
diss . eth no. 29124

T O WA R D S U N D E R S TA N D I N G B I O - I N S P I R E D
C O M P U T I N G F O R O P T I M I Z AT I O N A N D

L E A R N I N G

A thesis submitted to attain the degree of

doctor of sciences

(Dr. sc. ETH Zurich)

presented by

xun zou

M. sc. ETH

born on 20.04.1993

accepted on the recommendation of

Prof. Dr. Angelika Steger, examiner
Dr. Johannes Lengler, co-examiner

Prof. Dr. Dirk Sudholt, co-examiner

2023

Xun Zou: TOWARDS UNDERSTANDING BIO-INSPIRED COMPUTING
FOR OPTIMIZATION AND LEARNING, © 2023

doi: 10.3929/ethz-b-000614107

A B S T R A C T

The human brain and the evolutionary process (that created the human
brain) are two powerful general problem solvers from nature. The attempt
to understand and design algorithms based on them has led to the fields of
neuroscience and evolutionary computing. This thesis contributes to these
two areas by analyzing evolutionary algorithms and bio-inspired neural
networks from a theoretical and empirical perspective.

Concretely, we contribute to the understanding of the two bio-inspired
methods with three separate projects. First, we study the effect of population
size in a mutation-based evolutionary algorithm on optimizing pseudo-
Boolean functions. We find that for some monotone functions, increasing
the population size by just a constant can have devastating impacts on
performance. This is in stark contrast to many other benchmark functions
on which a larger population size leads to either positive or neutral effects.
Moreover, we show that large population sizes only cause troubles far away
from the optimum, which is counter-intuitive since usually optimization
gets harder as we approach the optimum.

Next, we consider a dynamic parameter control mechanism in control-
ling the offspring population size of a non-elitist evolutionary algorithm.
Previous work has shown that the mechanism can run into problems if the
fitness landscape is too easy, and it is conjectured that the easiest benchmark
function, OneMax, suffers the most from this issue. However, we show that
there are other functions for which the problem is more severe than for
OneMax, thus disproving the conjecture.

Lastly, we model a sparse neural network with unstructured connections
in the olfactory system of Drosophila. We show that despite the constraints
imposed by the biological system, with a bio-plausible mechanism of global
inhibition, the network can be a close approximation to a powerful machine
learning model. We further investigate the effect of sparsity and find that the
network can achieve a good balance between learning and noise resistance
by employing sparse connections.

iii

Z U S A M M E N FA S S U N G

Das menschliche Gehirn und der Prozess der Evolution (, welcher das
menschliche Gehirn erschaffen hat,) sind zwei mächtige Allzweck-Problem-
löser aus der Natur. Der Versuch, auf diesen basierende Algorithmen zu
verstehen und zu entwerfen, hat die Gebiete der Neurowissenschaften und
des evolutionären Rechnens hervorgebracht. Die vorliegende Arbeit leistet
einen Beitrag zu diesen Gebieten mit Analysen von evolutionären Algorith-
men und biologisch inspirierten neuronalen Netzen aus theoretischer und
empirischer Perspektive.

Konkret tragen wir zum Verständnis der beiden biologisch inspirier-
ten Methoden mit drei separaten Projekten bei. Erstens untersuchen wir
den Effekt der Populationsgröße in einem mutationsbasierten evolutio-
nären Algorithmus auf die Optimierung pseudo-boolescher Funktionen.
Als Hauptbefund stellen wir fest, dass für einige monotone Funktionen
bereits die Erhöhung der Populationsgröße um eine Konstante verheerende
Auswirkungen auf die Leistung haben kann. Dies steht in starkem Ge-
gensatz zu vielen anderen Benchmark-Funktionen bei denen eine erhöhte
Populationsgröße entweder positive oder neutrale Auswirkungen zeitigt.
Weiter zeigen wir, dass große Populationsgrößen nur Probleme in grossem
Abstand zum Optimum verursachen. Dieser Befund ist kontraintuitiv, da
die Optimierung normalerweise schwieriger wird, je mehr wir uns dem
Optimum nähern.

Als Nächstes betrachten wir einen dynamischen Parameterkontrollmecha-
nismus eines nicht-elitären evolutionären Algorithmus bei der Steuerung
der Populationsgröße der Nachkommen. Frühere Forschung hat gezeigt,
dass der Mechanismus auf Probleme stoßen kann, wenn die Fitnessland-
schaft zu einfach ist, und es wird vermutet, dass die einfachste Benchmark
Funktion, OneMax, am meisten unter diesem Problem leidet. Wir zeigen
jedoch, dass dass es andere Funktionen gibt, bei denen das Problem gravie-
render ist als bei OneMax, wodurch diese Vermutung widerlegt wird.

Schließlich modellieren wir ein spärlich verbundenes neuronales Netz
mit unstrukturierten Verbindungen im olfaktorischen System von Droso-
phila. Wir zeigen, dass trotz der durch das biologische System auferlegten
Beschränkungen mit einem biologisch plausiblen Mechanismus der globa-
ler Inhibition das Netzwerk ein mächtiges Machine Learning Modell gut
approximieren kann. Wir untersuchen außerdem die Auswirkungen der

iv

geringen Verbindungsdichte und stellen fest, dass das Netzwerk ein gutes
Gleichgewicht zwischen Lernen und Rauschresistenz erreichen kann indem
es spärliche Verbindungen verwendet.

v

A C K N O W L E D G E M E N T S

First of all, I would like to thank my supervisor, Angelika Steger. As the
group leader, you brought together such a nice group of talented individuals
from various backgrounds. It was my great pleasure to be part of it, and
I appreciated the freedom to explore a wide range of research topics. As
a scientist, you never stop being curious and coming up with new ideas.
I enjoyed a lot the many discussions that we had on neuroscience and
machine learning.

Next, I would like to thank my second supervisor, Johannes Lengler. You
brought me into the research of evolutionary algorithms, and it was such
a nice experience to collaborate with you. I was always impressed by the
depth of your domain knowledge, the clearness of your reasoning, and the
elegance in your arguments.

I would also like to thank Dirk Sudholt for devoting his time to examining
and giving feedback on the thesis.

Moreover, I would like to thank all my colleagues at ETH, especially my
co-authors. I will not forget the fun time that we spent together at work
and in life.

Last but not least, I thank my family and friends for their constant care
and support.

vi

C O N T E N T S

1 Introduction 1

1.1 The two most powerful natural problem solvers 1

1.2 On the theory of evolutionary computation 2

1.2.1 Benchmark Functions and Evolutionary Algorithms 3

1.2.2 The impact of parameters 4

1.2.3 Dynamic parameter control 5

1.3 Learning from neuroscience 6

1.3.1 The olfactory pathway in Drosophila 8

1.4 Summary of results 8

1.4.1 Exponential slowdown for larger populations: the
(µ + 1)-EA on monotone functions 8

1.4.2 OneMax is not the easiest function for fitness im-
provements 9

1.4.3 Global inhibition enables sparse Dale networks to
approximate kernel functions 10

1.5 Common themes throughout the thesis 10

2 Exponential Slowdown For Larger Populations In (µ+ 1)-EA 13

2.1 Introduction 13

2.1.1 Our results 14

2.1.2 Related work 15

2.2 Preliminaries and definitions 19

2.2.1 Notation 19

2.2.2 Algorithm 19

2.2.3 HotTopic functions 21

2.2.4 Tools 21

2.3 Formal statement of the result 24

2.4 Proof overview 25

2.5 Drift analysis 30

2.5.1 Preliminaries 30

2.5.2 Tail bounds 33

2.5.3 Typical situations 41

2.5.4 Estimating the drift 45

2.6 Proof of main theorem 47

2.7 Simulations 52

2.7.1 Population size 52

vii

viii contents

2.7.2 Mutation rate 54

2.8 Conclusion 56

3 OneMax Is Not The Easiest Function For Fitness Improvements 59

3.1 Introduction 59

3.1.1 Our result 62

3.2 Preliminaries and definitions 63

3.2.1 The algorithm: SA-(1, λ)-EA 64

3.2.2 The benchmarks: OneMax and Dynamic BinVal 64

3.2.3 Tools 66

3.3 Main proof 67

3.3.1 Sketch of proof 68

3.3.2 Full proof 69

3.4 Simulations 82

3.5 Conclusion 85

4 Sparse Dale Networks Can Approximate Kernel Functions 87

4.1 Introduction 87

4.1.1 Related work 88

4.2 Preliminaries 89

4.2.1 Arc-cosine kernels and neural networks 89

4.2.2 Invariance of the weight distribution 90

4.3 Results 90

4.3.1 A network model with global inhibition 90

4.3.2 Kernel approximation and discrepancy 91

4.3.3 A formula of discrepancy 93

4.3.4 Learning speed and discrepancy 94

4.4 Simulations 95

4.4.1 Sparse nets have low discrepancy 96

4.4.2 The bound of learning speed 98

4.4.3 Performance in linear regression 99

4.4.4 Classification on MNIST 100

4.4.5 Noise resistance 102

4.5 Conclusion 103

4.6 Appendix 104

4.6.1 Connecting kernel approximation to discrepancy 104

4.6.2 Calculating discrepancy 105

Bibliography 107

1
I N T R O D U C T I O N

The richness I achieve comes from nature, the source of
my inspiration.

— Claude Monet

1.1 the two most powerful natural problem solvers

Nature has always been a great source of inspiration, especially in the
field of bionics, i. e. the application of biological methods and systems
to the development of engineering systems and technology. In addition
to its success in areas such as engineering and material science, bionics
has also motivated the design of novel algorithms in computer science. In
particular, nature has created two algorithms, which are arguably the two
most powerful solvers for general problems. One of them is the human
brain, and the other is the evolutionary process that created the human
brain [1].

During billions of years, the power of evolution is unquestionable as
it has produced a huge variety of life forms that have well adapted to
a wide range of environments. The primary forces behind this progress
are, by Darwinian theory [2], phenotypic variations maintained by the
population of species through mechanisms like mutations, and the survival
of individuals with the fittest combination of phenotypic traits, thus passing
their genes to the next generation. In the field of evolutionary computing,
this view has been translated into a stochastic trial-and-error style problem-
solving process, which gives rise to a rich family of randomized search
heuristics and applications in various optimization problems. What makes
these algorithms particularly attractive is that they often come as off-the-
shelf tools and can be applied with little domain expertise. Moreover, with
the help of the powerful processing capabilities of modern computing
architectures, they come also with the promise to find reasonably good
solutions within an acceptable time [3].

On the other hand, the human brain is arguably the best solution to
an ever-changing environment found by evolution so far. The desire to
understand our brain and reproduce its intelligent behaviors has led to the
fields of neuroscience and artificial intelligence. One of the most significant

1

2 introduction

discoveries in neuroscience is that all brains (including the human brain)
consist of the same building blocks: neurons and synapses. Therefore, there
has also been a large body of work conducted on simpler and smaller brains
like the ones of rodents and insects, since they are much easier to study and
understand from an experimental point of view. Recent advances in this
direction include the publication of a connectome of the Drosophila central
brain [4] and how it tracks allocentric traveling directions by performing
vector arithmetic [5]. On the other hand, with the dramatic development
of machine learning methods in the last decade, there has been a growing
interest to model brain circuits and to explain neural recordings with
artificial neural networks [6]. The fact that certain brain activities can
be replicated from machine learning models confirms the efficacy of the
brain, providing a deeper understanding of the working principles of the
respective brain areas as well as the nature of the computational models.

This thesis contributes to the fields of evolutionary computation and
computational neuroscience by analyzing and simulating evolutionary
algorithms for optimization and neural circuits for learning. The rest of this
section is organized as follows. In the next two subsections, 1.2 and 1.3, we
introduce background information and motivation for the projects included
in this thesis. Subsection 1.4 includes a summary for each individual project.
In the end, we discuss common themes and methods that appeared in all
the projects in Subsection 1.5.

1.2 on the theory of evolutionary computation

The theoretical analysis of evolutionary algorithms is much younger than
their use. In fact, the usage of natural-inspired search heuristics dates back to
the 1960s, while rigorous analysis with proven performance guarantees only
started in the late 1990s [7]. This is not surprising, as a typical application
scenario is to apply them to a complex optimization problem in the hope of
getting a satisfactory solution within an acceptable time. That being said,
the formal analysis of the algorithm is typically not part of the process,
while being easy to use and applicable to a wide range of problems is more
important. However, despite their popularity in practice, the lack of sound
theoretical guarantees for evolutionary algorithms has encumbered their
acceptance to certain scientific communities [8].

The theory of evolutionary computation aims at understanding when
these algorithms work, as well as when they do not work and why. To be
able to find excellent solutions to a wide range of problems, evolutionary

1.2 on the theory of evolutionary computation 3

algorithms usually come with a set of parameters. Therefore, a large part
of studies has been devoted to questions such as [9]: How do changes in
parameters affect performance? Are there optimal parameter settings for a
particular class of fitness landscapes? Is it desirable to change parameter
values dynamically during the optimization process? The answers to these
questions can help to guide parameter choices in practice, and even suggest
new building blocks and mechanisms to improve performance.

1.2.1 Benchmark Functions and Evolutionary Algorithms

Before coming to how the study of parameters can advance our under-
standing of evolutionary algorithms, it is worth mentioning a feature that
distinguishes them from classical randomized algorithms. Since evolution-
ary algorithms are general randomized search heuristics that neither make
explicit assumptions nor exploit the properties of the target problem, there
is no doubt that they tend to be extremely difficult to analyze [3]. As a
result, it is common practice to study them in a slightly simplified setting.
This often allows us to have an intuitive idea of how the interested algo-
rithm will perform on the objective, which is instructive to either prove its
efficiency or to find out why and where it fails.

In the context of this thesis, we study the performance of evolutionary
algorithms on monotone pseudo-Boolean functions. A pseudo-Boolean
function is a function of the form f : {0, 1}n → R, i. e. it maps any bitstring
of length n to a real value. If flipping a zero-bit into a one-bit always
improves the fitness for any bitstring, i. e. the value of f evaluated on the
bitstring, we call f a monotone function. From now on, we will refer to
monotone Pseudo-Boolean functions by monotone functions for simplicity.

Monotone functions are relatively easy benchmark functions, as they
always have a unique and global optimum at the all-ones bitstring. More-
over, from every search point (bitstring) there are short, fitness-increasing
paths to the optimum, by flipping zero-bits to one-bits. At this point, one
might doubt whether it makes sense to study monotone functions due to
their easiness. Actually, despite that many algorithms are able to optimize
every monotone function in polynomial time with respect to n, there are a
surprising number of evolutionary algorithms that need exponential time
to optimize some monotone functions. Furthermore, we will see later that,
when a dynamic parameter control mechanism is introduced to evolution-
ary algorithms, easy fitness landscapes may cause problems while harder
ones do not. We will discuss this in more detail in the following subsections.

4 introduction

Having specified the benchmark functions, we are ready to introduce
the evolutionary functions (EAs) of interest. We will work with two clas-
sical evolutionary algorithms, i. e. the (µ + 1)-EA and the (1, λ)-EA. The
former maintains a population of µ randomly initialized search points.
Each iteration of it consists of two phases, mutation and selection. In each
round, an offspring is generated by flipping each bit of a randomly chosen
search point independently with probability c/n, where c is the mutation
parameter. The offspring is then added to the population, and a search point
with the least fitness value (breaking ties randomly) is excluded such that
the population size remains µ. In contrast to the (µ + 1)-EA, the (1, λ)-EA
keeps only one search point. In each generation, it generates λ offspring by
flipping each bit of this search point independently with probability c/n,
and it replaces the current search point with the fittest offspring, breaking
ties randomly. Note that there is no selection between the parent and the
fittest offspring, i. e. the parent is replaced even if it has a larger fitness
value. As a result, (1, λ)-EA is a non-elitist algorithm, thus a comma is used
in its notation instead of a plus. The pseudo-codes of the (µ + 1)-EA and
the (1, λ)-EA can be found in Section 2.2.2 and 3.2.1 respectively.

1.2.2 The impact of parameters

As we can see, the basic parameters of evolutionary algorithms include
the mutation rate c, the population size µ, and the offspring population
size λ. The parameters can have a huge impact on their performance and
finding appropriate parameter configurations is a non-trivial task. Due
to their dependencies on both the problem and the state of optimization,
determining optimal parameter values can be already very complex for a
single parameter [10]. The mutation rate c is such an example. It was shown
that when c < 1 the (1 + 1)-EA1 finds the optimum of every monotone
function in polynomial time, but when c > 16 there are monotone functions
for which the (1+ 1)-EA needs exponential time [11, 12]. That is, a constant
factor change in the parameters changes the run-time from polynomial
to exponential. The inefficient range of c is improved from c > 16 to
c > c0 ≈ 2.13 in [13] by the construction of a class of hard monotone
functions termed HotTopic

2. Furthermore, it was shown that for HotTopic

functions, c0 is a sharp performance threshold for a manifold of evolutionary

1 This is equivalent to the (µ + 1)-EA with µ = 1.
2 The definition can be found in Section 2.2.3.

1.2 on the theory of evolutionary computation 5

functions including the (1 + 1)-EA, the (1 + λ)-EA3, and the (µ + 1)-EA4,
i. e. c < c0 leads to polynomial complexity while c > c0 result in exponential
run-time [14, 15]. Therefore, it is beneficial for many evolutionary algorithms
to set the mutation rate c conservatively.

When there are more parameters in the algorithm, the interactions be-
tween the parameters can make the optimization process more complicated.
For example, both theoretical and practical studies have shown that in-
troducing population size to randomized search heuristics tends to bring
positive or neutral effects [16, 17]5. However, we will show in Chapter 2

that a large constant population can result in an exponential run-time for
the (µ + 1)-EA on HotTopic functions even when the mutation rate is set
very conservatively, i. e. c < 1. Moreover, contrary to the intuition that the
hardest region for optimization is close to the optimum, we find that large
populations only cause trouble before coming close to the optimum in our
analysis. Our work thus complements the study on the (µ + 1)-EA in [14,
15], which focuses on the optimization progress close to the optimum.

1.2.3 Dynamic parameter control

The optimal parameter values may change as the optimization process
proceeds, thus static parameter settings often lead to sub-optimal perfor-
mance [10]. The goal of parameter control is to find suitable parameter
settings throughout the optimization process. In continuous optimization,
parameter control is essential for ensuring good convergence and obtaining
high-quality solutions. One of the most famous examples is the (1 : s + 1)-
rule for step size adaptation [20–23], where setting s = 4 lead to the widely
used one-fifth rule. By dynamically updating the step size, the rule aims to
maintain a constant probability 1/(s + 1) of finding improvements through-
out the optimization process. Recently, the (1 : s+ 1)-rule has been extended
to parameters in discrete domains, such as to the mutation rate [24, 25]
and to offspring population size [26, 27] in evolutionary algorithms. In this
thesis we will focus on the second case, i. e. using the (1 : s + 1)-rule to
control the offspring population size λ in the (1, λ)-EA.

Since improving on the fitness function is usually much harder close
to the optimum, the (1, λ)-EA can benefit from having a small λ at early
stages of optimization to save computation, and having larger values of λ to

3 The elitist version of (1, λ)-EA, i. e. the parent is not replaced if it is fitter than all offspring.
4 Only for HotTopic functions that are hard to optimize close to the optimum, see Section 2.1.2

for a detailed discussion.
5 However, artificial counterexamples do exist [18, 19].

6 introduction

find fitness improvements more efficiently when approaching the optimum.
The (1 : s + 1)-rule comes with two meta parameters, the success rate s
and the update strength F. When the fittest offspring is fitter than the
parent, λ is divided by F. When it is the other way around, λ is multiplied
by F1/s to increase the chance of getting fitter offspring. We refer to the
resulting algorithm by SA-(1, λ)-EA for short. By adjusting the value of
λ, the SA-(1, λ)-EA tries to maintain a constant probability 1/(1 + s) of
finding a fitter offspring than the parent in each generation.

Since the offspring population size is controlled by the (1 : s + 1)-rule,
the parameter of interest is therefore shifted to the meta parameter s. It
was shown in [26, 27] that optimizing OneMax, a function that counts the
number of one-bits in the input bitstring, with the SA-(1, λ)-EA is efficient
for s < 1, while for s > 18 it fails completely. In addition, simulations
showed that the phase transition actually happens around s ≈ 3.4, which
suggests that the one-fifth rule is not a desirable choice in this case. This
result on OneMax is then extended to all monotone functions in [28, 29],
i. e. there are universal thresholds s1 > s0 > 0 such that the SA-(1, λ)-EA
is efficient on every monotone functions when s < s0, while it fails to
find the optimum of every monotone functions in polynomial time when
s > s1. Counter-intuitively, the issue brought by large values of s only
happens at places where the fitness landscape is too easy. The reason is
that successful generations decrease λ significantly, while unsuccessful
generations increase λ only mildly. Therefore, it was conjectured in [26, 27]
that the SA-(1, λ)-EA suffers most from this issue on OneMax as it is the
easiest function with a unique optimum for the (1 + 1)-EA [30–32].

In Chapter 3 we show that there are other functions that are more prob-
lematic than OneMax for the SA-(1, λ)-EA. Moreover, we try to distinguish
two types of "easiness" of a benchmark function. The first type is related to
how much progress an elitist hillclimber like (1 + 1)-EA can make on that
function, and the second type concerns how likely a mutation produces an
offspring that is fitter than the parent. OneMax is the easiest benchmark
with respect to the first type, while for the SA-(1, λ)-EA the second type is
relevant.

1.3 learning from neuroscience

The brain is so far the only proof of concept that intelligence can emerge
from the interaction among an ensemble of simple computing units, i. e.
neurons. Artificial neural networks, which are originally inspired by the

1.3 learning from neuroscience 7

brain, have achieved significant breakthroughs in the last decade. The most
recent examples include DALL·E 2, an AI system that can generate realistic
or artistic images from descriptions in natural language [33], and ChatGPT,
a language model that supports conversational interactions. It is worth
noting that, although these models can be accessed with natural languages,
a brain-friendly way of interaction, their working principles are already
quite different from our brains in a number of ways. In this section, we
provide two examples to illustrate that the two fields can benefit by learning
from each other despite their differences.

The solutions to certain problems discovered by the brain and neural
networks share a surprising similarity. As an example, grid cells were
discovered in the entorhinal cortex of rats in 2005, and they were believed
to play a crucial role in spatial navigation [34]. Their most notable feature is
that they fire when the rat traverses locations corresponding to the vertices
of a triangular grid embedded in the environment. In 2018, two groups of
researchers discovered independently similar grid-firing patterns from units
in recurrent neural networks that were optimized to perform navigation
tasks in a range of 2D environments [35, 36]. Moreover, the state-of-the-art
neural network architecture, Transformers [37], which is designed without
the brain in mind, can also replicate the same spatial representations [6].
These studies indicate that the brain and neural networks converge in
their solutions when trying to solve the same task, even though their
implementations are rather different from each other.

A more relevant example to this thesis is the Bloom filter. Invented in
1970, a Bloom filter is a space-efficient probabilistic data structure that is
used to test whether an element is a member of a set. It consists of an array
of m zero bits and k distinct hash functions that map any element to one
of the m positions. When adding an element, the bits at all its k hashed
positions are set to one. Clearly, for an element, if any of its k positions is
zero, we know it has not been added before. However, if all has been set to
one, we might get a false positive, whose probability can be controlled by
picking proper parameters m and k. In 2017, a neural circuit that is supposed
to detect novel and familiar odorants (can be thought of as non-members
and members) was identified in Drosophila (small fruit flies) [38], and its
connection to Bloom filters was established a year later [39]. Drosophila
implements its "hash functions" by sparse random projections, which has
inspired a family of efficient hashing implementations.

8 introduction

1.3.1 The olfactory pathway in Drosophila

The aforementioned sparse random projections are present in the mush-
room body of Drosophila, a center for olfactory memory and associative
learning [40, 41]. The olfactory signal is first generated by the olfactory
receptor neurons, which are activated when odor molecules bind to their
olfactory receptors [42]. Distinct types of projection neurons (PNs) then
integrate signals from stereotyped sets of receptor neurons that express
distinct types of olfactory receptors [43]. In the end, PNs form random
synaptic connections to the densely populated Kenyons cells (KCs) [44].

The connections between PNs and KCs are interesting in two ways. First,
KCs outnumber PNs by a large margin. Based on anatomical estimates,
the ratio of PNs to KCs in the mushroom body of Drosophila is roughly
1 : 40 [45, 46]. Secondly, the projection between them is random and sparse,
with each KCs receiving input from 7 PNs on average [44]. These two
characteristics make the PN-KC pathway resemble a two-layer artificial
neural network that extracts random features [47, 48], which has a wide
second layer and randomly initialized Gaussian weights between the two
layers. The difference is, the neural network is fully connected and its
weights can be negative, while the projection from PNs to KCs is sparse and
consists of only excitatory connections. This raises the question of whether
the biologically constrained pathway can be as powerful as the artificial
neural network in terms of feature extraction.

In Chapter 4, we build a computational model for the PN-KC pathway,
by integrating an inhibitory neuron, the anterior paired lateral (APL) neu-
ron. The APL neuron receives input from all KCs and provides feedback
inhibition to all of them [49–51]. We show that the APL neuron plays a key
role in enabling the sparse and sign-constrained PN-KC network to extract
random features, as is done in a fully connected neural network.

1.4 summary of results

In this section, we provide a brief summary of each individual chapter.

1.4.1 Exponential slowdown for larger populations: the (µ + 1)-EA on monotone
functions

Pseudo-Boolean monotone functions are unimodal functions that are triv-
ial to optimize for some hillclimbers, but are challenging for a surprising

1.4 summary of results 9

number of evolutionary algorithms. A general trend is that evolutionary
algorithms are efficient if parameters like the mutation rate are set conserva-
tively, but may need exponential time otherwise. In particular, it was known
that the (1 + 1)-EA can optimize every monotone function in pseudolinear
time if the mutation rate is c/n for some c < 1, but that they need exponen-
tial time for some monotone functions for c > c0 ≈ 2.13. The second part of
the statement was also known for the (µ + 1)-EA.

In Chapter 2 we show that the first statement does not apply to the
(µ + 1)-EA. More precisely, we prove that for every constant c > 0 there
is a constant µ0 ∈N such that the (µ + 1)-EA with mutation rate c/n and
population size µ0 ≤ µ ≤ n needs superpolynomial time to optimize some
monotone functions. Thus, increasing the population size by just a constant
has devastating effects on performance. This is in stark contrast to many
other benchmark functions on which increasing the population size either
increases the performance significantly or affects performance only mildly.

The reason why larger populations are harmful lies in the fact that larger
populations may temporarily decrease the selective pressure on parts of
the population. This allows unfavorable mutations to accumulate in single
individuals and their descendants. If the population moves sufficiently fast
through the search space, then such unfavorable descendants can become
ancestors of future generations, and the bad mutations are preserved. Re-
markably, this effect only occurs if the population renews itself sufficiently
fast, which can only happen far away from the optimum. This is counter-
intuitive since usually optimization becomes harder as we approach the
optimum. Previous work missed the effect because it focused on monotone
functions that are only deceptively close to the optimum.

1.4.2 OneMax is not the easiest function for fitness improvements

Next, we study the (1 : s+ 1) success rule for controlling the offspring popu-
lation size of the (1, λ)-EA. It was shown by Hevia Fajardo and Sudholt [26,
27] that this parameter control mechanism can run into problems for large
s if the fitness landscape is too easy. They conjectured that this problem
is worst for the OneMax benchmark, since in some well-established sense
OneMax is known to be the easiest fitness landscape. In Chapter 3 we
disprove this conjecture and show that OneMax is not the easiest fitness
landscape with respect to finding improving steps.

As a consequence, we show that there exists s and ε such that the self-
adjusting (1, λ)-EA with (1 : s+ 1)-rule optimizes OneMax efficiently when

10 introduction

started with εn zero-bits, but does not find the optimum in polynomial time
on Dynamic BinVal

6. Hence, we show that there are landscapes where
the problem of the (1 : s + 1)-rule for controlling the population size of the
(1, λ)-EA is more severe than for OneMax.

1.4.3 Global inhibition enables sparse Dale networks to approximate kernel func-
tions

The olfactory pathway in the mushroom body of Drosophila features a
random sparse expansion layer, which amplifies the dimension of the
input signal and facilitates downstream associative learning. In machine
learning, it is known that a random dense layer with an infinite width
and certain activation functions implements feature maps that correspond
to arc-cosine kernel functions7. In Chapter 4 we show that despite being
sparse and obeying Dale’s law (i.e., a neuron can either excite or inhibit),
the biologically constrained network in the mushroom body can be a good
approximation of the arc-cosine kernels thanks to the inhibitory anterior
paired lateral neuron. By studying the parameterization of the random
network, we find that excellent kernel approximation and performance
on downstream tasks can be expected for decently large networks with a
large range of sparsity levels and weight initialization. Moreover, sparse
connections are favored in terms of noise resistance, i.e. the ability of the
network to recognize familiar odorants based on their noisy representations.

1.5 common themes throughout the thesis

At first glance, this thesis is a compilation of three works in parallel direc-
tions. Actually, although the three chapters do not build on top of each
other, there are common themes shared by all of them. This section is
devoted to discussing these topics.

First of all, randomness is an inherent feature of the two bio-inspired
computing models that we study in this thesis. Both evolutionary algorithms
and the neural network we study in Chapter 4 make use of randomness to
maintain variety in populations, i.e. populations of search points, offspring,
and neurons. In evolutionary algorithms, randomness is involved in parent
selection, mutation, and tie-breaking. While in the neural network, the
connection between neurons is randomly decided, resulting in each neuron

6 See Section 3.2.2 for its definition.
7 See Section 4.2.1 or [48] for the definitions.

1.5 common themes throughout the thesis 11

extracting features from a distinct combination of input channels. With the
help of randomness, the efforts of designing specific rules and implementing
such rules are relieved.

Furthermore, randomness is also an important tool for theoretical analy-
sis, especially in Chapter 2 and 3. To be more specific, the functions that
we study analytically in this thesis are symmetric functions like OneMax,
where all bits are weighted equally, and functions constructed with ran-
domness, including HotTopic and Dynamic BinVal. The reason is that we
often need to estimate the improvement probability in different phases of
optimization, and this means different numbers of one-bits for monotone
functions. To ease analysis, we would like this probability to be dependent
only on the number of one-bits in the search point, but not on the locations
of these bits. That requires exactly each bit to be treated identically by the
function, and randomness achieves this goal naturally.

