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A B S T R A C T

Deep learning has fundamentally transformed the field of image
synthesis, facilitated by the emergence of generative models that
demonstrate remarkable ability to generate photorealistic imagery
and intricate graphics. These models have advanced a wide range
of industries, including art, gaming, movies, augmented & virtual
reality (AR/VR), and advertising. While realism is undoubtedly
a major contributor to their success, the ability to control these
models is equally important in ensuring their practical viabil-
ity and making them more useful for downstream applications.
For instance, it is natural to describe an image through natural
language, sketches, or attributes controlling the style of specific ob-
jects. Therefore, it is convenient to devise generative frameworks
that follow a workflow similar to that of an artist. Furthermore,
for interactive applications, the generated content needs to be
visualized from various viewpoints while making sure that the
identity of the scene is preserved and is consistent across multi-
ple views. Addressing this issue is interesting not only from an
application-oriented standpoint, but also from an image under-
standing perspective. Our visual system perceives 2D projections
of 3D scenes, but the convolutional architectures commonly used
in generative models ignore the concept of image formation and
attempt to learn this structure from the data. Generative models
that explicitly reason about 3D representations can provide disen-
tangled control over shape, pose, appearance, can better handle
spatial phenomena such as occlusions, and can generalize with
less data. These practical requirements motivate the need for gen-
erative models driven by structured representations that are efficient,
easily interpretable, and more aligned with human perception.

In this dissertation, we initially focus on the research question of
controlling generative adversarial networks (GANs) for complex
scene synthesis. We observe that, while existing approaches exhibit
some degree of control over simple domains such as faces or
centered objects, they fall short when it comes to complex scenes
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consisting of multiple objects. We therefore propose a weakly-
supervised approach where generated images are described by
a sparse scene layout (i.e. a sketch), and in which the style of
individual objects can be refined through textual descriptions or
attributes. We then show that this paradigm can effectively be
used to generate complex images without trading off realism for
control.

Next, we address the aforementioned issue of view consistency.
Following recent advances in differentiable rendering, we intro-
duce a convolutional mesh generation paradigm that can be used
to generate textured 3D meshes using GANs. This model can na-
tively reason using 3D representations, and can therefore be used
to generate 3D content for computer graphics applications. We
also demonstrate that our 3D generator can be controlled using
standard techniques that can also be applied to 2D GANs, and
successfully condition our model on class labels, attributes, and
textual descriptions. We then observe that methods for 3D con-
tent generation typically require ground-truth poses, restricting
their applicability to simple datasets where these are available.
We therefore propose a follow-up approach to relax this require-
ment, demonstrating our method on a larger set of classes from
ImageNet.

Finally, we draw inspiration from the literature on Neural Ra-
diance Fields (NeRF) and incorporate this recently-proposed rep-
resentation into our work on 3D generative modelling. We show
how these models can be used to solve a series of downstream
tasks such as single-view 3D reconstruction. To this end, we pro-
pose an approach that bridges NeRFs and GANs to reconstruct
the 3D shape, appearance, and pose of an object from a single 2D
image. Our approach adopts a bootstrapped GAN inversion strat-
egy where an encoder produces a first guess of the solution, which
is then refined through optimization by inverting a pre-trained
3D generator.
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S O M M A R I O ( I TA L I A N O )

Il deep learning ha trasformato radicalmente il campo della gene-
razione delle immagini, grazie all’introduzione di nuovi modelli
generativi che dimostrano una notevole abilità nel produrre im-
magini fotorealistiche e grafiche complesse. Questi modelli hanno
avuto un impatto in svariati settori, tra cui arte, videogiochi, in-
dustria cinematografica, realtà aumentata e virtuale (AR/VR), e
pubblicità. Sebbene il realismo abbia indubbiamente contribuito al
loro successo, la capacità di controllare questi modelli è altrettanto
importante per permetterne l’uso in applicazioni pratiche. Ad es-
empio, è naturale descrivere un’immagine attraverso testo, bozze,
o attributi che ne controllano lo stile. Allo stesso modo, per alcune
applicazioni interattive, il contenuto generato deve poter essere
visualizzato da diverse prospettive assicurando che l’identità della
scena sia preservata e sia coerente tra le varie viste. Affrontare que-
sto problema è interessante non solo da un punto di vista applica-
tivo, ma anche da un punto di vista prettamente scientifico legato
alla comprensione delle immagini. Il nostro sistema visivo perce-
pisce proiezioni 2D di scene tridimensionali, ma le architetture
convoluzionali comunemente usate nei modelli generativi igno-
rano il concetto di formazione dell’immagine e tentano di appren-
dere questa struttura dai dati. I modelli generativi che ragionano
esplicitamente sulle rappresentazioni 3D possono fornire un con-
trollo disgiunto su forma, posa e aspetto, possono gestire meglio
fenomeni spaziali come le occlusioni, e possono generalizzare con
meno dati. Questi requisiti pratici motivano la necessità di modelli
generativi guidati da rappresentazioni strutturate che siano efficienti,
facilmente interpretabili, e più in linea con la percezione umana.

In questa tesi, ci concentriamo inizialmente sulla questione del
controllo delle generative adversarial networks (GAN) per la sintesi
di scene complesse. Osserviamo che, sebbene gli approcci esistenti
permettano un certo livello di controllo su casi di studio semplici
come volti od oggetti centrati, essi presentano delle evidenti lacu-
ne quando si cerca di trattare scene complesse composte da più
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oggetti. Proponiamo quindi un approccio debolmente supervisio-
nato (weakly-supervised) in cui le immagini generate sono descritte
da un layout sparso (simile ad una bozza), in cui lo stile dei singoli
oggetti può essere rifinito attraverso descrizioni testuali o attributi.
Successivamente, dimostriamo che questo paradigma può esse-
re efficacemente utilizzato per generare scene complesse senza
necessariamente dover trovare un compromesso tra realismo e
controllo.

Successivamente, affrontiamo il sopracitato problema della coe-
renza tra più viste. Costruendo sui recenti progressi nel campo
del rendering differenziabile, introduciamo un paradigma di genera-
zione convoluzionale di mesh che può essere utilizzato per generare
mesh 3D e texture tramite GAN. Questo modello può ragionare
nativamente attraverso rappresentazioni 3D e può quindi essere
utilizzato per generare contenuti 3D per applicazioni di grafica
computerizzata. Dimostriamo anche che il nostro generatore 3D
può essere controllato utilizzando le stesse tecniche che vengono
comunemente utilizzate su GAN 2D, e presentiamo esempi di con-
dizionamento su classi, attributi, e descrizioni testuali. Nonostante
i risultati promettenti ottenuti da questa tecnica, osserviamo che i
metodi per la generazione di contenuti 3D richiedono tipicamente
pose annotate, limitando la loro applicabilità a dataset semplici
dove queste sono disponibili. Pertanto, proponiamo un’evoluzione
dell’approccio sopra proposto in cui eliminiamo questa assunzio-
ne, e dimostriamo il nuovo metodo su un insieme di classi più
ampio da ImageNet.

Infine, prendiamo ispirazione dalla letteratura sui Neural Ra-
diance Fields (NeRF), e incorporiamo questa recente rappresenta-
zione nel nostro lavoro di modellazione generativa 3D. Dimostria-
mo come questi modelli possano essere utilizzati per risolvere
una serie di compiti tra cui la ricostruzione 3D da una singola im-
magine. A tal fine, proponiamo un approccio che connette NeRF
e GAN, permettendo di ricostruire la geometria 3D, l’aspetto,
e la posa di un oggetto da una singola immagine 2D. Il nostro
approccio adotta una strategia di inversione GAN ibrida in cui
un encoder produce una prima ipotesi della soluzione, che viene
poi raffinata tramite ottimizzazione invertendo un generatore 3D
pre-addestrato.
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1I N T R O D U C T I O N

Figure 1.1: These people do not exist.

1.1 generative models

Generative models have gained considerable attention in recent
years due to their ability to quickly generate new content that –
in many cases – is almost indistinguishable from that produced
by humans or nature (Figure 1.1). This has opened up new av-
enues for a wide range of applications, including speech synthesis
[Che+21a; Oor+16], image synthesis [Kar+20b; Ram+22; Rom+22;
Sah+22], generation of 3D objects [Cha+22; Pav+20b; Poo+22], re-
alistic simulations of physical systems [Rav+21], and the creation
of intelligent dialogue systems [Bro+20; Ouy+22].

When provided with sufficiently large datasets, these models
are capable of capturing the complex patterns existing in the
data, and can subsequently be used to generate new data that
resembles the training examples. One of the key advantages of
recently-proposed generation techniques is that they require mini-
mal human annotations, allowing them to be trained on massive
datasets scraped off the Internet with little effort [Gao+20; Sch+21].

In the realm of generative modeling, various subfields have
emerged, each focused on distinct domains such as text, audio,
and vision. In this dissertation, we concentrate specifically on
the field of vision, which has seen a surge in research interest
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introduction

in recent times, thanks to models capable of generating almost-
photorealistic images. To name a few, neural architectures such as
StyleGAN [KLA19; Kar+20b], Stable Diffusion [Rom+22], DALL-E
[Ram+22; Ram+21], and Imagen [Sah+22] can be used to create
photorealistic renderings of people and products, graphics for
articles, and artistic content. The applications of generative models
in computer vision, however, extend beyond image synthesis.
Other examples include image super-resolution (creating high-
resolution images from low-resolution ones), inpainting (repairing
or substituting missing parts in an image), and style transfer.

From a perspective of image understanding, generative models
are very powerful tools, since they must capture the constraints
occurring in natural images to produce realistic results. These con-
straints may be spatial (coherent pose and placement of objects),
semantic (a boat does not sail on grass), and stylistic (a naturally-
occurring dog cannot be purple). For practical content creation
applications, however, it might be necessary to diverge from these
constraints. For example, artists might want to specify what they
want to see in the image, where the objects should be located
spatially, and what “style” (e.g. color, texture) they should have.
Furthermore, for particular illustrations, they might want to spec-
ify configurations that do not occur in the distribution of natural
images (e.g. an astronaut riding a horse). While recent generation
techniques have advanced tremendously with regard to the real-
ism of the synthesized images, the level of structural, semantic,
and stylistic control provided by these models has lagged behind.
Many approaches that provide some degree of control focus on
single-domain datasets that depict centered objects, and they fail
to accurately model complex scenes consisting of multiple objects.

Motivated by these observations, the first research question
which we address in this dissertation is how we can make gener-
ative models more controllable, with a focus on complex scenes.
A viable compromise found in the literature is to condition
the model on a semantic segmentation map [Iso+17; Par+19b;
Wan+18], which is unfortunately impractical to manipulate or cre-
ate from scratch, and still provides no interface for style control.
It is clear that there is a trade-off between weak conditioning (e.g.
describing an image through a label or a single textual prompt),
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1.1 generative models

which makes the task easier for a human but more difficult for
a machine – potentially resulting in incoherent scenes or unde-
sired results – and rich conditioning (e.g. full segmentation maps),
which constrains the output and facilitates the learning task, but
requires a prohibitive effort from a user who wants to generate
or manipulate an image. One major goal of this dissertation is
to explore ways to condition (i.e. control) these generative models
through structured representations such as textual descriptions and
sketches that describe the placement of the objects in the scene,
and devise a viable framework that retains both a high generative
quality and a proper level of control (Chapter 2).

The encouraging results achieved by these models lead us to
another research question: in addition to realism and controlla-
bility, what are other important aspects that make a generative
model useful? While the aforementioned techniques are excellent
at generating static content, some applications such as animation,
video games, and advertising require representations which are
more structured. For example, in computer graphics it is often
desired to work with multiple views of the same object while
preserving its identity across different views, that is, enforce a
disentanglement between pose and appearance. This issue can be
addressed at a fundamental level by devising generative models
that can natively synthesize 3D representations. We dedicate the
second part of this dissertation to this topic, and propose an ap-
proach to generate textured 3D meshes using supervision from
2D datasets (Chapter 3, Chapter 4). We show that, as in the 2D
case, these models can successfully be trained using generative
adversarial networks (GANs) and can be controlled via textual
prompts or other conditioning techniques commonly adopted in
the 2D GAN literature. Finally, we draw inspiration from the re-
cent literature on state-of-the-art representations based on Neural
Radiance Fields (NeRF), and demonstrate that 3D generators can
benefit additional downstream tasks in 3D computer vision, such
as single-view 3D reconstruction (Chapter 5).
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1.2 background

Throughout this dissertation, we will make use of some concepts
that are well-established in the machine learning literature, and
which constitute the building blocks of many of our contributions.
In this section, we provide a quick overview of these concepts,
starting with an introduction on frameworks for generative mod-
els and common patterns for conditioning these models. We then
conclude with a section on 3D representations and their use in
deep learning applications.

1.2.1 A primer on generative models

Intuitively speaking, the goal of a generative model is to produce
new examples that mimic a training dataset. It is assumed that
the real data is sampled from a “true data distribution” pdata(x),
which is potentially unknown, but for which we have samples
(i.e. data points). The generative model is then trained to approxi-
mate this distribution. Generative models can be categorized into
fundamentally different frameworks:

likelihood-based models . These are also referred to as ex-
plicit models because they model the probability density
function explicitly, using maximum likelihood estimation
or approximations. Popular methods include variational au-
toencoders (VAEs) [KW14] and autoregressive methods. The
latter are particularly successful in sequential domains that
are discrete or can easily be quantized, such as text and
audio.

implicit models . The probability density function is not mod-
elled explicitly. Instead, these models only offer an interface
to sample from the learned distribution. Generative adver-
sarial networks (GANs), which are at the core of our work,
are examples of implicit models. For this reason, we describe
them comprehensively in the next section (Section 1.2.2).
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1.2 background

score-based models . Instead of modelling the probability
density function, these methods model its gradient (i.e. score
function). In such a setting, the requirement for a (potentially
intractable) normalizing constant is dropped, expanding the
set of models that can be used in a tractable way. Sampling
is then performed iteratively through Langevin dynamics, at
the expense of inference speed. Such models can be regarded
as a middle ground between implicit and explicit models.
Examples of score-based models include [SE19; SE20] as well
as recently-proposed diffusion models [HJA20; SME20], which
have outperformed GANs in terms of image generation
quality [DN21]. However, these models are still considered
slower and somewhat less flexible than GANs, but this may
change in the future as this research field is relatively recent.

There is no individual framework that outperforms alternative
methods in every situation. The choice of the framework often
depends on the particular domain (text, audio, time series, or
images), on the kind of data (whether the data is discrete or
continuous, whether it is partially or fully observable), and on
domain requirements (whether quality is preferred over accurate
statistical modelling). Maximum-likelihood methods are preferred
in situations where statistical interpretation is important (e.g.
financial time series), but are less favored for image generation
tasks, where they tend to generate blurry results and do not scale
well to high resolutions. GANs generate images that are more
visually pleasing (with the side effect of potentially dropping
some modes of the data distribution), and are therefore widely
adopted in the computer vision literature (including our work).
Diffusion models represent a very recent development and, given
their extensive growth, it is likely that they will represent the
leading paradigm in the near future. However, for reasons we
explain in the next section, GANs remain the preferred approach
in areas such as 3D vision.
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1.2.2 Generative adversarial networks

A generative adversarial network (GAN) consists of two networks:
a generator G and a discriminator D. The goal of the generator is
to map a random vector z (distributed according to some simple
prior distribution pz, and often referred to as latent code) to a gener-
ated (“fake”) sample G(z). A standard Gaussian N (0, I) is usually
chosen as the prior distribution. The discriminator is a binary clas-
sifier that takes a sample as input and predicts whether it comes
from the dataset (“real”) or is fake. The two models are optimized
in an alternating fashion, where the discriminator is trained to
distinguish between real and fake samples, and the generator is
trained to fool the discriminator by making its samples more real
according to the information (gradient) provided by the discrim-
inator. The result is that the generator learns to map the prior
distribution pz to the data distribution pdata. However, GANs are
categorized as implicit models because they do not model the data
distribution explicitly (the output of G is an individual sample,
not a probability distribution), but merely provide an interface for
sampling from it. This loss in expressivity is rewarded by a gain
in generative quality (but also a series of potential issues such
as mode dropping). More formally, in their original formulation,
GANs are optimized for the following objective:

min
G

max
D

Ex∼pdata(x)[log D(x)]+Ez∼pz(z)[log(1−D(G(z)))]. (1.1)

The authors [Goo+14] show that, under some optimality assump-
tions, the above objective minimizes the Jensen-Shannon diver-
gence between the inferred distribution and the data distribution
pdata. However, the above objective is notoriously unstable and
other variants are used in practice, such as the non-saturating
objective (also proposed in [Goo+14]), least-squares objective (LS-
GAN) [Mao+17], or hinge loss [LY17]. The known instability of
the GAN objective has also led to the development of several other
tricks to improve its training dynamics, such as gradient penalties
[ACB17; MGN18], spectral normalization [Miy+18], progressive
growing [Kar+18], and projection discrimination [MK18].

GANs have been very successful in the realm of image gen-
eration, because they mainly target continuous data, allow for
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efficient inference, are flexible (allowing for a wide range of con-
ditioning schemes and data assumptions), scale easily to high
resolutions, and generate high-quality samples. They are however
less effective in other domains such as text (which is discrete)
or audio (where its harmonic structure is notoriously difficult
to model accurately). In these sequential settings, autoregressive
models are typically preferred.

