
ETH Library

Scrooge: a fast and memory-frugal
genomic sequence aligner for
CPUs, GPUs, and ASICs

Journal Article

Author(s):
Lindegger, Joël ; Senol Cali, Damla; Alser, Mohammed; Gómez Luna, Juan ; Ghiasi, Nika Mansouri; Mutlu, Onur

Publication date:
2023-05

Permanent link:
https://doi.org/10.3929/ethz-b-000614376

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Bioinformatics 39(5), https://doi.org/10.1093/bioinformatics/btad151

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-2581-8637
https://orcid.org/0000-0002-6514-1571
https://doi.org/10.3929/ethz-b-000614376
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/bioinformatics/btad151
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Genome analysis

Scrooge: a fast and memory-frugal genomic sequence

aligner for CPUs, GPUs, and ASICs

Joël Lindegger 1,*, Damla Senol Cali2, Mohammed Alser1, Juan Gómez-Luna1,

Nika Mansouri Ghiasi1, Onur Mutlu1,*

1Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich 8006, Switzerland
2Bionano Genomics, San Diego, CA 92121, United States

*Corresponding author. Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich 8006, Switzerland.

E-mail: jmlindegger@gmail.com (J.L.), omutlu@gmail.com (O.M.)

Associate Editor: Peter Robinson

Received 21 August 2022; revised 11 January 2023; accepted 23 March 2023

Abstract

Motivation: Pairwise sequence alignment is a very time-consuming step in common bioinformatics pipelines. Speeding
up this step requires heuristics, efficient implementations, and/or hardware acceleration. A promising candidate for all of
the above is the recently proposed GenASM algorithm. We identify and address three inefficiencies in the GenASM algo-
rithm: it has a high amount of data movement, a large memory footprint, and does some unnecessary work.

Results: We propose Scrooge, a fast and memory-frugal genomic sequence aligner. Scrooge includes three novel al-
gorithmic improvements which reduce the data movement, memory footprint, and the number of operations in the
GenASM algorithm. We provide efficient open-source implementations of the Scrooge algorithm for CPUs and
GPUs, which demonstrate the significant benefits of our algorithmic improvements. For long reads, the CPU version
of Scrooge achieves a 20.1�, 1.7�, and 2.1� speedup over KSW2, Edlib, and a CPU implementation of GenASM, re-
spectively. The GPU version of Scrooge achieves a 4.0�, 80.4�, 6.8�, 12.6�, and 5.9� speedup over the CPU version
of Scrooge, KSW2, Edlib, Darwin-GPU, and a GPU implementation of GenASM, respectively. We estimate an ASIC
implementation of Scrooge to use 3.6� less chip area and 2.1� less power than a GenASM ASIC while maintaining
the same throughput. Further, we systematically analyze the throughput and accuracy behavior of GenASM and
Scrooge under various configurations. As the best configuration of Scrooge depends on the computing platform,
we make several observations that can help guide future implementations of Scrooge.

Availability and implementation: https://github.com/CMU-SAFARI/Scrooge.

1 Introduction

Pairwise sequence alignment is a computational step commonly
required in bioinformatics pipelines (Alser et al. 2022), such as in
read mapping (Alser et al. 2020a) and de novo assembly (Li et al.
2011). We formulate the problem as: (i) finding the edit distance be-
tween two sequences (Levenshtein 1966) and (ii) determining the se-
quence of corresponding edits. Efficient algorithms for solving this
problem optimally are based on dynamic programming (DP), such
as the Smith–Waterman–Gotoh algorithm (Smith and Waterman
1981; Gotoh 1982), and have a runtime that grows quadratically
with sequence length (Alser et al. 2021). Backurs and Indyk (2015)
proves no strongly subquadratic time solutions can exist, provided
the strong exponential time hypothesis (Impagliazzo and Paturi
2001) holds. Hence, recent works focus on approaches such as prea-
lignment filtering (e.g. Xin et al. 2013, 2015; Alser et al. 2019,
2020b; Singh et al. 2021; Mansouri Ghiasi et al. 2022), constant fac-
tor algorithmic speedups (e.g. �So�si�c and �Siki�c 2017; Li 2018; Suzuki

and Kasahara 2018; Marco-Sola et al. 2020), GPU-based acceler-
ation (e.g. Liu et al. 2013; de Oliveira Sandes et al. 2016;
Ahmedet al. 2019, 2020; Awan et al. 2020), FPGA-based acceler-
ation (e.g. Benkrid et al. 2009; Hoffmann et al. 2016; Feiet al.
2018), or using specialized hardware accelerators (e.g. Fujiki et al.
2018, 2020; Turakhiaet al. 2018, 2019; Senol Cali et al. 2020,
2022).

We observe that GenASM (Senol Cali et al. 2020), a recent state-
of-the-art sequence alignment algorithm, has a large space for im-
provement. GenASM uses only cheap bitwise operations and breaks
the lower complexity bound of pairwise sequence alignment through
its powerful windowing heuristic. Senol Cali et al. (2020) has al-
ready proven the effectiveness of the GenASM algorithm and its ac-
celerator implementation, thus we are motivated to further improve
the GenASM algorithm and explore its potential on commodity
hardware.

We identify three inefficiencies in the GenASM algorithm: (i) it
has a large memory footprint due to the large size of the dynamic

VC The Author(s) 2023. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 39(5), 2023, btad151

https://doi.org/10.1093/bioinformatics/btad151

Advance Access Publication Date: 24 March 2023

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/5/btad151/7085594 by guest on 31 M
ay 2023

https://orcid.org/0000-0003-2581-8637
https://github.com/CMU-SAFARI/Scrooge
https://academic.oup.com/


programming (DP) table, (ii) it has a high amount of data movement
between registers and memory due to frequent accesses to the DP
table, and (iii) it does some unnecessary work by calculating DP cells
that are not useful for finding the final result. The three inefficiencies
negatively impact both (i) software implementations running on
commodity hardware (e.g. CPUs or GPUs) and (ii) custom hardware
(e.g. ASIC) implementations.

Software implementations on commodity hardware typically
cannot fit all the data into fast on-chip memories (e.g. L1, scratch-
pad memory) due to the large memory footprint. This increases the
latency and limits the bandwidth with which the DP table can be
accessed. The high amount of data movement puts high pressure on
this bandwidth, limiting performance.

In contrast, custom hardware implementations can use arbitrar-
ily large amounts of on-chip memory, but such a large on-chip mem-
ory with the high bandwidth requirement is costly. For example, the
hardware accelerator described in Senol Cali et al. (2020) requires
76% and 54% of the total chip area and power consumption for the
on-chip memory that stores the DP table.

The unnecessary work stems from computing cells that do not
contain useful information for finding the final result. This applies
to at least 25% of cells on an average for uncorrelated string pairs,
and more for correlated string pairs, as we show in Section 2.4.3.
Doing unnecessary work affects software and hardware implemen-
tations equally because both could use the wasted time to do useful
work instead.

Our goal is to develop a fast and memory-frugal alignment algo-
rithm by addressing the inefficiencies in the GenASM algorithm,
and demonstrate its benefits with high-performance CPU and GPU
implementations.

To this end we propose Scrooge, which includes improvements
to the GenASM algorithm based on three key ideas:

• The DP table can be compressed by storing only the bitwise

AND of multiple values (see Section 2.4.1). The required regions

of the DP table can then be decompressed on-demand during

traceback with a small computational overhead.
• Part of the DP table does not need to be stored because the trace-

back operation cannot reach these entries (see Section 2.4.2).
• Part of the DP table can opportunistically be excluded from cal-

culation if previous rows of the DP table already contain the in-

formation needed for finding the final result (see Section 2.4.3).

These improvements (i) reduce the number of accesses to
GenASMs DP table, (ii) reduce the memory footprint of the DP
table, and (iii) eliminate unnecessary work.
Scrooge is a name for miserly or frugal fictional characters (e.g.,

Dickens 1843), similar to how our proposed algorithm aims to be as
resource-efficient as possible.