Content-wise, the aim of all chapters is to understand the corresponding
methods better by studying their parameters. In Chapter 2 we study the
interaction of two parameters in (µ + 1)-EA, the mutation rate c and popu-
lation size µ. In Chapter 3, due to the introduction of the (1 : s + 1)-rule in
(1, λ)-EA, our focus is shifted more towards the meta parameters, success
rate s and update strength F. In the last chapter, the network model comes
with three hyperparameters, the number of random features m, the sparsity
of connection p, and the weight distribution. We have already discussed
the importance of parameters to evolutionary algorithms in Section 1.2. For
neural networks, it is common practice to conduct extensive hyperparame-
ter search on benchmarks as the choice of hyperparameters can significantly
affect the resulting model’s performance [52].

2
E X P O N E N T I A L S L O W D O W N F O R L A R G E R
P O P U L AT I O N S I N (µ + 1) - E A

This chapter is based on joint work with Johannes Lengler, which was
presented in the ACM/SIGEVO Workshop on Foundations of Genetic Algorithms
(FOGA 2019) [53] and published in Theoretical Computer Science (2021) [54].

2.1 introduction

Population-based evolutionary algorithms (EAs) are general-purpose heuris-
tics for optimization. Having a population may be helpful, because it allows
for diversity in the algorithm’s states. Such diversity may be helpful for
escaping local minima, and it is a necessary ingredient for crossover opera-
tions as they are used in genetic algorithms (GAs). Theoretical and practical
analysis of population-based algorithms have indeed mostly found positive
or neutral effects, and showed a general trend that larger populations are
better [16], or at least not worse than a population size of one [55]. The only
(mild) observed negative effect is, intuitively speaking, that maintaining a
population of size µ may slow down the optimization time by a factor of at
most µ. Only few, highly artificial examples are known [18, 19] in which a
(µ + 1)-EA or (µ + 1)-GA with time budget µt performs significantly worse
than a (1 + 1)-EA with time budget t. In this sense, it is easy to believe that
a (µ + 1) algorithm is at least as good as a (1 + 1) algorithm, except for the
runtime increase that comes from each individual only having probability
1/µ per round of creating an offspring.

Our results challenge this belief, and show that it is highly wrong for
some monotone functions. Our main results show that increasing µ from 1
to a larger constant can increase the runtime from quasilinear to exponential.

A monotone1 pseudo-Boolean function is a function f : {0, 1}n → R such
that for every x, y ∈ {0, 1}n with x ̸= y and xi ≥ yi for all 1 ≤ i ≤ n it
holds f (x) > f (y). Monotone functions are easy benchmark functions for
optimization techniques, since they always have a unique local and global
optimum at the all-ones string. Moreover, from every search point there

1 Following [13, 14], we call them monotone functions, although strictly monotone functions would
be slightly more accurate.

13

14 exponential slowdown for larger populations in (µ + 1)-ea

are short, fitness-increasing paths to the optimum, by flipping zero-bits
into one-bits. Consequently, there are many algorithms which can easily
optimize every monotone function. A particular example is random local
search (RLS), which is the (1 + 1) algorithm that flips in each round exactly
one bit, uniformly at random. RLS can never increase the distance from the
optimum for a monotone function, and it optimizes any such function in
time O(n log n) by a coupon collector argument. Thus monotone functions
are regarded as an easy benchmark for evolutionary algorithms. Never-
theless it was shown in [11–14] that a surprising number of evolutionary
algorithms need exponential time to optimize some monotone functions,
especially if they mutate too aggressively, i.e., the mutation parameter c
is too large (see Section 2.1.2 for a detailed discussion). However, in all
considered cases the algorithms were efficient if the mutation parameter
satisfied c < 1.

2.1.1 Our results

We show that the (µ + 1)-Evolutionary Algorithm, (µ + 1)-EA, becomes
inefficient even if the mutation strength is smaller than 1. More precisely,
we show that for every c > 0 there is a µ0 = µ0(c) ∈ N such that for all
µ0 ≤ µ ≤ n there are some monotone functions for which the (µ + 1)-EA
with mutation rate c/n needs superpolynomial time to find the optimum.
If µ is O(1) then this time is even exponential in n. Note that for 0 < c ≤ 1,
it is known that the (1 + 1)-EA finds the optimum in quasilinear time for
any monotone functions [12, 56, 57]. Thus when we increase the population
size only slightly (from 1 to µ0), the optimization time explodes, from
quasilinear to exponential.

The monotone functions that are hard to optimize are due to Lengler and
Steger [13], and were dubbed HotTopic functions in [14]. These functions
look locally like linear functions in which all bits have some positive weights.
However, in each region of the search space there is a specific subset of
bits (the ‘hot topic’), which have very large weights, while all other bits
have only small weights. If an algorithm improves in the hot topic, then it
will accept the offspring regardless of whether the other bits deteriorate.
In [13–15] it was shown that an algorithm like the (1+ 1)-EA with mutation
rate c > 2.13.. will mutate too many of these bits outside of the hot topic,
and will thus not make progress towards the global optimum.

The key insight of our work is that for such weighted linear functions
with imbalanced weights, populations may also lead to an accumulation of

2.1 introduction 15

bad mutations, even if the mutation rate is small. Here is the intuition. For a
search point x, we call the number of one-bits in the hot topic in x the rank
of x. Consider a (µ+ 1)-EA close to the optimum, and assume for simplicity
that all search points in the population S0 have the same rank i. At some
point one of them will improve in the hot topic by flipping a zero-bit there.
Let us call the offspring x, and let us assume that its rank is i + 1. Then x is
fitter than all other search points in the population because it has a higher
rank. Moreover, every offspring or descendant of x will also be fitter than
all the other points in the population, as long as they maintain rank i + 1.
Thus for a while the (µ + 1)-EA will accept all (or most) descendants of x,
and remove search points of rank i from the population. This goes on until
some time t0 at which search points of rank i are completely eliminated
from the population. Note that at time t0, most descendants x′ of x have
considerably smaller fitness than x, since the algorithm accepts every type
of mutation outside of the hot topic, and most mutations are detrimental. If
some descendant x′ of x creates an offspring y of even higher rank, then y
is accepted and the cycle repeats with y instead of x. The crucial point is
that y is an offspring of x′, which has accumulated a lot of bad mutations
compared to x. So typically, x′ is considerably less fit than x, but still it
passes on its bad genes.

The above effect needs that the probability of improving in the hot topic
has the right order. If the probability is too large (close to one), then x
will already spawn an offspring of rank i + 1 before it has spawned many
descendants with the same rank. On the other hand, if the probability is
too small then there will be no rank-improving mutations until time t0, and
after time t0 the algorithm starts to remove the worst individuals of rank
i + 1 from the population. We remark that this latter regime was already
studied in [14], for the extreme case in which the improvement probability
is so small that typically the population of rank i + 1 collapses into copies
of x before a further improvement is made. (In the terminology of [14], it
was the assumption that the parameter ε of the HotTopic function was
sufficiently small.) However, there is a rather large range of improvement
probabilities that lead to the aforementioned effect, i.e., they typically yield
an offspring y from some inferior search point x′ of rank i + 1.

2.1.2 Related work

The analysis of EAs on monotone functions started in 2010 by the work
of Doerr, Jansen, Sudholt, Winzen and Zarges [11, 12]. Their contribution

16 exponential slowdown for larger populations in (µ + 1)-ea

was twofold: firstly, they showed that the (1 + 1)-EA, which flips each bit
independently with static mutation rate c/n, needs time O(n log n) on all
monotone functions if the mutation parameter c is a constant strictly smaller
than one. This result was already implicit in [56].

On the other hand, it was also shown in [11, 12] that for large mutation
rates, c > 16, there are monotone functions for which the (1 + 1)-EA needs
exponential time. The construction of hard monotone functions in [11, 12]
was later simplified by Lengler and Steger [13], who improved the range
for c from c > 16 to c > c0 = 2.13... Their construction was later called
HotTopic functions in [14], and it will also be the basis for the results in
this work.

For a long time, it was an open question whether c = 1 is a thresh-
old at which the runtime switches from polynomial to exponential. On
the presumed threshold c = 1, a bound of O(n3/2) was known due to
Jansen [56], but it was unclear whether the runtime is quasilinear. Finally,
Lengler, Martinsson and Steger [57] could show that c = 1 is not a threshold,
showing by an information compression argument an O(n log2 n) bound
for all c ∈ [1, 1 + ε] for some ε > 0.

Recently, the limits of our understanding of monotone functions were
pushed significantly by Lengler [14, 15], who analyzed monotone functions
for a manifold of other evolutionary and genetic algorithms. In particu-
lar, he analyzed the algorithms on HotTopic functions, and found sharp
thresholds in the parameters, such that on one side of the threshold the run-
time on HotTopic was O(n log n), while on the other side of the threshold
it was exponential. These algorithms include the (1 + 1)-EA, the (1 + λ)-
EA, the (µ + 1)-EA, for which the threshold condition was c < c0, where
c0 = 2.13.., and it further included the (1 + (λ, λ))-GA, and the so-called
‘fast (1 + 1)-EA’ and ‘fast (1 + λ)-EA’.2 Surprisingly, for the genetic algo-
rithms (µ + 1)-GA and the ‘fast (µ + 1)-GA’, any parameter range leads to
runtime O(n log n) on HotTopic if the population size µ is large enough,
showing that crossover is strongly beneficial in these cases.

For some of the algorithms, Lengler in [14, 15] also complemented the re-
sults on HotTopic functions by statements asserting that for less aggressive
choices of the parameters the algorithms optimize every monotone function
efficiently. For example, he proved that for mutation parameter c < 1 and for
every constant λ ∈N, with high probability the (1+ λ)-EA optimizes every
monotone function in O(n log n) steps. Analogous statements were proven

2 The so-called “fast” versions draw the parameter c randomly in each iteration from a heavy-
tailed distribution. This avoids that the probability of flipping k bits drops exponentially in
k [58].

2.1 introduction 17

for the ‘fast (1 + 1)-EA’ and ‘fast (1 + λ)-EA’, and for the (1 + (λ, λ))-GA,
but the condition c < 1 needs to be replaced by analogous conditions on
the parameters of the respective algorithms. Moreover, in the case of the
‘fast (1 + λ)-EA’, the result was only proven if the algorithm starts suffi-
ciently close to the optimum. Lengler did not prove any results for general
monotone functions for the population-based algorithms (µ + 1)-EA and
(µ + 1)-GA, and for their ‘fast’ counterparts. Our result shows that at least
for the (µ + 1)-EA, this gap had a good reason. As mentioned before, we
will show that for every (constant) mutation parameter c > 0, there are
monotone functions on which the (µ + 1)-EA needs superpolynomial time
if the population size µ is larger than some constant µ0 = µ0(c). It also
shows that the (µ+ 1)-EA and the (1+ λ)-EA behave completely differently
on the class of monotone functions, since the (1 + λ)-EA is efficient for all
constant λ whenever c < 1.

Surprisingly, our instance of a hard monotone function is again a Hot-
Topic function. This may appear contradictory to the result in [14, 15] that
the (µ + 1)-EA is efficient on HotTopic functions if c < c0. The reason why
there is no contradiction is that all the results in [14, 15] on HotTopic come
with an important catch. The HotTopic functions come with several param-
eters, and we will give the formal definition and a more detailed discussion
in Section 2.2.3. For now it suffices to know that one of the parameters,
ε, essentially determines how close the algorithm needs to come to the
optimum before the fitness function starts switching between different hot
topics. In [14, 15], only small values of ε were considered. More precisely,
it was shown that for every µ ∈N there is an ε0 > 0 such that the results
for the (µ + 1)-EA hold for all HotTopic functions with parameter ε ≤ ε0,
and there were similar restrictions for other parameters of the HotTopic

function. In a nutshell, the effect of switching hot topics was only studied close to
the optimum. Arguably, this was a natural approach since usually the hardest
region for optimization is close to the optimum. In this work, we consider
HotTopic functions in a different parameter regime: we study relatively
large values of the parameter ε, which is a regime of the HotTopic functions
in which the action happens far away from the optimum. Consequently, the
results from [14, 15] on the (µ + 1)-EA on HotTopic do not carry over to the
version of HotTopic functions that we consider in this work. We stress this
point to resolve the apparent contradiction between our results and the
results in [14, 15].

The above discussion also shows a rather uncommon phenomenon. Con-
sider a small mutation parameter, e.g., c = 1/2. Our results show that the

18 exponential slowdown for larger populations in (µ + 1)-ea

(µ + 1)-EA fails to make progress if the HotTopic function starts switching
hot topics far away from the optimum. On the other hand, by the results
in [14], the (µ + 1)-EA is not deceived if the HotTopic function starts
switching hot topics close to the optimum. Thus, we have found an example
where optimization close to the optimum is easier than optimization far
away from the optimum, quite the opposite of the usual behavior of algo-
rithms. This strange effect occurs because the problem of the (µ + 1)-EA
arises from having a non-trivial population. However, close to the optimum,
progress is so hard that the population tends to degenerate into multiple
copies of a single search point, which effectively decreases the population
size to one and thus eliminates the problem (see also the discussion in
Section 2.1.1 above).

Most other work on population-based algorithms has shown benefits of
larger population sizes, especially when crossover is used [59–62]. Without
crossover, the effect is often rather small [55]. The only exception in which a
population has theoretically been proven to be severely disadvantageous is
on Ignoble Trails. This rather specific function has been carefully designed
to lead into a trap for crossover operators [18], and it is deceptive for µ = 2
if crossover is used, but not for µ = 1. Arguably, the HotTopic functions
are also rather artificial, although they were not specifically designed to be
deceptive for populations. However, regarding the larger and more natural
framework of monotone functions, our results imply that a (µ + 1)-EA
with mutation parameter c = 1 does not optimize all monotone functions
efficiently if µ is too large, while the corresponding (1 + 1)-EA is efficient.

Moreover, Lengler and Schaller pointed out an interesting connection
between HotTopic functions and a dynamic optimization problem in [63],
which is arguably more natural. In that paper, the algorithm should op-
timize a linear function with positive weights, but the weights of the ob-
jective function are re-drawn each round (independently and identically
distributed). This setting is similar to monotone functions, since a one-bit is
always preferable over a zero-bit, and the all-one string is always the global
optimum. However, the weight of each bit changes from round to round,
which somewhat resembles that the HotTopic function switches between
different hot topics as the algorithm progresses. In [63] the (1 + 1)-EA
was studied, and the behavior in the dynamic setting is very similar to
the behavior on HotTopic functions. It remains open whether the effects
observed in our work carry over to this dynamic setting.

2.2 preliminaries and definitions 19

2.2 preliminaries and definitions

2.2.1 Notation

Throughout the chapter, we will assume that f : {0, 1}n → R is a monotone
function, i.e., for every x, y ∈ {0, 1}n with x ̸= y and such that xi ≥ yi for
all 1 ≤ i ≤ n it holds f (x) > f (y). We will consider algorithms that try to
maximize f , and we will mostly focus on the runtime of an algorithm, which
we define as the number of function evaluations before the first evaluation
of the global maximum of f .

For n ∈ N, we denote [n] := {1, . . . , n}. For a search point x, we write
Om(x) for the OneMax-value of x, i.e., the number of one-bits in x. For
x ∈ {0, 1}n and ∅ ̸= I ⊆ [n], we denote by d(I, x) := |{i ∈ I | xi =
0}|/|I| the density of zero-bits in I. In particular, d([n], x) = 1−Om(x)/n.
Landau notation like O(n), o(n), . . . is with respect to n → ∞. An event
E = E(n) holds with high probability or whp if Pr[E(n)] → 1 for n → ∞. A
function f : N→ R grows stretched-exponentially if there is δ > 0 such that
f (x) = exp{Ω(nδ)}, and it grows quasilinearly if there is C > 0 such that
f (x) = O(n logC n).

Throughout the chapter, we will use n for the dimension of the search
space, µ for the population size, and c for the mutation parameter. We will
always assume that the mutation parameter c is a constant independent of
n, but the population size µ = µ(n) may depend on n.

2.2.2 Algorithm

We will consider the (µ + 1)-EA with population size µ ∈N and mutation
parameter c > 0 for maximizing a pseudo-boolean fitness function f :
{0, 1}n → R. This algorithm maintains a population of µ search points.
In each round, it picks one of these search points uniformly at random,
the parent xt for this round. From this parent it creates an offspring yt by
flipping each bit of xt independently with probability c/n, and adds it to
the population. From the µ + 1 search points, it then discards the one with
lowest fitness from the population, breaking ties randomly3.

3 We break ties randomly for simplicity. Other selection schemes may give preference to offspring,
or generally to more recent search points in case of ties. However, the tie-breaking scheme
does not have an impact on our analysis.

20 exponential slowdown for larger populations in (µ + 1)-ea

Algorithm 1: The (µ + 1)-EA with mutation parameter c for maxi-
mizing an unknown fitness function f : {0, 1}n → R. The population
S is a multiset, i.e., it may contain some search points several times.

1 Initialization:
2 S0 ← ∅;
3 for i = 1, . . . , µ do
4 Sample x(0,i) uniformly at random from {0, 1}n;
5 S0 ← S0 ∪ {x(0,i)};
6 Optimization:
7 for t = 1, 2, 3, . . . do
8 Mutation:
9 Choose xt ∈ St−1 uniformly at random;

10 Create yt by flipping each bit in xt independently with
probability c/n;

11 Selection:
12 Set St ← St−1 ∪ {yt};
13 Select x ∈ arg min{ f (x) | x ∈ St} (break ties randomly) and

update St ← St \ {x};

2.2 preliminaries and definitions 21

2.2.3 HotTopic functions

In this section we give the construction of hard monotone functions by
Lengler and Steger [13], following closely the exposition in [14]. The func-
tions come with five parameters n ∈ N, 0 < β < α < 1, 0 < ε < 1, and
L ∈ N, and they are given by a randomized construction. Following [14],
we call the corresponding function HotTopicn,α,β,ε,L = HTn,α,β,ε,L = HT.

For 1 ≤ i ≤ L we choose sets Ai ⊆ [n] of size αn independently and
uniformly at random, and we choose subsets Bi ⊆ Ai of size βn uniformly
at random. We define the level ℓ(x) of a search point x ∈ {0, 1}n by

ℓ(x) := max
{
ℓ′ ∈ [L] : d(Bℓ′ , x) ≤ ε

}
, (2.1)

where we set ℓ(x) = 0, if no such ℓ′ exists. Then we define f : {0, 1}n → R

as follows:
HT(x) := ℓ(x) · n2 + ∑

i∈Aℓ(x)+1

xi · n + ∑
i∈Rℓ(x)+1

xi, (2.2)

where Rℓ(x)+1 := [n] \ Aℓ(x)+1, and where we set AL+1 := BL+1 := ∅. One
easily checks that this function is monotone [14].

So the set Aℓ+1 defines the hot topic while the algorithm is at level ℓ,
where the level is determined by the sets Bi. Following up on the discussion
in the introduction, observe that the level ℓ increases if the density of zero-
bits in Bℓ′ drops below ε for some ℓ′ > ℓ. From the analysis we will see
that with high probability this only happens if the density of zero-bits in
Aℓ+1 and in the whole string is also roughly ε, up to some constant factors.
Hence, the parameter ε determines how far away the algorithm is from the
optimum when the level changes.

Throughout the chapter, we will assume that α and β are independent of
n, whereas we will choose small constants η, ρ > 0 and set ε = µ−1+η and
L = exp{ρεn/ log2 µ}, i.e., ε and L may depend of n, since we also allow µ
to depend on n.4

2.2.4 Tools

To obtain good tail bounds, we often apply Chernoff’s inequality.

4 In the papers [13–15] the parameter L was replaced by a constant parameter ρ such that
L = eρn. This had the advantage that their parameters were all independent of n, but since our
parameters depend on n anyway, it is more convenient to use the parameter L. However, both
versions are equivalent.

22 exponential slowdown for larger populations in (µ + 1)-ea

Theorem 1 (Chernoff Bound [64]). Let Y1, . . . , Ym be independent random
variables (not necessarily i.i.d.) that take values in [0, 1]. Let S := ∑m

i=1 Yi, then
for all 0 ≤ δ ≤ 1,

Pr[S ≤ (1− δ)E[S]] ≤ e−δ2 E[S]/2

and for all δ ≥ 0,

Pr[S ≥ (1 + δ)E[S]] ≤ e−min{δ2,δ}E[S]/3.

Finally, for all k ≥ 2e E[S],

Pr[S ≥ k] ≤ 2−k.

In addition, we will need the following theorem to bound the sum of
geometrically distributed random variables.

Theorem 2 (Theorem 1 in [65]). Let Yj, 1 ≤ j ≤ m, be independent random
variables following the geometric distribution with success probability pj, and let
S := ∑m

j=1 Yj. If ∑m
j=1 p−2

j ≤ s < ∞ then for any δ > 0,

Pr[S ≤ E[S]− δ] ≤ exp
(
− δ2

2s

)
.

For h := min{pj | j ∈ [m]},

Pr[S ≥ E[S] + δ] ≤ exp
(
− δ

4
min

{ δ

s
, h
})

.

The following lemma estimates useful probabilities, e.g. the probability
to improve on the current hot topic.

Lemma 3. Let α, c > 0 be constants. Consider a set A ⊆ [n] of size αn where n
is large enough, and consider a search point x ∈ {0, 1}n.

1. The probability that the number of one-bits in A does not decrease after a
standard bit mutation with rate c/n on x can be bounded by pR = e−αc/2
from below.

2. The probability that a standard bit mutation with rate c/n strictly increases
the number of one-bits in A has a lower bound pL = ε(x)αce−αc/2 and an
upper bound pU = ε(x)αc, where ε(x) = d(A, x).

3. Let (1 − ε′)αn ≤ i ≤ αn where 0 < ε′ < 1 and ε′n ≥ 2ec. Assume
rk(x) < i, and let y be an offspring of x. Then at least one of the following
inequalities holds.

Pr[rk(y) ≥ i] ≤ 2−ε′αn or
Pr[rk(y) ≥ i + 1]

Pr[rk(y) ≥ i]
≤ 2ε′αc.

2.2 preliminaries and definitions 23

Proof of Lemma 3. We show the statements one by one.

1. One way of creating an offspring with the same number of onebits in
A is to flip no bits at all in A, which is (1− c/n)αn = e−αc−O(1/n) ≥
e−αc/2 when n is large enough.

2. We observe that the probability we consider is at least

Pr[flip 1 zero-bit and 0 one-bits in A] = ε(x)αn · c
n

(
1− c

n

)αn−1

= ε(x)αc
(

e−αc −O
(1

n

))
≥ 1

2
ε(x)αce−αc.

And it is at most

Pr[flip at least 1 zero-bit] ≤
ε(x)αn

∑
i=1

Pr[flip the i-th zero-bit] = ε(x)αc,

where the second inequality follows a union bound over all zero-bits
in A.

3. Assume first that rk(x) < (1− 2ε′)αn. Then for rk(y) ≥ i, at least
ε′αn zero-bits must be flipped in one mutation. The expected number
of flipped zero-bits is at most αn · c/n = αc, so that happens with
probability 2−ε′αn by the Chernoff bound. So let us consider the
other case, rk(x) ≥ (1− 2ε′)αn. Let P be a permutation on the αn
bits in A such that P(j) < P(j′) for all xj = 1 and xj′ = 0. Consider
mutating the bits in x in the permuted order, and we track the number
G := G0 − G1 during that process, where G0 (G1) is the flipped zero-
bits (one-bits). Clearly, G will be decreasing while we are at the
one-bits and increasing afterwards. Then rk(y) ≥ i if and only if
G ≥ i− rk(x) after flipping some zero-bit j, and rk(y) ≥ i + 1 if and
only if at least one more zero-bit is flipped after bit j. The number
of remaining zero-bits is at most αn − rk(x) − 1 < 2ε′αn, so the
probability of flipped at least one remaining zero-bit is at most 2ε′αc
by a union bound. Therefore,

Pr[rk(y) ≥ i + 1] ≤ 2ε′αc · Pr[G ≥ i− rk(x) at some zero-bit j]

= 2ε′αc · Pr[rk(y) ≥ i].

24 exponential slowdown for larger populations in (µ + 1)-ea

We will use the following two theorems to bound the running time of
the (µ + 1)-EA. The first one states that a sequence of random variables
whose differences are small with exponentially decaying tail bound are
sub-Gaussian.5

Theorem 4 (Timo Kötzing, Theorem 10 in [66]). Let (Yi)i≥0 be a supermartin-
gale such that there are c′ > 0 and δ′ with 0 < δ′ < 1 and, for all i ≥ 0 and for
all y ≥ 0,

Pr[|Yi+1 −Yi| ≥ y | Y0, . . . , Yi] ≤ c′(1 + δ′)−y.

Then (Yi)i≥0 is (128c′δ′−3, δ′/4)-sub-Gaussian.

The other theorem bounds first hitting times of sub-Gaussian super-
martingales.

Theorem 5 (Timo Kötzing, Theorem 12 in [66]). Let (Yi)i≥0 be a sequence of
random variables and let r ∈ R. If, for all i ≥ 0,

E[Yi+1 −Yi | Y0, . . . , Yi] ≤ r,

then (Yi − ri)i≥0 is a supermartingale. If further (Yi − ri)i≥0 is (c′′, δ′′)-sub-
Gaussian, then, for all i ≥ 0 and all y > 0,

Pr
[

max
0≤j≤i

(Yj −Y0) ≥ ri + y
]
≤ exp

(
− y

2
min

(
δ′′,

y
c′′i

))
.

2.3 formal statement of the result

The main result of this chapter is the following.

Theorem 6. For every constant c > 0 and 0 < β < α < 1 there exist constants
µ0 = µ0(c) ∈ N and η, ρ > 0 such that the following holds for all µ0 ≤ µ ≤ n
where n is sufficiently large. Consider the (µ + 1)-EA with population size µ and
mutation rate c/n on the n-bit HotTopic function HTn,α,β,ε,L, where ε = µ−1+η

and L = ⌊exp{ρεn/ log2 µ}⌋. Then with high probability the (µ + 1)-EA visits
every level of the HT function at least once. In particular, it needs at least L steps
to find the optimum, with high probability and in expectation.

That is, if µ ≥ µ0 is a constant (independent of n) then with high probability
the optimization time is exponential.

5 The reader can take the concept of being sub-Gaussian as a black box. Theorem 4 asserts
that exponential tail bounds guarantee the property, Theorem 5 describes the consequences.
For completeness, we also give the definition: a sequence of random variables (Yi)i≥0 is
(c, δ)-sub-Gaussian if and only if E[exp(z(Yi+1 − Yi)) | Y0, . . . , Yi] ≤ exp(z2c/2)holds for all
i ≥ 0 and z ∈ [0, δ].

2.4 proof overview 25

We remark that the requirement µ ≤ n is not tight, and we conjecture
that the runtime is always superpolynomial for µ ≥ µ0, also for much
larger values of µ. However, we did not undertake big efforts to extend
the range of µ since we do not feel that it adds much to the statement. For
larger values of µ, e.g., µ = n2, our proof does not go through unmodified.
With our definition of ε = µ−1+η , we only get error probabilities of the
form exp{−Ω(εn/ log2 µ)}, which are not o(1) if e.g. µ = n2. Hence we
would need to choose larger values of ε, and then we lose a very convenient
property, namely that for every fixed i, with high probability no individual
of rank at most i− 1 creates an individual of rank at least i + 1. To avoid
these complications, we only consider µ ≤ n.

2.4 proof overview

The next three sections are devoted to proving Theorem 6. The key ingredi-
ent is to analyze the drift of the density d([n], x) for search points x which
have roughly density ε. We start by giving an informal overview, and by
discussing similarities and differences to the situation in [13] and [14].

We will analyze the algorithm in the regime where the fittest search point
x∗ in the population satisfies

d(Aℓ+1, x∗) ∈ [ε/2, 2ε] and d(Rℓ+1, x∗) ∈ [ε/2, 2ε], (2.3)

where ℓ = ℓ(x∗) is the current level and ε = µ−1+η is the parameter of the
HotTopic function. It will turn out that for large µ, the algorithm already
needs stretched-exponential time to escape this situation.

The main idea is similar to [13, 14], in which the (1 + 1)-EA and other
algorithms were analyzed. We first sketch the main argument for the (1+ 1)-
EA, and explain afterwards which parts must be replaced by new arguments.
The crucial ingredient is that while the density d(Aℓ+1, x) of zero-bits
on the hot topic decreases from 2ε to ε, the total density d([n], x) has a
positive drift, i.e., a drift away from the optimum. Moreover, the probability
to change k bits in one step has a tail that decays exponentially with k.
Therefore, it was shown that with high probability d([n], x) stays above
ε + γ for an exponential number of steps, where γ is a small constant.
Then it was argued that as long as d([n], x) stays bounded away from ε,
it is exponentially unlikely that the level ever increases by more than one.
Since there are an exponential number of levels, this implies an exponential
runtime.

26 exponential slowdown for larger populations in (µ + 1)-ea

The analysis of (µ + 1)-EA and (µ + 1)-GA for constant µ in [14] was
obtained by reducing it to the analysis of a related (1 + 1) algorithm.
This was possible since the choice of parameters in [14] (choosing the
parameter ε = ε(µ) sufficiently small) made the algorithm operate close to
the optimum. In this range, there are only few zero-bits, and thus it is rather
unlikely that a mutation improves the fitness. On the other hand, there is
always a constant probability (if µ is constant) to create a copy of the fittest
individual. In such a situation, the population degenerates frequently into
a collection of copies of a single search point. Thus, the population-based
algorithms behave similarly to a (1 + 1) algorithm. This (1 + 1) algorithm
has essentially the same mutation parameter as the (µ+ 1)-EA, while for the
(µ+ 1)-GA it has a much smaller mutation parameter (less than one), which
is the reason why the (µ + 1)-GA is efficient on all HotTopic instances with
small parameter ε. For us, the situation is more complex since we consider
larger values of ε. As a consequence, it is easier to find a search point with
better fitness, and the population does not collapse. Hence, it is not possible
to represent the population by a single point.

Instead, we proceed as follows. Fix a fitness level ℓ, and consider the
auxiliary fitness function

fℓ(x) := n ∑
j∈Aℓ+1

xj + ∑
j∈Rℓ+1

xj. (2.4)

We will first study the behavior of the (µ + 1)-EA on fℓ. Considering this
fitness function is essentially the same as assuming that the level remains
the same. We will see in the end that this assumption is justified, by the
same arguments as in [13, 14]. For a search point x, we define the rank
rk(x) :=

∣∣{j ∈ Aℓ+1 | xj = 1}
∣∣ of x as the number of correct bits in the

current hot topic. Note that by construction of fℓ, a search point with higher
rank is always fitter than a search point with smaller rank.