As anticipated earlier, diffusion models are also increasingly
gaining importance, outperforming GANs on image generation
[DN21] and producing results on par with the best autoregres-
sive techniques for speech generation [Che+21a]. However, it is
still unclear how to apply these models to common synthesis
tasks in 3D vision (generation and reconstruction), as they do
not exhibit the same flexibility as GANs. For example, in GANs
it is possible to couple different architectures for the generator
and discriminator, e.g. a 3D generator combined with a 2D dis-
criminator that takes 2D renderings as input (enabling 3D-aware
approaches that can be supervised on 2D images); a generator
of audio signals in the time domain paired with a discriminator
in the (time-)frequency domain; and it is even possible to devise
image-to-image translation frameworks between unpaired sets
of images [Zhu+17a]. Another limitation of diffusion models is
that they are slow in terms of inference speed, which makes them
impractical for many real-time computer vision applications such
as augmented & virtual reality (AR/VR), and robotics.

1.2.3 Conditioning and disentanglement

In the previous discussion, we have covered what is commonly
referred to as unconditional generation, i.e. the generation of sam-
ples that resemble the training dataset without any kind of control
or constraints. In practice, however, it is more useful to guide
the generation process (conditioning) according to some desired
specifications. For instance, in image synthesis it is common to
condition the model on a category (class label) [BDS19; MK18;
OOS17], semantic map [Iso+17; Par+19b; Wan+18], or textual de-
scription of a scene [Ram+21; Rom+22; Sah+22; Zha+17]. In other
domains such as audio, the model is usually conditioned on a

7



introduction

particular instrument & pitch (in the case of music) [Eng+19], or
text & speaker identity (for text-to-speech systems) [Oor+16].

A simple strategy for conditioning generative models is concate-
nation. The conditioning information is transformed into a fixed-
length vector c (either through an embedding layer or through a
neural network, depending on the application) and connected to
the model. In the generator of a GAN, this is often achieved by
concatenating c to the latent code z, whereas in the discrimina-
tor possible strategies include auxiliary classifiers [OOS17] and
projection discrimination [MK18], the latter being more effective
in practice. In generator architectures that adopt normalization
layers, it has also proven very successful to inject conditional infor-
mation directly into these modules, leading to techniques such as
adaptive instance normalization (AdaIN) [HB17] and conditional
batch normalization [De +17], which are now considered standard
tricks of the trade.

In text-conditioned models, however, compressing a full sen-
tence into a fixed-length vector may represent an excessive bot-
tleneck. For this reason, recent conditional diffusion models such
as Imagen [Sah+22] and Stable Diffusion [Rom+22] adopt a cross-
attention mechanism, where different image regions attend to indi-
vidual token representations. Furthermore, some of the works pre-
sented in this dissertation introduce other types of cross-attention,
e.g. in Chapter 2 we propose a sentence-semantic attention mech-
anism in the context of image generation from scene layouts
[PLH20], whereas in Chapter 3 we propose a sentence-UV map
attention mechanism for generating textured 3D meshes from text
[Pav+20b].

Another important aspect of generative models is disentangle-
ment. An assumption is that the data can be explained by an
underlying set of factors of variation. In the specific example of
faces, these include gender, hair color, hair style, lighting, and
posture. These factors are often entangled, i.e. there are some
correlations that occur in the data, such as gender and hair style.
Disentanglement refers to the ability of the model to separate
these factors of variation (as opposed to representing them as
a mixture), allowing the user to control them separately. This
property is even more relevant for 3D vision applications, where
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the appearance of an object (that is, its identity) needs to be dis-
entangled from its pose (camera viewpoint). This motivates the
need for generative models that can natively generate 3D repre-
sentations, which represents one of the major contributions of this
dissertation.

1.2.4 3D representations

While 3D representations are well understood in the computer
graphics literature, in this section we mainly focus on their ap-
plication to deep learning approaches, with a discussion of the
advantages and drawbacks of each. Common representations
include voxel grids (voxels), point clouds, triangle meshes, and
implicit representations. Not to be confused with the probabilistic
implicit models described in the previous sections, implicit repre-
sentations represent a class of parameterizations that describe a
3D object/scene as a continuous function that can be queried at
specific coordinates, without explicitly defining its surface. Exam-
ples include signed distance functions (SDFs) and neural radiance
fields (NeRF).

voxel grids . Voxel grids are a 3D generalization of raster
images. The 3D space is divided into a regular grid of voxels
(i.e. 3D pixels), each containing information about occupancy
and, optionally, color. This representation is popular in deep
learning approaches as it can be used out-of-the-box with standard
convolutional architectures (3D convolutional neural networks),
but it does not scale well to high resolutions since its memory
requirement is cubic with respect to the subdivision steps.

point clouds . These representations describe the 3D scene
as a set of unordered points. They have the advantage of being
memory-efficient, as they take into account the sparse structure
of the scene. However, their unordered nature and lack of con-
nectivity makes them more difficult to process directly by neural
networks. Their sparsity can also lead to visible gaps when they
are visualized.
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triangle meshes . The object is represented as a set of in-
terconnected triangles, described by a set of 3D vertex positions
and triplets of indices that specify the connectivity between ver-
tices. Colors can be specified through vertex colors, or through
UV mapping, where each vertex is mapped to 2D coordinates on
a 2D image (texture). Triangle meshes are very efficient in terms
of both memory and computation, and UV mapping allows sim-
ple meshes to be coupled with detailed textures. For this reason,
they are arguably the most successful representation in computer
graphics, as they are ubiquitous in movies and video games. While
it was initially not clear how to effectively utilize this representa-
tion in deep learning approaches (since the rasterization step in
mesh renderers is non-differentiable), the field of differentiable
rendering [Che+19; KUH18; Liu+19b; LB14] has enabled a range
of deep learning approaches that can deal with triangle meshes.
Our works in Chapter 3 [Pav+20b] and Chapter 4 [Pav+21] also
adopt triangle meshes owing to their flexibility and their ability
to efficiently represent fine details. A major limitation of triangle
meshes in most deep learning approaches, however, is that the
topology of the object (number of vertices and their connectivity)
needs to be specified in advance and cannot be altered. Most
approaches adopt a sphere template which is then deformed, but
this makes it challenging to model arbitrary topologies, e.g. a
donut.

signed distance functions . In SDFs, the shape of the
object is described by a continuous function that assigns a signed
distance value d(x) (a scalar) to each point x in space. The contour
of the object is implicitly determined by its intersection with the
0-level set, i.e. d(x) = 0, whereas the sign of the distance describes
whether the point lies inside or outside the shape. For example, a
sphere of radius r can be implicitly represented as:

d(x) = ∥x∥ − r = 0. (1.2)

Rendering can be performed through iterative ray marching
[Har96], which can be slow compared to rasterization. However,
being implicit, this representation can easily represent fine struc-
tural details as it does not adhere to a fixed-resolution grid, can
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model arbitrary topologies, and provides analytical information
about surface normals.

deep implicit representations . When an implicit repre-
sentation (e.g. the distance function in SDFs) is parameterized
using a deep neural network, we obtain a deep implicit repre-
sentation. Common architectures for this task include multi-layer
perceptrons (MLP) and residual networks [He+16]. Furthermore,
sinusoidal activations [Sit+20] and positional encoding [Tan+20]
have been shown to improve the ability of these models to rep-
resent high-frequency details. A major strength of deep implicit
representations over alternative approaches is that they can be
regarded as a form of variable-rate compression. Most of the ca-
pacity of the network is concentrated in the fine (high-frequency)
details, whereas sparse areas take up a lesser portion of the net-
work’s capacity. Implicit neural networks can therefore easily
compress a signal (not limited to 3D scenes) using few param-
eters. The main disadvantage is the high computational cost to
query the model, although there has been recent research aimed
at overcoming this limitation [Che+22].

1.2.5 Neural radiance fields

Neural radiance fields (NeRF) were originally proposed in
[Mil+20] to tackle the novel view synthesis task, but were later
shown to represent a more general tool in the 3D vision commu-
nity. The idea behind NeRFs is the combination of deep implicit
representations with volumetric rendering (neural rendering), re-
sulting in a scene representation that can be optimized in an
end-to-end fashion using 2D images for supervision. In its origi-
nal formulation, a NeRF is trained using a set of 2D views along
with the corresponding ground-truth camera poses, and the result
is a 3D reconstruction of the scene comprising both shape and
color, which can be used to render novel views.

A NeRF is typically parameterized using a multi-layer per-
ceptron (MLP) that takes a 3D position x and optionally a view
direction d̂ (a unit vector) as input, the latter of which is used to
model view-dependent effects such as reflections. The output is a
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density σ(x) (which does not depend on the view direction) and
an RGB color c = f (x, d̂). Rendering is performed by casting rays
through the camera frustum, sampling the MLP across multiple
depth values, and integrating along each ray as follows:

C(t) =
∫ tfar

tnear
T(t)σ(r(t))c(r(t), d̂)dt , (1.3)

where r(t) = o + td̂ is the camera ray with origin o and direc-
tion d̂, bounded by the near and far planes of depth tnear and

tfar respectively; T(t) = exp
(
−
∫ t

tnear
σ(r(s))ds

)
is the integrated

density, which models occlusions; finally, C(t) is the rendered
RGB color. In practice, the integrals are approximated using a
quadrature rule as described in [Max95]. It is also common to
apply a two-step sampling procedure where a first pass (coarse
step) samples the depths t uniformly via stratified sampling, and
a second pass (fine step) uses importance sampling to sample
points closer to surfaces more frequently.

Owing to their success in the novel-view synthesis task, there
has been follow-up work bridging NeRFs and alternative represen-
tations such as SDFs [OPG21; Yar+21] and voxels [Fri+22; SSC22].
There has also been work on applying NeRFs to pose estimation
[Yen+21], unconditional generation [Cha+21; NG21; Sch+20], and
reconstruction from few views [Yu+21]. Finally, in an attempt to
improve efficiency, some approaches have proposed lightweight
alternatives to MLPs [Cha+22; Che+22]. Although these parame-
terizations are still somewhat slower than triangle meshes, NeRFs
can model arbitrary topologies, thus overcoming a significant lim-
itation of the former. For this reason, NeRFs are central to many
recent approaches in the computer vision literature, including the
last approach presented in this dissertation (Chapter 5) [Pav+23],
which tackles 3D reconstruction from a single view. Finally, we
mention that triangle meshes and NeRFs are not mutually exclu-
sive. A recent research direction aims to distill NeRFs into meshes
after training [Gao+22], harnessing the advantages of NeRFs and
the fast inference speed of triangle meshes.
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1.3 thesis organization

Excluding this introductory chapter, the thesis is structured into
four main chapters, each of which revolves around a publication,
and a final chapter of closing remarks where we summarize our
contributions and discuss future perspectives.

Chapter 2 . We open this dissertation with a chapter on im-
proving the controllability of generative models. Although techni-
cal advances in image synthesis have made it possible to generate
photorealistic images in the unconditional (i.e. unconstrainted)
setting, an important question is how we can control the genera-
tion process so as to precisely specify what we would like to see
in the final result. Following a GAN framework, we introduce
a weakly-supervised approach for conditional image generation
of complex scenes where the user has fine control over the ob-
jects appearing in the scene. Such control can be exercised either
through textual descriptions or through high-level attributes that
can be assigned to the individual objects appearing in the scene.
The scene layout is described through a semantic representation
which we call sparse mask, and can essentially be regarded a sketch
of the scene.

“Controlling Style and Semantics in Weakly-Supervised
Image Generation.” [PLH20]
Dario Pavllo, Aurelien Lucchi, and Thomas Hofmann.
European Conference on Computer Vision (ECCV), 2020.
Selected for spotlight presentation (top 5% of submis-
sions).

Chapter 3 . While in the previous chapter we focus on the
input representation of generative models, another interesting
research question is what we can do with the output representa-
tion, that is, whether we can devise representations that are more
structured than pixels. Since the 2D images that we perceive are
projections of 3D scenes, a natural observation is that generative
models that can explicitly reason about 3D geometry (3D-aware
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generators) should enable further downstream applications such
as the synthesis of 3D objects for animation, movies, and video
games. Following the paradigm of differentiable rendering, we intro-
duce our approach named convolutional mesh generation, which can
synthesize triangle meshes and associated high-resolution texture
maps. A key contribution of our work is the encoding of the mesh
and texture as 2D representations, which are semantically aligned
and can be easily modeled by a 2D convolutional GAN. Further-
more, our approach is trained using only 2D supervision from
single-view natural images, and does not require ground-truth
3D shapes or multiple views of the same object. We conclude
this chapter by demonstrating that many of the conditioning tech-
niques commonly applied to 2D GANs, such as textual prompts,
can also be applied to this case.

“Convolutional Generation of Textured 3D Meshes.”
[Pav+20b]
Dario Pavllo, Graham Spinks, Thomas Hofmann, Marie-
Francine Moens, and Aurelien Lucchi.
Neural Information Processing Systems (NeurIPS), 2020.
Selected for oral presentation (top 1% of submissions).

Chapter 4 . A significant limitation of the approach presented
in the previous chapter is the requirement for annotated camera
poses, which are typically only available in small datasets, as they
require laborious work from human annotators. In this chapter,
we relax this assumption and apply our method to real-world
datasets such as ImageNet. We demonstrate that our new method
achieves performance on par with the method presented in the
previous chapter, while not requiring such pose annotations.

“Learning Generative Models of Textured 3D Meshes
from Real-World Images.” [Pav+21]
Dario Pavllo, Jonas Kohler, Thomas Hofmann, and Aure-
lien Lucchi.
International Conference on Computer Vision (ICCV), 2021.
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Chapter 5 . An important downstream task in 3D deep learn-
ing is single-view 3D reconstruction, where the goal is to recover
the 3D shape of an object along with its pose and appearance,
from a single image. This task has applications in content creation,
augmented reality (AR), robotics, and represents a fundamental
research question in computer vision. While this task has been
tackled in various ways throughout the literature, it turns out
that 3D-aware generators (as the ones presented in the previous
chapters) represent an excellent tool for undertaking this task.
Following a paradigm called GAN inversion – where the goal is
to invert a generator so as to recover the latent code that best de-
scribes an input image – we propose a reconstruction framework
that achieves state-of-the-art results on this task. In this work, we
also switch to a recently-proposed scene representation – Neural
Radiance Fields (NeRF) – which combines differentiable render-
ing with implicit representations, allowing us to model arbitrary
topologies with a greater detail compared to previous work based
on triangle meshes. We further introduce a bootstrapping mecha-
nism to mitigate some of the issues of vanilla GAN inversion, such
as the requirement for a laborious optimization procedure.

“Shape, Pose, and Appearance from a Single Image via
Bootstrapped Radiance Field Inversion.” [Pav+23]
Dario Pavllo, David Joseph Tan, Marie-Julie Rakotosaona,
and Federico Tombari.
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023.
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2C O N T R O L L A B L E W E A K LY- S U P E RV I S E D I M A G E
G E N E R AT I O N

chapter abstract. We propose a weakly-supervised ap-
proach for conditional image generation of complex scenes where
a user has fine control over objects appearing in the scene. We
exploit sparse semantic maps to control object shapes and classes,
as well as textual descriptions or attributes to control both lo-
cal and global style. In order to condition our model on textual
descriptions, we introduce a semantic attention module whose
computational cost is independent of the image resolution. To
further augment the controllability of the scene, we propose a
two-step generation scheme that decomposes background and
foreground. The label maps used to train our model are produced
by a large-vocabulary object detector, which enables access to unla-
beled data and provides structured instance information. In such a
setting, we report better FID scores compared to fully-supervised
settings where the model is trained on ground-truth semantic
maps. We also showcase the ability of our model to manipulate a
scene on complex datasets such as COCO and Visual Genome.

open source . Code and pretrained models for this work are
available at https://github.com/dariopavllo/style-semantics.

This chapter is based on our ECCV 2020 paper “Controlling Style and Semantics
in Weakly-Supervised Image Generation” [PLH20].
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tree

cloud

mountain

zebra

Sparse input mask Generated image Delete zebras from mask
Add elephant to mask

Style from caption: zebras
standing on green grass

Style from caption: zebras
standing on snow

Attribute bare to large tree Attribute green to trainAttribute red to train Attribute blue and
yellow to train

Final generated image Generated background Generated foreground

Figure 2.1: Our approach enables control over the style of a scene and
its objects via high-level attributes or textual descriptions. It also allows
for image manipulation through the mask, including moving, deleting,
or adding object instances. The decomposition of the background and
foreground (top-right corner) facilitates local changes in a scene.

