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Information processing within neuronal circuits relies on their proper

development and a balanced interplay between principal and local inhibitory

interneurons within those circuits. Gamma-aminobutyric acid (GABA)ergic

inhibitory interneurons are a remarkably heterogeneous population, comprising

subclasses based on their morphological, electrophysiological, and molecular

features, with differential connectivity and activity patterns. microRNA (miRNA)-

dependent post-transcriptional control of gene expression represents an

important regulatory mechanism for neuronal development and plasticity.

miRNAs are a large group of small non-coding RNAs (21–24 nucleotides)

acting as negative regulators of mRNA translation and stability. However, while

miRNA-dependent gene regulation in principal neurons has been described

heretofore in several studies, an understanding of the role of miRNAs in inhibitory

interneurons is only beginning to emerge. Recent research demonstrated

that miRNAs are differentially expressed in interneuron subclasses, are vitally

important for migration, maturation, and survival of interneurons during

embryonic development and are crucial for cognitive function and memory

formation. In this review, we discuss recent progress in understanding miRNA-

dependent regulation of gene expression in interneuron development and

function. We aim to shed light onto mechanisms by which miRNAs in

GABAergic interneurons contribute to sculpting neuronal circuits, and how their

dysregulation may underlie the emergence of numerous neurodevelopmental

and neuropsychiatric disorders.

KEYWORDS
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Introduction

Cortical information processing depends on intricately and dynamically interconnected
neuronal circuits composed of (1) glutamatergic excitatory neurons (or principal neurons),
and (2) γ-aminobutyric acid (GABA)ergic inhibitory interneurons (INs) (Wood et al., 2017;
Swanson and Maffei, 2019). GABAergic INs are a highly heterogeneous neuronal population
that can be further divided into distinct subtypes based on morphology, molecular markers,
electrophysiological properties, and connectivity (Ascoli et al., 2008; Lim et al., 2018;
Mihaljević et al., 2019). Whilst principal neurons signal within and among various brain
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regions, the majority of cortical GABAergic INs are considered to
project mainly locally (but see descriptions of long-range projecting
GABAergic INs (Jinno et al., 2007; Caputi et al., 2013). In this
manner they control local network activity by gating information
flow and contributing to sculpting network dynamics (Teppola
et al., 2019). Examples of such functions include the maintenance
of excitatory and inhibitory (E/I) balance, the generation and
synchronization of cortical rhythms, as well as the modulation of
cortical circuit plasticity (Tremblay et al., 2016; Fishell and Kepecs,
2020).

The generation and integration of the accurate number and IN
subtype during relevant developmental time windows underlies the
proper functioning of neural circuitry. A large amount of evidence
indicates that the expression of particular genetic programmes
confers structural and functional IN diversity, which becomes
evident after IN precursors become postmitotic (Shi et al., 2021;
Bugeon et al., 2022). Subsequently, during migration and final
position settling, extrinsic local cues shape subtype identity of
cortical INs, thereby determining morphology and corollary their
connectivity patterns (Guo and Anton, 2014; Peyre et al., 2015;
Mayer et al., 2018; Mi et al., 2018; Fishell and Kepecs, 2020).
Moreover, it has been demonstrated, that INs can change their
molecular profile based on their engagement in local circuits
(Donato et al., 2013; Dehorter et al., 2015, 2017). Consequently,
disturbances in IN development and mature function are reflected
in their misspecification and misplacement, in alterations of
their morphology and connectivity as well as in their inability
to change and adapt their gene expression profile in context-
specific brain activity (Volk et al., 2015; Dienel and Lewis, 2019;
Mukherjee et al., 2019; Iannone and De Marco García, 2021). In
line with the importance of INs for circuit function, developmental
disturbances, or disruptions of mature IN function have emerged
as pathophysiological substrates implicated in neurodevelopmental
and neuropsychiatric disorders, such as schizophrenia, depression,
epilepsy, and autism spectrum disorders (Brown et al., 2015; Nelson
and Valakh, 2015; Del Pino et al., 2018; Selten et al., 2018; Juric-
Sekhar and Hevner, 2019; Mukherjee et al., 2019).

Post-transcriptional mechanisms play critical roles in the
control of gene expression during neuronal development
and function. Compared to transcriptional regulation, post-
transcriptional control of gene expression allows for faster
responses to environmental cues, and in addition is not restricted
to the nucleus. Recently, a group of small, non-coding RNAs,
known as microRNAs (miRNAs), has been highlighted as a vital
and ubiquitous layer of post-transcriptional control of gene
expression. miRNAs base-pair to complementary sequences
in their target mRNA molecules and inhibit their translation
or promote degradation (Bartel, 2018). miRNAs are particularly
abundant in the brain, where they contribute to proteomic diversity
across regions and are important mediators of synaptic plasticity
(Schratt et al., 2006; Schratt, 2009; Aksoy-Aksel et al., 2014; Ye
et al., 2016). Numerous studies have shown their fundamental
involvement at different stages of neuronal development and in the
control of mature neuronal functions (Kosik, 2006; Fineberg et al.,
2009; McNeill and Van Vactor, 2012; Zahr et al., 2019; Zolboot
et al., 2021; Chan et al., 2022). Their expression and activity are
often dysregulated in pathological states resulting in a shift of
the cellular and extracellular miRNA patterns. Therefore, miRNA
profiling along with the analysis of their target signaling pathways

has emerged as a promising approach to study the pathogenesis
of many diseases (Chen et al., 2010; Geekiyanage et al., 2012;
Bencurova et al., 2017; Paul et al., 2018; Figueiredo et al., 2022;
Khan and Saraya, 2022; Wei and Shetty, 2022).

