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Estimating a set of orthogonal functions from a finite set of noisy data plays a crucial role in several areas
such as imaging, dictionary learning and compressed sensing. The problem turns out especially hard due
to its intrinsic non-convexity. In this paper, we solve it by recasting it in the framework of multi-task
learning in Hilbert spaces, where orthogonality plays a role as inductive bias. Two perspectives are ana-
lyzed. The first one is mainly theoretic. It considers a formulation of the problem where non-orthogonal
function estimates are seen as noisy data belonging to an infinite-dimensional space from which orthog-
onal functions have to be reconstructed. We then provide results concerning the existence and the con-
vergence of the optimizers. The second one is more oriented towards applications. It consists in a learning
scheme where orthogonal functions are directly inferred from a finite amount of noisy data. It relies on
regularization in reproducing kernel Hilbert spaces and on the introduction of special penalty terms pro-
moting orthogonality among tasks. The problem is then cast in a Bayesian framework, overcoming non-
convexity through an efficient Markov chain Monte Carlo scheme. If orthogonality is not certain, our
scheme can also understand from data if such form of task interaction really holds.

� 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Machine learning applications typically require estimation of an
unknown function from sparse and noisy data [1]. Regularization
theory is often exploited to face this problem, and kernel-based
methods play an important role in this context [2]. They connect
Tikhonov regularization with reproducing kernel Hilbert spaces
(RKHSs) [3,4], leading to important estimators like regularization
networks and support vector machines [5].

A more complex scenario emerges when one has to reconstruct
multiple functions known to share some common features, a prob-
lem often referred to as multi-task learning in the literature [6–9].
In this set-up, data related to a function can provide information
also on the other ones, and this can be leveraged to improve the
estimation performance. However, such dependencies among
tasks have to be properly modelled. To this aim, RKHSs can be still
adopted, in particular exploiting versions containing vector-valued
functions [10] that define multi-task regularized kernel methods
[11,12]. The unknown functions are then obtained by optimizing
convex objectives that trade-off data fit and the information pro-
vided by the kernel, including tasks interactions.
The focus of this paper is a particular joint estimation problem
that involves functions known to be mutually orthogonal. Notably,
the problem is much more difficult than classic multi-task learn-
ing, since the presence of orthogonality constraints require estima-
tors based on non-convex objectives.
1.1. Related work

Multi-task learning The motivation for multi-task learning stems
from situations in which data are collected from different, yet
related, experimental set-ups. Examples can be traced, e.g., in
biomedical imaging [13], hospitalization management [14], inverse
dynamics learning in robotics [15], and panel data analysis in
econometrics [16, Part IV]. The core idea is to leverage task related-
ness to enhance the estimation performance, with particular
impact in situations when single-task data-sets are small: see,
e.g., [17–19].

Many ways have been studied in the literature to encode task
relatedness. A popular choice consists in (linear) mixed-effects
models [20,21], where each function consists of the sum of a com-
mon term and a task-specific one, a model especially useful in pop-
ulation studies and pharmacokinetics [22–24]; see also [25] for a
solution leveraging Markov Chain Monte Carlo (MCMC) within
the Bayesian framework, and [26,27] for a non-parametric version
using Gaussian process regression. Advantages of these
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approaches, in different fields like biomedicine and imaging, are
also documented, e.g., in [28–30].

Orthogonality constraints Joint estimation problems involving
such a bias have been studied only for finite-dimensional spaces,
and can be recast in the framework of Procrustes problems [31].
They find many important applications, e.g., in imaging [32], com-
pressed sensing [33], factor analysis in psychometry [34] and
object detection [35,36], dictionary learning [37], and conformal
mapping [38]. Even if many sophisticated optimization algorithms
have been proposed in the literature to address the intrinsic non-
convexity of the orthogonality constraint [39–42], all of them can
only guarantee convergence to local minima. An exception can
be found in [43], where interesting advances are reported but
restricted to the case of one or two active constraints.

1.2. Contribution

We recast function estimation subject to orthogonality con-
straints as a particular instance of kernel-based multi-task learn-
ing. In particular, the problem is first formalized by introducing
RKHS norms and other special regularizers that promote orthogo-
nality among the tasks. Such a formulation finds a connection with
unbalanced orthogonal Procrustes problems [44], which in the par-
ticular case of interest do not admit an analytical solution (see, e.g.,
[40] Section 3.5.2). Then, we prove that our proposed formulation
admits a stochastic interpretation, and describe it using Bayesian
networks where the constraints derive from particular a priori
probability density functions. We will see that any distribution of
the single task, conditional on the data and all the remaining func-
tions, preserves Gaussianity. Building upon this fact, non-convexity
can be overcome by adopting MCMC in place of deterministic opti-
mization [45]. In particular, we design a Gibbs sampling scheme
able to efficiently reconstruct in sampled form the joint posterior
of all the unknown tasks. Such a set-up allows also to learn from
data the values of the hyper-parameters that regulate both func-
tion smoothness and the interaction among the tasks. This is useful
in those circumstances where orthogonality is not certain. In fact,
the proposed algorithm can also detect from data if some of the
orthogonality constraints are not active and remove them from
the estimation process.

To further investigate the problem of orthogonal functions esti-
mation within RKHSs, we consider the following viewpoint. One
can start considering non-orthogonal function estimates obtained
by first exploiting decoupled estimators like regularization net-
works or support vector machines. Such estimates can be seen as
infinite-dimensional noisy data and orthogonal estimates have
then to be obtained by solving a non-convex, infinite-
dimensional problem that incorporates the orthogonality con-
straints. Within this set-up, our contribution consists in proving
the existence of the optimizers and their convergence when the
data-set size (used to achieve the non-orthogonal estimates) grows
to infinity.