2.1 introduction

Deep generative models such as VAEs [KW14] and
GANs [Goo+14] have made it possible to learn complex
distributions over various types of data, including images and
text. For images, the technical advances in [BDS19; Heu+17;
Kar+18; Miy+18; MK18; Zha+19a] have enabled GANs to produce
realistically-looking images for a large number of classes. How-
ever, these models often do not provide high-level control over
image characteristics such as appearance, shape, texture, or color,
and they fail to accurately model multiple (or compound) objects
in a scene, thus limiting their practical applications. A related line
of research aims at disentangling factors of variation [KLA19].
While these approaches can produce images with varied styles
by injecting noise at different levels, the style factors are learned
without any oversight, leaving the user with a loose handle on
the generation process. Furthermore, their applicability has only
been demonstrated for single-domain images (e.g. faces, cars,
or birds). Some conditional approaches allow users to control
the style of an image using either attributes [He+19; Yan+16a]
or natural language [Xu+18; Zha+17; Zha+18a], but again, these
methods only show compelling results on single-domain datasets.
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One key aspect in generative modeling is the amount of re-
quired semantic information: i) weak conditioning (e.g. a sentence
that describes a scene) makes the task underconstrained and
harder to learn, potentially resulting in incoherent images on
complex datasets. On the other hand, ii) rich semantic information
(e.g. full segmentation masks) yields the best generative quality,
but requires more effort from an artist or annotator. The appli-
cations of such richly-conditioned models are numerous, includ-
ing art, animation, image manipulation, and realistic texturing
of video games. Existing works in this category [CK17; Iso+17;
Par+19b; Qi+18; Wan+18] typically require hand-labeled segmen-
tation masks with per-pixel class annotations. Unfortunately, this
is not flexible enough for downstream applications such as image
manipulation, where the artist is faced with the burden of mod-
ifying the semantic mask coherently. Common transformations
such as moving, deleting, or replacing an object require instance
information (usually not available) and a strategy for infilling the
background. Moreover, these models present little-to-no high-level
control over the style of an image and its objects.

Our work combines the merits of both weak conditioning and
strong semantic information, by relying on both mask-based gen-
eration – using a variant we call sparse masks – and text-based
generation – which can be used to control the style of the objects
contained in the scene as well as its global aspects. Figure 2.1
conceptualizes our idea. Our approach uses a large-vocabulary
object detector to obtain annotations, which are then used to train
a generative model in a weakly-supervised fashion. The input
masks are sparse and retain instance information – making them
easy to manipulate – and can be inferred from images or videos
in-the-wild. We additionally contribute a conditioning scheme for
controlling the style of the scene and its instances, either using
high-level attributes or natural language with an attention mech-
anism. Unlike prior approaches, our attention model is applied
directly to semantic maps (making it easily interpretable) and
its computational cost does not depend on the image resolution,
enabling its use in high-resolution settings. This conditioning mod-
ule is general enough to be plugged into existing architectures.
We also tackle another issue of existing generative models: local
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changes made to an object (such as moving or deleting) can affect
the scene globally due to the learned correlations between classes.
While these entangled representations improve scene coherence,
they do not allow the user to modify a local part of a scene without
affecting the rest. To this end, our approach relies on a multi-step
generation process where we first generate a background image and
then we generate foreground objects conditioned on the former.
The background can be frozen while manipulating foreground
objects.

Finally, we evaluate our approach on COCO [CUF18; Che+15;
Lin+14] and Visual Genome [Kri+17], and show that our weakly-
supervised setting can achieve better FID scores [Heu+17] than
fully-supervised counterparts trained on ground-truth masks, and
weakly-supervised counterparts where the model is trained on
dense maps obtained from an off-the-shelf semantic segmentation
model, while being more controllable and scalable to large unla-
beled datasets. We show that this holds both in presence and in
absence of style control.

2.2 related work

Following the success of GANs in the unconditional setting, there
have been a plethora of works whose goal is to condition the
generator so as to make the synthesis process more controllable.
In the context of image synthesis, there has been work on con-
ditioning GANs on categorical labels [BDS19; Miy+18; MK18;
Zha+19a], text [Ree+16a; Xu+18; Zha+17; Zha+18a], semantic
maps [Iso+17; Par+19b; Wan+18], and conditioning images from
other domains [Iso+17; Zhu+17a] (image-to-image translation).
We review the literature on some of these paradigms, with a focus
on the approaches that were directly relevant to our method at the
time of publishing. For a discussion of more recent developments
since this work was published, we refer the reader to Section 2.6,
where we also cover synthesis techniques that evolved beyond
GANs.

image generation from semantic maps . In this setting,
a semantic segmentation map is translated into a natural image.
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Non-adversarial approaches are typically based on perceptual
losses [CK17; Qi+18], whereas GAN architectures are based on
patch-based discriminators [Iso+17], progressive growing [Kar+18;
Wan+18], and conditional batch normalization where the semantic
map is fed to the model at different resolutions [Par+19b]. Sim-
ilarly to other state-of-the-art methods, our work is also based
on this paradigm. Most approaches are trained on hand-labeled
masks (limiting their application in the wild), but [Par+19b] shows
one example where the model is weakly supervised on masks
inferred using a semantic segmentation model [Che+18a]. Our
model is also weakly supervised, but instead of a semantic seg-
mentation model we use an object detector – which allows us to
maintain instance information during manipulations, and results
in sparse masks. While early work focused on class semantics, re-
cent methods support some degree of style control. E.g. [Wan+18]
trains an instance autoencoder and allows the user to choose a
latent code from among a set of modes, whereas [Par+19b] trains
a VAE to control the global style of a generated image by copy-
ing the style of a guide image. Both these methods, however, do
not provide fine-grained style control (e.g. changing the color
of an object to red). Another recent trend consists in generating
images from structured layouts, which are transformed into se-
mantic maps as an intermediate step to facilitate the task. In this
regard, there is work on generation from bounding-box layouts
[HHW19; Hon+18; SW19; Zha+19b] and scene graphs [JGF18].
Although these approaches tackle a harder task, they generate
low-resolution images and are not directly relatable to our work,
which tackles controllability among other aspects.

semantic control . Existing approaches do not allow for
easy manipulation of the semantic map because they present no
interface for encoding existing images. In principle, it is possible
to train a weakly-supervised model on maps inferred from a
semantic segmentation model, as [Par+19b] does for landscapes.
However, as we show in Section 2.4.2, the results in this setting
are notably worse than fully-supervised baselines. Furthermore,
manipulations are still challenging because instance information
is not available. Since the label masks are dense, even simple
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?X X

Ground-truth mask Manipulated mask

Generated Fill with "no class" Fill with "building"

Fill with "road"

road

building

Semantic seg.

Generated

Sparse mask Instance map

Ground-truth image Generated

Manipulated mask

Generated

Figure 2.2: Left: when manipulating a ground-truth mask (e.g. deleting
one bus), one is left with the problem of infilling the background which
is prone to ambiguities (e.g. selecting a new class as either road or
building). Furthermore, in existing models, local changes affect the scene
globally due to learned correlations. Middle: in the wild, ground-truth
masks are not available (neither are instance maps). One can infer maps
using a semantic segmentation model, but these are often noisy and lack
instance information (in the example above, we observe that the two
buses are merged). Right: our weakly-supervised sparse mask setting,
which combines fine-detailed masks with instance information. The two-
step decomposition ensures that changes are localized.

transformations such as deleting or moving an object would create
holes in the semantic map that need to be adjusted by the artist
(Figure 2.2). Dense masks also make the task too constrained with
respect to background aspects of the scene (e.g. sky, land, weather),
which leaves less room for style control. Semantic control can
also be framed as an unpaired image-to-image translation task
[MCS19], but this requires ground-truth masks for both source
and target instances, and can only translate between two classes.

text-based generation. Some recent models condition the
generative process on text data. These are often based on au-
toregressive architectures [Ree+16b] and GANs [Ree+16a; Xu+18;
Zha+17; Zha+18a]. Learning to generate images from text using
GANs is known to be difficult due to the task being unconstrained.
In order to ease the training process, [Zha+17; Zha+18a] propose
a two-stage architecture named StackGAN. To avoid the insta-
bility associated with training a language model jointly with a
GAN, they use a pretrained sentence encoder [Kir+15] that en-
codes a caption into a fixed-length vector which is then fed to the
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model. More advanced architectures such as AttnGAN [Xu+18]
use an attention mechanism which we discuss in one of the next
paragraphs. These approaches show interesting results on single-
domain datasets (birds, flowers, etc.) but are less effective on
complex datasets such as COCO [Lin+14] due to the intrinsic
difficulty of generating coherent scenes from text alone. Some
works [Jos+19; Yin+19] have demonstrated that generative models
can benefit from taking as input multiple diverse textual descrip-
tions per image. Finally, we are not aware of any prior work that
conditions the generative process on both text and semantic maps
(our setting).

multi-step generation. Approaches such as [SOL19;
Yan+17b] aim at disentangling background and foreground gen-
eration. While fully-unsupervised disentanglement is provably
impossible [Loc+19], it is still achievable through some form of
inductive bias – either in the model architecture or in the loss
function. While [Yan+17b] uses spatial transformers to achieve
separation, [SOL19] uses object bounding boxes. Both methods
show compelling results on single-domain datasets that depict a
centered object, but are not directly applicable to more challeng-
ing datasets. For composite scenes, [Tur+19] generates foreground
objects sequentially to counteract merging effects. In our work, we
are not interested in full disentanglement (i.e. we do not assume
independence between background and foreground), but merely
in separating the two steps while keeping them interpretable. Our
model still exploits correlations among classes to maximize visual
quality, and is applied to datasets with complex scenes. Finally,
there has also been work on interactive generation using dialogue
[Che+18b; El-+19; Sha+18].

attention models in gans . For unconditional models (or
models conditioned on simple class labels), self-attention GANs
[BDS19; Zha+19a] use visual-visual attention to improve spatial
coherence. For generation from text, [Xu+18] employ sentence-
visual attention coupled with an LSTM encoder, but only in the
generator. In the discriminator, the caption is enforced through
a supervised loss based on features extracted from a pretrained
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Inception [Sze+16] network. We introduce a new form of attention
(sentence-semantic) which is applied to semantic maps instead
of convolutional feature maps, and whose computational cost
is independent of the image resolution. It is applied both to
the generator and the discriminator, and on the sentence side it
features a transformer-based [Vas+17] encoder.

2.3 approach

2.3.1 Framework

Our main interest is conditional image generation of complex
scenes where a user has fine control over the objects appear-
ing in the scene. Prior work has focused on generating objects
from ground-truth masks [Iso+17; Par+19b; Wan+18; Zhu+17a]
or on generating outdoor scenes based on simple hand-drawn
masks [Par+19b]. While the former approach requires a signifi-
cant labeling effort, the latter is not directly suitable for complex
datasets such as COCO-Stuff [CUF18], whose images consist of
a large number of classes with complex (hard to draw) shapes.
We address these problems by introducing a new model that is
conditioned on sparse masks – to control object shapes and classes
– and on text/attributes to control style and textures. This gives
the ability to a user to produce scenes through a variety of image
manipulations (such as moving, scaling or deleting an instance,
adding an instance from another image or from a database of
shapes) as well as style manipulations controlled using either
high-level attributes on individual instances (e.g. red, green, wet,
shiny) or using text that refers to objects as well as global context
(e.g. “a red car at night”). In the latter case, visual-textual correla-
tions are not explicitly defined but are learned in an unsupervised
way.

sparse masks . Instead of training a model on precise seg-
mentation masks as in [Iso+17; Par+19b; Wan+18], we use a mask
generated automatically from a large-vocabulary object detector.
Compared to a weakly-supervised setting based on semantic seg-
mentation, this process introduces less artifacts (see Appendix
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2.7.4) and has the benefit of providing information about each
instance (which may not always be available otherwise), including
parts of objects which would require significant manual effort to
label in a new dataset. In general, our set of classes comprises
countable objects (person, car, etc.), parts of objects (light, window,
door, etc.), as well as uncountable classes (grass, water, snow),
which are typically referred to as “stuff” in the COCO terminol-
ogy [CUF18]. For the latter category, an object detector can still
provide useful sparse information about the background, while
keeping the model autonomous to fill-in the gaps. We describe
the details of our object detection setup in Section 2.4.1.

two-step generation. In the absence of constraints, condi-
tional models learn class correlations observed in the training data.
For instance, while dogs typically stand on green grass, zebras
stand on yellow grass. While this feature is useful for maximizing
scene coherence, it is undesirable when only a local change in
the image is wanted. We observed similar global effects on other
local transformations, such as moving an object or changing its
attributes, and generally speaking, small perturbations of the in-
put can result in large variations of the output. We show a few
examples in the Appendix 2.7.4. To tackle this issue, we propose
a variant of our architecture which we call two-step model and
which consists of two concatenated generators (Figure 2.3, right).
The first step (generator G1) is responsible for generating a back-
ground image, whereas the second step (generator G2) generates a
foreground image conditioned on the background image. The defi-
nition of what constitutes background and foreground is arbitrary:
our choice is to separate by class: static/uncountable objects (e.g.
buildings, roads, grass, and other surfaces) are assigned to back-
ground, and moving/countable objects are assigned to foreground.
Some classes can switch roles depending on the parent class, e.g.
window is background by default, but it becomes foreground if it is a
child of a foreground object such as a car.
When applying a local transformation to a foreground object, the
background can conveniently be frozen to avoid global changes.
As a side benefit, this also results in a lower computational cost
to regenerate an image. Unlike work on disentanglement [SOL19;
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Yan+17b] which enforces that the background is independent of
the foreground without necessarily optimizing for visual quality,
our goal is to enforce separation while maximizing qualitative
results. In our setting, G1 is exposed to both background and
foreground objects, but its architecture is designed in a way that
foreground information is not rendered, but only used to induce
a bias in the background (see Section 2.3.2).

attributes . Our method allows the user to control the style of
individual instances using high-level attributes. These attributes
refer to appearance factors such as colors (e.g. white, black, red),
materials (wood, glass), and even modifiers that are specific to
classes (leafless, snowy), but not shape or size, since these two
are determined by the mask. An object can also combine multiple
attributes (e.g. black and white) or have none – in this case, the
generator would pick a predefined mode. This setup gives the
user a lot of flexibility to manipulate a scene, since the attributes
need not be specified for every object.

captions . Alternatively, one can consider conditioning style
using natural language. This has the benefit of being more expres-
sive, and allows the user to control global aspects of the scene
(e.g. time of the day, weather, landscape) in addition to instance-
specific aspects. While this kind of conditioning is harder to learn
than plain attributes, in Section 2.3.2 we introduce a new atten-
tion model that shows compelling results without excessively
increasing the model complexity.

2.3.2 Architecture.

We design our conditioning mechanisms to have sufficient gen-
erality to be attached to existing conditional generative models.
In our experiments, we choose SPADE [Par+19b] as the backbone
for our conditioning modules, which to our knowledge repre-
sents the state of the art. As in [Par+19b], we use a multi-scale
discriminator [Wan+18], a perceptual loss in the generator using
a pretrained VGG network [SZ14], and a feature matching loss in
the discriminator [Wan+18].
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one-step model . Since this model (Figure 2.3, left) serves as a
baseline, we keep its backbone as close as possible to the reference
model of [Par+19b]. We propose to insert the required information
about attributes/captions in this architecture by modifying the
input layer and the conditional batch normalization layers of
the generator, which is where semantic information is fed to the
model. We name these S-blocks (short for semantic-style block).

semantic-style block . For class semantics, the input sparse
mark is fed to a pixel-wise embedding layer to convert categorical
labels into 64D embeddings (including the empty space, which is
a special class “no class”). To add style information, we optionally
concatenate another 64D representation to the class embedding
(pixel-wise); we explain how we derive this representation in the
next two paragraphs. The resulting feature map is convolved with
a 3 × 3 kernel, passed through a ReLU non-linearity and con-
volved again to produce two feature maps γ and β, respectively,
the conditional batch normalization gain and bias. The normaliza-
tion is then computed as y = BN(x)⊙ (1 + γ) + β, where BN(x)
is the parameter-free batch normalization. The last step is related
to [Par+19b] and other architectures based on conditional batch
normalization. Unlike [Par+19b], however, we do not use 3× 3
convolutions on one-hot representations in the input layer. This
allows us to scale to a larger number of classes without signifi-
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Figure 2.3: Left: One-step model. Right: two-step model. The background
generator G1 takes as input a background mask (processed by S-blocks) and
the full mask (processed by Savg-blocks, where positional information
is removed). The foreground generator takes as input the output of G1
and a foreground mask. Finally, the two outputs are alpha-blended. For
convenience, we do not show attributes/text in this figure.
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Figure 2.4: Left: Conditioning block with attributes. Class and attribute
embeddings are concatenated and processed to generate the conditional
batch normalization gain and bias. In the attribute mask, embeddings
take the contour of the instance to which they refer. In G1 of the two-step
model, where S and Savg are both used, the embedding weights are
shared. Right: Attention mechanism for conditioning style via text. The
sentence (of length n = 7 including delimiters) is fed to a pretrained
attention encoder, and each token is transformed into a key and a value
using two trainable linear layers. The queries are learned for each class,
and the attention yields a set of contextualized class embeddings that are
concatenated to the regular semantic embeddings.

cantly increasing the number of parameters. We apply the same
principle to the discriminators.

conditioning on attributes . For attributes, we adopt a
bag-of-embeddings approach where we learn a 64D embedding for
each possible attribute, and all attribute embeddings assigned to
an instance are broadcast to the contour of the instance, summed
together, and concatenated to the class embedding. Figure 2.4 (left)
(S-block) depicts this process. To implement this efficiently, we
create a multi-hot attribute mask (1 in the locations corresponding
to the attributes assigned to the instance, 0 elsewhere) and feed
it through a 1× 1 convolutional layer with Nattr input channels
and 64 output channels. Attribute embeddings are shared among
classes and are not class-specific. This helps the model generalize
better (e.g. colors such as “white” apply both to vehicles and ani-
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mals), and we empirically observe that implausible combinations
(e.g. leafless person) are simply ignored by the generator without
side effects.

conditioning on text. While previous work has used fixed-
length vector representations [Zha+17; Zha+18a] or one-layer at-
tention models coupled with RNNs [Xu+18], the diversity of our
scenes led us to use a more powerful encoder entirely based
on self-attention [Vas+17]. We encode the image caption using
a pretrained BERTbase model [Dev+18] (110M parameters). It is
unreasonable to attach such a model to a GAN and fine-tune it,
both due to excessive memory requirements and due to potential
instabilities. Instead, we freeze the pretrained model and encode
the sentence, extract its hidden representation after the last or
second-to-last layer (we compare these in Section 2.4.2), and train
a custom multi-head attention layer for our task. This paradigm,
which is also suggested by [Dev+18], has proven successful on a
variety of NLP downstream tasks, especially when these involve
small datasets or limited vocabularies. Furthermore, instead of
storing the language model in memory, we simply pre-compute
the sentence representations and cache them.