We experimentally demonstrate that our improvements yield sig-
nificant benefits across multiple computing platforms and multiple
baseline sequence alignment methods. The CPU version of Scrooge
achieves a 20.1�, 1.7�, and 2.1� speedup over CPU-based imple-
mentations of KSW2 (Li 2018; Suzuki and Kasahara 2018), Edlib
(�So�si�c and �Siki�c 2017), GenASM, respectively. The GPU version of
Scrooge achieves a 4.0�, 80.4�, 6.8�, 12.6�, and 5.9� speedup
over CPU-based implementations of Scrooge, KSW2, and Edlib, and
GPU-based implementations of Darwin-GPU (Ahmed et al. 2020)
and GenASM, respectively. We analytically estimate an ASIC imple-
mentation of Scrooge to use 3.6� less chip area and consume 2.1�
less power compared to the prior state-of-the-art ASIC implementa-
tion of GenASM (Senol Cali et al. 2020) while maintaining the same
throughput.

The contributions of this paper are as follows:

• We develop three novel algorithmic improvements that are ap-

plicable to software and custom hardware implementations of

Scrooge, collectively reducing the memory footprint by 24�, the

number of memory accesses by 12�, and the number of entries

of the DP table calculated by at least 25% on an average com-

pared to GenASM.
• We experimentally demonstrate the significant throughput (i.e.

alignments per second) increase of our improvements for CPU

and GPU implementations of Scrooge.
• We analytically estimate that an ASIC implementation of

Scrooge significantly reduces the chip area and power consump-

tion compared to the prior state-of-the-art ASIC implementation

of GenASM.
• We open-source all code, including high-performance CPU and

GPU implementations of Scrooge, which can be readily used as a

sequence alignment library, and all evaluation scripts.
• We systematically analyze the throughput and accuracy behavior

of GenASM and Scrooge across a range of configurations based

on real and simulated datasets for long and short reads. As the

best configuration of Scrooge depends on the computing plat-

form, we make several observations that can help guide future

implementations of Scrooge.

2 Materials and methods

2.1 Overview
The primary purpose of Scrooge is to accelerate pairwise sequence
alignment through (i) a memory-frugal and efficient algorithm, and
(ii) optimized CPU, GPU, and ASIC implementations.

Scrooge solves the approximate string matching (ASM) problem
with the edit distance (Levenshtein 1966) as the cost metric. That is,
given two strings, text and pattern, Scrooge finds the minimum
number of single-letter substitutions, insertions, and deletions to con-
vert text into pattern. Additionally, the sequence of edits that cor-
responds the edit distance is reported, which is called CIGAR string.

The Scrooge algorithm is based on the GenASM algorithm (see
Section 2.2). Senol Cali et al. (2020) first proposed the GenASM al-
gorithm as an algorithm/hardware co-design targeted for an ASIC
accelerator, and demonstrated GenASMs potential for very high
throughput and resource efficiency. However, as we show in Section
2.3, the GenASM algorithm: (i) requires large amounts of memory
bandwidth, (ii) exhibits a large memory footprint, and (iii) does
some unnecessary work. These inefficiencies limit GenASMs
throughput and resource efficiency on both commodity and custom
hardware, and addressing them is critical.

To this end, we propose Scrooge’s three novel algorithmic
improvements to GenASM in Section 2.4. In Section 3.2, we experi-
mentally demonstrate that these improvements significantly increase
performance on recent CPUs and GPUs. In Section 3.4, we explore
the throughput behavior of GenASM with and without the proposed
improvements across various configurations. We show in Section
3.5 that an ASIC implementation of Scrooge will have significantly
reduced chip area and power consumption compared to the ASIC
designed for GenASM (Senol Cali et al. 2020) while maintaining the
same throughput. In Section 3.6, we explore the accuracy behavior
of GenASM and Scrooge across various configurations.

2.2 GenASM algorithm
The GenASM algorithm (Senol Cali et al. 2020) consists of two subal-
gorithms: GenASM-DC and GenASM-TB. GenASM-DC (see Section
2.2.1) fills a bitvector-based dynamic programming table. The last col-
umn of the table indicates the edit distance between the two input
strings. GenASM-TB (see Section 2.2.2) re-traces this optimal solution
in the constructed table. To better scale with longer input sequences,
GenASM uses a windowing heuristic (see Section 2.2.3).

2.2.1 GenASM-DC algorithm

GenASM-DC uses only cheap bitwise operations to calculate the
edit distance between two strings text and pattern (Senol Cali
et al. 2020). It builds an (nþ1)�(kþ1) dynamic programming

2 Lindegger et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/5/btad151/7085594 by guest on 31 M
ay 2023



(DP) table R, where n¼length(text) and k is the maximum number
of edits considered. The entries of R are m-bit bitvectors, where
m¼length(pattern). Figure 1 shows an example of R after it is con-
structed by GenASM-DC.

THEOREM 1. The entries (bitvectors) of R can be interpreted as
follows:

j� th bit of R½i�½d� ¼ 0()
distanceðtext½i : nÞ;pattern½j : mÞÞ � d

In natural language, Theorem 1 states that the jth bit of the bit-
vector R[i][d] is 0 exactly if the suffix of text starting at charac-
ter i and the suffix of pattern starting at character j differ by at
most d edits. Following this interpretation, the first row d¼dOPT

that has a 0 in the first bit (j¼0) of the leftmost column (i¼0)
indicates that the edit distance between text and pattern is dOPT .
This bit is marked in pink in Fig. 1.

GenASM-DC (Algorithm 1) starts by preprocessing pattern
into four pattern masks, one per character in the alphabet. The pat-
tern mask for character X2 fA;C;G;Tg is a bitvector of length
m¼length(pattern), with a 0 in the ith bit if pattern[i]=¼X. See
Fig. 1 for an example.

GenASM-DC populates the rightmost column (Line 5) and top-
most row (Line 11) of R. The remaining entries are then calculated
from their respective neighbors in the north (Line 13, insertion),
north-east (Lines 14–15, deletion and substitution), and east (Line
16, match) through simple bitwise update rules. We refer to (Baeza-
Yates and Gonnet 1992; Wu and Manber 1992; Senol Cali et al.
2020) for detailed arguments on the correctness of GenASM-DC.
To follow the rest of this paper, it is sufficient to consider: (i) the in-
terpretation of R given in Theorem 1, and (ii) the north-east data
dependencies imposed by Algorithm 1 and shown in Fig. 1.Intra-
Task Parallelism. Senol Cali et al. (2020) enables efficient intra-task
parallelism by identifying that the DP entries within each north-west
to south-east diagonal (one such diagonal is marked in red in Fig. 1)
do not depend on each other, hence they can be computed in
parallel.

2.2.2 GenASM-TB algorithm

For use-cases like read mapping, the pairwise sequence alignment al-
gorithm should report both the edit distance and the corresponding
sequence of edits, which is called the CIGAR string. Obtaining the
CIGAR string involves retracing the origin of the edit distance value
as a linear path through DP entries in their reverse construction
order; this process is called traceback.

GenASM enables efficient traceback operations based on two
key observations: First, if all intermediate values of variables I, D, S,
and M in Algorithm 1 are stored, then one can follow the path of 0 s
in these variables, starting from 0 in the west of R that indicates the
edit distance (highlighted in pink in Fig. 1) and go towards the
north-east corner of R. Whenever a 0 in one of these variables is
traversed, the name of that variable is recorded as an edit (e.g. ’I’
for an insertion). Second, it is sufficient to store only three out of the

four variables (because S can be obtained by shifting D), saving both
memory footprint and bandwidth.

2.2.3 GenASMs windowing heuristic

To provide a linear runtime complexity, Senol Cali et al. (2020) pro-
poses a greedy windowing heuristic. Instead of aligning text and
pattern in a single run of GenASM-DC, the windowing heuristic
runs GenASM-DC multiple times as a subroutine in windows of size
W. In each window, a prefix of size W characters of each sequence
(i.e. text½0 : WÞ and pattern½0 : WÞ) are aligned. The first W� O
characters of the window are greedily considered aligned optimally,
where we call O the window overlap. The smaller strings text½W�
O : nÞ and pattern½W� O : mÞ then remain to be aligned in the next
window.

