning 

processes, such as solving mathematical problems, reasoning, reading, or language processing. 

Neuroscience makes it possible to explore educational questions with an increased 

understanding of the brain functions underlying learning processes (Goswami, 2004).  

Investigation on brain and cognition has merged into the field of cognitive 

neuroscience. Cognitive neuroscience is concerned with studying the nerve cells and how 

neurons receive and transmit information. This study has provided a new framework, which 

allows us to study memory, perception, language, mathematical cognition, and other cognitive 

processes (Milner, Squire & Kandel, 1998). Cognitive neuroscience might therefore have an 

essential influence on research in learning and education, including mathematics education, as 

it contributes to our understanding of mathematical cognition. The study of cognitive 

neuroscience can generate findings about learning that cannot be uncovered solely with 

behavioral research. The interdisciplinary field of education and neuroscience therefore has 

opened a door to reveal the underlying neural – as well as physiological - mechanisms of 

learning (De Smedt et al., 2010).  

Doctoral Project 

This doctoral work aims to systematically investigate heartbeats and brain measurements in the 

context of advanced mathematical cognition and learning. The first project (Chapter 2) was a 

systematic review on heartbeat measurements and brain oscillations during the learning 
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process. The second project (Chapter 3) was the analysis of neural differences between novices 

and experts making sense of mathematical proofs. Neural differences in frontal alpha and theta 

activity between successful (experts) and unsuccessful performers (novices) were documented 

and analyzed. The second project explored what an expert's neurophysiology looks like and 

what effects learning mathematics has on successful learners' brains. The third project (Chapter 

4) of my doctoral work is the extension of EEG and ECG analysis to a more complex scenario 

involving learning from problem-solving followed by instruction (PS-I). Participants in this 

EEG and ECG study are intentionally confronted with moments of difficulty, and even failure, 

to prepare them to learn better from future instruction. In the third study, previous research was 

extended by including physiological and neural measures. During my doctoral work, I 

developed and documented a deeper explanatory basis of advanced mathematical cognition 

and learning through exploring the connections between cognition, heartbeats, and neural 

activity. The overall discussion (Chapter 5) highlights the main findings and possible future 

directions in the field of neurocognition and neurophysiology in learning.  
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Chapter 2 

 Neural and Physiological Mechanisms During the 

Learning Process: A Systematic Review 

Overview 

Physiological signals, for example heartbeats, enable, compete with, or inhibit, information 

processing across psychological domains (Critchley & Garfinkel, 2018). Physiological signals 

have also been used as a means of measuring changes in cognition and learning (Cranford et 

al., 2014). However, the connection of heartbeats and brain oscillations in the learning context 

is unclear. This systematic review aims to analyze neural and physiological mechanisms during 

the learning process, focusing on different brain wave frequencies (neural mechanisms) and 

heart rate variability (physiological mechanisms). 

The systematic review process was conducted according to the PRISMA-Guidelines. 

The inclusion criteria were that studies were published in English, measurement of brain 

oscillations along with heart rate variability (HRV) during a learning process. Learning 

processes are defined as tasks requiring sustained attention, working memory, memory 

retrieval, or problem-solving. Exclusion criteria: medical conditions, dementia, psychiatric 

disorders, strokes, and traumatic brain injury.  

In most studies, heart rate change was positively related to the cognitive measures of 

learning. A higher resting state HRV has been observed to predict better cognitive performance 

in the considered learning process. Moreover, different brain oscillation frequencies (alpha, 

beta, theta, delta, gamma) are associated with different learning processes, including problem-

solving, having an insight, or memory retrieval. Therefore, this review serves as an overview 

and a summary of the neural and physiological signature underlying learning.  

The results highlight the influence of HRV on the learning process and the different 

brain oscillation frequencies that are responsible for different learning processes. There is a 

great range of interest on this topic, but there are no unifying results yet. This might be because 

research in neurophysiology and learning domains are still at an early stage. Despite this, HRV 

could be considered a promising measurement in learning processes in populations without 

medical disorders. From a physiological perspective, HRV has been linked to predicting 

performance on cognitive processes involved in learning. From a neurocognitive perspective, 
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brain frequencies have been shown to serve as indices for specific brain activity related to 

learning processes.  

Introduction 

Heart Rate Variability 

Dynamic changes in the body’s physiology influence cognitive processes (Critchley & 

Garfinkel, 2018), but research in neurophysiology and specific learning processes, including 

for example memory, is still in its infancy. It is known that physiological signals, such as 

heartbeats, selectively facilitate, compete with, or inhibit information processing (Critchley & 

Garfinkel, 2018). While we know that physiological signals influence cognition, we still know 

little about the specific association between physiology and learning processes. 

One of the physiological correlates of cognitive functioning is heart rate variability 

(HRV). It reflects the oscillations in the interval between consecutive heartbeats, which can be 

measured in milliseconds (Malik, 1996; Thayer and Lane, 2000; Reyes del Paso et al., 2013). 

Heart rate variability analysis can be conducted in three different domains: time, frequency, 

and non-linear analyses, whereas the time-domain has been seen as a preferred index of the 

vagal tone (e.g. Laborde et al., 2017).  

For the time-domain, either the standard deviation of all R–R intervals, the time elapsed 

between two successive R-peaks of the heartbeats, is calculated, which reveals the components 

responsible for variability in the recording period (Malik, 1996); or the root mean square of 

successive differences (RMSSD), which would reflect the so-called vagal tone (Thayer and 

Lane, 2000; Kleiger et al., 2005; Shaffer et al., 2014; Laborde et al., 2017). More specifically, 

the RMSSD in heartbeat periods takes into consideration each successive time difference 

between heartbeats in milliseconds. Each of the values is squared, the result is averaged, then 

the square root of the total is attained. The RMSSD has been seen as a good index of the vagal 

cardiac control (e.g. Laborde et al., 2017).  

Heart rate variability and cognitive processes related to learning processes 

Higher HRV has been observed to be associated with higher emotional well-being, lower 

anxiety, and better emotion regulation (Mather & Thayer, 2018). Furthermore, as an emotion 

regulation strategy, attention allocation is related to HRV (Gross, 1998). In this sense, 

individuals with higher HRV have the capacity to quickly adjust cardiac influence to foster 

attentional engagement or disengagement with their sensory environment (Thayer & Lane, 
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2000). Higher emotional regulation and attentional regulation could lead to better learning 

processes, since the learner can focus on the to be learned subject by regulating anxiety and 

other feelings and giving attention to the task at hand. Previous research has investigated the 

association of different heartbeat measurements and cognitive processing of higher order 

cognitive skills such as recalling and memorizing facts (Park & Thayer, 2014; Mather & 

Thayer, 2018). By having a closer look on these studies, we can infer the interplay between 

heartbeats and the learning process. 

Learning has been defined as ontogenetic adaptation, in other words as changes in the 

behavior of an organism that result from regularities in the environment of the organism (De 

Houwer et al., 2013). According to Houwer and colleagues (2013), this functional definition 

of learning serves to enhance research in cognitive learning. Since learning involves different 

cognitive processes (e.g. memory, exposure to novelty, or having an insight), it follows that we 

refer to it as learning processes. In learning processes, heart rate has been used as means of 

measuring cognitive load (Cranford et al., 2014), how different levels of challenge and 

difficulty may give rise to different emotional states, including boredom, engagement or 

anxiety (Chanel et al., 2008), and as a further indicator of the level of perceived challenge and 

difficulty (Hjortskov et al., 2004). These findings suggest that heartbeat measurements may 

correspond to different learning mechanisms. What we lack so far is an overview of the exact 

relationship between HRV components and the specific learning processes. When we talk 

about HRV components and cognition, it is important to take into consideration the cardiac 

vagal tone.  

The cardiac vagal tone can be referred to as the indicator of the relationship between 

HRV and cognitive processes that are involved in learning (Hansen et al., 2003). The vagus 

nerve is a nerve that is composed of efferent fibers that send signals from the brain to the body. 

Further, it also sends sensory fibers with information from the body to the brain (Howland, 

2014). The cardiac vagal tone is referred to the activity of the vagus nerve. In this sense, the 

cardiac vagal tone has been linked to cognitive control (e.g. Porges, 1995; Hansen et al., 2003; 

Duschek et al., 2009). This process is influenced by the so-called sympathetic and 

parasympathetic cardiac activity. While the sympathetic activity is associated with an 

acceleration of heart rate, the parasympathetic activity slows the heart rate (e.g. Pfeifer et al., 

1983). Thus, sympathetic and parasympathetic influences are essential for us individuals to 

successfully adapt to changing environmental demands (Porges, 1995; Thayer and Lane, 2000, 

2009). Individuals who have a reduction in vagal control could have a lack of ability to respond 

flexibly to changing demands. This may limit the individuals’ ability to generate appropriate 
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responses to external stimuli. Even though established theories indicate a relationship between 

HRV and cognition, the relationship between HRV and learning processes has yet been 

understudied. We therefore aimed to foster the understanding of physiological signatures and 

how they may correspond to specific learning processes.   

Brain oscillations during the learning processes 

To investigate how natural, varying behavior is guided by complex neural dynamics, 

researchers apply neuroimaging methods, for example electroencephalography (EEG) (Makeig 

et al., 2009). EEG records the integrated and synchronized activity of pyramidal neurons in the 

cerebral cortex, which are composed of oscillations in various frequencies (delta, theta, alpha, 

beta, and gamma; Klimesch et al., 2005). These frequencies serve as indices for specific brain 

activity related to cognitive processes, which are involved in learning (attention and memory; 

Basar, 1999).  

EEG research shows how different changes in brain oscillations are related to different 

cognitive and learning processes. Changes in alpha or theta waves can give information about 

task difficulty, sustained attention, or cognitive load (Basar, 1999; Klimesch et al., 2005). 

Further EEG research shows that while problem-solving and having an insight, gamma 

oscillations are enhanced in right prefrontal regions (Rosen & Reiner, 2017), in right anterior 

superior temporal gyrus (Jung-Beeman et al., 2004), and fronto-central regions (Sheth et al., 

2009). Higher gamma activity in the right prefrontal cortex has been associated with the 

restructuring stage of insight (Rosen & Reiner, 2017). Thus, when having insight, there seems 

to be differences in prefrontal cortex. 

Moreover, alpha oscillations are associated with semantic information processing, with 

searching, accessing, and retrieving information from long-term memory (Klimesch et al., 

1997). Memory codes are retrieved via longitudinal pathways linking thalamic nuclei - 

neuronal cell bodies that consist of the thalamus - with the cortex, whereas alpha is the 

predominant rhythm reflecting the activity of these pathways. Based on that, researchers found 

that a higher alpha frequency was correlated to better long-term memory performance 

(Klimesch et al., 1997). There is evidence that indicates how different brain oscillations are 

associated with learning processes, for example alpha oscillations are associated with semantic 

information processing. This systematic review provides an overview of the different brain 

oscillations and how they may correspond to the specific learning processes.   

Altogether, the previous findings of heart rate variability and brain oscillations in 
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cognitive functioning related to the learning process suggest that there seems to be a 

relationship between HRV and learning and that various brain oscillations underly certain 

learning processes. In this systematic review, we reveal the exact relationship between HRV 

and the specific learning processes, as well as the different brain oscillation frequencies that 

underly learning processes. Therefore, this review allows us to understand the specific 

connections between cognition, heart rate variability and learning and provides us with an 

overview of these connections.  

Aims of the Systematic Review  

While previous research studies successfully observed that heartbeat measurements, such as 

HRV are related to cognition and learning, and that different brain oscillation frequencies may 

underly learning processes, an overview of the above mentioned connections is missing. More 

specifically, there seems to be a gap in the exact relationship between HRV, or brain oscillation 

frequencies and the underlying learning processes. The general aims of this systematic review 

of the literature is to analyze the relationship between heartbeat measurements and learning 

processes, focusing mainly on HRV. A second aim of the systematic review is the analysis of 

neural brain measurements in learning, focusing on the different brain oscillations. All studies 

reviewed are research experiments on neurocognition, neurophysiology and learning in the 

absence of affective dimensions and pathological aspects.  

Method 

The systematic review was conducted according to the PRISMA-Guidelines (Liberati et al., 

2009; Moher et al., 2009). We carried out a systematic analysis of the international literature 

by using PsychInfo (http://www.apa.org/psychinfo/), as well as Google Scholar. The key terms 

we used were as following: “heart rate variability”, “brain oscillations”, “learning”, “problem-

solving”, “memory”, “cognitive load”. We also entered a combination of those terms into the 

databased mentioned above. Articles were selected if they were published in peer-reviewed 

journals. Study selections were limited to academic publications in which the full text was 

published in English, and the study included human populations without age, gender, or 

ethnicity restrictions. Eligibility criteria was the inclusion of one or more cognitive measures 

and one or more of the measurements of HRV. We excluded studies that included participants 

with medical conditions, as any medical condition could potentially show abnormal HRV and 

thus influence the relationship between the cognitive domain and HRV. In other words, we 
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focused on HRV, brain oscillations, and learning studies that have been done on healthy 

participants.  

Data Collection 

For each study, we were interested in (1) author(s) and year of publication; (2) characteristics 

of participants (including age, years of education, gender); (3) type of HRV measures; (4) 

cognitive domain analyzed; and (5) nature and direction of the identified relationship. We 

based our interest regarding the data collection of the systematic review on the PICOS approach 

(Liberati et al., 2009). Please refer to the Appendix for a summary of the studies analyzed.  

Studies Undertaken 

We selected studies that included one of more learning processes, including memory, problem-

solving, and tasks which were investigated with neuroimaging methods to study underlying 

neural and physiological mechanisms. Our study search was restricted and limited to academic 

publications in peer-reviewed journals and published in English language. We excluded studies 

that included participants with any sort of diagnosis of psychiatric disorders or disability. 

Sixteen studies were finally incorporated in this systematic review analysis.  

RESULTS 

Data Selection 

The studies included in this review were carried out from 1986 to 2022, where the age of 

participants ranged from 18 years (Carroll, Turner & Hellawell, 1986; Jung-Beeman et al., 

2004; Guderian, Schott, Richardson-Klavehn and Düzel, 2009) to 90 years (Alessandrini et al., 

1997). The information regarding the gender of the participants was missing in some studies 

(Gellatly and Meyer, 1992; Sheth, Sandkühler, and Bhattacharya, 2009; Garfinkel et al., 2013; 

Cranford et al., 2014; Rosen and Reiner, 2017). The flowchart shows the number of studies 

identified in the database and examined by the authors. Please refer to the Appendix.  

Heart rate variability and learning processes 

We reviewed research studies to reveal a more detailed evaluation on the relationship between 

HRV and learning processes, focusing on studies that explicitly investigated a learning process 

(such as memory), and measured HRV. Six studies (Gellatly & Meyer, 1992; Alessandrini et 

al., 1997; Garfinkel et al., 2013; Cranford et al.,2014; Pham & Wang, 2016; Colzato et al., 
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2018) found a relationship between heart rate variability (HRV) and learning processes. 

Conversely, one study (Hjortskov et al., 2004) did not to find any correlation between HRV 

and learning processes. It is also worth mentioning that a study reported in Carroll, Turner and 

Hellawell (1986) found that the heart rate, or the difference between resting and heart rate 

levels, was sensitive to variations in difficulty level of the learning process at hand. More 

specifically, an easier condition elicited significantly less cardiac activity than the hard and the 

impossible conditions (Carroll, Turner & Hellawell, 1986).  

Results generated from the laboratory experiments conducted on 117 undergraduate 

participants emphasized on the fact that heart rate change was positively related to the cognitive 

and behavioral measures (Gellatly & Meyer, 1992). An important cardiovascular channel 

through which autonomic arousal impacts a cognitive function was established from the 

observations made by Garfinkel and colleagues (2013). In their study, the authors presented 

participants with words under limited attentional resources and time-locked to different phases 

of the cardiac cycle. They observed that when words were presented around systole (when the 

heart muscle contracts), memory was decreased compared to when the words were presented 

around diastole (when the heart muscle relaxes) (Garfinkel et al., 2013). While these results 

may highlight that there might be an important cardiovascular channel through with autonomic 

arousal impacts a cognitive functions, other studies have used heart rate in investigations 

including the cognitive load. 

Heart rate usage as a means of measuring changes in the cognitive load was addressed 

and validated in the research work presented by Cranford et al. (2014). In their study, heart rate 

changes were hypothesized as a valid measurement of cognitive load. Chemistry students were 

compared to faculty members when solving chemistry problems. The authors found that 

chemistry problems of higher complexity induced a greater change in heart rate than those that 

have been designed to be of lesser complexity (Cranford et al., 2014). Further studies have 

been conducted in HRV and learning, including for example task-switching. Colzato et al. 

(2018) found that higher resting-state HRV predicts better task-switching. More specifically, 

participants with higher resting-state HRV showed smaller switch costs (i.e. greater flexibility) 

than individuals with lower resting-state HRV (Colzato et al., 2018). This study confirmed that 

after examining neurovisceral integration model, which proposes the linking of HRV and 

prefrontal cortex activity via vagus nerve connecting heart and brain, on all the 90 participants 

that higher levels of vagally mediated resting-state HRV support and promote cognitive 

flexibility. Altogether, this provides us with a more detailed knowledge on the connections 

between heart rate variability, cognition and learning. See the Appendix for a summary of the 
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review on heart rate variability and learning processes.  

Brain oscillations during learning processes  

Previous research in the field has suggested that different brain oscillations are involved in 

specific learning processes, for example memory acquisition (e.g. Klimesch, Schack and 

Sauseng, 2005; Rosen & Reiner, 2017). Here, we report a detailed inspection of the studies that 

uncovered brain oscillations during learning processes. An association between brain 

oscillations and learning processes was reported in four studies (Jensen and Tesche, 2002; 

Jung-Beeman et al., 2004; Guderian, Schott, Richardson-Klavehn, Düzel, 2009; Rosen and 

Reiner, 2017). However, a notable and significant correlation between the brain oscillations 

and learning lacked in one study (Sheth, Sandkühler, & Bhattacharya, 2009).  

The research carried out by Jensen and Tesche, 2002 emphasized on the role between 

brain oscillations and learning highlighting the fact that brain oscillations in the theta band, 

generated in the frontal brain regions play a pivotal role in memory maintenance. Experiments 

conducted on functional magnetic resonance imaging (fMRI) and Electroencephalogram 

(EEG) revealed a relationship between brain oscillations and learning processes as 

demonstrated in the research work by Jung-Beeman et al. (2004). In this research work, the 

authors observed an increased activity in the right hemisphere anterior superior temporal gyrus, 

when the experiment was carried out using fMRI and on the other hand, a sudden burst of high-

frequency gamma-band neural activity was detected in the same area in the EEG, while the 

participants solved verbal problems with insight. Hence, it was concluded from this study that 

during comprehension the right anterior temporal area may be associated with making various 

connections across distantly related information. The findings using magnetoencephalographic 

recordings of brain activity reveal state-related aspects of memory formation in humans, and 

thereby brings forward approaches for improving memory through theta-related brain states 

(Guderian, Schott, Richardson-Klavehn, Düzel, 2009). Research further confirms that while 

solving spatial puzzle with insight neurological-cognitive processes and exclusive brain areas 

are required. It is noteworthy that specifically enhancement of right frontal gamma and beta 

band was observed while solving spatial puzzles with insight (Rosen and Reiner, 2017). 