1.3. Outline

The paper is organized as follows. In Section 2 the problem of
orthogonal multi-task learning is formally introduced. In Section 3
a brief review of function estimation in the deterministic RKHS
framework is first presented; then, we extend the approach to
the orthogonal multi-task scenario, also providing its Bayesian
interpretation. Such a probabilistic set-up is then exploited to
design a Markov Chain Monte Carlo scheme that overcomes the
non-convexity of the deterministic problem formulation. Section 4
is devoted to the theoretical analysis of orthogonal multi-task
learning; the problem is faced assuming that data live in an
infinite-dimensional space and proving existence and convergence
2

of the optimizers. Section 5 collects some numerical experiments
that involve a large set of orthogonal and non-orthogonal tasks,
and show the effectiveness of the computational scheme proposed
in Section 3. Conclusions then end the paper.

2. Problem statement

The unknown r tasks (functions) are denoted by f i : X ! R for
i ¼ 1; . . . ; r. The f i belong to a Hilbert space H with inner-product
�; �iH
�

and are assumed mutually orthogonal, i.e.

f i; f jiH ¼ 0; i– j:
�
We can also think of a single unknown multi-task function that
embeds all the f i. It is denoted by f : X � 1;2; . . . ; rf g and belongs
to the Hilbert space Hr . Picking two arbitrary vector-valued func-
tions g;h belonging to Hr , then the inner product is given by

g;hiHr ¼
Xr
i¼1

gi; hiiH:
�*

We assume that only a finite number of direct and noisy samples of
each component of f is available. In particular, ni input/output pairs
xki; ykið Þf gnik¼1are collected for each i ¼ 1; . . . ; r and we use X i and Yi

to indicate the sets of inputs and outputs for the i-th task. Then, for
each f i, the measurements model is

yki ¼ f i xkið Þ þ eki; k ¼ 1; . . . ;ni; ð1Þ
where all the noises eki are zero-mean independent Gaussians of
variance r2

ki. The problem is to estimate f from the data (1) exploit-
ing also the inter-task information encoded in the orthogonal
constraints.

3. Methodology

3.1. Single-task case: review of nonparametric estimation

Before delving into multi-task learning, we first recall the base-
line nonparametric strategy for estimating a single f i from X i;Yið Þ
using Tikhonov regularization in a Reproducing Kernel Hilbert
Space (RKHS) [3,46]. It consists in solving the program

f̂ i ¼ argmin
f i2H

Xni
k¼1

yki � f i xkið Þð Þ2
r2

ki

þ cikf ik2H; ð2Þ

where H is a RKHS. This is a Hilbert space in which the evaluation
functionals returning the value of f i at a point x 2 X , defined as
Exf i ¼ f i xð Þ, are linear and continuous for any x 2 X i. From Moore-
Aronszajn theorem [3] it follows that each RKHS is in one-to-one
correspondence with a positive semi-definite kernel operator

K : X i � X i ! R ð3Þ
such that the so-called reproducing property for function evaluation
reads as

Exf i ¼ f i xð Þ ¼ K x; �ð Þ; f iiH:
�

These facts, together with Riesz-Frechet theorem (see, e.g., [47]
[Chapter V, Theorem 1] or [48][Theorem 6.19]) lead to the so called
Representer Theorem [49]. It states that the solution of (2) has the
structure of a regularization network, being a linear combination of
kernel sections K xki; �ð Þf gnik¼1 centered at input locations in X i. The
use of the quadratic loss in (2) to measure the adherence to data
also implies that the expansion coefficients ĉi solve a linear system
of equations. In particular, introducing

Ri ¼ diag r2
1i � � �r2

nii

� �
;
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computing from (3) the kernel matrix KH 2 Rni�ni as

KH½ �a;b ¼ K xa; xbð Þ; a; b ¼ 1; . . . ; ni; ð4Þ
and collecting all outputs in the column vector Yi, we get

ĉi ¼ argmin
ci

Yi � KHcið Þ>R�1
i Y i � KHcið Þ þ cic>i KHci

¼ KH þ ciRið Þ�1Yi:
ð5Þ

This result can be also given a Bayesian interpretation [50]. Indeed,
let ci be a Gaussian vector with prior distribution

ci � N 0; ciKHð Þ�1
� �

:

Next, consider the measurements model

Yi ¼ KHci þ ei

with the Gaussian noises

ei � N 0;Rið Þ

independent of ci. Then, using standard results on estimation of
Gaussian processes [51], one obtains that the minimum variance
estimate ĉi of ci given the data Yi is

ĉi ¼ KHR
�1
i KH þ ciKH

� ��1
KHR

�1
i Y i

and coincides with the estimator (5) obtained in the deterministic
setting. More in general, the Bayesian interpretation of any opti-
mization program is obtained if its objective can be interpreted as
the negative logarithm of the likelihood-prior product of a suitable
probabilistic model. Indeed, taking the exponential of the minus
objective reported in (5), the Gaussian priors for ci and ei become
immediately evident. This fact will be also exploited later on to deal
with more complex regularized programs.

The Bayesian viewpoint is useful also when Ri and ci are
unknown and have to be estimated from data as well. As described,
e.g., in [52], one can interpret the prior variances of the functions
and of the noises as random variables and assign them, e.g., non-
informative priors that include (in practice) only non-negativity
information. Then, stochastic simulation schemes relying on Mar-
kov Chain Monte Carlo [53] can reconstruct in sampled form the
joint posterior of the function and the unknown variances. Mini-
mum variance estimates of all the quantities of interest can then
be computed by Monte Carlo integration.