Notwithstanding the considerable amount of knowledge on the
role of miRNA in pyramidal neuron development and plasticity,
little is known on how miRNAs govern fundamental aspects
of cortical inhibition. There are a few studies pinpointing the
importance of miRNA regulation in GABAergic IN development
and mature functions. In this review, we assemble and arrange
recent data regarding miRNA-dependent gene regulation of
GABAergic IN activity, with the aim to shed light onto mechanisms
by which miRNA-dependent control of gene expression in INs
contributes to sculpting brain circuit dynamics. We propose
that elucidating miRNA-associated signaling networks may offer
a powerful platform for understanding mechanisms leading
to impairments of cortical INs in neurodevelopmental and
neuropsychiatric disorders, such as schizophrenia and autism (Tu
et al., 2018; Lim et al., 2021).

microRNAs as gene expression
regulators

miRNAs constitute a subclass of small (approximately 19–
24 nucleotides in length), single-stranded non-coding RNAs
that regulate post-transcriptional gene expression by repressing
translation or promoting degradation of their target mRNAs. The
early 1990s discovery of the first two miRNAs, lin-4 and let-
7, involved in the regulation of the nematode Caenorhabditis
elegans development, has attracted significant interest and marked a
crucial milestone in molecular neurobiology by introducing a new
level for controlling gene expression (Lee et al., 1993; Wightman
et al., 1993). Subsequently, a growing number of miRNAs have
been successively identified through various computational and
experimental methods in species ranging from plants to humans. In
2002, miRBase, a miRNA registry was launched to serve as the main
online repository for information regarding all potential miRNA
sequences, nomenclature, classification, and target prediction
(Griffiths-Jones, 2004). The most recent release of miRBase (v22)
contains 48 860 mature miRNA sequences from 271 organisms.
More than 2,500 mature miRNAs have been discovered in the
human genome (Kozomara et al., 2019) and the expression of up to
60% of human protein-coding genes is predicted to be modulated
by miRNAs (Friedman et al., 2009; Akhtar et al., 2016).

Most miRNAs are deployed over the genome and transcribed
as individual genes, while some of them are clustered and co-
expressed as polycistronic units under the control of the same
promoter (Truscott et al., 2016). According to their genomic
location, which determines their transcriptional regulation,
miRNAs can be classified into intragenic and intergenic miRNAs
(Liu et al., 2019). Intragenic miRNAs are positioned within protein-
coding or non-coding genes (so called host genes) at different gene
regions and are supposed to be co-transcribed with their host
genes by Polymerase II (Liu et al., 2019). Conversely, intergenic
miRNAs are inserted between genes and transcribed from their
own Polymerase II/III promoters (Liu et al., 2019). miRNAs are
first transcribed as long primary transcripts, which then undergo a
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series of sequential processes leading to the generation of mature
miRNA (Lee et al., 2002, 2004; Bartel, 2004; Denli et al., 2004; Lund
et al., 2004; Okamura et al., 2004; Okada et al., 2009; Ha and Kim,
2014; O’Brien et al., 2018; Medley et al., 2021; Ergin and Çetinkaya,
2022). For a more detailed description of the biogenesis of miRNAs
see Figure 1. In addition to the canonical pathway of miRNA
biogenesis, various alternative mechanisms that may omit some of
the canonical steps (so called non-canonical biogenesis pathways)
can produce miRNAs (Yang and Lai, 2011; Cipolla, 2014; Ha and
Kim, 2014; Stavast and Erkeland, 2019) and have been shown to be
involved in different human diseases, including cancer (reviewed
by Liu et al., 2019).

Target specificity of the miRNA-induced silencing complex
(miRISC) is determined by the sequence complementarity between
the miRNA strand and the target mRNA. The sequence primarily
involved in miRNA–mRNA recognition—the “seed” region—is
usually composed of 6–8 nucleotides of the 5′ region of the miRNA
(Chen et al., 2008; Bartel, 2009). Due to the small size of the
“seed” region and the length of 3′ UTRs, miRNAs may have
hundreds of mRNA targets, and any given target may be under
the control of numerous miRNAs (Friedman et al., 2009). The
target mRNA may be “deactivated” by one or more of the following
processes: (1) endonucleolytic cleavage of the mRNA strand, (2)
destabilization of the mRNA through shortening of its poly(A)
tail and decapping, followed by exonucleolytic cleavage, and (3)
less efficient translation into proteins on ribosomes (Fabian et al.,
2010). However, endonucleolytic cleavage happens only in the rare
case of perfect complementarity between miRNAs and their target
mRNA. Otherwise, there is usually a combination of degradation
and translational inhibition. The degree by which each of these
mechanisms contributes to silencing of mRNAs is variable and not
easily deduced from the geometry of the miRNA/mRNA pair.

miRNAs in the neuron

miRNAs are present in many mammalian cell types and
in various biological fluids within cells (e.g., peripheral blood
mononuclear cells, PBMCs), or in the form of exosomes and
as extracellular circulating miRNAs (Lagos-Quintana et al., 2002;
Kriegel et al., 2013). They are highly abundant in the brain, where
they significantly contribute to the functional proteomic diversity
across cells and regions. miRNA interactions with their target
mRNAs depend not only on sequence complementarity, but also
on spatial proximity, which contributes to efficient regulation of
local protein synthesis (Jansen, 2001; Martin and Ephrussi, 2009).
miRNAs are highly abundant in dendrites and axons (Martin and
Zukin, 2006; Kye et al., 2007; Schratt, 2009). While regulation of
transcription is spatially restricted to the nucleus, miRNAs may
fine-tune protein synthesis in remote subcellular compartments
such as synapses (Dubes et al., 2019). The local repertoire of
mRNAs preserves protein homeostasis for physiological processes
and in response to intracellular and environmental cues (Das
et al., 2021), and miRNA biogenesis and function themselves are
subject to activity-dependent regulation (Aksoy-Aksel et al., 2014;
Sambandan et al., 2017; Zampa et al., 2018). As a result, each
synapse may be autonomously altered in structure and function
during synaptic plasticity processes (Martin and Zukin, 2006).

Furthermore, the miRNA biogenesis machinery is not restricted to
the soma. For example, specific pre-miRNAs can be transported
into the synapto-dendritic compartment (Bicker et al., 2013)
and cleaved at the synapse to mature miRNAs (Lugli et al.,
2008, Sambandan et al., 2017). Accordingly, both Dicer and the
Argonaute protein eiF2c, a core component of the miRISC, are
found in post-synaptic densities of dendritic spines (Lugli et al.,
2005). Taken together, specific miRNAs have been established as
key modulators of brain-specific signaling pathways associated with
neuronal stem cell self-renewal, cell fate determination, neuronal
and glial cell differentiation and proliferation, neurite growth,
neurogenesis, synapse development and plasticity (Kosik, 2006;
Schratt et al., 2006; Lugli et al., 2008; Fiore et al., 2009; Schratt,
2009; Siegel et al., 2009; Gao, 2010; Shi et al., 2010; Perruisseau-
Carrier et al., 2011; de Chevigny et al., 2012; Wakabayashi et al.,
2014; Stappert et al., 2015; Bielefeld et al., 2017; Chen et al., 2018;
Zampa et al., 2018).