This approach has three advantages. First, instead of construct-
ing a large table of n�m�k bits, only m

W�O tables of W3 bits must be
constructed, saving memory footprint, data movement, and compu-
tation. Second, the GenASM-DC subroutine now runs over
constant-sized sequences, simplifying its implementation. For ex-
ample, DP entries can be statically assigned to processing elements
(Senol Cali et al. 2020), and the data movement and exact memory
footprint are known at compile time, even if the length of the input
sequences is unknown. Third, the program flow (e.g. the number of
loop iterations per window) is entirely known at compile time, giv-
ing the compiler the ability to optimize.

The windowing strategy is greedy and heuristic, so it is possible
that it could miss the optimal alignment and produce a suboptimal
one instead. This is a key limitation of GenASM and Scrooge. Note
that several state-of-the-art tools do not give any optimality guaran-
tees either, and instead experimentally demonstrate their practical
accuracy, as Scrooge does. This includes greedy alignment techni-
ques like SeGraM (Senol Cali et al. 2022), Darwin (Turakhia et al.
2018), and WFA-adaptive (Marco-Sola et al. 2020), as well as map-
pers based on sparse dynamic programming, like minimap2 (Li
2018). To balance performance and accuracy, the tunable parame-
ters W (window size) and O (window overlap) must be selected ap-
propriately. The parameter W can be understood as the range of
solutions considered, similar to the band width (Ukkonen 1985) in
popular alignment implementations (e.g. �So�si�c and �Siki�c 2017; Li
2018; Suzuki and Kasahara 2018). The parameter O can be under-
stood as the globality of the solutions or inverse greediness. We dem-
onstrate in Section 3: (i) that higher W and O generally improve
accuracy, at the cost of lowering throughput, (ii) that the best choice
of W and O depends on the input dataset (e.g. its error distribution
and read lengths), and (iii) that W¼64 and O¼33 achieve a good
throughput/accuracy tradeoff for long and short read mapping.

Figure 1. An example of DP table R with text¼ACGT and k¼ 4. The bitmasks for

pattern¼ACGA are shown on the right. The colored arrows show the possible ori-

gins and data dependencies of the 0 at d¼ 1, i¼2, j¼2. The values in the red

marked diagonal are mutually independent and thus can be computed in parallel.

Algorithm 1. GenASM-DC Algorithm

Scrooge: a fast and memory-frugal genomic sequence aligner 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/5/btad151/7085594 by guest on 31 M
ay 2023



2.3 Inefficiencies in the GenASM algorithm
We identify three inefficiencies in the GenASM algorithm: (i) it has a
large amount of data movement, (ii) it has a large memory footprint,
and (iii) it does some unnecessary work.

The combination of large amount of data movement and large
memory footprint, which we quantify in Sections 2.3.1 and 2.3.2,
respectively, affects both software implementations running on com-
modity hardware, as well as custom hardware implementations.
Commodity hardware (e.g. CPUs or GPUs) has a fixed amount of
on-chip memory. The DP table might not fit into this on-chip mem-
ory, which introduces three inefficiencies: Data have to be moved a
larger distance, which increases (i) access latency and (ii) access en-
ergy (Boroumand et al. 2018). (iii) The high amount of data move-
ment puts high pressure on memory bandwidth, which is scarce
when accessing data residing off-chip. This causes the entire applica-
tion to become memory bandwidth-bound, thus wasting compute
resources and achieving suboptimal performance. Custom hardware
implementations (e.g. ASICs) can have as large on-chip memory as
needed, but such a large and high-bandwidth on-chip memory
comes at the cost of a large chip area and power consumption
(Boroumand et al. 2021).

Doing unnecessary work trivially wastes runtime and energy. In
Section 2.4.3, we identify the DP entries that are calculated needless-
ly by GenASM, and quantify how frequent they are.

2.3.1 Roofline model

We use the roofline model (Williams et al. 2009; Ofenbeck et al.
2014) to visualize that GenASM has a large amount of data move-
ment, and that its operational intensity (i.e. the number of opera-
tions per byte) is too low to saturate the compute resources of
modern CPUs and GPUs. The roofline model plots the upper limit of
achievable compute throughput for different operational intensities
for a given processor. It consists of horizontal peak compute
throughput rooflines, and sloped memory bandwidth rooflines.

Figure 2 shows the roofline plots for an Intel Xeon Gold 5118
CPU (Intel 2017) and an NVIDIA A6000 GPU (NVIDIA 2020),
including their respective on-chip memory (shared memory in
CUDA), cache, and off-chip memory (global memory in CUDA)
bandwidths (drawn in shades of blue) and peak compute through-
puts (draw in shades of green). GenASMs operational intensity is
drawn in red. We derive the roofline parameters in Section 8 of the
Supplementary Materials.

From Fig. 2, we make three observations. First, if the data resides
off-chip, GenASM is heavily memory bandwidth-bound for a mod-
ern CPU and GPU. This is evidenced by the red (algorithm) and
dark blue (off-chip memory bandwidth) lines intersecting far below
the green (peak compute throughput) line. Second, GenASM would
no longer be memory bandwidth-bound if its computational inten-
sity were �10� higher, because then the red (algorithm) line would
be shifted to the right and intersect with the dark blue (off-chip
memory bandwidth) line above the green (peak compute through-
put) line. The operational intensity could be increased by reducing
GenASMs data movement. Third, if the data reside in the fastest on-
chip memory, GenASM can reach peak compute throughput, even
with the high amount of data movement in the baseline algorithm.
This is evidenced by the red (algorithm) and light blue (L1/shared
memory bandwidth) lines intersecting above the green (peak

compute throughput) line. However, as we show in Section 2.3.2,
GenASMs memory footprint is too large for the typical capacity of
such fast on-chip memories in commodity hardware, and building
large enough on-chip memories is costly.

Based on these observations, we conclude that: (i) GenASM can-
not saturate commodity hardware with computation, and (ii) data
movement should be reduced to address this inefficiency.

2.3.2 Memory footprint

In this section, we demonstrate the overheads associated with
GenASMs large memory footprint.

We derive GenASMs working set memory footprint to be
96.5KiB in Section 9 of the Supplementary Materials. For compari-
son, the Intel Xeon Gold 5118 has 32KiB of L1D cache per core
(Intel 2017) and NVIDIAs Ampere GPU microarchitecture provides
up to 99KiB of high-bandwidth on-chip memory per GPU core
(streaming multiprocessor, SM in CUDA) (NVIDIA 2023). Thus,
one SM can hold the DP table for exactly one GenASM problem in-
stance in its on-chip memory. One thread block of two warps (i.e.
2�32 threads) can work on a single GenASM problem instance, but
this does not saturate the compute resources in the SM. This is be-
cause modern GPUs are designed to alternate between executing
multiple independent instruction streams for the purpose of hiding
the latency of instructions (Lindholm et al. 2008). Underutilization
of the compute resources in an SM due to too few independent in-
struction streams is called low occupancy and causes the unused
computational resources to be wasted (NVIDIA 2023). Hence, the
occupancy should be increased by working on multiple problem
instances per SM. Multiple problem instances can fit into memory
by either reducing the memory footprint per problem instance, or
placing the DP tables into the GPUs off-chip memory, which has a
much larger capacity. Our goal is the former, as we show in Section
2.3.1 that the latter is not an efficient a solution due to the off-chip
memory’s limited bandwidth.

Custom hardware implementations (e.g. ASICs) can potentially
have as large on-chip memory as needed. For example, the GenASM
ASIC (Senol Cali et al. 2020) uses scratchpads of 96.5 KiB each to
hold the DP tables. However, these scratchpads occupy 76% of the
total chip area and consume over 54% of the chip power. This limits
the performance achievable with a given chip area and power
budget.