Now we define Xi to be the set of search points of rank i that are visited
by the (µ + 1)-EA, and we define Zi to be the OneMax-value (the number
of one-bits) of the last search point in Xi that the algorithm deletes from its
population. Note that due to elitist selection, this search point is also (one
of) the fittest search point(s) in Xi that the algorithm ever visits, and hence
it has the largest OneMax-value among all search points in Xi that the
algorithm ever visits. Then our goal is to show that E[Zi+1 − Zi] = −Ω(1),
under the assumption that the population satisfies (2.3), i.e., that the density
of the fittest search point is close to ε. This assumption can be justified by
a coupling argument as in [13, 14]. Computing the drift of Zi is the heart
of our proof, and the main technical contribution of this chapter. In fact,

2.4 proof overview 27

to simplify the analysis we only prove the slightly weaker statement that
E[Zi+K − Zi] = −Ω(1) for a suitable constant K, which is equally suited.
Once we have established this negative drift, the remainder of the proof as
in [13, 14] carries over almost unchanged.

To estimate the drift ∆ := E[Zi+K−Zi], we will assume for this exposition
that µ = ω(1), so that we may use O-notation. (In the formal proof we
will use the weaker assumption µ ≥ µ0 for a sufficiently large constant
µ0 = µ0(c).) We distinguish between good and bad events. Good events will
represent the typical situation; they will occur with high probability, and
if they occur K times in a row, then it will deterministically follow that
Zi+K − Zi ≤ − log µ. On the other hand, bad events may lead to a positive
difference, but they are unlikely and thus they contribute only a lower order
term to the drift. We will discriminate two types of bad events. Firstly, we
will show that the probability Pr[Zi+K − Zi > λ log µ] drops exponentially
in λ. This implies that the events in which Zi+K − Zi > log2 µ contribute at
most a term o(1) to the drift. Hence, we can restrict ourselves to the case
that Zi+K − Zi ≤ log2 µ. Now assume that we have any event of probability
o(log−2 µ). In the case Zi+K − Zi ≤ log2 µ, this event can contribute at most
a o(1) term to the drift. Hence, we may declare any such event as a bad
event, and conclude that all bad events together only contribute a o(1) term
to the drift.

As we have argued, we may neglect any event with probability o(log−2 µ).
This is a rather large error probability, which allows us to dub many events
as ‘bad’, and to use rather coarse estimates on the error probability. We
conclude this overview by describing how a good event, and thus a typical
situation, looks like. In what follows, all claims hold with probability at
least 1− o(log−2 µ).

Let us call ti the first round in which an individual of rank at least i is
created, and Ti the round in which the last individual of rank at most i is
eliminated. Then typically Ti − ti = O(µ log µ) ∩Ω(µ). Let |Xi| = |Xi(t)|
denote the number of search points in the population of rank i at time
t. We want to study the family forest Fi of X≥i, which is closely related to
the family trees and family graphs that have been used in other work on
population-based EAs, e.g. [16, 55, 67, 68]. The vertices of this forest are all
individuals of rank at least i that are ever included into the population. A
vertex is called a root if its parent has rank less than i. Otherwise, the forest
structure reflects the creation of the search points, i.e., vertex u is a child of
vertex v if the individual u was created by a mutation of v.

28 exponential slowdown for larger populations in (µ + 1)-ea

As Xi grows, eventually the first few search points of rank i + 1 are
created, and form the first roots of the family forest. Then the forest starts
growing, both because new roots may appear and because the vertices
in the forest may create offspring. At some point we have |Xi+1| = µδ

for some (suitably small) δ > 0. At this point, we still have typically
|Xi| = O(µδ/ε) = O(µ1+δ−η) = o(µ), where the latter holds if δ is small
enough. Moreover, at this point there are no search points of rank strictly
larger than i + 1. The sets Xi and Xi+1 both continue to grow with roughly
the same speed until the search points of rank at most i− 1 are eliminated
from the population. Afterwards, the search points of rank i are eliminated
from the population, until only search points of rank at least i + 1 remain.
Crucially, up to this point every search point of rank at least i+ 1 is accepted
into the population. In other words, there is no selective pressure on the
search points of rank i + 1, and every mutation of a search point of rank
i + 1 enters the family tree, as long as the rank i + 1 is preserved. Therefore,
we can contain the family forest Fi+1 of rank i + 1 up to this point in a
random forests F′ which is obtained by certain forest growth processes
in which no vertex is ever eliminated and all vertices continue to spawn
offspring with a fixed rate.

We want to understand the set of individuals in Xi+1 that spawn offspring
in Xi+2, and thus spawn the roots for the family forest Fi+2. As before we
can argue that no individuals of rank at least i + 2 are created before
the family forest of rank i + 1 reaches size µδ. Moreover, we can show
that the time Ti+1 at which all individuals of rank i + 1 are eliminated
from the population satisfies Ti+1 − ti+1 ≤ Cµ log µ for a suitable constant
C > 0. Hence, Fi+1 is bounded from above by the random forest F′ at time
ti+1 + Cµ log µ. This forest is only polynomially large in µ.

The recursive trees that we use to bound Fi+1 are well understood, see
also Figure 2.1. In particular, it is known that even in F′ only a small fraction
µδ of the vertices are in depth at most ϕ log µ, where δ, ϕ > 0 are suitable
constants. Since each such vertex creates an offspring of strictly larger rank
with probability ε/µ per round, the expected number of offspring of rank
i + 2 of these vertices is at most O(µδε/µ · (Ti+1 − ti+1)). With the right
choice of parameters, this is µ−Ω(1), and we may conclude that no vertices
of depth at most ϕ log µ create roots of rank i + 2. On the other hand, since
we do not truncate any vertices in the creation of F′, they are obtained from
their parents by unbiased mutations of [n] \ Aℓ, and we can show that most
(all but at most µδ) vertices of depth at least ϕ log µ in F′ have accumulated
c′ log µ more bad than good bit-flips when compared to their roots, for a

2.4 proof overview 29

Figure 2.1: A depiction of the family forest Fi, where ϕ and cd are constants to be
introduced in Section 2.5.3. The same picture also applies to its upper
bound F′.

suitable c′ > 0. For the µδ exceptional vertices, none of them will create a
root of rank i + 2 in Ti+1 − ti+1 rounds, even if they are in Fi+1.

To summarize, good events consist of the following four main points.
Firstly, no vertex of rank at most i creates an offspring of rank at least
i + 2. Secondly, every vertex in Xi+1 that creates an offspring in Xi+2 has
at least depth ϕ log µ in the family forest. Thirdly, every vertex in Xi+1 of
depth at least ϕ log µ that creates an offspring in Xi+2 has a OneMax value
that is at least c′ log µ smaller than that of its root. Finally, we also require
that no vertex in F′ exceeds the OneMax value of its root by more than
C log µ, for some C > 0. The complete list in the proof contains even more
requirements, but these four already imply a decline in Zi if they hold over
K consecutive steps. In this case, inductively the OneMax values of all roots
in Fi+K are at most Zi − Kc′ log µ. Moreover, Zi+K exceeds the OneMax

value of the corresponding root in Xi+K by at most C log µ, so we have
Zi+K ≤ Zi − Kc′ log µ + C log µ. Choosing K sufficiently large shows that
Zi must decrease in these typical situations.

30 exponential slowdown for larger populations in (µ + 1)-ea

2.5 drift analysis

In this main section of the proof, we show that the random variable Zi has
negative drift. We will use the same notation as in the proof outline. In
particular, Xi denotes the set of all search points of rank i that the algorithm
visits, and Zi denotes the OneMax-value of the last search point from Xi
that the algorithm keeps in its population. If Xi is empty (which, as we
will see, is very unlikely), then we set Zi := Zi−1. Moreover, we define
X≥i :=

⋃
i′≥i Xi′ , and the definition of terms like X>i is analogous. For a

given parent individual x, we denote by pI (by pR) the probability that an
offspring of x has rank which is strictly larger than (at least as large as) the
rank of x.

Throughout this section, we fix a level ℓ and consider the (µ + 1)-EA
on the linear function fℓ defined in (2.4). In this section, we will study the
case that i ∈ [(1− 2ε)αn, (1− ε/2)αn], where ε = µ−1+η . Note that this is a
weaker form of Condition (2.3), i.e., we consider search points for which
the density in A is close to ε.

2.5.1 Preliminaries

In this section we first give bounds on the time that the set X≥i needs to
grow from size 1 to size µκ , and we will conclude that X≥i is large at the
latter point in time. We start by bounding the time.

Lemma 7. For all 0 < α < 1, c > 0, 0 < η < κ ≤ 1, there exists a constant
µ0 such that the following holds for all µ0 ≤ µ ≤ n. Let i > (1− 2ε)αn, where
ε = µ−1+η . Consider the (µ + 1)-EA with mutation rate c/n on the linear
function fℓ. Denote by Tκ

i = Tκ the number of rounds until |X≥i| reaches µκ after
the algorithm visits the first point xi in X≥i. With probability 1− 2µ−Ω(1),

1
2
(κ − η)µ log µ ≤ Tκ ≤ 4κeαcµ log µ.

Moreover,

E[Tκ] ≤ 3κeαcµ log µ.

Proof. By the definition of fℓ, all individuals in X≥i are fitter than those
in X<i. So no points in X≥i will be discarded until X<i becomes empty,
and we are interested in the growth of |X≥i| during this period. Let Tj be
the time needed for |X≥i| to grow from j to j + 1. By definition we have

2.5 drift analysis 31

Tκ = ∑
µκ−1
j=1 Tj. Denote by xt the point selected as parent by the algorithm

in round t and denote by yt its offspring. The probability that both xt and
yt belong to X≥i is at least pj = j/µ · pR, where j is the size of X≥i at the
beginning of round t and pR = e−αc/2 is defined in Lemma 3.1. It is clear
that we can dominate Tj by random variable T̄j that follows a geometric
distribution with parameter pj. By Lemma 1.8.8 in [64], Tκ is dominated by

T̄κ := ∑
µκ−1
j=1 T̄j. Next we apply Theorem 2 to bound T̄κ from above.

The expectation of T̄κ is

E[T̄κ] =
µκ−1

∑
j=1

E[T̄j] ≤ 2eαcµ
µκ

∑
j=1

1
j
.

For Harmonic series, we have log(m + 1) < ∑m
j=1 1/j ≤ log m + 1, where

log denotes the natural logarithm. Therefore, for large enough µ,

E[Tκ] ≤ E[T̄κ] ≤ 2eαcµ(log(µκ) + 1) ≤ 3κeαcµ log µ. (2.5)

Let h := min{pj | j = 1, . . . , µκ − 1}, clearly h = p1 = e−αc/(2µ). Let

s := ∑
µκ−1
j=1 p−2

j , we have

s ≤ 4e2αcµ2
µκ

∑
j=1

1
j2
≤ 2e2αcπ2

3
µ2,

where the last step follows from ∑∞
j=1 1/j2 = π2/6. Given h and the bound

on s, by Theorem 2 it holds for δ = κeαcµ log µ that

Pr [T̄κ ≥ E[T̄κ] + δ] ≤ e−Ω(log µ) = µ−Ω(1).

Since Tκ ⪯ T̄κ , together with equation (2.5) we conclude that Tκ ≤
4κeαcµ log µ with probability 1− µ−Ω(1).

We still need a lower bound of Tκ . Consider the probability that X≥i gets
a new offspring yt in a round where |X≥i| = j:

Pr
[
yt ∈ X≥i

]
= Pr

[
xt ̸∈ X≥i ∧ yt ∈ X≥i

]
+ Pr

[
xt ∈ X≥i ∧ yt ∈ X≥i

]
≤ (µ− j)/µ · pU + j/µ · 1 ≤ j/µ + pU ,

where pU is defined in Lemma 3.2. Let p′j = j/µ + pU , similarly as for
the upper bound on Tκ , we can subdominate Tκ with a random variable

32 exponential slowdown for larger populations in (µ + 1)-ea

T̂κ = ∑
µκ−1
j=1 T̂j (Lemma 1.8.8 in [64]), where the T̂j are independent and

geometrically distributed with parameter p′j, respectively. Then

E[T̂κ] ≥
µκ−1

∑
j=1

1
p′j

=
µκ−1

∑
j=1

µ

j + µpU

≥
µκ−1

∑
j=1

µ

j + ⌈µpU⌉
=

µκ−1+⌈µpU⌉

∑
j=1

µ

j
−
⌈µpU⌉

∑
j′=1

µ

j′

> µ log
(
µκ + ⌈µpU⌉

)
− µ

(
log⌈µpU⌉+ 1

)
.

Since i ≥ (1− 2ε)αn, PU = O(ε) = O(µ−1+η) for 0 < η < κ. So ⌈µpU⌉ =
O(µη). Hence,

E[Tκ] ≥ E[T̂κ] ≥
(
1−O

(
log−1 µ

))
(κ − η)µ log µ.

Let s′ := ∑
µκ

j=1 p′−2
j . As p′j > pj, it holds s′ < s that. Applying Theorem 2

with s′ and δ′ = ε′µ log µ, we obtain

Pr
[
T̂κ ≤ E[T̂κ]− δ′

]
≤ e−Ω(log2 µ) = µΩ(1).

Similarly, we have T̂κ ⪯ Tκ , by picking a sufficiently small ε′ we conclude
that

Tκ ≥ 1
2
(κ − η)µ log µ

with probability 1− µ−Ω(1).

In the following lemma, we give a lower bound on |X≥i+1| when X≥i
reaches a certain size.

Lemma 8. Let α, κ ∈ (0, 1), c > 0, η < 1 be constants such that κ > 1− η/2.
Consider the (µ + 1)-EA with µ ≤ n and mutation rate c/n on the linear function
fℓ. Let ε = µ−1+η and let i ≤ (1− ε/2)αn. Denote by Yκ

i+1 = Yκ the size of
X≥i+1 when |X≥i| reaches µκ . Then with probability 1− exp

(
−Ω

(
µ2(κ−1)+η

))
,

Yκ = Ω
(
εµ2κ−1) = Ω

(
µ2(κ−1)+η

)
= µΩ(1).

Proof. Note that we may assume that µ ≥ µ0 for a constant µ0 of our choice,
since otherwise the probability may be zero and thus the statement is
vacuous. In each round |X≥i| increases by either 0 or 1, so after X≥i reaches
size R := ⌊µκ/2⌋ there are at least R more rounds until |X≥i| = µκ . In

2.5 drift analysis 33

each of the remaining R rounds, the probability of a parent x ∈ X≥i being
selected and its offspring y belonging to X>i is at least

Pr[y ∈ X>i] > Pr[x ∈ X≥i ∧ y ∈ X>i] ≥ R/µ · pL,

where PL is defined in Lemma 3. Let Yj be independent Bernoulli variables
with parameters R/µ · pL for j ∈ [R]. Then Yκ dominates the sum of Yj, i.e.
Yκ ⪰ Ȳκ := ∑R

j=1 Yj. It holds that

E[Ȳκ] = R · R/µ · pL = Θ
(
εµ2κ−1) = Θ

(
µ2(κ−1)+η

)
.

By Chernoff’s inequality (Theorem 1), we have for any constant 0 < δ < 1,

Pr
[
Ȳκ < (1− δ)E[Ȳκ]

]
≤ exp

(
−Ω

(
µ2(κ−1)+η

))
.

The claim follows from Yκ ⪰ Ȳκ .

2.5.2 Tail bounds

In this section, we will give rather loose tail bounds to show that it is
unlikely that Zi is much larger than Zi−1. All constants in this section are
independent of µ. This includes all hidden constants in the O-notation.

2.5.2.1 Tail bound on the lifetime of Xi

As before, let ti be the first round in which an individual of rank at least i
is created, and let Ti be the round in which the last individual of rank at
most i is eliminated.

Lemma 9. For all 0 < α, η < 1, c > 0, there is a constant µ0 ∈ N such
that the following holds for all µ0 ≤ µ ≤ n. Let i ∈ [(1− 2ε)αn, (1− ε/2)αn],
where ε = µ−1+η . Consider the (µ + 1)-EA with mutation rate c/n on the linear
function fℓ. Then with probability at least 1− µ−Ω(1), Ti − ti ≤ 8eαcµ log µ.
Moreover, for all β ≥ 1 and C = 16eαc,

Pr[Ti − ti ≥ β · Cµ log µ] ≤ 2−β.

Proof. We first show that Pr[Ti − ti ≥ C′µ log µ] ≤ 1/2 for a suitable con-
stant C′ > 0. Let x≥i be the first individual of rank at least i and let xj with
rank j be the first individual of rank strictly larger than i. We can divide the
process from ti to Ti into two parts. The first part ends when xj is created,
and we denote by tj the round when this happens. The second part starts

34 exponential slowdown for larger populations in (µ + 1)-ea

after tj and ends when X>i reaches size µ. Since we are proving an upper
bound of the tail, we can consider the second part ends when X≥j reaches
µ for simplicity.

If x≥i = xj, then we have tj = ti, namely the first part does not exist. So for
the tail bound of the first part, we may assume that x≥i ∈ Xi. By Lemma 7,
for some 1− η/2 < κ < 1, we have |X≥i| ≥ µκ at time T := ti + 4κeαcµ log µ.
By Lemma 8 we have |X>i| > 0 at this point, so xj must have been created
before time T. For the second part, we apply Lemma 7 again for X≥j. By
time tj + 4eαcµ log µ, X≥j reaches size µ.

To summarize, we have applied Lemma 7 twice and Lemma 8 once.
Therefore, with probability at least 1− 5µ−Ω(1), Ti − ti ≤ 8eαcµ log µ. Since
µ ≥ µ0, for large enough µ0 we obtain Pr[Ti − ti ≥ C′µ log µ] ≤ 1/2 for
C′ = 8eαc.

To conclude the proof, we set C := 2C′. Then for all integral β′ ∈N we
consider β′ phases and repeat the same argument. This shows Pr[Ti − ti ≥
β′ · C′µ log µ] ≤ 2−β′ . Hence, for C = 16eαc it holds for all β ≥ 1,

Pr[Ti − ti ≥ β · Cµ log µ] ≤ Pr[Ti − ti ≥ ⌈β⌉C′µ log µ] ≤ 2−⌈β⌉ ≤ 2−β.

2.5.2.2 Family forests

From now on we will be mostly working on family forests, so we introduce
the definition and several related lemmas here. The main idea is to couple
the algorithm with a process that is not subject to selection. This idea has
been used before to analyze population-based algorithms [16, 55, 67, 68].

We denote the family forest for search points with rank at least i by Fi.
The vertex set of Fi are the vertices in X≥i that are (once) in the population,
while the roots of the trees are vertices whose parents are in X<i. Moreover,
any path connecting a root and a vertex in Fi corresponds to a series of
mutations that create this vertex. Note that the size of Fi increase over time.

As analysing Fi directly can be complicated, we couple it with a simpler
random forest F′, which is generated by the following process. In round
0 there is a single root in F′. In each subsequent round, each vertex in F′

creates a new child with probability 1/µ and a new root is added. Lemma
10 shows that Fi can be coupled to a subgraph in F′.

Lemma 10. The family forest Fi can be coupled to F′ such that F′ contains Fi as a
subgraph at any round.

Proof. Throughout the coupling process we maintain that Fi is a subgraph
of F′. The first point x≥i that the algorithm visits in X≥i (in round ti)

2.5 drift analysis 35

corresponds to the only root r0 in round 0 in F′. In every round t > ti, a
point xt in the current population is selected to create an offspring yt. For
each x ∈ Fi, if xt = x (which happens with probability 1/µ if x is still in the
current population, and with probability zero otherwise) then we attach a
child to x in F′: if yt ∈ X≥i then we attach yt to x in F′, otherwise we attach
a dummy child to x in F′. In this case, we still associate the offspring with
the dummy child, and in our upcoming considerations we will ignore that
this search point does belong to X≥i. If xt is not in X≥i while yt is, we add
yt as a new root rt to F′, otherwise we add a new dummy root to F′. For
every node x ∈ F′ that is a dummy node (that has no corresponding node
in F) or whose copy in F has been removed from the population, we add
another dummy node as its child with probability 1/µ. In this way, for each
vertex in F′ we create a new child with probability 1/µ and a root is added
in each round. On the other hand, by construction, Fi is a subgraph of F′ at
all times.

Note that the search points associated with the vertices in F′ are obtained
from the root by mutation only, without any interfering selection step. This
makes the process easy to analyze. Such a selection-free mutation process
has been analyzed before, e.g. [69]. In Lemma 11 we show several useful
properties of F′. Due to the coupling from Fi to F′, the properties will also
hold for Fi as well.

Lemma 11. F′ satisfies the following properties:

1. Let st denote the number of vertices in F′ in round t, then Pr[st ≥ S] ≤
tet/µ/S for all S > 0.

2. Let x be a search point that corresponds to a vertex in F′ of depth at most d
with root y. Then for k ≥ 2edc,

Pr[x and y differ in more than k bits] ≤ 2−k.

3. Let x be a search point that corresponds to a vertex in F′ of depth larger than
d with root y. If n is sufficiently large and Om(y) ≥ (1− 8ε)n then

Pr[x has more one-bits than y] ≤ 2e−dc/32

and

Pr[y has less than dc/16 more one-bits than x] ≤ 2e−dc/128. (2.6)

If n is sufficiently large and Om(y) ≤ (1− 8ε)n then Pr[Om(x) ≥ (1−
4ε)n] ≤ 2 · 2−εn.

36 exponential slowdown for larger populations in (µ + 1)-ea

4. Let sd
t denote the number of vertices of depth d in round t for an arbitrary

tree from F′. Then

E[sd
t] ≤

td

d!µd .

In particular, for t = O(µ log µ) the depth of the tree is at most e log µ with
probability 1− µ−Ω(1). Moreover, if t ≥ 2dµ, ∑d

i=0 E[si
t] ≤ 2td/(d!µd).

Proof. We prove the statements one by one.

1. In t rounds we have added t roots to the forest, and we will give a
uniform bound for all of them. So we fix a root and denote by στ

the number of vertices in this tree in round τ, where 0 ≤ τ ≤ t. We
assume pessimistically that the root is introduced in round 0. Then
we have σ0 = 1 and E [στ+1 | στ] = (1 + 1/µ)στ for 0 ≤ τ ≤ t− 1. By
linearity of expectation, we have E[σt] ≤ (1 + 1/µ)t. Since there are t
roots, and using that (1 + 1/µ)µ ≤ e, we obtain

E[st] ≤ t E[σt] ≤ t(1 + 1/µ)t ≤ tet/µ.

By Markov’s inequality, it holds that

Pr[st ≥ S] ≤ E[st]

S
≤ tet/µ

S
.

2. Let yi be the i-th bit in y, the event yi ̸= xi implies that the i-th bit is
flipped at least once. Denote by d′ ≤ d the distance between x and y.
By a union bound

Pr[yi ̸= xi] ≤ Pr[bit i is flipped at least once]

≤ d′ Pr[bit i is flipped in one mutation] ≤ dc/n.

Let D = {i ∈ [n] | yi ̸= xi} be the set of bits that y and x disagree.
Then its expected size is E [|D|] ≤ dc. Since the bits are modified
independently, we can apply Chernoff’s inequality for k ≥ 2edc ≥
2e E[|D|],

Pr [|D| ≥ k] ≤ 2−k.

3. Let the depth of x be d′ ≥ d. First we argue that we may assume
d′ ≤ n/(16ec). If d′ ≥ n/(16ec), then consider just the last n/(16ec)

2.5 drift analysis 37

steps. In these, every bit has a constant probability to be touched
exactly once, and a constant probability not to be touched at all. If
the number of one-bits before the last n/(16ec) steps was at least n/2,
then with probability 1− e−Ω(n), x has at least 8εn zero-bits due to
the first case, and if the number of one-bits was at most n/2 then
the second case gives at least 8εn zero-bits. In either case, x has more
zero-bits than y with sufficiently large probability. So we may assume
d′ ≤ n/(16ec).

We then consider the case Om(y) ≥ (1− 8ε)n. Let B01 be the number
of bits flipped from 0 to 1. Then similarly as for Property 2 we bound
E[B01] by

|{i | yi = 0}| · Pr [xi = 1 | yi = 0]

≤ |{i | yi = 0}| · Pr[bit i flipped at least once in d′ mutations]

≤ 8εn · (d′c/n) = 8εcd′,

where the second inequality follows from a union bound. Similarly,
let B10 be the number of bits flipped from 1 to 0 in d′ mutations, its
expectation E[B10] is

|{i | yi = 1}| · Pr [xi = 0 | yi = 1]

≥ |{i | yi = 1}| · Pr[bit i flipped exactly once in d′ mutations]

≥ n
2

(
d′

1

)
c
n

(
1− c

n

)d′−1
≥ d′c

2

(
1− c

n
d′
)
≥ d′c

4
.

Since all bits contribute independently, we may apply the Cher-
noff bound. With probability at least 1 − e−d′c/32 each, we have
B01 ≤ cd′/8 and B10 ≥ cd′/8. Both inequalities together imply that
Om(x) ≤ Om(y) as desired, and the probability that at least one of
the inequalities is violated is at most 2e−d′c/32 ≤ 2e−dc/32.

Similarly, the probability that B01 (B10) overshoot (undershoot) its
expectation by more than d′c/16 is at most e−d′c/128. Therefore, the
probability that B01 ≥ B10 − d′c/16 is at most 2e−d′c/128 ≤ 2e−dc/128.

For the second statement, assume Om(y) ≤ (1− 8ε)n, and consider
the first vertex x′ on the path from y to x such that Om(x′) ≥ (1− 6ε)n.
The probability that more than εn bits were flipped in the creation
of x′ is at most 2−εn by the Chernoff bound, since by definition of
x′ the parent of x′ has an Om-value smaller than (1− 6ε)n, we may
assume that Om(x′) ≤ (1 − 5ε)n. Then, starting from x′ we may

38 exponential slowdown for larger populations in (µ + 1)-ea

use the same calculation as above, only that we need to bound the
probability that εn more zero-bits than one-bits are flipped. This is
bounded by the probability that B01 ≥ εn. Since d′ ≤ n/(16ec) we
have εn ≥ 16εcd′ ≥ 2e E[B01], by the Chernoff bound, this probability
is at most 2−εn.

4. There can only be one root in a tree, so s0
t = 1 for all t ≥ 0. For d ≥ 1

and t ≥ 1, it holds that

sd
t = sd

t−1 +

sd−1
t−1

∑
i=1

Yi,

where Yi is an indicator variable that takes value 1 if the i-th vertex
of depth d− 1 creates a offspring in round t. By Wald’s equation, we
obtain

E[sd
t] = E[sd

t−1] + E[sd−1
t−1]/µ.

Plugging in E[sd
t] = 0 for all t < d, we can derive that

E[sd
t] =

t−1

∑
i=d−1

E[sd−1
i]/µ (2.7)

and for all t ≥ d ≥ 1.

We show that the result by induction. For d = 1, by equation (2.7) we
have E[s1

t] = t/µ for all t ≥ 1. Now assume that E[sd
t] ≤ td/(d!µd)

for all t ≥ d where d ≥ 1, again by equation (2.7) it holds that

E[sd+1
t] ≤

t−1

∑
i=d

id

d!µd
1
µ
=

1
d!µd+1

t−1

∑
i=0

id ≤ 1
d!µd+1

t−1

∑
i=0

td =
td+1

(d + 1)!µd+1

for all t ≥ d + 1.

Now consider t = O(µ log µ) and d = k log µ for some constant
k > e. With Stirling’s approximation d! =

√
2πd(d/e)d, E[sd

t] =
O(µk(1−log k)). By Markov’s inequality, Pr[sd

t ≥ 1] = O(µk(1−log k)√log µ)

= µ−Ω(1) as k(1− log k) < 0. The conclusion follows from that sd
t = 0

implies a depth smaller than d.

For the last statement, let ad
t := td/(d!µd). If t ≥ 2dµ, ad−1

t /ad
t =

dµ/t ≤ 1/2 for d ≥ 1. Therefore,

d

∑
i=0

E[si
t] ≤

d

∑
i=0

ai
t ≤

d

∑
i=0

2−(d−i)ad
t < 2ad

t =
2td

d!µd .

2.5 drift analysis 39

2.5.2.3 Tail bound on steps of Zi

The first consequence of the coupling is an exponential tail bound on the
difference Zi − Zi−1. Note that the tail bound only holds in one direction.
There is no comparable tail bound for Zi−1− Zi, at least not without further
knowledge on Xi−1: if there is a single search point x ∈ Xi−1 that has k
more one-bits than all other search points in Xi−1, then x might not spawn
an offspring and Zi could drop by k or more, and k could be as large as
Ω(n) without assumptions on Xi−1.

Lemma 12. For all 0 < α, η < 1, c > 0 there is a constant µ0 ∈ N such
that the following holds for all µ0 ≤ µ ≤ n, where n is sufficiently large. Let
i ∈ [(1− 2ε)αn, (1− ε/2)αn], where ε = µ−1+η . Assume that the (µ + 1)-EA
with mutation rate c/n on the linear function fℓ satisfies Zi−1 ≥ (1− 4ε)n. Then
for all 1 ≤ β ≤ εn/ log2 µ and C2 = 6400eαc+1,

Pr[Zi − Zi−1 ≥ β · C2 log µ] ≤ 2−β.

If on the other hand Zi−1 < (1− 4ε)n, then Zi < (1− 2ε)n with probability
1− e−Ω(εn/ log2 µ).

Proof. By Lemma 9, there is C = 16eαc such that for all β ≥ 1,

Pr[Ti − ti ≥ (β + 2) · Cµ log µ] ≤ 1
4 2−β.

By Lemma 11.1, at round t = (β + 2) · Cµ log µ we have

Pr[st ≥ µ2(β+2)C] ≤ t
µ2(β+2)C

≤ (β + 2)Cµ1−2(β+2)C log µ < 1
4 2−β,

where the last step holds for all µ ≥ µ0 if µ0 is sufficiently large. That is,
the probability that the algorithm visits at least µ2(β+2)C vertices in X≥i is
at most 1

4 2−β.
From now on, we consider F′ at a time when it has at most µ2(β+2)C

vertices. Let x be a search point that corresponds to a vertex in F′ of depth
at most d = βC′2 log µ with root r, where C′2 = 200C/c. By Lemma 11.2, for
C2 = 400eC it holds for large enough µ0 that

Pr[x and r differ in more than βC2 log µ bits] ≤ 2−βC2 log µ ≤ 1
4 2−β · µ−2(β+2)C.