According to Sheth, Sandkühler, & Bhattacharya, 2009, insight is represented by distinct 

spectral, spatial, and temporal patterns of neural activity related to cognitive processes 

(intrinsic to the problem itself) but not exclusively to one's subjective assessment of insight, 

thereby emphasizing on the fact that there is no significant relation between learning and brain 
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oscillations. Please refer to the Appendix for a summary of the review on brain oscillations 

during learning processes. 

Discussion 

The aim of this systematic review was to analyze the relationship between heartbeat 

measurements (1), in addition to brain oscillations (2) involved in learning processes. We had 

a closer look at the literature to understand the relationship between HRV and learning. Some 

studies (Gellatly & Meyer, 1992; Alessandrini et al., 1997; Garfinkel et al., 2013; Cranford et 

al., 2014; Pham & Wang, 2016; Colzato et al., 2018), have reported that there is a relationship 

between HRV and learning process. Those previous studies demonstrated that assigned goal 

difficulty affected heart rate, cognition, and task performance.  

More specifically, heart rate change was positively related to cognitive measures (such 

as memory), as well as behavioral measures (such as task performance) (e.g. Gellatly & Meyer, 

1992). The study by Cranford and colleagues (2014) – for example - suggests that problems 

that are of higher cognitive load induce a greater change in heart rate than those of lesser load. 

The literature suggests a cognitive–affective mechanism that may mediate goal-difficulty and 

performance relation. The findings reinforce the idea that heartbeat measurements are 

associated with cognitive processes involved in learning.  

The first laboratory studies have tried to identify the relationship between HRV and 

cognition and highlighted a positive relationship of heart rate change and cognitive measures 

(including memory processing, or problem-solving; e.g. Gellatly & Meyer, 1992, Cranford et 

al., 2014). Based on these findings, some theories have been developed to explain the 

relationship between HRV and cognitive functioning, including learning processes. These 

theories include the neurovisceral integration model, which proposes the linking of HRV and 

prefrontal cortex activity via vagus nerve connecting heart and brain (Thayer and Friedman, 

2002). More recent studies demonstrate that higher levels of vagally mediated resting-state 

HRV support and promote cognitive flexibility (Colzato et al., 2018). Higher levels of resting-

state HRV promote cognitive flexibility, such as the ability to switch easily from one cognitive 

task to another. This highlights how resting-state HRV corresponds to cognitive tasks involved 

in learning.  

Another aim (2) of this study was to highlight whether different brain oscillation 

frequencies can be considered an index of generalizing different learning mechanisms. The 

analyzed studies found that there is an association between brain oscillations and different 
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learning mechanisms (Jensen and Tesche, 2002; Jung-Beeman et al., 2004; Guderian, Schott, 

Richardson-Klavehn, Düzel, 2009; Rosen and Reiner, 2017). Brain oscillations in the theta 

band, generated in the frontal brain regions play a pivotal role in memory maintenance (Jensen 

and Tesche, 2002). Increased activity in the right hemisphere anterior superior temporal gyrus 

was related to a sudden burst of high-frequency gamma-band neural activity while the 

participants solved verbal problems with insight (Jung-Beeman et al., 2004). Brain activity 

reveal state-related aspects of memory formation in humans and brings forward approaches for 

a possible improvement of memory through theta-related brain states (Guderian, Schott, 

Richardson-Klavehn, Düzel, 2009). Enhancement of right frontal gamma and also beta 

oscillations was observed while solving spatial tasks with insight (Rosen and Reiner, 2017). In 

conclusion, specific brain oscillation frequencies have been observed to serve as indices for 

particular cognitive processes related to learning. Please refer to the table in the Appendix for 

chapter 2 for the study summaries of heartbeat measurements and brain oscillations.  

Limitations 

This systematic review of the literature aimed to analyze the scientific studies concerning the 

link between HRV and cognitive functioning related to learning. Some limitations should be 

considered. The heterogeneity of the population and measures, as well as the sample size may 

not allow performing a quantitative analysis (such as a meta-analysis) and affects the 

generalizability of the results. A systematic review, however, may be a good fit to bring 

together an overview of the studies in neurocognition and neurophysiology and learning.  

Further research should aim to increase the studies on the relationship between HRV 

and learning, or other specific cognitive domains, such as memory, problem-solving, or task 

switching. Other essential aspects to consider in future studies are to compare the vagal aspects 

and the adaptability of the organ, in order to evaluate how, and especially to which extent, 

cardiac vagal control influences certain learning mechanisms. In this paper, we have focused 

on the HRV and learning in general and did not focus on vagal control. However, considering 

the vagal activity and the vagal recovery during different cognitive tasks more in detail could 

be interesting (e.g. Laborde, 2018). This type of study could allow us to better understand the 

relationship of HRV and learning, as the cardiac vagal tone has frequently been linked to 

cognitive control (e.g. Porges, 1995; Hansen et al., 2003; Duschek et al., 2009).  

Future psychophysiological research should focus on choosing specific cognitive 

domains, such as language processing, attention factors, or visuospatial skills and investigate 
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how those learning factors are influenced by and correlated with HRV. To the authors’ 

knowledge, those research focuses have been disregarded by the studies until now. Of 

particular note is the investigation of the link to cognitive performance in language learning, 

attention – or other cognitive aspects – and HRV during the learning process. 

In this review, we focused on the analysis of HRV and learning processes that allows 

us to analyze and understand their relationship. In addition, we investigated the association 

between brain oscillations and learning. Previous research has found a relationship between 

HRV and learning processes. In summary and in line with the neurovisceral integration model 

- which proposes the linking of HRV and prefrontal cortex activity via vagus nerve connecting 

heart and brain - higher levels of vagally mediated resting-state HRV support and promote 

cognitive flexibility and thus may be advantageous in learning. In addition, an association 

between brain oscillations and learning was reported, demonstrating how brain oscillations are 

related to different learning mechanisms, including memory retrieval, problem-solving and 

having an insight. In conclusion, this review highlights that the physiological and psychological 

aspects of learning operate in close interaction, whereas HRV influences learning processes, 

and different brain oscillation frequencies are related to specific learning processes mentioned 

in this review.  
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Chapter 3 

 Brain, Mathematics, and Expertise:  

 Neural Differences between Math Experts and 

Novices – a Study on Frontal Alpha Asymmetry and 

Frontal Theta 

Abstract 

Although differences in the cognitive abilities of math experts and novices are well 

documented, research on the underlying neural differences remains scarce. Especially rare are 

studies involving naturalistic stimuli with longer time durations. Although literature has 

indicated the presence of alpha and theta activity while solving mathematical problems and a 

pronounced asymmetry, it is unknown how these frequencies are related to the level of math 

expertise. We explored electroencephalography (EEG) dynamics in frontal alpha asymmetry 

and frontal theta activity between math experts and novices while participants watched 

mathematical demonstrations presented in symbolic and non-symbolic forms. Results 

indicated no significant difference between experts and novices in alpha asymmetry, but a 

significant difference in theta activity, with novices showing greater frontal theta activity than 

experts. This study contributes to research concerning the differences in neural processes 

between math experts and novices while making sense of mathematical demonstrations. In our 

EEG study, experts showed less frontal theta power compared to novices, indicating that they 

might need less cognitive control and engage more in working memory processes. Implications 

are discussed.  

Introduction 

The study of mathematical cognition, with its potential to give unique insights into the 

workings of the mind, constitutes a major domain of research in cognitive science, learning 

sciences, psychology, and neuroscience. Previous work has shown that math experts—

compared to novices— when exposed to mathematical statements and judging them as 

meaningful, expand their math-sensitive neural network by activating a set of bilateral frontal, 

intra-parietal, and ventrolateral temporal regions, as shown in functional magnetic resonance 
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images (fMRI) scans (Amalric & Dehaene, 2016). This indicates that brief mathematical 

statements reveal a difference between novices and experts. However, less is known about the 

neural differences between math experts and novices when being exposed to longer and more 

naturalistic math demonstrations. Even basic findings are lacking in this area, such as whether 

expert mathematicians show a specific activation profile when it comes to brain wave 

frequencies or asymmetric hemispheric activity. 

Researchers have observed that neural correlates of arithmetic problem difficulty differ 

between individuals depending on their math ability (high or low ability) (Artemenko et al., 

2018). For example, when solving a two-digit addition or subtraction, we can increase 

difficulty by requiring a carry or borrow operation. The carry effect (when a digit that is 

transferred from one column of digits to another column of more significant digits) and the 

borrow effect (when the same is used in subtraction) have been investigated in terms of spatial 

and temporal neural correlates. When comparing high and low performers in a written 

production paradigm, functional near-infrared spectroscopy (fNIRS) and event-related 

potential (ERP) research has shown that arithmetic difficulty interacted with an individual’s 

math ability. More specifically, high math performers showed an increased activation in the 

frontal cortex. They claim that especially the left inferior gyrus, which is part of the frontal 

cortex, is associated with the carry and borrow effect, or the level of difficulty. In addition, the 

researchers observed differences in slow brainwaves at frontal sites (Artemenko et al., 2018). 

While these results show that the arithmetic processing might depend on the level of math 

ability, little is known about neural differences between math experts and math novices.  

Previous neuroimaging (fMRI) research on mathematical expertise further revealed that 

bilateral areas of the fronto-parietal network were activated in experts compared to novices 

while exposed to Raven's Advanced Progressive Matrices and the Tower of London tasks 

(Desco et al., 2011). The increased activation in the frontal and parietal regions of math experts 

seems to be associated with enhanced skills in logical reasoning. Although it is known that 

during mathematical tasks, neurons in the active regions are tuned to numerical quantities 

(Dehaene et al., 1999; Nieder and Dehaene, 2009) and that there are differences between math 

experts and novices, not much is known yet about the underlying neural signature. While 

solving a math problem, different brain wave frequencies can be observed, depending on the 

phase of the problem, degree of involvement, and sensitivity of different brain regions (Lin et 

al., 2012). Brain wave frequency can be seen as the number of brain wave cycles within which 

a response may be elicited, and which is subject to variability in response time (Surwillo, 1963). 

Electroencephalography (EEG) records brain activity via the electroencephalogram. The 
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electroencephalogram is the record of the electrical signals that are generated by the brain cell 

actions, more specifically, by the time course of the extracellular field potentials that are 

generated by synchronous brain cell actions (Blinowska & Durka, 2006). The following brain 

wave frequencies have been distinguished in EEG: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 

Hz), beta (14–30 Hz), and gamma (>30 and typically <100 Hz; e.g., Pizzagalli, 2007). The 

frequency band oscillations are usually quantified through power spectral density (PSD), which 

describes the distribution of signal power at differing frequencies (Dressler et al., 2004). 

Frequency band types are associated with cognitive processes. For example, theta frequencies 

are associated with memory processes, such as retrieval and encoding (Klimesch, 1999; Nyhus 

& Curran, 2010), while alpha frequencies are related to visual processing prioritization (Jensen 

et al., 2014). Therefore, EEG can be used to investigate the association of frequency band types 

with cognitive processes and the expertise thereof. 

EEG frequencies play a vital role in understanding brain activities while performing 

simple as well as complex cognitive tasks (e.g., Klimesch, 1999). Previous research has shown 

that alpha and theta band frequencies are associated with solving mathematical problems (e.g., 

Lin et al., 2015). Especially arithmetic processing has been related to theta and alpha frequency 

bands (Antonenko, Paas, Grabner, & van Gog, 2010; Grabner & De Smedt, 2011; Hinault & 

Lemaire, 2016). In the study of Lin and colleagues (2015), EEG was recorded as participants 

were asked to combine four single-digit numbers through basic arithmetic operators and create 

arithmetic expressions equaling 24. The researchers found that theta and alpha waves were 

related to mathematical problem-solving as well as solution latencies. In a study by Soltanlou 

and colleagues (2018), the researchers observed increased alpha power in EEG measurements 

after children worked and were trained on mathematical problems. Another study on alpha 

activity, the researchers found that alpha activity seems to be positively correlated in frontal 

regions with behavioral responses on a memory recall task. More specifically, frontal alpha 

activity seems to be correlated to the retrieval of learning contents including educational 

science concept material (Hanouneh et al., 2018). Further, the topographic distribution of 

spectral fluctuations was characterized by more pronounced asymmetries along the left–right 

and anterior–posterior axes for solutions that involved a longer search phase. However, 

although previous literature has indicated the presence of alpha and theta activity while solving 

mathematical problems and a pronounced asymmetry, it is unknown how these frequencies 

and the asymmetry are related to the level of math expertise.  
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Frontal Alpha Asymmetry  

The average difference in brain activity between the left and right frontal areas, measured as 

hemispheric differences in alpha power, is referred to as frontal alpha asymmetry (FAA; 

Harmon-Jones, Gable, & Peterson, 2010). It is the power band activity of electrode F4 on the 

right hemisphere (RH) subtracted by electrode F3 on the left hemisphere (LH), or vice versa. 

In a previous study where individuals were asked to solve basic operations presented as a 

challenging math game, alpha asymmetry was enhanced as solution times grew longer, 

indicating that alpha asymmetry might be associated with higher difficulty levels, 

perseverance, and motivation (Lin et al., 2015). Contributing to the discussion of Lin et al.’s 

findings, further studies have investigated FAA in emotional and motivational processes 

(Quaedflieg et al., 2015), affects (Rosenfeld et al., 1996), and executive functions (Moynihan 

et al., 2013). The differences in frontal alpha power asymmetry between math experts and 

novices have not yet been studied, and our goal is to investigate this in our study. Moreover, 

by drawing on previous work and comparing FAA in experts and novices, we are also able to 

indirectly attend to differences in motivational processes, affects, and executive functions. 

Frontal asymmetry has been of interest in studies investigating individual differences 

research on emotional and motivational processes. On the one hand, left-frontal hemisphere 

activity has been associated with an approach system that – in return – gets activated when 

participants tend to move towards a goal and experience positive emotions. On the other hand, 

researchers have observed a right lateralized withdrawal system, which is involved in negative 

affect. This seems to be activated mainly when participants encounter potentially dangerous 

situations (Tomarken et al., 1992; Davidson, 1998; Coan et al., 2006). While previous research 

has uncovered how frontal asymmetries are associated with emotional and motivational 

processes, we aim to elaborate on those findings and investigate the frontal alpha asymmetry 

differences between math experts and novices while being exposed to mathematical 

demonstrations. 

Frontal Theta Activity  

Theta activity over frontal regions is known as frontal theta. Theta oscillation (approximately 

4-8 Hz) has mostly been associated with domain-general cognitive demands and the acquisition 

of new information (Klimesch, 1999). Also, theta appears to reflect active operations, 

particularly during high-level cognitive processes, such as memory encoding and retrieval, 

working memory retention, novelty detection, and realizing the need for top-down control 
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(Jacobs et al., 2016; Itthipuripat, et al., 2013; Cavanagh, et al., 2012; Rutishauser, et al., 2010). 

Previous research suggests that frontal theta activity might be engaged in problem-solving (Ryu 

et al., 2016) and particularly crucial for mathematical problem solving (Lin, et al., 2012, 2015; 

Pavlygina et al., 2010; Ghaderi et al., 2019). 

Although there is an array of cognitive processes reflected in theta oscillation, we were 

interested in the memory encoding and retrieval, working memory, the need for cognitive 

control, and the novelty detection, as these are important factors to consider in the domain of 

expertise. According to Cavanagh & Frank (2014), theta oscillation may facilitate recurrent 

cycles of integration across inputs such as reward, or memory, to inform controlled action 

selection. Especially frontal theta seems to be related to emergent processes, such as cognitive 

control. Given that frontal theta seems to correspond to cognitive control, it should be expected 

that it reacts also to novelty. Cavanagh & Frank (2014) have observed that when individuals 

are exposed to a novelty, they share a need for increased control, and this is reflected in the 

frontal theta oscillations. While these mechanisms have been investigated in studies on 

cognition, we still know very little about neural mechanisms in mathematical cognition.  

Attempting to solve a mathematical problem activates a network of various areas in the 

brain. These areas include parietal and posterior areas (e.g., the parietal lobe, the superior, 

medial, and inferior frontal gyri, the precentral, cingulate, and fusiform gyrus, the insula, parts 

of the cerebellum, and the basal ganglia; Arsalidou & Taylor, 2011). In a study by Grabner and 

colleagues (2012), the researchers observed that the theta oscillations increased after 

participants were exposed to arithmetic training, illustrating the sensitivity of the theta activity 

in arithmetic domains in the parietal regions. In addition to the parietal regions, the frontal 

cortex is also consistently activated in mathematical sense-making. Therefore, the activated 

network is referred to as the frontoparietal network (Moeller, Willmes, & Klein, 2015). 

Previous research has also shown that frontal areas are involved as much as parietal regions in 

mathematical tasks but that the frontal activation changes in accordance with the development 

of mathematical skills (Nieder & Dehaene, 2009). Sokolowski, Fias, Mousa, & Ansari (2017) 

further highlighted that besides the parietal lobe, the frontal lobe has been shown to be 

important to consider when investigating number processing. These studies highlight the 

importance of considering frontal regions as important for number processing. 

Aims of the study 

Depending on the format of the mathematical task at hand – symbolic (algebraic; using Arabic 
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numerals) or non-symbolic (geometric; set or array of geometric forms or items) – two different 

networks within the fronto-parietal network, which are overlapping but distinct, are activated. 

Contrast analysis showed distinct fronto-parietal activation for symbolic and non-symbolic 

processing (see Sokolowski, Fias, Mousa, & Ansari, 2017 for a meta-analysis). Based on the 

above-mentioned neuroimaging research, there seems to be common and distinct brain regions 

in the frontal (and parietal) cortex that support symbolic and non-symbolic number processing. 

If the difference in processing symbolic versus non-symbolic mathematical demonstrations can 

also be distinguished when looking at FAA and theta activity and if it depends on the expertise 

of the person solving the task is yet to be investigated. To address this, we included symbolic 

and non-symbolic mathematical demonstrations in our study. We expect to see format 

dependent differences in the frontal cortex, as it has been shown that, especially the frontal 

cortex, subserves magnitude representations, rather than non-numerical cognitive processes. 

We explored the format dependent differences in experts versus novices, which, in the authors 

knowledge, has not been done before.  