3.2. Multi-task case: deterministic viewpoint

So far we have introduced two different Hilbert spaces. Accord-
ing to the problem statement reported in Section 2, our unknown
tasks belong to the Hilbert space H and they are orthogonal
according to the metric induced by its inner-product �; �iH

�
. A key

example is given by the classical Lebesgue space of squared sum-
mable functions, i.e. H ¼ L2 with inner product

f i; f jiH ¼ R 1
0 f i xð Þf j xð Þdx

D
. In the previous subsection, we have then

reviewed regularization networks where the tasks lie in a RKHS
H. This assumption is important since the estimator can embed
information on function smoothness, e.g., continuous kernels like
the popular spline or Gaussian induce spaces of continuous and
differentiable functions [2].

Now, we face the orthogonal multi-task learning problem
assuming that the functions belong to the intersection between
the two Hilbert spaces H and H, using the two related metrics to
regularize the problem. In particular, along the lines of (2), the gen-
eral problem of multi-task orthogonal function estimation is stated
as follows.
3

f̂ ¼ argmin
f

Xr
i¼1

Xni
k¼1

yki � f i xkið Þð Þ2
r2

ki

þ cikf ik2H
" #

þþ
Xr
i¼1

X
j>i

cijj f i; f jiHj2:
D

ð6Þ

Hence, the solution is the trade-off between data fit and two regu-
larization terms. The first penalty is defined by the norm in H and
embeds smoothness. It acts on each task independently and is
weighted by ci for i ¼ 1; . . . ; r as already discussed in Section 3.1.
The other term is defined by the inner-products in H and is con-
nected with the orthogonality constraints. The inter-task relations
are tuned by cij for i ¼ 1; . . . ; r and j > i (that avoids repetitions since
the case j < i is already taken into account by symmetry). Large val-
ues for cij aim at setting j f i; f jiHj

�
as close to zero as possible. Clearly,

for problem (6) to be well-defined, we assume that H and H have
non-empty intersection. This in practice holds for all the situations
of interest if the function domain X is compact: the RKHSs used in
practice contain only continuous functions that in turn are con-
tained, e.g., in H ¼ L2.

Now, for computational reasons, we formulate a finite-
dimensional approximation of (6). This is obtained by drawing
inspiration from the representer theoremmentioned in Section 3.1,
and also by the fact that any function in H is given by a (possibly
infinite) sum of kernel sections [4]. Specifically, we formulate each
task as a linear finite combination of kernel functions over the
input locations contained in the union of the X i whose cardinality
is denoted by n. To simplify notation, we assume that
X1 ¼ . . . ¼ X r ¼ X and that such a set covers sufficiently well the
domain X . This assumption is stated without loss of generality: if
for some i and input location xk the output measurement yki is
not available, we set the corresponding noise variance r2

ki to infin-
ity. Also, if there are regions of X not well covered, we can add vir-
tual input locations associated to measurements of infinite
variance.

Assuming that the input location set is unique for all tasks
implies that the n� n kernel matrices KH defined by (4) are the
same for each f i. We also introduce the n� n Gram matrices KH
defined by the inner-product in H as follows

KH½ �a;b ¼ K xa; �ð Þ;K xb; �ð ÞiH; a; b ¼ 1; . . . ;n:
� ð7Þ

The two matrices KH and KH then permit to formulate the finite-
dimensional approximation of (6), which is

arg min
ci;

i ¼ 1 . . . r

Xr
i¼1

Yi � KHcið Þ>R�1
i Y i � KHcið Þ þ cic

>
i KHci

h i

þ
X
i; j>i

ci;jc
>
i KHcjc>j KHci: ð8Þ
3.3. Multi-task case: Bayesian interpretation

Even if problem (8) is finite-dimensional, using this estimator
remains difficult since the objective is non-convex. In addition, it
contains unknown hyper-parameters: Ri; ci, and possibly also the
interactions parameters cij, have to be estimated from data as well.
To solve this problem, below we introduce the Bayesian interpreta-
tion of (8). In this way, non convex optimization will be replaced by
the problem of reconstructing in sampled form the tasks posterior
by means of MCMC.

The first step is to find a suitable prior distribution for each ci so
that the objective in (8) can be interpreted as the negative loga-
rithm of

p Y1; . . .Yr jc1; . . . ; crð Þp c1; . . . ; crð Þ
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given all the hyper-parameters. The crux underlying the stochastic
interpretation is related to the coupling of ci and cj. In this regard,
we introduce the following fictitious model:

zij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c>i KHcjc>j KHci

q
þ �ij; i ¼ 1; . . . ; r; j > i: ð9Þ

Then, we model �ij as zero-mean independent Gaussian noises of
variance c�1

ij . Moreover, we assume that all the hyper-parameters

ci; cij and r2
ki for i ¼ 1; . . . ; r; j > i; k ¼ 1; . . . ;n are mutually indepen-

dent random variables (independent also of the noises). The result-
ing Bayesian network is presented in Fig. 1.

The joint density associated with such a model is the following.
For ease of notation, let
Y ¼ Yif gri¼1; Z ¼ zij

� �r
i¼1;j>i; c ¼ cif gri¼1;R ¼ Rif gri¼1; c ¼ cif gri¼1 and

C ¼ cij
n or

i¼1;j>i
: then, the network architecture yields

p Y ; Z; c;R; c;Cð Þ ¼ p Y; Zjc;R; c;Cð Þp cjR; c;Cð Þp Rð Þp cð Þp Cð Þ
¼ p Yjc;Rð Þp Zjc;Cð Þp cjcð Þp Rð Þp cð Þp Cð Þ

¼
Yr
i¼1

p Yijci;Rið Þp cijcið Þp Rið Þp cið Þ
 !