In summary, GenASM has a large memory footprint compared
to typical on-chip memory capacities in commodity hardware, and
while sufficiently large on-chip scratchpads can be designed for cus-
tom hardware implementations, it is costly to do so.

2.4 Scrooge
We have shown in Section 2.3 that GenASM has a high amount of
data movement and high memory footprint per problem instance.
We have elaborated that this combination either limits performance
(on commodity hardware), or requires expensive large on-chip
memories (on custom hardware), both of which are undesirable.
Thus, our strategy is to reduce the GenASM algorithm’s memory
footprint as much as possible while introducing minimal computa-
tional overhead. We present three novel algorithmic improvements
that collectively achieve a 24� reduction in memory footprint, as
well as a 12� reduction in data movement from the memory that
holds the DP table.

2.4.1 Improvement 1—store entries, not edges

As we explain in Section 2.2.2, GenASM stores 3 bitvectors per
entry of the table R to enable traceback. If we imagine a graph where
the entries of R are nodes and the intermediate bitvectors are edges
connecting their source and target entries, GenASM stores 3 ingoing
edges for most nodes (Fig. 3). We propose to trade off the majority
of this memory footprint for a small increase in computation with
the store entries, not edges (SENE) improvement. SENE regenerates
the required edges on-demand during traceback from stored nodes
(entries of table R) by applying the update rules in Algorithm 1 on
requested neighbor entries.

Figure 2. The roofline models of (a) an Intel Xeon Gold 5118 CPU and (b) an

NVIDIA A6000 GPU.

4 Lindegger et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/5/btad151/7085594 by guest on 31 M
ay 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad151#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad151#supplementary-data


Cost and benefits. Since traceback explores only a single path
across the table R, only OðWÞ edges are regenerated, making the
overhead of this extra computation small compared to computing
the table of OðW2Þ entries. Storing R requires storing 65� 65 entries
of 64 bits each, for a total of 33;800B � 33kiB. The previous mem-
ory footprint was 96.5kiB as derived in Section 2.3.2, yielding a
96:5
33 ¼ 2:92 � 3� improvement in memory footprint. Since each of

these locations is still only written to once during the construction of
R, SENE also reduces the data movement from the memory that
holds the DP table by 3�.

2.4.2 Improvement 2—discard entries not used by traceback

The windowing heuristic (see Section 2.2.3) mandates that trace-
back covers only the first W� O characters of each window. This
means that traceback never reads the table entries of the last O char-
acters in each window.

We propose to discard the entries that can never be reached by
traceback, an improvement we call discard entries not used by trace-
back (DENT). These include the last O columns of R and the last
O�1 bits of every bitvector. The resulting DP table consists of W�
Oþ 1 columns, Wþ 1 rows, and W� Oþ 1 bits per entry. Figure 4
shows an example for W¼4 and O¼3, where Scrooge stores only
the leftmost two columns and leftmost 2 bits per entry, because
traceback does not reach the rightmost three columns and rightmost
2 bits per entry.

Due to the fixed word sizes and word alignment requirements of
commodity hardware, the number of bits stored for each bitvector
cannot be chosen freely. We show in Section 3.2 that for a modern
GPU O ¼ 33 achieves the best throughput results for W ¼ 64, be-
cause the stored bitvectors perfectly fit into a 32-bit word. In con-
trast, Senol Cali et al. (2020) use O¼24 for its ASIC design, which
we show to be suboptimal on commodity hardware. Note that
increasing O improves accuracy, see Section 2.2.3 for an intuition
and Section 3.6 for experimental results.

Cost and benefits. DENT incurs two computational overheads:
First, the bits to store have to be determined and extracted from the
bitvectors. Second, increasing O from 24 to 33 means the algorithm
makes nine characters less progress per window.

By discarding the right half of each bitvector and the rightmost O
columns of R, DENT improves the memory footprint by

W
W�Oþ1� Wþ1

W�Oþ1 ¼ 64
32� 65

32 � 4�. We describe in Section 1 of the

Supplementary Materials how DENT can be extended to store only
half the rows of R for a total 8� memory footprint reduction.

By the same calculation, the number of writes to table R is
reduced by approximately 4�, assuming the forefront diagonal
(marked red in Fig. 1) is kept in registers and communicated
directly.

2.4.3 Improvement 3—early termination

The edit distance is determined by the highest row of R that contains
a 0 in the most significant bit in the leftmost column. Traceback
starts from this entry. Since entries are constructed from their north,
north-east, and east neighbors, the traceback path can only go to the
north, north-east, and east. It can never go south. Thus, at no point
do the rows of higher cost than distanceðpattern;textÞ contain
useful information for traceback (see Fig. 5 for an example).

We propose building R row-wise, and terminating the algorithm
early as soon as the most significant bit in the first entry of the cur-
rent row is a 0.

Cost and benefits. Early termination (ET) does not yield a con-
stant factor improvement in either memory footprint or runtime: If
distanceðpattern;textÞ ¼ W, we are not able to terminate early at
all. However, typical input pairs incur fewer than W edits in a single
window. For correct candidate pairs, the edit distance will be low,
e.g. up to 15% for long reads (Alser et al. 2021). Even uncorrelated
random sequence pairs of length W over a 4-letter alphabet have an
edit distance of at most 3

4 W on an average, as we prove in Section 10
of the Supplementary Materials. Thus, on an average, Scrooge can
skip at least 25% of the entries of R, saving computation as well as
data movement (see Section 2.3.1).

Conflict with intra-task parallelism. Recall from Section 1 that
GenASM provides the option for intra-task parallelism. Exploiting
this parallelism requires the available processing elements to build R
in a diagonal-wise fashion, as shown in Fig. 1. However, as we de-
scribe in Section 2.4.3, to make full use of ET, R should be built
row-wise. As a compromise, we implement ET in a diagonal-wise
fashion in our GPU implementation. As in the row-wise version,
construction on R stops as soon as the leftmost processing element
finds a 0 in the most significant bit. Due to the diagonal-wise com-
putation, the other processing elements have already computed sev-
eral rows ahead at this point, i.e. done unnecessary work. For this
reason, the benefit of ET is limited in intra-task parallel implementa-
tions, such as our GPU implementation, while being much
more significant in row-wise implementations, such as our CPU
implementation. We reaffirm these effects experimentally in
Section 3.4.

2.5 Implementation
We implement Cþþ versions of our algorithm for x86 CPUs and
NVIDIA GPUs. They are exposed as simple library functions for
pairwise sequence alignment. Each improvement and implementa-
tion constant can be easily configured at compile time through pre-
processor macros. The implementations, as well as baselines and
evaluation scripts, are available at https://github.com/cmu-safari/
Scrooge.

CPU. The CPU version converts the input pairs to a two-bit-per-
basepair encoding, but padded to 8 bits. Each thread works on a sin-
gle pairwise alignment at a time and obtains sequence pairs from a
global queue. During each call to the GenASM-DC subroutine, the
thread calculates the DP table R in a row-wise fashion.

GPU. The GPU version is implemented using CUDA 11.1
(NVIDIA 2023) and targets GPUs of compute capability 7.0 and
higher (https://developer.nvidia.com/cuda-gpus). The input sequence
pairs are converted to a two-bit-per-basepair encoding and trans-
ferred to the GPU. Each thread block works on a single pairwise
alignment at a time and obtains sequence pairs from a global queue.
During each call to the GenASM-DC subroutine, the thread block
calculates the DP table R in a diagonal-wise fashion, and each of the
W threads in the thread block calculates a single column of R.
Threads resolve their mutual data dependencies using warp shuffle
instructions within a warp and using shared memory across warps.
A single thread per warp executes the traceback operation. The size

Figure 4. DENT exploits that the windowing heuristic stops traceback after the first

W� O edges are crossed (here W¼4 and O¼3). The area never reached by traceback

can be discarded.