The main goal of the present study was to improve our understanding of neural 

correlates of mathematical expertise in comparison to math novices. We focused on frontal 

alpha and theta activity, described above, as they have been argued to be crucial for cognitive 

processes involved in mathematical reasoning. We are particularly interested in whether there 

are differences in frontal alpha and theta activity between math experts and novices when they 

are both exposed to the same types (symbolic and non-symbolic) of mathematical 

demonstrations. By focusing on the frontal cortex, which has been associated with the 

development of skill and expertise, and using longer mathematical demonstrations, we intend 

to understand the neurophysiology of mathematical expertise. 

Based on the above summarized research, we hypothesize an increased frontal theta (4-

8 Hz) activity in novices compared to math experts due to an enhanced need to allocate 

attention (Kruglanski & Gigerenzer, 2011; Brush et al., 2017) and working memory (Evans & 

Stanovich, 2013) to the task at hand, and due to the novice’s response to novelty (Cavanagh et 

al., 2012). As theta oscillations have been associated with domain-general cognitive demands 

and the acquisition of new information and have been shown to increase with the workload 

(Klimesch, 1999), we expect novices to show enhanced theta oscillations. Given previous 

research indicating that asymmetric patterns of brain activation are related to participants’ 

cognitive processes (Moynihan et al., 2013), and mathematics ability (e.g., Lin et al., 2015), 

we also explore the asymmetric alpha modulation of EEG power over frontal brain regions and 

hypothesize that there will be a difference in alpha asymmetry in experts versus novices while 
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making sense of mathematical demonstrations. 

Method 

Participants 

We recruited 23 math experts and 23 novices for the study. After EEG preprocessing, the final 

sample for the analysis consisted of 10 math experts (3 female, 7 male, mean age 21.00, SD = 

1.83) and 18 novices (7 female, 11 male, mean age 23.7, SD = 3.94). There was no difference 

between the groups in terms of gender, X2 (9, N = 28) = 8.4, p = .49. Due to signal problems, 

we had to measure more participants than planned, as we had to exclude participants who did 

not have sufficiently strong signals throughout the experiment. While being an expert was 

defined as having obtained a bachelor’s degree in math or studying math at a master’s level, a 

novice was defined as having no formal background in math or closely related topics, such as 

engineering or statistics. All participants were right-handed and reported no hearing loss or 

history of neurological illnesses. The experiment protocol was conducted in accordance with 

the Declaration of Helsinki and approved by the local Ethics Commission. All participants 

provided written informed consent. 

Design and Task 

Participants watched 16 computerized mathematical demonstrations (8 symbolic, 8 non-

symbolic, pseudo-randomized) while sitting or standing. One of the 8 math demonstrations is 

shown in both formats in Figure 1. After each demonstration participants were asked to state 

their agreement on four statements using a button on a 4-button response box. The statements 

were the following: I had enough time to follow the math demonstration, I was familiar with 

the math demonstration, I understood the math demonstration, and I found this math 

demonstration engaging. The answer format followed a 4-point Likert scale with the options: 

1 = Completely disagree, 2 = Somewhat disagree, 3 = Somewhat agree, and 4 = Completely 

agree.  

Each math demonstration consisted of several slides, varying from 4 to 12 slides (6.9 

slides on average), and 13 to 68 seconds (33.1 seconds on average). The fixed duration of each 

slide was the same for all the participants and was defined according to a preliminary online 

pilot study conducted with 25 math experts and 25 math novices. As format (symbolic versus 

non-symbolic) was a factor of the trials, the length of the trials in these two conditions were 

matched.  
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Figure 3.1: Example of a mathematical demonstration in symbolic and non-symbolic form. 

 

The task was programmed in MATLAB using the PsychToolbox. After the researcher launched 

the program, and following instruction slides, participants could navigate through the math 

demonstrations by a button press. The total length of the mathematical proof demonstrations 

was approximately 15 minutes.  

Measures 

Electrical brain activity was measured with the Ant Neuro EEGO MyLab 128-channel EEG 

system during the presentation of the math demonstrations. Channel CPz was used as the 

reference electrode in the cap configuration. Data was collected with a sampling rate of 2048 

Hz. The triggers were sent wirelessly via Lab Streaming Layer (LSL).  
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Figure 3.2: Set-up of the study. 

 

Procedure and Materials 

Before the experiment, an electrode cap was set on the head of the participant, with electrodes 

attached by an electroconductive gel. To obtain a baseline, EEG was recorded for three minutes 

while the participant was sitting still with open (3 minutes) and closed eyes (3 minutes). After 

this, the participants watched the demonstrations. They also completed other tasks which were 

beyond the scope of this paper. 

 

 

Figure 3.3: Head Model illustrating EEG electrodes of interest. 

 

Data Analysis 

EEG preprocessing: The EEG data were processed and analyzed using MATLAB custom 

scripts and the following toolbox: EEGLAB for data preprocessing (Delorme A & Makeig, 
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2004), including Independent Component Analysis (ICA) and artifact correction. Independent 

Component Analysis (ICA) was used to identify and remove eye-blink as well as eye 

movement artifacts (EOG; Jung et al., 2000; Hoffmann & Falkenstein, 2008). A High Pass IIR 

Filter (1 Hz) has been applied to obtain stationary data for ICA (Blum et al., 2019; Winkler et 

al., 2015) as well as for artifact subspace reconstruction (ASR; Blum et al., 2019; Chang, 2018). 

Initially, line noise (50 Hz) was removed using the cleanline plugin. Subsequently, bad 

channels have been removed, and the data has been corrected using ASR (parameter set to 10). 

Then, removed channels have been interpolated via spherical-spline interpolation (acceptable 

rate: 10%, excluding F3, and F4, missing those would have led to the rejection of the data set), 

and the data has been re-referenced to the average reference. Removing channels led to the 

exclusion of participants. Regarding the ICA pipeline, we generated a temporal data set of 1-

second epochs for ICA, removed large artifacts in this temporal data set, and estimated the data 

rank for an estimation of the number of independent components to extract with ICA (amica 

algorithm; Delorme et al., 2007). The derived independent component weights were applied to 

the original continuous data set, and ocular and cardiac artifact components was removed via 

the iclabel plug-in (Pion-Tonachini et al., 2019). Finally, we applied a low-pass IIR filter 

(40Hz).  

Power spectral density: PSD was calculated using Welch’s method. The values for each 

individual were baseline corrected. The power values at each electrode for each condition were 

averaged over standard EEG frequency bands: theta (4–8 Hz), alpha (8–12 Hz), and 

subsequently log-transformed to normalize their distributions. 

Averaging: A temporal data set of one-second epochs for ICA were created. The epochs 

have been generated according to groups and conditions. FAA was calculated by subtracting 

the mean alpha power at the electrode F4 from the mean alpha power at the electrode F3. 

Positive values indicate a left hemisphere (LH) alpha power activity dominance, whereas 

negative values indicate a right hemisphere (RH) alpha power dominance. Frontal theta power 

was calculated by the mean theta power at electrode FCz. This study was part of a larger 

project. While 128 channels were used to measure brain activity, the present study only focuses 

on the three above-mentioned channels. 

Statistical analysis: We investigated the differences in FAA and theta activity using a 

linear mixed model with the factors group (between) and format (within). The general linear 

mixed model was chosen to analyze unbalanced repeated measures. 
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Results  

The participants were asked self-evaluation reflections after each demonstration, which were 

evaluated in terms of their sum scores using repeated measures ANOVA. For time there was a 

significant difference between the groups (F(1, 26)=17.939, p<.001), but not in format (F(1, 

26)=1.55, p=.224). Furthermore, for familiarity there was no significant difference between 

the groups (F(1, 26)=3.151, p=.088), but a significant difference in format (F(1, 26)=10.482, 

p=.003). In terms of understanding there was a significant difference for group (F(1, 

26)=11.259, p=.002), and format (F(1, 26)=28.531, p<.001). Lastly, for engagement there was 

a significant difference for group (F(1, 26)=12.294, p=.002), and format (F(1, 26)=8.283, 

p=.008). 

The results of the analysis of FAA indicate that there is no significant main effect of 

the group (see table 1). The results for frontal theta indicate that experts and novices differ 

from each other when it comes to theta activity. The results further indicate that there is a 

significant main effect of the format (symbolic versus non-symbolic; see table 1). Post Hoc 

Tests indicated that Experts (M = -7.18) show less frontal theta activity compared to Novices 

(M = 7.19; SE = 0.30, t = -47.5, pbonferroni <.001). Results further indicated that there is more 

theta activity in the symbolic (M = 0.125) compared to the non-symbolic (M = -.0113) math 

demonstrations (SE = 0.09, t = 2.72, pbonferroni = 0.007).  

 

Table 3.1: Linear Mixed Models for FAA and frontal theta. 

FAA  95% Confidence 
Interval 

   

Factor β Standardized β Lower Upper df t p 
Intercept -0.212 0.173 0.551 0.127 23.8 1.225 0.232 

group 0.206 0.215 0.214 0.626 154.3 0.961 0.338 

math -0.049 0.077 0.200 0.102 384.0 0.636 0.525 

group x 

math 
0.092 0.154 0.209 0.394 384.0 0.601 0.548 

Theta  95% Confidence 
Interval 

   

Factor β Standardized β Lower Upper df t p 
Intercept 0.006 1.587 -3.104 3.116 23.7 0.004 0.997 

group 14.372 0.302 13.779 14.965 389.7 47.522 < .001 

math -0.238 0.088 -0.409 -0.066 383.7 -2.720 0.007 
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group x 

math 
-0.110 0.175 -0.453 0.233 383.7 -0.627 0.531 

 

Discussion  

The present study used EEG to compare FAA and frontal theta in math experts and novices 

making sense of longer and more naturalistic mathematical demonstrations. The math 

demonstrations of our study were shown in two formats, namely symbolic and non-symbolic. 

Based on previous research, we hypothesized that novices would show an increase in frontal 

theta (4-8 Hz) activity compared to math experts due to enhanced attention, working memory 

load, and novelty response (Kruglanski & Gigerenzer, 2011; Brush et al., 2017; Evans & 

Stanovich, 2013; Cavanagh et al., 2012). Our data supported the hypothesis that math experts 

showed less frontal theta power compared to novices. This finding indicates that novices might 

need more cognitive control and engage more working memory processes (thus and increase 

frontal theta power, e.g., Jacobs et al., 2016) while making sense of complex mathematical 

demonstrations. The unraveling of intuitive and analytical thinking mechanisms (Kahnemann, 

2011) and their neural signatures provide insight as to how different modes of thinking might 

drive us based on the different neural processes that have been deciphered (Williams et al., 

2019). Williams and colleagues (2019) illustrated that analytical thinking is characterized by 

an increase in frontal theta EEG power, indicative of the engagement of cognitive control and 

working memory processes. In line with previous research on mathematical cognition that 

indicated that, relative to baseline, theta power, as well as more pronounced asymmetries are 

related to mathematical problem-solving (Lin et al., 2015). At the same time, EEG research 

revealed that especially the frontal cortex is crucial in mathematical problem solving and math 

performance (e.g. Artemenko et al., 2018). Our analysis extends existing knowledge by 

offering new insight in terms of significantly enhanced frontal theta in novices when making 

sense of mathematical demonstrations. These study findings thus reaffirm the neural 

differences between experts and novices that seem to be present during longer and more 

complex math demonstrations. 

Furthermore, we hypothesized that there would be a difference in alpha asymmetry over 

frontal brain regions in experts compared to novices while making sense of mathematical 

demonstrations. Previous findings have shown significant frontal asymmetries regarding 

different cognitive stimuli due to emotional and motivational aspects (Quaedflieg et al., 2015), 

affect (Rosenfeld et al., 1996), or executive functions (Moynihan et al., 2013). Our results, 
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however, do not support the hypothesis. One might expect experts to have stronger emotional 

and motivational responses to mathematical tasks and enhanced executive functions during 

mathematical problem-solving, which would have suggested FAA (Quaedflieg et al., 2015; 

Rosenfeld et al., 1996; Moynihan et al., 2013) and a difference compared to novices. However, 

the motivation and affect might have been similar between the two groups: while math experts 

might feel more motivated to be exposed to familiar demonstrations, novices might be 

motivated to get to know them. Furthermore, a recent study on math experts and novices found 

that experts and novices in math do not differ significantly in aspects beyond their expertise. 

That is, experts and novices in math are similar in aspects such as personality and domain-

general cognitive abilities (such as executive functions, Meier, Vogel, Grabner, 2021).  

Another explanation for why we did not find a difference in FAA between experts and 

novices in math could be that lateralization (asymmetry of brain activity) does not always go 

hand in hand with optimal performance (Vallortigara & Rogers, 2020). This suggests that while 

there is a relationship between brain activation asymmetries and behavioral performance, the 

magnitude of the asymmetrical activation does not increase linearly with performance (Eckert, 

Vaden, & Iuricich, 2022). To explore the lack of significant difference, and how FAA relates 

to executive functions, motivation, and affect, future studies should measure these aspects 

objectively and subjectively at the same time. 

Format, Expertise, and Interaction Effects 

The results of our study further indicate that there is a significant main effect of symbolic versus 

non-symbolic math presentation. Though previous research has highlighted how the frontal 

cortex (along with the parietal cortex) supports symbolic and non-symbolic number processing 

in humans, there are distinguishable neural networks in fronto-parietal regions (Sokolowski, 

Fias, Mousa, & Ansari, 2017). We could reaffirm the effects and elaborate on those findings 

by observing a significant main effect in the neural signature in our research setting with longer 

and complex math demonstrations and in terms of frontal alpha and theta power. 

Interestingly, our findings revealed a significant difference between experts and 

novices in terms of frontal theta activity in the symbolic versus non-symbolic format of the 

math demonstrations (no difference in FAA). Adding to the ongoing discussion of whether 

symbolic and non-symbolic processing can be differentiated on various levels (behavioral, 

neural timing, neural location, and neural oscillations), our data support the distinction between 

symbolic and non-symbolic skills. Moreover, expertise influences the differences between 
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frontal theta activity in symbolic and non-symbolic processing, which might be in line with 

previous research indicating that experts show a wider and more specific neural activation 

when engaging in—for novices seemingly—math unrelated topics (Amalric & Dehaene, 

2016). Furthermore, the effect of expertise on the format (symbolic/non-symbolic) of the tasks 

could be explained by recent findings of Meier, Vogel, and Grabner (2021), who compared 

math experts with novices in various tasks, abilities, and personality profiles. Their findings 

suggested that mathematicians have a more accurate representation of symbolic numbers and 

a stronger command of arithmetic facts. This advantage of math experts could lead to more 

facilitated processing of the symbolic demonstrations in our study and thus be mirrored by the 

frontal theta activity. Thus, our study extends previous findings by illustrating that there are 

significant differences in frontal theta oscillations in terms of symbolic versus non-symbolic 

magnitude processing. 

Future research should investigate the brain-behavior relationship with self-reports or 

cognitive tests to develop insights into what these differences in neural activity mean. For 

instance, motivation and affect could be investigated with think-aloud paradigms or more 

specific self-reports. Such neuroscientific research associated with educational practice could 

bring novel insights into the expert-novice literature and a better understanding of the neural 

signature underlying mathematical cognition. 

Conclusion 

This study extends previous research examining the differences in brain processes between 

math experts and novices in mathematics. Although there appeared to be no difference in 

hemispheric dominance activity between experts and novices, frontal theta power was 

increased in novices compared to experts. That novices showed increased frontal theta power 

might be explained through their higher mental effort, greater attention, and enhanced working 

memory required for a subject that they are unfamiliar with. This work contributes toward 

understanding the neuro-dynamics of mathematical cognition and the neural differences in 

math experts and novices during longer and more complex math demonstrations in a more 

naturalistic context.  

Find it in Your Heart  

Heartbeat Differences between Math Experts and Novices while Making Sense of 

Mathematical Demonstrations: A Pilot Study 
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Abstract 

While examining the differences in brain processes between math experts and novices in 

mathematics, we observed neural differences in frontal theta oscillations. Math novices showed 

more pronounced frontal theta activity while making sense of mathematical demonstrations, 

when compared to expert mathematicians. Besides looking at the neural differences between 

math experts and novices, we conducted a pilot study to investigate the physiological 

differences that may arise when mathematicians (experts) and novices in mathematics are 

asked to make sense of mathematical demonstrations. Previous research in neurophysiology 

has observed that interactions between cognitive performance and physiological 

measurements, including heartbeats, can provide valuable insight into intrapersonal dynamics 

and the measurements of learning outcomes. Heart rate and heart rate variability analysis is 

emerging as an objective measure of cognitive functions related to learning and can be used as 

a measure of cognitive load, engagement, and level of arousal during cognitive tasks. We 

measured experts’ and novices’ heart rates with electrocardiography (ECG) while they were 

watching mathematical demonstrations. ECG analysis showed a higher heart rate in math 

experts compared to novices, but no significant difference. The preliminary results of this pilot 

study suggest that experts might be more engaged and aroused when exposed to their material 

of expertise. Further studies are needed to elaborate on neurophysiological research in the 

learning sciences, specifically to investigate the heart rate differences between experts and 

novices of mathematics.  

Introduction 

In antiquity the heart was believed to play an essential role in cognition: Aristotle famously 

declared the heart to be the body’s most important organ. In this account from ancient Greece, 

the heart was the seat of intelligence and sensation. In the modern era, we are accustomed to 

thinking that the ancients were misguided on this matter. However, recent research suggests 

that the heart may play some critical— if, as of yet, poorly understood—role in human 

cognition. Indeed, we now know that dynamic changes in bodily physiology influence 

cognitive processes (Critchley & Garfinkel, 2018). Physiological signals, such as heartbeats, 

selectively facilitate, compete with, or inhibit, information processing across psychological 

domains (Critchley & Garfinkel, 2018). The relationship between physiological signals, 

heartbeat measurements, and cognitive functions is trending. However, the relatively small 

number of studies implies that this relationship has been understudied. 
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There is a growing appreciation that cognition is embodied and that bodily sensations, 

emotions, and extracerebral changes bias cognitive processes. Therefore, learning scientists, 

neuroscientists, and psychologists try to characterize how and when internal (and external) 

bodily signals guide and support cognition (e.g., enhanced interoceptive accuracy improves 

memory Garfinkel et al, 2013; and decision-making Werner et al, 2013).  

The measurement of cognitive activity using physiological means such as heart rate 

(HR) activity is a well-established research practice (Cranford et al., 2014; Darnell & Krieg, 

2019; Minkley et al., 2021). Cranford and colleagues (2014) observed how the changes in heart 

rate are more pronounced for novices, compared to experts in a specific field when solving the 

same problem. However, it has been understudied how the level of engagement relates to 

expertise (in mathematics) and how heartbeat measurements can investigate this. There have 

been very few studies focusing on the differences in HR considering an individual’s expertise.  