By a union bound over all vertices in F′, the probability that there exists
such a vertex x among them is at most 1

4 2−β.

40 exponential slowdown for larger populations in (µ + 1)-ea

Now let x be a search point that corresponds to a vertex in F′ of depth
larger than d with root r. For large enough µ0 by Lemma 11.3, if Om(r) ≥
(1− 8ε)n then

Pr[x has more one-bits than r] ≤ 2e−dc/32 ≤ 1
8 2−β · µ−2(β+2)C.

The probability that there exists such a vertex x in F′ is at most 1
8 2−β by

a union bound. On the other hand, if n is sufficiently large and Om(r) ≤
(1− 8ε)n then for β ≤ εn/ log2 µ,

Pr[Om(x) ≥ (1− 4ε)n] ≤ 2 · 2−εn ≤ 1
8 2−β · µ−2(β+2)C,

Similarly, the probability that such a vertex x exists in F′ is at most 1
8 2−β.

To summarize, we have shown that each of the following four events
happens with probability at least 1− 1/4 · 2−β.

• E1: Ti − ti < (β + 2)Cµ log µ.

• E2: st < µ2(β+2)C at time t = (β + 2)Cµ log µ.

• E3: Among the first µ2(β+2)C vertices in F′, there is no search point x
with a distance at most βC′2 log µ to its root r such that |{i ∈ [n] | ri ̸= xi}|
> βC2 log µ.

• E4: Among the first µ2(β+2)C vertices in F′, there is no search point
x with a distance larger than βC′2 log µ to its root r such that either
Om(r) ≥ (1− 8ε)n and Om(x) > Om(r) or Om(r) ≤ (1− 8ε)n and
Om(x) ≥ (1− 4ε)n.

Now we argue how the bounds for these events imply the lemma. By
E1 and E2, we may restrict ourselves to the first µ2(β+2)C vertices in F′. We
claim that there are no offspring x in distance at most βC′2 log µ− 1 from
their root r that have Om-value larger than Zi−1 + βC2 log µ. To see this, we
add the parent of r, r′ ∈ X<i, and the edge between r′ and r to F′. Now r′

is the root of x and it can act as a reference point: by the definition of Zi−1
we have Zi−1 ≥ Om(r′). If the distance from r′ to x is at most βC′2 log µ, by
E3 we have Om(x) ≤ Om(r′) + βC2 log µ. If x is of larger distance from the
added root r′, we need to discriminate two cases. Either r′ has Om-value
at least (1− 8ε)n in which case Om(x) do not exceed Om(r′) by the first
part of E4. Or r′ has Om-value at most (1− 8ε)n, in which case x do not
exceed a Om-value of (1 − 4ε)n by the second part of E4. Therefore, if
Zi−1 ≥ (1− 4ε)n, we can conclude that Om-value of x do not exceed Zi−1

2.5 drift analysis 41

in both cases. Hence, we have shown that Om(x)− Zi−1 > β · C2 log µ is
only possible if at least one of the events E1 - E4 does not occur, and thus

Pr[Zi − Zi−1 > β · C2 log µ] ≤
4

∑
j=1

(1− Pr[Ej]) ≤ 2−β.

If Zi−1 < (1− 4ε)n, with the same arguments and letting β ≥ εn/(log2 µ)

we have Zi < (1− 2ε)n with probability 1− 2−Ω(εn/ log2 µ).

2.5.3 Typical situations

As outlined in the overview, our analysis of the drift will be based on
studying what happens in ’typical’ situations. To characterize these, we use
the following definition of ’good’ events. Again we consider the (µ + 1)-EA
on the linear function fℓ. For parameters ϕ, cd, ce > 0 we define the event
Egood(i) := Ea ∩ Eb ∩ . . . ∩ Ee, where Ea etc. are the following events about
the family forest Fi of rank i. Recall the family forest consists of all x ∈ X≥i,
and a vertex u is a child of v if u was created as an offspring of v. We will
be concerned about those vertices in the family forest in Xi, i.e., vertices of
rank exactly i.

• Ea: No vertex in X≤i−1 creates offspring in X≥i+1.

• Eb: There are at most εµ log3 µ roots in Fi.

• Ec: No vertex in Xi of depth at most ϕ log µ in Fi creates offspring in
X>i.

• Ed: For every vertex x ∈ Xi that creates an offspring in X≥i+1, if the
root r of x has Om(r) ≥ (1− 8ε)n then Om(x) ≤ Om(r) − cd log µ,
and if Om(r) ≤ (1− 8ε)n then Om(x) ≤ (1− 4ε)n. Moreover, the
mutation changes at most cd/2 · log µ bits.

• Ee: No vertex in Xi has an Om-value which exceeds the Om-value of
its root in Fi by more than ce log µ.

Lemma 13. For every 0 < α < 1, c > 0 there are cd, ce > 0 such that the
following holds. For any constant parameters 0 < ϕ < 1 and η > 0 that satisfy
the following conditions, where g(ϕ) = ϕ(log(8eαc+1)− log ϕ),

η < min
{

g(ϕ),
1
2
− g(ϕ),

cϕ

128
,

cd
6

}
, (2.8)

42 exponential slowdown for larger populations in (µ + 1)-ea

there exists µ0 such that for all µ0 ≤ µ ≤ n and all i ≥ (1− 8ε)αn, the (µ + 1)-
EA on fℓ satisfies

Pr
[
Egood(i)

]
≥ 1−O

(
log−2 µ

)
.

We remark that g(ϕ) > 0 for 0 < ϕ < 1 and g(ϕ) < 1/2 for small enough
ϕ, so there exists η > 0 that satisfies (2.8).

Proof. We need to show that Pr[E] = 1−O(log−2 µ) holds for E = Ea, . . . , Ee.
Thus we split the proof into five parts. Note that we actually show the
stronger statement Pr[E] = 1− µ−Ω(1) for E = Ea, Ec, Ed, Ee.

Ea: No vertex in X≤i−1 creates offspring in X≥i+1 for η < 1/2.
We consider the number of offspring that are created from points in

X≤i−1 and are members of X≥i+1 after the first point x in X≥i is created.
We first argue that the probability that x ∈ Xi is 1 − O(ε). Since we

assume i ≥ (1− 8ε)αn and the rank of x is at least i, the density of zero-bits
is d(Aℓ+1, x) ≤ 8ε. By Lemma 3,

Pr[x ∈ X≥i+1]

Pr[x ∈ X≥i]
≤ 16εαc,

which implies Pr[x ∈ Xi | x ∈ X≥i] = 1−O(ε) = 1−O(µη−1).
By Lemma 9, after the first search point in Xi is created, with probability

1−O(µ−Ω(1)) it takes at most T = 8eαcµ log µ rounds until the set X≤i is
completely deleted. If a search point in X≤i−1 creates an offspring in X≥i+1,
at least 2 zero-bits need to be flipped. This probability is O(ε2) by a union
bound, and hence the expected number of offspring in X≥i+1 created from
X≤i−1 is at most O(ε2T) = O(µ−1+2η log µ). Since η < 1/2, by Markov’s
inequality, the probability that the number of such offspring is at least 1

can be bounded by O(µ−1+2η log µ) = O(log−2 µ), as required.

Eb: There are at most εµ log3 µ roots in Fi.
We know from Ea(i − 1) that we may assume that no points in Xi are

created from X≤i−2. Hence, it suffices to count the number of roots in Xi
that are created from Xi−1. As in the proof for Ea, by Lemma 9, after the
first search point in Xi−1 is created, with probability 1− µ−Ω(1) it takes at
most T = 8eαcµ log µ rounds until the set X≤i−1 is completely deleted. In
each round we have a probability of at most pU = O(ε) to create a new
root in Xi (pU defined in Lemma 3), so the expected number of roots in Xi
is O(εT). By Markov’s inequality, the number of roots is at most εµ log3 µ
with probability O(εT/(εµ log3 µ)) = O(log−2 µ).

2.5 drift analysis 43

Ec: No vertex in Xi of depth at most ϕ log µ in Fi creates offspring in X>i.
As a sketch for the proof, we first show that the number of vertices of

depth at most ϕ log µ in Fi is at most µ2g(ϕ) with high probability. Then by
a simple estimation, the expected number of offspring in X>i created by
those vertices is O(µ−1+2η+2g(ϕ) log4 µ). Since g(ϕ) < 1/2 for small enough
ϕ, for η < 1/2− g(ϕ) with probability 1−O(µ−Ω(1)) no such offspring is
created.

By Lemma 10, we couple Fi with F′. Since by Eb there are at most εµ log3 µ
roots in Fi, we only need to consider εµ log3 µ trees in F′.

Recall that by Lemma 9, the lifetime of Xi is at most T := 8eαcµ log µ
with probability at least 1− µ−Ω(1), if µ ≥ µ0 for a sufficiently large µ0.
Hence, it suffices to study F′ after T rounds. We want to bound the number
of vertices with depth at most ϕ log µ. We fix a root, and consider the tree
attached to this root. By Property Lemma 11.4 and by the Stirling formula
k! = Θ(

√
k(k/e)k) int he second step, the expected number of vertices with

depth at most ϕ log µ at round T is

ϕ log µ

∑
d=0

E[sd
T] < 2 E[sϕ log µ

T] =
2Tϕ log µ

(ϕ log µ)!µϕ log µ

= Θ
((8eαcµ log µ)ϕ log µ√

log µ(ϕ log µ/e)ϕ log µµϕ log µ

)
= o(µϕ(log(8eαc+1)−log ϕ)) = o(µg(ϕ)).

Note that for 0 < ϕ < 1 we have g(ϕ) > 0. By Markov’s inequality,

Pr

[
ϕ log µ

∑
d=0

sd
T ≥ µ2g(ϕ)

]
= o

(
µ−g(ϕ)).

Since we consider εµ log3 µ = µη log3 µ trees in F′, by a union bound
over all trees, with probability at least 1− o(µη−g(ϕ) log3 µ) the number of
vertices with depth at most ϕ log µ is at most µη+2g(ϕ) log3 µ. Note that the
error probability is o(1) since we assumed that η < g(ϕ).

In each round, every such vertex has a probability of at most O(ε/µ)
to create an offspring of strictly larger rank: it must be selected as par-
ent and its offspring must have strictly larger rank. Since the vertices in
Xi are present for at most T = 8eαcµ log µ rounds, the expected number
of offspring in X≥i+1 created by vertices in Xi of depth at most ϕ log µ

is O(T · ε/µ · µη+2g(ϕ) log3 µ) = O(µ−1+2η+2g(ϕ) log4 µ). By Markov’s in-
equality, the probability that the number of such offspring is at least 1 is

44 exponential slowdown for larger populations in (µ + 1)-ea

O(µ−1+2η+2g(ϕ) log4 µ). Since g(x) is monotonically increasing in (0, 1) and
g(0) = 0, η < 1/2− g(ϕ) holds for small enough constant ϕ, making the
error probability µ−Ω(1). Hence, we have shown that with sufficiently small
probability the vertices in depth at most ϕ log µ do not create offspring in
X>i.

Ed: For every vertex x ∈ Xi that creates an offspring in X≥i+1, if the
root r of x has Om(r) ≥ (1− 8ε)n then Om(x) ≤ Om(r) − cd log µ, and
if Om(r) ≤ (1− 8ε)n then Om(x) ≤ (1− 4ε)n. Moreover, the mutation
changes at most cd/2 · log µ bits.

If Ec holds, the vertices in Xi that create offspring in X≥i+1 must be of
distance at least d = ϕ′ log µ where ϕ′ > ϕ from their roots. Consider a root
r with Om(r) ≥ (1− 8ε)n. By equation (2.6) in Lemma 11, for cd = cϕ/16,
Pr[Om(x)−Om(r) ≥ −cd log µ] ≤ 2e−cd log µ/8 = 2µ−M, with M := cϕ/128.
If Eb(i + 1) holds, the number of offspring in X≥i+1 created by points in
Xi is at most εµ log3 µ, which means the number of points in Xi that create
offspring in X≥i+1 is at most εµ log3 µ. By a union bound, with probability
at least 1−O(εµ log3 µ · 2µ−M) = 1−O(µ−M+η log3 µ), a vertex in Xi that
creates an offspring in X≥i+1 has a Om-value which is at least cd log µ
smaller than that of its root. Since we assumed η < M, this probability is
1− µ−Ω(1), and thus sufficiently large. This concludes the case that the root
has Om-value at least (1− 8ε)n.

If a vertex x has a root which has at most Om-value (1− 8ε)n, we consider
the first vertex x′ of Om-value at least (1− 6ε)n on the path from the root
to x. Then we know that x′ has Om-value at most (1− 5ε)n, since its direct
parent has Om-value less than (1− 6ε)n and the probability to flip at least
εn bits in one mutation is 2−εn. Then by similar arguments as above, the
probability that a descendant of x′ has Om-value which is εn larger than
x′ is also 2−εn = µ−ω(1), and thus we can easily apply a union bound over
εµ log3 µ vertices in Xi that create offspring in X≥i+1.

Finally, we come to the number of bit flips in the improving mutation. In
one mutation the expected number of changed bits is c. Let cd/2 · log µ =
(1 + δ′)c for some δ′ > 1, by Chernoff bound, the probability that the
number of changed bits is larger than cd/2 · log µ can be bounded by
e−δ′c/3 = Θ(µ−cd/6). Similarly, by a union bound, the error probability
is at most O(εµ log3 µ · µ−cd/6) = O(µη−cd/6 log3 µ), which is µ−Ω(1) since
η < cd/6.

Ee: No vertex in Xi has an Om-value which exceeds the Om-value of its root
in Fi by more than ce log µ.

2.5 drift analysis 45

We set ce := 2e2ck where k > 1 is a positive constant to be chosen later
and assume the distance between a vertex x and its root r is d. By Lemma
11.4, with probability 1− µ−Ω(1), d ≤ e log µ, and thus ce log µ ≥ 2edc. By
Lemma 11.2, the probability that x and r differ in more than ce log µ is at
most 2−ce log µ = µ−2e2ck log 2. Therefore, the probability that Om(x) exceeds
Om(y) by more than ce log µ is at most µ−2e2ck log 2. Moreover, The lifetime
of Xi is 8eαcµ log µ with probability 1− µ−Ω(1) by Lemma 9. By Lemma
11.1, with probability 1−O(µ1−eαc

log µ) there are at most µ9eαc
vertices

in Fi. By a union bound over all these vertices, the error probability is at
most O(µ9eαc−2e2ck log 2). By choosing k > 9eαc/(2e2c log 2), this probability
is µ−Ω(1).

2.5.4 Estimating the drift

We are now ready to collect the information to prove negative drift of the
Zi. We first give a lemma that shows that Zi+K − Zi is negative in case of
good events. As outlined in the introduction, good events don’t imply that
Zi+1 − Zi is negative, we need to make K steps for some constant K ∈N.

Lemma 14. Let ℓ ∈ [L] and i ∈ N. Consider the (µ + 1)-EA on the linear
auxiliary function fℓ(x) := n ∑j∈Aℓ

xj + ∑j∈Rℓ
xj. Assume that in some step

t ≥ 0 the highest rank in the population is i, that Egood(i), . . . , Egood(i + K) hold,
where K := ⌈2(ce + 1)/cd⌉, and that Om(r) ≥ (1− 8ε)n holds for all roots r in
Fi, . . . , Fi+K−1. Then Zi+K ≤ Zi − log µ.

Proof. Let j ∈ {i+ 1, . . . , i+K}, and let r ∈ Xj be any root in Fj. By Ea(j− 1),
the parent individual x of r is in Xj−1. By Ed(j− 1), the root r′ of x in Fj−1
satisfies Om(r′) ≥ Om(x) + cd log µ ≥ Om(r) + cd/2 · log µ. By induction,
we obtain that for every root r ∈ Xj there exists a root r̃ ∈ Xi such that
Om(r) ≤ Om(r̃)− (j− i)cd/2 · log µ ≤ Zi − (j− i)cd/2 · log µ, where the
second step holds since Om(r̃) ≤ Zi by definition of Zi. Now consider any
individual x̃ ∈ Xi+K, and let r ∈ Xj be its root. By Ee(i + K), we have

Om(x̃) ≤ Om(r) + ce log µ ≤ Zi − K · cd/2 · log µ + ce log µ

≤ Zi − log µ, (2.9)

where the latter inequality follows from the definition of K. Since (2.9) holds
for all x̃ ∈ Xi+K, we obtain Zi+K ≤ Zi − log µ, as required.

We are now ready to prove the main theorem on the drift of Zi. Recall
that we have upper, but no lower tail bounds on Zi − Zi−1, cf. the comment

46 exponential slowdown for larger populations in (µ + 1)-ea

before Lemma 12. In order to still be able to apply the negative drift theorem
later, we show that the drift is even negative if we truncate the difference
Zi+K − Zi at − log µ.

Theorem 15. For every c > 0 there is a µ0 ∈ N and a K ∈ N such that for all
µ0 ≤ µ ≤ n where n is sufficiently large the following holds for the (µ + 1)-EA
with mutation parameter c on the auxiliary function fℓ. Assume that in some
generation the fittest search point satisfies (2.3). Then

E[max{Zi+K − Zi,− log µ}] ≤ −1.

Proof. Let K be the constant from Lemma 14. Recall from Lemma 13 that
the event Egood has probability 1−O(log−2 µ), which is at least 1/2 if µ is
sufficiently large. By Lemma 14, the event Egood implies Zi+K−Zi ≤ − log µ,
so in this case the term max{Zi+K−Zi,− log µ} evaluates to − log µ. Hence,
let Egood := E[max{Zi+K − Zi,− log µ} | Egood] · Pr[Egood], it holds that

Egood =
∞

∑
j=−∞

max{j,− log µ} · Pr[Zi+K − Zi = j ∧ Egood]

= (− log µ) ·
−⌈log µ⌉

∑
j=−∞

Pr[Zi+K − Zi = j ∧ Egood]

= − log µ · Pr[Egood] ≤ −2,

where the second equality holds because Pr[Zi+K − Zi = j ∧ Egood] = 0
for j ≥ −⌊log µ⌋ and the last step follows from Pr[Egood] ≥ 1/2 if µ is
sufficiently large.

In the remainder, we will show that the term Egood is very close to
E[max{Zi+1 − Zi,− log µ}]. In fact, the difference is

E[max{Zi+K − Zi,− log µ}]− Egood

=
∞

∑
j=−∞

max{j,− log µ} · Pr[Zi+K − Zi = j ∧ ¬Egood]

≤
∞

∑
j=1

j · Pr[Zi+K − Zi = j ∧ ¬Egood]. (2.10)

2.6 proof of main theorem 47

For an arbitrary constant C > 0 we may define j0 := ⌈C log µ log log µ⌉.
Then we bound j by j0 in the range j ≤ j0, and we bound Pr[Zi+K − Zi =
j ∧ ¬Egood] by Pr[Zi+K − Zi = j] for j > j0. Since for j > j0,

Pr[Zi+K − Zi = j] ≤ Pr[Zi+K − Zi ≥ j]

= Pr
[K

∑
k=1

(Zi+k − Zi+k−1) ≥ j
]

≤
K

∑
k=1

Pr[Zi+K − Zi+k−1 ≥ j/K]︸ ︷︷ ︸
≤2−j/(KC2 log µ)by Lemma 12

≤ K2−j/(KC2 log µ). (2.11)

We obtain

(2.10) ≤
j0

∑
j=1

j0 · Pr[Zi+K − Zi = j ∧ ¬Egood] +
∞

∑
j=j0+1

j · Pr[Zi+K − Zi = j]

≤ j0 · Pr[¬Egood]︸ ︷︷ ︸
=O(log−2 µ)

+
∞

∑
j=j0+1

j · Pr[Zi+1 − Zi = j]︸ ︷︷ ︸
≤K2−j/(KC2 log µ) by (2.11)

= O
(

j0 log−2 µ
)
+ O

(
log µ · j02−j0/(KC2 log µ)

)
,

where the factor log µ in the second term appears because ∑∞
s=s0

s2−s/x =

O(xs02−s0/x) for x ≥ 1, which can be seen by grouping the sum into batches
of x summands. The second term is O(log−1 µ) if we choose the constant
C > 0 in the definition of j0 = ⌈C log µ log log µ⌉ appropriately. The first
term is O(log log µ · log−1 µ). Hence, by choosing µ sufficiently large, we
can make both terms smaller than 1/2, and obtain that E[max{Zi+K −
Zi,− log µ}] ≤ Egood + 1 ≤ −1, as desired.

2.6 proof of main theorem

In the previous section we have analyzed the random variable Zi, and
in particular we have shown that it has negative drift. In this section we
will show how our main result, the lower bound on the runtime for the
(µ + 1)-EA, follows from the negative drift of Zi. The proof follows from
similar ideas as in [13] and [14]. We start with a lemma that describes the
behavior of the (µ + 1)-EA on fℓ.

48 exponential slowdown for larger populations in (µ + 1)-ea

Lemma 16. For every constant 0 < δ < 2/7 the following holds. Let ℓ ∈ [L] and
consider the (µ + 1)-EA on fℓ under the assumption that d([n], x) ≥ ε(1 + 2δ)
and d(Aℓ+1, x) ≥ ε(1 + δ) hold for all x in the initial population. For t ≥ 0, let
xt be the offspring in round t. Then with probability 1− exp{−Ω(εn/ log2 µ)},
the following holds for all t ≤ L.

• d([n], xt) ≥ ε(1 + δ).

• d([n], xt) ≥ ε(1 + 2δ) or d(Aℓ+1, xt) ≥ ε(1 + δ/4).

Before we come to the proof, let us briefly explain why the lemma
is useful. It is tailored to support an inductive proof for Theorem 6 for
HotTopic. In this induction, we will show that d([n], xt) ≥ ε(1 + δ) for
exponential time. In fact, when the algorithm enters a new level then the
density is at least ε(1 + 2δ). Moreover, one can show that whp the new hot
topic did not influence the algorithm up to this point, so it behaves just
as a random subset of positions of size αn. In particular, whp its density
is at least ε(1 + δ), so the assumptions of the lemma are satisfied. As long
as the level does not change, the HotTopic function is identical to fℓ, so
we may apply Lemma 16. The first item implies what we actually want
to prove, at least as long as we stay on the same level. For the second
item, by the construction of the HotTopic function the level increases
when d(Aℓ+1, xt) ≈ ε < ε(1 + δ/4). So the second item implies that at this
point in time we have d([n], xt) ≥ ε(1 + 2δ), which is the requirement for
the next step in the induction. Note that we can’t just merge the items
into one. For example, if we would weaken the second item to assert
d([n], xt) ≥ ε(1 + δ) at the beginning of a level, then we could not conclude
that the next offspring satisfies the same bound with exponentially small
error probability.

Proof of Lemma 16. Let i0 be the largest rank in the initial population, i.e.,
the largest number of one-bits in Aℓ+1 in the initial population. We fix
an offset a ∈ {0, . . . , K − 1} and consider the sequence of random vari-
ables Yi,a := Zi0+a+iK/ log µ, where i is a non-negative integer. In the initial
population, each individual has at most n (1− ε(1 + 2δ)) one-bits by as-
sumption. Hence, we also have Zi0+a ≤ n(1− ε(1 + 3δ/2)) with probability
1− exp{−Ω(εn)} for all offsets a ∈ {0, . . . , K− 1}, since otherwise at least
one of the K mutations would need to flip Ω(εn) bits, which happens only
with probability exp{−Ω(εn)} by the Chernoff bound. Thus for the first
statement it suffices to show that Yi,a ≤ Y0,a + εδn/(2 log µ) for all i ≥ 0.
Since that is equivalent to Zi0+a+iK ≤ Zi0+a + εδn/2 for all i ≥ 0, and we

2.6 proof of main theorem 49

already have Zi0+a ≤ n(1− ε(1+ 3δ/2)) for all a with high probability, alto-
gether it implies Zi′ ≤ n(1− ε(1+ δ)) for all i′ ≥ i0. As Zi′ denotes the max-
imum number of one-bits in rank i′, we conclude that d([n], xt) ≥ ε(1 + δ)
holds for any individual xt of rank i′ ≥ i0. For the second statement, we
distinguish between two cases. Note that the index i counts, up to the
factor K, the increase in one-bits in Aℓ+1. If i ≤ αnεδ/(4K)− 1, then for
any xt of rank i0 + a + iK, d(Aℓ+1, xt) ≥ (αnε(1 + δ/2)− a− iK)/(αn) >
ε(1 + δ/2)− (i + 1)K/(αn) ≥ ε(1 + δ/4). For i > αnεδ/(4K)− 1, we aim
to show that Yi,a ≤ Y0,a.

We would like to apply the negative drift theorem to Yi,a for the range
[(1− ε(1 + 3δ/2))n/ log µ, (1− ε(1 + δ))n/ log µ]. First note that we study
a linear function, and that the bits in Aℓ have larger weights than the re-
maining bits. Thus, it can be shown by a coupling argument (Lemma
4.2 in [13]) that if d(Aℓ+1, x) ≤ d([n], x) + δε holds initially, then the
slightly weaker condition d(Aℓ+1, x) ≤ d([n], x) + 2δε remains true for
all individuals in the population for the next L rounds, with probabil-
ity at least 1 − Le−Ω(εn). By choosing the constant parameter ρ in the
definition of L = exp{ρεn/ log2 µ} small enough, the factor L can be
swallowed by the term e−Ω(εn). Thus we may assume that whenever
Yi,a is in the range [(1− ε(1 + 3δ/2))n/ log µ, (1− ε(1 + δ))n/ log µ] then
d(Aℓ+1, x) ≤ d([n], x) + 2δε ≤ ε(1 + 3δ/2 + 2δ) ≤ 2ε as δ < 2/7. In addi-
tion, we have d(Aℓ+1, x) ≥ ε/2 before the level changes, since otherwise
with probability 1− e−Ω(εn) it holds that d(Bℓ+1, x) < ε, which implies an
increase of level. Thus the conditions in (2.3) are satisfied, and thus Lemma
6 is applicable.

So let us study the drift of Yi,a in the range [(1− ε(1 + 3δ/2))n/ log µ,
(1− ε(1 + δ))n/ log µ]. First note that the probability to jump over more
than half of this interval is exp{−Ω(εn/ log2 µ)}: for Yi,a ≥ (1− 4ε)n/ log µ
this follows from the first statement in Lemma 12, for Yi,a < (1− 4ε)n/ log µ
it follows from the second statement in Lemma 12. So we may assume that
Yi,a is contained in the first half of the interval for some i = i∗. To ease
notation, we will assume i∗ = 0. Inside of the interval, by Theorem 15, it
holds that

E[Yi+1,a −Yi,a] = E[Zi0+a+(i+1)k − Zi0+a+ik]/log µ ≤ −1/log µ.

Moreover, by Lemma 12 the sequence of random variables (Yi,a)i≥0 has an
upper exponential tail bound, i.e., Pr[Yi+1,a−Yi,a ≥ K · βC2] ≤ K · 2−β for all
1 ≤ β ≤ εn/ log2 µ. (In particular, the probability that there is ever a jump
larger than KC2εn/ log2 µ within L steps is at most O(L · 2−εn/ log2 µ) = o(1),

50 exponential slowdown for larger populations in (µ + 1)-ea

so we may assume that such jumps never occur.) To show sub-Gaussianity,
we should extend the inequality also for β < 1. Since any probability is
bounded by 1, the bound Pr[Yi+1,a − Yi,a + 1/log µ ≥ KβC2 + 1/log µ] ≤
2K · 2−β is not just true for β ≥ 1, but also trivially satisfied for any β ∈ [0, 1].
Therefore, for any y ≥ 0, it holds that

Pr[Yi+1,a −Yi,a + 1/log µ ≥ y] ≤ 21+1/(KC2 log µ)K(21/(KC2))−y

≤ 21+1/(KC2 log 2)K(21/(KC2))−y.

However, we need exponential tail bounds in both directions, so we need
to truncate the downwards steps of Yi,a as follows. We set Ỹ0,a := Y0,a,
and we define Ỹi,a recursively by Ỹi,a − Ỹi+1,a := min{Yi,a −Yi+1,a, 1/log µ}.
Then clearly we have Ỹi,a ≥ Yi,a for all i ≥ 0, and Ỹi,a satisfies the tail bound
condition that

Pr[Ỹi,a − Ỹi+1,a − 1/log µ > 0] = 0.

Therefore, by Theorem 4, (Ỹi,a + i/log µ)i≥0 is (128c′δ′−3, δ′/4)-sub-Gaussian,
where c′ = 21+1/(KC2 log 2)K and δ′ = 21/(KC2) − 1. And by Theorem 5,

Pr
[

max
0≤j≤i

(Yj,a −Y0,a) ≥ −i/log µ + y
]
≤ exp

(
− δ′y

8
min

(
1,

δ′2

32c′
· y

i

))
.

Now for any i ≥ 0 and y = i/log µ + εδn/(4 log µ), with probability
1 − exp{−Ω(εn/ log2 µ)} we have Yi,a ≤ Y0,a + εδn/(4 log µ). Note that
εδn/(4 log µ) is half of the length of the interval of interest, which implies
that Yi,a does not go beyond the interval with high probability. Similarly,
for every fixed i ≥ αnεδ/(4K) and y = i/log µ we have Yi,a ≤ Y0,a with
probability 1− exp{−Ω(εn/ log2 µ)}. The proof is concluded by a union
bound over all possible i. Since there are at most n possible values, this
increases the error probability by a factor of n, which we can swallow in
the expression exp{−Ω(εn/ log2 µ)}.

Finally, we have collected all ingredients to prove our main result.

Proof of Theorem 6. Let L := exp{ρεn/ log2 µ} be the number of levels. For
the proof, we will consider an auxiliary run of the (µ + 1)-EA with a
dynamic fitness function f̃ in which we only allow the levels to increase by
one. In particular, the function f̃ does not only depend on the current state
of the algorithm, but also on the algorithm’s history. More precisely, we
define an auxiliary level ℓ̃(x, t) of a search point x, which we only allow to
increase by at most one per round. Recall that ℓ(x) was defined in (2.1) as

2.6 proof of main theorem 51

ℓ(x) = max{ℓ′ ∈ [L] : d(Bℓ′ , x) ≤ ε}. For ℓ̃(t), we use the same definition
except that we let the maximum go over only ℓ′ ≤ min{ℓ̃(t− 1) + 1, L}. I.e.,
we set ℓ̃(0) := 0, and if an offspring yt of xt enters the population in round
t, then we set ℓ̃(yt, t) := max{ℓ′ ∈ [min{ℓ̃(xt, t− 1) + 1, L}] : d(Bℓ′ , yt) ≤ ε}.
(If the population stays the same in round t, then we leave ℓ̃ unchanged.)
Then we define the auxiliary fitness of yt as

f̃ (yt) := ℓ̃(yt, t) · n2 + ∑
i∈Aℓ̃(yt ,t)+1

yt
i · n + ∑

i∈Rℓ̃(yt ,t)+1

yt
i ,

i.e., we use the same definition as for the HotTopic function except that we
replace ℓ(yt) by ℓ̃(t). Then we proceed as the (µ + 1)-EA, i.e., in each round
we compute and store the auxiliary fitness of the new offspring (which may
depend on the whole history of the algorithm), and we remove the search
point for which we have stored the lowest auxiliary fitness. This definition
does not make much sense from an algorithmic perspective, but we will
see in hindsight that the auxiliary process behaves identical to the actual
(µ + 1)-EA. We will next argue why this is the case.