Figure 3. Per cell, GenASM stores three edges for traceback. Scrooge with SENE

stores only the DP entry itself instead; the needed edges are regenerated on the fly

during traceback.

Scrooge: a fast and memory-frugal genomic sequence aligner 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/5/btad151/7085594 by guest on 31 M
ay 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad151#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad151#supplementary-data
https://github.com/cmu-safari/Scrooge
https://github.com/cmu-safari/Scrooge
https://developer.nvidia.com/cuda-gpus


of the CIGAR string is not known ahead of time, hence it is stored
as a linked list in global memory.

3 Results

3.1 Evaluation methodology
We demonstrate the benefits of Scrooge (along with each of our
three algorithmic improvements) using both CPU and GPU imple-
mentations by comparing it to the recent WFA lm (Eizenga and
Paten 2022), WFA (Marco-Sola et al. 2020), KSW2 (Suzuki and
Kasahara 2018) (the state-of-the-art aligner used in minimap2; Li
2018), Edlib (�So�si�c and �Siki�c 2017) [the state-of-the-art implementa-
tion of Myers’ bitvector algorithm (Myers 1999) used in Medaka
(https://github.com/nanoporetech/medaka) and Dysgu (Cleal and
Baird 2022)], CUDASWþþ3.0 (Liu et al. 2013), Darwin-GPU
(Ahmed et al. 2020), and our CPU and GPU implementations of the
GenASM algorithm.

We evaluate the throughput and accuracy of Scrooge via three
classes of experiments. First, we compare the throughputs of all
evaluated tools and show that Scrooge outperforms state-of-the-art
aligners. Second, we evaluate the throughput benefits of Scrooge’s
algorithmic improvements and its sensitivity to different choices for
W and O. Third, we evaluate Scrooge’s accuracy. We define through-
put as the number of pairwise sequence alignments per second for a
given dataset.

We run all CPU evaluations on a dual-socket Intel Xeon Gold
5118 (2� 12 physical cores, 2� 24 logical cores) (Intel 2017) at
3.2 GHz with 196GiB DDR4 RAM. We run all GPU evaluations on
an NVIDIA A6000 (NVIDIA 2020). We repeat all CPU and GPU
experiments 10 times and 5 times, respectively, and average the
results.

3.1.1 Datasets

We simulate 115 240 PacBio reads from the human genome using
PBSIM2 (Ono et al. 2020), each of length 10 kilobases and with a
target error rate of 5%. We obtain the ground truth location in the
reference genome, and the alignment (CIGAR string) of each read
from PBSIM2, thus obtaining 115 240 candidate pairs for our long
read groundtruth dataset. We map 500 of the simulated PacBio
reads to the human genome using minimap2 (Li 2018) and obtain
all chains (candidate locations) it generates using the -P flag,
138 929 locations in total. This constitutes our long read dataset.
We map 100 000 Illumina short reads from the dataset with acces-
sion number SRR13278681 to the human genome using minimap2
(Li 2018) and obtain all chains (candidate locations) it generates
using the -P flag, 9 612 222 locations in total. This constitutes our
short read dataset. We show further statistics of the datasets in
Section 2 of the Supplementary Materials, including error, error
rate, and sequence length distributions. The exact datasets and com-
mand lines that produced all our results, including those in the
Supplementary Materials, are available at our GitHub repository:
https://github.com/cmu-safari/Scrooge.

3.2 Throughput
We run the CPU-based tools using 48 threads. We set the band
width (i.e. the edit distance threshold) of Edlib and KSW2 to 15%

of the read length. We configure WFA-adaptive as recommended by
its authors. We take the fastest configuration from a parameter
sweep for Darwin-GPU. For a meaningful comparison, we ensure
that Darwin-GPUs alignment component fully aligns all sequence
pairs. We explain our changes to Darwin-GPU in Section 7 of the
Supplementary Materials. We empirically configure Scrooge’s CPU
and GPU implementations with W¼64, O¼33 for the long read
dataset and W¼32, O¼17 for the short read dataset, and enable the
combinations of improvements that yield the best throughput. The
exact function calls and parameters we used for each tool can be
found in our GitHub repository and in Section 7 of the
Supplementary Materials. Figure 6 shows that Scrooge significantly
speeds up the alignment of long and short reads over all baselines. In
particular, the CPU implementation of Scrooge has 2.1� higher
throughput (i.e. pairwise sequence alignments per second) than our
CPU implementation of GenASM for long reads and 3.8� higher
throughput for short reads. The GPU implementation of Scrooge
has 5.9� higher throughput than our GPU implementation of
GenASM for long reads and 2.4� higher throughput for short reads.
The CPU and GPU speedups over GenASM are entirely due to
Scrooge’s algorithmic improvements (i.e. SENE, DENT, ET) since
our Scrooge and GenASM implementations are similarly optimized.

Note that WFA, KSW2, CUDASWþþ3.0, and Darwin solve a
more general formulation of the alignment problem with affine gap
scores (Gotoh 1982). This puts them at a performance disadvantage.
In contrast, Edlib (�So�si�c and �Siki�c 2017), GenASM (Senol Cali et al.
2020), and Scrooge solve a less general but more efficient formula-
tion of the alignment problem with unit costs (edit distance or
Levenshtein distance; Levenshtein 1966). We list the capabilities of
each tool in Section 6 of the Supplementary Materials.

3.3 Thread scaling
We explore the scaling of each CPU tool as the number of CPU
threads increases. For each evaluated CPU tool, we sweep the num-
ber of CPU threads and measure the throughput on the long read
and short read datasets. Figure 7 shows the results normalized to
each tool’s throughput with four threads (for readability). We make
three key observations. First, most tools scale almost linearly up to
24 threads for both datasets, but do not scale significantly from 24
to 48 threads. The system we perform our experiments on has 24
physical cores and 48 logical cores (Intel 2017), thus we hypothesize
that the tools do not benefit from simultaneous multithreading
(Hyper-Threading in Intel terminology) (Marr et al. 2002) due to
the low latencies of simple arithmetic and bitwise instructions (Fog
2021), which is what the underlying alignment algorithms of the
tools primarily consist of. Second, we observe that Edlib’s perform-
ance decreases from 16 to 20 threads in the long read dataset. Since
this does not occur in the short read dataset, we hypothesize that
Edlib suffers from cache thrashing in the long read dataset and that
the data fits into the cache for the short read dataset. Third, we ob-
serve that both evaluated functions of KSW2 do not scale at all past
24 threads in the long read dataset. We hypothesize that KSW2 is
bandwidth-bound in this case.

3.4 Sensitivity analysis
We explore the throughput benefits of our algorithmic improve-
ments in parameter sweeps over (i) the number of GPU and CPU
threads, (ii) the window size (W) parameter, and (iii) the window
overlap (O) parameter.

GPU threads. First, we run a scaling experiment on a GPU for
GenASM, Scrooge with the SENE improvement, Scrooge with the
DENT improvement, and Scrooge with all three proposed improve-
ments, with the DP table placed in either shared memory (Fig. 8a) or
global memory (Fig. 8b). Based on Fig. 8, we make five observa-
tions. First, we observe that SENE and DENT individually improve
performance when the DP table is placed in either shared or global
memory. Second, we observe that SENE, DENT, and ET can be
combined for greater benefits. Third, we observe that placing the DP
table in shared (on-chip) memory achieves the best performance, but
only when both proposed memory footprint improvements

Figure 5. The colored edges indicate the path taken by traceback for W¼4 and

O¼0. Rows below the edit distance do not contain useful information for trace-

back. Thus, they do not need to be computed (Early Termination).