Heart rate variability and learning  

Monitoring physiological signals involving HR, or heart rate variability (HRV) plays a pivotal 

role in estimating cognitive performance. According to Alqahtani and Ramzan (2019), the 

usage of these physiological measurements has expanded beyond medical science. It has been 

implemented in diverse domains including determination of attentiveness and mental status of 

human subjects in modern intelligent tutoring systems and measuring human emotional 

responses corresponding to the surrounding environment (Alqahtani & Ramzan, 2019). 

Detailed literature surveys (Darnell & Krieg, 2019) confirm that in laboratory research 

physiological measurements are considered indirect indicators of cognitive performance; 

specifically, HR activity (Cranford et al., 2014; Darnell and Krieg, 2019; Minkley et al., 2021). 

A recent study found that there is a strong correlation between HR and task engagement 

(Darnell & Krieg, 2019). Emphasizing on the fact that there is a steady decrease in HR starting 

from the onset to the end of the class (Darnell & Krieg, 2019). While there seems to be a 

remarkable rise in HR during active learning sessions, the HR immediately returned to average 

level after the learning session. Thus, superior learning increases HR (Scholey et al., 1999; 

Darnell & Krieg, 2019). Further studies supported this claim, finding that greater cognitive 

effort and higher order problem solving are associated with increased HR (Mulder, 1992; 

Sosnowski et al., 2004; Fredericks et al., 2005 and Cranford et al., 2014). 

Extensive literature surveys bring to light the fact that, in earlier times, measurement of 

cognitive load involved post hoc collection and were subjective; however, recent studies 
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confirm that collection of physiological data such as HR, blink rate, galvanic skin response etc. 

overcome the drawbacks associated with the traditional techniques (Cranford et al., 2014). At 

present cognitive load is measured using physiological techniques with the assumption that 

stress is induced on the subject’s body due to cognitive overload ultimately leading to 

measurable physiological fluctuations in HR, which can be monitored continuously in real time 

while the tasks are completed by the subject (Beatty and Wagoner, 1978; Mulder, 1992; 

Fredericks et al., 2005; Cranford et al., 2014). It is worth mentioning that HR is used for 

measuring cognitive load since it can be measured in an uncomplicated and economical manner 

implementing any number of available commercial devices. Experimental results lead to the 

conclusion that greater cognitive load is associated with larger increase in HR as compared to 

smaller cognitive load. 

 In another study, conducted by Cranford and colleagues (2014), individual’s HR 

changes were two to four times greater in case of inexperienced subjects with respect to experts 

for the same problem that they were asked to solve (Cranford et al., 2014). In their study, 

Cranford and colleagues (2014) have observed that, as expertise is developed in a discipline, 

the germane load of a problem can be decreased because of the learner’s more robust 

knowledge base. Furthermore, the intrinsic load can also be lessened through the development 

of discipline-specific chunking strategies (Chase & Simon, 1973). Accordingly, the 

experienced individuals developed such strategies over the course of their studies in their field 

of expertise. Because of this, they could handle the higher cognitive load problems better than 

the inexperienced individuals (Cranford et al., 2014). This could illustrate that changes in HR 

are more pronounced in inexperienced participants than experts of a subject at hand.  

Existing literature (Wang et al., 2018) explains that fluctuations in arousal are linked to 

HR. It is well documented that HR increases with arousal from sleep since it is related to 

autonomic reflex activation, which in turn leads to increase in HR (Horner et al., 1995; Horner, 

1996; Trinder et al., 2001; Trinder et al., 2003; Azarbarzin et al., 2014). Moreover, it is found 

from literature that arousals associated with movement leads to more increase in HR (Sforza 

et al., 2000 and Azarbarzin et al., 2014). Experimental results (Azarbarzin et al., 2014) also 

reveal that only small changes in HR is associated with the most common arousal scale thereby 

leading to the conclusion that clinically an abundant number of low intensity arousals may not 

be crucial. There have been very few studies focusing on the differences in heart rates 

considering the expertise of an individual. 

Since we are focusing on the domain of mathematical learning and HR, there is one 

important factor we must investigate, too. Some individuals experience math anxiety, which is 
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defined as a feeling of helplessness, panic, paralysis, and mental disorganization when required 

to solve a mathematical problem or engage with numbers (Tobias, 1986). Anxiety can also 

make the heartbeat faster; in fact, in many anxiety disorders psychophysiological parameters 

such as HR are the most studied biomarkers (Pittig et al., 2013) and are even used to evaluate 

the effect of certain therapy forms (Gonçalves et al., 2015). Thus, to distinguish between the 

effect of potentially present math anxiety and engagement or arousal caused by expertise, we 

will consider and control for math anxiety in the present study. 

Expertise and physiological indices of engagement and arousal 

The number of heart beats per minute is referred to as heart rate (HR), and the mean value of 

the same is defined as mean heart rate. The fluctuations in the time intervals between adjacent 

heartbeats are called heart rate variability (HRV), generated by heart-brain interactions and 

dynamic non-linear autonomic nervous system processes. The present study relates expertise 

to physiological indices of engagement and arousal, and tests the following hypotheses derived 

from the reviewed literature mentioned above: 

Hypothesis 1: The mean heart rate (physiological indices of engagement) while 

making sense of mathematical proofs will differ in expert mathematicians 

compared to novices. If engaging more in a complex mathematical task is 

associated with lower heart rate, math experts will show lower heart rates. 

Hypothesis 2: Heart rate will be correlated with self-reported engagement and 

understanding of mathematical proofs. That is, the physiological indices of 

engagement will correlate with the self-reported indices.  

Hypothesis 3: The difference in heart rate between experts and novices is due to 

expertise and not math anxiety. That is the groups differ in heart rate, but not in 

math anxiety. 

To test these hypotheses, expert mathematicians and novices were asked to make sense of a 

series of mathematical proofs, half of them shown in a symbolic format, and the other half in 

a non-symbolic format. Heart rate was assessed at baseline and during the task, and self-reports 

were collected after each math demonstration. 
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Method 

Participants 

In this pilot study we tested a group of N = 11 participants; five experts (3 males, 2 females, 

mean age = 21.1 years, defined as having obtained a bachelor in math or studying math at a 

master level, and six novices (4 males, 2 females, mean age = 24.7 years) with no formal 

background in math or closely related topics. All participants were right-handed and reported 

no hearing loss or history of neurological illnesses. The experiment protocol was conducted in 

accordance with and approved by the local Ethics Commission. All participants provided 

written informed consent. 

Design and Task 

Participants watched 16 demonstrations of mathematical arguments. After each demonstration 

they were asked four self-evaluation reflections, to which they answered by pressing a button 

on a 4-button response box. Each set of trials contained 4 excerpts of the same format (symbolic 

or non-symbolic) in two body positions (sitting or standing), and these sets were presented in 

a pseudo randomized order on a computer screen. The pseudo randomization defined the 

format order (symbolic first/non-symbolic first) and the order of body posture (sitting 

first/standing first). The body position changed once half of the demonstrations had been seen. 

The self- evaluation reflections were the following: I had enough time to follow the math 

demonstration, I was familiar with the math demonstration, I understood the math 

demonstration, and I found this math demonstration engaging. The answer format followed a 

4-point Likert scale with the options: 1 = Completely disagree, 2 = Somewhat disagree, 3 = 

Somewhat agree, and 4 = Completely agree.  

The task was programmed in MATLAB using the PsychToolbox. After the researcher 

launched the program, and following instruction slides, participants could navigate through the 

math demonstrations by a button press. The total length of the mathematical proof 

demonstrations was approximately 15 minutes. The mathematical demonstrations were the 

same as in the previous study with symbolic and non-symbolic formats of the demonstrations. 

The task was precisely the same as the one on the investigation of neural differences between 

experts and novices in mathematics.  

Measures 

Electrical heart activity was measured with the Ant Neuro EEG/ECG MyLab system. One 
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electrode was put at the right collarbone, another electrode below the left rib to measure 

heartbeat activity. The triggers were sent wirelessly via Lab Streaming Layer. Behavioral data 

were collected in the form of a self-report questionnaire with a 4-point Likert scale answer 

format. 

Data Analysis 

Repeated measures ANOVA was used to analyze the self-reports about time, familiarity, 

understanding, engagement, and anxiety (AMAS) between experts and novices. 

We processed the ECG data using MATLAB based custom scripts for the analysis of 

heart rates (HR) according to the standards that are recommended for HR measurements. We 

used a real-time QRS detection algorithm to detect QRS complexes of ECG signals (Pan and 

Tompkins 1985). Furthermore, we used a QRS detection algorithm that is based on filter banks 

to identify the QRS complex. The QRS detection algorithm enables researchers to identify the 

QRS complex because it decomposes the ECG in sub-bands with frequency bandwidths that 

are implemented in MATLAB (Afonso et al., 1999). We visually inspected the ECG data to 

assure that the R-peaks were correctly detected. The R-peaks have been used to estimate the 

heart rate (HR) indexes. Repeated measures ANOVA was used to calculate differences in HR 

between experts and novices. 

 

 
Source: Wu, J. et al. (2019). 

Figure 3.4: One typical heartbeat in ECG signal (PQRST complex). 

 

Results  

Behavioral Results 

The participants were asked self-evaluation reflections after each demonstration, which were 
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evaluated in terms of their scores (1 = Completely disagree, 2 = Somewhat disagree, 3 = 

Somewhat agree, 4 = Completely agree) using repeated measures ANOVA.  

Out of the total final sample of the study, the results differed significantly between 

experts and novices in terms of whether they had enough time for the math demonstrations 

(F(1, 11)=18.631, p<.001), whereas experts scored higher (MM=27.935) than novices 

(MM=19.757), indicating that they felt like they had enough time to observe all the 

demonstrations. There was also a significant difference in format (F(1, 11)=5.040, p=.046).  

Furthermore, there was a marginally significant difference between the groups in terms 

of familiarity of the demonstration (F(1, 11)= 6.293, p=.029), whereas experts scored higher 

(MM=23.012) than novices (MM=16.834), indicating that they felt more familiar with the 

demonstrations. Also, there seems to be a significant difference in format (F(1, 11)=6.823, 

p=.024) in terms of familiarity. 

Behavioral results also indicated a significant difference between math experts and 

novices in terms of their understanding of the demonstrations (F(1, 11)=14.641, p=.003), 

whereas experts scored significantly higher (MM=27.035) than novices (MM=17.119), 

indicating a better understanding of the demonstrations. In terms of the understanding, the 

format of the demonstrations seems to also be significantly different (F(1, 11)=15.101, 

p=.003).  

The engagement of the demonstration was also significantly different between the 

groups (F(1, 11)=10.533, p=.008), whereas experts scored significantly higher (MM=26.745) 

than novices (MM=17.947), indicating that they were more engaged in the demonstrations. 

Within subjects effects of the engagement also showed a significant difference in format (F(1, 

11)=17.401, p=.002). 

In addition to the self-evaluation questions, we were interested in the math anxiety 

(AMAS). There seems to be no significant difference in terms of math anxiety between math 

experts and novices (t=0.721, p=.487, df=10). 

ECG Results 

We investigated the mean heart rate (meanHR) between experts and novices while making 

sense of mathematical demonstrations. Therefore, we conducted a repeated measure mixed 

ANOVA.  
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Table 3.2: ANOVA – meanHR of experts versus novices. 

Cases Sum of Squares df Mean Square F p 

group  65.103  1  65.103   0.624  0.450  

Residuals  938.881  9  104.320       

 

Table 1: Group Descriptives. 

  Group N Mean SD SE Coefficient of variation 

meanHR  Expert  5  83.761  10.545  4.716  0.126  

   Novice  6  78.875  9.940  4.058  0.126  

 

The results of the analysis indicate that there is no significant main effect in group F(1, 9) = 

0.62, p=.45.  

 

 

Figure 3.5: Raincloud plot of HR (meanHR) of group Expert and Novice. 

 

Correlation Analysis  

We further investigated whether heart rate correlates with self-reported engagement and 

understanding of mathematical proofs. The results of the correlation analysis indicate that there 

is no significant correlation between meanHR, understanding (r=0.27), and engagement 

(r=0.45) of the non-symbolic math demonstrations, and no significant correlation between 

meanHR, understanding (r=0.004) and engagement (r=0.037). 
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Note. * p < .05, ** p < .01, *** p < .001 

Figure 3.6: Pearson’s heatmaps of meanHR and time, familiarity, understanding, and 
engagement of the non-symbolic math demonstrations (G), and symbolic demonstrations (A). 

 

Heart Rates and Math Anxiety 

We finalized our analysis with an investigation of the difference in meanHR between experts 

and novices and math anxiety. Our results of the ANCOVA indicate no significant main effects 

in meanHR and math anxiety (F(1, 7)=0.92, p=.369). 

 

Table 3.3: ANCOVA with variable meanHR and covariate math anxiety. 

Cases Sum of Squares df Mean Square F p η² 

Group Expert Novice  77.032  1  77.032  0.921  0.369  0.081  

Math Anxiety  287.592  1  287.592  3.439  0.106  0.303  

Residuals  585.440  7  83.634         

Note. Type III Sum of Squares 

 

 

Discussion  

To study mathematical cognition, recent methods rely on physiological mechanisms, including 
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heart rates, to address shortcomings associated with more traditional techniques (e.g., Cranford 

et al., 2014). The current research sought to validate how heart rate differs between experts and 

novices while making sense of long and complex mathematical demonstrations. We compared 

experts to novices because specific neurocognitive and neurophysiological characteristics 

change through experience. Our main aim was to investigate how these changes were depicted 

in terms of physiological indices - heart rates, and how the objective measurement of heart 

rates correlates with self-reported measurements.  

Based on previous research, we hypothesized that the mean heart rate (physiological 

indices of engagement) while making sense of mathematical demonstrations differs in expert 

mathematicians compared to novices (Hypothesis 1). We expected the math experts to show 

lower HR as they might be more engaged in the task at hand, while exhibiting a lower cognitive 

load than novices (Cranford et al., 2014). Our results showed that experts had higher heart rates 

than novices, yet the difference was insignificant. According to Azarbarzin and colleagues 

(2014), an increase in heart rates is also related to arousal. Our results may therefore be 

explained like this: The novices and experts did not differ in heart rates because the heart rates 

of both groups increased due to arousal. The novices might have been aroused by the novelty 

of the mathematical task, whereas the experts were aroused because they enjoyed being 

engaged in their topic of expertise.  

We further hypothesized that heart rate is correlated with self-reported engagement and 

understanding of mathematical demonstrations (Hypothesis 2). More specifically, we expected 

that the physiological engagement indices correlate with the self-reported ones. In other words, 

we expected the objective measures to correlate with the subjective ones. Our results showed 

that there was a significant difference between the subjective measures in math experts and 

novices; experts indicated that they were more engaged in the demonstrations and showed a 

better understanding than novices, which aligns with previous research in mathematics 

education (e.g., Grabner & De Smedt, 2012). However, our correlation analysis showed that 

heart rates were not significantly correlated to self-reported indices, such as engagement and 

understanding of the demonstrations. We were surprised that there was no significant 

correlation between heart rates and self-reported indices, as this is contradictory to previous 

findings (e.g., Cranford et al., 2014). However, many factors affect physiology, and it might 

be difficult to control participant’s circumstances and the participant’s current feelings within 

a learning or studying situation. Our study utilized self-report measures in response to 

mathematical sense-making of long and complex demonstrations, whereas there was no 

significant correlation, which might be because of the mentioned limitations in 
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neurophysiological research, as well as the sample size of this pilot study.  

Lastly, we hypothesized that the difference in heart rate between experts and novices is 

due to expertise and not math anxiety (Hypothesis 3). We expected that the groups differ in 

heart rate but that the heart rate difference is not due to math anxiety. We found some support 

for this hypothesis based on the ANCOVA; we found no significant difference in math experts 

compared to novices regarding math anxiety. However, we found significant differences in 

time, understanding, and engagement. Therefore, we can confirm that potential differences in 

heart rate patterns are not due to math anxiety but instead to expertise, understanding, and 

engagement. Since the experts and novices did not differ in their heart rates, it is difficult to 

conclude what the difference might have been caused by. Thus, math anxiety as a control 

variable should be considered in future studies. In case of a difference in heart rate, math 

anxiety could be excluded as the cause of the difference. Previous research established that 

physiological data such as heart rate differences are closely related to cognitive load, cognitive 

engagement, and arousal (e.g., Cranford et al., 2014). According to Darnell and Krieg (2019), 

there is a significant link between heart rate and cognitive task management, with heart rate 

increasing for higher order problem solving, greater cognitive effort, and better learning 

performance. It is suggested that experimental studies show an increase in heart rate with 

arousal (Azarbarzin et al., 2014). In this piece of work, even though the difference was not 

significant, a higher heart rate in math experts is observed compared to novices when making 

sense of mathematical demonstrations.  

Limitations 

There are several limitations of the current design. First, these results are based on a pilot study, 

limiting our findings. A small sample size based on a pilot study may make it difficult to 

determine if the outcome is a true finding. As this was part of a large project with EEG and 

ECG, we mainly collected EEG data and were only able to collect ECG data for a pilot study. 

While there were technical limitations on the ECG set up in our study, we put our main focus 

on the EEG data and the neural signature analysis. Therefore, our sample size for the ECG data 

part of the project was small. A higher sample size would be required for validity and to 

produce accuracy of the results. In the future, sample size should be increased to elaborate 

whether findings can be reinforced.  

Heart rate is, by its nature, an individual measurement. There are many potential factors 

affecting heart rate recordings, such as lifestyles, biological influences, as well as mental health 
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factors (Koch, Wilhelm, Salzmann, Rief, & Euteneuer, 2019) cognitive abilities, neural 

processes, and personality traits (Pham, Lau, Chen, & Makowski, 2021). While the study 

attempted to control for variables such as age, math anxiety and expertise, there might still be 

factors we should have controlled for. In future studies, self-reported measures could include 

various questions tapping into the factors mentioned above.  

We hope this study will drive future research in this area that could readily be extended 

to include other disciplines. The present study could be taken as a basic idea for heartbeat 

investigations in the learning sciences and education. On the physiological side, a closer 

monitoring of the heart rate analysis during the learning activity would enable a more objective 

investigation of arousal, engagement, and understanding, among other factors. Correlational 

analysis with heartbeat measurements and self-reported measures, such as engagement and 

understanding can potentially increase future student cognitive engagement performance and 

overall student attainment. To have a closer look at heart rates during learning activity, future 

research could set up a study measuring heart rates via ECG, or further wearable devices, 

including heart rate monitor watches.   
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Chapter 4 

 The Neural and Physiological Basis of Learning 

through Problem-Solving followed by Instruction 

(PS-I) 

Abstract 

Problem-solving followed by instruction (PS-I) is a learning design that includes conditions 

for learners to insist on generating and exploring representations and solutions to complex, 

novel problems before formal instruction. There is growing evidence from behavioral studies 

that developing solutions to novel problems before instruction can help students perform better 

on specific learning measures, including conceptual understanding and knowledge transfer. 