�
Yr
i ¼ 1
j > i

p zijjci; cj; cij
� �

p cij
� �

0BBBBB@

1CCCCCA:

ð10Þ

Now assume that hyper-parameters contained in R; c and C are
known and focus on the joint distribution
p Y; Z; cjR; c;Cð Þ ¼ p Yjc;Rð Þp Zjc;Cð Þp cjcð Þ. Considering its factors,
by (1) and (9) we have that

p Yijci;Rið Þ / e� Yi�KHcið Þ>R�1
i Yi�KHcið Þ ð11aÞ

p cijcið Þ / e�cic
>
i
KHci ð11bÞ

p zijjci; cj; cij
� �

/ e
�cij zij�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c>
i
KHcjc>j KHci

p� �2

: ð11cÞ
Fig. 1. Bayesian network describing the stochastic interpretation of problem (8). Eac
coefficients. Such a vector has to be reconstructed from the measurements Yi that conta
interacts through the virtual measurements zij and the hyper-parameters cij . When zij is

4

The idea is to exploit the fictitious model (9) so that the negative
logarithm of p Y ; Z; cjR; c;Cð Þ becomes proportional to the objective
contained in (8). It is easy to see by inspection that this holds when
all the virtual observations zij are set to zero.

Now, we investigate how the normal prior on the expansion
coefficients ci is influenced by the event Z ¼ 0 and by the knowl-
edge of all the other tasks and hyper-parameters. From (11b) and
(11c), it is not difficult to see that such a conditional posterior
remains Gaussian: indeed, it holds that

cijci; cj–i;C; Z ¼ 0 � N 0; P�1
i

� �
; with

Pi ¼ ciKH þ
X
j>i

cijKHcjc>j KH þ
X
j<i

cjiKHcjc>j KH

 !
:

One can thus see that the inverse covariance of ci, denoted by Pi, is
given by the inverse of the unconditional covariance, i.e. ciKH, plus
other terms that derive from the tasks interactions due to the pos-
sible orthogonality. Starting from this updated prior for ci, we can
now condition also on the measurements Yi. Due to the Gaussianity,
we easily obtain the following result

cijYi; zi;j ¼ 0; cj–i; ci;C;Ri � N ĉi; bPi

� �
ð12Þ

ĉi ¼ P�1
i KH KHP

�1
i KH þ Ri

� ��1
Yi

bPi ¼ KHR
�1
i KH þ Pi

� ��1
:

8><>:
Note that the posterior mean ĉi coincides with the optimal ci of (8)
when all the other cj

� �
j–i are assumed to be known.

3.4. Multi-task estimation using MCMC

In the above analysis we have assumed known hyper-
parameters R and c but in practice they have also to be estimated
from data. One exception can be given by C that contains the inter-
action parameters cij. If orthogonality among the tasks i; j is known,
one can just set cij to a large value. However, we now design a
h task i is represented by the random vector ci which contains some expansion
in noisy and direct samples of the function f i . Furthermore, each couple of task i; j
zero, large values of cij imply that the tasks i and j are in practice orthogonal.



A. Scampicchio, M. Bisiacco and G. Pillonetto Neurocomputing 545 (2023) 126237
scheme that can also estimate such parameters so that one has also
to learn from data if orthogonality among some tasks really holds.
For this purpose, we resort to the Markov Chain Monte Carlo para-
digm. The procedure consists of two steps: first, we simulate the
posterior p c; c;C;RjY; Z ¼ 0ð Þ :¼ p c; c;C;Rð Þ, building a Markov
chain whose invariant distribution is p c; c;C;Rð Þ; then we use N
values of each ci sampled from such a chain to approximate the
posterior mean via Monte Carlo integration.

The first step is conveniently implemented via Gibbs sampling
[54]. The rationale is to sequentially draw samples from the condi-
tional distributions entering p c; c;C;Rð Þ. According to the decom-
position of the joint distribution (10) given by the Bayesian
network in Figure 1, these are.

� p cijcj–i; ci;C;Ri
� 	

for each i ¼ 1; . . . ; r;
� p cijcið Þ for i ¼ 1; . . . ; r;
� p r2

kijci
� 	

for i ¼ 1; . . . ; r and k ¼ 1; . . . ;n;

� p cijjci; cj
� �

for i ¼ 1; . . . ; r and j > i.

As seen in (12), p cijcj–i; ci;C;Ri
� 	

is Gaussian and well defined. To
deal with ci; cij and r2

ki for i ¼ 1; . . . ; r; j > i and k ¼ 1; . . . ;n, proper-
ties of conjugate distributions can be leveraged as well. Assume that
all of these hyper-parameters are endowed with an uninformative
Gamma distribution over the positive real axis. Hence, denoting
with Gamma a; bð Þ a Gamma random variable with mean a=b, we get

cijci � Gamma
n
2
;
c>i KHci

2


 �
; ð13Þ
r�2
ki jci � Gamma

1
2
;
yki � KHci½ �k
� 	2

2

 !
; ð14Þ

cijjci; cj � Gamma
1
2
;
c>i KHcjc>j KHci

2

 !
: ð15Þ

The overall Gibbs sampling scheme is summarized in Algorithm1.
Fig. 2. Bayesian network obtained assuming cij ¼ k for any i ¼ 1; . . . ; r and j > i. This mo
then wants to learn from data if this assumption really holds true. When large estimated
out to be confirmed.