6 Lindegger et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/5/btad151/7085594 by guest on 31 M
ay 2023

https://github.com/nanoporetech/medaka
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad151#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad151#supplementary-data
https://github.com/cmu-safari/Scrooge
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad151#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad151#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad151#supplementary-data


(i.e. SENE and DENT) are applied. This is because only with SENE
and DENT is the memory footprint small enough to keep sufficient-
ly many problem instances in the shared memory to utilize the com-
pute resources in each SM (see Section 2.3.2) well. Fourth, in
configurations where the memory footprint is not reduced sufficient-
ly (e.g. with only DENT or SENE), using global (off-chip) memory
can be faster than using shared memory, because global memory has
sufficient capacity to fit many problem instances, utilizing compute
resources better than shared memory despite the global memory’s
limited bandwidth. Finally, we observe that the baseline GenASM
algorithm cannot run using shared memory at all, although we
showed in Section 2.3.2 that a single instance of the baseline DP
table has a footprint of 98.5KiB and thus should use fit into the
99KiB of shared memory. This is because our implementation
requires some additional memory, such as for communication be-
tween processing elements. Thus, we cannot fit even a single in-
stance into shared memory with GenASM.

We ran the experiment for all seven possible combinations of
our three improvements (i.e. SENE, DENT, and ET). Full results are
shown in Section 11 of the Supplementary Materials. In particular,
we observe no significant benefits for GPUs from ET, which is why
we omit it in Fig. 8 for readability.

CPU threads. We run a similar scaling experiment on a CPU for
GenASM, Scrooge with the SENE improvement, Scrooge with the
ET improvement, and Scrooge with the SENE and ET improve-
ments. From Fig. 9a, we make three observations: First, we observe
that ET improves performance significantly. This contrasts with our
GPU implementation, where ET did not show significant benefits.
This is because our CPU implementation builds the DP table R row-
wise, while our GPU implementation builds R diagonal-wise (see
Section 2.4.3). Second, SENE improves performance consistently,
but less significantly than in the GPU case. This is because modern
CPUs have relatively large on-chip cache capacities (e.g. 1MiB L2
cache per core on the Xeon Gold 5118 we evaluated on Intel 2017).

Thus, the DP table easily fits into the L2 cache even without
Scrooge’s algorithmic improvements, and hence reducing the mem-
ory footprint is not as important. Third, Scrooge scales linearly up
to 24 threads but does not scale at all from 24 to 48 threads, a trend
we observe for all evaluated tools (see Section 3.3).

We ran the experiment for all seven possible combinations of
our three improvements (i.e. SENE, DENT, and ET). Full results are
shown in Section 12 of the Supplementary Materials. In particular,
we observe no significant benefits for CPUs from DENT, and in
some cases even a slowdown, which is why we omit it in Fig. 9 for
readability.

The three key takeaways from these experiments are that: (i) the
SENE and DENT memory improvements yield significant benefits if
performance is limited by memory bandwidth or capacity (e.g. in
the GPU experiment), (ii) some of the algorithmic improvements can
cause slight performance loss in practice (e.g. DENT in the CPU ex-
periment), and (iii) the ideal combination of improvements depends
on the computation platform (e.g. the available on-chip cache
capacity) and the exact implementation (e.g. row-wise or diagonal-
wise).

Window size (W) and overlap (O). We explore the sensitivity of
Scrooge’s throughput to the window size parameter W (see Section
2.2.3) on CPUs. We vary W and set O¼W//2þ1. Note that larger W
improves accuracy (see Section 2.2.3).

From the CPU results in Fig. 9b we make two observations:
First, we observe that performance generally reduces as W increases.
This is because the number of calculated bits per window increases
cubically with increasing W. Second, we observe a sudden through-
put dropoff when W increases past 64. This is because the word size
of the Xeon Gold 5118 CPU is 64 bits; thus, if W> 64, each bitvector
operation has to be emulated using multiple word-sized machine
instructions. This emulation is conceptually simple (e.g. carry over
shifted bits) but requires several additional instructions, causing the
performance dropoff. For example, in our implementation, a single
65-bit left shift is performed using two 64-bit left shifts, a 64-bit
right shift, and a bitwise or operation.

We repeat the same study on a GPU and observe the same trends:
Increasing W reduces performance, and if the bitvectors are longer
than the machine word (32 bits on the evaluated GPU), bit opera-
tions become significantly more expensive. We plot the GPU results
and give detailed explanations in Section 4 of the Supplementary
Materials.

We repeat a similar study for the window overlap (O) in Section
5 of the Supplementary Materials. We observe that as O increases,
performance generally reduces. However, with Scrooge’s optimiza-
tions, larger values of O can sometimes increase performance. O¼33
gives the best result. Thus, we choose it as the default operating
point of Scrooge for CPUs and GPUs.

3.5 Area and power consumption of an ASIC

implementation
The GenASM ASIC designed in Senol Cali et al. (2020) uses a large
on-chip scratchpad to store bitvectors for traceback. This scratchpad
alone accounts for 0.256 mm2 (76%) of silicon area and 0.055 W
(54%) of power out of a total of 0.334 mm2 and 0.101 W per accel-
erator core. Our proposed algorithmic improvements can be applied
to that ASIC design through minor modifications. We estimate the
area and power cost of such an ASIC implementation of Scrooge
analytically as follows:

Figure 6. Scrooge’s alignment throughput relative to various CPU and GPU baselines.

Figure 7. Speedup of each CPU tool as the number of CPU threads increases.

Figure 8. Scaling experiments of our GPU implementation with W¼64, O¼ 33,

when the DP table placed in (a) shared memory and (b) global memory.

Figure 9. (a) Scaling and (b) sensitivity to window size of our CPU implementation.

Scrooge: a fast and memory-frugal genomic sequence aligner 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/5/btad151/7085594 by guest on 31 M
ay 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad151#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad151#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad151#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad151#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad151#supplementary-data


1. We start with the DC-logic, DC-SRAM, and TB-logic area and

power numbers reported in Senol Cali et al. (2020)

2. We estimate Scrooge’s TB-SRAM area and power cost with

CACTI 7 (Balasubramonian et al. 2017), as in Senol Cali et al.

(2020), but with Scrooge’s reduced memory footprint and data

movement numbers.

3. We account for the logic overhead of SENE by adding the area

and power of a single DC processing element (Senol Cali et al.

2020) to the traceback (TB) logic cost, which accounts for

recomputing edges during traceback. We assume no overhead

for SENE during the construction of R, since the ANDed bitvec-

tors are already computed.

4. We assume no overheads for applying DENT since it simply

masks out bits when storing the bitvectors, which is trivial in

hardware.

Table 1 lists the area and power breakdowns obtained with this
methodology, and the breakdown of (Senol Cali et al. 2020) as a
comparison point. In particular, we observe a 3.6� reduction in
chip area and a 2.1� reduction in chip power consumption, while
maintaining the same throughput. These improvements come from
(i) the reduced TB SRAM capacity, and (ii) the reduced TB SRAM
bandwidth.

The key takeaway from this estimate is that Scrooge’s algorith-
mic improvements (i) are directly applicable to and (ii) yield signifi-
cant benefits over an ASIC implementation of GenASM.

3.6 Accuracy
The GenASM algorithm (Senol Cali et al. 2020), which Scrooge is
based on, is a greedy heuristic algorithm, as explained in Section
2.2. Our improvements do not introduce additional inaccuracy. In
fact, Scrooge’s default operating point of W¼64 O¼33 increases ac-
curacy (see Section 2.2.3) over GenASM’s default operating point of
W¼64 O¼24 (Senol Cali et al. 2020). The following analysis
explores the accuracy of both Scrooge and GenASM across different
operating points. At any given operating point, Scrooge produces
the same alignments (and hence accuracy) as GenASM at that oper-
ating point. We run three types of experiments. First, we evaluate
the alignment quality of Scrooge compared to all evaluated baseline
tools. Second, we explore in detail the sensitivity of accuracy to the
window size W. Third, we explore in detail the sensitivity of accuracy
to the window overlap O.