Recent research on PS-I has revealed cognitive mechanisms for why students learn better after 

encountering difficulties; however, the neurophysiological mechanisms underlying this 

process have not been explored. The results of the present study suggest greater alpha and theta 

activity and heart rate variability during PS-I compared with instruction followed by problem 

solving (I-PS). These results may reveal an explanatory basis for learning through PS-I and 

illustrate the neurocognitive benefits of this learning design. 

Introduction 

Problem-solving followed by instruction (PS-I), as entailed in learning through Productive 

Failure (Kapur, 2014), is an instructional design to advance students’ conceptual understanding 

and transfer. This design reverses the order of more traditional teaching, in which instruction 

is given first, followed by a problem-solving phase (referred to as I-PS condition). In both 

designs, a post-test is used to assess the students' acquired knowledge. Figure 1 shows the 

different phases of the two conditions, I-PS versus PS-I. Within PS-I, various cognitive 

mechanisms have been explored (Kapur, 2014; 2015, Sinha & Kapur, 2021); however, the 

neural basis of this design have not yet been explored. The current research investigates the 

underlying neural mechanisms of PS-I using electroencephalography (EEG) to study the brain 

in naturalistic environments. Simultaneously, we recorded electrocardiography (ECG) to 

investigate heartbeat measurements during learning through PS-I.  
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The brain is an electrochemical organ, and current techniques, such as EEG, reveal 

insights into both form and function of cognitive processes, including problem-solving. 

Electrical activity emanating from the brain is displayed in the form of five different brainwave 

categories (gamma, beta, alpha, theta, and delta), ranging from the most to the least (e.g., 

Pizzagalli, 2007). The frequency band oscillations are commonly quantified through power 

spectral density. The power spectral density describes signal power distribution at differing 

frequencies (Dressler et al., 2004). Frequency band types are associated with cognitive 

processes.  

EEG research has shown that alpha oscillations (8-12Hz) and theta oscillations (4-8Hz) 

might be of particular interest in this kind of learning paradigm, because alpha has been 

associated with searching, accessing, and retrieving information from long-term memory 

(Klimesch et al. 1997), and theta to episodic and working memory (Jensen and Tesche 2002; 

Kahana et al., 2001). Theta oscillations have been associated with acquiring new information 

(Klimesch, 1999). It appears to reflect active operations particularly during high-level 

cognitive processes, such as memory encoding and retrieval, and working memory retention 

(Itthipuripat, et al., 2013; Rutishauser, et al., 2010). Previous research suggests that frontal 

theta activity might be engaged in problem solving (Ryu et al., 2016), and, more specifically, 

mathematical problem solving (Lin, et al., 2012, 2015; Pavlygina et al., 2010; Ghaderi et al., 

2019). Particularlythe frontal areas are involved in mathematical tasks (Nieder & Dehaene, 

2009; Sokolowski, Fias, Mousa, & Ansari, 2017). Based on the previous EEG research, the 

present study focuses on frontal alpha and theta frequencies in the frontal brain regions.  

The present study additionally investigates physiological measurements in the PS-I 

design. Intuitively, we associate fear—and fear of failure—with increased heartrate. We might, 

therefore, expect a link between challenging tasks, fear of failure on those tasks, and heartrate. 

Indeed, research has demonstrated an association between heart rate variability and cognitive 

performance. Different heartbeat measurements seem to be associated with both top-down and 

bottom-up cognitive processing (Park & Thayer, 2014; Mather & Thayer, 2018), including 

recalling or memorizing basic knowledge. 

Higher resting-state heart rate variability appears to be related to increased activity in 

executive brain regions (Thayer et al., 2012), while lower resting heartrate variability seems to 

be related to hypoactive prefrontal regulation (Thayer & Sternberg, 2006; Park & Thayer, 

2014). Consequently, higher heartrate variability is related to better cognitive performance, 

such as global cognition, executive functions, and attention (Forte & Casagrande, 2019). 

However, the interplay between heartbeats and high levels of cognition has been underexplored 
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thus far. We use ECG to investigate different heartbeat measurements, including heart rate 

variability (HRV), along with differences in EEG activity related to the type of learning 

situation (i.e., PS-I versus I-PS). 

 

 

Figure 4.1: Different Phases I-PS versus PS-I. 

 

In summary, we set out to study the neural and physiological mechanisms involved in the PS-

I learning design. Since the setting is naturalistic in its design and participants solved problems 

in a manner typical of formal instruction in a university or a school, several cognitive processes, 

including attention, working memory, memory retrieval, creativity/search of novel ideas, were 

simultaneous occurring. We investigated these processes with EEG and ECG. The present 

study relates the PS-I design, as entailed in Productive Failure, to neural and physiological 

indices of information processing and tests the following hypotheses:  

 

Research Question 1: Are there differences in brain oscillations between the phases of the 

conditions (problem solving vs. instruction)?  

Hypothesis: We expect to see enhanced alpha activity in the problem-solving and the 

post-test phase compared to the instruction phase, as alpha has been associated with searching, 

assessing, and retrieving information (Klimesch et al. 1997). We also expect to see enhanced 

theta activity in the problem-solving and the post-test phase compared to the instruction phase, 

as theta has been associated with episodic and working memory (Jensen and Tesche 2002; 

Kahana et al. 2001). 

 

Research Question 2: Are there neural differences in (brain oscillations) between the two 

conditions? 

Hypothesis: We expect more frontal alpha and theta activity in the PS-I compared to 
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the I-PS group, as the PS-I design has been advantageous in students’ conceptual understanding 

and transfer, which could be reflected in frontal alpha and theta, respectively in searching, 

accessing, and retrieving information from long-term memory (Klimesch et al. 1997), while 

theta activity (4-8Hz) has been related to episodic and working memory (Jensen and Tesche 

2002; Kahana et al. 2001).  

 

Research Question 3: Are there differences in HRV between the two conditions?  

Hypothesis: We expect higher HRV in the PS-I compared to the I-PS group, as the PS-

I design has shown benefits in cognitive domains which could be reflected in the HRV 

measures (Forte & Casagrande, 2019). 

 

We focus on the physiological and neural mechanisms individually. We are interested in the 

neural and physiological mechanisms of PS-I. To explore the above-mentioned research 

questions, we compared PS-I and I-PS conditions, using an established design (Kapur, 2014), 

while taking EEG and ECG measurements.  

Method 

Participants 

We recruited 62 participants for the study (mean age 22.6 years old, 35 females, 27 males), 

free of any physical and mental illness, and no formal knowledge of the material taught in the 

experiment (standard deviation). We randomly assigned half of the participants to the PS-I 

group, and the other half to the I-PS group. Some participants had to be excluded from the final 

EEG/ECG analysis to ensure we only analyzed good EEG and ECG signals. We had 26 

participants for the EEG/ECG analysis (13 females, 13 males). The Ethics Commission 

approved the experiment protocol. All participants gave written informed consent according to 

the study protocol approved by the human research ethics committee. 

Procedure and Materials 

We were interested in task-related changes in EEG measures, thus started with a baseline period 

for later comparisons. While sitting relaxed on a chair, participants were asked to keep their 

eyes closed. Then an EEG record was done for 3 minutes, which served as the baseline period 

with closed eyes. Afterwards, participants were asked to keep their eyes open for 3 minutes, 

which served as the baseline period with open eyes. After the baseline recordings the 



 59 

participants in the condition PS-I were asked to solve the standard deviation problem. A laptop 

was placed in front of the participants. They saw the instructions followed by the problem-

solving task, the direct instruction, and the post-test. During the problem-solving phase, 

participants were asked to design as many different measures of consistency as possible by 

using data points provided to them. The average time of EEG recording from start to solution 

was expected to be approximately 15 minutes. Participants were asked to press a button after 

thinking about one possible solution, then write it down, to avoid motor artifacts. In the other 

condition (I-PS), the procedure started with the direct instruction, followed by the problem-

solving task and the post-test. Participants started with a direct instruction which will be a 

theoretical input on standard deviations (same as in the other group, only the order changes), 

during this time EEG was recorded. This group of participants also pressed a button after 

solving each task during the problem-solving phase. For both groups there was a last part 

(posttest) in which they got a similar task to solve. We used a validated, classic Productive 

Failure design (Kapur, 2014), adapting it and computerizing it to match the requirements of 

neurophysiological research. However, we did not provide affective support to set the right 

expectations, but rather let the participants work independently. After the experiment, they 

received short questionnaires assessing math anxiety (AMAS; Hopko, Mahadevan, Bare, & 

Hunt, 2003), knowledge gap awareness (KGA), state curiosity (SC), germane cognitive load 

(GCL), learning goal orientation (LGO; Dweck, 1992) and attitude towards mistakes (ATM; 

Leighton, Tang, & Guo, 2015). Earlier studies used these questionnaires (Sinha & Kapur, 

2021). 

 

 

Figure 4.2: Set-up of the study: PS-I condition (top) and I-PS condition (bottom). 
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Measures 

Electrical brain activity was measured with the Ant Neuro EEGO MyLab 128-channel EEG 

system during the study on PS-I. Channel CPz was used as the reference electrode in the cap 

configuration. Data were collected with a sampling rate of 2048 Hz. The triggers were sent 

wirelessly via Lab Streaming Layer (LSL). Simultaneously, we measured participant’s heart 

rates by attaching an electrode to the rib and an electrode to the collarbone for 

electroencephalography (ECG).  

Data Analysis 

Behavioral data analysis: In the problem-solving phase, students were seated in front of the 

computer screen and asked to generate as many solutions as possible to a problem on standard 

deviation without any further help. Students were provided with blank A4 sheets of paper. The 

number of solutions generated by a student was taken as a measure of the student’s prior 

knowledge activation and differentiation and was summarized as the Quantity aspect of the 

problem-solving phase.  

We were interested in how many solutions the students generated, the tendencies they 

used (mean, median, and mode), and the range. Students calculated the deviation to argue that 

the greater the sum (or average) of the deviations, the lower the consistency. The generation of 

canonical solutions and using the range, dot diagrams, or line graphs were summarized as the 

Quality aspect of the problem-solving phase. 

We investigated the score differences of the Post-Test questions on standard deviation 

as part of the behavioral data analysis. We compared the Post-Test scores between the two 

groups (PS-I versus I-PS). In addition, we analyzed the differences in Math Anxiety Scale 

(AMAS), learning goal orientation (LGO), attitude towards mistakes (ATM), knowledge gap 

awareness (KGA), state curiosity (SC), and germane cognitive load (GCL) between the two 

groups. 

 

Table 4.1: Variables for the behavioral and neurophysiological analysis. 

Behavioral Measure Problem-Solving 
Phase 

Behavioral Measure Post-Test Phase 

Quality: 
Generation of canonical solutions 

Score of the Post-Test Multiple Choice 
Questions 
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Quantity: 
Number of solutions generated Math Anxiety (AMAS) 

 Learning Goal Orientation (LGO) 

 Attitude Towards Mistakes (ATM) 

 Knowledge Gap Awareness (KGA) 

 State Curiosity (SC) 

 Germane Cognitive Load (GCL) 

EEG Measures ECG Measures 

Frontal Alpha (8-13 Hz) Heart Rate Variability (HRV) 

Frontal Theta (4-8 Hz)  
 

 

EEG data processing: Data analysis was conducted using the Brain Vision Analyser software 

(v1.05, Brain Products) for pre-processing and implementing the eye movement correction 

procedure. Matlab (The Mathworks) and EEGLAB v5.03 (Delorme A & Makeig, 2004) were 

used for further processing and Independent Component Analysis (ICA) and artefact 

correction. ICA was used to identify and remove eye-blink artifacts (EOG; Jung et al., 2000; 

Hoffmann & Falkenstein, 2008). A threshold algorithm was conducted to detect eyeblinks, and 

the data were segmented time-locked to the maximum blink excursion (−800: 1000 ms). 

Following this a baseline correction was made (−800:−500 ms). Finally, rare artifacts visual 

inspection cleaned the continuous raw data from rare non blink-related artefacts. A High Pass 

IIR Filter (1 Hz) has been applied to obtain stationary data for ICA (Blum et al., 2019; Winkler 

et al., 2015) as well as for artifact subspace reconstruction (ASR; Blum et al., 2019; Chang 

2018). Initially, line noise (50 Hz) has been removed using the cleanline plugin. Subsequently, 

bad channels have been removed and the data has been corrected using ASR (parameter set to 

10). Then, removed channels have been interpolated via spherical-spline interpolation 

(acceptable rate: 10%) and the data has been re-referenced to the average reference. Regarding 

the ICA pipeline, we generated a temporal data set of 1 second epochs for ICA, removed 

significant artifacts in this temporal data set, and estimated the data rank for an estimation of 

the number of independent components to extract with ICA (Amica algorithm; Delorme et al., 



 62 

2007). The derived independent component weights were applied to the original continuous 

data set and ocular and cardiac artifact components have been removed via the iclabel plug in 

(Pion-Tonachini et al., 2019). Finally, we applied a low pass IIR filter (40Hz).  

The data was segmented according to the experimental conditions and subsequently 

baseline corrected. Power was calculated concerning the different epochs/experimental 

conditions, i.e. according to the triggers set at each phase of the conditions and to each response 

to the solutions during the post-test. Subsequently, the data was averaged according to groups 

(PS-I, I-PS) and the different phases of the experiment (problem-solving, instruction, post-

test). We extracted frontal alpha and frontal theta.  

Power spectral density: Power spectral density was calculated using Welch’s method. 

The power values at each electrode for each condition was averaged over standard EEG 

frequency bands. We did a planned comparison of the frontal electrodes, using standard 

procedures.  

ECG data processing: The ECG data was processed using MATLAB based custom 

scripts to analyze heart rate variability (HRV) according to the recommended standards for 

HRV measurement. We used a QRS detection algorithm that is based on filter banks to identify 

the QRS complex. The algorithm enables researchers to identify the QRS complex because it 

decomposed the ECG in sub-bands with constant frequency bandwidths that are implemented 

in MATLAB (Afonso et al., 1999). The ECG data was visually inspected to assure that the R-

peaks are correctly detected. Using the so-called R latencies, we obtained the inter-beat 

intervals (IBI). We used these values to estimate the HRV indexes. Repeated measures 

ANOVAs were conducted to investigate in the differences between the conditions. 

Statistical analysis: Repeated measures ANOVAs were conducted to investigate the 

differences between the conditions and the phases. 

Results 

Behavioral Results for the Problem-Solving Phase 

We investigated if the Quality of the generation of canonical solution differs in terms of the 

condition (Conditions: I-PS, PS-I). Thus, we conducted an independent samples test. The 

preliminary analysis of the Shapiro-Wilk test of normality indicated that neither of the groups 

satisfies the assumption of normality. Thus, we conducted Mann-Whitney U test. The results 

indicate that the I-PS group (M = 3.26, SD = 1.2) scored significantly higher U = 737, p < .001 

than the PS-I group (M = 1.89, SD = 1.26) with a medium effect size (r = .59). 
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We also investigated if the Quantity, the number of solutions generated by a student, 

differs in the two groups by conducting an independent samples t-test. There was no significant 

difference, t(45.65) = -1.33, p = .19, while the I-PS group (M = 2.55, SD = 1.02) attained the 

same scores as the PS-I group (M = 2.84, SD = 0.63). 

Behavioral Results for the Post-Test Phase 

We investigated the differences in the post-test score between the two groups (PS-I and I-PS 

a). ANOVAs with the PS-I and I-PS condition as the between-subjects factors revealed no 

significant difference between the two conditions on the total Post-Test-Score (F[1, 56] = 

0.037, p = .847), conceptual understanding (F[1, 56] = 7.976e -4, p = .978), transfer of 

knowledge (F[1, 56] = 0.021, p = .886), and procedural knowledge (F[1, 56] = 0.927, p = .340). 

ANCOVA results revealed a significant difference in math anxiety (AMAS) (F(1, 50) 

= 7.724), p = .008), but no significant difference in learning goal orientation (LGO) (F(1, 50) 

= 0.623, p = .434), attitude towards mistakes (ATM) (F(1, 50) = 0.162, p = .689), knowledge 

gap awareness (KGA) (F(1, 50), p = .21), state curiosity (SC) (F(1, 50) = .399, p = .531), and 

germane cognitive load (GCL) (F(1, 50) = .069, p = .794). The difference in AMAS could 

explain why there was no significant difference in the Post-Test score between the two 

conditions. Here, we are mainly interested in the different neural and physiological differences 

between the two conditions and the phases of the Productive Failure design. The following 

results were derived.  

EEG Results 

Frontal Alpha Activity  

 

Table 4.2: ANOVA for the EEG results on frontal alpha activity (baseline corrected). 

Cases Sum of Squares df Mean Square F p ω² 
phase  0.069  2  0.035  3.266  0.039  0.005  

group  1.085  1  1.085  102.202  < .001  0.115  

phase ✻ group  0.002  2  0.001  0.098  0.907  0.000  

Residuals  8.139  767  0.011        

Note. Type III Sum of Squares 
 

The results indicate that the main effect of the group is significant F(1, 767) = 102.202, p < 

.001, ω² = 0.115 with a medium effect size, see table 2. Tukey post hoc analysis revealed that 
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the PS-I group (M=-.024) showed significantly more enhanced frontal alpha activity than the 

I-PS group (M=-.142) with a small effect size (MD = -.119, ptukey< .001, d = 0.347).  

Moreover, there was a significant main effect of phase F(2, 767) = 3.266, p = .039, ω² 

= 0.005 with a small effect size. Tukey post-hoc analysis allowed us to derive the following 

results. 

• The instruction (M=-.103) does not significantly differ (MD=-.019, ptukey=.127) from 

the post-test (M=-.084). 

• The instruction (M=-.103) differed significantly (MD=-.041, ptukey= .047, d = 0.393) 

from the problem-solving phase (M=-.062) with a medium effect size. 

• The post-test does not significantly differ (MD=-.021, ptukey= .336) from the problem-

solving phase. 

 

Figure 4.3: Descriptive plot on frontal alpha activity (baseline corrected) between PS-I 
condition and I-PS condition, and between the different phases of the conditions (Problem 

solving, Instruction, and Post-Test). 

 

Frontal Theta Activity 

Table 4.3: ANOVA for the EEG results on frontal theta activity (baseline corrected). 

Cases Sum of Squares df Mean Square F p η² 

group  0.241  1  0.241  9.306  0.002  0.012  

phase  0.413  2  0.206  7.972  < .001  0.020  

group ✻ phase  0.010  2  0.005  0.200  0.819  5.043e-4  

Residuals  19.844  767  0.026         

Note. Type III Sum of Squares 
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The results indicate that the main effect of the group is significant F(1, 767) = 9.306, p = .002, 

with a medium effect size, see table 3. Thus, we conducted Tukeypost-hoc analysis and found 

that the PS-I group (M=.011) showed significantly enhanced frontal theta activity (MD=-.044, 

ptukey< .002, d = -0.347) compared to the I-PS group (M=-.056) with a small effect size.  