Next, we describe the design of our trainable attention layer
(Figure 2.4, right). Our attention mechanism is different from
the commonly-used sentence-visual attention [Xu+18], where at-
tention is directly applied to convolutional feature maps inside
the generator. Instead, we propose a form of sentence-semantic
attention which is computationally efficient, interpretable, and
modular. It can be concatenated to conditioning layers in the same
way as we concatenate attributes. Compared to sentence-visual
attention, whose cost is O(nd2) (where n is the sentence length
and d× d is the feature map resolution), our method has a cost of
O(nc) (where c is the number of classes), i.e. it is independent of
the image resolution. We construct a set of c queries (i.e. one for
each class) of size h = 64 (where h is the attention head size). We
feed the hidden representations of each token of the sentence to
two linear layers, one for the keys and one for the values. Finally,
we compute a scaled dot-product attention [Vas+17], which yields
a set of c values. To allow the conditioning block to attend to
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multiple parts of the sentence, we use 6 or 12 attention heads
(ablations in Section 2.4.2), whose output values are concatenated
and further transformed through a linear layer. This process can
be thought of as generating contextualized class embeddings, i.e. class
embeddings customized according to the sentence. For instance,
given a semantic map that depicts a car and the caption “a red
car and a person”, the query corresponding to the visual class
car would most likely attend to “red car”, and the correspond-
ing value will induce a bias in the model to add redness to the
position of the car. Finally, the contextualized class embeddings are
applied to the semantic mask via pixel-wise matrix multiplication
with one-hot vectors, and concatenated to the class embeddings
in the same way as attributes. In the current formulation, this
approach is unable to differentiate between instances of the same
class. We propose a possible mitigation in Section 2.5.

two-step model . It consists of two concatenated generators.
G1 generates the background, i.e. it models p(xbg), whereas G2
generates the foreground conditioned on the background, i.e.
p(xfg|xbg). One notable difficulty in training such a model is that
background images are never observed in the training set (we only
observe the final image), therefore we cannot use an intermediate
discriminator for G1. Instead, we use a single, final discriminator
and design the architecture in a way that the gradient of the
discriminator (plus auxiliary losses) is redirected to the correct
generator. The convolutional nature of G1 would then ensure that
the background image does not contain visible holes. A natural
choice is alpha blending, which is also used in [SOL19; Yan+17b].
G2 generates an RGB foreground image plus a transparency mask
(alpha channel), and the final image is obtained by pasting the
foreground onto the background via linear blending:

xfinal = xbg · (1− αfg) + xfg · αfg (2.1)

where xfinal, xbg, and xfg are RGB images, and αfg is a 1-channel
image bounded in [0, 1] by a sigmoid. Readers familiar with high-
way networks [SGS15] might notice a similarity to this approach in
terms of gradients dynamics. If αfg = 1, the gradient is completely
redirected to xfg, while if αfg = 0, the gradient is redirected to xbg.
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This scheme allows us to train both generators in an end-to-end
fashion using a single discriminator, and we can also preserve
auxiliary losses (e.g. VGG loss) which [Par+19b] has shown to
be very important for convergence. To incentivize separation be-
tween classes as defined in Section 2.3.1, we supervise α f g using
a binary cross-entropy loss, and decay this term over time (see
Section 2.4.1).

G2 uses the same S-blocks as the ones in the one-step model,
but here they take a foreground mask as input (Figure 2.3, right). G1,
on the other hand, must exploit foreground information without
rendering it. We therefore devise a further variation of input
conditioning that consists of two branches: (i) the first branch
(S-block) takes a background mask as input and processes it as
usual to produce the batch normalization gain γ and bias β. (ii)
the second branch (Savg-block, Figure 2.4 left) takes the full mask
as input (background plus foreground), processes it, and applies
global average pooling to the feature map to remove information
about localization. This way, foreground information is only used
to bias G1 and cannot be rendered at precise spatial locations.
After pooling, it outputs γavg and βavg . (iii) The final conditional
batch normalization is computed as:

y = BN(x)⊙ (1 + γ + γavg) + β + βavg (2.2)

Finally, the discriminator D takes the full mask as input (back-
ground plus foreground). Note that, if G1 took the full mask
as input without information reduction, it would render visible
“holes” in the output image due to gradients never reaching the
foreground zones of the mask, which is what we are trying to
avoid. The Appendix 2.7.1 provides more details about our ar-
chitectures, and 2.7.2 shows how G2 can be used to generate one
object at a time to fully disentangle foreground objects from each
other (although this is unnecessary in practice).

2.4 experiments

For consistency with [Par+19b], we always evaluate our model on
the COCO-Stuff validation set [CUF18], but we train on a variety
of training sets:
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COCO-Stuff (COCO2017) [CUF18; Lin+14] contains 118k train-
ing images with captions [Che+15]. We train with and without
captions. COCO-Stuff extends COCO2017 with ground-truth se-
mantic maps, but for our purposes the two datasets are equivalent
since we do not exploit ground-truth masks.
Visual Genome (VG) [Kri+17] contains 108k images that par-
tially overlap with COCO (≈50%). VG does not have a standard
train/test split, therefore we leave out 10% of the dataset to use
as a validation set (IDs ending with 9), and use the rest as a
training set from which we remove images that overlap with the
COCO-Stuff validation set. We extract the attributes from the
scene graphs.
Visual Genome augmented (VG+) VG augmented with the 123k
images from the COCO unlabeled set. The total size is 217k images
after removing exact duplicates. The goal is to evaluate how well
our method scales to large unlabeled datasets. We train without
attributes and without captions.

For all experiments, we evaluate the Fréchet Inception Distance
(FID) [Heu+17] (precise implementation details of the FID in
the Appendix 2.7.3). Furthermore, we report our results in Sec-
tion 2.4.2 and provide additional qualitative results in 2.7.4.

2.4.1 Implementation details

semantic maps . To construct the input semantic maps, we
use the semi-supervised implementation of Mask R-CNN [He+17;
Ren+15] proposed by [Hu+18]. It is trained on bounding boxes
from Visual Genome (3000 classes) and segmentation masks from
COCO (80 classes), and learns to segment classes for which there
are no ground-truth masks. We discard the least frequent classes,
and, since some VG concepts overlap (e.g. car, vehicle) leading to
spurious detections, we merge these classes and end up with a to-
tal of c = 280 classes (plus a special class for “no class”). We set the
threshold of the object detector to 0.2, and further refine the pre-
dictions by running a class-agnostic non-maximum-suppression
(NMS) step on the detections whose mask intersection-over-union
(IoU) is greater than 0.7. We also construct a transformation hier-
archy to link children to their parents in the semantic map (e.g.
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COCO Mask Generated Sparse mask Generated Ground truth Generation from hand-drawn sparse sketches

Figure 2.5: Left: the larger set of labels in our sparse masks improves
fine details. These masks are easy to obtain with a semi-supervised object
detector, and would otherwise be too hard to hand-label. Right: sparse
masks are also easy to sketch by hand.

headlight of a car) so that they can be manipulated as a whole;
further details in the Appendix 2.7.1. We select the 256 most fre-
quent attributes, manually excluding those that refer to shapes
(e.g. short, square).

training . We generate images at 256×256 and keep our ex-
perimental setting and hyperparameters as close as possible to
[Par+19b] for a fair comparison. For the two-step model, we pro-
vide supervision on the alpha blending mask and decay this loss
term over time, observing that the model does not re-entangle
background and foreground. This gives G2 some extra flexibility
in drawing details that are not represented by the mask (reflec-
tions, shadows). Hyperparameters and additional training details
are specified in the Appendix 2.7.1.

2.4.2 Results

quantitative results . We show the FID scores for the main
experiments in Table 2.1 (left). While improving FID scores is not
the goal of our work, our weakly-supervised sparse mask baseline
(#3) interestingly outperforms both the fully-supervised baseline
on SPADE [Par+19b] (#1) and the weakly-supervised baseline (#2)
trained on dense semantic maps. These experiments adopt an
identical architecture and training set, no style input, and differ
only in the type of input mask. For #2 we obtain the seman-
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Input mask Generated background Input mask Generated background Input mask

Input mask "a city on a cloudy day" "a black and white
picture of a city"

"a city at night""a city at sunset""a city on a rainy day""a city on a sunny day"

Generated final image Leafless trees, car colors,
delete leftmost car

Change player colors
via attributes

Generated final image

[...] in a yellow coat [...]
"a man in a blue coat skiing

through a snowy field"

"a man in a red coat
walking in the forest"

"a man in a black coat
walking in the park"

"a man in a white coat
walking on a lake"

Figure 2.6: Qualitative results (256× 256). Top-left and top-middle: two-
step generation with manipulation of attributes and instances. Top-right:
manipulating style (both context and instances) via text. Bottom: manip-
ulating global style via text.

tic maps from DeepLab-v2 [Che+18a], a state-of-the-art semantic
segmentation model pretrained on COCO-Stuff. Our improve-
ment is partly due to masks better representing fine details (such
as windows, doors, lights, wheels) in compound objects, which
are not part of the COCO class set. In Figure 2.5 (left) we show
some examples. Moreover, the experiment on the augmented Visual
Genome dataset highlights that our model benefits from extra
unlabeled images (#4). Rows #5–9 are trained with style input.
In particular, we observe that these outperform the baseline even
when they use a two-step architecture (which is more constrained)
or are trained on a different training set (VG instead of COCO).
Row #6-7 draw their text embeddings from the last BERT layer
and adopt 12 attention heads (the default), whereas #5 draws its
embeddings from the 2nd-last layer, uses 6 heads, and performs
slightly better.

qualitative results . In Figure 2.6 we show qualitative re-
sults as well as examples of manipulations, either through at-
tributes or text. Additional examples can be seen in the Appendix
2.7.4, including latent space interpolation [KLH18]. In 2.7.5, we
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# Training set Test set(s) Type Mask input Style input FID

1 COCO-train COCO-val 1-step [Par+19b] Ground truth None 22.64

2 COCO-train COCO-val 1-step † Semantic seg. None 23.97

3 COCO-train COCO-val 1-step † Sparse (ours) None 20.02

4 VG+ (aug.) COCO-val/VG-val 1-step † Sparse (ours) None 18.93/13.23

5 COCO-train COCO-val 1-step † Sparse (ours) Text (6h, Ln−1) 19.65

6 COCO-train COCO-val 1-step † Sparse (ours) Text (12h, Ln) 20.63

7 COCO-train COCO-val 2-step † Sparse (ours) Text (12h, Ln) 20.64

8 VG COCO-val/VG-val 1-step † Sparse (ours) Attributes 21.13/15.12

9 VG COCO-val/VG-val 2-step † Sparse (ours) Attributes 20.83/14.88

Ref. Experiment FID (∆)

I #1 COCO “things” only 32.31 (+9.67)

II #6 12h, Ln, attr. in D 20.44 (-0.19)

III #6 12h, Ln−1 19.77 (-0.86)

IV #6 6h, Ln−1 19.65 (-0.98)

V #9 No f.g. info in Savg 25.16 (+4.33)

VI #9 Attr. randomization 20.64 (-0.19)

Table 2.1: Left: FID scores for the main experiments; lower is better. The
first line represents the SPADE baseline [Par+19b]. For the models trained
on VG, we also report FID scores on our VG validation set. (†) indicates
that the model is weakly-supervised, (6h) denotes “6 attention heads”,
Ln−1 indicates that the text embeddings are drawn from the second-to-
last BERT layer. Right: ablation study with extra experiments.

Figure 2.7: Random styles by sampling attributes from a per-class empiri-
cal distribution.

visualize the attention mechanism. Finally, we observe that sketch-
ing sparse masks by hand is very practical (Figure 2.5, right) and
provides an easier interface than dense semantic maps (in which
the class of every pixel must be manually specified).

style randomization. Since we represent style explicitly, at
inference we can randomize the style of an image by drawing at-
tributes from a per-class empirical distribution. This is depicted in
Figure 2.7, and has the additional advantage of being interpretable
and editable (attributes can be refined manually after sampling).
The two-step decomposition also allows users to specify different
sampling strategies for the background and foreground; more
details in the Appendix 2.7.2.
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ablation study. While Table 2.1 (left) already includes a
partial ablation study where we vary input conditioning and some
aspects of the attention module, in Table 2.1 (right) we make this
more explicit and include additional experiments. First, we train a
model on a sparsified COCO dataset by only keeping the “things”
classes and discarding the “stuff” classes. This setting (I) performs
significantly worse than #1 (which uses all classes), motivating
the use of a large class vocabulary. Next, we ablate conditioning
via text (baseline #6, which adopts the default hyperparameters
of BERT). In (II), we augment the discriminator with ground-
truth attributes to provide a stronger supervision signal for the
generator (we take the attributes from Visual Genome for the
images that overlap between the two datasets). The improvement
is marginal, suggesting that our model can learn visual-textual
correlations without explicit supervision. In (III), we draw the
token representations from the second-to-last layer instead of the
last, and in (IV) we further reduce the number of attention heads
from 12 to 6. Both III and IV result in an improvement of the
FID, which justifies the hyperparameters chosen in #5. Finally, we
switch to attribute conditioning (baseline #9). In (IV), we remove
foreground information at inference from the Savg block of the first
generator G1 (we feed the background mask twice in S and Savg).
The FID degrades significantly, suggesting that G1 effectively
exploits foreground information to bias the result. In (V) we show
that randomizing style at inference (previous paragraph) is not
detrimental to the FID, but in fact seems to be slightly beneficial,
probably due to the greater sample diversity.

robustness and failure cases . Input masks can some-
times be noisy due to spurious object detections on certain classes.
Since these are also present at train time, weakly-supervised train-
ing leads to some degree of noise robustness, but sometimes the
artifacts are visible in the generated images. We show some pos-
itive/negative examples in the Appendix Fig. 2.15. In principle,
mask noise can be reduced by using a better object detector. We
also observe that our setup tends to work better on outdoor scenes
and sometimes struggles with fine geometric details in indoor
scenes or photographs shot from a close range.
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2.5 summary

We introduced a weakly-supervised approach for the conditional
generation of complex images. The generated scenes can be con-
trolled through various manipulations on the sparse semantic
maps, as well as through textual descriptions or attribute labels.
Our method enables a high level of semantic/style control while
benefiting from improved FID scores. From a qualitative point-of-
view, we have demonstrated a wide variety of manipulations that
can be applied to an image. Furthermore, our weakly supervised
setup opens up opportunities for large-scale training on unlabeled
datasets, as well as generation from hand-drawn sketches.