For the auxiliary process, it is obvious that we only need to uncover the
set Ai+1 and Bi+1 when we reach level ℓ̃(t) = i. As we will show later
for the auxiliary process, with high probability the density d([n], xt) stays
strictly above ε · (1 + δ) for a suitable constant δ > 0. Now fix any round
t with auxiliary level ℓ̃(t). Since we do need to uncover Bℓ̃(t)+2 at some
point after time t, its choice does not influence the behavior of the auxiliary
process until time t. Hence, we can first let the auxiliary process run until
time t, and afterwards uncover the set Bℓ̃(t)+2. Since Bℓ̃(t)+2 ⊂ [n] is a
uniformly random subset of size βn, it contains at least βε(1 + δ)n zero-bits
in expectation, and the probability that Bℓ̃(t)+2 contains at most βεn zero-
bits is exp{−Ω(βεn)}. The same argument also holds for Bℓ̃(t)+3, . . . , BL.

Since L = exp{ρεn/ log2 µ} with desirably small ρ > 0, we can afford
a union bound over all such sets and all times t ≤ L, which is a union
bound over less than L2 = exp{2ρεn/ log2 µ} terms. Hence, with high
probability we have d(Bi, xt) > ε for all 1 ≤ t ≤ L and all ℓ̃(t) + 2 ≤ i ≤ L.
A straightforward induction shows that this implies ℓ(t) = ℓ̃(t) for all t ≤ L,
and thus the (µ+ 1)-EA behaves identical to the auxiliary process. Note that
this already implies that the (µ + 1)-EA visits each of the L levels, which
implies the desired runtime bound. It only remains to show that there is a
constant δ > 0 such that the auxiliary process satisfies d([n], xt) > ε · (1+ δ)
for all t ≤ L.

52 exponential slowdown for larger populations in (µ + 1)-ea

The advantage of the auxiliary process is that we may postpone drawing
Aℓ+1 until we reach level ℓ̃ = ℓ. In particular, since Aℓ+1 ⊆ [n] is a uniformly
random subset, we may use the same argument as before and conclude that
|d(Aℓ+1, x)− d([n], x)| < δε holds with probability 1− exp{−Ω(εn)} for
any constant δ > 0 that we desire, and for all members x of the population
when we reach level ℓ. In fact, we have exponentially small error probability,
so we may afford a union bound and conclude that with high probability
the same holds for all ℓ. We want to show that the auxiliary process, if
running on level ℓ and starting with a population that initially satisfies
|d(Aℓ+1, x)− d([n], x)| < δε for δ < 2/7, maintains d([n], xt) ≥ ε(1 + δ) for
all new search points xt until t > L.

By the first conclusion from Lemma 16, d([n], xt) ≥ ε(1+ δ) holds as long
as the level remains to be ℓ and t ≤ L. When a point x reaches level ℓ+ 1,
by definition we have d(Bℓ+1, x) < ε. Since Bℓ+1 is a uniformly random
subset of Aℓ+1, by the Chernoff bound d(Aℓ+1, x) < ε(1 + δ/4) holds
with probability 1 − exp{−Ω(εn)}. So we apply the second conclusion
of Lemma 16 to x and conclude that d([n], x) ≥ ε(1 + 2δ). With high
probability, it holds that d(Aℓ+2, x) ≥ ε(1 + 2δ) − εδ and the conditions
in Lemma 16 are satisfied again for level ℓ + 1. By induction we obtain
d([n], xt) ≥ ε(1 + δ) for all t ≤ L. As the choice of ℓ is arbitrary, we start
with ℓ = 0 and d([n], xt) ≥ ε(1 + δ) holds for all t ≤ L. This concludes the
proof.

2.7 simulations

In this section we will illustrate the detrimental effect of large populations
on (µ + 1)-EAs by numerical simulations. Unless otherwise stated, the
parameters that we used to generate the HotTopic functions are n = 10000,
L = 100, α = 0.25, β = 0.05 and ε = 0.05. Each data point is obtained
by 10 independent runs on the same HotTopic function with different
random seeds. Our implementation is available at https://github.com/
zuxu/MuOneEA-HotTopic.

2.7.1 Population size

First of all, we plot typical behaviours of evolutionary algorithms with
small, medium and large population sizes. Figure 2.2 shows the distance
between the optimum and the fittest point p∗ in the population with respect
to time. We have two metrics for the distance: the density of 0-bits in p∗

https://github.com/zuxu/MuOneEA-HotTopic
https://github.com/zuxu/MuOneEA-HotTopic

2.7 simulations 53

Figure 2.2: Distance to the optimum as (µ + 1)-EAs with c = 1.0 proceed. The
solid lines are the mean of 10 simulations, while the shaded areas are
bounded by corresponding minimum and maxmium values at each
time step.

and the remaining levels of p∗ divided by L. As indicated by the sudden
drops in level, for a small population size (µ = 30), the algorithm skips
many levels and reaches the optimum quickly. In contrast, an algorithm
with large µ = 70 visits the levels one by one, without improvement on the
fitness. This happens where the density of 1-bits is relatively high, such
that even though it gradually improves on the current hot topic, it often
accepts offspring that flip 1-bits to 0-bits outside of the hot topic. With such
offspring accumulating in a large population, the average density of 0-bits
remains significantly above ε before reaching the last level. Therefore, with
high probability the algorithm does not skip any level. Once the highest
level is reached, the remaining bits can be optimized easily as in the coupon
collector. For µ = 50, the density gets close, but slightly above ε, so that it
depends on chance whether levels are skipped or not. This leads to a high
variance in the running time.

54 exponential slowdown for larger populations in (µ + 1)-ea

Figure 2.3: Running time and number of visited levels for (µ + 1)-EAs with
different values of µ and c = 1.0. Solid dots indicate the means and
error bars show the standard deviations.

In Figure 2.3, we show the running time and the number of visited levels
for a wide range of µ. The running time is highly concentrated when µ is
very small or very large. The reason is that the algorithm keeps skipping
levels with small µ and visits all levels with large µ. For a medium sized µ
like 50, level skipping only happens a few times. Since each time when the
algorithm skips a level, it lands at some higher level uniformly at random
due to the definition of the HotTopic function, which results in a larger
variance in the running time.

2.7.2 Mutation rate

The mutation rate c is the other factor that affects the magnitude of the
negative drift, so we also plot the running time for various values of c, see

2.7 simulations 55

Figure 2.4: Running time and number of visited levels for (µ + 1)-EAs with
different values of c and µ = 50. Solid dots indicate the means and
error bars show the standard deviations.

Figure 2.4. For a small c, detrimental mutations do not occur frequently
and thus the average density of 1-bits in the population keeps increasing.
Conversely, with a large c, the algorithm tends to visit all the levels. To
demonstrate the resulting effect on the running time, we compare the cases
where L = 100 and L = 200. If c is small (c ≤ 0.9), the algorithm skips
levels quickly, and the running time is almost independent of the number
of levels. On the other hand, if c is large (c ≥ 1.2) then the algorithm visits
every level. In this case, the running time is essentially proportional to
the number of levels, plus some initial phase. Note that in this range the
running time can get almost arbitrarily bad, since doubling the number
of levels L will essentially lead to a doubling of the running time. As our
theoretical analysis shows, this holds even when L becomes exponential
in n, but for so many levels the running time becomes too large to run
experiments. Finally, for a medium sized c like 1.1, level skipping only
happens a few times. Each time when the algorithm skips a level, it lands at

56 exponential slowdown for larger populations in (µ + 1)-ea

some higher level uniformly at random, which results in a larger variance
in the running time, similar to Figure 2.3.

Figure 2.5: Minimum values of µ with respect to c such that the (µ + 1)-EA visits
all levels in at least 5 out of 10 simulations. The choices of c ranges
from 0.7 to 4.0 with step size 0.1.

Finally, we investigate how values of µ and c jointly influence the be-
haviour of a (µ + 1)-EA. For a fixed c, we search for the minimum value of
µ such that the algorithm visits all levels in at least half of the 10 simula-
tions. That is, we seek for a minimum µ that induces long running times
with constant probability. As we can see from Figure 2.5, large values of c
(≥ 3.2) are extremely harmful even when there is only one individual in
the population. An algorithm with a large population can benefit greatly
from having a small mutation rate. We did not observe a stable slowdown
for c = 0.7 until we raise the value of µ to more than 1000.

2.8 conclusion

We have shown that the (µ + 1)-EA with arbitrary mutation parameter
c > 0 needs exponential time on some monotone functions if µ is too
large. This is one of the very few known situations in which even a slightly
larger population size µ can lead to a drastic decrease in performance. The
main reason is that, if progress is steady enough that the population does
not degenerate, the search points that produce offspring are typically not

2.8 conclusion 57

the fittest ones. We believe that this is an interesting phenomenon which
deserves further investigations, also in less artificial contexts.

For example, consider the (µ + 1)-EA on weighted linear functions with
a skewed distribution (e.g., on BinVal), and with a fixed time budget (so
that the action happens away from the optimum). It is quite conceivable
that the same effect hurts performance, i.e., if the algorithm flips a high-
weight bit, it will allow (almost) any offspring of this individual into the
population, even though this offspring has probably fewer correct bits than
other search points in the population. Does that mean that the fixed-budget
performance of the (µ + 1)-EA on BinVal deteriorates with increasing µ?
Are the resulting individuals further away from the optimum?

An even more pressing question is about crossover. We have studied the
(µ + 1)-EA, but do the same results also apply for the (µ + 1)-GA? In [14]
it was shown that close to the optimum (for small values of the HotTopic

parameter ε) crossover helps dramatically, and that a large population
size can even counterbalance large mutation parameters c. So, close to
the optimum, for the (µ + 1)-GA the effect of large population size was
beneficial, while for the (µ + 1)-EA it was neutral and did not affect the
threshold c0. Thus if we study the (µ + 1)-GA on HotTopic functions with
large ε, then a beneficial effect of large populations is competing with a
detrimental effect. Understanding this interplay would be a major step
towards a better understanding of crossover in general.

Similarly, since the problems originate in non-trivial populations, what
happens if we equip the (µ+ 1)-EA with a diversity mechanism (duplication
avoidance, genotypical or phenotypical niching), and study it close to the
optimum? Does it fall for the same traps? This question was already asked
in [14], but our results shed additional light on the question.

Finally, it is open whether the (µ+ 1)-EA is fast on any monotone function
if it starts close enough to the optimum. i.e., for every µ ∈ N, does there
exist an ε = ε(µ) such that the (µ + 1)-EA, initialized with a random
search point with εn zero-bits, has runtime O(n log n) for every monotone
function? Of course, the same question also applies to other algorithms
like the (µ + 1)-GA and the ‘fast’ counterparts of the (µ + 1)-EA and the
(µ + 1)-GA. Interestingly, the result in [14] that the ‘fast (1 + λ)-EA’ with
good parameters is efficient for every monotone function was only proven
under this assumption, that the algorithm starts close to the optimum. So
this also raises the question whether there are traps for the ‘fast (1 + λ)-EA’
that only take effect far away from the optimum.

3
O N E M A X I S N O T T H E E A S I E S T F U N C T I O N F O R
F I T N E S S I M P R O V E M E N T S

This chapter is based on joint work with Marc Kaufmann, Maxime Larcher,
and Johannes Lengler [70], which was presented in the European Conference
on Evolutionary Computation in Combinatorial Optimisation (EvoCOP 2023).

3.1 introduction

The OneMax function assigns to a bit string x the number of one-bits
in x. Despite, or rather because of its simplicity, this function remains
one of the most important unimodal benchmarks for theoretical analysis
of randomized optimization heuristics, and specifically of Evolutionary
Algorithms (EAs). A reason for the special role of this function is the result
by Doerr, Johannsen and Winzen [30] that it is the easiest function with a
unique optimum for the (1 + 1)-EA in terms of expected optimization time.
This result has later been extended to many other EAs [31] and to stochastic
dominance instead of expectations [32]. Easiest and hardest functions have
become research topics of their own [71–73].

Whether a benchmark is easy or hard is crucial for parameter control
mechanisms (PCMs) [10, 74]. Such mechanisms address the classical prob-
lem of setting the parameters of algorithms. They can be regarded as
meta-heuristics which automatically tune the parameters of the underlying
algorithm. The hope is that (i) optimization is more robust with respect
to the meta-parameters of the PCM than to the parameters of the under-
lying algorithm, and (ii) PCMs can deal with situations where different
optimization phases require different parameter settings for optimal perfor-
mance [75–79].

To this end, PCMs often rely on an (often implicit) measure of how easy
the optimization process currently is. One of the most famous examples is
the (1 : s + 1)-rule for step size adaptation in continuous optimization [20–
23]. It is based on the heuristic that improving steps are easier to find if
the step size is small, but that larger step sizes are better at exploiting
improvements, if improvements are found at all. Thus we have conflicting
goals requiring small and large step sizes, respectively, and we need a

59

60 onemax is not the easiest function for fitness improvements

compromise between those goals. The (1 : s + 1)-rule resolves this conflict
by defining a target success rate1 of qs = 1/(s + 1), and increasing the step
size if the success rate (the fraction of steps which find an improvement) is
above qs, and decreasing the step size otherwise. Thus it chooses larger step
sizes in environments where improvements are easy to find, and chooses
smaller step sizes in more difficult environments.

More recently, the (1 : s + 1)-rule has been extended to parameters in
discrete domains, in particular to the mutation rate [24, 25] and offspring
population size [26, 27] of EAs. For the self-adapting (1, λ)-EA with the
(1 : s + 1)-rule, or SA-(1, λ)-EA for short, Hevia Fajardo and Sudholt
showed in [26, 27] an interesting collection of results on OneMax. They
showed that optimization is highly efficient if the success ratio s is less
than one. In this case, the algorithm achieves optimal population sizes λ
throughout the course of optimization, ranging from constant population
sizes at early stages to almost linear (in the problem dimension n) values
of λ for the last steps. On the other hand, the mechanism provably fails
completely if s ≥ 18.2 Then the algorithm does not even manage to obtain
an 85% approximation of the optimum in polynomial time.

Even more interesting than the results themselves are the reasons for
failure. The problem is that for large values of s, the algorithm implicitly
targets a population size λ∗ with a rather small success rate.3 However, the
(1, λ)-EA is a non-elitist algorithm, i.e., the fitness of its population can
decrease over time. This is particularly likely if λ is small. So for large values
of s, the PCM chooses population sizes that revolve around a rather small
target value λ∗. It is still guaranteed that the algorithm makes progress in
successful steps, which comprise a ≈ 1/(s + 1) fraction of all steps. But due
to the small population size, it loses performance in some of the remaining
≈ s/(s + 1) fraction of steps, and this loss cannot be compensated by the
gain of successful steps.

A highly surprising aspect of this bad trade-off is that it only happens
when success is too easy. If success is hard, then the target population size
λ∗ is also large. In this case, the losses in unsuccessful steps are limited:
most of the time, the offspring population contains a duplicate of the parent,
in which case the loss is zero. So counter-intuitively, easy fitness landscapes
lead to a high runtime. For OneMax, this means that the problems do not
occur close to the optimum, but only at a linear distance from the optimum.
This result is implicitly contained in [26, 27] and explicitly in [28]: for every

1 Traditionally the most popular value is s = 4, leading to the famous one-fifth rule [80].
2 Empirically they found the threshold between the two regimes to be around s ≈ 3.4.
3 See Section 2.1 in [28] for a detailed discussion of the target population size λ∗.

3.1 introduction 61

s > 0 there is ε > 0 such that if the SA-(1, λ)-EA with success ratio s starts
within distance at most εn from the optimum, then it is efficient with high
probability, i.e., with probability 1− o(1).

The results by Hevia Fajardo and Sudholt in [26, 27] were for OneMax,
but in [28, 29] we could show that this result holds for all monotone, and
even for all dynamic monotone functions4. Only the threshold for s changes,
but it is a universal threshold: there exist s1 > s0 > 0 such that for every
s < s0, the SA-(1, λ)-EA is efficient on every (static or dynamic) monotone
function, while for s > s1 the SA-(1, λ)-EA fails for every (static or dynamic)
monotone function to find the optimum in polynomial time. Moreover, for
all s > 0 there is ε > 0 such that with high probability the SA-(1, λ)-EA
with parameter s finds the optimum of every (static or dynamic) monotone
function efficiently if it starts at distance εn from the optimum. Hence,
all positive and negative results from [26] are not specific to OneMax,
but generalize to every single function in the class of dynamic monotone
functions. We also note that this class falls into more general frameworks of
partially ordered functions that are easy to optimize under certain generic
assumptions [56, 81].

To summarize, small success rates (large values of s) are problematic,
but only if the fitness landscape is too easy. Based on this insight, and
on the aforementioned fact that OneMax is the easiest function for the
(1 + 1)-EA, Hevia Fajardo and Sudholt conjectured that OneMax is the
most problematic situation for the SA-(1, λ)-EA: “given that for large values
of s the algorithm gets stuck on easy parts of the optimisation and that
OneMax is the easiest function with a unique optimum for the (1 + 1)-EA,
we conjecture that any s that is efficient on OneMax would also be a good
choice for any other problem.” In the terminology above, the conjecture
says that the threshold s0 below which the SA-(1, λ)-EA is efficient for all
dynamic monotone functions, is the same as the threshold s′0 below which
the SA-(1, λ)-EA is efficient on OneMax. Note that the exact value of s′0
is not known theoretically except for the bounds 1 ≤ s′0 ≤ 18, but that
empirically s′0 ≈ 3.4 [26]. If the conjecture was true, then experiments on
OneMax could provide parameter control settings for the SA-(1, λ)-EA that
work in much more general settings.

However, in this chapter we disprove the conjecture. Moreover, our result
makes it more transparent in which sense OneMax is the easiest benchmark

4 Recall that a function f : {0, 1}n → R is monotone if flipping a zero-bit into a one-bit always
improves the fitness. In the dynamic monotone setting, selection may be based on a different
function in each generation, but it must always be a monotone function. The formal definition
is not relevant for this chapter, but can be found in [28].

62 onemax is not the easiest function for fitness improvements

for the (1 + 1)-EA or the (1, λ)-EA, and in which sense it is not. It is the
easiest benchmark in the sense that for no other function with a unique
global optimum, the distance to the optimum decreases faster than for
OneMax [30, 32]. However, it is not the easiest function in the sense that it
is the easiest to make a fitness improvement, i.e., to find a successful step.
Rephrased, other functions make it easier to find a fitness improvement
than OneMax. For the problems of the (1 : s + 1)-rule described above,
the latter variant is the important one, since the (1 : s + 1)-rule adjusts
its population size based on the success probability of finding a fitness
improvement.

3.1.1 Our result

We are far from being able to determine the precise efficiency threshold
s′0 even in the simple setting of OneMax, and the upper and lower bound
1 ≤ s′0 ≤ 18 are far apart from each other. Therefore, it is no option to just
compute and compare the thresholds for different functions. Instead, we
will identify a setting in which we can indirectly compare the efficiency
thresholds for OneMax and for some other function, without being able to
compute either of the thresholds explicitly. For this reason, we only study
the following, rather specific setting that makes the proof feasible.

We show that there are ε > 0 and s > 0 such that with high probability
the SA-(1, λ)-EA with parameter s (and suitably chosen other parameters),
started at any search point at distance exactly εn from the optimum

• finds the optimum of OneMax in O(n) generations;

• does not find the optimum of Dynamic BinVal in polynomial time.

The definition of the Dynamic BinVal function can be found in Section 3.2.2.
The key ingredient to the proof is showing that at distance εn from the
optimum, Dynamic BinVal makes it easier to find a fitness improvement
than OneMax (Lemma 23). Since easy fitness landscapes translate into
poor choices of the population size of the SA-(1, λ)-EA, and thus to large
runtimes, we are able to find a value of s that separates the two functions:
for this s and for distance εn from the optimum, the algorithm will have
drift away from the optimum for Dynamic BinVal (leading to exponential
runtime), but drift towards the optimum for OneMax. Since the fitness
landscape for OneMax only gets harder closer to the optimum, we can
then show that the drift remains positive all the way to the optimum for
OneMax. A high-level sketch with more detail can be found in Section 3.3.1.

3.2 preliminaries and definitions 63

A limitation of our approach is that we start with a search point at
distance εn from the optimum, instead of a uniformly random search point
in {0, 1}n. This simplifies the calculations substantially, and it disproves the
strong “local” interpretation of the conjecture in [26] that an s that works for
OneMax in some specific part of the search space also works in the same
part for all other dynamic monotone functions. Our choice leaves open
whether some weaker version of the conjecture in [26] might still be true.
But since our argument refutes the intuitive foundation of the conjecture,
we do not think that this limitation is severe.

Another limitation is that we use a dynamic monotone function instead
of a static one. So we show that OneMax is not the easiest function in the
class of dynamic monotone functions, but it could still be easiest in the
smaller class of static monotone functions. Again, we have decided for this
option for technical simplicity. We believe that our results for Dynamic

BinVal could also be obtained with very similar arguments for a static
HotTopic function as introduced in [15]. However, Dynamic BinVal is
simpler than HotTopic functions, and the dynamic setting allows us to
avoid some technical difficulties. We thus restrict ourselves to experiments
in Section 3.4 for this hypothesis, and find that OneMax indeed has a harder
fitness landscape (in terms of improvement probability) than other static
monotone or even linear functions, and consistently (but counter-intuitive)
the SA-(1, λ)-EA chooses a higher population size for OneMax. For some
values of s, this leads to positive drift and efficient runtime on OneMax,
while the same algorithm has negative drift and fails on other functions.

Finally, apart from the success ratio s, the SA-(1, λ)-EA also comes with
other parameters. For the mutation rate we use the standard choice 1/n,
and any c/n for a constant 0 < c < 1 would also work. The update strength
F > 1 is the factor by which λ is reduced in case of success, see Section 3.2.1
for details. A slight mismatch with [26] is that we choose F = 1 + o(1),
while [26] focused on constant F. Again, this simplifies the analysis, but the
restriction does not seem crucial for the conceptual understanding that we
gain in this work.

3.2 preliminaries and definitions

Our search space is always {0, 1}n. Throughout the chapter we will assume
that s > 0 is independent of n while n → ∞, but F = 1 + o(1) will
depend on n. We say that an event E = E(n) holds with high probability
or whp if Pr[E] → 1 for n → ∞. We will write x = a± b as shortcut for

64 onemax is not the easiest function for fitness improvements

x ∈ [a− b, a + b]. Throughout the chapter we will measure drift towards the
optimum, so a positive drift always points towards the optimum, and a
negative drift points away from the optimum.

3.2.1 The algorithm: SA-(1, λ)-EA

The (1, λ)-EA is the algorithm that generates λ offspring in each generation,
and picks the fittest one as the unique parent for the next generation. All
offspring are generated by standard bit mutation, where each of the n bits of
the parent is flipped independently with probability 1/n. The performance
of the (1, λ)-EA for static population size λ is well-understood [82, 83].

We will consider the self-adjusting (1, λ)-EA with (1 : s + 1)-success rule
to control the population size λ, with success rate s and update strength F,
and we denote this algorithm by SA-(1, λ)-EA. It is given by the following
pseudocode. The key difference from the standard (1, λ)-EA is that the
population size λ is updated at each step: whenever a fitness improvement
is found, the population is reduced to λ/F and otherwise the population is
increased to λF1/s. Note that the parameter λ may take non-integral values
during the execution of the algorithm, and the number of children is the
integer ⌊λ⌉ closest to λ.

One way to think about the SA-(1, λ)-EA is that for each search point
x it implicitly has a target population size λ∗ = λ∗(x) such that, up to
rounding, the probability to have success (the fittest of λ∗ offspring is
strictly fitter than the parent) equals the target success rate s∗ = 1/(s + 1).
The (1 : s + 1)-rule ensures that there is a drift towards λ∗: whenever
⌊λ⌉ > λ∗, then λ decreases in expectation, and it increases for ⌊λ⌉ < λ∗,
both on a logarithmic scale. We refer the reader to Section 2.1 in [28] for a
more detailed discussion.

For the results of this chapter, we will specify s > 0 as a suitable constant,
the initial population size is λinit = 1, the initial search point has exactly
εn zero-bits for a given ε, and the update strength is F = 1 + η for some
η ∈ ω(log n/n) ∩ o(1/ log n). We will often omit the index t if it is clear
from the context.

3.2.2 The benchmarks: OneMax and Dynamic BinVal

The first benchmark, the OneMax function, counts the number of one-bits

Om(x) = OneMax(x) = ∑n
i=1 xi.

3.2 preliminaries and definitions 65

Algorithm 2: SA-(1, λ)-EA with success rate s, update strength F,
mutation rate c/n, initial start point xinit ∈ {0, 1}n and initial popula-
tion size λinit = 1 for maximizing a fitness function f : {0, 1}n → R.

1 Initialization:
2 x0 ← xinit; λ0 ← 1;
3 Optimization:
4 for t = 0, 1, . . . do
5 Mutation:
6 for j ∈ {1, . . . , ⌊λt⌉} do
7 yt,j ← mutate(xt) by flipping each bit of xt independently

with probability 1/n;

8 Selection:
9 Choose yt = arg max{ f (yt,1), . . . , f (yt,⌊λ⌉)}, breaking ties

randomly;
10 Update:
11 if f (yt) > f (xt) then
12 λt+1 ← max{1, λt/F};
13 else
14 λt+1 ← F1/sλt

15 xt+1 ← yt;

66 onemax is not the easiest function for fitness improvements

of x ∈ {0, 1}n. We also define the ZeroMax function Z(x) := n−Om(x)
as the number of zero-bits in x. Throughout this chapter, we will denote
Zt := Z(xt), and we will frequently use the scaling ε = Z/n.

Our other benchmark is a dynamic function [63]. That means that in each
generation t, we choose a different function f t and use f t in the selection
update step of Algorithm 2. We choose Dynamic BinVal or DBv [84, 85],
which is the binary value function BinVal, applied to a randomly selected
permutation of the positions of the input string. This function has been
used to model dynamic environments [84, 85] and uncertain objectives [86].
In detail, BinVal is the function that interprets a bit string as an integer
representation and returns its value, so BinVal(x) = ∑n

i=1 2i−1 · xi. For the
dynamic version, for each generation t we draw uniformly at random a
permutation πt of the set {1, . . . , n}. The DBv function for generation t is
then defined as

DBv
t(x) = ∑n

i=1 2i−1 · xπt(i).

Note that in the update step, a re-evaluation of the parent xt with respect
to πt is needed when comparing the fitness of xt and yt.

3.2.3 Tools

We will use drift analysis [87] to analyze two random quantities: The
distance Zt = Z(xt) of the current search point from the optimum, and the
population size λt (or rather, log λt). We use the following drift theorems to
transfer results on the drift into expected hitting times.

Theorem 17 (Tail Bound for Additive Drift [66]). Let (Xt)t≥0 be a sequence
of random variables over R, each with finite expectation and let n > 0. With
T = min{t ≥ 0 : Xt ≥ n | X0 ≥ 0}, we denote the random variable describing
the earliest point at which the random process exceeds n, given a starting value of
at least 0. Suppose there are ε, c > 0 such that, for all t,

1. E[Xt+1 − Xt | X0, ..., Xt, T > t] ≥ ε, and

2. |Xt − Xt+1| < c.

Then, for all s ≥ 2n
ε ,

Pr(T ≥ s) ≤ exp
(
− sε2

8c2

)
.

3.3 main proof 67

Theorem 18 (Negative Drift Theorem [66], [88]). Let (Xt)t≥0 be a sequence
of random variables over R, each with finite expectation and let n > 0. With
T = min{t ≥ 0 : Xt ≥ n | X0 ≤ 0}, we denote the random variable describing
the earliest point at which the random process exceeds n, given a starting value of
at most 0. Suppose there are 0 < c < n and ε > 0 such that, for all t,

1. E[Xt+1 − Xt | X0, ..., Xt, T > t] ≤ −ε, and

2. |Xt − Xt+1| < c.

Then, for all s ≥ 0,

Pr(T ≤ s) ≤ s exp
(
− nε

2c2

)
.

To switch between differences and exponentials, we will frequently make
use of the following estimates, taken from Lemma 1.4.2 – Lemma 1.4.8
in [64].

Lemma 19. 1. For all r ≥ 1 and 0 ≤ s ≤ r,

(1− 1/r)r ≤ 1/e ≤ (1− 1/r)r−1 and (1− s/r)r ≤ e−s ≤ (1− s/r)r−s.

2. For all 0 ≤ x ≤ 1,

1− e−x ≥ x/2.

3. For all 0 ≤ x ≤ 1 and all y ≥ 1,
xy

1+xy ≤ 1− (1− x)y ≤ xy.

3.3 main proof

We start this section by defining some helpful notation. Afterwards, we give
an informal sketch of the main ideas, before we give the full proof.

Definition 20. Consider the SA-(1, λ)-EA optimizing a dynamic function f = f t,
and let Zt = Z(xt). For all times t and all i ∈ Z, we define

p f ,t
i := Pr[Zt − Zt+1 = i | xt, λt] and ∆ f ,t

i := i · p f ,t
i .

We will often drop the superscripts f and t when the function and the time are
clear from context. We also define p≥i := ∑∞

j=i pj and ∆≥i := ∑∞
j=i ∆j; both p≤i

and ∆≤i are defined analogously. Finally, we write

∆ f ,t := E[Zt − Zt+1 | xt, λt] = ∑∞
i=−∞ ∆ f ,t

i .

68 onemax is not the easiest function for fitness improvements

Note that i > 0 and ∆ > 0 corresponds to steps/drift towards the optimum
and i < 0 and ∆ < 0 away from the optimum.