Alignment quality compared to baseline tools. We explore the
quality of the alignments (CIGAR strings) generated by Scrooge,
compared to the baseline tools. To measure alignment quality, we
count the number of correctly aligned bases according to the ground
truth alignments reported by the PBSIM2 simulator for the long
read groundtruth dataset. For Scrooge we repeat the evaluation for
multiple values of W and set O¼W//2þ1. We make three observa-
tions from Fig. 10. First, the number of bases correctly aligned by
Scrooge increases as the window size W increases. Second, Scrooge
correctly aligns approximately the same number of bases as all of
the baselines if W� 64. Third, no tool can consistently produce the
exact ground truth alignment. By manually inspecting such mis-
alignments of each tool, we determine this is because of two reasons.
First, indels in homopolymers are ambiguous and cannot reliably be
retrieved with any aligner. Second, sometimes the ground truth

alignment is suboptimal in terms of alignment score and/or edit dis-
tance. In these cases, the aligners’ goal of finding the optimal scoring
alignment produces high-scoring but wrong alignments.

We explore the sensitivity of Scrooge’s accuracy to the window
size parameter W (see Section 2.2.3). We analyze the accuracy com-
pared to optimal edit distance solutions, such as Edlib (�So�si�c and
�Siki�c 2017). We evaluate the generated alignments based on mini-
map2’s default affine gap scoring model. We vary W and set O¼W//
2þ1. For each experiment, we record the 0.5, 0.1, 0.01, and 0.001
percentile alignment scores (i.e. for a dataset of 1000 pairs, the 0.5
percentile would be the 500th worst alignment score, the 0.01 per-
centile would be the 10th worst alignment score) of Scrooge and
GenASM (which produce the same results for the same choice of W
and O) and compare to Edlib as an ideal upper bound.

Sensitivity to window size (W). From Fig. 11, we make three
observations: First, accuracy depends on the dataset. Second, small
window sizes are sufficient for Scrooge and GenASM to find the op-
timal edit distance alignment for most of the sequence pairs. For ex-
ample, the median alignment score is already optimal at W¼32 for
the long read groundtruth dataset and at W¼8 for the short read
dataset. Third, to find the optimal alignment for a few worst-case
pairs, large window sizes are required: For example, the optimal
alignment for the 0.001 percentile in the long read groundtruth
dataset is only found for W� 80. We manually inspect several of
these ‘difficult’ sequence pairs to find the reason for their apparent
difficulty. We observe sequence pairs are aligned poorly if they con-
tain extremely noisy and repetitive sub-sequences. However, these
pairs will be aligned optimally if the window size is larger than the
length of the noisy sub-sequences. We illustrate this observation
with an example sequence pair from the long read groundtruth data-
set in Section 13 of the Supplementary Materials.

Sensitivity to window overlap (O). We explore the sensitivity of
Scrooge’s accuracy to the window overlap parameter O (see Section
2.2.3). We sweep over O and run experiments for each
W 2 f32;64;96; 128g. For each experiment, we record the 0.01 per-
centile alignment score of Scrooge/GenASM and compare to Edlib
as an ideal upper bound.

From Fig. 12, we make two observations: First, accuracy
improves as O increases. Second, we observe that W and O need to be
balanced to achieve good accuracy. For example, the accuracy loss
of a too small W¼32 for the long read groundtruth dataset cannot
be overcome with even large O¼30. Similarly, choosing O close to 0
hurts accuracy for both datasets, even when W is large.

The two key takeaways from these experiments are that (i) W and
O need to be chosen per dataset, and (ii) W and O should be increased
or reduced together for the best accuracy.

4 Discussion and conclusion

To our knowledge, this is the first paper to: (i) demonstrate the com-
putational inefficiencies in the GenASM algorithm, (ii) address them
with three improvements in our new Scrooge algorithm, (iii) rigor-
ously demonstrate the computational benefits of Scrooge over
GenASM for CPU, GPU, ASIC implementations, and (iv) rigorously
analyze the accuracy of GenASM and Scrooge under multiple differ-
ent configurations.

We have already extensively compared to WFA (Marco-Sola
et al. 2020), KSW2 (Li 2018; Suzuki and Kasahara 2018), Edlib
(�So�si�c and �Siki�c 2017), CUDASWþþ3.0 (Liu et al. 2013), and

Table 1. Estimated area and power of a Scrooge ASIC with W¼ 64 and O¼ 33.

Area (mm2) Power (W)

ASIC implementation DC logic TB logic DC SRAM TB SRAM Total DC logic TB logic DC SRAM TB SRAM Total

Senol Cali et al. (2020) 0.049 0.016 0.013 0.256 0.334 0.033 0.004 0.009 0.055 0.101

Scrooge 0.049 0.016 0.013 0.014 0.093 0.033 0.004 0.009 0.003 0.049

8 Lindegger et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/5/btad151/7085594 by guest on 31 M
ay 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad151#supplementary-data


Darwin-GPU (Ahmed et al. 2020). Several other works accelerate se-
quence alignment: NVBIO (https://github.com/NVlabs/nvbio) is a
multipurpose library for accelerating bioinformatics applications
using GPUs, but is no longer maintained. Gasal2 (Ahmed et al.
2019) is a recent GPU aligner limited to short reads. CUDAlign4.0
(de Oliveira Sandes et al. 2016) can efficiently align a single pair of
extremely long (chromosome-sized) sequences, with use cases such
as whole genome alignment. Adept (Awan et al. 2020) is a recent
GPU aligner for short and long reads but does not support trace-
back, i.e. only reports the alignment score.

The Darwin accelerator (Turakhia et al. 2018) implements a
Smith–Waterman–Gotoh accelerator for long reads using a similar
greedy strategy to GenASM called tiling. We have compared
Scrooge to the GPU implementation of this algorithm, Darwin-GPU.
GenASM, Scrooge, and Darwin demonstrate the significant benefits
of greedy algorithms, based on which there are at least two interest-
ing future directions to explore. First, a suitability study of different
algorithms to greedy heuristics, such as Myers’ bitvector algorithm
(Myers 1999), Hyyrö’s banded bitvector algorithm (Hyyrö 2003),
or the recently proposed wavefront algorithm (Marco-Sola et al.
2020). Second, an exploration of the effectiveness of our algorithmic
improvements for other implementations of greedy windowing or
tiling, like Darwin. We believe the DENT improvement can be
applied directly to Darwin.

We have demonstrated the computational benefits of Scrooge
over a variety of state-of-the-art baselines for both commodity hard-
ware (i.e. CPUs and GPUs) and custom hardware (i.e. ASICs). We
have demonstrated the accuracy of Scrooge for multiple datasets.
We conclude that Scrooge has clear benefits across a wide range of
computing platforms.

Acknowledgements

The authors acknowledge the generous gifts of our industrial partners, espe-

cially Google, Huawei, Intel, Microsoft, VMware, and Xilinx.

Supplementary data

Supplementary data is available at Bioinformatics online.

Conflict of interest

None declared.

Funding

This work was partially supported by the Semiconductor Research Corporation,

the ETH Future Computing Laboratory, and the BioPIM project.

References

Ahmed N, Lévy J, Ren S et al. GASAL2: a GPU accelerated sequence alignment

library for high-throughput NGS data. BMC Bioinformatics 2019;20:520.

Ahmed N, Qiu TD, Bertels K et al. GPU acceleration of Darwin read overlap-

per for de novo assembly of long DNA reads. BMC Bioinformatics 2020;21:

388.

Alser M, Bingol Z, Cali DS et al. Accelerating genome analysis: a primer on an

ongoing journey. IEEE Micro 2020a;40:65–75.

Alser M, Shahroodi , Gómez-Luna J et al. SneakySnake: a fast and accurate

universal genome pre-alignment filter for CPUs, GPUs and FPGAs.

Bioinformatics 2020b;36:5282–90.

Alser M, Lindegger J, Firtina C et al. From molecules to genomic variations:

accelerating genome analysis via intelligent algorithms and architectures.

Comput Struct Biotechnol J 2022;20:4579–99.

Alser M, Hassan H, Kumar A et al. Shouji: a fast and efficient pre-alignment

filter for sequence alignment. Bioinformatics 2019;35:4255–63.