2.6 future developments

potential improvements . There are several ways one could
pursue to further enrich the set of tools used to manipulate the
generation process. For instance, the current version of our atten-
tion mechanism cannot differentiate between instances belonging
to the same class and does not have direct access to positional
information. While incorporating such information is beyond the
scope of this work, we suggest that this can be achieved by ap-
pending a positional embedding to the attention queries. In the NLP
literature, the latter is often learned according to the position of
the word in the sentence [Dev+18; Vas+17], but images are 2D
and therefore do not possess such a natural order. Additionally,
this would require captions that are more descriptive than the
ones in COCO, which typically focus on actions instead of style.
Finally, in order to augment the quality of sparse maps, the object
detector could be trained on a higher-quality, large-vocabulary
dataset [GDG19].

recent literature . After this work was published, there
has been a range of new approaches dealing with layout-based
and text-based image generation, many of which steered away
from GANs. Following the success of transformers [Vas+17] in
image classification [Dos+21], transformers have also been em-
ployed in autoregressive techniques for image synthesis. Suc-
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cessful examples include ImageGPT [Che+20] (unconditional),
DALL-E [Ram+21] (text-conditioned), and NÜVA [Wu+22] (text-
and sketch-conditioned). More recently, diffusion models [HJA20;
SME20] have achieved state-of-the-art results on these tasks, out-
performing both GANs and autoregressive techniques. Architec-
tures such as Imagen [Sah+22], DALL-E 2 [Ram+22], and Stable
Diffusion [Rom+22] can generate complex scenes from text, and
the latter has also been demonstrated on generation from lay-
outs. Owing to these results, it is likely that diffusion models will
represent the leading paradigm in the near future.

follow-up work . In this chapter, we have mostly explored
ways to condition the image synthesis process so as to make it
more controllable. This is typically achieved by devising effective
input representations which are injected into the model. Another
interesting research question is whether it is possible to come
up with useful output representations. The approaches analyzed
and proposed so far generate RGB images, i.e. the synthesis pro-
cess takes place in pixel space. While this is adequate for many
applications (e.g. the creation of static content), there might be
other downstream applications where richer representations are
required. An interesting direction in this respect is represented
by 3D-aware generators, which output 3D representations and
have the advantage of disentangling viewpoint from appearance.
This is useful in applications where the identity of the generated
object/scene needs to be preserved when observed from different
viewpoints, such as in the generation of videos or content for
movies/video games. It is also more interesting from an image
understanding perspective, as 3D representations are rooted in hu-
man perception (we perceive 2D projections of 3D scenes but can
still reason about 3D geometry). Therefore, we dedicate the next
chapter of this dissertation (Chapter 3) to this research direction.
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2.7 appendix

2.7.1 Detailed architecture

In this section, we provide additional implementation details
about our architecture in order to consolidate the already-
presented Figure 2.3 (overview of the generators) and Figure 2.4
(conditioning blocks).
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Figure 2.8: One-step gener-
ator using the SPADE back-
bone. “1024c” stands for
“1024 output channels”. The
number on the right of an ar-
row specifies the feature map
resolution at that level. Or-
ange arrows indicate that the
input information is fed to S
blocks.

one-step generator . In Sec-
tion 2.3.2 we mention that we use
[Par+19b] as the backbone for the
one-step model, and that we insert
conditioning information in the nor-
malization blocks as well as in the
very first layer of the generator. In
Figure 2.8 we show the detailed archi-
tecture of this model. The implemen-
tation of an individual “SPADE Res-
Block” is specified in [Par+19b], but
for reference we mention that each
residual block consists of two nor-
malization blocks wrapped by a skip-
connection. If the number of input
and output channels does not match,
the skip-connection is learned, i.e. a
third normalization block is learned.
In the models conditioned on cap-
tions, we never attach attention in-
puts to skip-connections (to avoid
potential instabilities). Each normal-
ization block learns its own set of
weights, and in our case they corre-
spond to the S or Savg blocks speci-
fied in Figure 2.4.
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Figure 2.9: Two-step generator.
The left side of the figure de-
picts G1 (background generator),
while the right side depicts G2
(foreground generator). Orange
arrows indicate that the input
information is fed to S blocks,
whereas green arrows denote in-
puts to Savg blocks.

two-step generator . The
architecture of the two-step gen-
erator is depicted in Figure 2.9,
and differs significantly from the
aforementioned implementation.
The background generator G1 is
a simplified version of the one-
step generator with fewer resid-
ual blocks. The foreground gener-
ator G2 implements a bottleneck
architecture that takes as input
the generated background image
and compresses it through a series
of unconditional residual blocks.
The low-resolution feature-map is
then expanded again through a
series of conditional blocks. Inter-
estingly, for foreground manipu-
lations it is possible to preprocess
the feature maps up to the last un-
conditional downsampling block in
G2 (8× 8 resolution) and greatly
speed up regeneration.

discriminator . We use the
multi-scale discriminator from
[Par+19b; Wan+18] and change
its input layer to add informa-
tion about attributes or captions.
The architecture is shown in Fig-
ure 2.10. As usual with multi-scale
discriminators, we train two instances: one which takes as input
an image at full resolution, and one which takes as input a down-
sampled version (by a factor of two). They learn different sets of
embeddings and different sets of attention heads if the style is
conditioned on a sentence.
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Figure 2.10: Discriminator
backbone (used in all archi-
tectures).

model complexity. Table 2.2
presents the number of parameters
for all variants of our approach.
The SPADE baseline trained on
the 182 COCO-Stuff classes requires
97.5M parameters. Our 1-step base-
line trained without style informa-
tion (neither attributes nor captions)
on our set of 280 classes requires a
slightly lower number of parameters
(94.2M) thanks to the pixel-wise class
embeddings, even though the num-
ber of classes is larger. In the ver-
sion with attributes, the added cost
(+2.3M parameters) is only due to the
learned attribute embeddings (256 64d embeddings per normal-
ization block). In the version with captions, the custom attention
modules add 12.5M parameters (for 6 heads) or 23.3M parameters
(for 12 heads). The number of parameters can be easily tuned by
varying the number of attention heads. We conduct a similar anal-
ysis on the two-step model. In this case, the background generator
is slightly more powerful than the foreground generator.

Approach Style input # params

Baseline [Par+19b] None 97.5M

1-step None 94.2M

1-step Attributes 96.5M

1-step Text (6h) 106.7M

1-step Text (12h) 117.5M

2-step None 74.5M + 50.6M

2-step Attributes 78.3M + 51.9M

2-step Text (12h) 90.7M + 65.8M

Table 2.2: Number of parameters for different variations of our approach.
For the two-step models we specify the numbers for both generators
(respectively G1 and G2). “6h” denotes “6 attention heads”.
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sparse map generation and manipulation. In this
paragraph we provide further details in addition to those pre-
sented in Section 2.4.1. Specifically, we describe how we construct
and maintain the data structure that enables instance manipula-
tion and rasterization into a sparse semantic map. Since a scene
may consist of objects that partially overlap, the order in which
they are drawn on the semantic map matters, e.g. given a car
and its headlight, we want to render the headlight semantic mask
on top of the car and not the opposite. Therefore, we sort all
instances by mask area and draw them from the largest to the
smallest. Additionally, we construct a scene graph to facilitate
manipulation: if 70% of the area of an instance is contained within
another instance, it becomes a child of the latter. With regard
to the previous example, moving the car would also move the
headlights attached to it. Finally, in our experiments on Visual
Genome, we link attributes to an instance if the IoU between the
ground-truth region and the detected bounding box is greater
than 0.5.

training details and hyperparameters . In all exper-
iments, we train on 8 Pascal GPUs for 100 epochs using Adam
(learning rate: 1e-4 for G, 4e-4 for D, one G update per D update),
and start decaying the learning rate to 0 after the 50th epoch in a
linear fashion. We use a batch size of 32 for the one-step model and
24 for the two-step model (the largest we can fit into memory), with
synchronized batch normalization. Training takes one week for
the one-step model and two weeks for the two-step model. For the
alpha blending loss term, we start from a factor of 10, and decay
it exponentially with α = 0.9997 per weight update, down to 0.01.
For the experiments with captions, since COCO comprises five
captions per image, we randomly select one caption at training
time. In the evaluation phase, we concatenate the representations
of all captions since our attention model can easily decide which
ones to attend to.
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2.7.2 Additional inference details

randomizing style . In Section 2.4.2 we mention that we
can randomize the style of an image by sampling attributes from
a per-class empirical distribution. More precisely, we estimate a
discrete probability distribution of the attributes assigned to each
class of the dataset. This includes the empty set (no attribute for
a given instance) as well as compound attributes (e.g. blue and
red is different than blue or red). At inference, for each instance,
we sample an element from the distribution of the class to which
the instance belongs. The two-step decomposition also allows
us to specify different strategies for the background and fore-
ground. In the examples in Figure 2.7, all background instances
of a given class take the same attributes as input (e.g. all trees are
leafless), which results in scenes with coherent styles. Conversely,
foreground instances are still fully randomized (it would not be
realistic to see cars all of the same color, for example). Within an
individual instance, the style of its children is uniform, e.g. the
same attributes are assigned to all wheels of a car, but of course
wheel styles can be different across different cars.

interpolating style . Our approach allows for smooth in-
terpolation of attributes and text. While attention models usually
preclude interpolation (whereas models based on fixed-length sen-
tence embeddings such as [Zha+17] easily allow it), our sentence-
semantic attention mechanism enables interpolation over the con-
textualized class embeddings, i.e. over the pooled attention values.
For all cases (masks, attributes, text), we respectively interpolate
between class embeddings, attribute embeddings, and contex-
tualized class embeddings using spherical interpolation (slerp),
which traverses regions with a higher probability mass [KLH18].
Unlike [Zha+17], we found it unnecessary to enforce a prior on
the embeddings via a KL divergence term in the loss. We show
some examples of interpolation in Figure 2.11.

generating one object at a time . To ensure that fore-
ground objects do not affect each other in the two-step model,
it may be interesting to generate them one-by-one. In our exper-
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Text

zebras standing on snow zebras standing on green grass at sunset

a red bus a yellow bus at night

trees: bare trees: exuberant

Figure 2.11: Interpolating style between two sentences (top two rows)
and two attributes (bottom row). The smooth transitions across multiple
factors of variation (e.g. color and time of the day) suggest that our latent
space is structured and does not require regularization. For instance,
in the middle row, the bus color traverses the region of orange while
interpolating between red and yellow, even though it is not explicitly
instructed to do so. Additionally, the headlights of the bus become
increasingly brighter.

iments we generate all foreground objects at once by running
a single instance of G2, motivated by the much lower computa-
tional cost and the observation that foreground objects are usually
well-separated. Nonetheless, our framework is flexible enough
to support one-by-one generation of objects. In this regard, G2
can be run independently for each object, and the output images
and masks can be combined into a single, final image. Denot-
ing the background image as xbg, the foreground images as x[i]fg
(i ∈ {1 . . . N}), and the corresponding unscaled (i.e. before the
activation function) transparency masks as α′ [i]

fg , we can generalize
Equation 2.1 as follows:
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w[i]
fg = softmax i

(
α′ [i]

fg

)
(2.3)

xfg = ∑
i

x[i]fg ⊙w[i]
fg (2.4)

αfg = ∑
i

sigmoid
(

α′ [i]
fg

)
⊙w[i]

fg (2.5)

xfinal = xbg · (1− αfg) + xfg · αfg (2.6)

The second line combines foreground images into a single image
through an object-wise weighted average. The same is repeated for
the transparency channel (third line). Finally, the alpha blending
is performed as in Equation 2.1. This formulation is differentiable
and can be used for training the model, although the memory
requirement may be excessive in high-resolution settings.

2.7.3 FID evaluation

The FID metric is very sensitive to aspects such as image resolu-
tion, number of images (where a low number results in underes-
timated FID scores), and the weights of the pretrained Inception
network. To be consistent with [Par+19b], we try to follow their
methodology as closely as possible. We resize the ground-truth
images to the same resolution as the generated ones (256× 256),
and we keep the two sets aligned, i.e. one generated image per test
image. We use the weights of the pretrained InceptionV3 network
provided by PyTorch. To make the results in Table 2.1 comparable,
we retrained the baseline from [Par+19b] and evaluated the results
using our methodology.

2.7.4 Additional results

semantic and style manipulation. Figure 2.12 and Fig-
ure 2.13 show examples of semantic manipulation and style manip-
ulation (either using attributes or text). The last row of Figure 2.13

suggests that our attention mechanism can correctly exploit the
contextualized token embeddings produced by BERT. For instance,
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Horse: brown Ground truthInput mask Horse: white Horse class to zebraHorse: black

Building: brick Ground truthInput mask Building: stone Delete busBus: pink

All trees: leafless Ground truthInput mask All trees: snowy Add elephantAll trees: bushy

Figure 2.12: Examples of semantic and attribute manipulations (Visual
Genome dataset). The images are generated by our two-step model. In
the first row, the background is frozen to encourage locality.

"a train traveling next
to a dirt road" Ground truthInput mask

"a train traveling on a
foggy day"

"a red train traveling
next to green grass"

"a red train [...] green
grass at sunset"

"a red and white bus
in the rain" Ground truthInput mask

"a blue bus in the
rain"

"a green bus in the
rain"

"a bus in the rain at
night"

"a black and white cat
sitting on a desk" Ground truthInput mask

"a black and white
picture of a cat [...]"

"a brown cat sitting on
a desk"

"a cat sitting on a
desk in a dark room"

Figure 2.13: Further examples of style manipulation using text (COCO
validation set). It is possible to control the style of individual instances
(albeit in a less targeted fashion than attributes) as well as the global style
of the image.
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the caption “a black and white cat” affects only the cat, while
“a black and white picture of a cat” affects the entire scene by
generating a black-and-white image.

two-step model . Figure 2.18 shows additional demos gener-
ated by our two-step model on the Visual Genome validation set.
In particular, we highlight the decomposition of the background
and foreground, and the inputs taken by G1 and G2. Since G2
outputs a soft transparency channel for the alpha blending, it can
slightly violate the constraints imposed by the foreground mask.
This allows it to draw reflections and shadows underneath fore-
ground objects. Furthermore, as we mention in Section 2.3.1, the
motivation behind the two-step generator is that it facilitates local
changes. In Figure 2.16 we qualitatively compare one-step and
two-step generation when manipulations are carried out on the
input conditioning information (mask and style). We show that,
in the two-step model, local manipulations do not result in global
changes of the output. To further enhance locality, the background
can be frozen when manipulating the foreground.

Approach Input Training set Test set FID

Sg2im [JGF18] GT BBox layout COCO-train COCO-val 67.96

Layout2im [Zha+19b] GT BBox layout COCO-train COCO-val 38.14

LostGAN [SW19] GT BBox layout COCO-train COCO-val 34.31

Ours (#3) Sparse mask COCO-train COCO-val 18.57

Ours (#5) Sparse mask VG+ (aug.) COCO-val 17.98

Table 2.3: Comparison to layout-based methods. The metric is the FID
score [Heu+17]; lower is better. “GT BBox” stands for “ground-truth
bounding-box”, whereas our approach uses the sparse masks inferred
from an object detector as usual.

comparison with layout-based methods . While in Sec-
tion 2.4.2 we compare our approach to [Par+19b] under uniform
settings, it is also interesting to see how our sparse mask setting
compares to approaches that generate images from bounding-
box layouts (which are also sparse by nature) [Hon+18; SW19;
Zha+19b]. While these methods address a harder task (bound-
ing boxes provide less information than segmentation masks),
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their applicability has only been demonstrated in low-resolution
settings (typically 64× 64), which makes them not directly com-
parable to our higher-resolution setting. To our knowledge, no
bounding-box approach can currently generate high-resolution
images that have the same visual quality and geometric coher-
ence as mask-based approaches. Nonetheless, for completeness, in
Table 2.3 we compare our sparse mask approach to these layout-
based methods. We use the models trained on COCO or VG+ with
no style input (rows #3 and #4 in Table 2.1, left), and downscale
our images to 64× 64 before computing the FID score.

qualitative comparison of input masks . In Figure 2.17,
we show qualitative results for different input masks, both in
fully supervised and weakly supervised settings. Additionally,
in the figure we show qualitative results for the sparsified COCO
model (ablation I in Table 2.1, right), where we keep only the
“thing” classes of COCO. While the outputs produced by the
semantic segmentation maps are satisfactory, it is not clear how
to manipulate them as they present banding artifacts and jagged
edges.

2.7.5 Attention visualization

The behavior underlying our attention model can be easily visual-
ized. Our formulation (sentence-semantic attention) is particularly
suited for visualization tasks because it is tied to the semantic
map, and not to feature maps in inner convolutional layers. There-
fore, for each class in the semantic map (e.g. person, tree, empty
space), we can observe how the sentence conditions that particular
class. Considering that the attention modules have multiple entry
points in the generator (one for each normalization block), it is
easier to carry out this analysis in the discriminator, where there
are only two entry points (in the input layer of each discriminator,
since we adopt a multi-scale discriminator). We select the first
discriminator for illustration purposes, and show the resulting
attention maps in Figure 2.14. The figure shows what parts of the
sentence the discriminator is attending to in order to discriminate
whether the caption is suitable for the input image.

48



2.7 appendix

a man in a blue coat skiing
through a snowy field

a man in a red coat walking
in the forest

Figure 2.14: Visualization of the attention mechanism in the discriminator
for two images generated from the same semantic map, but different
captions. An attention map is produced for each class in the semantic
map, and each of these consists of 6 or 12 independent attention heads
(12 here). In this illustration we only show those corresponding to person
and no class (i.e. blank space) for clarity. [CLS] and [SEP] are special
delimiters indicating respectively the start and end of a sentence. A head
paying attention to these can be interpreted as not being triggered by the
sentence. In the attention maps, a darker color indicates a higher weight.

2.7.6 Negative results

In this section, we discuss some of the unsuccessful ideas that we
explored before reaching our current formulation.

two-step model . Before successfully achieving two-step gen-
eration with sparse masks, we tried to implement the same idea
using dense COCO segmentation maps. In the areas correspond-
ing to foreground objects, G1 (the background generator) would
always render visible gaps. We tried to regularize the model using
partial convolutions (a recently-proposed approach for infilling),
but this did not have the desired effect. We also experimented with
an attention mechanism where foreground areas were masked
in G1. While this was partly successful in filling the gaps, the
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tree tree mountain

path

tree

Figure 2.15: Left: in many cases, weakly-supervised training leads to
input noise robustness, i.e. artifacts in the input mask are not visible in
the generated images. Right: some failure cases where the artifacts are
visible in the output images.

model was very difficult to train and the final visual quality was
considerably lower.

discriminator architecture . We explored various ways
of injecting conditional information in the discriminator. While
SPADE uses input concatenation, recent GANs conditioned on
classes [BDS19; Zha+19a] use projection discrimination [MK18]. This
idea led to marginally better FID scores, but we observed that the
contour of generated objects would stick too close to the input
mask, essentially resulting in a “polygonal” appearance. On the
other hand, input concatenation allows the model to slightly devi-
ate from the input mask, possibly resulting in a greater robustness
to mask noise.

hyperparameters . We tried to vary the design of SPADE
blocks, e.g. by stacking more layers or using dilated convolutions.
These ideas had a detrimental effect on the final result and we
decided not to pursue them further.
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Translating an object in the two-step model

Translating an object in the one-step modelChanging an attribute in the one-step model

Changing an attribute in the two-step model

Figure 2.16: In a single-generator model, local changes (e.g. changing
the color of the dog to white) affect the scene globally due to learned
correlations. The same can be observed when moving an object (e.g. left
to right), as the representation space is discontinuous. In the two-step
model, we can locally manipulate the background and foreground.