The multimodal diversity of
GABAergic interneurons

Conventional classification uses various features to describe
and categorize cortical INs (Ascoli et al., 2008). IN subtypes
are placed in distinct subgroups according to morphological
characteristics, intrinsic electrophysiological properties, as well as
connectivity and protein expression patterns (Ascoli et al., 2008;
Lee et al., 2010; Kepecs and Fishell, 2014; Tremblay et al., 2016;
Tasic et al., 2018; Mihaljević et al., 2019). Recent developments
in single cell transcriptomics added a new layer of complexity
to IN classification (Tasic et al., 2016, 2018; Gouwens et al.,
2019, 2020; Miyoshi, 2019). Gouwens et al. (2020) distinguished
28 types of cortical INs with congruent morphoelectrical and
transcriptomic characteristics (so called met-types). Hierarchical
clustering of IN properties revealed five major IN categories
which were complementary, non-overlapping and designated by
the expression of specific molecular markers: the calcium binding
protein parvalbumin (PV), the neuropeptide somatostatin (Sst),
the vasoactive intestinal peptide (VIP), the lysosomal-associated
membrane protein family member 5 (LAMP5), and synuclein
gamma (SNCG); the latter two subclasses mainly representing
neurogliaform INs and cholecystokinin (CCK) INs, respectively.
These categories overlap to a great extent with the cardinal IN
subclasses distinguished according to their developmental and
spatiotemporal origin in the medial or caudal ganglionic eminence
(MGE or CGE, respectively), as described below (Fishell and
Kepecs, 2020; Gouwens et al., 2020). Interestingly, the classification
of met-types not only recapitulates the distinction of cardinal
IN cell types based on developmental origin, but also reveals
a layer-specific axon innervation pattern as a defining feature
that distinguishes different met-types (Kawaguchi and Kubota,
1997; Klausberger and Somogyi, 2008; DeFelipe et al., 2013;
Gouwens et al., 2020). In other words, the axonal projection
pattern separates transcriptomic IN subtypes and in this manner
implicates a functional differentiation according to their projection
pattern. One consequence of this diversity in axonal arborisation
is a functional compartmentalization of inhibition (Lovett-
Barron et al., 2012; Royer et al., 2012; Fishell and Kepecs, 2020;
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FIGURE 1

Canonical miRNA biogenesis pathway. miRNAs are initially transcribed by RNA Polymerase II/III into long primary transcripts (pri-miRNAs) that
typically include a poly(A) tail and secondary hairpin structure. The pri-miRNA is subsequently cleaved by the microprocessor complex, containing
the endonuclease Drosha and its partner protein Dgcr8/Pasha to the stem-loop precursor miRNA (pre-miRNA), which is then exported to the
cytoplasm by exportin 5/RanGTP complex. In the cytoplasm, another RNase III enzyme, Dicer/TRBP, cuts the hairpin structure of the pre-miRNA to a
miRNA duplex. One strand of the miRNA duplex is selectively incorporated into the miRNA-induced silencing complex (miRISC) and identified as the
“miRNA” or “guide” strand. The other strand (originally named as “miRNA*”) is often not incorporated into a functional miRISC and subsequently
degraded in the cytoplasm. Within the miRISC, miRNAs bind to complementary sequences of target mRNAs to repress their translation or induce
their degradation. Adapted from Winter et al. (2009).

Bloss et al., 2016). However, the implications of a granular
differentiation among transcriptomic IN subtypes warrants further
investigation, especially as recent observations indicate that, e.g.,
PV INs display a form of plasticity where they can adapt their
molecular profile, intrinsic properties and connectivity pattern
to changes in the local circuitry (Donato et al., 2013; Caroni,
2015; Dehorter et al., 2015). On a broader level, differentiation
upon axonal projection patterns segregates IN into four major
classes: (1) INs that project onto the soma of pyramidal neurons
(PV INs), (2) INs that project onto the axon initial segment
of pyramidal neurons (axo-axonic cells, or chandelier cells, also
PV expressing), and (3) INs that project onto the dendrites of
pyramidal neurons (Sst INs); finally, a fourth class consists of
INs that project onto other INs (VIP INs). One interpretation
of this diversity in axonal patterning is a division of labor
of highly specialized inhibitory synapses (Huang et al., 2007;
Klausberger and Somogyi, 2008; Fishell and Kepecs, 2020). For
the remainder of this review, we will use this classification
scheme as a guideline to relate miRNA-dependent control of

gene expression in different IN classes to cortical inhibition.
A short characteristic of major IN subclasses is presented in
Figure 2.

Differences in interneurons across
species

There are major differences between rodents and primates in
the proportion of glutamatergic principal cells and GABAergic
INs, as well as among IN subtypes (Jones, 2009). The relation
of pyramidal neurons vs. INs is approximately 2:1 in humans as
compared to 5:1 in mice. Nearly 50% of GABA INs in rodents
express PV, while approximately 20% are VIP immunoreactive. In
primates, only around 20% of GABAergic INs are PV positive.
Since IN subtypes integrate within cortical circuits in distinct
manners, these dissimilarities are expected to differentially impact
local and global network functioning. In contrast to rodents, in
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FIGURE 2

GABAergic interneuron overview. Cardinal classes of cortical IN differ in their morphology, neurochemical content, intrinsic electrophysiological
properties and pattern of connectivity. For detailed description we refer to recent, excellent reviews on the classification and function of inhibitory
INs (Tasic et al., 2016, 2018; Gouwens et al., 2019, 2020; Miyoshi, 2019). Parvalbumin (PV) INs synapse mainly on the somatic and perisomatic
compartment of pyramidal cells, thereby controlling the spike generation in pyramidal cells. They are the major source of feedforward inhibition
(Pouille and Scanziani, 2001; Freund, 2003; Mallet et al., 2005; Woodruff et al., 2009; Hu et al., 2014) and due to their divergent axonal targeting,
they are able to synchronize large groups of postsynaptic neurons (Pouille and Scanziani, 2001; Ferguson and Gao, 2018; Yang and Sun, 2018;
Missonnier et al., 2020). Consequently, they play pivotal roles in the generation and regulation of cortical rhythms, i.e., hippocampal theta rhythms,
sharp wave ripples, and especially γ oscillations (Pouille and Scanziani, 2001; Sohal et al., 2009). Chandelier cells, or axo-axonic cells (AACs) are also
PV expressing INs. They innervate the axon initial segment providing inhibition onto the spike initiation zone of pyramidal cells (Woodruff et al.,
2009, but see Szabadics et al., 2006). Recently, it has been shown that AACs are active during heightened arousal and theta states (Dudok et al.,
2021; Schneider-Mizell et al., 2021), thereby controlling CA1 pyramidal neurons outside of their place fields. Somatostatin (Sst) INs target the
dendrites of pyramidal neurons (Kawaguchi and Kubota, 1996, 1997; Wang et al., 2004). Sst IN regulation of principal cell dendrites is critical for
spine reorganization. Consequently, they play an important role in memory and learning processes (Chen et al., 2015; Honoré et al., 2021). Sst INs
impact local circuits via feedback or lateral inhibition and have been shown to support cortical oscillations (Attinger et al., 2017; Muñoz et al., 2017;
Obermayer et al., 2018). Vasoactive intestinal peptide (VIP) INs constitute the fourth major class of INs, comprising roughly 15% of all INs. VIP INs
preferentially target other INs, mainly Sst, and, to a lesser degree, PV INs, thereby providing disinhibitory control over principal neurons (Rudy et al.,
2011; Pi et al., 2013; Rhomberg et al., 2018). Thus, they constitute an important component of cortical disinhibitory circuits playing a role in gain
control during sensory discrimination (Pi et al., 2013), and in cortical plasticity (Fu et al., 2015). Adapted from Fishell and Kepecs (2020).
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the fetal human forebrain two independent lineages of cortical INs
have been distinguished (Letinic et al., 2002; Zecevic et al., 2011).
While the subcortical ganglionic eminence (GE) is the primary
source of rodent INs, the developmental origin of neocortical
GABAergic INs in humans and non-human primates is still under
debate. However, recent studies suggest that the majority of primate
neocortical GABAergic INs may originate from GEs of the ventral
telencephalon, similarly to rodents (Petanjek et al., 2009; Ma et al.,
2013; Yu et al., 2021). Moreover, while the neurogenesis period
varies within the GE subregions and across species, major IN classes
and their migratory routes are evolutionarily ancient and remain
well conserved (López-Bendito et al., 2008).