Moreover, the main effect of phase was significant F(2, 767) = 7.972, p = .002, with a 

small effect size. Thus, we conducted a post-hoc analysis using Tukey correction. Following 

results were derived. 

• The instruction (M=-.065) does significantly differ (MD=-.051, ptukey =.003) from the 

post-test (M=-.014). 

• The instruction significantly differed (MD=-.065, ptukey= .001, d = -.583) from the 

problem-solving phase (M=-.006) with a small effect size. 

• The post-test does not significantly differ (MD=-.014, ptukey= .165) from the problem-

solving phase.  

 

Figure 4.4: Descriptive plot on frontal theta activity (baseline corrected) between PS-I and I-
PS condition, and between the phases of the conditions (Problem solving, Instruction, Post-

Test). 

 

ECG Results 

Heart Rate Variability  

The results in HRV indicate that there is a significant main effect of group F(1, 819) = 5.506, 

p=0.019, see table 4. Thus, we conducted a post-hoc analysis using Tukey correction. The I-

PS group (M=.063) showed significantly lower HRV (MD=-.080, ptukey< .001, d =-.259) than 

the PS-I group (M=-.143) with a medium effect size. 
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Table 4.4: ANOVA – Heart Rate Variability (HRV). 

Cases Sum of Squares df Mean Square F p η² 

group  0.528  1  0.528  5.506  0.019  0.007  

phase  0.102  2  0.051  0.530  0.589  0.001  

group ✻ phase  0.099  2  0.050  0.516  0.597  0.001  

Residuals  78.584  819  0.096         

Note. Type III Sum of Squares 

 

 

Figure 4.5: Descriptive plot of HRV (I-PS versus PS-I). 

 

Discussion 

We were interested in the alpha and theta oscillations between the two conditions of the PS-I 

design. In a naturalistic design, participants solved problems of standard deviation in front of 

a computer screen (two conditions; PS-I versus I-PS), while we recorded the neural and 

physiological signatures with EEG and ECG. By using repeated measures ANOVAs, we 

explored the relationship between the conditions, the phases of the conditions, and the changes 

in both neural oscillations and heartbeats. After discussing the initial behavioral analysis, we 

discuss the investigation of the neural activity (EEG), followed by the physiological activity 

(ECG), and end by discussing future directions in the field of neurophysiological research. 

 

 

Behavioral Data 

Before the EEG analysis, we analyzed the behavioral data, while the PS-I group performed a 
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better in the post-test than the I-PS group, this difference was not statistically significant. One 

of the explanations could be that some of the students were showing math anxiety. Recently, 

there have been discussions about affect and the productive failure design (Sinha, 2021; Gashaj 

et al., 2022). Notably, different emotional aspects influence PF, specifically moment-by-

moment determinants of affective states impact the problem-solving phase and performance in 

the post-test (Sinha, 2021). On the one hand, students who were exposed to failure-driven 

scaffolding were likely to show exclusive dynamics comprising shame had metacognitive and 

cognitive benefits. On the other hand, emotions such as anger and disgust have been associated 

with an incidence of contempt, showing a negative association (Sinha, 2021). In other words, 

students experiencing different emotions, including pleasurable and unpleasant emotions 

(Sinha, 2021), as well as math anxiety (Gashaj et al., 2022), serve as catalysts for learning. In 

the present behavioral results, there was a significant main effect in students’ math anxiety, 

which may have an impact on the post-test performance.  

Even though the behavioral results (no statistically significant difference between the 

two conditions) were contrary to expectation (that the PS-I condition outperforms the I-PS 

condition), we still investigated the neural and physiological differences that might appear 

when students are taught with different learning designs. On the one hand, we were interested 

in the neural and physiological signature differences between the phases of PS-I versus I-PS; 

on the other hand, we also investigated the differences between the two groups. The neural 

signatures were expressed in terms of frontal alpha and theta oscillations, whereas in the 

physiological signatures, we focused mainly on heart rate variability.  

The Neural Basis of Learning through PS-I 

Alpha oscillations are associated with semantic information processing, such as searching, 

accessing, and retrieving information from long-term memory (Klimesch et al., 1997). 

Therefore, we expected to see enhanced alpha activity in the problem-solving and the post-test 

phase when compared to the instruction phase. In our study, we found that, relative to the 

baseline, alpha oscillations were significantly lower during the instruction phase than during 

the problem-solving phase. During the problem-solving phase, alpha oscillations were 

significantly higher, suggesting greater activation of memory processes. The finding adds to 

the crucial issues in memory research, which is based on how the search process finds relevant 

information in memory. It has been suggested that alpha oscillations are related to memory 

performance (Klimesch et al., 1990; Klimesch et al., 1993). The present findings of higher 
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alpha oscillations during the problem-solving phase suggest enhanced memory processes 

during that phase when compared to the instruction phase.  

Our results further indicate that there is more alpha activity in the PS-I group compared 

to the I-PS group. Research on Productive Failure has indicated cognitive mechanisms for why 

students learn better after encountering difficulties; because the students actively search, 

access, and retrieve information from long-term memory. Since these cognitive activities are 

associated with alpha waves (Klimesch et al., 1997), .our result could reflect that the PS-I 

condition is advantageous in terms of memory processing and that the cognitive mechanisms 

that were suggested to play a role in the PS-I design might explain the better post-test 

performances of participants in the PS-I condition compared to the I-PS condition in previous 

research (Kapur, 2014).  

Furthermore, our results show that theta oscillation in the frontal brain regions were 

significantly different between the phases of the two learning designs. Previous research has 

shown that theta activity is related to episodic and working memory (Jensen & Tesche 2002; 

Kahana et al. 2001). In our study, theta was significantly lower in the instruction phase when 

compared to the problem-solving phase, suggesting that in the problem-solving phase, theta 

activity increases, reflecting the engagement of working or episodic memory. In previous 

frontal theta and memory investigations, researchers observed ongoing and parametrically 

increasing frontal theta activity in a retention period of a task where subjects were asked to 

retain a list of visually presented digits (Jensen & Tesche, 2002). Our findings of the enhanced 

theta activity in the problem-solving phase compared to the instruction phase elaborate on those 

previous research results, suggesting more activity when participants were solving problems 

than when they were given instruction.  

In line with the problem-solving phase eliciting more theta activity, we also observed a 

higher frontal theta activity in the PS-I group compared to the I-PS group. This could illustrate 

that more working memory processes might be involved in the PS-I condition – namely during 

the problem-solving phase, as theta activity has been related to working memory (e.g., Jensen 

& Tesche, 2002). This is plausible because working memory functions have been proposed to 

arise through the coordinated recruitment, via attention, of brain systems that have evolved to 

accomplish action-related functions (Postle, 2006). The PS-I condition has been proven to lead 

to better results in conceptual knowledge and knowledge transfer compared to the I-PS 

condition (Kapur, 2014; Sinha & Kapur, 2021). Enhanced working memory capacity might aid 

in terms of conceptual knowledge and transfer knowledge as it might maintain the knowledge 

better. Previous neuroscience research has shown that frontal theta activity has been related to 
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episodic and working memory (Jensen & Tesche 2002; Kahana et al. 2001). It could be that 

the PS-I design is beneficial in terms of working memory, as frontal theta activity seems to be 

higher. 

Altogether, the findings on enhanced frontal alpha and theta activity in the PS-I 

condition compared to the I-PS condition support – from a neuroscientific perspective - 

theories on working memory and long-term memory. Cognitive mechanisms have been 

investigated, showing that prior knowledge is critical in expanding the working memory 

capacity (Kirschner, Sweller & Clark, 2006). When learners are exposed to novel information, 

as is the case in the PS-I condition, the processing of novel information depends upon the 

limited working memory capacity and long-term memory. PS-I presents a situation where 

students first fail to solve the problem and then use this as a lesson to consolidate and assemble 

new knowledge, which may benefit their working and long-term memory (Kapur, 2016). From 

a neurocognitive perspective, enhanced alpha and theta in the frontal brain regions have been 

shown to enhance memory capacity (e.g. Klimesch, 1999), which supports previous findings 

in Productive Failure (Kapur, 2016).  

The Physiological Basis of Learning through PS-I 

Not only the brain activity differed in the groups, but the heart rate variability was also varying 

between the groups. Previous research has connected higher HRV to increased activity in 

executive brain regions (Thayer et al., 2012; Thayer & Sternberg, 2006; Park and Thayer, 

2014). Our results suggest that since the I-PS group showed lower HRV, they might have had 

less activation in the executive brain regions. In other words, the PS-I designs seem to engage 

the executive brain regions more compared to the I-PS group. This activation might explain 

why PS-I as a learning design successfully enhances learning performance and outcomes.  

Conclusively, there seems to be a higher HRV, higher frontal alpha, and higher frontal 

theta activity in the PS-I group compared to the I-PS group. Previous research investigated the 

effects of alpha and theta neurofeedback and HRV biofeedback on emotional and cognitive 

creativity. They found that alpha and theta neurofeedback may increase cognitive creativity, 

and HRV biofeedback may increase emotional creativity (Alaedini et al., 2018). Researchers 

have aimed to use stimulation-induced HRV techniques and observed that HRV increases may 

correspond to frequency-specific oscillatory modulation (Machetanz et al., 2021). For 

example, they found that HRV increases correspond to frontal elevations in the theta-band 

(Machetanz et al., 2021). Knowledge on the brain-heart interaction in the learning sciences is 
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still in its infancy and current research is slowly uncovering this interaction. In our study, we 

observed higher HRV, which might benefit the PS-I condition with enhanced executive 

functions, and frontal alpha and theta activity was higher compared to the I-PS condition, which 

might be advantageous in memory performance.  

Collectively, this study's results help us understand the brain and heart processes 

involved in problem-solving followed by instruction and bring valuable insights from the 

neuroscientific point of view to an effective learning design. Future work centered on the neural 

and physiological signatures of problem-solving followed by instruction may yield further 

insight into underlying mechanisms mediating the different phases, as well as the differences 

between the conditions.  

Limitations and Future Directions 

There are limitations to the present study. First, the fidelity of the Productive Failure design 

was somewhat limited. Students were showing math anxiety, and we did not control for 

affective support to set the right expectation, which has been done in previous studies. 

Furthermore, our study was in front of a computer screen, which is a different setting than the 

previous research in the field. Our main aim was to investigate the neural and physiological 

basis of the PS-I design in the absence of all aspects that relate to a high-fidelity Productive 

Failure design.  

Second, the number of participants was also limited yet sufficient to provide evidence 

on the tendency of the neural and physiological differences between the phases and the groups 

of the PS-I and the I-PS design. In the future, we propose to increase the sample size and 

analyze whether the current results can be confirmed (or not). Not only the number of 

participants but also the level of degree was different from previous research in the field. 

Participants in our study were university students, whereas the design has been previously 

researched with high school students. This difference in age and school grade needs to be 

further considered when designing future studies in the field.  

Third, the EEG and ECG data analysis can be elaborated with event-related 

synchronization (ERS) and event-related desynchronization (ERD), as well as the investigation 

of other brain networks that might be important to the underlying neurophysiology of PS-I. 

Our findings on the EEG and ECG power-spectral density analysis may provide neural and 

physiological mechanisms of the PS-I design, but further analysis is needed to elaborate on the 

current results.  
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Finally, a limitation of neurophysiological research is the habituation of the 

experimental conditions. For example, we currently cannot know yet whether the results were 

based on the cognitive advantages of the design or due to external factors such as math anxiety. 

However, neurophysiological research in the learning sciences provides valuable insights into 

how the nervous system works under different learning situations and during different 

cognitive tasks. In the future, we suggest setting up a design that tests for the different cognitive 

mechanisms in the PS-I learning design and set up EEG and ECG measurements to further 

analyze the different brain wave frequencies and thus elaborate on the neural and physiological 

basis of PS-I. 
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Chapter 5 

Overall Discussion 

What are the physiological and neural signatures underlying different learning 
processes? 

As demonstrated in Chapter 2, during the literature review, previous studies in the field of 

neurocognition and neurophysiology have observed a correlation between physiological and 

cognitive measurements. More specifically, heart rate change was positively related to the 

cognitive measures of learning. Previous research has observed that a higher heart rate 

variability (HRV) seems to predict better cognitive performance in the considered learning 

process or task. As shown in chapter 2, a higher HRV has been shown to be related to an 

increased activity in the executive brain regions, which may benefit learning and cognition. 

Moreover, different brain oscillation frequencies (alpha, beta, theta, delta, gamma) have been 

observed to be related to different learning processes, including problem-solving, insights, and 

memory retrieval. These results highlight the influence of heart rate variability on learning and 

the different brain oscillation frequencies responsible for different learning processes.  

In this sense, research investigating physiological measurements underlying different 

learning processes confirms what we might intuitively feel: the palpitations of the heart are 

related to whether we are excited, or anxious, and this can influence learning outcomes. While 

researchers first considered HRV in medical or health domains, now we have evidence that 

HRV may act as an objective measure in the context of advanced problem solving. It may play 

an important role when generating solutions to (mathematical) problems. Collectively, HRV 

can be seen as a promising measurement in the field of learning and cognition. Along with 

HRV, brain oscillation frequencies have been uncovered to be associated with specific learning 

processes and allow researchers in neurocognition and neurophysiology to explore the 

connections between HRV, neural signatures, learning and cognition.  

The neural signatures underlying math expertise 

In Chapter 3, our studies concentrate on observing the neural signatures underlying math 

expertise. To evaluate the neural signature underlying mathematical sense-making, we tested 

math experts and novices with electroencephalography (EEG) recording, while they were 

asked to make sense of mathematical demonstrations. The study used EEG to compare frontal 
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alpha asymmetry and frontal theta in math experts and novices, making sense of more extended 

and naturalistic mathematical demonstrations. Frontal alpha asymmetry is the average 

difference in brain activity between the left and right frontal brain areas (Harmon-Jones, Gable, 

& Peterson, 2010), and has been associated with emotional processes (Quaedflieg et al., 2015), 

affects (Rosenfeld et al., 1996), and executive functions (Moynihan et al., 2013). Frontal theta 

activity has been associated with active operations during high-level cognitive processes, such 

as memory encoding and retrieval, working memory retention, novelty detection, and other 

cognitive measures (e.g. Jacobs et al., 2016), and is crucial for mathematical problem solving 

(e.g. Lin, et al., 2012, 2015).  

Based on previous research, we hypothesized that novices would show an increase in 

frontal theta (4-8 Hertz) activity compared to math experts due to enhanced attention, working 

memory load, and the novelty response (Kruglanski & Gigerenzer, 2011; Evans & Stanovich, 

2013; Cavanagh et al., 2012). Our data supported the hypothesis: math novices showed 

more/highe frontal theta power compared to experts. This finding indicates that novices might 

need more cognitive control and engage more working memory processes (thus increasing 

frontal theta power, e.g., Jacobs et al., 2016) while making sense of complex mathematical 

demonstrations.  

Our analysis extends existing knowledge by offering new insight into significantly 

more frontal theta activity in novices when making sense of mathematical demonstrations. 

These findings reaffirm the neural differences between experts and novices that seem to be 

present during longer and more complex math demonstrations. Our work contributes toward 

understanding the neuro-dynamics of mathematical cognition and the neural differences in 

math experts and novices during longer and more complex math demonstrations in a more 

naturalistic context. 

Our research further elaborates on significant work in mathematical cognition and 

language by Amalric & Dehaene (2016). The researchers showed that high-level mathematical 

cognition is related to a different set of brain areas than language processing. While language 

processing and verbal semantics involve mainly left-hemisphere regions, mathematical 

cognition seems to recruit a bilateral network, which includes the prefrontal, parietal, and 

inferior temporal regions. The author’s results suggest that mathematical cognition recruits a 

bilateral network that is involved in number and space, and that is different from language 

processing (Amalric & Dehaene, 2016). 

 Our research elaborated on the findings by Amalric & Dehaene (2016). However, our 

focus was not on the differences between the brain network involved in numbers versus 
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language processing, but rather on the underlying neural signature differences between math 

experts and math novices. We analyzed differences in frontal alpha asymmetry and frontal 

theta activity. Previous results in the field of mathematical cognition and math expertise 

suggested that math experts, when exposed to mathematical sense-making, activate a set of 

bilateral frontal areas (along with intraparietal, and temporal regions), which spared brain areas 

that are related to language processes. We aimed to elaborate on the evidence that there seems 

to be a linguistic, and a nonlinguistic brain circuit and uncover neural signatures of math 

expertise compared to novices. Our results did not show significant differences in frontal alpha 

asymmetry between math experts and novices. Thus, we were not able to add to the evidence 

that mathematical reasoning is related to activity amplification in corresponding brain regions 

that depends on individual expertise. However, we showed evidence that there seems to be a 

significant difference in frontal theta activity between math experts and novices, which is in 

line with previous research.  

 Along with our main finding, that math experts showed less frontal theta activity than 

novices when exposed to mathematical demonstrations, we also noticed behavioral differences 

in mathematicians when compared to novices. We were mainly interested whether participants 

had enough time, whether they understood the math demonstrations and how familiar and 

engaged they were with the math demonstrations. Math experts, unlike novices, indicated that 

they had enough time to solve the math demonstrations, that they understood the math 

demonstrations, and that they felt engaged while making sense of the math demonstrations. 

These findings were as expected, as previous research uncovered that math experts, compared 

to novices, seem to have a more accurate mental representation of mathematical knowledge, a 

more positive attitude, and a higher motivation towards mathematics (Meier et al., 2021). Thus, 

our findings show evidence that math experts differ from novices in terms of neural 

mechanisms, as well as in terms of behavioral characteristics.  

The physiological signatures underlying math expertise 

As presented as well in Chapter 3, we were interested in the differences in heart rates (HR) 

between math experts and novices. We compared math experts (at least a bachelor’s degree in 

mathematics) with novices (no background in mathematics or similar field) while they were 

asked to observe math demonstrations in front of the computer screen. We were interested in 

the physiological differences of math experts and novices because specific neurophysiological 

characteristics change through experience. We expected to see differences in heart rates 
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between experts and novices when exposed to mathematical demonstrations. Our pilot study 

found that experts had higher heart rates than novices, but the difference was not significant.  

Enhanced engagement in math experts than in novices when being exposed to 

mathematical demonstrations might be the cause for higher heart rates in experts (Azarbarzin 

et al., 2014; Darnell & Krieg, 2019). Hence, based on this experimental study, it can be argued 

that experts are more aroused and engaged while being involved with their corresponding 

material of expertise than novices, leading to an increase in experts’ heart rate. However, it is 

worth mentioning that we believe further studies are needed to investigate the heart rate 

differences between experts and novices of mathematics. 

In line with previous research, we hypothesized that heart rate is correlated with self-

reported engagement and understanding of mathematical demonstrations. In other words, we 

expected that the physiological indices of engagement correlate with the self-reported indices. 