Ground-truth COCO full mask Ground-truth COCO sparsified mask Map from semantic segmentation Sparse masks (ours)

Fully supervised Weakly supervised

Figure 2.17: Input masks for different approaches, and corresponding
generated images. Our sparse masks do not present the typical artifacts
of semantic segmentation outputs and are much easier to sketch or
manipulate than dense maps.
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Background maskFull mask Ground truthBackground output Foreground mask Final output

Figure 2.18: Demos generated by our two-step model. In addition to the
full input mask, we show its decomposition into background mask and
foreground mask (taken as input in S blocks respectively by G1 and G2).
Note that G1 also takes as input the full mask in Savg blocks.
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3C O N V O L U T I O N A L G E N E R AT I O N O F T E X T U R E D
3 D M E S H E S

chapter abstract. While recent generative models for 2D
images achieve impressive visual results, they clearly lack the abil-
ity to perform 3D reasoning. This heavily restricts the degree of
control over generated objects as well as the possible applications
of such models. In this work, we bridge this gap by leveraging re-
cent advances in differentiable rendering. We design a framework
that can generate triangle meshes and associated high-resolution
texture maps, using only 2D supervision from single-view natural
images. A key contribution of our work is the encoding of the
mesh and texture as 2D representations, which are semantically
aligned and can be easily modeled by a 2D convolutional GAN.
We demonstrate the efficacy of our method on Pascal3D+ Cars
and CUB, both in an unconditional setting and in settings where
the model is conditioned on class labels, attributes, and text. Fi-
nally, we propose an evaluation methodology that assesses the
mesh and texture quality separately.

open source . Code and pretrained models for this work are
available at https://github.com/dariopavllo/convmesh.

This chapter is based on our NeurIPS 2020 paper “Convolutional Generation of
Textured 3D Meshes” [Pav+20b].
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convolutional generation of textured 3d meshes

3.1 introduction

Thanks to a series of key technical contributions [Heu+17; Kar+18;
Miy+18; MK18; Zha+19a], image synthesis models based on the
GAN framework [Goo+14] can nowadays achieve photorealistic
results. Furthermore, as we highlighted in the previous chapter,
an important trend in this field has been to make generative
models more controllable and of better use for downstream appli-
cations. This includes works that condition generative models on
class labels [BDS19; MK18; Zha+19a], text [Li+19; Xu+18; Zha+17;
Zha+18a], input images [Iso+17; Zhu+17a], as well as structured
scene layouts such as semantic maps [MCS19; Par+19b; PLH20;
Wan+18], bounding boxes [Hon+18; SW19; Zha+19b], and scene
graphs [JGF18]. In the conclusion to the previous chapter, we also
anticipated that, while these approaches achieve impressive visual
results, they are all based on architectures that fundamentally
ignore the concept of image formation. Real-world images depict
2D projections of 3D objects, and explicitly considering this aspect
would lead to better generative models that can provide disentan-
gled control over shape, color, pose, lighting, and can better handle
spatial phenomena such as occlusions. A recent trend to account
for such effects has been to disentangle factors of variation during
the generation process in the hope of making it more interpretable
[Kar+18; KLA19; SOL19; Yan+17b]. These approaches potentially
learn a hierarchical decomposition of objects, and in some settings
(e.g. faces) they can provide some degree of control over pose.
However, the pose disentanglement assumptions made by these
approaches have been shown to be unrealistic without some form
of supervision [Loc+19], and they have not reached the degree of
controllability that a native 3D representation would be capable of.
More recent efforts have focused on incorporating 3D information
into the model architecture, using either rigid transformations in
feature space [Ngu+19] or analysis-by-synthesis [Mus+20]. These
approaches represent an interesting middle ground between 2D
and 3D generators, although their objective remains 2D image
synthesis.

In this work, we propose a GAN framework for generating
triangle meshes and associated textures, using only 2D supervision
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from single-view natural images. In terms of applications, our
approach could greatly facilitate content creation for art, movies,
video games, virtual reality, as well as augment the possible down-
stream applications of generative models. We leverage recent
advances in differentiable rendering [Che+19; KUH18; Liu+19b;
LB14] to incorporate 3D reasoning into our approach. In particular,
we initially adopt a reconstruction framework to estimate meshes
through a representation we name convolutional mesh which con-
sists of a displacement map that deforms a mesh template in its
tangent space. This representation is particularly well-suited for
2D convolutional architectures as both the mesh and its texture
share the same topology, and the mesh benefits from the spatial
smoothness property of convolutions. We then project natural
images onto the UV map (mapping between texture coordinates
and mesh vertices) and reduce the problem to a 2D modeling
task where the representation is independent of the pose of the
object. Finally, we train a 2D convolutional GAN in UV space
where inputs to the discriminator are masked in order to deal
with occlusions.

Our model generates realistic meshes and can easily scale to
high-resolution textures (512×512 and possibly more) owing to
the precise semantic alignment between maps in UV space, with-
out requiring progressive growing [Kar+18]. Most importantly,
since our model is based exclusively on 2D convolutions, we
can easily adapt ideas from state-of-the-art GAN methods for
2D images, and showcase our approach under a wide range of
settings: conditional generation from class labels, attributes, text
(with and without attention), as well as unconditional generation.
We evaluate our approach on Pascal3D+ Cars [XMS14] and CUB
Birds [Wah+11], and propose metrics for evaluating FID scores
[Heu+17] on meshes and textures separately as well as collectively.
In summary, we make the following contributions:

• A novel convolutional mesh representation that is smooth
by definition, and alongside the texture, is easy to model
using standard 2D convolutional GAN architectures.

• A GAN framework for producing textured 3D meshes from a
pose-independent 2D representation. In particular, in a GAN
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setting, we are the first to demonstrate full generation of
textured triangle meshes using 2D supervision from natural
images, whereas prior attempts have focused on limited
settings supervised on synthetic data without a principled
texture learning strategy.

• We demonstrate conditional generation of 3D meshes from
text (with and without an attention mechanism) and show
that our model provides disentangled control over shape
and appearance.

3.2 related work

Deep generative approaches that deal with 3D data typically
target either reconstruction, where the goal is to predict a 3D
representation from one or more images, or generation, where the
goal is to synthesize 3D objects/scenes from scratch. We review
the literature of both tasks as they are relevant to our work.

3d representations . Early approaches have focused on re-
constructing 3D shapes using 3D supervision. These are typically
based on voxel grids [Cho+16; Gir+16; HTM17; TDB17; Wu+17;
Yan+17a; Zhu+17b], point clouds [FSG17], or signed distance func-
tions [Par+19a]. However, 3D supervision requires ground-truth
3D shapes, which are usually available in synthetic datasets but
not for real-world images. Therefore, a related line of research
aims at reconstructing meshes using exclusively 2D supervision
from images. Similarly, there has been work on voxel representa-
tions [Gwa+17; TEM18; Tul+17; WZ17; Yan+16b; Yan+18] as well
as on point clouds [ID18], but these methods require supervision
from multiple views which still limits their applicability. More
recent approaches lift the requirement of multiple views in order
to learn to reconstruct 3D shapes from a single view using a voxel
representation [HMR19]. However, these representations tend
to be computationally inefficient and do not explicitly support
texture maps.
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differentiable rendering . Triangle meshes are an estab-
lished representation in computer graphics, owing to their effi-
ciency as well as flexibility in terms of vertex transformations and
texturing. For this reason, they are used in almost every graph-
ics pipeline, ranging from video games to animation. This has
motivated a newer line of research where the goal is to predict
triangle meshes and texture maps from single images, achiev-
ing high-quality visual results [Che+19; Kan+18; KUH18]. The
basic building block of these approaches is a differentiable ren-
derer (DR), i.e. a renderer that can compute gradients w.r.t. the
scene parameters. While early DRs approximate gradients with
respect to mesh vertices [KUH18; LB14], newer methods propose
fully-differentiable formulations [Che+19; Liu+19b]. Our work is
also based on this framework, and specifically we adopt DIB-R
[Che+19] because it supports UV mapping.

3d mesh generation. Analogous to reconstruction methods,
3D object generation has also been demonstrated using voxels
[Bal+18; Gir+16; SM17; Wu+16; Xie+18; Zhu+18] and point clouds
[Ach+18; GWM18], but again, these approaches require some form
of 3D supervision which precludes training from natural images,
in addition to the texturing limitations highlighted above. As for
triangle meshes, [Che+19] propose a GAN framework where 2D
images are discriminated after differentiable rendering, but they
rely on multiple views of synthetic objects and cannot directly
learn textures from images. Instead, they supervise the generator
on textures predicted by a separate model previously trained for
reconstruction. This intermediate step results in a noticeable loss
of quality, and is absent in our approach, which can learn from
natural images directly. A parallel work to ours [HTL20] also
leverages 2D data to generate 3D meshes, but they adopt a VAE
framework [KW14] and only predict face colors instead of UV-
mapped textures (i.e. texture maps), which limits the visual detail
of generated objects. An early work [Rez+16] generates untextured
meshes in a variational framework using reinforcement learning to
estimate gradients. Our work is based on GANs and can explicitly
generate high-resolution texture maps which are then mapped to
the mesh via UV mapping, enabling an arbitrary level of detail.
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Unlike [Che+19], we learn textures directly from natural images,
and introduce a pose-independent representation that reduces the
problem to a 2D modeling task. Finally, we are not aware of any
prior work that can generate 3D meshes from text.

3.3 method

Reconstruction loss

Ground-truth image

Texture

Displacement map

Sample

UV Map
Conv2D
encoder

Conv2D
decoder

Deform

Mesh
template

Predicted mesh

◄ Vertices

◄ UV Map

◄ Texture

Differentiable
Renderer

Predicted image

Figure 3.1: Initial mesh reconstruction using our convolutional mesh
representation. This step follows a typical autoencoder setup where the
goal is to reconstruct the input image after forcing it through a 3D
representation and rendering it. RGB colors in the displacement map
correspond to XYZ coordinates.

requirements . Our approach has data requirements similar
to recent reconstruction methods [Che+19; Kan+18]. We require
a dataset of single-view natural images, with annotated segmen-
tation masks and pose, or alternatively, keypoints from which
the pose can approximately be estimated. If ground-truth masks
are not available (as in the ImageNet subset of Pascal3D+), we
obtain them from an off-the-shelf segmentation model (we use
Mask R-CNN [He+17]), whereas the pose is inferred from the
keypoints using structure-from-motion, as was done in [Kan+18].
Our approach does not require ground-truth 3D meshes (i.e. 3D
supervision) or multiple views of the same object.

mesh representation. As mentioned, we focus on triangle
meshes due to their wide adoption in computer graphics, their
flexibility in terms of vertex transformations, and their support
for texture mapping. Following [Che+19; Kan+18; KUH18], we
use a deformable sphere template with a fixed topology and a
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static UV map which maps vertices to texture coordinates. Pre-
vious work has used fully-connected networks to predict vertex
positions, which ignores the topology of the mesh and the spatial
correlation between neighboring vertices, essentially treating each
vertex as independent. This issue is typically mitigated through
regularization, e.g. by combining smoothness [KUH18] and Lapla-
cian [Sor+04] loss penalties. Instead, we propose to regress the
mesh through the same deconvolutional network that we use to
regress the texture. The output is therefore a displacement map
(Figure 3.1), which describes how the mesh should be deformed
in its tangent space. Importantly, the displacement map and the
texture share the same UV map, which ensures that the maps are
topologically aligned (e.g. the vertices corresponding to the beak
of a bird are co-located with the color of the beak). This detail is
crucial for designing a discriminator that can jointly discriminate
mesh and texture, that is, not just the mesh and texture separately,
but also how well the texture fits the mesh. Furthermore, our
mesh representation is smooth by nature since it benefits from the
intrinsic spatial correlation of convolutional layers. A second ma-
jor difference in terms of representation is that our mesh template
is a UV sphere (2-pole sphere as shown in Figure 3.1), whereas
prior work has used ico-spheres. While the latter exhibits a more
regular mesh, it cannot be UV-mapped without gaps or arbitrary
distortions that make the representation space discontinuous. On
the other hand, except for the singularities at the two poles, a UV
sphere presents a bijective mapping between vertices and texture
coordinates, has a well-defined tangent map, and the circular
boundary conditions along the x axis can be neatly incorporated
in the model architecture using circular convolutions. Denoting
the mesh template as V (an N× 3 matrix with N vertices described
by their xyz coordinates, where each vertex is indexed by i), the
final position of the i-th vertex is computed as vi + Ri∆vi where
∆vi is the output of the model after sampling the displacement
map, and Ri is a precomputed rotation matrix that describes the
local normal, tangent, and bitangent of the vertex.
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Figure 3.2: Projection of ground-truth images onto the UV map, pro-
ducing pseudo-ground-truth textures. The bottom row shows additional
examples (Pascal3D+ Cars on the left and CUB Birds on the right). The
yellow dashed lines represent the boundaries of the textures, which have
been extended to highlight the circular boundary conditions along the x
axis.

3.3.1 Pose-independent dataset

Our approach initially augments the dataset by estimating a mesh
for each training image (Figure 3.1). The images are then converted
into a pose-independent representation (Figure 3.2), which can be
finally modeled by a 2D GAN (Figure 3.3).

mesh estimation. This is a typical reconstruction task where
the goal is to reconstruct the mesh from an input image. Our
approach is loosely based on [Kan+18], but simplified since we
are not interested in performing inference on unseen images. Our
formulation can be regarded as a fitting process where we only
keep the predicted meshes and discard the model weights/pre-
dicted textures. As depicted in Figure 3.1, the input image is fed
to a convolutional encoder, compressed into a vector representa-
tion, and decoded through a convolutional decoder which jointly
outputs a texture and a displacement map. The predicted texture
is only used to facilitate the learning process and produce more
semantically-aligned meshes, and is discarded afterwards. The
mesh template is deformed as described by the displacement
map, and the final result is rendered using a differentiable ren-
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derer. The model is trained to minimize the mean squared error
(MSE) between the rendered image and the input image. While
this generally leads to blurry textures, it does not represent an
issue in our case as these textures are discarded. Since we are
not interested in performing inference, we do not predict pose
or keypoints, nor do we use texture flows or perceptual losses to
improve predicted textures. For the camera model, we adopt a
weak-perspective model where the pose of an image is described
by a rotation q ∈ R4 (a unit quaternion), a scale s ∈ R, and a
screen-space translation t ∈ R2. For Pascal3D+, we augment the
projection model with a perspective correction term z0 (further
details in the Appendix 3.7.2). While these are initially estimated
using structure-from-motion on keypoints [Kan+18], we allow the
optimizer to fine-tune s, t, and z0 (if used), i.e. we additionally
optimize with respect to the dataset parameters1. This leads to
a better alignment between rendered masks and ground-truth
masks, facilitating the next step. As a side note, we mention that
inaccurate camera assumptions (e.g. using an orthographic model
on photographs that exhibit significant perspective distortion)
would most likely not affect the mask alignment or convergence
of the model, but might lead to distorted meshes. Nonetheless,
our method can work with any projection model as long as the
camera parameters are known or can be estimated.

2d discrimination. The most obvious way to adapt the
aforementioned reconstruction framework is to train a GAN
where the generator G produces a 3D mesh and the discriminator
D discriminates its 2D projection after differentiable rendering,
as in [Che+19]. However, we found this strategy to lead to train-
ing instabilities due to the discrepancies of the representation
being used by G and D (which are respectively pose-independent
and pose-dependent). A further complication we observed is an
aliasing effect in the gradient from the differentiable renderer.
Successful 2D GAN models typically use complementary archi-
tectures for G and D (e.g. both convolutional), which motivates
our next idea.

1 In an inference model this would be detrimental to generalization, but our goal is
mesh fitting.
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pose-independent representation. We instead propose
to project ground-truth images onto the UV map of the mesh tem-
plate, thus reducing the generative model to a 2D GAN that can be
trained with existing convolutional techniques. The construction
of this representation is depicted in Figure 3.2, and can be re-
garded as a form of inverse rendering. We treat our previous mesh
estimates as if they were texture coordinates, i.e. (x, y) → (u, v)
(z is dropped), the UV map becomes the mesh to render (a flat
surface with z = 0), and the texture is the ground-truth image.
The result is the projection of the natural image onto the UV map.
However, as can be seen in the figure, this process erroneously
projects occluded vertices (the back of the car in the example),
which should ideally be masked out as visual information asso-
ciated with them is not available in the 2D image. We therefore
mask the projection using a binary visibility mask, which describes
what parts of the mesh are visible in UV space. The mask is ob-
tained by rendering the mesh using a dummy texture (e.g. all
white) and computing its gradient with respect to the texture
(we provide implementation details in the Appendix 3.7.2). Only
texels (pixels of the texture) that contribute to the final image (i.e.
visible ones) will have non-zero gradients, therefore we obtain the
visibility mask by thresholding these gradients. The final result is
a pose-independent dataset of pseudo-ground-truth textures (be-
cause they are partially occluded). A useful consequence of this
representation is that samples become semantically aligned, i.e.
the positions of parts such as wheels or eyes are aligned across all
images.