5

Algorithm1: Input: the number r, data-sets X and Y (also
expressed in vectors Yif gri¼1) and the number M of MCMC
iterations. Output: a stochastic simulator of the posterior
p c;R; c;Cð Þ.
for m ¼ 1; . . . ;M do
for i ¼ 1; . . . ; r do
if m = 1 then

set ci 1ð Þ ¼ K�1
H Yi;

else
sample ci mð Þ from (12);

end if
sample ci mð Þ from (13);
sample r�2

ki mð Þ from (14), k ¼ 1; . . . ; n;
build Ri mð Þ;

end for
fori ¼ 1; . . . ; r and j > ido
sample cij mð Þ as in (15);

end for
end for
All full conditionals admit a well-defined density on an open
connected (sub) set of an Euclidean space. Then, it follows that
theMarkov chain is irreducible, i.e., that the support of the joint dis-
tribution can be entirely explored (see, e.g., [53][Chapter IV],
[55,56]). Irreducibility is a sufficient condition for the Law of Large
Numbers to hold [57], thus legitimating the use ofMonte Carlo inte-
gration. This allows also to compute the estimates for the hyper-
parameters cij. The resulting values can be deployed to detect
whether the orthogonality constraints are present. Eventually, this
leads to a decision rule to discard the ones that are not active, e.g.,
whose cij estimates are smaller than a certain threshold.

3.5. Bayesian network with reduced complexity

The Bayesian network displayed in Fig. 1 considers distinct all
the r r � 1ð Þ=2 values of cij. Hence, it aims to estimate all the inter-
del describes a situation where one postulates that all the tasks are orthogonal and
values of k are returned by the MCMC schemes, the orthogonality assumption turns
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actions among all the possible couple of tasks. This model can be
too sophisticated, leading to estimates affected by large variance.
Hence, it can be convenient to reduce its complexity. This can be
achieved in several ways. For instance, some of the cij could be
fixed to zero, hence including the information that tasks i and j
are known to be non orthogonal. One could also select a subset
of tasks which are instead known to be orthogonal and fix all the
the related cij to a common large value. Another significant situa-
tion arises when all the tasks are postulated to be orthogonal
and one wants to learn from data if this assumption is true. This
important model is described through the Bayesian network in
Fig. 2 where a single value k ¼ cij is assigned to all the tasks cou-
ples. Thus, (15) becomes

kjc � Gamma
r r � 1ð Þ

4
;

X
i¼1;j>i

c>i KHcjc>j KHci

2

0BB@
1CCA: ð16Þ

This model version will be tested through the numerical experi-
ments reported in Section 5.
4. Theoretical analysis on the infinite-dimensional orthogonal
multi-task problem

In this section we investigate some theoretical issues connected
with orthogonal multi-task learning. We are given r deterministic
functions f i belonging to the RKHS H. They are also assumed
orthogonal in the Hilbert space Hr and, to simplify notation, of unit
norm.

Given any g 2 Hr , we use Kg to indicate the r � r Gram matrix
whose i; jð Þ-entry is

Kg
� 

ij ¼ gi; gjiH:
�

Under the stated orthogonality assumptions, it comes that Kf is the
r � r identity matrix.

The functions f i have to be reconstructed starting from the mea-
surements described through (1). Assume that all the data-set sizes
ni are equal to n for sake of simplicity and consider the following
two-step procedure. At the first step, r decoupled estimators are
exploited to obtain r function estimates. Support vector machines
or regularization networks could be used. Using the latter, one has

f̂ ni ¼ argmin
f i2H

Xn
k¼1

yki � f i xkið Þð Þ2
r2

ki

þ cni kf ik2H;

where we have also stressed the dependence of the regularization
parameter and of the task estimates on the data-set size n.

At the second step, we interpret f̂ ni
n or

i¼1
as the r components of

the infinite-dimensional data yn 2 Hr . Such data are exploited to
obtain r orthogonal task estimates by solving the following
infinite-dimensional orthogonal multi-task learning problem

f̂ n ¼ arg min
f2D�Hr

kf � ynkHr ; ð17Þ

where

D ¼ f 2 Hr s:t: Kf ¼ Ir
� �

: ð18Þ

The theoretical issues that are addressed in the remainder of this
section are the following:

(Q1): Existence of f̂ n.

(Q2): Convergence of optimizer f̂ n as n ! þ1.
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(Q1) is not trivial since (17) is a non-convex infinite-dimensional
optimization problem, being subject to orthogonality constraints.
As regards (Q2), it is intimately linked to the consistency properties
of the decoupled estimators employed during the first step. In the
case of the regularization networks, in [58] one can find rules for

cni that ensure convergence of f̂ ni to f i (e.g., in the RKHS norm) over
the regions where the xki become dense. If holes are present in the
probability density function of the xki, i.e., regions that are never
sampled like those introduced in our numerical experiments, the
decoupled estimators will return an extension coherent with the
kernel ofH. In many applications,Hr leads to inner-products among
the tasks defined by the classical Lebesgue spaces. Convergence in
RKHS norm implies convergence also in those spaces [4], hence
one can assume that yn converges to an element y in Hr . Under this
circumstance, questions (Q1) and (Q2) are then addressed in the fol-
lowing theorem.
Theorem 1. Problem (17) always admits at least one solution, i.e.,
the orthogonal multi-task estimates exist.

Furthermore, if yn converges to y in Hr , letting

f̂ ¼ arg min
f2D�Hr

kf � ykHr ; ð19Þ

one has

lim
n!1

kf̂ � f̂ nkHr ¼ 0: ð20Þ

Proof: We first show (Q2) by assuming that the multi-task esti-

mates f̂ n in (17) exist. One easily has

kf � ykHr 6 kf � ynkHr þ ky� ynkHr

and

kf � ynkHr 6 kf � ykHr þ ky� ynkHr ;

that implies

max
f2Hr

jkf � ynkHr � kf � ykHr j 6 ky� ynkHr :

Since, by assumption, yn converges to y in Hr , the above inequality
shows that the objective kf � ynkHr in (17) converges uniformly to
the objective kf � ykHr in (19). It is well known that this also implies
convergence of the optimizers (see, e.g., [59][Section 7.E] or [60]

[Section 4]), so that f̂ n indeed converges to f̂ in Hr . The remainder
of this section is devoted to proving (Q1), that is to showing that
the optimizer in (17) is well defined.