Development of GABAergic cortical
interneurons

Fate-mapping experiments revealed that cardinal IN types can
be predicted based on their spatiotemporal origin, at the time
when IN become postmitotic (Nery et al., 2002; Xu et al., 2003;
Taniguchi et al., 2013; Mayer et al., 2018; Fishell and Kepecs,
2020). The precursors of cardinal GABAergic IN subgroups are
primarily generated in the subpallidum in the ventral telencephalon
(Wonders and Anderson, 2006; Batista-Brito and Fishell, 2009;
Corbin and Butt, 2011). In rodents, neurogenesis and proliferation
of GABAergic INs precursors occurs in the MGE and CGE
and to a lesser extent in the preoptic area (POA), a subregion
of the hypothalamus (Wonders and Anderson, 2006; Batista-
Brito and Fishell, 2009; Gelman et al., 2009; Gelman and Marín,
2010; Corbin and Butt, 2011; Sultan et al., 2013). Each of these
areas generates distinct IN subtypes depending on specific gene
regulatory networks implemented by spatially and temporally
restricted transcription factor activity (Kessaris et al., 2014).
Collectively, MGE and CGE constitute the embryonic source of
> 90% of GABAergic INs in the murine cerebral cortex (Wonders
and Anderson, 2006; Batista-Brito and Fishell, 2009). MGE-derived
INs are the major source of cardinal PV and Sst INs (Marín and
Rubenstein, 2001; Xu et al., 2003; Butt et al., 2005; Wonders and
Anderson, 2006; Fogarty et al., 2007; Miyoshi et al., 2010; Bandler
et al., 2017) and their specification is mediated by numerous
transcription factors including the Dlx family, the Nkx2 family,
Lhx6, and Sox6 (Wonders and Anderson, 2006; Fogarty et al.,
2007; Huang et al., 2007; Butt et al., 2008; Batista-Brito and Fishell,
2009). CGE-derived INs express the transcription factors Sp8,
COUP-TF2, Prox1, and Pax6, resulting in IN subpopulations that
closely overlap with the cardinal subgroup of VIP cells and other
smaller cardinal subgroups (Pleasure et al., 2000; Xu et al., 2003;
Butt et al., 2005; Lee et al., 2010; Miyoshi et al., 2015; Tremblay
et al., 2016; Lim et al., 2018; Fishell and Kepecs, 2020). Upon
their generation, postmitotic cortical INs migrate tangentially from
the subpallium along the subventricular and marginal zone to the
cortical plate, switch their migration pattern and travel radially
into the developing cortical plate to finally reach their destination
in the postnatal cortex (Faux et al., 2012; Wamsley and Fishell,
2017). Like IN generation and cardinal specification, migration and
settling are complex processes regulated by an intricate network
of various motogens, chemoattractants, transcription factors, and
neurotransmitters (Marín and Rubenstein, 2001; De Marco García

et al., 2011; Wamsley and Fishell, 2017; Lim et al., 2018). These
developmental programs are regulated not only by intrinsic IN
activity, but also by the forming immature neuronal circuits
(Hurni et al., 2017; Bugeon et al., 2021). In addition, the early
excitatory nature of GABA adds another layer of complexity to
the multidimensional processes governing IN laminar positioning
and integration within cortical circuits (Ben-Ari, 2007). Taken
together, during migration and settling interaction of developing
INs with extrinsic local cues promotes additional functional
subtype diversity and finally shape IN morphology to establish their
local connectivity pattern.

miRNA significance for GABAergic
interneuron development

Deep miRNA sequencing during cortical IN differentiation
of human induced pluripotent stem cells (hiPSCs) revealed
dynamic alterations of miRNA profiles across different stages of
development (Tu et al., 2018). Specific miRNA expression patterns
were observed at four time points: D0, D11, D25, D80, representing
hiPSCs, neuron progenitor cells, immature neurons, and mature
neurons, respectively. The generated miRNomes at D0 and D11
and those generated at D25 and D80 clustered together. While the
miRNA-302 family, miRNA-372, and miRNA-367 were specifically
highly expressed at the hiPSCs stage, the let-7 family, miRNA-
9, and miRNA-124 were enriched in mature INs. Interestingly,
the -3p and -5p forms were not always expressed consistently
during neuronal differentiation, indicating that miRNA strand
switching might affect developmental processes as well. Thus,
dynamic changes of miRNA patterns reflect a complex regulatory
mechanism governing distinct stages of neuronal differentiation as
well as the emergence of final cortical IN cell types.