3.3.2 GAN framework

We directly use the estimated displacement maps and the pseudo-
ground-truth textures to train a convolutional GAN, with the
only obstacle that “real” textures are masked, while generated
textures should ideally be complete. This can be easily dealt with
by masking “fake” images before they reach D: as shown in
Figure 3.3, we multiply the batch of generated textures with a
random sample of visibility masks from the training set. This
strategy avoids a distribution mismatch between fake and real
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Figure 3.3: GAN training strategy. Left: discrimination of a “real” batch
with pseudo-ground-truth textures. Right: discrimination of a “fake” batch
after masking to reflect the “real” batch distribution.

textures in D, while acting as a gradient gate such that only
gradients from the visible areas will reach the generator. Being
convolutional and agnostic to the visibility mask, G will always
generate the full texture.

In terms of architecture, the generator is a convolutional model
that outputs both mesh (displacement map) and texture. Mesh
and texture can have different resolutions – in our experiments
we use 32×32 for the mesh and up to 512×512 for the texture.
To support this, the generator branches out at some point and
outputs mesh and texture through two different heads (this is
also done in the mesh estimation model). The discriminator adopts
a multi-scale architecture [Wan+18] (i.e. multiple discriminators
trained jointly) and a patch-based loss [Iso+17] which is masked
using the visibility mask scaled to the same resolution as the last
feature map. The smallest discriminator discriminates both the
mesh and the texture, which is downscaled to the same resolution
as the mesh (32×32). It focuses on global aspects of the texture,
while discriminating the mesh and how well it fits the texture. The
higher-resolution discriminators are only texture discriminators
(one for experiments at 256×256, up to two for experiments at
512×512 in which the intermediate one discriminates at 128×128).

D takes as input the displacement map (mesh), the masked
texture, the visibility mask, as well as a soft positional encoding
of the UV map: inspired by attention-based NLP methods that
propose a similar idea [Vas+17] (this is unrelated to our attention
method for text conditioning), we add a sinusoidal encoding to
the input that gives convolutions a sense of where they are within
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the image. For a coordinate space u, v ∈ [−1, 1], we add four chan-
nels cos(πu), sin(πu), cos(π(v/2 + 0.5)), sin(π(v/2 + 0.5)) such
that the encoding smoothly wraps around the u (horizontal) axis
and is discontinuous along the v (vertical) axis. Giving an absolute
sense of position to the model is important as the semantics of the
texels depend on their absolute position within the UV map, and
we show this quantitatively in the ablation study (Section 3.4.3).
Finally, the GAN framework allows us to condition the generator
on a wide range of inputs: class labels, classes combined with
attributes, and text. For the latter, we investigate both an atten-
tion mechanism and a method based on a simple fixed-length
sentence embedding. We explain how these are implemented in
Section 3.4.2.

3.4 experiments

3.4.1 Evaluation and datasets

Perceptual metrics such as the Fréchet Inception Distance (FID)
[Heu+17] are widely employed for evaluating 2D GANs, as
they have been shown to correlate well with human judgment
[Zha+18b]. Although we focus on a different task, the FID still
appears as a natural choice as it can easily be adapted to our
task. Therefore, we suggest to evaluate FID scores on rendered 2D
projections of generated meshes. To this end, we sample random
poses (i.e. viewpoints) from the training set as we do not want the
evaluation metric to be affected by our choice of poses. Moreover,
this strategy allows us to evaluate mesh and texture separately:
in addition to the Full FID, we report the Texture FID, where we
use meshes estimated using the differentiable renderer instead of
generated ones, and the Mesh FID, where we replace generated
textures with pseudo-ground-truth ones. In the latter, using real
poses ensures that we render the visible part of the pseudo-ground-
truth texture, and occlusions are minimized. While we mostly
rely on the Full FID to discuss our results, the individual ones
represent a useful tool for analyzing how the model responds to
variations of the architecture. Generated samples are rendered at
299×299 (the native resolution of Inception), and ground-truth
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images are also scaled to this resolution. In the Appendix 3.7.2,
we provide some visualizations that give more insight into the
conceptual differences between these metrics.

We evaluate our method on two datasets with annotated key-
points, and use the implementation of [Kan+18] to estimate the
pose from keypoints using structure-from-motion.

cub-200-2011 [Wah+11]. We use the train/test split of
[Kan+18], which consists of ≈6k training images and ≈5.7k test
images. Each image has an annotated class label (out of 200 classes)
and 10 captions which we use for text conditioning. Using poses
and labels (where applicable) from the training set, we evaluate
the FID on test images, although we observe that the FID is almost
identical between the two sets.

pascal3d+ (p3d) [XMS14]. We use the cars subset, which is
the most abundant class in this dataset. Images are part of a low-
resolution set (Pascal set) and a newer, high-resolution set from
ImageNet [Den+09]. While we use the same split as [Kan+18] to
train our mesh estimation model, the GAN is trained only on the
ImageNet subset (≈ 4.7k usable images) since we noticed that the
images in the Pascal set are too small for practical purposes. We
infer segmentation masks using Mask R-CNN [He+17] since they
are not available. The test split of [Kan+18] does not contain any
ImageNet images, therefore we evaluate FID scores on training
images 2, motivated by our previous observation on CUB. Finally,
to demonstrate conditional generation on this dataset, we collected
new annotations for the class (11 shape categories) and color (11

attributes) of each car (details and statistics in the Appendix 3.7.2).

3.4.2 Implementation details

mesh estimation. The model (Figure 3.1) is trained for 1000

epochs using Adam [KB14], with an initial learning rate of 10−4

halved every 250 epochs. We train with a batch size of 50 on
a single Pascal GPU, which requires ≈12 hours. We use DIB-R

2 Given the already small size of the dataset, we decided not to split it further.

65



convolutional generation of textured 3d meshes

[Che+19] for differentiable rendering due to its support for texture
mapping and its relatively low overhead. To stabilize training we
adopt a warm-up phase, described in the Appendix 3.7.2. In the
same section we also describe how we augment the camera model
for Pascal3D+. Finally, the detailed architecture of the network
can be found in the Appendix 3.7.1.

gan architecture . Since our method is reduced to a 2D
generation task, we adopt recent ideas from the 2D convolu-
tional GAN literature. Our generator follows a ResNet architecture
where the latent code z (64D, normally distributed) is injected in
the input layer as well as after every convolutional layer through
conditional batch normalization. Following [BDS19; Zha+19a], we
use spectral normalization [Miy+18] in both G and D, but D
does not employ further normalization, e.g. we tried instance
normalization but found it detrimental. We adopt a hinge loss
objective (patch-based and masked as described in Section 3.3),
and train for 600 epochs with a constant learning rate of 0.0001
for G and 0.0004 for D (two time-scale update rule [Heu+17]). We
update D twice per G update, and evaluate the model on a run-
ning average of G’s weights (β = 0.999) as proposed by [BDS19;
Kar+18; KLA19; Yaz+19]. Detailed aspects about the architecture
of our GAN can be found in the Appendix 3.7.1. Training the
512×512 models requires ≈ 20 hours on 4 Pascal GPUs, while the
256×256 models require roughly the same time on a single GPU.
For all experiments, we use a total batch size of 32 and we employ
synchronized batch normalization across multiple GPUs.

conditional generation. In settings conditioned on class
labels, we simply concatenate a learnable 64D embedding to z,
and use projection discrimination [MK18] in the last feature map
of D. In the P3D experiment with attributes (i.e. colors), we split
the embedding into a 32D shape embedding and a 32D color
embedding. For text conditioning, we first encode the sentence
using the pretrained RNN encoder from [Xu+18] (a bidirectional
LSTM), and compare (i) a simple method where we concatenate
the sentence embedding to z as before, (ii) an attention mechanism
operating on all hidden states of the RNN. For the latter we
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add a single attention layer in G right before the mesh/texture
branching, operating at 16×16 resolution. Likewise, we modify
projection discrimination in D to apply attention on the last feature
map. Detailed schemes can be found in the Appendix 3.7.1.

representation. Since the UV map of a UV sphere has circu-
lar boundary conditions along the horizontal axis, convolutional
layers in the discriminator use circular padding horizontally and
regular zero-padding vertically. Furthermore, in both the mesh
estimation model and the GAN generator, we enforce reflectional
symmetry across the x axis as done in [Kan+18], which has the
dual benefit of improving quality and halving the computational
cost to output a mesh/texture. In this case, convolutions use re-
flection padding horizontally instead of circular padding. Finally,
to deal with the singularities of the UV sphere, the vertex displace-
ments of the north and south pole are respectively taken to be the
average of the top and bottom rows of the displacement map.

3.4.3 Results

quantitative results . We report our main results in Ta-
ble 3.1 (left). For CUB, we compare settings where the model is
conditioned on class labels, captions (using the attention model),
and no conditioning at all. For P3D, we compare unconditional

FID (truncated σ) FID (untruncated)

Dataset Tex. res. Conditioning σ Full Tex. Mesh Full Tex. Mesh

CUB
512x512

None 1 41.56 45.26 18.36 56.27 50.12 25.85

Class 0.25 33.63 28.68 19.49 41.33 30.60 23.28

Text 0.5 18.45 22.91 12.05 42.66 38.95 21.18

256x256 Class 0.25 33.55 30.92 19.39 42.61 33.31 23.37

P3D
512x512

None 1 43.09 32.70 28.62 74.74 47.99 43.23

Class 0.75 27.73 22.17 23.76 49.56 29.98 34.10

Class+Color 0.5 31.30 21.70 27.75 52.55 30.29 36.32

256x256 Class+Color 0.5 39.09 26.52 36.73 63.63 36.56 46.37

FID ∆

Baseline (class) 33.63 0

No pos. encoding 43.71 +10.08

Same G/D updates 41.55 +7.92

InstanceNorm 36.38 +2.75

Text with attention 18.45 0

No attention 22.14 +3.69

Table 3.1: Left: FID scores grouped by dataset, texture resolution, and
conditioning, both in truncated and untruncated settings. Lower is better;
bold = best. Right: Ablation study on CUB with a 512×512 texture
resolution. We report truncated FID scores in the truncated setting.
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generation and conditional generation on class labels (i.e. car
shapes) as well as classes plus colors. We evaluate the FID every
20 epochs and report the model with the best Full FID in the table.
Since there is no prior work to which we can compare under
our setting, we set baselines on these two datasets. As proposed
by [BDS19], we found it useful to sample latent codes z from
a truncated Gaussian (only at inference time), which trades off
sample diversity for quality and considerably improves FID scores.
For each setting we specify the optimal truncation σ, but we also
report scores in an untruncated setting as these are more directly
comparable. As expected, conditional GANs result in better scores
than their unconditional counterparts (with the text model being
the best), but we generally observe that our approach is stable
under all settings.

ablation study. We conduct an ablation study in Table 3.1
(right). The results in the top section are relative to the 512×512

CUB model conditioned on classes (truncated FID). Removing the
positional encoding from the discriminator leads to a significant
FID degradation (+10.08), suggesting that giving convolutions a
sense of absolute position in UV space is an important aspect of
our approach. Likewise, updating D as often as G has a significant
negative impact (+7.92) compared to two D updates per G update.
Using instance normalization in D also leads to a slight degra-
dation (+2.75), but beyond that we observe that, while training
appears to converge faster initially, it rapidly becomes unstable.
In the bottom section of the table, we compare the text attention
model (baseline) to a model where a fixed-length sentence vector
is simply concatenated to z (as in the other conditional models).
The results show that the model effectively exploits the attention
mechanism with the added benefit of being more interpretable.

qualitative results . Figure 3.4 shows a few generated
meshes rendered from multiple views, as well as the correspond-
ing textures. While results on CUB are generally of high visual
quality, we observe that the back of the cars in P3D present some
artifacts. After further investigation, we found that the dataset
is very imbalanced, with only 10–20% of the images depicting

68



3.4 experiments

Figure 3.4: Qualitative results on P3D (left, conditioned on class and color)
and CUB (right, conditioned on class). Each object is rendered from 3

views, and the top row depicts the unwrapped texture.

Fixed class (SUV), change color (grey → red) Fixed color (red), change class (SUV → coupé)

Fixed z, change class (Baltimore Oriole → Laysan Albatross) Fixed class (Laysan Albatross), change latent code z

Figure 3.5: Interpolation over conditioning inputs, which highlights that
our model learns a structured latent space where factors of variation of
both shape and texture are relatively disentangled.

this bird is black with a red
head and a large wingspan

this bird is black with
a red head

this bird is black with
a yellow head a white bird with blue wings

a red bird with blue wings
and a yellow crown

a white bird with blue wings
and a yellow crown

Figure 3.6: Left: generated meshes rendered from random views on P3D
and CUB, both conditioned on a random set of classes. Right: generation
from text on CUB, which allows for fine control over both texture and
mesh. We modify captions incrementally, where changes are highlighted
in bold.
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the back of the car and the majority depicting the front. There-
fore, this issue could in principle be mitigated with more training
data. In Figure 3.5 we show that the latent space of our models
is structured. We interpolate over different factors of variation
using spherical interpolation and observe that they are relatively
disentangled, enabling isolated control over shape, color, and style
in addition to the pose disentanglement guaranteed by the 3D
representation itself. Figure 3.6 shows results rendered from ran-
dom viewpoints (the scenario on which we evaluate FID scores)
as well as generation conditioned on text, which enables precise
control over both shape and appearance. Finally, in the Appendix
3.7.3 we show a wider range of qualitative results.

2d gan baseline . An interesting baseline for generating 3D
meshes is to first train a 2D GAN using a state-of-the-art ar-
chitecture (e.g. StyleGAN [KLA19]), and then run a 3D mesh
reconstruction model on top of the generated 2D images. First, we
note that such a baseline would not exhibit the properties of a true
3D representation, such as pose disentangled from shape. Addi-
tionally, the reconstruction model would have difficulties dealing
with occlusions, since it can only reliably infer information visible
in the 2D image. To substantiate our observation, we investigate
this baseline empirically: we train the 3D reconstruction model
of [Kan+18] for 1000 epochs on CUB training images with an
empty background (our setting). Evaluating this model on train-
ing images achieves an FID of 85.8 on reconstructions rendered
from ground-truth viewpoints, which is already worse than all of
our baselines and establishes a lower bound. If we run the model
on CUB images produced by StyleGAN [KLA19] and evaluate
the FID on renderings from sampled viewpoints, the FID further
degrades to 101.9.

attention mechanism . Similar to other attention-based
GANs conditioned on text [Xu+18], our attention mechanism can
be easily visualized. Interestingly, since the attention is applied to
our pose-independent representation in UV space and not on flat
2D images, our attention maps can be visualized both in UV space
and on 2D renderings, as we show in Figure 3.7. Furthermore, our
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process is more interpretable and semantically meaningful. For
instance, prompts that refer to a specific part of the object (e.g.
“yellow crown”, “red cheeks”) activate the same area within the
UV map. Most importantly, these correspondences are learned in
an unsupervised fashion and are aligned among different images
owing to our pose-independent representation.

Bird with white , blue wings and yellow crownbelly ,

This bird has cheeks and a white bellyred

Figure 3.7: Visualization of the attention mechanism on our CUB model
conditioned on text. The attention maps are visualized in UV space (first
row) as well as on the rendered mesh (second row). In this particular
bidirectional LSTM model, active tokens typically correspond to the
adjectives that precede body parts. The first and last tokens are also
active because the sentence representation does not comprise explicit
sentence delimiters.