Alser M, Rotman J, Deshpande D et al. Technology dictates algorithms: recent

developments in read alignment. Genome Biol 2021;22:249.

Awan MG, Deslippe J, Buluc A et al. ADEPT: a domain independent sequence

alignment strategy for GPU architectures. BMC Bioinformatics 2020;21:

406.

Backurs A, Indyk P. Edit distance cannot be computed in strongly subqua-

dratic time (unless SETH is false). STOC 2015:51–8.

Baeza-Yates R, Gonnet GH. A new approach to text searching. Commun

ACM 1992;35:74–82.

Balasubramonian R, Kahng AB, Muralimanohar N et al. CACTI 7: new tools

for interconnect exploration in innovative off-chip memories. ACM Trans

Archit Code Optim 2017;14:1–25.

Benkrid K, Liu Y, Benkrid A. A highly parameterized and efficient FPGA-

based skeleton for pairwise biological sequence alignment. IEEE Trans

VLSI Syst 2009;17:561–70.

Boroumand A, Ghose S, Kim Y et al. Google workloads for consumer devices:

mitigating data movement bottlenecks. In: ASPLOS. Vol. 53. 2018.

316–31.

Boroumand A, Ghose S, Akin B et al. Google neural network models for edge

devices: analyzing and mitigating machine learning inference bottlenecks.

In: PACT 2021. 159–72.

Cleal K, Baird DM. Dysgu: efficient structural variant calling using short or

long reads. Nucleic Acids Res 2022;50:e53.

de Oliveira Sandes EF, Miranda G, Martorell X et al. CUDAlign 4.0: incre-

mental speculative traceback for exact chromosome-wide alignment in GPU

clusters. IEEE Trans Parallel Distrib Syst 2016;27:2838–50.

Dickens C. A Christmas Carol. London: Chapman & Hall, 1843.

Eizenga JM, Paten B. Improving the time and space complexity of the WFA al-

gorithm and generalizing its scoring. biorXiv, 2022, preprint not peer

reviewed.

Fei X et al. FPGASW: accelerating large-scale Smith–Waterman sequence

alignment application with backtracking on FPGA linear systolic array.

Interdiscip Sci 2018;10:176–88.

Fog A. 2021. Lists of instruction latencies, throughputs and micro-operation

breakdowns for Intel, AMD, and VIA CPUs.

Fujiki D, Subramaniyan A, Zhang T et al. GenAx: a genome sequencing accel-

erator. ISCA 2018;69–82.

Figure 12. Sensitivity of accuracy to O, reporting the first percentile (worst 1%)

alignment score for each configuration. Edlib is an upper bound for the scores

achievable with the edit distance metric.

Figure 10. Fraction of correctly aligned bases according to the ground truth align-

ments in the long read groundtruth dataset.

Figure 11. Sensitivity of Scrooge’s accuracy to W. We show the achieved alignment

score of the 0.001, 0.01, 0.1, and 0.5 (median) quantiles, and compare to Edlib as

an upper bound for the accuracy achievable with the edit distance metric.

Scrooge: a fast and memory-frugal genomic sequence aligner 9

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/5/btad151/7085594 by guest on 31 M
ay 2023

https://github.com/NVlabs/nvbio
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad151#supplementary-data


Fujiki D, Wu S, Ozog N et al. SeedEx: a genome sequencing accelerator for op-

timal alignments in subminimal space. MICRO 2020;937–50.

Gotoh O. An improved algorithm for matching biological sequences. J Mol

Biol 1982;162:705–8.

Hoffmann J, Zeckzer D, Bogdan M. Using FPGAs to accelerate Myers bit-

vector algorithm. MEDICON 2016;57:535–41.

Hyyrö H. A bit-vector algorithm for computing Levenshtein and Damerau

edit distances. Nord J Comput 2003;10:29–39.

Impagliazzo R, Paturi R. On the complexity of k-SAT. J Comput Syst Sci

2001;62:367–75.

Intel. 2017. Intel Xeon Gold 5118 datasheet.

Levenshtein VI. Binary codes capable of correcting deletions, insertions, and

reversals. Soviet Physics Doklady 1966;10:707–10.

Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics

2018;34:3094–100.

Li Z, Chen Y Mu D et al. Comparison of the two major classes of assembly

algorithms: overlap–layout–consensus and De-Bruijn-graph. Brief Funct

Genomics 2011;11:25–37.

Lindholm E, Nickolls J, Oberman S et al. NVIDIA tesla: a unified graphics and

computing architecture. IEEE Micro 2008;28:39–55.

Liu Y, Wirawan A, Schmidt B. CUDASWþþ 3.0: accelerating Smith-

Waterman protein database search by coupling CPU and GPU SIMD

instructions. BMC Bioinformatics 2013;14:117.

Mansouri Ghiasi N, Park J, Mustafa H et al. GenStore: a high-performance in-

storage processing system for genome sequence analysis. ASPLOS 2022;

635–54.

Marco-Sola S, Moure JC, Moreto M, Espinosa A. Fast gap-affine pairwise

alignment using the wavefront algorithm. Bioinformatics 2020;37:456–63.

Marr DT, Bins F, Hill DL et al. Hyper-threading technology architecture and

microarchitecture. Intel Technol J 2002;6:1–12.

Myers G. A fast bit-vector algorithm for approximate string matching based

on dynamic programming. J ACM 1999;46:395–415.

NVIDIA. 2020. NVIDIA RTX A6000 datasheet.

NVIDIA. 2023. CUDA programming guide release 12.0.

Ofenbeck G, Steinmann R, Caparros V et al. Applying the roofline model.

ISPASS 2014;76–85.

Ono Y, Asai K, Hamada M. PBSIM2: a simulator for long-read sequencers

with a novel generative model of quality scores. Bioinformatics 2020;37:

589–95.

Senol Cali D, Kalsi GS, Bingöl Z et al. GenASM: a high-performance, low-

power approximate string matching acceleration framework for genome se-

quence analysis. MICRO 2020;951–66.

Senol Cali D, Kanellopoulos K, Lindegger J et al. SeGraM: a universal hard-

ware accelerator for genomic sequence-to-graph and sequence-to-sequence

mapping. ISCA 2022;638–55.

Singh G, Alser M, Cali DS et al. FPGA-based near-memory acceleration of

modern data-intensive applications. IEEE Micro 2021;41:39–48.

Smith TF, Waterman MS. Identification of common molecular subsequences.

J Mol Biol 1981;147:195–7.
�So�si�c M, �Siki�c M. Edlib: a C/Cþþ library for fast, exact sequence alignment

using edit distance. Bioinformatics 2017;33:1394–5.

Suzuki H, Kasahara M. Introducing difference recurrence relations for

faster semi-global alignment of long sequences. BMC Bioinformatics 2018;

19:45.

Turakhia Y, Bejerano G, Dally WJ. Darwin: a genomics co-processor provides

up to 15,000� acceleration on long read assembly. ASPLOS 2018;53:

199–213.

Turakhia Y, Goenka SD, Bejerano G, Dally WJ. Darwin-WGA: a co-processor

provides increased sensitivity in whole genome alignments with high

speedup. In: HPCA 2019;359–72.

Ukkonen E. Algorithms for approximate string matching. Inf Control 1985;

64:100–18.

Williams S, Waterman A, Patterson D. Roofline: an insightful visual per-

formance model for multicore architectures. Commun ACM 2009;52:

65–76.

Wu S, Manber U. Fast text searching: allowing errors. Commun ACM 1992;

35:83–91.

Xin H, Greth J, Emmons J et al. Shifted hamming distance: a fast and accurate

SIMD-friendly filter to accelerate alignment verification in read mapping.

Bioinformatics 2015;31:1553–60.

Xin H, Lee D, Hormozdiari F et al. Accelerating read mapping with

FastHASH. BMC Genomics 2013;14:S13.

10 Lindegger et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/5/btad151/7085594 by guest on 31 M
ay 2023