Definition 21 (Improvement Probability, Equilibrium Population Size). Let
x ∈ {0, 1}n and f be a strictly monotone function. Let y be obtained from x by
flipping every bit independently with probability 1/n. We define

p f
imp(x) := Pr[f (y) > f (x)] and q f

imp(x, λ) := 1− (1− p f
imp(x))λ,

as the probability that respectively a single offspring or any offspring improves the
fitness of x. We also define the equilibrium population size as

λ∗, f (x, s) := log
(1−p f

imp(x))

(s
1+s
)
. (3.1)

As usual, we drop the superscript when f is clear from context. As the two functions
we consider are symmetric (i.e. all bits play the same role) pimp only depends on
Z(x) = εn so in a slight abuse of notation we sometimes write pimp(εn) instead
of pimp(x), and sometimes we also drop the parameters by writing just pimp when
they are clear from the context. Similarly we sometimes write qimp and λ∗.

Remark 22. For all x, s and f , λ∗, f (x, s) is chosen to satisfy

q f
imp(x, λ∗, f (x, s)) = 1

s+1 .

Note that the equilibrium population size λ∗ need not be an integer. Moreover,
rounding λ to the next integer can change the success probability by a constant
factor. Thus we must take the effect of rounding into account. Fortunately, as we
will show, the effect of changing the function f from OneMax to DBv is much
larger than such rounding effects.

3.3.1 Sketch of proof

We have three quantities that depend on each other: the target population
size λ∗, the target success rate 1/(s + 1) and the distance ε := Z/n of the
starting point from the optimum. Essentially, choosing any two of them
determines the third one. In the proof we will choose λ∗ and s to be large,
and ε to be small. As ε is small, it is very unlikely to flip more than one
zero-bit and the positive contribution to the drift is dominated by the term
∆1 (Lemma 24 (ii)). For OneMax we are also able to give a tight estimation
of ∆≤−1: for λ large enough we can guarantee that |∆≤−1| ≈ (1− e−1)λ

(Lemma 24 (iii)).

3.3 main proof 69

The key to the proof is that under the above assumptions, the improve-
ment probability pimp for DBv is by a constant factor larger than for One-
Max (Lemma 23). This is not hard to understand. Since it is unlikely to flip
more than one zero-bit, the main way to improve the fitness for OneMax is
by flipping a single zero-bit and no one-bits. Likewise, DBv also improves
the fitness in this situation. However, DBv may also improve the fitness if it
flips, for example, exactly one zero-bit and one one-bit. This improves the
fitness if the zero-bit has higher weight, which happens with probability
1/2. This already makes pDBv

imp by a constant factor larger than pOm

imp. (There
are actually even more ways to improve the fitness for DBv.) As a conse-
quence, for the same values of s and ε, the target population size λ∗ for
DBv is by a constant factor smaller than for OneMax (Lemma 23 (iii)).

This enables us to (mentally) fix some large λ, choose ε such that the
drift for OneMax at Z = εn is slightly positive (towards the optimum) and
choose the s that satisfies λ∗,Om(εn, s) = λ. Here, ‘slightly positive’ means
that ∆1 ≈ 4|∆≤−1|. This may seem like a big difference, but in terms of λ
it is not. Changing λ only affects ∆1 mildly. But adding just a single child
(increasing λ by one) reduces ∆≤−1 by a factor of ≈ 1− 1/e, which is the
probability that the additional child is not a copy of the parent. So our choice
of λ∗, ε and s ensures positive drift for OneMax as long as λt ≥ λ∗ − 1, but
not for a much wider range. However, as we show, λt stays concentrated in
this small range due to our choice of F = 1+ o(1). This already would yield
progress for OneMax in a small range around Z = εn. To extend this to
all values Z ≤ εn, we consider the potential function Gt = Zt − K logF(λ

t),
and show that this potential function has drift towards zero (Corollary 28)
whenever Z > 0, similar to [26, 28]. For DBv, we show that λt stays in a
range below λ∗,DBv(εn, s) + 1, which is much smaller than λ∗,Om(εn, s), and
that such small values of λt give a negative drift on Zt (away from the
optimum, Lemma 29). Hence, the algorithm is not able to cross the point at
Z = εn for DBv.

3.3.2 Full proof

In the remainder of this section we give the full proof, which follows
the intuitive arguments presented above. In particular, we derive some
relations between λ, s, ε to find a suitable such triple. Those relations and
constructions only hold if the number of bits n is large enough. For instance,
we wish to start at a distance εn from the optimum, meaning we need εn to

70 onemax is not the easiest function for fitness improvements

be an integer. In all following statements, we implicitly assume that εn is a
positive integer. In particular, this implies ε ≥ 1/n.5

We start with the following lemma whose purpose is twofold. On the
one hand it gives useful bounds and estimations of the probabilities of
improvement; on the other hand it compares those probabilities of im-
provement for OneMax and Dynamic BinVal. In particular, the success
probability for OneMax is substantially smaller than for Dynamic BinVal,
meaning that Dynamic BinVal is easier than OneMax with respect to
fitness improvements.

Lemma 23. Let f be any dynamic monotone function and 1/n ≤ ε ≤ 1. Then
p f

imp(εn) ≤ ε. More specifically for Om and DBv, for all n ≥ 10 we have

pOm

imp(εn) = e−1ε± 2ε2 and pDBv

imp (εn) = (1− e−1)ε± 11ε2.

In particular, there exists c > 0 such that the following holds.

(i) For every δ ≤ 1, λ ∈N, λ ≤ cδ/ε, and every dynamic monotone function f
we have

q f
imp(εn, λ) = (1± δ)λp f

imp(εn).

(ii) For every s ≥ 1, every constant 0 < ε ≤ c, and every dynamic monotone
function f there exists a constant ε′ > 0 such that

λ∗, f ((ε− ε′)n, s)− λ∗, f ((ε + ε′)n, s) ≤ 1/4.

(iii) For every 1/n ≤ ε ≤ c and s > 0 we have

0.5λ∗,Om(εn, s) ≤ λ∗,DBv(εn, s) ≤ 0.6λ∗,Om(εn, s).

Proof. For general f , due to monotonicity the fitness can only improve if
at least one zero-bit is flipped. Since the i-th zero-bit flips with probability
1/n, by a union bound over the εn zero-bits we have p f

imp(εn) ≤ ε.

5 In Lemma 23 (ii) and Lemma 29 we consider a constant ε > 0, introduce an ε′ = ε′(ε) and look
at all states in the range (ε± ε′)n. Again, we implicitly assume that (ε− ε′)n and (ε + ε′)n are
integers, since we use those in the calculations.

3.3 main proof 71

For the next line, note that the statement is trivial for 1/2 ≤ ε ≤ 1,
so we may assume ε ≤ 1/2. Let A1 be the event of flipping exactly one
zero-bit and an arbitrary number of one-bits, A0,1 the sub-event of flipping
exactly one zero-bit and no one-bits, and A≥2 the event of flipping at least
two zero-bits. Let q1 := P(A1), q0,1 := P(A0,1) and q≥2 := P(A≥2). We
have q1 = ε(1− 1/n)εn−1. By Lemma 19, we may bound (1− 1/n)εn−1 ≥
1− (εn − 1)/n ≥ 1 − ε, which gives ε − ε2 ≤ q1 ≤ ε. For q0,1, we have
q0,1 = ε(1 − 1/n)n−1. Using Lemma 19, e−1 ≤ (1 − 1/n)n−1 and (1 −
1/n)n−1 ≤ e−1e1/n ≤ e−1(1 + 2/n) ≤ e−1 + ε for all n ≥ 1, which gives
e−1ε ≤ q0,1 ≤ e−1ε + ε2. Finally, for q≥2, any fixed pair of two zero-bits has
probability 1/n2 to be flipped, so by a union bound over all (εn

2) such pairs
we have q≥2 ≤ ε2/2. Summarizing, we have shown

q1 = ε± ε2 and q0,1 = e−1ε± ε2 and q≥2 ≤ ε2/2.

For OneMax, the fitness always improves in the case A0,1, may or may not
improve in the case A≥2, and does not improve in any other case. Hence,
q0,1 ≤ pOm

imp ≤ q0,1 + q≥2, which implies the claim for OneMax.
For Dynamic BinVal, we have to work a bit harder to compute the

improvement probability in the case of A1. Consider this case, i.e., assume
that exactly one zero-bit and an undetermined number of one-bits is flipped.
Now we sort this zero-bit together with the (1− ε)n one-bits decreasingly
by weight, thus obtaining a list of (1− ε)n + 1 bits. The zero-bit is equally
likely to take any position i ∈ [(1− ε)n + 1] in this list. Then the offspring
is fitter than the parent if and only if none of the i− 1 one-bits to the left of
i are flipped, which has probability (1− 1/n)i−1. Hence, conditional on A1,
the probability qDBv

|1 of improvement is

qDBv

|1 =
1

(1− ε)n + 1

(1−ε)n+1

∑
i=1

(1− 1/n)i−1

=
1

(1− ε)n + 1
· 1− (1− 1/n)(1−ε)n+1

1/n

=
1

(1− ε) + 1/n

(
1− (1− 1/n)(1−ε)n+1

)
,

(3.2)

where in the second step we used the formula for the geometric sum,
∑k

i=1 xi−1 = (1 − xk)/(1 − x). We separately estimate upper and lower
bounds for this expression. For the first factor, we use 1

(1−ε)+1/n ≥ 1 since

72 onemax is not the easiest function for fitness improvements

ε ≥ 1/n, and 1
(1−ε)+1/n ≤

1
1−ε ≤ 1 + 2ε, which holds for ε ≤ 1/2. For the

second factor, we use Lemma 19 to obtain

(1− 1/n)(1−ε)n+1 ≤ e−(1−ε)−1/n ≤ e−1eε ≤ e−1(1 + 2ε) ≤ e−1 + ε

and

(1− 1/n)(1−ε)n+1 ≥ e−1(1− 1/n)εn+2 ≥ e−1(1− ε− 2/n) ≥ e−1 − 2ε,

where the last step holds since ε ≥ 1/n. Plugging these bound into (3.2)
(mind the “1−” in the bracket of (3.2)) yields

qDBv

|1 ≥ 1− e−1 − ε and qDBv

|1 ≤ (1 + 2ε)(1− e−1 + 2ε) ≤ 1− e−1 + 6ε.

Now we may use q1 · qDBv

|1 ≤ pDBv

imp ≤ q1 · qDBv

|1 + q≥2, where

q1 · qDBv

|1 = (ε± ε2)(1− e−1 ± 6ε) = (1− e−1)ε± 10ε2.

Together with q≥2 ≤ ε2/2, this proves the claim for pDBv

imp .
We prove the remaining items in order, now focusing on (i). Recall that

qimp = 1− (1− pimp)
λ, by Lemma 19 this can be bounded by

λpimp

1 + λpimp
≤ qimp ≤ λpimp.

Since p f
imp ≤ ε, if we choose ε ≤ cδ/λ for some absolute constant c small

enough we indeed get q f
imp = (1± δ)λp f

imp for every dynamic monotone
function f .

The second result (ii) is a consequence of the definition:

λ∗, f (εn, s) = log
1−p f

imp
(s/(s + 1)) =

log(s/(s + 1))

log(1− p f
imp)

.

Again, p f
imp ≤ ε, so choosing c very small and ε ≤ c gives

λ∗, f (εn, s) =
log(s/(s + 1))

−(1± Cε)p f
imp

,

for some (possibly large, but absolute) constant C. Since s ≥ 1, changing ε by
ε′ = ε2 may change λ∗ by C′ε · log 2, where C′ is again a large but absolute

3.3 main proof 73

constant. Up to possibly choosing c smaller, this quantity is bounded by
1/4.

Lastly, we prove (iii). Again from the definition of λ∗ we have

λ∗,DBv(εn, s)
λ∗,Om(εn, s)

=
log(1−pDBv

imp (εn))
(s

1+s
)

log(1−pOm

imp(εn))
(s

1+s
) =

log(1− pOm

imp(εn))

log(1− pDBv

imp (εn))

=
log(1− e−1ε± 2ε2)

log(1− (1− e−1)ε± 11ε2)
.

Since log(1− x) ≈ −x for x → 0, the above ration tends to e−1/(1− e−1) =
1/(e− 1) = 0.58... as ε tends to zero. In particular, since ε < c is assumed
small enough, the ratio is at least 0.5 and at most 0.6.

We follow with a lemma that gives estimates of the drift of Z. In particular,
the first statement is one way of stating that OneMax is the easiest function
with respect to minimizing the distance from the optimum. We will only
apply it with f = DBv, but we believe that the result is interesting enough
to be mentioned.

Lemma 24. There exists a constant c > 0 such that the following holds for every
dynamic monotone function f . Let δ > 0, there exists λ0 such that the following
holds.

(i) For all λ ≥ 1, all x ∈ {0, 1}n and all i ∈ Z+ we have

∆ f
≥i(x, λ) ≤ ∆Om

≥i (x, λ) and |∆ f
≤−i(x, λ)| ≥ |∆Om

≤−i(x, λ)|.

(ii) For every integer λ ≥ λ0 and all 1/n ≤ ε ≤ cδ/λ we have

∆ f
≥2(εn, λ) ≤ δ∆Om

1 (εn, λ).

(iii) For every integer λ ≥ λ0 and all 1/n ≤ ε ≤ cδ/λ we have

|∆Om

≤−1(εn, λ)| = (1± δ)(1− e−1)λ.

Note that in the second point the right hand side is the drift with respect to
OneMax, not to f .

74 onemax is not the easiest function for fitness improvements

Proof. We prove items in order and start with (i). For any j ∈ Z, the event
Zt+1 ≥ Zt − j can only happen for OneMax if Z(y) ≥ Z(x)− j holds for
all offspring y of x, since OneMax picks the offspring which minimizes
Z(y). In this case, regardless of the selection of f , the selected offspring also
satisfies Z(y) ≥ Z(x)− j. Hence, pOm

≤j ≤ p f
≤j and pOm

≥j ≥ p f
≥j for all j ∈ Z.

In particular, for all i ≥ 0

∆Om

≤−i = −i · pOm

≤−i −∑−i−1
j=−∞ pOm

≤j ≥ −i · p f
≤−i −∑−i−1

j=−∞ p f
≤j = ∆ f

≤−i,

and

∆Om

≥i = i · pOm

≥i + ∑∞
j=i+1 pOm

≥j ≥ i · p f
≥i + ∑∞

j=i+1 p f
≥j = ∆ f

≥i.

We now turn to the proof of (ii), starting with f = Om. Consider a given
offspring. For any i zero-bits, there is probability n−i that they all flip to
one-bits. By union bound over (εn

i) ≤ (εn)i/i! such choices, the probability
that at least i zero-bits are flipped is at most εi/i!. Now union bounding
over all children we find

pOm

≥i = Pr[Zt − Zt+1 ≥ i] ≤ λεi/i!.

In turn this implies

∆≥2 ≤
∞

∑
i=2

ip≥i ≤ 2λε2.

As a single child flipping exactly a zero-bit and no one-bit implies that Zt

decreases, we must also have

∆1 = p1 ≥ ε(1− 1/n)n−1 ≥ e−1ε,

by Lemma 19. Choosing c = 1/(2e) ensures that ∆≥2 ≤ δ∆1, and the
corresponding bound for ∆DBv

≥2 follows from (i).
We finish with the proof of (iii) and start with the lower bound. Clearly,

if every child flips at least a one-bit and no zero-bit, then Zt must increase.
Hence we have

|∆≤−1| ≥
(
(1− (1− 1/n)(1−ε)n) · (1− 1/n)εn

)λ

= ((1− 1/n)εn − (1− 1/n)n)λ .

Using Lemma 19, the first term in parentheses may be bounded from
below by (1− 1/n)εn ≥ (1− 1/n)εe−ε; since εn ≥ 1, we have (1− 1/n)ε ≥

3.3 main proof 75

(1− ε)ε ≥ 1− ε and we also have e−ε ≥ 1− ε by Lemma 19. The second term
of the display above may simply be handled by Lemma 19: (1− 1/n)n ≤ e−1.
Combining everything we find

|∆≤−1| ≥
(
(1− ε)2 − e−1

)λ
≥ (1− e−1)λ ·

(
1− 2

1−e−1 ε
)λ

≥ (1− e−1)λ ·
(

1− 2λ
1−e−1 ε

)
,

where the last step follows from an application of the last inequality of
Lemma 19. Since c is assumed to be sufficiently small and ε < cδ/λ, the
above is at least |∆≤−1| ≥ (1− δ)(1− e−1)λ.

The lower bound is proved and we now focus on the upper bound.
Since we may express |∆≤−1| = ∑i≥1 p≤−i, it suffices to bound each term
appearing in the sum. As we are considering the fitness function OneMax,
the number of zero-bits Zt increases by at least i only if every child flips at
least i one-bits. Hence by Lemma 19

p≤−1 ≤
(

1− (1− 1/n)(1−ε)n
)λ
≤ (1− e−1)λ,

and

p≤−i ≤
((

(1− ε)n
i

)
n−i
)λ

≤ (i!)−λ ≤ 2(1−i)λ.

This immediately implies

|∆≤−1| = p≤−1 +
∞

∑
i=2

p≤−2

≤ (1− e−1)λ + 21−λ.

The second term decays faster than the first since (1− e−1) ≥ 2−1. Therefore,
for a sufficiently large λ0, the second term of the RHS is at most δ · (1− e−1)λ

and this finishes the proof of (iii).

We now come to the heart of our proof, which is finding a suitable triple
λ∗, ε, s.

Lemma 25. For every δ > 0 there exists λ0 ≥ 1 such that the following holds.
For every integer λ ≥ λ0, there exist constants ε̃, s̃ depending only on λ such that
λ = λ∗,Om(ε̃n, s̃) and

∆Om

≥1 (ε̃n, λ) = (4± δ)|∆Om

≤−1(ε̃n, λ)| = (1± δ)/(s̃ + 1).

76 onemax is not the easiest function for fitness improvements

Additionally ε̃(λ) = oλ(1/λ) and s̃(λ) = ωλ(1).6 In particular, for every δ > 0,
a sufficiently large λ0 guarantees that one may apply Lemmas 23 and 24.

Proof. Take some arbitrary δ > 0, λ0 very large and consider λ ≥ λ0.
Choose also some ε ≤ cδ/λ, with c the constant appearing in Lemmas 23

and 24.
Using Lemma 24 (ii) followed by Lemma 23 (i) for this pair (λ, ε) we find

∆≥1 = (1± δ)p≥1 = (1± δ)qimp = (1± δ)2 pimpλ.

Since pimp = e−1ε ± 4ε2 by Lemma 23 and we chose ε ≤ cδ/λ with
λ ≥ λ0 large enough, we may further write ∆≥1 ≥ (1± δ)3e−1ελ. With
Lemma 24 (iii) we may now estimate the negative contribution as

∆≤−1 = −(1± δ)(1− e−1)λ.

If we choose ε := ε̃ = 4e(1− e−1)λ/λ, then we get ∆≥1 = (1± δ)4 · 4|∆≤−1|,
which is what we want (up to originally choosing a smaller δ). Note that
this argument works because we assumed λ0 large enough, which implies
ε̃ ≤ cδ/λ. Also, it is clear from the formula that ε̃ = oλ(1/λ).

Define s̃ so that 1/(s̃ + 1) = qimp(ε̃n, λ). Since ∆≥1 = (1± δ)qimp the
equality is proved (again, up to originally choosing a smaller δ). All that
remains is to check that s̃ has the correct order: this comes from s̃ =
1/qimp − 1 is of order 1/(ε̃λ) = ωλ(1) by Lemma 23.

Naturally, the lemma above implies that for parameters λ, s̃ and at
distance ε̃n from the optimum, the drift of Z for OneMax is roughly
∆Om = ∆Om

≥1 + ∆Om

≤−1 ≈
3
4 ∆Om

≥1 > 0. Moreover, we want to show that the
SA-(1, λ)-EA can not only pass this point, but continues all the way to the
optimum. To this end, we define a more general potential function already
used in [26] and [28].

Definition 26. We define

h(λ) := −K logF λ,

with K = 1/2. We also define

g(x, λ) := Z(x) + h(λ).

6 The subscript indicates dependency on λ, i.e., for all c, C > 0 there exists λ0 such that for all
λ ≥ λ0 we have ε̃(λ) ≤ c/λ and s̃(λ) ≥ C.

3.3 main proof 77

For convenience we will write Zt = Z(xt), Ht = h(λt) and Gt = Zt +
Ht = g(xt, λt).

Lemma 27. Let f = Om. At all times t such that λt ≥ F we have

E
[

Ht − Ht+1 | xt, λt
]
= K

s (1− (s + 1)qimp(xt, ⌊λt⌉)).

Proof. We have Ht+1 = −K logF(λ
t/F) = Ht + K in case of an improve-

ment, and Ht+1 = Ht − K/s otherwise. Hence, the drift of Ht is

E[Ht − Ht+1 | xt, λt] = −Kqimp + (1− qimp)
K
s = K

s (1− (s + 1)qimp).

With these choices, the drift of Gt is positive for all ε ≤ ε̃ and λt ≥ λ− 1.

Corollary 28. Let f = Om. There exists λ0 ≥ 1 such that the following holds
for all λ ≥ λ0. Let s = s̃ = s̃(λ), ε = ε̃ = ε̃(λ) be as in Lemma 25. There exist
ρ(λ), ε′(λ) such that if 1 ≤ Zt ≤ (ε + ε′)n and λt ≥ λ− 1, then

E[Gt − Gt+1 | Zt, λt] ≥ ρ.

Proof. Let δ > 0 be a sufficiently small constant and let λ0 be sufficiently
large so that Lemmas 23, 24 and 25 hold. By Lemma 23 (ii), there exists a
small ε′ > 0 such that λ∗,Om((ε + ε′)n, s) ≥ λ− 1/2. We seek to estimate
the drift of G when Zt ≤ (ε + ε′)n and λt ≥ λ− 1. Using Lemma 27, we
see that this drift is

E[Gt − Gt+1 | Zt, λt] = ∆≥1(Zt, λt) + ∆≤−1(Zt, λt)

− Kqimp(Zt, λt) + K(1− qimp(Zt, λt))/s.

From Lemma 24 (iii) applied for both Zt and ε̃n and from Lemma 25 we
know that

|∆≤−1(Zt, λ)| = (1± δ)(1− e−1)λ = (1± δ)2|∆≤−1(εn, λ)|
= (1± δ)3/(4(s + 1)).

Applying Lemma 24 (iii), now for λ− 1, we have |∆≤−1(Zt, λ− 1)| =
(1± δ)(1− e−1)λ−1, which by the above must be at most

|∆≤−1(Zt, λ− 1)| ≤ (1± δ)4 1
4(1− e−1)(s + 1)

≤ 1
2(s + 1)

.

78 onemax is not the easiest function for fitness improvements

As ∆≤−1(Zt, ·) is decreasing, this same bound must hold whenever λt ≥
λ− 1. We also observe that since we are considering Om, we have ∆≥1 ≥
qimp.

Now replacing in the expression of the drift with K = 1/2, the drift is at
least

E[Gt − Gt+1 | Zt, λt] ≥ qimp −
1

2(s + 1)
−

qimp

2
+

1
2s
−

qimp

2s

=
1

2s(s + 1)
+

qimp

2
(1− 1/s)

≥ 1
2s(s + 1)

,

since for a choice of λ0 large enough we may assume that s > 1 by
Lemma 25. Setting ρ(λ) = 1/(2s(s + 1)) concludes the proof.

We have just shown that when within distance at most ε̃n from the
optimum, OneMax has drift towards the optimum. We now turn to Dynamic

BinVal: the following lemma states that at distance ε̃n from the optimum,
Dynamic BinVal has drift away from the optimum.

Lemma 29. Let f = DBv. There exists λ0 ≥ 1 such that for all λ ≥ λ0 there are
ν, ε′ > 0 such that the following holds. Let s̃ = s̃(λ), ε̃ = ε̃(λ) as in Lemma 25. If
Zt = (ε̃± ε′)n and λt ≤ λ∗,DBv(ε̃n, s̃) + 1 we have

E[Zt − Zt+1 | xt, λt] ≤ −ν.

Proof. Let δ be a small constant and choose a large λ0. Consider some
λ ≥ λ0 and let ε̃ = ε̃(λ), s̃ = s̃(λ). Since ε̃ = o(1/λ) by Lemma 25, we
may assume ε̃ is small enough to apply first Lemma 23 (ii) and then
Lemma 23 (iii): there exists an ε′ such that

λ∗,DBv((ε̃ + ε′)n, s̃) ≥ λ∗,DBv(ε̃n, s̃)− 1 ≥ 0.4λ.

Up to taking a larger λ0 (giving a smaller ε̃) and smaller ε′, we may assume
that ε̃ + ε′ < 0.4cδ

λ , with c the constant appearing in Lemmas 23 and 24. In
particular, we may apply those lemmas with ε̃ + ε′ and λ∗, f ((ε̃ + ε′)n, s̃) for
both f = Om and f = DBv.

The drift may be expressed as

∆DBv

≥1 (Zt, λt) + ∆DBv

≤−1(Zt, λt) ≤ ∆Om

≥1 (Zt, λt) + ∆Om

≤−1(Zt, λt),

3.3 main proof 79

using Lemma 24 (i), and we wish to show that this is negative. Lemma 24 (ii)
guarantees that the positive contribution of this drift is at most

(1 + δ)∆Om

1 (Zt, λt) ≤ (1 + δ)qOm

imp(Zt, λt)

≤ (1 + δ)qOm

imp

(
(ε̃ + ε′)n, λ∗,DBv((ε̃ + ε′)n, s̃) + 2

)
,

where the last step follows from the monotonicity of qimp in both Z and λ.
We know from Lemma 23 (iii) that λ∗,DBv((ε̃ + ε′)n, s̃) + 2 ≤ 0.6λ∗,Om((ε̃ +
ε′)n, s̃)+ 2 ≤ λ∗,Om((ε̃+ ε′)n, s̃) as we assume λ0 large enough. In particular,
this implies that the positive contribution to the drift is at most

(1 + δ)qOm

imp

(
(ε̃ + ε′)n, λ∗,Om((ε̃ + ε′)n, s̃)

)
= (1 + δ)/(s̃ + 1).

Let us now show that the negative contribution is larger. We first use
Lemma 23 (iii) to obtain λt ≤ λ∗,DBv(ε̃n, s̃) + 1 ≤ 0.7λ. An application of
Lemma 24 (iii) then gives

|∆Om

≤−1(Zt, λt)| ≥ (1± δ)(1− e−1)0.7λ.

By Lemma 25, we have |∆Om

≤−1(ε̃n, λ)| = (1± δ) 1
4(s̃+1) , and a new application

of Lemma 24 (iii) gives that (1± δ)/(4(s̃ + 1)) = (1± δ)(1− e−1)λ.
Replacing in the display above gives

|∆Om

≤−1(Zt, λt)| ≥ (1± δ)2(1− e−1)−0.3λ 1
4(s̃ + 1)

≥ 2
s̃ + 1

,

as λ may be chosen large enough compared to δ.
In the range of Zt, λt from the lemma, we see that

E[Zt − Zt+1 | xt, λt] ≤ (1 + δ)
1

s̃ + 1
− 2

s̃ + 1
≤ − 1

2(s̃ + 1)
,

which concludes the proof.

Corollary 28 and Lemma 29 respectively give drift towards the optimum
for OneMax and away from the optimum for Dynamic BinVal. We are
almost ready to state and prove our final theorem. A last step before this is
the following lemma saying λ ≤ n2 at all steps and that Z never changes
by more than log n.

Lemma 30. Consider the SA-(1, λ)-EA on OneMax or Dynamic BinVal.
With probability 1− n−ω(1), either the optimum is found or λt ≤ n2 holds for
super-polynomially many steps, and in all of these steps |Zt − Zt+1| ≤ log n.

80 onemax is not the easiest function for fitness improvements

Proof. In order to grow above n2, there would need to be a non-improving
step when λt ≥ n2/F1/s. Let us call this event E t. The probability that
a fixed offspring finds an improvement is at least 1/n · (1− 1/n)n−1 ≥
1/(en) (using Lemma 19), even if the algorithm is just one step away from
the optimum. Hence, the probability that none of λt offspring finds an
improvement is at most

Pr[E t] ≤ (1− 1
en)

λt ≤ e−(λ
t−1)/(en) = e−Ω(n).

using Lemma 19 for the second inequality. Even a union bound over a super-
polynomial number of steps leaves the error probability e−Ω(n) unchanged.
This proves the first statement.

For the step sizes, condition on E t. We can bound the difference |Zt −
Zt+1| from above by the maximal number of bits that any offspring flips.
The probability that a fixed offspring flips exactly k ≥ 1 bits is at most(

n
k

)(1
n

)k
(1− 1/n)n−k ≤ 1

k!
,

and the probability that it flips at least k bits is at most ∑i≥k 1/i! ≤ 2/k!,
since the factorials are bounded by a geometric sum as 1/(k + 1)! ≤ 1/(2 ·
k!). For k = log n this bound is 2/k! = e−Ω(k log k) = e−ω(log n) = n−ω(1),
and the same holds after a union bound over at most n2 offspring, and
after a union bound over a super-polynomial (suitably chosen) number of
steps.

Now we are ready to formulate and prove the main result of this chapter.

Theorem 31. Let F = 1 + η for some η = ω(log n/n) ∩ o(1/ log n). There
exist constants s, ε such that with high probability the SA-(1, λ)-EA with success
ratio s, update strength F and mutation rate 1/n starting with Z0 = εn,

a) finds the optimum of OneMax in O(n) generations;

b) does not find the optimum of Dynamic BinVal in a polynomial number of
generations.

Proof. Let δ be a sufficiently small constant and choose λ large. Let s := s̃(λ)
and ε = ε̃(λ) as in Lemma 25. Since λ∗,DBv(εn, s) ≥ 0.5λ∗,Om(εn, s) = 0.5λ,
we may assume that Lemma 24 holds for λ∗,DBv(εn, s).

We first prove a). Set f := OneMax, and let ε′ = ε′(λ) be small enough
to apply Corollary 28. We will first argue that λt quickly reaches a value of

3.3 main proof 81

at least λ− 7/8 and stays above λ− 1 afterwards. Note that by definition
of ε = ε̃, we have qimp(εn, λ) = 1/(s + 1), and hence

qimp(εn, λ− 1/4) < qimp(εn, λ) = 1
s+1 .

Up to potentially reducing ε′, we may apply Lemma 23 (ii) and get λ∗((ε +
ε′)n, s) ≥ λ− 1/4, or reformulated

qimp((ε + ε′)n, λ− 1/4) ≤ 1
s+1 .