Our first step is to consider a modified version of the problem
(19) by enlarging the optimization domain. Define

E ¼ f 2 Hr s:t: Kf 6 Ir
� � ð21Þ

where, according to the Loewner order, given two symmetric matri-
ces M;N of the same size,M 6 N means that N �M is positive semi-
definite. Then, let us consider

�f ¼ arg min
f2E�Hr

kf � ykHr ;whichis ð22aÞ

¼ arg max
f2E�Hr

f ; yiHr ð22bÞ�
because all functions f i have unitary norm by hypothesis.

Clearly, the objective f ; yiHr

�
in (22b) is weakly continuous

([61], Chapter 12) and convex. If the optimization domain E is

weakly compact, it follows that a solution �f yielding the maximum
exists ([62], Chapter 2, Theorem (W*)) and can be found at the
boundary of E, which is defined as

bE ¼ f 2 Hr s:t: Kf 6 Ir andexistsis:t: ki Kf

� 	 ¼ 1
� �

; ð23Þ



1 In fact, by Gram-Schmidt one has f ¼ Afwhere f contains r orthonormal functions
in H (if f does not contain r independent functions, we just add some orthonormal
functions to those returned by Gram-Schmidt to obtain r orthonormal functions and
fo rm f 2 Hr) . Cons ide r the SVD A ¼ UDV> ¼ UDU>UV> . Then , define
M ¼ UDU>;g ¼ UV>f and note that Kg ¼ UV>VU> ¼ Ir .
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where ki Kf

� 	
denotes the i-th eigenvalue of Kf . Hence, we prove in

the next lines that E is weakly compact.
First, note that

kfk2Hr 6 r 8f 2 E

since

kf ik2H ¼ Kf

� 
ii 6 1 8f 2 E:

So, the set E is bounded in Hr . This implies that, given any sequence

contained in E, we can extract from it a subsequence h ið Þ
n o

that con-

verges weakly to a function h 2 Hr ([62], Theorem 2.C). The crucial
point is to show that one has also h 2 E. By Mazur’s Lemma ([63],
Section V.2, Theorem 2), the limit function h corresponds to the
strong limit of particular convex combinations of functions taken

from h ið Þ
n o

. In other words, there exits a subsequence �h ið Þ� �
built

with convex combinations of the h ið Þ
n o

such that

lim
i!1

kh� �h ið ÞkHr ¼ 0: ð24Þ

Now, let f ¼ h kð Þ and g ¼ h jð Þ (or, more generally, one can let f and g
be two generic vectors in E). Such a couple contains the 2r functions
f i; gif gri¼1. Applying to such a set the Gram-Schmidt procedure, we
obtain the functions gif gni¼1 orthonormal in H. Using g to denote
the function that embeds the gif g, we can write

f ¼ Mg; g ¼ Ng

that means that f i and gi are the linear combinations of the gif g
with coefficients contained in the i-th row of the r � n matrices M
and N, respectively. One thus has

Kf ¼ MM>; Kg ¼ NN>:

Consider any convex combination of f and g, i.e. the functions
af þ 1� að Þg with a 2 0;1½ �. Then, one has

Kafþ 1�að Þg ¼ KaMgþ 1�að ÞNg

¼ aM þ 1� að ÞNð Þ aM þ 1� að ÞNð Þ>
¼ aMM> þ 1� að ÞNN> � a 1� að Þ M � Nð Þ M � Nð Þ>
6 aMM> þ 1� að ÞNN> ¼ aKf þ 1� að ÞKg

6 aIr þ 1� að ÞIr ¼ Ir

and this shows that

�h ið Þ 2 E foralli: ð25Þ

Now we prove that h 2 E. Let f ið Þ
n o

and g ið Þ� �
be sequences in Hr

convergent to f and g, respectively. For any couple of functions f ið Þ
j

and g ið Þ
k , representing the j-th and k-th component of f ið Þ and g ið Þ,

respectively, one has

f ið Þ
j ; g ið Þ

k iH ¼ f ið Þ
j � f j þ f j; g

ið Þ
k � gk þ gkiH

DD
¼ f ið Þ

j � f j; g
ið Þ
k � gkiH þ f ið Þ

j � f j; gkiH
DD

þ f j; g
ið Þ
k iH 6 kf ið Þ

j � f jkHkg ið Þ
k � gkkH þ f ið Þ

j � f j; gkiH þ f j; g
ið Þ
k iH

DDD
and this shows that f ið Þ

j ; g ið Þ
k iH

D
converges to f j; gkiH

�
as i grows to

þ1. This fact, combined with (24), implies that

K�h ið Þ ! Kh for i ! þ1

where the symbol ! denotes convergence under any matrix norm.
Using the fact that the entries and eigenvalues of the Gram matrix
depend continuously on the �h ið Þ, and recalling also (25), we obtain
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K�h ið Þ 6 Ir 8i ) Kh 6 Ir :

This shows that

h 2 E

and proves the (desired) weak compactness of E. The consequence
is that the solution of (22) exists and, since the objective is convex,

it belongs to the boundary bE of E. So, there is a maximizer �f of (22b)

such that K�f 6 Ir and maxi ki K�f

� �
¼ 1. Now, we want to prove that

another maximizer f̂ exists and satisfies Kf̂ ¼ Ir .