Tuncdemir et al. (2015) examined the impact of miRNA
depletion (by means of Dicer knockout) in MGE-derived IN
proliferation, migration, and differentiation by removing Dicer
from MGE-progenitors as well as post-mitotic MGE-derived INs in
mice. The loss of miRNAs impacted neither proliferation nor the
initiation of migration. However, miRNAs were essential for the
transition from tangential to radial migration and the subsequent
survival and maturation of cortical INs, resulting in a profound
reduction of cortical INs at postnatal day 21 (Tuncdemir et al.,
2015). Furthermore, almost 50% of the fate-mapped neurons lost
their cardinal signature (PV or Sst) and showed defects in their
morphology. Interestingly, despite the reduction of INs at postnatal
day 21, a precocious expression of Sst, neuropeptide Y (NPY)
and glutamic acid decarboxylase 65 (GAD65) was observed in
E15.5 Dicer mutant animals, indicative of a miRNA-dependent
expression of specific IN markers. Finally, the transcription factors
Lhx6, Sox6, and Satb1 were not changed in Dicer-mutant mice,
arguing that miRNA-dependent mechanisms do not act through
the previously demonstrated transcription factor networks in
MGE-derived IN specification (Batista-Brito et al., 2009; Lee et al.,
2010; Tremblay et al., 2016; Lim et al., 2018). Taken together,
these results indicate that miRNA-dependent gene expression
can regulate migration, maturation and specification of cortical
INs, adding another regulatory layer to the previously described
transcription factor programs.
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The conditional removal of Dicer in postmitotic VIP INs in
mice resulted in a progressive loss of VIP INs in adulthood,
despite normal migration and maturation (Qiu et al., 2020).
Before significant cell loss of VIP INs in superficial layers of the
somatosensory and motor cortices, VIP INs displayed profound
changes in intrinsic and synaptic properties. VIP INs had broader
action potential (AP) half-width and smaller AP amplitudes.
Furthermore, the frequency of miniature excitatory postsynaptic
currents (mEPSCs) as well as miniature inhibitory postsynaptic
currents (mIPSCs) was reduced. Concomitant to these changes,
pyramidal neurons were affected as well: they displayed increased
mIPSC frequencies and amplitudes as well as increased mEPSC
frequencies. Surprisingly, behavioral testing revealed an improved
spatial working memory and motor coordination performance
(Qiu et al., 2020). In a follow-up study, Wu et al. (2022),
characterized the effect of Dicer ablation in postmitotic VIP INs
in the olfactory bulb. They observed disrupted odor processing and
discrimination in mutant mice, as well as disturbed beta oscillations
and theta coherence between the olfactory bulb (OB) and the
anterior piriform cortex (Wu et al., 2022). Importantly, the Dicer
ablation restricted to the olfactory bulb VIP INs recapitulated the
behavioral and electrophysiological results of the global knockout
(Wu et al., 2022).

Conditional deletion of Dgcr8, a part of the canonical
microprocessor complex, in postmitotic cortical pyramidal neurons
(Dgcr8fl/fl mice, crossed to Nex-Cre mice) induced a profound
reduction of their soma size and a loss of dendritic complexity
in the cortex of mice resulting in an overall reduction of brain
size in these animals (Hsu et al., 2012). These findings were
recapitulated, when knocking out Dicer in Dicerfl/fl;Nex-Cre
mice (Hong et al., 2013). However, in contrast to the deletion
of Dicer, knocking out Dgcr8 was accompanied by a selective
reduction of the PV IN population and perisomatic inhibitory
synapses (Hsu et al., 2012). This non-cell autonomous effect
was attributed to a disrupted brain-derived neurotrophic factor
(BDNF)/tropomyosin receptor kinase B (TrkB) signaling pathway
in Dgcr8fl/fl; Cre mice. Alternations in the number and function of
PV IN population have been frequently observed in schizophrenia
(Ferguson and Gao, 2018). More specifically, schizophrenia has
been linked to deficits in the excitatory recruitment of PV INs
in the ventral hippocampus and medial prefrontal cortex (mPFC)
(Gonzalez-Burgos et al., 2015; Glausier and Lewis, 2018; Dienel and
Lewis, 2019). Interestingly, Dgcr8 haploinsufficiency contributes
to neurological, behavioral, and anatomical phenotypes of the
22q11 Deletion Syndrome (22q11DS), that encompasses DiGeorge
syndrome, velo-cardio-facial syndrome and conotruncal anomaly
face syndrome (Schofield et al., 2011). 0.6–2% of schizophrenia
cases have been attributed to the 22q11DS microdeletion and
approximately 30% of individuals with 22q11DS develop some type
of schizophrenia in adolescence or adulthood (Green et al., 2009;
Sellier et al., 2014). Consequently, 22q11DS has been proposed to
represent a genetic subtype of schizophrenia (Bassett and Chow,
1999; Liu et al., 2002). Dgcr8 haploinsufficient mice (Dgcr8 ±)
displayed reduced expression of miRNAs in the brain and showed
cognitive deficits, along with altered electrical properties of layer
5 pyramidal neurons in the mPFC, decreased complexity of basal
dendrites, and reduced excitatory synaptic transmission (Schofield
et al., 2011). In an 22q11.2DS mouse model for schizophrenia
(Lgdel ± mice), Mukherjee et al. (2019) observed a chronic PV

plasticity state with reduced PV and glutamate decarboxylase 67
(GAD67) expression. In these mice, bidirectional PV plasticity and
therefore the molecular, synaptic, and intrinsic adaptation of PV
INs to changing levels of neural activity is disrupted, indicative
of a maladjustment of PV INs to an excitatory recruitment
deficit. Consequently, Lgdel ± mice displayed profound network
and cognitive dysfunctions with reduced high-gamma oscillatory
activity in the mPFC as well as behavioral deficits e.g., in con-
specific and in object interaction. However, if and how Dgcr8
haploinsufficiency and consequently dysregulation in the post-
transcriptional control of miRNA expression is implicated in the
phenotypic changes in Lgdel±mice, remains to be determined.

miRNA “signature” for subtypes of
GABAergic interneurons

Recent advances in genomic profiling have allowed to identify
specific miRNA patterns across various cell types and tissues, some
of which also displayed changes in expression patterns upon altered
physiological states and in response to environmental cues (Weber
et al., 2010; Kriegel et al., 2013; van Spronsen et al., 2013; Londin
et al., 2015; Kuosmanen et al., 2017). To a considerable extent, the
identity and activity of neuronal subpopulations can be determined
by their gene expression profile, which in principle also includes
miRNA expression patterns (Nelson et al., 2006; Hobert, 2008;
He et al., 2012). In this manner, a systematic analysis of miRNA
profiles in distinct IN subtypes would represent a first step toward
establishing a link between cell phenotypes, miRNA expression and
finally their contribution to neuronal circuit dynamics.