Therefore, ⌊λ− 7/8⌉ ≤ λ− 3/8 < λ∗((ε + ε′)n, s), and by Lemma 27 we
have for all 1 < Zt ≤ (ε + ε′)n and all λ− 1 ≤ λt ≤ λ− 7/8,

E[Ht − Ht+1 | Zt, λt] = K
s (1− (s + 1)qimp(Zt, ⌊λt⌉))

≥ K
s (1− (s + 1)qimp((ε + ε′)n, λ− 3/8)) ≥ d,

for a suitable constant d > 0. Therefore, Ht has positive drift as long as
1 < Zt ≤ (ε + ε′)n and λt ≤ λ− 7/8. By Lemma 30, we may assume that Zt

changes by at most log n in all of the first ε′n/(2 log n) steps. In particular,
we have Zt ≤ (ε + ε′/2)n during this time. Hence, Ht has constant positive
drift until either ε′n/(2 log n) steps are over or until it hits−K logF(λ− 7/8).
Since H0 = −K logF(1) = 0, by the additive drift theorem, the latter option
happens after at most K

d logF(λ− 7/8) = O(1/ log F) = O(1/η) steps in
expectation. Moreover, the same holds with high probability after at most
2 K

d logF(λ − 7/8) = O(1/η) steps by concentration of hitting times for
additive drift, Theorem 17, since H changes by definition by at most one
in each step. Since 1/η = o(n/ log n), with high probability, λt ≥ λ− 7/8
happens before Zt reaches (ε + ε′/2)n. Let us call the first such point in
time t0.

Now we show that after time t0, the population size λt stays above
λ− 1. We have already established that Ht has at least positive constant
drift whenever λt ≤ λ− 7/8. In order for λt to decrease from λ− 7/8 to
λ − 1 the potential must increase by K logF(λ − 7/8) − K logF(λ − 1) =
Ω(1/ log F) = Ω(1/η) = ω(log n). By the negative drift theorem, Theo-
rem 18, with high probability this does not happen within O(n2) steps.

On the other hand, since we may assume by Lemma 30 that λt ≤ n2 for
a superpolynomial number of steps, we have 0 ≤ Zt − Gt ≤ logF(n

2) =
O(1

η log n) = o(n). In particular, the event Zt > (ε + ε′)n implies Gt >

(ε + 3
4 ε′)n ≥ Zt0 + ε′n/4 ≥ Gt0 + ε′n/4. In other words, Zt can only exceed

(ε + ε′)n if the potential Gt increases by at least ε′n/4. We will show in the
following that this is unlikely.

82 onemax is not the easiest function for fitness improvements

By Corollary 28 the potential Gt = Zt + Ht has constant drift towards
zero while 1 < Zt ≤ (ε + ε′)n and λt ≥ λ− 1. Moreover, we may assume
that Zt changes by at most log n in each step by Lemma 30, and Ht changes
by at most one in each step. Therefore, by the negative drift theorem with
scaling, Theorem 18, with high probability Gt does not increase by ε′n/4
within n2 steps.

We have established that with high probability, for n2 steps none of the
events λt < λ− 1 and Zt > (ε + ε′)n happens. Hence, by Corollary 28 the
potential Gt has a positive drift for n2 steps, or until Zt hits zero. Since
we start with a potential of at most Zt0 + Ht0 ≤ Zt0 = O(n), with high
probability the event Zt = 0 happens within O(n) steps by the tail bounds
on hitting times for additive drift, Theorem 17. This proves a).

For b), we set f := DBv, and we will work directly with the potential
Zt instead of Gt. Let ε′ > 0 be the constant from Lemma 29. We first
show that as long as Zt ≥ (ε − ε′)n, for a superpolynomial number of
steps we have λt ≤ λ∗,DBv(εn, s) + 1 so that we may apply Lemma 29. We
may assume ε′ small enough such that Lemma 23 (ii) gives λ∗,DBv((ε −
ε′)n, s) ≤ λ∗,DBv(εn, s) + 1/4. As for case a) we can achieve that for all
λt ≥ λ∗,DBv(εn, s) + 7/8 ≥ λ∗,DBv((ε− ε′)n, s) + 5/8 and all Zt = (ε± ε′)n,

qimp(Zt, ⌊λt⌉) ≥ qimp((ε− ε′)n, λ∗,DBv((ε− ε′)n, s) + 1/8) > 1
s+1 ,

which implies a constant negative drift of λt. As in case a), with high
probability λt does not exceed λ∗,DBv(εn, s) + 1 for a superpolynomial
number of steps, as long as Zt ≥ (ε− ε′)n is satisfied. On the other hand, as
long as λt ≤ λ∗,DBv(εn, s) + 1, Zt has constant drift away from the optimum
in the interval (ε± ε′)n by Lemma 29. By the negative drift theorem with
scaling, Theorem 18, with high probability Zt stays above (ε− ε′)n for a
superpolynomial number of steps. This concludes the proof of b).

3.4 simulations

This section aims to provide empirical support to our theoretical results.
Namely, we show that there exist parameters s and F such that OneMax

is optimized efficiently by the SA-(1, λ)-EA, while Dynamic BinVal is
not. Moreover, in the simulations we find that the claim also extends to
non-dynamic functions, such as BinVal and Binary

7. In all experiments,
we set n = 1000, the update strength F = 1.5, and the mutation rate to

7 Defined as BinVal(x) = ∑n
i=1 2i−1xi and Binary(x) = ∑⌊n/2⌋

i=1 xin + ∑n
i=⌊n/2⌋+1 xi .

3.4 simulations 83

be 1/n. Then we start the SA-(1, λ)-EA with the zero string and an initial
offspring size of λinit = 1. The algorithm terminates when the optimum is
found or after 500n generations. The code for the simulations can be found
at https://github.com/zuxu/OneLambdaEA.

We first show that the improvement probability pimp of OneMax is the
lowest among all considered monotone functions (Figure 3.1), while it is
highest for Dynamic BinVal and Binary (partly covered by by the violet
line). Hence the fitness landscape looks hardest for OneMax with respect
to fitness improvements. Therefore, to maintain a target success probability
of 1/(1 + s), more offspring are needed for OneMax, and the SA-(1, λ)-
EA chooses a slightly higher λ (first panel of Figures 3.2 and 3.3, partly
covered by the green line). This contributes positively to the drift towards
the optimum, so that the drift for OneMax is higher than for the other
functions (second panel).

Figure 3.1: The probability of fitness improvement with a single offspring for
search points with different OneMax values. Each data point in
the figure is estimated by first sampling 1000 search points of the
corresponding OneMax value, then sampling 100 offspring for each
of the sampled search points, and calculating the frequency of an
offspring fitter than its parent.

Figure 3.2 summarizes our main result of this section. Clearly, we observe
that the SA-(1, λ)-EA gets stuck on all considered monotone functions
except OneMax when the number of one-bits in the search point is between
0.55n and 0.65n. Although the algorithm spends a bit more generations on

https://github.com/zuxu/OneLambdaEA

84 onemax is not the easiest function for fitness improvements

OneMax between 0.5n and 0.8n compared to the other parts, the optimum
is found rather efficiently (not very explicit in the figure though, since the
number is normalized). The reason is, all functions except OneMax have
negative drifts somewhere within the interval (0.58n, 0.8n). The drift of
OneMax here is also small compared to the other regions, but remains
positive. We also note that the optimum is also found for HotTopic [15]
despite its negative drift at 0.7n, probably because the drift is so weak that
it can be overcome by random fluctuations.

Figure 3.2: Smoothed average of λ, smoothed average drift, average number of
generations, and average number of evaluations of the self-adjusting
(1, λ)-EA with s = 3, F = 1.5, and c = 1 in 100 runs at each OneMax

value when optimizing monotone functions with n = 1000. The
parameters of HotTopic (see Section 2.2.3 for its definition) are L =
100, α = 0.25, β = 0.05, and ε = 0.05. The average of λ is shown
in log scale. The average of λ and the average drift are smoothed
over a window of size 15. The number of generations/evaluations is
normalized such that its sum over all OneMax values is 1.

As a comparison, we show in Figure 3.3 the situation when s is smaller.
Due to a smaller value of s, all functions have positive drifts toward the
optimum most of the time during the optimization progress, and the global

3.5 conclusion 85

optimum is found for all of them. As the ’hardest’ function considered in
our simulations, Dynamic BinVal has a lower drift compared to the other
functions after 0.6n and a slightly negative drift between 0.7n and 0.8n,
which leads to a peak in generations during this particular interval.

Figure 3.3: Similar to Figure 3.2 with the only difference being s = 2.

3.5 conclusion

The key insight of our work is that there are two types of “easiness” of a
benchmark function8, which need to be separated carefully. The first type
relates to the question of how much progress an elitist hillclimber can make
on the function. In this sense, it is well-known that OneMax is indeed
the easiest benchmark among all functions with unique global optimum.
However, a second type of easiness is how likely it is that a mutation gives
an improving step. Here OneMax is not the easiest function.

Once those concepts are mentally separated, it is indeed not hard to see
that OneMax is not the easiest function with respect to the second type. In
this chapter we have shown that Dynamic BinVal is easier (Lemma 23),

8 We note that there are other types of “easiness”, e. g. easiness with respect to a fixed budget.

86 onemax is not the easiest function for fitness improvements

but we conjecture that this actually holds for many other functions as well,
including static ones. This is backed up by experimental data, but we are
lacking a more systematic understanding of which functions are hard or
easy in this aspect.

We have also shown that the second type of easiness is relevant. In
particular, the SA-(1, λ)-EA relies on an empirical sample of the second
type of easiness (aka the improvement probability) to choose the population
size. Since the SA-(1, λ)-EA may make bad choices for too easy settings (of
second type) if the parameter s is set too high, it is important to understand
how easy a fitness landscape can get. These easiest fitness landscapes will
determine the range of s that generally makes the SA-(1, λ)-EA an efficient
optimizer. We have disproved the conjecture from [26, 27] that OneMax is
the easiest function (of second type). As an alternative, we conjecture that
the easiest function is the ‘adversarial’ Dynamic BinVal, defined similarly
to Dynamic BinVal with the exception that the permutation is not random,
but chosen so that any 0-bit is heavier than all 1-bits. With this fitness
function, any mutation in which at least one 0-bit is flipped gives a fitter
child, regardless of the number of 1-bit flips, so it is intuitively convincing
that it should be the easiest function with respect to fitness improvement.

4
S PA R S E D A L E N E T W O R K S C A N A P P R O X I M AT E K E R N E L
F U N C T I O N S

This chapter is based on joint work with Angelika Steger.

4.1 introduction

The olfactory system of Drosophila has long been studied due to its simplic-
ity and capability of associative learning [40, 41]. One of its most distinctive
characteristics is the sparse unstructured connectivity between projection
neurons (PNs) and Kenyon cells (KCs), i.e. each KC integrates sensory input
from 7 out of roughly 50 distinct types of PNs on average [44]. Nevertheless,
Drosophilas are able to learn stereotypical responses to distinct odorants
quickly [89–91].

The projection from PNs to KCs is usually modeled as a 2-layer network
with PNs being the input layer and KCs being the output layer [46, 92]. In
machine learning, it is known that with rectified linear units (RELU)1 being
the activation function, when the output layer contains a large number
of units and their incoming weights are drawn from independent normal
distributions, the network approximates, in the limit, a feature mapping that
corresponds to the first order arc-cosine kernel [48]. Kernels are functions
that measure the similarity between two data points in certain implicit
high dimensional space [93]. Intuitively, this means that the output layer
extracts random features from the input, and provides general-purpose
representations for downstream tasks. However, a single PN can not excite
and inhibit KCs at the same time by Dale’s law. And in fact, the projection
from PNs and KCs is sparse and consists of only excitatory synapses, so
a natural question is whether such a construction can provide a similarly
powerful feature extraction as a dense, not sign-constrained network.

In this chapter, we show that a sparse network with only excitatory
connections can also approximate the first-order arc-cosine kernel, and
that the key to this is an inhibitory cell: the so-called, anterior paired
lateral (APL) neuron [49–51]. The APL neuron receives input from KCs and
provides feedback inhibition to all KCs. We model the APL neuron in a

1 RELU(x) = max(0, x).

87

88 sparse dale networks can approximate kernel functions

similar way to existing computational models [46, 92], and show that this
inhibition has an effect of densifying the net and shifting the mean of the
weights to 0.

The quality of kernel approximation depends on the number of units in
the second layer, the sparsity of the connection, as well as the distribution
of the weights. We show that a discrepancy measured between the weights
of the network and a rotationally invariant distribution can predict how
close the approximation is. We empirically show that a reasonably large
network size together with various sparsity levels and weight initialization
leads to a low discrepancy, as well as good performance on downstream
learning tasks. On the other hand, due to the noise in synaptic transmission,
sparse connections are favored in terms of noise resistance.

4.1.1 Related work

In [46, 94] properties of the PN-KC network and how these depend on
the sparsity are studied. In particular, [46] measures the dimension of the
KC representations and shows that it correlates well with classification
performance on downstream tasks. They also show that networks with
experimentally observed sparsity generate representations of the largest
dimension. In a more recent work, [94] shows that sparse connections
emerge when training a fully connected network to perform an artificial
odorant classification task. It shows that with a non-negative constraint for
the network weights, gradient descent will lead the network to converge
to a sparse one. Moreover, the sparse network is robust in the sense that
perturbations on the weights do not result in a huge difference in the KC
representation.

Similarity search, a key problem in large-scale information retrieval, also
gets inspiration from the PN-KC network. The goal of similarity search
is to return a set of near neighbors to the given query as fast as possible.
As the database is huge, hashing is usually applied to avoid exhaustive
searches. Inspired by the sparse net in Drosophila, [95] proposes fly hash,
which replaces hash functions in similarity search by a sparse network.
Empirical results show that sparsifying the connections as in fly hash does
not affect the search precision and benefits from less computation. A follow-
up paper [96] proposes dense hash, which is basically the same as fly hash
except that it omits the global inhibition for KCs. Dense hash is better than
fly hash in similarity search, due to the fact that global inhibition drops

4.2 preliminaries 89

more information from the input. In our work, we also observe that denser
networks slightly outperform their sparser counterparts in learning tasks.

4.2 preliminaries

In this section, we introduce the necessary background regarding arc-
cosine kernels and their approximations from neural networks. In terms of
notation, we use bold lowercase letters to denote vectors and bold capital
letters for matrices, for example, x and W. When referring to elements in
vectors and matrices, we use non-bold letters with subscripts such as xi
and Wij. The norm of vectors and matrices considered in this work is the
L2 norm, which is simply denoted by ∥ · ∥.

4.2.1 Arc-cosine kernels and neural networks

A fully connected two-layer neural network with weights initialized by a
normal distribution and a wide output layer equipped with certain non-
linear activation can be regarded as feature mappings that correspond to
the family of arc-cosine kernel functions [48]. Consider a neural network
with d input units and m output units, let wij denote the weight from the
j-th input unit to the i-th output unit. If each wij follows a standard normal
distribution independently and an element-wise RELU non-linearity is
applied at each output unit, the network implements a feature map from
Rd to Rm: f(x) = Relu(Wx), where W is the weight matrix whose entry on
i-th row and j-th column is wij. Let wi denote the i-th row of W, then the
inner product between the output representations of two input x and y is

f(x) · f(y) =
m

∑
i=1

Relu(wix) · Relu(wiy).

The first-order arc-cosine kernel is defined as

k(x, y) := ∥x∥∥y∥
(

1
π

sin θ +
π − θ

π
cos θ

)
, (4.1)

where θ = arccos x·y
∥x∥∥y∥ . When m approaches infinity, the following equa-

tion can be established:

k(x, y) = lim
m→∞

2
m

f(x) · f(y) = 2
∫

dw
e−
∥w∥2

2

2πd/2 Relu(wx) · Relu(wy). (4.2)

90 sparse dale networks can approximate kernel functions

That is, the kernel evaluation can be approximated by computing the inner
product between the output representation of the inputs. Details of the
derivation can be found in the appendix in [48].

4.2.2 Invariance of the weight distribution

Actually, the distribution that w follows does not need to be standard
normal, but it can be any rotationally invariant distribution [97]. A proba-
bility density function f is rotationally invariant if for all w and orthogonal
matrices R,

f (w) = f (Rw) = f (∥w∥).
Therefore, as long as w is sampled from a rotationally invariant distribution,
the distribution of ∥w∥ does not affect the kernel up to a scaling factor.
However, in practice, due to the constraint of the sample size, normalization
is usually applied on w [98] to improve sample efficiency.

4.3 results

In this section, we propose our model of the PN-KC network with global
inhibition and study it as an approximation to the arc-cosine kernel. We
further show that the approximation quality is correlated with a measure
termed discrepancy defined on the weights on the network, and that the
maximum eigenvalue of the approximated kernel could have an impact on
learning tasks based on the output of the network.

4.3.1 A network model with global inhibition

The projections from PNs to KCs in the olfactory pathway of Drosophila
can be modeled with a two-layer neural network, where we regard PNs
as input units and KCs as output units. Due to biological constraints, the
weight W should be non-negative and sparse. In this subsection, we show
that a bio-plausible global inhibition mechanism can help the network to
get around constraints on sparsity and non-negativity.

Instead of simply applying RELU to each hidden unit, we adopt an
activation function that is similar to the one in [92]. Namely, let the summed
input to the i-th KC be wix, the output of KC i is calculated by

zi = Relu

(
wix−

1
m

m

∑
i′=1

wi′x

)
. (4.3)

4.3 results 91

To interpret the formula, consider that all KCs project to an inhibitory
APL neuron with excitatory synapses of weight 1, and the APL neuron
projects back to all KCs with inhibitory synapses of weight 1/m. Simplifying
equation (4.3) by defining w′ij = wij − 1

m ∑m
i′=1 wi′ j, we obtain

zi = Relu

(
d

∑
j=1

(
wij −

1
m

m

∑
i′=1

wi′ j

)
xj

)

= Relu

(
d

∑
j=1

w′ijxj

)
= Relu(w′ix).

This implies the output of the network with weights W and global inhibition
is equivalent to another network that is parameterized by W′ without
inhibition. In this way, even though the original weight W is sparse and
non-negative, the equivalent weights W′ can be dense and negative by
integrating the effect of inhibition. Therefore, if the distribution of W′ is
roughly rotationally invariant, the network can be a close approximation to
the arc-cosine kernel.

4.3.2 Kernel approximation and discrepancy

Let {xi}n
i=1 be the set of input, K be the kernel matrix where Kij = k(xi, xj),

G be the approximated kernel matrix (or Gram matrix) where Gij =

cW′ ∑
m
l=1 σ(w′lxi)σ(w′lxj), where cW′ = 2d/(∑m

i=1 ∥w′i∥2) is a normalization
factor and σ denotes RELU. We are interested in the norm of E := G−K.
Similar to Appendix C in [99], we can show that the L2 norm of E is

∥E∥ ≤
√

∑
i ̸=j

E2
ij + max

i
|Eii|,

and that E[E2
ij] and maxi |Eii| can be related to the L2-discrepancy of the

weights W′, which measures how rotationally invariant the distribution of
W′ is.

We generalize the definition of discrepancy in [99] as follows2. Given a
probability distribution on Rd with density ρ, we would like to measure

2 The kernel studied there is not dependent on norms of the input. While in our context, norms
are needed for evaluating the kernel function, see (4.1).

92 sparse dale networks can approximate kernel functions

how rotationally invariant it is. To do so, we first define a rotationally
invariant distribution over Rd whose density ϕ satisfies∫

Sd−1
r

ρ(x)dx =
∫

Sd−1
r

ϕ(x)dx,

for all r ∈ (0, ∞), where Sd−1
r denotes the (d − 1)-sphere with radius

r. Namely, Prρ[∥x∥ = r] = Prϕ[∥x∥ = r]. Now given a set of m points
W := {wi}m

i=1 drawn according to ρ, ideally we want to measure how much
W is aligned with ϕ, the rotationally invariant counterpart of ρ. Note that
in this work we are always interested in the weight W′ defined in the last
subsection, here we just write W for simplicity. However, since an analytic
formula for ϕ can be hard to obtain, we use an empirical approximation
ϕW such that

Pr
ϕW

[∥x∥ = r] =
1
m

m

∑
i=1

1{∥wi∥ = r}.

Now the discrepancy between W and ϕW with respect to a non-negative
function f is defined as

D(W, f) =
∣∣∣∣ 1
m

m

∑
i=1

f (wi)−
∫

Rd
f (w)ϕW(w)dw

∣∣∣∣. (4.4)

The first term in the absolute value can be interpreted as a Monte Carlo
estimate of the mean of f , while the second is exactly the mean with respect
to ϕW.

To establish the relationship between E and the discrepancy, we need to
work with a special family of functions. Let F be a family of functions on
Rd defined as follows,

F = { fx,y | x, y ∈ Rd−1},

where fx,y(w) = σ(wx)σ(wy) and σ denotes RELU. x and y can be consid-
ered as input to the network. The L∞ discrepancy of W with respect to F is
defined as

L∞(W,F) := sup
f∈F

D(W, f), (4.5)

and the L2 discrepancy

L2(W,F) :=
√

Ex,y D2(W, fx,y). (4.6)

Since F is clear from the context, we write L∞(W) and L2(W) for short.

4.3 results 93

If both x and y are drawn from the input distribution of the network, we
have

E[E2
ij] = c2

WL2(W)2, and max
i
|Eii| ≤ cWL∞(W),

see calculations in Section 4.6.1. Therefore, the kernel approximation is
more accurate the discrepancies are small. However, since L∞ is difficult to
estimate, we will focus on L2, which is also a lower bound for L∞.

4.3.3 A formula of discrepancy

It turns out that when the input x and y are drawn from normal distribution,
the L2 discrepancy has a relatively simple expression:

E[E2
ij] = c2

WL2(W)2 =
d2

(∑m
i=1 ∥wi∥2)2 ∑

i,j=1
k(wi, wj)

2 −Ex,y[k(x, y)2], (4.7)

see calculations in Section 4.6.2. However, the input we are interested in
does not necessarily follow a normal distribution, so we first need to argue
why it is reasonable to make this assumption. For simplicity, we restrict
all vectors (x, y, w) on the unit sphere, and consider how to achieve low
L∞ discrepancy defined in (4.5). When x and y that define fx,y are drawn
from a normal distribution, that is they are uniformly distributed on the
unit sphere, the best set of w should be distributed on the unit sphere
as uniform as possible. Another extreme case is that x and y can only be
drawn from the set {o, o′}, whose elements are two orthogonal vectors.
Now there are many good configurations of w. Let us denote the region
{w ∈ Sd−1

1 | wx > 0, wy > 0} by R and its complement by R̄. Clearly, we
have f = 0 for all w ∈ R̄. Let A(·) denote the surface area on Sd−1

1 . As long
as the ratio between the number of points in R and R̄ is A(R)/A(R̄) and
that the points in R are distributed uniformly, a low L∞ can be achieved.
In particular, the points in R̄ do not need to be uniformly distributed.
Therefore, the assumption of normally distributed input is a rather strong
assumption, and a small value from (4.7) is likely to imply low discrepancy
under other input distributions. In fact, we observe from Section 4.4.1 that
the discrepancy computed with this assumption is well correlated with
kernel approximation empirically.

The analytic expression (4.7) hints towards several desired properties
of the weight distribution. Since Ex,y[k(x, y)2] is a constant, the expected

94 sparse dale networks can approximate kernel functions

approximation error is proportional to the sum of pairwise squared kernel
value of the weight W up to a normalization factor. Therefore,

E[E2
ij] ∝

1
(∑m

i=1 ∥wi∥2)2 ∑
i,j=1
∥wi∥2∥wj∥2 J2(θij), (4.8)

where θij is the angle formed by wi and wj, and J(θ) = sin θ/π + (π −
θ) cos θ/π according to (4.1).

To separate the effect of norms and angles, we first make the simplification
that ∥wi∥ = 1 for all i. Then it holds

E[E2
ij] ∝ ∑

i,j=1
J2(θij) ≥

1
m2

(
∑

i,j=1
J(θij)

)2
, (4.9)

where the equality can be established when θij = θ for all i and j. Therefore,
for a low expected error, the distribution of θij should be as uniform as
possible. This is reasonable as it discourages w to cluster.

To investigate the impact of the norms, we assume that the distribution
of θij is independent of ∥wi∥ and ∥wj∥. Now the expected error is simply
a weighted sum of an array of constants θij, where the weights are aij =

∥wi∥2∥wj∥2/(∑m
i=1 ∥wi∥2)2. In this case, the more uniform the distribution

∥wi∥ is, the smaller variance of the expected error. In Section 4.4.1, we also
show this lead to smaller expected errors through simulations.

To summarize, in the simplified scenarios considered above, it is beneficial
to have weight distributions that lead to uniform θij and ∥wi∥ in terms of
kernel approximation.

4.3.4 Learning speed and discrepancy

Next, we show that when learning a linear function via a local learning
rule, better kernel approximation can imply faster learning in theory. More
precisely, the maximum eigenvalue of the Gram matrix G controls the
learning speed, and it can be bounded by the discrepancy.

Assume that there is a readout neuron that tries to predict yi = f (xi)
based on the output representation zi, where f is a function to be approxi-
mated. Denote the adaptable weight between the readout neuron and a KC
j by vj, the output of the readout neuron is ȳi = ∑m

j=1 vjzij. The goal is to
have the mean squared error ∑n

i=1(yi − ȳi)
2/2 = ∥Zv− y∥2/2 as small as

possible. The reason why we pick the least square as objective function is
that it can be learned via a bio-plausible local learning rule

vj ← vj + ηzij(yi − ȳi), (4.10)

4.4 simulations 95

where η is a constant denoting the learning rate. Note that the rule is just
an application of gradient descent.

By the descent lemma, if the gradient is ℓ-Lipschitz continuous, η = ℓ−1

is guaranteed to decrease the objective if it is not zero. Since for least
squares, the minimum ℓ is the maximum eigenvalue of the Hessian Z⊤Z,
we have η = λ−1

max(Z⊤Z) = λ−1
max(ZZ⊤) ∝ λ−1

max(G). Namely, the smaller
the largest eigenvalue of G is, the larger learning rate we can use. Note
that this is a worse case bound, in practice we can usually use much larger
learning rates. When the discrepancy is low, i.e. the Gram matrix G is close
to the kernel matrix K, we can bound λmax(G) ≤ λmax(K)+ ∥G−K∥, since
λmax(·) = ∥ · ∥ for L2 norm. As λmax(K) is fixed, being close to the kernel
implies smaller λmax(G).

4.4 simulations

In this section, we aim to verify by simulation that sparse networks with
non-negative weights and proper inhibition can be decent approximations
of the first-order arc-cosine kernel. Assume that all weights are drawn from
the same non-negative distribution, and let a random variable W denote
the value of wij. To take sparsity into account, we further assume

W =

 X with probability p,

0 otherwise,

where p ∈ (0, 1] controls the sparsity of the network, and X is a random
variable such that Pr[X ≤ 0] = 0. The distributions X follows in the
simulations include half normal, exponential, and log normal with default
parameters. We also consider three special distributions: the first is normal
distribution, which is added for comparison although it can take negative
values; for the second one we have X = 1 with probability 1; the last one
is the empirical distribution of synaptic counts between PNs and KCs,
see Figure 4.1. The axon of a neuron can form multiple synapses with
the dendrite of another neuron, the number of those can be taken as an
approximation to their connection strength. The data is obtained through
the publicly available database from [4].

The default input data we use in simulations is a collection of neural
recordings of 24 olfactory receptor neurons for 110 odorants [100], since we
are modeling a neural network in the olfactory system. In the end, we also

96 sparse dale networks can approximate kernel functions

Figure 4.1: The empirical distribution of the number of synaptic contacts be-
tween a pair of PN and KC.

use MNIST [101] to show that the network is capable of learning a more
complicated task, i. e. learning to classify handwriting digits.

To generate the random features, we feed the input through a random
network parameterized by X, the distribution of the non-zero weights, p,
the sparsity, and m, the number of output units. The nonlinearity in (4.3) is
then applied element-wise at the output layer.

4.4.1 Sparse nets have low discrepancy

In Figure 4.2 and 4.3, we plot measurements of kernel approximation quality
with various distributions for X and a wide range of values for p and m.
In subplot (c) we have the alignment between K and its approximation G,
which is the inner product between K and G if we consider them as vectors.
As p and m increase, all measurements indicate that the approximation
gets better. The only exception is when X takes constant values, since all
output units essentially extract the same feature as p approaches 1. Despite
that the difference brought by different parameters is large in terms of L2

norm, both discrepancy and alignment indicate small differences as long as
the network is not too sparse and the network is not too small. This might
explain why the sparse network in the brain of Drosophila works well.

In all three subplots, the ordering of the considered distributions does not
vary much. Normal distribution and constant always offer the best approxi-
mation quality, which are then followed by the synaptic counts, half normal,

4.4 simulations 97

Figure 4.2: (a) ∥K−G∥/∥K∥, (b) discrepancy of W′ with normalization, and (c)
kernel alignment between K and G with respect to different values of
p, where m = 500. Plots are obtained by averaging 1000 independent
simulations.

Figure 4.3: (a) ∥K−G∥/∥K∥, (b) discrepancy of W′ with normalization, and (c)
kernel alignment between K and G with respect to different values of
m, where p = 0.15. Plots are obtained by averaging 1000 independent
simulations.

98 sparse dale networks can approximate kernel functions

Figure 4.4: The discrepancy for original W′ and normalized W′ with respect to
different values of m, where p = 0.15. Plots are obtained by averaging
1000 independent simulations.

exponential, and log normal. This is correlated with the boundedness of the
tails of these distributions: most distributions have sub-Gaussian tails, while
exponential distribution has an exponential tail and log normal distribution
has a heavy tail. That is, distributions with faster-decaying tails tend to
approximate the kernel better. To verify this intuition, we compare the
original discrepancy and the one calculated after normalizing all ∥w′i∥ to 1

in Figure 4.4. We find that having a constant norm can bring advantages,
especially for small m and log normal. However, even after normalization,
log normal is still the worst among all considered distributions. Note that
in the actual neural network, it is not feasible to directly normalize w′, as
w′ is not the actually non-negative weight w on the connections.

4.4.2 The bound of learning speed

In Figure 4.5, we plot the maximum eigenvalues of the Gram matrix G.
Similar as before, large values of p tend to result in beneficial (smaller)
maximum eigenvalues, but the effect of increasing p beyond 0.3 is marginal.
However, the number of output units m does not have a huge impact on the
maximum eigenvalue, see subplot (b). As for the distributions, we observe
a similar ordering as in the discrepancy, which is not surprising as we have
the bound λmax(G) ≤ λmax(K) + ∥G−K∥ from Section 4.3.4.