Our results showed that math experts and novices differed significantly in terms of 

understanding, and engagement. Experts indicated higher levels of engagement and showed a 

better understanding than novices, which is in line with previous research. Contrary to our 

hypothesis, the correlation analysis showed that heart rates were not significantly correlated to 

self-reported indices, such as engagement and understanding of the demonstrations. 

Lastly, we hypothesized that the difference in heart rate between experts and novices is 

due to expertise and not due to math anxiety. This hypothesis was supported by our findings, 

as we found no significant difference in math experts compared to novices in terms of math 

anxiety but found substantial differences in understanding, and engagement. Therefore, we can 

confirm that the difference in heart rate is not due to math anxiety. Heart rate differences could 

therefore be rather due to expertise, understanding, and engagement. 

The investigation of heartbeats in the context of mathematical cognition was an 

extension to the previous neural (EEG) analysis described in Chapter 3. We were interested in 

the interaction between cognitive performance, neural signatures, and physiological 

measurements of math experts and novices. This is mainly because of the evidence that 

dynamic changes in bodily physiology are related to cognitive processes (Critchley & 

Garfinkel, 2018). We aimed to examine how heartbeats facilitate, or inhibit, cognitive 

processing involved in learning. We found significant differences in the neural signatures 

between experts and novices. However, we do not have enough evidence for similar results in 

heartbeat differences between math experts and novices while making sense of mathematical 

demonstrations. However, we are certain that research in how heartbeat measurements 

correlate with higher order cognition and learning will continue to be of high importance. 
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Uncovering the underlying physiological basis of learning will help us to elaborate and 

implement methods that improve learning.  

The neural and physiological signatures underlying PS-I 

Something universal happens inside of us when we experience failure. We may feel our 

heartbeats increasing, or feel the negative affective states followed by a failure. Many 

contemporary scientists believe that the quality of feeling and emotion we experience is rooted 

in the underlying state of our physiological processes (Damasio, 1996). Therefore, we were 

interested in the neural and physiological signature underlying failure. Hence, we investigated 

the neural and physiological basis of learning through the problem-solving followed by 

instruction (PS-I) design.  

 We investigated differences in neural signatures through electroencephalography 

(EEG) and physiological signatures through electroencephalography (ECG) related to the type 

of learning situation “Problem solving followed by Direct Instruction” (PS-I) – as entailed in 

the Productive Failure design (Kapur, 2014) - versus “Direct Instruction followed by Problem 

Solving” (I-PS). In a naturalistic design, participants solved problems of standard deviation in 

front of a computer screen (two states; PS-I versus I-PS) while we recorded the neural and 

physiological signatures. Several cognitive processes are thought to be simultaneously 

occurring, including semantic information processing or episodic and working memory. We 

investigated these processes with EEG and ECG. We focused our analysis on frontal alpha 

oscillations, frontal theta oscillations, and heart rate variability (HRV).  

Alpha oscillations are associated with semantic information processing, such as 

searching, accessing, and retrieving information from long-term memory (Klimesch et al. 

1997). Therefore, we expected to see enhanced alpha activity in the problem-solving and post-

test phases compared to the instruction phase. Consistent with our hypothesis, we found that, 

relative to the baseline, the alpha oscillation was significantly lower during the instruction 

phase than during the problem-solving phase. During the problem-solving stage, alpha 

oscillations were substantially higher, suggesting greater activation of memory processes 

during the problem-solving phase. 

This finding adds to the crucial issues in memory research, which is based on the 

question of how the search process finds the relevant information in memory. The cortical 

neural network can be considered a storage network for memory that initiates and assesses 

information (e.g., Klimesch, 1994). It has been suggested that alpha oscillations are related to 
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memory performance (Klimesch et al., 1990, Klimesch et al., 1993). The present findings of 

higher alpha oscillations during the problem-solving phase suggest enhanced memory 

processes during that phase when compared to the instruction phase.  

Our results further indicate that there seems to be more alpha activity in the PS-I group 

compared to the I-PS group. Research on Productive Failure has indicated cognitive 

mechanisms for why students learn better after encountering difficulties, which is the case with 

the PS-I group in the present study. As hypothesized, the PS-I group showed more alpha 

activity, potentially because the students in this group have been searching, accessing, and 

retrieving information from long-term memory, and those cognitive activities are associated 

with alpha-waves (Klimesch et al., 1997). Our findings that students in the PS-I group had 

higher alpha activity can therefore be interpreted to be confirming the conjectures considering 

cognitive mechanisms raised in previous research (Kapur, 2014).  

Furthermore, our results show that theta oscillation in the frontal brain regions was 

significantly different between the phases (instruction, problem-solving, post-test) of the two 

learning conditions (PS-I versus I-PS). Previous research has shown that theta activity is related 

to episodic and working memory (Jensen and Tesche 2002; Kahana et al. 2001). In our study, 

theta was significantly lower in the instruction phase when compared to the problem-solving 

phase, suggesting that in the problem-solving phase, theta activity increases, reflecting the 

engagement of working or episodic memory. In previous frontal theta and memory 

investigations, researchers observed ongoing and parametrically increasing frontal theta 

activity in a retention period of a task where subjects were asked to retain a list of visually 

presented digits (Jensen & Tesche, 2002). Compared to the instruction phase, our findings of 

the enhanced theta activity in the problem-solving phase elaborate on those previous research 

results but in a novel learning setting.  

In line with the problem-solving phase eliciting more theta activity, we also observed a 

higher frontal theta activity in the PS-I group compared to the I-PS group. This could illustrate 

that more working memory processes might be involved in the PS-I condition – namely during 

the problem-solving phase (e.g., Jensen and Tesche, 2002). This is plausible because working 

memory functions have been proposed to arise through the coordinated recruitment, via 

attention, of brain systems that have evolved to accomplish action-related functions (Postle, 

2006). In the PF design, the PS-I condition has been shown to have better results in conceptual 

knowledge and transfer of knowledge compared to the I-PS condition (Kapur, 2014, Sinha & 

Kapur, 2021). Enhanced activation of working memory might aid in terms of conceptual 

understanding and transfer of knowledge, and previous neuroscience research has shown that 
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frontal theta activity has been related to episodic and working memory (Jensen and Tesche 

2002; Kahana et al. 2001). It could be that the PS-I condition is beneficial in terms of working 

memory, as frontal theta activity seems to be higher.  

Not only did the brain activity differ between the groups, but the heart rate was also 

varying between the groups. Previous research has connected higher HRV to increased activity 

in executive brain regions (Thayer et al., 2012; Thayer and Sternberg, 2006; Park and Thayer, 

2014). Our results suggest that since the I-PS group showed lower HRV, there might have been 

less activation in the executive brain regions. In other words, the PF designs may have activated 

the students in a way that engaged their executive brain regions more than the I-PS design. 

This activation might explain why PF as a learning design successfully enhances learning 

performance and outcomes since the students engage more actively with the material to be 

learned. In fact, our results suggest a higher frontal theta and alpha activity in the PS-I condition 

and the problem-solving phase. Thus, the higher HRV in the PS-I group is in accordance with 

the frontal brain activity.  

Conclusively, there seems to be a higher HRV, higher frontal alpha, and higher frontal 

theta activity in the PS-I group compared to the I-PS group. Whereas higher HRV has been 

linked to cognitive engagement (e.g. Thayer et al., 2012), frontal alpha has been related to 

heightened working memory activation (e.g. Klimesch et al., 1997). Also, frontal theta activity 

has been linked to deeper conceptual understanding (e.g. Jensen and Tesche 2002). On the one 

hand, we observed higher HRV in the PS-I condition, which might benefit the PS-I condition 

with a better activation of executive functions. On the other hand, frontal alpha and theta 

activity was higher in the PS-I condition compared to the I-PS condition, which might be 

advantageous in the memory performance. 

This project allowed for an extension of neural and physiological knowledge to a 

complex scenario involving learning from failure. Learners were intentionally confronted with 

moments of difficulty, or failure, before getting instruction, as a means of preparing them to 

learn and benefit from future instruction. We uncovered the underlying neural and 

physiological signatures, and with that, made a first step to indicate - from a neuroscientific 

perspective – why students may learn better after an initial failure. With this project, we 

illustrated that moments of difficulty are not just metaphorically felt in the heart and brain, but 

literally. We uncovered neural and physiological signatures of learning through PS-I and will 

continue to elaborate steps to create more effective learning scenarios.  
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Final Words 

While, for many years, we may have had a more intellectual view of learning, it is important 

to consider neural and physiological signatures when investigating in learning processes and 

(mathematical) cognition. Taking into consideration neural and physiological signatures may 

provide us with a more holistic view of math learning and cognition. Human reasoning and 

learning cannot and should not be limited to one of the above discussed aspects alone. The 

understanding of processes underlying human reasoning has been investigated by Damasio 

over twenty years ago, when he described the so-called somatic marker hypothesis (e.g. 

Damasio 1996). The somatic marker hypothesis states that ‘marker’ signals influence processes 

that respond to a certain stimuli (both consciously, and unconsciously). The markers are 

‘somatic’, because they relate to the body-state regulation (Damasio, 1996). Within the brain, 

these markers may be processed in the ventromedial prefrontal cortex, which is located in the 

frontal lobe of the brain. What’s important about it is, that somatic markers may guide behavior, 

human reasoning, or decision-making. When we take action to those ‘marker’ signals, we may 

bias our reasoning (or decision-making) on the basis of the emotions that may arise from our 

body-state regulation (e.g. Damasio 1996). Heartbeats are ‘somatic’ markers that may be 

associated with emotions (such as anxiety), and thus may influence our cognition and learning. 

I believe that a holistic view, which takes into consideration all of the above mentioned aspects 

of physiological and neural signatures, such as heartbeat measurements and brain oscillation 

frequencies, the body-state regulation, cognition, and learning, will help us to improve 

educational practices, as well as emotional and physical well-being.  

 

Thank you 
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A. Appendix (Chapter 2) 

Figure 2.1.1: Flowchart of the Systematic Review. 

 

 

Table 2.1.1: Study summaries of heartbeat measurements and brain oscillations. 

Heartbeat Measurements 

Study Relationship Domain 

Pham & 
Wang, 2016 

Participants watched three videos about different 
unfamiliar topics during a 24 minute learning phase. 
HRV data was used to determine which subject was 
most demanding for the subject. Subsequently, 
participants watched either all or none of the videos 
again or only the most or least demanding. Afterwards 
participants solved 24 multiple choice questions.  
Watching all or only the most demanding video(s) 
yielded the highest results. 

Lecture on law.  
24 Multiple-
Choice questions 
in post-test. 
Learning/Recall. 
Remembering. 
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Gellatly & 
Meyer, 1992 

Participants solved a letter-recognition task and were 
grouped depending on the difficulty of the goal they 
were told to reach. Subjects assigned more difficult 
goals on a perceptual-speed task perceived a higher 
performance norm, reported higher self-efficacy 
strength, set a higher personal goal, exhibited 
increased heart rate, and produced more than did 
subjects assigned easier goals. Perceived norm, self-
efficacy strength, and personal goal were positively 
related with heart-rate change. 

Evaluation. Self-
reported Items 
(e.g. Arousal, 
Self-efficacy) 

Colzato et 
al., 2018 

Pearson's correlation coefficients were computed to 
test whether resting-state HRV predicted task-
switching performance. Participants with higher 
resting-state HRV showed smaller switch costs (i.e. 
greater flexibility) than individuals with lower resting-
state HRV. 

Task-switching 
paradigm. 
Analyzing. 
Reaction Time. 

Garfinkel et 
al., 2013 

Physical arousal, namely the cardiac cycle, influences 
cognitive function. Using an emotional attentional 
blink (EAB) paradigm, the study showed how words 
detected during systole were less remembered than 
words during diastole. The participants' interoceptive 
sensitivity modulated this effect. 

Word detection 
and memory task. 
Detection and 
remembering. 
 

Cranford et 
al., 2014 

 
 
 
 
 
 
 
 

Aritzeta et 
al., 2022 

 
 
 

Heart rate changes were hypothesized as a valid 
measurement of cognitive load. Chemistry students 
and faculty members solved multiple chemistry 
problems of varying difficulty. 
Chemistry problems of higher complexity induced a 
greater change in heart rate than those that have been 
designed to be of lesser complexity. 
Changes in heart rate were less pronounced for expert 
chemists than less experienced chemistry students. 
 
Problem-solving on everyday problems and organizing 
everyday learning process in thematic spaces 
(according to the Amara Berri Education System; 
primary education). 

Problem-solving 
task. Applying. 
 
 
 
 
 
 
 
 
Problem-solving. 
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Howell & 
Hamilton, 

2022 
 

73 participants completed affective questionnaires, a 
5-minute baseline electrocardiogram, and the Virtual 
Morris Water Task. Higher baseline HRV was 
predictive of better performance during set-shifting. 
This effect was moderated by negative affect and only 
found in individuals with low trait negative affect, 
suggesting that high NA interferes with the HRV-
cognition connection. 
 

Set-shifting task. 
Spatial learning, 
memory. 

Nakagawa et 
al., 2021 

The authors propose a method to evaluate students 
concentration level in distance learning settings using 
biometric information. The change of emotion in 
students was evaluated by measuring EEG and HRV, 
while turning on and off a face-to-face video camera. 
Depending on the individual preferences of the 
subject, both EEG and HRV measurements changed 
after turning on the camera. 

Measurements of 
biometric 
information 
during online 
class 

Larmuseau 
et al., 2020 

Participants solved exercises of probabilistic reasoning 
while self-reported cognitive load (CL) and 
physiological data was measured. CL was manipulated 
based on intrinsic and extraneous load. Rsults show 
how heart rate is significantly related to self-reported 
CL. Still, physiological data could not be used to 
detect differences in CL based on intrinsic and 
extraneous manipulations. 

Exercises in 
statistics. 
Creating. 

Scrimin et 
al., 2018 

Participants read a science text and afterwards solved 
a multiple-choice test. Depending on the condition 
they were asked to read for themselves to gain greater 
understanding of the topic or to perform well on the 
test and gain course credit. During all phases heart-rate 
and HRV were measured. Results showed a general 
trend in which students HRV was greater in the 
reading phase compared to baseline. Furthermore, HR 
decreased during reading and increased during the test 
phase. 

Reading 
comprehension. 
Analyzing. 
Applying. 

Redondo-
Flórez et al., 

2020 

82 students were divided according to their prior 
knowledge in laboratory practices. HRV was 
measured before, during and after lab practice. Both 
groups exhibited an anticipatory anxiety response but 
non-experienced students showed a lower habituation 
response in both subjective and objective stress 
records than experienced students at the end of the lab 
practice. 

Handling of toxic 
materials in a 
supervised lab 
setting. Applying. 
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Silvennoinen 
et al., 2019 

During ten days, self-reported qualitative and 
physiological data, including HRV, was collected in a 
sample of 14 university students. Daily differences in 
HRV corresponded to the students self-reports. 
Furthermore, alertness levels may vary between 
teaching methods: The data suggests how group work 
facilitated by the teacher may be physiologically more 
alerting/engaging and also more meaningful than 
letcures. 

Comparison of 
physiological and 
qualitative data. 

Zaccoletti et 
al., 2022 

82 seventh-graders read an informational text and 
afterwards completed a comprehension task. Prior to 
reading, they were asked to either read for themselves 
or try to get the highest score in a ranking. Resting-
state HRV was assessed. Students who were instructed 
to achieve a high score performed better if they had 
higher resting HRV. Students who were instructed to 
read for themselves performed worse if they exhibited 
a higher resting HRV. 

Reading 
comprehension. 
Analyzing. 
Applying. 

Sánchez-
Conde & 

Clemente-
Suárez, 2021 

In a sample of 41 nursing degree students HRV and 
heart rate mean response were measured before, 
during and after completing a Clinical Evaluation. 
Results show how the stress response varying 
according to the difficulty of the evaluation. No clear 
conclusion can be drawn from the HRV data. 

Analyzing. 
Applying. 
Understanding. 
Remembering. 

Mason et al., 
2018 

47 school students read webpages varying for 
reliability and position on the topic of potential health 
risks associated with the use of mobile phones. 
Afterwards, students wrote essays on the topic which 
were used to analyze text comprehension. During the 
reading and writing session HRV and heart rate were 
measured. Results show no influence of the type of 
webpage on HRV or heart rate. However, HRV was a 
positive predictor of text comprehension, while higher 
heart rate predicted worse scores on comprehension. 

Reading 
comprehension. 
Analyzing. 
Applying. 
Creating. 

Kermani & 
Birjandi, 

2017 

63 university students and high schoolers received 
information and were provided with a biofeedback 
tool in order to self-generate a high 
psychophysiological state and optimal HRV. Results 
show how training on self-regulation can increase 
HRV scores and in turn lower the participants reading 
anxiety. 

Reacting to 
Biofeedback. 
Applying. 
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Brain Oscillations 

Study Relationship Domain 

Klimesch, 
Schack and 
Sauseng, 

2005 

Multiple experiments. Experiment 1 involved 
participants with Alzheimer’s.  
Individual alpha frequency (IAF) was compared in 
multiple experiments with varying tasks. Subjects 
with “Good memory” had higher IAF scores than 
subjects with “Bad Memory”.  

Working memory 
task 

Rosen & 
Reiner, 2017 

Participants were confronted with a 10-coin puzzle 
and were grouped by their self-declared solving 
method, Insight or Incremental. Multiple EEG 
bands of both groups were analyzed using a 4-
factor ANOVA. Significant differences between 
insight and incremental solvers were found in 
Alpha, Gamma and Theta bands. 

Generating solutions. 
Insight and 
Incremental. 
Analyzing. Creating? 

Jung-Beeman 
et al., 2004 

Subjects solved verbal problems. They then 
indicated whether they solved them with or 
without insight. fMRI showed increased activity in 
the right hemisphere anterior superior temporal 
gyrus for insight when related to non-insight 
solutions. The EEG recordings revealed that there 
is a sudden burst of high-frequency (gamma-band) 
neural activity in the same area beginning 0.3 s 
prior to insight solutions. 

Verbal problems. 
Creating. Applying. 

Sheth, 
Sandkühler 

& 
Bhattacharya, 

2009 

Participants solved verbal puzzles and reported 
their level of insight. EEG recordings showed no 
significant differences in brain oscillations 
between different levels of reported insight. 
 

Word puzzles. 
Evaluating. 
Applying. 
  

Jensen & 
Tesche, 2002 

Participants solved the Sternberg memory task and 
while whole scalp MEG data was recorded. The 
main result was a parametric increase in 7±8.5-Hz 
theta power with memory load during memory 
retention, and stronger theta activity in the memory 
task compared to a control task. 