Using miRNA tagging and affinity-purification (miRAP)
targeted to cell types through the Cre-loxP binary system, He
et al. (2012) revealed distinct miRNA profiles in glutamatergic
neurons and in subtypes of GABAergic INs in the neocortex
and cerebellum of mice. miRNA profiles of neurons expressing
GAD65, PV, and Sst clustered more closely together as compared
to glutamatergic neurons. Moreover, they clustered together with
Purkinje cells, a class of GABAergic inhibitory neurons in the
cerebellum, implying that miRNA profiles are specific for neuron
subtypes that share the neurotransmitter phenotype as well as a
common developmental origin (He et al., 2012). When comparing
PV and Sst subpopulations, 125 out of 511 detected miRNAs
were differentially expressed. For example, miRNA-133b was
significantly enriched in the PV cells, while miRNA-187 was
more abundant in Sst cells (He et al., 2012). Along these lines,
transcriptional profiling of PV immunoreactive neurons isolated
postmortem from layer 3 of the superior temporal gyrus from
schizophrenic patients revealed a differential expression for 15
miRNAs (hsa-miRNA-151-3p, hsa-miRNA-338-5p, hsa-miRNA-
106a, hsa-miRNA-197, hsa-miRNA-342-3p, hsa-miRNA-518f, hsa-
miRNA-1274b, hsa-miRNA-151-3p, hsa-miRNA-195, hsa-miRNA-
197, hsa-miRNA-218, hsa-miRNA-342-3p, hsa-miRNA-34a, hsa-
miRNA-361-5p, hsa-miRNA-520c-3p). The subsequent analysis
of the predicted miRNA targets revealed elements of signaling
pathways that overlap with those found to be unbalanced in
schizophrenia (Pietersen et al., 2014).

Taken together, these data suggest that PV IN network
disruptions may be at least partially mediated by gene network
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dysregulations due to altered expression of a rather small number
of miRNAs (Pietersen et al., 2014) and that differentially expressed
miRNAs might serve as a “signature” for GABAergic IN subtypes
and regulate different subtype-specific functions.

Olfactory bulb interneurons

The OB is regarded as an independent developmental domain
(López-Mascaraque and de Castro, 2002) and provides an example
where particular miRNAs have been shown to determine distinct
developmental trajectories (Zolboot et al., 2021), rendering OB
INs an attractive model to study cell type- and context-dependent
miRNA regulation of signaling pathways. The mammalian OB
contains two IN subpopulations of different spatiotemporal origin:
INs generated during embryogenesis and the early postnatal
period from local OB progenitor cells, and INs deriving from
subventricular adult progenitors during the early postnatal
period and adulthood (Vergaño-Vera et al., 2006; Alonso et al.,
2012). These two subgroups present distinct morphological and
physiological characteristics and are thought to play different roles
in odor discrimination. Interestingly, miRNA-125, the mammalian
homolog of lin-4 linked to regulation of neuronal differentiation
and synaptic function (Sokol et al., 2008), is expressed only in OB
INs from the subventricular zone. Sponging miRNA-125 resulted in
enhanced dendritic morphogenesis and increased activation upon
odor stimulation in adult born OB INs, indicative of an instructive
role for miRNA-125 in the integration of adult born INs into OB
circuitry (Akerblom et al., 2014).

In OB INs, not only developmental but also activity dependent
regulation of gene expression is controlled by miRNAs. Sustained
exposure of sibling larvae to kin odorants induces changes in
neurotransmitter expression from GABA to dopamine (DA) in
Xenopus accessory olfactory bulb (AOB) INs, accompanied by
behavioral preference for kin odorants (Dulcis et al., 2017).
Vice versa, prolonged exposure of sibling larvae to non-kin
odorants drives a DA-to-GABA shift in AOB neurons paralleled
by an aversion-to-attraction shift in social preference toward the
same non-kin odorants. By means of small RNA sequencing
and functional interrogation, miRNA-375 and miRNA-200b were
identified as key regulators mediating changes in DA vs. GABA
expression. miRNA-375 was shown to inhibit the transcription
factor Pax6, a main determinant of the dopaminergic phenotype
in AOB (Ninkovic et al., 2010), whereas inhibition of miRNA-200b
increased both Pax6 and Bcl11b mRNA levels in the AOB resulting
in a reduction of GABAergic neurons and an increase in the DA
neuron population (Dulcis et al., 2017).

miRNA regulation of GABAergic
interneuron function in physiology
and pathology

miRNA-138-5p

miRNA-138-5p has been shown to be involved in dendritic
spine morphogenesis in cultured hippocampal pyramidal neurons

(Siegel et al., 2009). However, recently a pivotal role for
miRNA-138-5p in the regulation of PV inhibitory synaptic
transmission in the mouse hippocampus has been reported
(Daswani et al., 2022). miRNA-138-5p inactivation specifically
in INs by viral injection of sponge transcripts or by Cre-
mediated expression of sponge transcripts restricted to PV INs
resulted in an increased frequency of mIPSC in murine CA1
pyramidal neurons. Sponge transcripts sequester endogenous
miRNA, thereby leading to miRNA inactivation and the de-
repression of cognate target genes (Ebert and Sharp, 2010). At
the behavioral level, miRNA-138-5p inactivation was accompanied
by short-term memory deficits (Daswani et al., 2022). Moreover,
genes found to be upregulated in the hippocampus of miRNA-
138-5p sponge expressing mice significantly overlapped with
genes that were also unbalanced in schizophrenic patients.
Specifically, the receptor tyrosine kinase ErbB4 was upregulated
upon miRNA-138-5p sponging and subsequently validated as
a direct miRNA-138-5p target (Daswani et al., 2022). ErbB4
is predominantly expressed in PV INs (Vullhorst et al., 2009;
Neddens and Buonanno, 2010; Skirzewski et al., 2018). Neuregulins
and their receptor ErbB4 are critical for the assembly of
PV IN circuitry including their migration, axon and dendrite
development, and synapse formation (Mei and Nave, 2014),
and have been identified as schizophrenia susceptibility genes
(Bennett, 2009; Banerjee et al., 2010; Neddens et al., 2011;
Joshi et al., 2014; Mei and Nave, 2014). ErbB4 has been
found in the axons, as well as on the postsynaptic side of
PV INs at afferent excitatory and inhibitory inputs (Fazzari
et al., 2010). Recently, it has been demonstrated that ErbB4
plays an important role in the local translation of synaptic
genes (Bernard et al., 2022) and that ErbB4 is instructive for
the induction of bidirectional PV plasticity in the mPFC (Chen
et al., 2022). Finally, alterations in neuregulin1 (NRG1)-ErbB4
signaling have been demonstrated to alter memory performance.
However, depending on the model, ablating ErbB4 in PV INs
of hippocampal CA1 either enhance (Tian et al., 2017) or
impair (Robinson et al., 2022) spatial and working memory
performance.