Given any set of functions f if gri¼1 inH, embedded in f 2 Hr , they
can be expressed as linear combination of orthonormal functions
gif gri¼1, contained in g, with coefficients defined by a symmetric
and positive semi-definite matrix.1 Specifically, considering our

optimizer �f in place of the generic f, we can write

�f ¼ Mg; M ¼ M> P 0:

Consider the SVD M ¼ VDV>, where D is diagonal with i; ið Þ-entry
given by di, and define D ¼ g� �f ¼ Ir �Mð Þg. Then, we have

K�fþaD ¼ K Mþa Ir�Mð Þð Þg

¼ M þ a Ir �Mð Þð Þ M þ a Ir �Mð Þð Þ>
¼ aIr þ 1� að ÞMð Þ aIr þ 1� að ÞMð Þ>
¼ aIr þ 1� að ÞMð Þ2

¼ Vdiag aþ 1� að Þdið Þ2
n or

i¼1

� �
V>:

So, the r eigenvalues of K�fþaD are aþ 1� að Þdið Þ2 and one has

� the function �f þ aD belongs to bE for any a 2 �1;1½ �. In fact,
since 0 6 di 	 1 and there exists j s.t. dj ¼ 1, one has
aþ 1� að Þdið Þ2 6 1 8a 2 �1;1½ �
and also

aþ 1� að Þdj
� 	2 ¼ aþ 1� að Þð Þ2 ¼ 1 8a 2 �1;1½ �:

� the function �f þ D not only belongs to bE but also to our original
optimization domain D. In fact, it satisfies the constraint
K�fþD ¼ Ir since, by setting a ¼ 1, one obtains
aþ 1� að Þdið Þ2 ¼ 1þ 1� 1ð Þdið Þ2 ¼ 1 i ¼ 1; . . . ; r:
Now, we will show that the (possibly not unique) solution f̂ of (19)

is indeed given by �f þ D.

Consider the objective in (22b) and, to simplify the notation,

denote it by J fð Þ ¼ f ; yiHr

�
. Since J is convex and �f maximizes J over

E, one obtains

J �f
� �

P J �f þ D
� �

; J �f
� �

P J �f � D
� �

:

But J is convex and this implies that

J a �f þ D
� �

þ 1� að Þ �f � D
� �� �

6 aJ �f þ D
� �

þ 1� að ÞJ �f � D
� �

for any a 2 0;1½ �. With a ¼ 1=2 we obtain

J �f
� �

6 1
2

J �f þ D
� �

þ J �f � D
� �� �
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and then one must have

J �f
� �

¼ J �f þ D
� �

¼ J �f � D
� �

:

Hence, the function �f þ D not only belongs to D but is also a maxi-
mizer of J. This completes the proof.
Fig. 3. Fit scores for single- and multi-task estimates considering power functions
(27). A rich data-set is available for any task.
5. Numerical experiments

We now test the effectiveness of the computational scheme
presented in Section 3. In the following experiments, we compare
the performance of the proposed orthogonality-constrained
approach with the standard single-task estimation recalled in Sec-
tion 3.1. The Bayesian model depicted in Fig. 2 will be adopted.
Hence, tasks can be all mutually orthogonal but this information
has to be corroborated from data.

We consider a population of r ¼ 20 tasks. For each of them,
n ¼ 100 noisy measurements are collected according to model
(1). Input locations are independent realizations from the uniform
distribution over X ¼ 0;1½ � and the noise variance is r2 ¼ 0:04. In
any experiment, the functions belong to the Hilbert space H ¼ L2

with inner product f i; f jiH ¼ R 1
0 f i xð Þf j xð Þdx

D
. The RKHS H carrying

information about function smoothness is the Sobolev space
induced by the spline kernel

K xa; xbð Þ ¼ min xa; xbð Þ withxa; xb 2 0;1½ �: ð26Þ

Such a space is known to be contained in L2, so the problem is well
posed. In this set-up, regularizer KH entering (8) is the kernel matrix
associated to (26), while KH is derived from (7) as the L2-inner pro-
duct of kernel sections in H. These are composed by ramp and con-
stant functions, so the a; bð Þ element of matrix KH is

KH½ �a;b ¼ R 1
0 K xa; xð ÞK xb; xð Þdx

¼ x3a
3 þ x2a xb � xað Þ þ xa

2 xb � xað Þ2 þ xaxb 1� xbð Þ

for a; b ¼ 1; . . . ; n. As a performance metric, we consider for the i-th
task

Fit ¼ 100% 1� kf i � f̂ ik2
kf ik2

 !
:

In practice, the L2 normwill be numerically computed by taking
the Euclidean norm on the vectors containing the pointwise func-
tion evaluations over a grid of 1000 equispaced samples of X .
5.1. First test: non-orthogonal functions

In the first experiment, the functions to be estimated are

f i xð Þ ¼ xi i ¼ 1; . . . ; r: ð27Þ

Since f i; f jiH – 0
�

for all i– j, the orthogonality constraint included
in the multi-task approach could in principle undermine the esti-
mation performance with respect to the single-task case. On the
contrary, the results of this test show that the proposed method
is capable to disable the orthogonality constraint, hence yielding a
fit score comparable to that returned by the single-task approach.
Fig. 3 reports the boxplots of the average fits over all 20 tasks for
both approaches on a sample run. Being the mean fits equal to
77.59 and 76.62 for the single- and multi-task cases respectively,
one can appreciate the flexibility of the proposed approach. To fur-
ther visualize the results, Fig. 4 displays the estimation performance
for task of indexes i ¼ 1;3;4;5;6;7;8;10.
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5.2. Second test: orthogonal functions

In the second experiment, the tasks are orthogonal, defined by

f i xð Þ ¼ sin 2pxið Þ i ¼ 1; . . . ; r: ð28Þ
The results on a single run are presented in Fig. 5 and Fig. 6, display-
ing the boxplot of fit scores over the 20 tasks and the fit perfor-
mance, respectively. In the presented run, the mean scores are
78.87 and 79.83 for the single- and multi-task approach.