Sternberg task. 
Analyzing. Why 
understanding? 
Remembering. 
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Guderian et 
al., 2009 

Participants performed either semantic 
(pleasantness-rating) or phonemic (syllable-
counting) judgments on visually presented words. 
Whole-head magnetoencephalographic (MEG) 
data was recorded. Amplitudes of theta oscillations 
shortly preceding the onsets of words were higher 
for later recalled than for later-forgotten words.  
Furthermore, single-trial analyses revealed that 
recall rate in all participants tested increased as a 
function of increasing pre-stimulus theta 
amplitude. This positive correlation was 
independent of whether participants were 
preparing for semantic or phonemic stimulus 
processing, thus likely signifying a memory-
related theta state rather than a preparatory task set. 

Episodic memory 
encoding. Analyzing. 
Understanding. 

Fuentes-
García et al., 

2019 

Participants solved chess game puzzles and were 
classified according to their results into: high 
performance or low performance. HRV was 
assessed at baseline. During the chess problems, 
HRV was monitored, and immediately after chess 
problems, they registered subjective stress, 
difficulty and complexity. The Friedman test 
showed a significant effect of tasks in HRV 
indexes and perceived difficulty, stress, and 
complexity in both of the groups (high and low 
performance). A decrease in HRV was observed in 
both groups when chess problems difficulty 
increased. Interestingly, HRV was significantly 
higher in the high-performance group compared to 
the low performance group during the chess 
problems. 

Solving chess 
puzzles. Analyzing. 

Hjortskov et 
al., 2004 

The researchers either added or removed 
computer-work-related mental stressors from a 
computer work session (standardized) in the 
laboratory. They observed a reduction in the high-
frequency component of HRV. Also, an increase in 
the low- to high-frequency ratio was observed in 
the stress situation compared to the control session. 
They observed no significant changes in the low-
frequency component of HRV, and no significant 
differences for subjective experience of stress. 

Simple number 
entering task in a 
computer. Analyzing. 
Why understanding? 



 93 

Kahana, 
Seelig & 
Madsen, 

2001 

Recent studies using implanted depth and cortical 
surface electrodes in humans have changed this 
situation by demonstrating a task-related high-
amplitude activity of theta. These studies have 
shown that theta increases during both verbal and 
spatial memory tasks. Furthermore, human theta 
does not appear to be restricted to hippocampal 
sites, but rather appears over widespread regions of 
the neocortex. 

Subjects are 
presented with a 
series of items and 
must indicate 
whether the current 
item matches an item 
that occurred n-items 
back in the series, 
thus involving 
simultaneous 
encoding, 
maintenance, and 
retrieval of 
information. 

Başar, Başar-
Eroğlu, 

Karakaş, 
Schürmann, 

1999 
 
 
 
 

Reviewed were multiple experiments concerning 
oscillatory responses to events (in the alpha, theta, 
and delta ranges) as possible correlates of sensory 
and cognitive functions. Experimental data 
suggests that event-related theta oscillations are 
related to cognitive processing and cortico-
hippocampal interaction. As to delta oscillations, 
experimental data hint at functional correlates 
roughly similar to those mentioned for theta 
oscillations, i.e. mainly in cognitive processing. 
 

Multiple 
experiments. 
“Cognitive 
processes” 
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Table 2.1.2: Overview and relationship between cognitive domains of creating (CR), evaluating (EV), analyzing (AN), applying (AP), 
understanding (UN), and remembering (RE). 

Study Participants Cognitive Domain Domain Relationship 
between domain 

and cognitive 
performance Group   N  Age CR EV AN AP UN RE 

Pham & Wang, 
2016 

Male, Female 32 
23.6 
(4.2) 

      SDNN Positive 

Gellatly & 
Meyer, 1992 

Undergraduate 
students 

117 -       HR, HRV Positive 

Colzato et al, 
2018 

Male, 
Female  

90 22.1 
(2.5) 

      BPM, RMSSD, 
HF, LF 

Positive 

Garfinkel et al, 
2013. Male, Female 17 26.7 

(8.6) 
      ECG Positive 

Rosen & Reiner, 
(2017) 

Male, Female, 
Right handed 12 

25.2 
(6.14)       EEG Positive 

Sheth, 
Sandkühler, & 
Bhattacharya, 

(2009) 

Male, Female, No 
neurological or 
sleep disorder 

18 21.2       EEG 
No significant 

relation 

Jensen, & 
Tesche, (2002) 

Male,  
Female  10 23-37       MEG, EEG Positive 
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Guderian, 
Schott, 

Male, female, right-
handed 

24 18-32       MEG Positive 

Carroll, Turner 
& Hellawell, 

1986. 
Young males 24 18-22       HR No reliable period 

effect on HR 

Alessandrini et 
al, 1997. Male, female 8 71-90       - Positive 

Hjortskov et al, 
2004 

Female, non-
experienced 12 

23.7 
(4.8)       HRV (ECG) Negative 

Jung-Beeman et 
al, (2004). Male, female 

18 
(fMRI) 

19 
(EEG) 

18-29       EEG, FMRI Positive 

Guderian, 
Schott, 

Richardson-
Klavehn & 

Düzel, (2009). 

Male, 
Female  24 18-32       MEG, EEG Positive 

Cranford et al, 
(2014) 

 

Chemistry students, 
Faculty members 

12 
7 

-       - Positive 

Aritzeta et al., 
2022 

Male,  
Female  

- 
7.58 

(0.38) 
      HRV Positive 

 

 



 96 

B. Appendix (Chapter 3) 

B.1 Self-Evaluation Questions 

After each demonstration participants were asked self-evaluation questions on four statements 

using a button on a 4-button response box. The statements were the following:  

 

a) I had enough time to follow the math demonstration. 

b) I was familiar with the math demonstration. 

c) I understood the math demonstration. 

d) I found this math demonstration engaging.  

 

The answer format followed a 4-point Likert scale with the options: 1 = Completely disagree, 

2 = Somewhat disagree, 3 = Somewhat agree, and 4 = Completely agree.  

All supplementary materials are attached. 

 

C. Appendix (Chapter 4) 

C.1 Self-Evaluation Questions 

After each demonstration participants were asked self-evaluation questions on four statements 

using a button on a 4-button response box. The statements were the following:  

 

a) I had enough time to follow the math demonstration. 

b) I was familiar with the math demonstration. 

c) I understood the math demonstration. 

d) I found this math demonstration engaging.  

 

The answer format followed a 4-point Likert scale with the options: 1 = Completely disagree, 

2 = Somewhat disagree, 3 = Somewhat agree, and 4 = Completely agree.  

All supplementary materials are attached.  
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D. Appendix (Chapter 5)  

 

Figure 5.1.1: Set up of the study (PS-I condition versus I-PS condition). 

 

 

 

Figure 5.1.2: Example of the computerized task – Problem Solving. 

 

13.10.20 17

Problem 
Solving Instruction Post-Test

Problem 
SolvingInstruction Post-Test

PS-I

I-PS

Baseline

Baseline

Example of the computerized task – Problem Solving

13.10.20 18

Design as many different measures 
of consistency as you can. 

Your measure of consistency should 
make use of all data points (scored 
goals) in the table. 

First think about the solutions and 
then show all work and calculations 
on the papers provided. 

All the best, and remember, develop 
multiple ways of measuring 
consistency!

Year in the 
League Mike Dave 

1 13 13
2 11 11
3 15 14
4 12 16
5 16 14
6 12 12
7 16 14
8 14 15
9 17 14

10 14 17
11 14 14

Think about the first idea you have, 
the first way of measuring
consistency

Click on “space” when you are ready 
to write down your work and 
calculations

Year in the 
League Mike Dave 

1 13 13
2 11 11
3 15 14
4 12 16
5 16 14
6 12 12
7 16 14
8 14 15
9 17 14

10 14 17
11 14 14

Write down your work and 
calculations on the papers provided.

When you’re done, click “space”

Year in the 
League Mike Dave 

1 13 13
2 11 11
3 15 14
4 12 16
5 16 14
6 12 12
7 16 14
8 14 15
9 17 14

10 14 17
11 14 14
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Figure 5.1.3: Example of the computerized task - Instruction. 

 

 

Figure 5.1.4: Example of the computerized task - Posttest. 

 

 

 

  

13.10.20 19

Example of the computerized task – Instruction

Standard Deviation as a Mathematical Measure of 
Consistency

This part includes 4 problems. Working through these will give you an 
understanding of standard deviation, a commonly used measure of 
consistency in the sciences, finance, medicine, and elsewhere.

Press “Space” to continue

A “deviation” is simply the distance between two data points: how far apart they are. 
For example:

“12 deviates from 16 by -4 because 12 – 16 = -4”

The best way to calculate consistency is to look at the deviations around the mean.

13 1514 1612

Press “Space” to continue

We use the following formula to calculate the “average” deviation around the mean:

!
" ! ∑#$!

" ## − #̅ %

Where & represents the mean, ∑ represents the summation sign, and N represents the total 
number of values. It looks somewhat complicated, but it is simply a method of calculating the 
average deviation around the mean while preventing positives and negative deviations from 
cancelling each other.

How and why does this formula work as a measure of consistency?

Read carefully the following instructions.

Press “Space” to continue

13.10.20 20

Example of the computerized task – Posttest

Cinema A Cinema B

Mean 72 75
Standard Deviation 10 14

PART 1
1) The owners of two cinemas, A and B, argue that their own cinema enjoys a more consistent 
attendance. They collected the daily attendance of their cinemas for 11 random days. The results of their 
data collection are shown below:

Which cinema do you think has a more consistent attendance?
1. Cinema A
2. Cinema B 
3. Both have equally consistent attendance. 
4. None of the above.                                                                       

Set #1 ¢ ¢ ¢ ¢ ¢

Set #2 ¢ ¢ ¢ ¢ ¢

Set #3 ¢ ¢ ¢ ¢ ¢

5) Below are sets of five unknown values. The values match the number line, that is, values 
to the right are larger than values to the left.

The largest SD belongs to set:
a)Set #1
b)Set #2
c)Set #3
d)All SDs are the same
e)Cannot be determined from the graphs alone.

PART 3

1) An equal number of students competed in the 100m sprint and 100m swim finals. The 
timings (in seconds) of the champions of the 100m sprint and 100m swim are shown 
below, as are the average timings and the SDs of the finalists in the two competitions. 

Assuming all else being equal, between the two champions, who is the better 
performer?
a) The sprint champion
b) The swim champion
c) Both
d) Not enough information to decide                                                                  

100m sprint 100m swim

Champion 11s 40s
Average of the Finalists, M 12s 45s

SD of the Finalists 1s 10s
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D.1 Additional Forms 

D.1.1 Consent form 

Þ Please read this form carefully. 

Þ Please ask the investigator or the contact person if you have any questions.  

 

Study title: The Physiological and Neural Basis of Learning through Productive Failure 

Study location: ETH Zurich Decision Science Laboratory, Haldeneggsteig 4, 8092 Zürich 

 

Principal Investigator’s Name and First Name: Formaz, Cléa 

Participant’s Name and First Name: 

• I participate in this study on a voluntary basis and can withdraw from the study at any 

time without giving reasons and without any negative consequences.  

• I have been informed orally and in writing about the aims and the procedures of the 

study, the advantages and disadvantages, as well as potential risks. My questions have 

been answered completely and to my satisfaction. 

• I have read the written information for the volunteers. My questions related to 

participating in the study have been answered satisfactorily. I have been given a copy 

of the information for volunteers and the consent form.  

• I am aware that part of the study will be video and/or voice recorded. I understand that 

only the researchers of the study have access to the recordings and that they will not be 

shared in public.  

• I am aware that the EEG data will be made public in an anonymous form and that my 

identity cannot be recognized nor traced from these data.  

• I was given sufficient time to make a decision about participating in the study.  

• With my signature, I certify that I fulfill the requirements for participating in the study 

stated in the information for the volunteers.  

• I have been informed that any possible damage to my health, which are directly related 

to the study and are demonstrably the fault of ETH Zurich, are covered by the general 

liability insurance of ETH Zurich (insurance policy no. 30/4.078.362 of the Basler 

Versicherung AG). However, beyond the before mentioned, my health and/or accident 
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insurance (e.g. for the commute to or from the study location) will be applicable.  

• I agree that the responsible investigators and/or the members of the Ethics Commission 

have access to the original data under strictly observed rules of confidentiality.  

• I am aware that during the study I have to comply with the requirements and limitations 

described in the information for volunteers. In the interest of my health, the 

investigators can, without mutual consent, exclude me from the study. I am aware of 

the requirements and restrictions to be observed during the study. 

• I will inform the investigators regarding any medical treatment and medication 

(prescribed by medical doctors or self-purchased).  

• I participate in this study voluntarily and consent that my personal data be used as 

described above. I have had enough time to decide about my participation.  

• If in the course of the study, a clinical finding should occur which could lead to a 

diagnosis, treatment or prevention of an existing or future illness  

⬜ I want to be informed.  

⬜ I do not want to be informed.  

• I would like to be informed about the results of this study 

⬜ yes ⬜ no 

 

Location, date . . . . . . . . . . . . . . . . . . . . . . . . Signature volunteer . . . . . . . . . . . . . .. . . . . . . . . . 

Location, date . . . . . . . . . . . . . . . . . . . . . . . . Signature investigator . . . . . . . . . . . . . . . . . . . . .  

  



 101 

D.1.2 Information sheet  

(Take a few minutes to read through and sign the consent form) 

 

Study title: Neural Basis of Productive Failure 

Principal Investigator’s Name and First Name: Formaz, Cléa 

 

Goals of the study 

This study investigates the brain processes involved in productive failure in solving problems 

of standard deviation. By understanding the brain processes, we will have a more thorough 

understanding on why the productive failure design works better than the usual direct 

instruction in learning. This study can bring valuable insights from the neuroscientific point of 

view in an effective learning situation. 

 

Research procedure 

You will be sitting on a relaxed chair and an EEG/fNIRS record will be done during 2 minutes. 

After this baseline recording, you will be writing something with your dominant hand. You 

will then be asked to either directly solve the problem of standard deviation or are given 

instructions first. A laptop will be placed in front of you, you will see the instructions followed 

by the problem-solving task, after that you will receive direct instructions (or vice versa), and 

then complete a posttest. You will be asked to press a button after solving the task. Before the 

posttest starts, you will receive short questionnaires about math anxiety and general questions 

about feeling in learning situations, cognitive load and metacognition. Again, after solving the 

posttest you should press a button and the recording will stop here. 

 

Right of withdrawal 

You may withdraw your consent to use your data at any time and without any liability to you. 

 

Data protection 

The obtained data will be stored safely and reported in an anonymous form. This information 

will be stored electronically and anonymously, on a password-protected computer located at 

ETH. The data will be completely deleted 10 years after the date of the experiment. Physical 

copies will be securely stored. 

Only the responsible investigators and/or the members of the ETH Ethics Commission will 
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have access to the original data under strictly observed rules of confidentiality. 

 

Contact person 

Cléa Formaz 

clea.formaz@gess.ethz.ch 
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D.1.3 Declaration of Informed Consent 

During this study, you will work individually while making decisions on given situations. 

There is no risk involved in participating in this study. 

Your participation in the research component of this study is purely voluntary, and you may 

withdraw your participation or your data at any time. 

Your data will be kept completely confidential. 

If you have any question regarding this study, please use the contact details below. 

 

I hereby acknowledge that I have read and understood the above information and agree 

to participate. 

 

 

Last Name: ____________________________________ 

 

First Name: ____________________________________ 

 

Date:  ____________________________________ 

 

 

Signature: ____________________________________ 

 

 

Contact person 

Cléa Formaz 

clea.formaz@gess.ethz.ch 
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D.1.4 Proof of compensation for a participant 

 

I, __________________________ have received CHF 40 after participating the study on the 

physiological and neural basis of learning through Productive Failure at the Decision Sciences 

Lab, ETH Zürich.  

 

 

Place and date: ___________________________ 

 

 

Signature of the participant: ___________________________ 

 

 

Signature of the researcher: ___________________________  
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D.2 Additional Questionnaires 

D.2.1 Abbreviated Math Anxiety Test 
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D.2.2. Questionnaires to assess students’ incoming cognitive and motivational 
characteristics 

 

Learning Goal Orientation (5-point Likert scale from “strongly disagree” to “strongly agree”) 

1. The opportunity to do challenging work is important to me.  

2. When I fail to complete a difficult task, I plan to try harder the next time I work on it.  

3. I prefer to work on tasks that force me to learn new things.  

4. The opportunity to learn new things is important to me.  

5. I do my best when I'm working on a fairly difficult task.  

6. I try hard to improve on my past performance.  

7. The opportunity to extend the range of my abilities is important to me.  

8. When I have difficulty solving a problem, I enjoy trying different approaches to see 

which one will work. 

  

Attitude towards Mistakes (5-point Likert scale from “strongly disagree” to “strongly agree”) 

1. When I make mistakes, I am afraid that others look down upon me. [AFFECT subscale]  

2. If I make mistakes, I don't want others to notice them. [AFFECT subscale]  

3. When I make mistakes answering classroom questions, I am overwhelmed with 

embarrassment. [AFFECT subscale]  

4. I seldom feel bothered by the mistakes I make. [AFFECT subscale, reversed]  

5. I believe successful students make fewer mistakes during learning than others. 

[COGNITION subscale]  

6. I believe it is smart to avoid making mistakes during learning. [COGNITION subscale]  

7. I believe making mistakes is not an efficient way to learn academic materials. 

[COGNITION subscale]  

8. I believe making mistakes may reduce my interest in learning. [COGNITION subscale]  
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D.2.3. Questionnaires to assess students’ task experiences 

 

Knowledge Gap Awareness (5-point Likert scale from “strongly disagree” to “strongly agree”) 

1. My knowledge was insufficient to carry out these tasks.  

2. These tasks made clear to me that I lack some knowledge.  

3. I sometimes got stuck when trying to execute these tasks.  

4. These tasks were too difficult to finish.  

5. I felt that I did not manage to complete these tasks.  

 

State Curiosity (5-point Likert scale from “strongly disagree” to “strongly agree”) 

1. I want to know more.  

2. I am feeling puzzled.  

3. I want things to make sense.  

4. I am intrigued by what is happening.  

5. I feel like asking questions about what is happening.  

6. Things feel incomplete.  

7. I feel like searching for answers.  

8. I want to explore possibilities.  

9. My interest has been captured.  

 

Germane Cognitive Load (5-point Likert scale from “strongly disagree” to “strongly agree”) 

1. This activity improved my understanding of the content that was covered.  

2. This activity improved my understanding of the problem that was/were covered.  

3. This activity improved my knowledge of the terms that were mentioned.  

4. This activity improved my knowledge of how to deal with the problem/s covered.  

5. This activity improved my understanding of how to deal with the problem/s covered.  

6. I invested high mental effort during this activity.  
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All Slides from Study 1: Brain, Mathematics, and Expertise 
(the same slides were used for the pilot study on the heartbeat differences between math 

experts and novices). 
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All Slides from Study 2: The Neural and Physiological Basis of Learning through 

Problem-Solving followed by Instruction (PS-I). 
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