Taken together, these observations indicate that the regulation
of PV INs by miR-138-5p and its downstream target ErbB4 is
critically involved in the homeostasis of mature hippocampal PV
IN microcircuits. Furthermore, disturbances of miRNA regulation
in PV INs induces short-term memory deficits in mice reminiscent
to cognitive impairments frequently observed in patients suffering
from schizophrenia (Del Pino et al., 2013).

miRNA-137

miRNA-137, a brain-enriched miRNA, has been shown to be
involved in neurogenesis, dendritic morphogenesis and synaptic
plasticity (Szulwach et al., 2010; Chen et al., 2012), and has been
identified as a candidate gene for the etiology of schizophrenia,
bipolar disorder, and autism spectrum disorders (Devanna and
Vernes, 2014; Yin et al., 2014; Abdolmaleky et al., 2021). In
the PFC and the blood of redox dysregulated mice [glutamate-
cysteine ligase modifier subunit (Gclm)-KO mice], oxidative stress
was associated with an elevated miRNA-137 level, a decrease in
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cytochrome c oxidase subunit 6A2 (COX6A2) and mitophagy
markers, an accumulation of damaged mitochondria, and disturbed
PV IN function (Khadimallah et al., 2022). In early psychosis
patients, corresponding changes were detected, i.e., an increase
in exosomal miRNA-137, a decrease in COX6A2 and mitophagy
markers in the plasma and a concomitant reduction of γ oscillatory
activity in the EEG (Khadimallah et al., 2022). Consequently,
inhibition of miRNA-137 in the cortex of Gclm-KO mice reversed
the alterations in PV network and the decrease in COX6A2,
indicative for an involvement of the miRNA-137/COX6A2 pathway
in cortical PV IN circuit impairments typically observed in
schizophrenia.

miRNA-181a-5p

Mild traumatic brain injury (mTBI) can result in a permanent
impairment of learning and memory. Within the dentate gyrus
(DG) of the hippocampus, the hilar subregion is particularly
sensitive to mTBI and disruption of hilar IN inhibitory
input has been linked to cognitive deficits following mTBI
(Hicks et al., 1993). In a mouse model of mTBI, miRNA-
181a-5p antagomir injected intracerebroventricularly prior
to closed-skull cortical impact reduced neuronal miRNA-
181a levels, restored deficits in novel object recognition
and increased PV expression in hilar INs (Griffiths et al.,
2019). Furthermore, these changes were associated with
a decrease in the mTBI-related DG hyperactivity. PV is
known to buffer calcium influx in PV INs (Schwaller et al.,
2002) and thereby might be involved in calcium-mediated
excitotoxicity. By reinstating PV expression, miRNA-181a-5p
antagomir could alleviate the imbalance between excitation
and inhibition in the DG due to mTBI (Griffiths et al.,
2019). Interestingly, the level of miRNA-181a-5p was also
increased in the hippocampus of post-status epileptic rats
(Ren et al., 2016; Kong et al., 2020). Moreover, inhibition of
miRNA-181a-5p via miRNA-181a antagomir led to seizure
suppression and evoked a neuroprotective response via sirtuin
1 upregulation (Kong et al., 2020), and caspase-3 activation
involved in neuronal apoptosis (Ren et al., 2016). However, the
role of miRNA-181a-5p regulation of PV IN function and its
contribution to the excitatory-inhibitory balance warrants further
investigation.

miRNA-24

The transcription factor Sox6 is crucial for subtype
determination of MGE-derived postmitotic INs by suppression
of PV IN specification while inducing specification of Sst
INs (Batista-Brito et al., 2009; Kelsom and Lu, 2013; Hu
et al., 2017). Gestational and lactational exposure to three
endocrine disrupting chemicals (EDCs) in rats resulted in a sex-
specific impairment of hippocampus-dependent behaviors
and alternations in expression patterns of particular IN
subtypes. Male, but not female offspring exposed to EDCs
displayed learning and memory deficits accompanied by
a decrease in miRNA-24 level, upregulation of mRNA for

transcription factor Sox6, Sox11, Pou2f2/Oct2, Pou3f2/Brn2,
and downregulation of mRNA for PV in the hippocampus
(Lichtensteiger et al., 2021). Individual Sox6 mRNA levels
correlated inversely with miRNA-24 and PV mRNA expression.
Moreover, mRNAs for NRG1 and its receptor ErbB4 were
upregulated upon exposure to EDCs in male hippocampal INs,
indicating that sex differences add an additional layer of post-
transcriptional control of gene expression by miRNAs in PV
INs.

miRNA-218

The early postnatal period is a crucial time window
regarding ultimate morphological differentiation and the
proper integration of cortical INs within local networks.
Recently, miRNA-218 has been demonstrated to regulate
multiple aspects of neural circuit development in the early
postnatal period (Taylor et al., 2022). Transient inhibition of
miRNA-218 in the dorsal hippocampus in early postnatal life
resulted in the disruption of early depolarizing GABAergic
signaling, structural defects in dendritic spines in CA1, and
increased intrinsic membrane excitability in CA3 pyramidal
neurons resulting in a heightened hippocampal network activity
and a predisposition to seizures. Previous work has shown
that miRNA-218 is implicated in embryonic motor neuron
development (Amin et al., 2015, 2021; Thiebes et al., 2015;
Reichenstein et al., 2019), in homeostatic plasticity (Rocchi
et al., 2019), in stress related responses (Torres-Berrío et al.,
2020; Schell et al., 2022; Yoshino et al., 2022), as well as in
regulating contextual and spatial memory processes (Lu et al.,
2021). Surprisingly, transcriptional profiling revealed that the
upregulated genes upon miRNA-218 inhibition were more
enriched in INs as compared to pyramidal neurons (Taylor et al.,
2022). Consequently, conditional knockout of miRNA-218 in
INs, but not pyramidal neurons, was sufficient to recapitulate
the effects on hippocampal network assembly. Taken together,
these results suggest that miRNA-218 regulates IN function
in early postnatal life, thereby coordinating hippocampal
network assembly to establish proper E/I balance in the
adult.

miRNA-134

miRNA-134, one of the best-studied miRNAs in the brain,
is highly activity-dependent and has been shown to regulate
dendrite growth and dendritic spine formation in rat hippocampal
pyramidal neurons (Schratt et al., 2006; Fiore et al., 2009;
Bicker et al., 2014; Bahlakeh et al., 2021). Although its
function in excitatory neurons has been well documented, using
a ratiometric miRNA sensor Chai et al. (2013) surprisingly
detected an activity-dependent upregulation of miRNA-134 in
cortical INs that were immunoreactive for Sst or calretinin
(CR), but not in pyramidal neurons. In Sst INs, miRNA-134
interacted directly with the mRNA encoding the palmitoylation
enzyme DHHC9, which in turn regulated the proper membrane
targeting of H-Ras. H-Ras has been implicated in multiple forms
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of plasticity in the developing visual cortex (Arendt et al.,
2004; Kaneko et al., 2010). However, how H-Ras regulates
Sst IN function is currently not known and warrants further
investigation.