We can note that, even if the orthogonality constraint is active,
it does not yield an impressive improvement with respect to the
single-task set-up. This is due to the fact that a good amount of
noisy and direct measurements, well distributed over all the unit
interval, are available for any task. To point out advantages of
the orthogonality constraints, the following test introduces a more
complex scenario.

5.3. Third test: orthogonal functions with missing measurements

We now consider the same functions presented in (28). The
measurements model is the same but, after generating the 100
input locations, we assume that measurements corresponding to
a randomly placed window of 30 adjacent samples over X are
missing for tasks i ¼ 1;2;3;6;7;8;9;10. On these, while single-
task learning is quite challenging, we will see that the multi-task
approach leverages the additional information about orthogonality
and copes better with the incomplete data-set. Fig. 7 reports the
boxplots for the fit scores over the most challenging estimation
problems, i.e. those related to tasks i ¼ 1;2;3;6;7;8;9;10. Next,
Fig. 8 presents a sample performance corresponding to one realiza-
tion of noises and missing data. On this run, the average fit scores
are 61.13 and 75.94 for the single- and multi-task approach,
respectively.

Within this framework, we finally assess the overall perfor-
mance by running a Monte Carlo experiment of 100 runs. At any
run, new independent noise realizations are generated. Fig. 9
shows the boxplot of the average fit scores. The orthogonality-
constrained approach clearly outperforms single-task learning:
the median improvement is of 16%, and one can also see a significa-
tive reduction of the estimator’s variance.

5.4. Fourth test: orthogonal functions estimation, comparison with
deterministic optimization

We now aim at estimating r ¼ 8 unknown orthogonal functions
defined in (28) from n ¼ 100 direct and noisy measurements. The
goal of this test is to compare the performance of the proposed



Fig. 4. Sample fitting performance in the set-up presented in Section 5.1. LEGEND: Black circles = data points; Solid red = true function; Dashed black = single-task estimate;
Dash-dotted blue = multi-task estimate.

Fig. 5. Fit scores for single- and multi-task estimates for sinusoidal functions (28). A
rich data-set is available for any task.

Fig. 7. Fit scores for single- and multi-task estimates considering sinusoidal
functions (28) with incomplete data-sets. A single run is considered and the fit score
is measured only on tasks 1,2,3,4,6,7,8,9,10, i.e. on the ones involving missing data.
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MCMC-based approach with the one yielded by a deterministic
optimization routine.

We take the problem as stated in (8), again setting cij ¼ k for all
i ¼ 1; . . . ; r and j > i. We run the proposed multi-task learning rou-
tine based on MCMC, and fix the values for cif gri¼1 and k that were
estimated in the output of the scheme. Next, we solve (8) using
Fig. 6. Sample fitting performance in the set-up presented in Section 5.2. LEGEND: Black
Dash-dotted blue = multi-task estimate.

9

those hyper-parameters values, deploying fminunc in Matlab as
a deterministic optimization routine. The overall optimization rou-
tine is inizialized at ci equal to the zero vector for each i ¼ 1; . . . ; r.
Fig. 10 displays a sample performance corresponding to one real-
ization of noises, merging the fit scores for all tasks.
circles = data points; Solid red = true function; Dashed black = single-task estimate;



Fig. 8. Sample fitting performance in the set-up presented in Section 5.3. LEGEND: Black circles = data points; Solid red = true function; Dashed black = single-task estimate;
Dash-dotted blue = multi-task estimate.

Fig. 9. Boxplot of the fits achieved after 100 Monte Carlo runs in the set-up
presented in Section 5.3.

Fig. 10. Fit scores for multi-task estimates for sinusoidal functions (28) considering
the proposed approach based on the Gibbs sampler versus a deterministic
optimization scheme.
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The MCMC-based approach clearly outperforms the one based
on deterministic optimization: this is because the latter is not able
to overcome the intrinsic non-convexity of the problem, and is
thus sensitive to initialization. Moreover, it also becomes computa-
tionally prohibitive for large values of n and/or r, because optimiza-
tion is taken over c>1 ; . . . ; c

>
r

�  2 Rnr . This does not happen in the
10
proposed approach based on MCMC, because there each ci is sam-
pled separately. We also point out that our scheme automatically
includes hyper-parameters estimation, which is another intricate
problem that would further encumber deterministic optimization
routines.
6. Conclusions

We have provided new algorithmic and theoretical results
regarding orthogonal multi-task learning, that is the problem of
reconstructing orthogonal functions in Hilbert spaces. Differently
from standard multi-task problems, the main difficulty is its intrin-
sic non convexity related to the complex nonlinear interactions
among the tasks.

To include orthogonality information, we have complemented
the classical kernel-based estimators for nonparametric function
estimation with special regularization terms that also enjoy a
Bayesian interpretation. In fact, the orthogonality constraints
derive from particular a priori probability density functions. When
data become available, the posterior of any task (conditional on all
the others) remains Gaussian. This allows the design of a new
stochastic simulation scheme based on Gibbs sampling that over-
comes non convexity by returning the joint posterior of all the
unknown functions in sampled form. Numerical results show the
goodness of the new approach also revealing its potentiality to
detect from data if tasks orthogonality really holds.
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