4.4 simulations 99

Figure 4.5: (a, b) maximum eigenvalues of G with respect to p (m=500) and m
(p = 0.15). Note that all eigenvalues are normalized within each sub-
plot. The plot is obtained by averaging 1000 independent simulations.

4.4.3 Performance in linear regression

In this subsection, we study the performance of the random networks on a
regression task. To generate the target function, we use a random network
with p = 1, m = 250, and weights sampled from normal distribution as
the teacher network. After that, a vector v of 250 entries is sampled from
a uniform distribution, and the inner product between the output of the
teacher network and v gives the target linear function. This setting ensures
that as long as we have a good approximation to the arc-cosine kernel, the
target function can be learned with a bio-plausible local learning rule (see
(4.10) in Section 4.3.4).

For any student network parameterized by p, m, and a weight distribution,
the goal is to learn a m-dimensional vector v′ such that the inner product
between the output of the student network and v′ is as close as possible
to the target function value, in terms of the mean squared difference. We
randomly pick 70% of the data as the training set and the remaining as the
test set in each independent simulation. Training consists of 5 epochs, and
in each epoch the input in the training set is used to update v′ one by one
in random order.

Figure 4.6 shows the typical situation as more and more training data is
used to update v′. The norm of the gradient drops rapidly with the first few
training samples and then goes down rather slowly, and so are the training
and testing losses. With the same learning rate and the same number of

100 sparse dale networks can approximate kernel functions

Figure 4.6: (a) norm of the gradient, (b) training loss, and (c) testing loss as
training proceeds. The parameters for the student networks are m =
125 and p = 0.15. The learning rate is 0.0001. The plot is obtained by
averaging 100 independent simulations.

training samples, distributions with lower discrepancy are able to achieve
smaller gradients and losses. The effects of p and m are shown in Figure 4.7.
We observe again that larger p and m leads to better performance, in this
case, the training and testing losses. However, after the points p = 0.2 and
m = 100 the improvements are rather marginal. The behavior of networks
with weights sampled from log normal distribution is rather unstable
compared to the other ones, which indicates a coarse positive correlation
between discrepancy and the losses.

4.4.4 Classification on MNIST

The learning task in the last subsection is rather artificial in the sense that it
is tailed to demonstrate the capability of sparse networks to approximate
the arccos kernel. Now we aim to show that they are also suitable for
learning a more complicated task. Figure 4.8 shows the training progress
of a linear classifier based on the sparse random features. With all consid-
ered distributions, a testing accuracy of over 95.5% can be reached within
10 epochs, which is comparable to the state-of-the-art results for kernel
methods [102]. After 10 epochs, the networks suffer from slight over-fitting,
which can be avoided by reducing the learning rate. Although not shown
in the plots, the accuracy is not sensitive to the choice of sparsity p.

4.4 simulations 101

Figure 4.7: (a, c) training and testing loss with respect to p (m = 250), and (b, d)
training and testing loss with respect to m (p = 0.15). The learning
rate is 0.0001, the same one as in Figure 4.6. The plot is obtained
by averaging 100 independent simulations. Standard deviations are
omitted for better visualization.

102 sparse dale networks can approximate kernel functions

Figure 4.8: (a) training loss, (b) testing loss, and (c) testing accuracy on MNIST
within the first 30 epochs. The images are first normalized such that
each pixel is between 0 and 1. The parameters p and m are set to 0.09

and 2000. The output of the random network is then used to train
a linear classifier with stochastic gradient descent and cross-entropy
loss. The plot is obtained by averaging 20 independent simulations.

4.4.5 Noise resistance

So far, most simulations indicate that larger values of p and using con-
stant weights are beneficial. So why is the connection between PNs and
KCs sparse, and why do not two neurons always form a constant number
of synapses? In terms of sparsity, one possibility is that sparse networks
achieve a good balance between performance and resources. Another hy-
pothesis is that synaptic transmission comes often with noises, and sparse
connections can reduce the effect of noises [103]. To verify this hypothesis
in our model, after the weights of a random network are drawn, we add
independent Gaussian noise to the non-zero weights and obtain two noisy
networks. The two noisy networks are then used to generate the random
features of the same input, and we consider the angle between the generated
features. Obviously, if the network is noise resistant, the interested angle
will be small.

Figure 4.9 shows that networks with large p can not produce stable
features due to the existence of noises. On the other hand, varying m has
only minor effects. The ordering between the distributions is reversed.
Namely, the ones with smaller discrepancy are more sensitive to noises.
This might explain why KCs do not always form the same number of
synapses with PNs in the Drosophila brain.

4.5 conclusion 103

Figure 4.9: (a, b) Mean angle between features generated by noise-perturbed
networks with respect to p (m = 500) and m (p = 0.15). The injected
Gaussian noise has a standard deviation equal to 0.1 ·E[X], while for
the normal distribution, this value is 0.1 ·E[|X|]. The plot is obtained
by averaging 1000 independent simulations.

4.5 conclusion

We have shown that a sparse Dale network with global inhibition can ap-
proximate the first-order arc-cosine kernel well and produce representations
that are suitable for associative learning under a set of mild conditions. The
conditions include a reasonable number of output units and connections,
as well as weight initialization with a bounded distribution. The quality
of the kernel approximation is well correlated with the theoretically de-
rived discrepancy, which measures how rotationally invariant the weight
distribution is. Moreover, the discrepancy can be a good prediction of the
performance of the network on regression tasks. We also identify two con-
tradicting forces in our network model: on one hand, a low discrepancy is
desired to facilitate downstream learning; on the other hand, a low discrep-
ancy contributes negatively to noisy resistance. Therefore, the size, sparsity,
and weight initialization need to achieve a good balance between these two
factors.

104 sparse dale networks can approximate kernel functions

4.6 appendix

4.6.1 Connecting kernel approximation to discrepancy

Note that for F , the second term in the definition of discrepancy (4.4) can
be simplified as∫

Rd
fx,y(w)ϕW(w)dw =

m

∑
i=1

Pr
ϕW

[∥w∥ = ∥wi∥] ·
∫

Sd−1
∥wi∥

σ(wx)σ(wy)
1

A(Sd−1
∥w∥)

dw

=
m

∑
i=1

1
m
· ∥wi∥d+1

A(Sd−1
∥wi∥

)

∫
Sd−1

1

σ(wx)σ(wy)dw, (4.11)

where A(Sd−1
∥wi∥

) denotes the surface area of Sd−1
∥wi∥

, and note that in the last
step, the integration is switched to the unit sphere. Let χ be the probability
density of the Chi distribution with d degrees of freedom, which is the
distribution of the norm of a d-dimensional vector whose entries are i.i.d.
standard normal. By equation (4.1),

k(x, y) = 2
∫

Rd
dw

e−
∥w∥2

2

2πd/2 σ(wx) · σ(wy)

= 2
∫ ∞

0
χ(r)

∫
Sd−1

r

σ(wx)σ(wy)
1

A(Sd−1
r)

dwdr

= 2
∫ ∞

0
χ(r)

rd+1

A(Sd−1
r)

dr
∫

Sd−1
1

σ(wx)σ(wy)dw. (4.12)

Combining (4.11) and (4.12), and making use of A(Sd−1
r) ∝ rd−1 and∫ ∞

0 χ(r)r2dr = d, we obtain

∫
Rd

fx,y(w)dϕW(w) =
c
m

m

∑
i=1

∥wi∥d+1

A(Sd−1
∥wi∥

)
· k(x, y) = c−1

W · k(x, y), (4.13)

where c = (2
∫ ∞

0 χ(r)rd+1 A(Sd−1
r)−1dr)−1 denotes a constant.

Now, if both x and y are drawn from the input distribution, we have

E[E2
ij] = c2

WL2(W)2, and max
i
|Eii| ≤ cWL∞(W).

4.6 appendix 105

4.6.2 Calculating discrepancy

Assume that x and y are drawn from a distribution with density ι, we can
show that

L2(W)2 =
1

m2

m

∑
i,j=1

(∫
Rd

σ(wix)σ(wjx)ι(x)dx
)2

(4.14)

− 2
mcW

m

∑
i=1

∫
Rd

∫
Rd

σ(wix)σ(wiy)k(x, y)ι(x)dxι(y)dy (4.15)

+ c−2
W Ex,y[k(x, y)2].

If ι is the density of a rotationally invariant distribution, the summands
above can be further simplified. To avoid complicated scaling factors, we as-
sume each entry of x and y is drawn from the standard normal distribution
independently. In particular, we have

(4.14) =
1

4m2

m

∑
i,j=1

k(wi, wj)
2, (4.16)

by (4.2) and

(4.15) = − 2
mcW

m

∑
i=1
∥wi∥2

∫
Rd

∫
Rd

σ
(wi
∥wi∥

x
)

σ
(wi
∥wi∥

y
)

k(x, y)ι(x)dxι(y)dy.

(4.17)
Due to the symmetry, the value of the integral does not change if we replace
wi/∥wi∥ with any vector on the unit sphere. Together with (4.12), the
integral in (4.17) is∫

Sd−1
1

∫
Rd

∫
Rd

σ(wx)σ(wy)k(x, y)ι(x)dxι(y)dy
1

A(Sd−1
1)

dw

=
∫

Rd

∫
Rd

(∫
Sd−1

1

σ(wx)σ(wy)
1

A(Sd−1
1)

dw
)

k(x, y)ι(x)dxι(y)dy

=
c

A(Sd−1
1)

∫
Rd

∫
Rd

k(x, y)2ι(x)dxι(y)dy

=
1

2d
Ex,y[k(x, y)2], (4.18)

where c is the constant in (4.13). So putting together (4.17) and (4.18), we
obtain

(4.15) = −2c−2
W Ex,y[k(x, y)], (4.19)

106 sparse dale networks can approximate kernel functions

and therefore by (4.16) and (4.19),

L2(W)2 =
1

4m2 ∑
i,j=1

k(wi, wj)
2 − c−2

W Ex,y[k(x, y)2].

To summarize, we have shown that for standard normal input distribution,

E[E2
ij] = c2

WL2(W)2 =
c2

W
4m2 ∑

i,j=1
k(wi, wj)

2 −Ex,y[k(x, y)2]

=
d2

(∑m
i=1 ∥wi∥2)2 ∑

i,j=1
k(wi, wj)

2 −Ex,y[k(x, y)2].

B I B L I O G R A P H Y

1. Eiben, A. & Smith, J. Introduction to Evolutionary Computing (Springer,
2015).

2. Darwin, C. On the origin of species, 1859 (Routledge, 2004).

3. Jansen, T. Analyzing evolutionary algorithms: The computer science per-
spective (Springer, 2013).

4. Scheffer, L. K., Xu, C. S., Januszewski, M., Lu, Z., Takemura, S.-y.,
Hayworth, K. J., Huang, G. B., Shinomiya, K., Maitlin-Shepard, J.,
Berg, S., et al. A connectome and analysis of the adult Drosophila
central brain. Elife 9, e57443 (2020).

5. Lyu, C., Abbott, L. & Maimon, G. Building an allocentric travelling
direction signal via vector computation. Nature 601, 92 (2022).

6. Whittington, J. C., Warren, J. & Behrens, T. E. Relating transform-
ers to models and neural representations of the hippocampal formation in
International Conference on Learning Representations (2021).

7. Doerr, B. & Neumann, F. Theory of evolutionary computation: Recent
developments in discrete optimization (Springer Nature, 2019).

8. Zhou, Z.-H., Yu, Y. & Qian, C. Evolutionary learning: Advances in
theories and algorithms (Springer, 2019).

9. Lobo, F., Lima, C. F. & Michalewicz, Z. Parameter setting in evolutionary
algorithms (Springer Science & Business Media, 2007).

10. Doerr, B. & Doerr, C. Theory of parameter control for discrete black-
box optimization: Provable performance gains through dynamic pa-
rameter choices. Theory of evolutionary computation, 271 (2020).

11. Doerr, B., Jansen, T., Sudholt, D., Winzen, C. & Zarges, C. Optimiz-
ing Monotone Functions Can Be Difficult in International Conference on
Parallel Problem Solving from Nature (2010).

12. Doerr, B., Jansen, T., Sudholt, D., Winzen, C. & Zarges, C. Mutation
rate matters even when optimizing monotonic functions. Evolutionary
Computation 21, 1 (2013).

13. Lengler, J. & Steger, A. Drift analysis and evolutionary algorithms
revisited. Combinatorics, Probability and Computing 27, 643 (2018).

107

108 bibliography

14. Lengler, J. A general dichotomy of evolutionary algorithms on monotone
functions in International Conference on Parallel Problem Solving from
Nature (2018), 3.

15. Lengler, J. A general dichotomy of evolutionary algorithms on mono-
tone functions. IEEE Transactions on Evolutionary Computation 24, 995

(2019).

16. Witt, C. Runtime analysis of the (µ+ 1) EA on simple pseudo-Boolean
functions. Evolutionary Computation 14, 65 (2006).

17. Antipov, D., Doerr, B., Fang, J. & Hetet, T. A tight runtime analysis for
the (µ+λ) EA in Genetic and Evolutionary Computation Conference (2018),
1459.

18. Richter, J. N., Wright, A. & Paxton, J. Ignoble trails-where crossove r is
provably harmful in International Conference on Parallel Problem Solving
from Nature (2008), 92.

19. Witt, C. Population size versus runtime of a simple evolutionary
algorithm. Theoretical Computer Science 403, 104 (2008).

20. Schumer, M. & Steiglitz, K. Adaptive step size random search. IEEE
Transactions on Automatic Control 13, 270 (1968).

21. Devroye, L. The compound random search (Ph.D. dissertation, Purdue
Univ., West Lafayette, IN, 1972).

22. Rechenberg, I. Evolutionsstrategien. Simulationsmethoden in der Medi-
zin und Biologie, 83 (1978).

23. Kern, S., Müller, S. D., Hansen, N., Büche, D., Ocenasek, J. &
Koumoutsakos, P. Learning probability distributions in continuous
evolutionary algorithms–a comparative review. Natural Computing 3,
77 (2004).

24. Doerr, C. & Wagner, M. Simple on-the-fly parameter selection mechanisms
for two classical discrete black-box optimization benchmark problems in
Genetic and Evolutionary Computation Conference (2018), 943.

25. Doerr, B., Doerr, C. & Lengler, J. Self-adjusting mutation rates with
provably optimal success rules. Algorithmica 83, 3108 (2021).

26. Hevia Fajardo, M. A. & Sudholt, D. Self-Adjusting Population Sizes
for Non-Elitist Evolutionary Algorithms: Why Success Rates Matter.
arXiv preprint arXiv:2104.05624 (2021).

bibliography 109

27. Hevia Fajardo, M. A. & Sudholt, D. Self-adjusting population sizes for
non-elitist evolutionary algorithms: why success rates matter in Genetic
and Evolutionary Computation Conference (2021), 1151.

28. Kaufmann, M., Larcher, M., Lengler, J. & Zou, X. Self-adjusting Popu-
lation Sizes for the (1, λ)-EA on Monotone Functions. arXiv preprint
arXiv:2204.00531 (2022).

29. Kaufmann, M., Larcher, M., Lengler, J. & Zou, X. Self-adjusting Pop-
ulation Sizes for the (1, λ)-EA on Monotone Functions in International
Conference on Parallel Problem Solving from Nature (2022), 569.

30. Doerr, B., Johannsen, D. & Winzen, C. Multiplicative Drift Analysis.
Algorithmica 64, 673 (2012).

31. Sudholt, D. A new method for lower bounds on the running time of
evolutionary algorithms. IEEE Transactions on Evolutionary Computa-
tion 17, 418 (2012).

32. Witt, C. Tight bounds on the optimization time of a randomized
search heuristic on linear functions. Combinatorics, Probability and
Computing 22, 294 (2013).

33. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C. & Chen, M. Hierarchical
text-conditional image generation with clip latents. arXiv preprint
arXiv:2204.06125 (2022).

34. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. & Moser, E. I. Mi-
crostructure of a spatial map in the entorhinal cortex. Nature 436, 801

(2005).

35. Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T., Mirowski, P.,
Pritzel, A., Chadwick, M. J., Degris, T., Modayil, J., et al. Vector-based
navigation using grid-like representations in artificial agents. Nature
557, 429 (2018).

36. Cueva, C. J. & Wei, X.-X. Emergence of grid-like representations by training
recurrent neural networks to perform spatial localization in International
Conference on Learning Representations (2018).

37. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, Ł. & Polosukhin, I. Attention is all you need. Advances
in neural information processing systems 30 (2017).

38. Hattori, D., Aso, Y., Swartz, K. J., Rubin, G. M., Abbott, L. & Axel,
R. Representations of novelty and familiarity in a mushroom body
compartment. Cell 169, 956 (2017).

110 bibliography

39. Dasgupta, S., Sheehan, T. C., Stevens, C. F. & Navlakha, S. A neu-
ral data structure for novelty detection. Proceedings of the National
Academy of Sciences 115, 13093 (2018).

40. Connolly, J. B., Roberts, I. J., Armstrong, J. D., Kaiser, K., Forte, M.,
Tully, T. & O’Kane, C. J. Associative learning disrupted by impaired
Gs signaling in Drosophila mushroom bodies. Science 274, 2104 (1996).

41. De Belle, J. S. & Heisenberg, M. Associative odor learning in
Drosophila abolished by chemical ablation of mushroom bodies.
Science 263, 692 (1994).

42. Schiffman, S. Smell and Taste. Encyclopedia of Gerontology (Second
Edition), 515 (2007).

43. Fishilevich, E. & Vosshall, L. B. Genetic and functional subdivision of
the Drosophila antennal lobe. Current Biology 15, 1548 (2005).

44. Caron, S. J., Ruta, V., Abbott, L. & Axel, R. Random convergence of
olfactory inputs in the Drosophila mushroom body. Nature 497, 113

(2013).

45. Laurent, G. Olfactory network dynamics and the coding of multidi-
mensional signals. Nature reviews neuroscience 3, 884 (2002).

46. Litwin-Kumar, A., Harris, K. D., Axel, R., Sompolinsky, H. & Abbott,
L. Optimal degrees of synaptic connectivity. Neuron 93, 1153 (2017).

47. Rahimi, A. & Recht, B. Weighted sums of random kitchen sinks:
Replacing minimization with randomization in learning. Advances in
neural information processing systems 21 (2008).

48. Cho, Y. & Saul, L. K. Large-margin classification in infinite neural
networks. Neural computation 22, 2678 (2010).

49. Leitch, B. & Laurent, G. GABAergic synapses in the antennal lobe and
mushroom body of the locust olfactory system. Journal of comparative
Neurology 372, 487 (1996).

50. Liu, X. & Davis, R. L. The GABAergic anterior paired lateral neuron
suppresses and is suppressed by olfactory learning. Nature neuro-
science 12, 53 (2009).

51. Papadopoulou, M., Cassenaer, S., Nowotny, T. & Laurent, G. Nor-
malization for sparse encoding of odors by a wide-field interneuron.
Science 332, 721 (2011).

52. Claesen, M. & De Moor, B. Hyperparameter search in machine learning
in Metaheuristics International Conference (2015), 1.

bibliography 111

53. Lengler, J. & Zou, X. Exponential slowdown for larger populations: the (µ+
1)-EA on monotone functions in ACM/SIGEVO Conference on Foundations
of Genetic Algorithms (2019), 87.

54. Lengler, J. & Zou, X. Exponential slowdown for larger populations:
The (µ+ 1)-EA on monotone functions. Theoretical Computer Science
875, 28 (2021).

55. Antipov, D. & Doerr, B. A Tight Runtime Analysis for the (µ + λ) EA.
Algorithmica, 1 (2020).

56. Jansen, T. On the brittleness of evolutionary algorithms in ACM/SIGEVO
Conference on Foundations of Genetic Algorithms (2007), 54.

57. Lengler, J., Martinsson, A. & Steger, A. When does hillclimbing fail
on monotone functions: An entropy compression argument in Analytic
Algorithmics and Combinatorics (2019), 94.

58. Doerr, B., Le, H. P., Makhmara, R. & Nguyen, T. D. Fast genetic
algorithms in Genetic and Evolutionary Computation Conference (2017).

59. Kötzing, T., Lagodzinski, J. G., Lengler, J. & Melnichenko, A. Destruc-
tiveness of lexicographic parsimony pressure and alleviation by a concate-
nation crossover in genetic programming in International Conference on
Parallel Problem Solving from Nature (2018), 42.

60. Friedrich, T., Kötzing, T., Krejca, M. S. & Sutton, A. M. The benefit of
recombination in noisy evolutionary search in International Symposium on
Algorithms and Computation (2015), 140.

61. Qian, C., Yu, Y. & Zhou, Z.-H. An analysis on recombination in
multi-objective evolutionary optimization. Artificial Intelligence 204,
99 (2013).

62. Kötzing, T., Sudholt, D. & Theile, M. How crossover helps in pseudo-
boolean optimization in Genetic and Evolutionary Computation Conference
(2011), 989.

63. Lengler, J. & Schaller, U. The (1 + 1)-EA on noisy linear functions with
random positive weights in Symposium Series on Computational Intelligence
(2018), 712.

64. Doerr, B. Probabilistic tools for the analysis of randomized optimiza-
tion heuristics. Theory of evolutionary computation, 1 (2020).

65. Witt, C. Fitness levels with tail bounds for the analysis of randomized
search heuristics. Information Processing Letters 114, 38 (2014).

112 bibliography

66. Kötzing, T. Concentration of first hitting times under additive drift.
Algorithmica 75, 490 (2016).

67. Lehre, P. K. & Yao, X. On the impact of mutation-selection balance
on the runtime of evolutionary algorithms. IEEE Transactions on Evo-
lutionary Computation 16, 225 (2012).

68. Sudholt, D. The impact of parametrization in memetic evolutionary
algorithms. Theoretical Computer Science 410, 2511 (2009).

69. Lässig, J. & Sudholt, D. Design and analysis of migration in parallel
evolutionary algorithms. Soft Computing 17, 1121 (2013).

70. Kaufmann, M., Larcher, M., Lengler, J. & Zou, X. Onemax is not
the easiest function for fitness improvements in European Conference on
Evolutionary Computation in Combinatorial Optimization (2023), 162.

71. He, J., Chen, T. & Yao, X. On the easiest and hardest fitness functions.
IEEE Transactions on Evolutionary Computation 19, 295 (2014).

72. Corus, D., He, J., Jansen, T., Oliveto, P. S., Sudholt, D. & Zarges, C. On
easiest functions for mutation operators in bio-inspired optimisation.
Algorithmica 78, 714 (2017).

73. Droste, S. A rigorous analysis of the compact genetic algorithm for
linear functions. Natural Computing 5, 257 (2006).

74. Eiben, A. E., Hinterding, R. & Michalewicz, Z. Parameter control in
evolutionary algorithms. IEEE Transactions on Evolutionary Computa-
tion 3, 124 (1999).

75. Badkobeh, G., Lehre, P. K. & Sudholt, D. Unbiased black-box complexity
of parallel search in International Conference on Parallel Problem Solving
from Nature (2014), 892.

76. Böttcher, S., Doerr, B. & Neumann, F. Optimal fixed and adaptive mu-
tation rates for the LeadingOnes problem in International Conference on
Parallel Problem Solving from Nature (2010), 1.

77. Doerr, B., Doerr, C. & Ebel, F. From black-box complexity to designing
new genetic algorithms. Theoretical Computer Science 567, 87 (2015).

78. Doerr, B., Doerr, C. & Yang, J. Optimal parameter choices via precise
black-box analysis. Theoretical Computer Science 801, 1 (2020).

79. Doerr, B., Witt, C. & Yang, J. Runtime analysis for self-adaptive
mutation rates. Algorithmica 83, 1012 (2021).

bibliography 113

80. Auger, A. Benchmarking the (1+ 1) evolution strategy with one-fifth success
rule on the BBOB-2009 function testbed in Genetic and Evolutionary
Computation Conference (2009), 2447.

81. Colin, S., Doerr, B. & Férey, G. Monotonic functions in EC: anything but
monotone! in Genetic and Evolutionary Computation Conference (2014),
753.

82. Rowe, J. E. & Sudholt, D. The choice of the offspring population size
in the (1, λ) evolutionary algorithm. Theoretical Computer Science 545,
20 (2014).

83. Antipov, D., Doerr, B. & Yang, Q. The efficiency threshold for the offspring
population size of the (µ, λ) EA in Genetic and Evolutionary Computation
Conference (2019), 1461.

84. Lengler, J. & Meier, J. Large population sizes and crossover help in dynamic
environments in International Conference on Parallel Problem Solving from
Nature (2020), 610.

85. Lengler, J. & Riedi, S. Runtime Analysis of the (µ+ 1)-EA on the Dynamic
BinVal Function in European Conference on Evolutionary Computation in
Combinatorial Optimization (2021), 84.

86. Lehre, P. & Qin, X. More Precise Runtime Analyses of Non-elitist
Evolutionary Algorithms in Uncertain Environments. Algorithmica, 1

(2022).

87. Lengler, J. Drift analysis. Theory of Evolutionary Computation, 89 (2020).

88. Oliveto, P. & Witt, C. On the Analysis of the Simple Genetic Algorithm.
Theoretical Computer Science 545, 2 (2014).

89. Murthy, M., Fiete, I. & Laurent, G. Testing odor response stereotypy
in the Drosophila mushroom body. Neuron 59, 1009 (2008).

90. Mittal, A. M., Gupta, D., Singh, A., Lin, A. C. & Gupta, N. Mul-
tiple network properties overcome random connectivity to enable
stereotypic sensory responses. Nature communications 11, 1 (2020).

91. Aso, Y., Hattori, D., Yu, Y., Johnston, R. M., Iyer, N. A., Ngo, T.-T.,
Dionne, H., Abbott, L., Axel, R., Tanimoto, H., et al. The neuronal
architecture of the mushroom body provides a logic for associative
learning. Elife 3, e04577 (2014).

92. Endo, K., Tsuchimoto, Y. & Kazama, H. Synthesis of conserved odor
object representations in a random, divergent-convergent network.
Neuron 108, 367 (2020).

114 bibliography

93. Hofmann, T., Schölkopf, B. & Smola, A. J. Kernel methods in machine
learning. The annals of statistics 36, 1171 (2008).

94. Wang, P. Y., Sun, Y., Axel, R., Abbott, L. & Yang, G. R. Evolving the
olfactory system with machine learning. Neuron 109, 3879 (2021).

95. Dasgupta, S., Stevens, C. F. & Navlakha, S. A neural algorithm for a
fundamental computing problem. Science 358, 793 (2017).

96. Sharma, J. & Navlakha, S. Improving Similarity Search with High-
dimensional Locality-sensitive Hashing. arXiv preprint arXiv:1812.01844
(2018).

97. Tsuchida, R., Roosta, F. & Gallagher, M. Invariance of weight distribu-
tions in rectified MLPs in International Conference on Machine Learning
(2018), 4995.

98. Zandieh, A., Han, I., Avron, H., Shoham, N., Kim, C. & Shin, J. Scaling
neural tangent kernels via sketching and random features. Advances
in Neural Information Processing Systems 34, 1062 (2021).

99. Xie, B., Liang, Y. & Song, L. Diverse neural network learns true target
functions in Artificial Intelligence and Statistics (2017), 1216.

100. Hallem, E. A. & Carlson, J. R. Coding of odors by a receptor repertoire.
Cell 125, 143 (2006).

101. LeCun, Y. The MNIST database of handwritten digits (1998).

102. Liu, F., Huang, X., Chen, Y. & Suykens, J. A. Random features for
kernel approximation: A survey on algorithms, theory, and beyond.
IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 7128

(2021).

103. Yang, R. G., Wang, P. Y., Sun, Y., Litwin-Kumar, A., Axel, R. & Abbott,
L. Evolving the olfactory system (2019).

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Introduction
	1.1 The two most powerful natural problem solvers
	1.2 On the theory of evolutionary computation
	1.2.1 Benchmark Functions and Evolutionary Algorithms
	1.2.2 The impact of parameters
	1.2.3 Dynamic parameter control

	1.3 Learning from neuroscience
	1.3.1 The olfactory pathway in Drosophila

	1.4 Summary of results
	1.4.1 Exponential slowdown for larger populations: the (+1)-EA on monotone functions
	1.4.2 OneMax is not the easiest function for fitness improvements
	1.4.3 Global inhibition enables sparse Dale networks to approximate kernel functions

	1.5 Common themes throughout the thesis

	2 Exponential Slowdown For Larger Populations In (+1)-EA
	2.1 Introduction
	2.1.1 Our results
	2.1.2 Related work

	2.2 Preliminaries and definitions
	2.2.1 Notation
	2.2.2 Algorithm
	2.2.3 HotTopic functions
	2.2.4 Tools

	2.3 Formal statement of the result
	2.4 Proof overview
	2.5 Drift analysis
	2.5.1 Preliminaries
	2.5.2 Tail bounds
	2.5.3 Typical situations
	2.5.4 Estimating the drift

	2.6 Proof of main theorem
	2.7 Simulations
	2.7.1 Population size
	2.7.2 Mutation rate

	2.8 Conclusion

	3 OneMax Is Not The Easiest Function For Fitness Improvements
	3.1 Introduction
	3.1.1 Our result

	3.2 Preliminaries and definitions
	3.2.1 The algorithm: SA-(1,)-EA
	3.2.2 The benchmarks: OneMax and Dynamic BinVal
	3.2.3 Tools

	3.3 Main proof
	3.3.1 Sketch of proof
	3.3.2 Full proof

	3.4 Simulations
	3.5 Conclusion

	4 Sparse Dale Networks Can Approximate Kernel Functions
	4.1 Introduction
	4.1.1 Related work

	4.2 Preliminaries
	4.2.1 Arc-cosine kernels and neural networks
	4.2.2 Invariance of the weight distribution

	4.3 Results
	4.3.1 A network model with global inhibition
	4.3.2 Kernel approximation and discrepancy
	4.3.3 A formula of discrepancy
	4.3.4 Learning speed and discrepancy

	4.4 Simulations
	4.4.1 Sparse nets have low discrepancy
	4.4.2 The bound of learning speed
	4.4.3 Performance in linear regression
	4.4.4 Classification on MNIST
	4.4.5 Noise resistance

	4.5 Conclusion
	4.6 Appendix
	4.6.1 Connecting kernel approximation to discrepancy
	4.6.2 Calculating discrepancy

	 Bibliography