Other miRNAs

Low GABAergic tone is increasingly implicated in the etiology
of stress-related disorders (Ma et al., 2016; Zhang et al., 2017;
Fogaça and Duman, 2019; Ma et al., 2019; Perlman et al., 2021).
In the cortex of mice that underwent chronic unpredictable mild
stress (CUMS), upregulation of several miRNAs was observed
(miRNA-15b-5p, miRNA-144-3p, miRNA-582-5p and miRNA-
879-5p). Stressed mice displayed impairments in GABA synthesis,
reuptake, and release, indicative of an impairment in GABAergic
signaling. Transcriptional profiling revealed a downregulation
of GAD67, vesicular GABA transporter (VGAT) and GABA
transporter type 3 (GAT-3) mRNAs which were subsequently
shown to be negatively regulated by the upregulated miRNAs (Ma
et al., 2016). Recent evidence from human postmortem and animal
studies suggests a relatively selective vulnerability of Sst INs in
depressive disorder, while changes in other INs seem to be less
pronounced (Tripp et al., 2011; Lin and Sibille, 2015; Fee et al.,
2017). However, to characterize the role of individual miRNAs and
their target mRNAs in this specific IN subtype further investigation
is required.

Conclusion and future directions

The significance of post-transcriptional regulation of
gene expression by miRNAs in the central nervous system
(CNS) is mirrored by a growing number of studies linking
dysregulation of miRNA pathways to various neurodevelopmental
and neuropsychiatric disorders. While an important role for
miRNAs in regulating the development and function of
GABAergic INs is beginning to emerge, it is apparent that
a more detailed characterization of individual miRNAs and
their target mRNAs in specific IN types is needed. This
line of research has the potential not only to increase our
fundamental knowledge of the consequences of miRNA
regulation of GABAergic INs, but also the mechanistic
understanding of neuropsychiatric disorders with recognized
GABAergic dysfunctions like schizophrenia, autism spectrum and
affective disorders.

Genetic programs underlying IN development are orchestrated
by both transcriptional and post-transcriptional regulation. Data
presented in this review indicate that the phenotypic and
physiological features of IN subtypes depend not only on
developmental spatiotemporal patterning of transcription factor
activity and environmental cues, but also on miRNA expression
and function (Strobl-Mazzulla et al., 2012; Tuncdemir et al.,
2015; Dulcis et al., 2017). Furthermore, the interactions between
gene expression, inductive events and miRNA activity not only
determine IN developmental pathways but also impact mature
network organization (Lichtensteiger et al., 2021; Taylor et al.,
2022). In this manner, miRNAs are important elements of

the gene regulatory network contributing to IN specification
(Strobl-Mazzulla et al., 2012; Dulcis et al., 2017), as well
as to the modification of network assemblies during critical
developmental periods (Lichtensteiger et al., 2021; Taylor et al.,
2022).

In addition, INs display remarkable plasticity features in an
experience-dependent and behaviorally specific manner. They
can adapt their molecular profile, their intrinsic and synaptic
properties to changing levels of neuronal activity (Donato et al.,
2013; Dehorter et al., 2015, 2017). However, there is a gap
of knowledge in linking gene expression programs of INs
to circuit modification mechanistically. miRNA-dependent post-
transcriptional regulation of gene expression might be a prominent
candidate to fill this gap as miRNA-dependent regulation of central
aspects of principal neuron development and plasticity has been
demonstrated (Schratt et al., 2006; Siegel et al., 2009; McNeill
and Van Vactor, 2012; Aksoy-Aksel et al., 2014). Daswani et al.
(2022) observed developmentally independent modifications in
PV IN microcircuitry due to miRNA-138-5p inhibition in a cell
type-specific manner. However, if these changes are plastic, i.e.,
if they are modified bidirectionally and in an activity-dependent
manner, remains to be determined. Despite these first observations,
the precise contribution of miRNAs to PV IN plasticity and
to possible plasticity features of other IN subtypes remains
elusive.

An essential step toward understanding the regulatory role
of miRNAs in GABAergic INs is an extensive portrayal of
miRNome profiles in a cell type-specific manner, in the relevant
developmental trajectories as well as in mature microcircuitry.
Obviously, this poses major technical challenges, particularly due
to the high heterogeneity of GABAergic INs. Recent progress
in sequencing technologies has provided a first step toward
the analysis of differential miRNA expression, thus allowing to
discriminate between neurons and glia cells (Colin et al., 2009),
brain regions (Bak et al., 2008; Minami et al., 2014) as well
as cell types (He et al., 2012). However, single-cell small RNA
sequencing techniques and consequently a finer granularity of
analysis are only beginning to emerge (Smith and Hutvagner,
2022). Moreover, a fine-grain analysis of the role of specific
miRNAs in a cell type-specific manner is complicated by the
pleotropic ability of single miRNAs to regulate multiple biological
pathways. Therefore, a more comprehensive characterization of
the miRNome-targetome interactions is required (Keaveney et al.,
2020). The recognition of the biological relevance of a particular
miRNA and its targeted molecular pathways will foreseeably
be facilitated by advances in bioinformatics, transcriptomics,
proteomics and other “omics” approaches. Together with elaborate
molecular tools such as antagomirs, “sponges”, miRNA mimics
and precursors, as well as cell type-specific Cre-driver transgenic
mouse lines that are intended to silence or overexpress miRNAs,
the path to reveal distinct miRNA-dependent biological processes
in a cell type-specific manner is set (Issler and Chen, 2015). Finally,
a comprehensive knowledge of the role of miRNAs in GABAergic
INs may be instrumental in elucidating the molecular basis of many
CNS diseases with recognized GABAergic dysfunction. As neuronal
miRNAs are responsive to environmental changes and are actively
secreted by cells, they may additionally constitute useful diagnostic
and prognostic biomarkers for the respective disease (van den Berg
et al., 2020; Tsermpini et al., 2022).
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