3.5 summary

We proposed a GAN-based framework for generating 3D meshes.
Our approach can generate triangle meshes and corresponding
texture maps at high resolution (512×512 and possibly more),
requiring only 2D supervision from single-view natural images.
We evaluate our method on Pascal3D+ Cars and CUB Birds, and
showcase it under a wide range of conditional settings to demon-
strate its high level of adaptation. Nonetheless, we have only
scratched the surface of what can be done with this framework.
In the next section, we identify potential directions to make this
framework adoptable in broader settings.
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3.6 future developments

potential improvements . Our approach can be enriched
by employing different forms of supervision (e.g. semi-supervision
by combining 3D supervision from synthetic datasets with 2D
supervision from natural images) as well as incorporating more
conditional information that would allow the model to disentan-
gle further aspects of variation (e.g. lighting). As the datasets used
in this work are considered small (around 5k images), it would
also be interesting to experiment with larger datasets and scale
the approach to full-scene generation. We believe a viable option
is to decompose background and foreground generation as in
[PLH20], and use a 3D mesh generator for foreground objects.

recent literature . Our proposed framework was used as
a building block for recent approaches in the 3D reconstruction
literature. For instance, [Bha+21] tackles the single-view 3D recon-
struction task using cycle consistency, whereas [Dun+22] focuses
on texture learning. [Zha+22] proposes a GAN inversion approach
where a reference 2D image is transformed into a textured 3D
mesh via optimization. All of these approaches adopt our pro-
posed convolutional mesh representation. As for the generation of
3D objects from text, we mention CLIP-Mesh [Kha+22] (based
on triangle meshes, similarly to our work), DreamFields [Jai+22]
(based on NeRF), and DreamFusion [Poo+22] (based on NeRF and
diffusion models). The latter approaches share the commonality
of utilizing information derived from a pretrained contrastive
visual-language model, CLIP [Rad+21]. Furthermore, in the case
of unconditional generation, recent techniques have shifted their
focus from triangle meshes to NeRFs. For a reference of these
future developments, we refer the reader to Section 4.6.

follow-up work . The main limitation of the presented ap-
proach is the requirement for annotated camera poses, which are
typically only available in small datasets such as P3D and CUB.
A natural future research direction is to investigate whether it
is possible to relax this requirement and apply our method to
real-world (“in-the-wild”) datasets such as ImageNet. We cover
this follow-up direction in our next chapter (Chapter 4).
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3.7 appendix

3.7.1 Detailed architecture
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Figure 3.8: Generator architecture (left) and mesh estimation model
(right). Green blocks comprise learnable parameters, whereas white ones
are parameter-free. Dashed lines and blocks in parentheses represent
optional connections which depend on the specific setting. We indicate the
feature map resolution in a given position next to arrows (e.g. 128×128).
512 → 256 denotes “512 input channels, 256 output channels”. “/2” in
convolutional layers denotes “stride 2”; it is one if not indicated.

generator . Figure 3.8 (left) shows the detailed architecture
of the generator of our GAN. As mentioned in Section 3.4.2, the
random vector z is fed to every conditional batch normalization
(CBN) layer as well as to the input layer, which matches the
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strategy adopted by many state-of-the-art GANs for 2D image
generation [BDS19; MK18; Zha+19a]. A CBN layer consists of a
parameter-free batch normalization (i.e. without a learned affine
transformation) followed by a gain γ and bias β conditioned upon
z via a learned linear layer. In settings conditioned on class la-
bels, we concatenate a learned embedding c to z, which is shared
among all layers. The network follows a ResNet architecture where
feature maps are progressively upsampled using nearest-neighbor
interpolation after each residual block ResBlockG. This block con-
sists of two convolutional layers wrapped by a skip-connection. If
the number of input channels differs from the number of output
channels, the skip-connection is learned. To accommodate for the
varying output resolutions for mesh and texture, the generator
branches out at 32×32 resolution. While the figure shows the
architecture for 512×512 textures, to generate textures at 256×256

we simply remove one 256→256 ResBlockG block. For presenta-
tion purposes, we report square resolutions (e.g. 512×512), but
in practice we only need to generate half of the feature map (e.g.
256×512) since we enforce symmetry across the x axis as men-
tioned in Section 3.4.2. The output textures and displacement
maps are then simply padded with their reflection. On the other
hand, the discriminator always observes full textures as pseudo-
ground-truth textures are asymmetric.

attention mechanism . If the model is conditioned on text
using an attention mechanism, we add an attention block right
before the texture/mesh branch, so that the module influences
both mesh and texture. We adopt a dot-product formulation sim-
ilar to [Xu+18], in which the attention weights are computed as
softmax(QKT). The queries Q correspond to the flattened con-
volutional feature map from the generator, and the keys K are
obtained by passing each RNN hidden state hl (l ∈ {1..L}, where
L is the sentence length) through a learned linear layer. The RNN
is the pretrained bidirectional LSTM encoder from [Xu+18], and
hidden states are 256-dimensional.

mesh estimation model . Figure 3.8 (right) shows the de-
tailed architecture of the mesh estimation model that we use for
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differentiable rendering (the first step of our algorithm as de-
scribed in Figure 3.1). The natural image is concatenated to the
segmentation mask (3+1 channels) and fed to a convolutional
encoder. The representation is then flattened to a dense represen-
tation and passed through a series of linear layers. Finally, it is
passed through a ResNet decoder whose architecture resembles
that of the GAN generator. Since we are not interested in produc-
ing high-quality textures in this step as they are discarded, the
texture resolution in this model is only 128×128, which results in
faster training.
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Figure 3.9: Multi-scale discriminator architecture for our biggest model
(512×512 texture resolution). Only D1 discriminates the mesh, while D2
and D3 are texture discriminators. Dashed lines describe the optional
connections for projection discrimination [MK18] in conditional settings,
where feature maps are combined either with a learned embedding (for
settings conditioned on classes or attributes) or with the values of an
attention block (for settings conditioned on text), not both.

discriminator . The architecture of our multi-scale discrimi-
nator is depicted in Figure 3.9. In the most complex setting (used
by the CUB model at 512×512), textures are discriminated at
three scales: 32×32 (D1), 128×128 (D2), and 512×512 (D3). The
smallest discriminator D1 is also a mesh discriminator. Following
the general strategy of patch-based discriminators [Iso+17], our
discriminators are relatively simple as they only consist of a series
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of spectrally-normalized convolutional layers. GANs have been
shown to produce checkerboard artifacts [ODO16] depending on
the choice of kernel sizes and strides in the discriminator. While
humans do not perceive these to be particularly severe in images,
checkerboard artifacts in the displacement map must be avoided
as they might lead to noticeable mesh distortions. The genera-
tor already uses upsampling instead of transposed convolutions
(which mitigates this issue), but we also carefully design the dis-
criminator such that the kernel size of convolutions is divisible by
the stride, ensuring that the gradient norms are uniform across
pixels (see [ODO16] for further details). To this end, we use 5×5

convolutions in layers with stride 1, and 4×4 convolutions in
layers with stride 2. D1 consists of 4 layers and has a relatively
small receptive field. We explored a varying number of layers and
different strides, but they always led to worse results. D2 and
D3 consist of 5 layers and are identical except for the stride of
the first layer, which is 1 for D2 and 2 for D3. In the experiments
with a texture resolution of 256×256, we only use D1 and D2,
where the latter directly discriminates at 256×256. For Pascal3D+
at 512×512, we found a small empirical advantage in dropping
D2 and doubling the weight of D3’s loss. Finally, to incorporate
conditional information, we use projection discrimination [MK18],
in which we compute a pixel-wise dot product between the last
feature map and a learned class embedding (a vector), and add
it to the output. If the model is conditioned on text, we replace
the class embedding with the output of an attention block. Each
discriminator learns its own set of weights for the embeddings or
the attention block.

model complexity. Table 3.2 summarizes the complexity
of our models in different settings, expressed as the number
of learnable parameters. Since the semantic alignment of our
pose-independent representation facilitates the modeling task,
our approach can successfully work with relatively small models
(≈10M generator parameters). We also found it beneficial to adopt
simple discriminators compared to the generator (which is more
powerful).
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Model Resolution G D1 D2 D3 D Total RNN

Unconditional
512x512 11.58M

0.68M 2.77M
2.77M 6.22M -

256x256 10.33M - 3.45M -

CUB conditional
512x512 13.06M

0.73M 2.88M
2.88M 6.49M -

256x256 11.75M - 3.61M -

CUB text 512x512 11.64M 0.75M 2.91M 2.91M 6.57M 2.08M

P3D conditional
512x512 13.05M

0.69M 2.79M
2.79M 6.27M -

256x256 11.74M - 3.48M -

Table 3.2: Number of learnable parameters for different variants of our
model.

3.7.2 Additional implementation details

mesh estimation. Since our convolutional mesh representa-
tion already encourages meshes to be smooth, our reconstruction
model requires less regularization than similar frameworks based
on fully-connected networks. We only found it beneficial to reg-
ularize the model with a smoothness loss Lflat [KUH18] at a
very low strength α = 0.00005, and no Laplacian regularization
[Sor+04] (unlike [Che+19; Kan+18; KUH18] which all use this form
of regularization). Lflat encourages the normals of neighboring
faces to have similar directions, and is defined as follows:

Lflat = α
1
|E| ∑

i,j∈E
(1− cos θij)

2,

where E is the set of all edges and cos θij is the cosine similar-
ity between the normals of the faces i and j. In practice this is
implemented by computing the dot product between the two
normals.

We additionally observe that the initialization strategy of this
model as well as early training iterations have a significant impact
on the final result. Bad configurations such as self-intersecting
meshes or vertices outside the camera frustum can cause the
model to get stuck in bad local minima from which it cannot
easily recover. This is especially the case for typical Gaussian
initialization schemes in neural networks, which cause the mesh
to start in an already self-intersected state for a spherical mesh
template with radius 1 (our case). To ensure convergence and

77



convolutional generation of textured 3d meshes

generate smooth meshes without self-intersections, we found it
helpful to (i) zero-initialize the final layer of the mesh branch,
which ensures that the first iteration starts with a smooth sphere,
and (ii) adopt a warm-up phase where Lflat starts at a moderate
strength α = 0.0005 and linearly decays for 100 iterations, settling
at the low-strength value mentioned above. In the GAN generator
we also zero-initialize the final layer of the mesh head, but Lflat
only uses a fixed α = 0.0001 and no warm-up.

In Section 3.3, we mention that our camera projection model is
a weak-perspective model. This model is a good approximation
for photographs shot with high levels of zoom or that depict small
objects, which is the case for birds (CUB dataset). However, we
observed that the weak-perspective assumption is not a good fit
for Pascal3D+, since most images are shot from a close range and
present a significant degree of perspective distortion due to cars
having elongated shapes. Therefore, for Pascal3D+ we augment
the camera model with a learnable perspective correction term z0,
without however advancing to a full perspective model as we do
not have enough information. z0 is a scalar that describes the dis-
tance from the camera to the center of the object, and assumes that
the object is centered. The x, y coordinates of each vertex in cam-
era space are then multiplied with a factor (z0 + z/2)/(z0 − z/2),
where z is the depth of the vertex. Note that, as z0 approaches
infinity, the factor approaches 1 and the camera model reverts
back to a weak-perspective model. This term is learned for every
image in the dataset and is parameterized as z0 = 1 + ew (w is
a learnable parameter), which ensures (i) positivity, and (ii) that
the transformed vertices lie inside the camera frame. While this
aspect is not central to our approach, we found it helpful as it
can slightly improve qualitative results even with approximate
estimates.

construction of the pose-independent representa-
tion. In Section 3.3 we mention that we use the gradient from
the differentiable renderer to produce the UV visibility mask
which is used for masking projected textures. In practice, deep
learning frameworks do not compute full Jacobians but only gra-
dients of scalars (i.e. Jacobian-vector multiplication). However,
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Generated mesh and
texture (Full FID)

Generated texture
only (Texture FID)

Generated mesh only
(Mesh FID) Real image Generated mesh and

texture (Full FID)
Generated texture
only (Texture FID)

Generated mesh only
(Mesh FID) Real image

Figure 3.10: Examples of images on which we compute FID scores. Images
are rendered from the viewpoint corresponding to Real image (a randomly-
selected image from the training set). In the Mesh FID scenario, we render
the generated mesh using the pseudo-ground-truth texture from the real
image. In the Texture FID, the “real” mesh is textured using the generated
texture. In the Full FID and Mesh FID of the top-left van we can observe
that the silhouette of the mesh looks fine but straight lines and stripes
present a “wobbling” effect caused by the underlying mesh, while in the
Texture FID (which does not use generated meshes) the lines appear more
straight.

the Jacobian of the rendering operation w.r.t. the texture has a
structure such that it is zero for all texels that are not visible in
the rendered image (i.e. are occluded) and non-zero elsewhere3.
Based on this observation, it suffices to compute the average or
sum of rendered pixels to reduce the image to a scalar which
can then be differentiated with respect to a dummy texture. The
same result can also be achieved by computing a Jacobian-vector
multiplication with a vector of ones, which is what we do in our
implementation.

fid evaluation. To give more context to Section 3.4.1, where
we introduce our evaluation methodology, in Figure 3.10 we show
some actual examples of rendered images on which we compute
FID scores. The Full FID (our main metric) is computed on gen-
erated meshes coupled with generated textures, and evaluates
the generation quality as a whole. However, it is also interesting
to propose variations of this metric that can evaluate mesh and
texture quality separately. Therefore, in the Mesh FID we use the

3 This property holds for DIB-R [Che+19] but may not hold for all differentiable
renderers.
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pseudo-ground-truth texture from the image corresponding to the
random viewpoint we choose for rendering, which makes the eval-
uation independent of generated textures. Likewise, in the Texture
FID we use meshes estimated using the differentiable renderer
instead of the ones generated by our GAN. In all experiments, we
generate as many images as there are in the set we compare to,
since the FID is sensitive to the number of generated images. Fi-
nally, to evaluate text conditioning on CUB, we sample a random
caption (out of 10 captions) for each image we generate.

pascal3d+ annotations . To demonstrate conditional gen-
eration on P3D, we collected shape and color annotations for the
ImageNet subset of this dataset (i.e. the one we use to train our
GAN). Although ImageNet images are already identified by their
synsets, we found these to be unreliable and opted instead for
collecting our own annotations. The set of labels and correspond-
ing frequencies are summarized in Table 3.3. For consistency, all
labels were collected by one annotator. Some categories (e.g. F1,
convertible, and oldtimer) comprise a very low number of samples,
which leads to unsatisfactory results on these classes in condi-
tional settings. Nonetheless, this issue can be mitigated by collect-
ing more data. Finally, although the ImageNet subset consists of
≈5.5k images, only 4.7k are usable as some are filtered out by the
structure-from-motion routine of [Kan+18] due to unreliable pose
estimates.

Class Sedan Hatchback SUV Station wagon Van Pickup Coupé City F1 Convertible Oldtimer Total

# images 1137 851 814 691 674 649 295 193 119 39 13 5475

Color Gray Black Red White Blue Green Yellow Orange Brown Purple Pink Total

# images 1534 863 833 832 697 252 231 126 52 30 25 5475

Table 3.3: Relevant statistics for the P3D annotations we collected.

3.7.3 Additional results

disentanglement. Compared to a generative model for 2D
images, a 3D generative model naturally disentangles pose and
appearance. Furthermore, the use of triangle meshes with UV-
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Figure 3.11: Generation on P3D with one varying factor at a time (color
and shape) and a fixed random vector z. As can be seen, representations
are relatively disentangled. In the bottom row, the class coupé is often
associated with race cars, which causes stickers to appear on the body.

mapped textures ensures that shape is disentangled from color,
essentially allowing for texture transfer between meshes (we use
this property for our Texture FID and Mesh FID evaluation, as
shown in Figure 3.10). Another interesting observation is that
conditional models enable further disentanglement of aspects
of variation. For instance, on P3D we can control shape and
color separately as shown in Figure 3.11, and the latent space
is structured enough to allow for interpolation of these aspects
(Figure 3.5). In this setting, the random vector z can be used to
control the style of the object.

additional qualitative results . In Figure 3.12, we show
additional qualitative results grouped by type of conditioning.
Our approach successfully generates meshes in both conditional
and unconditional settings. In the figure, we additionally show un-
textured (i.e. wireframe) meshes, which highlights the smoothness
of our convolutional mesh representation.

demo video. The supplementary material in [Pav+20b] in-
cludes a video where we show more results, including latent
space interpolation, disentangled generation, generation from
text, and attention maps on text-conditioned models.
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Figure 3.12: Qualitative results for all settings, on both P3D (left) and
CUB (right). First row = texture; second row = wireframe mesh; third
and fourth rows = textured object from two random views.
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4L E A R N I N G 3 D M E S H G E N E R AT O R S F R O M
R E A L - W O R L D I M A G E S

chapter abstract. Recent advances in differentiable ren-
dering have sparked an interest in learning generative models
of textured 3D meshes from image collections. These models
natively disentangle pose and appearance, enable downstream
applications in computer graphics, and improve the ability of
generative models to understand the concept of image formation.
Although there has been prior work on learning such models
from collections of 2D images, these approaches require a delicate
pose estimation step that exploits annotated keypoints, thereby re-
stricting their applicability to a few specific datasets. In this work,
we propose a GAN framework for generating textured triangle
meshes without relying on such annotations. We show that the
performance of our approach is on par with prior work that relies
on ground-truth keypoints, and more importantly, we demon-
strate the generality of our method by setting new baselines on a
larger set of categories from ImageNet – for which keypoints are
not available – without any class-specific hyperparameter tuning.

open source . Code and models for this work are available at
https://github.com/dariopavllo/textured-3d-gan.

This chapter is based on our ICCV 2021 paper “Learning Generative Models of
Textured 3D Meshes from Real-World Images” [Pav+21].
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Latent dimension for "light intensity"

Figure 4.1: Left: as in the previous chapter, we focus on GANs, where
our generator outputs a triangle mesh and a UV-mapped texture. Middle:
our method learns to synthesize textured 3D meshes given a real-world
collection of 2D images. Top-right: we showcase a setting where we train a
single model to generate all classes. This model successfully disentangles
some factors of the 3D environment (e.g. lighting/shadows) without
explicit supervision. Bottom-right: we also demonstrate a conditional
model that generates meshes from 3D semantic layouts.

4.1 introduction

In the previous chapter, we hinted at the fact that most of the
recent literature in the field of generative models focuses on 2D
image generation [BDS19; KLA19; Kar+20b; MK18; Zha+19a],
which largely ignores the fact that real-world images depict 2D
projections of 3D objects. We also highlighted the advantages of
generative models that can explicitly reason about 3D representa-
tions, namely a fully disentangled control over shape, appearance,
pose, as well as an explicit representation of spatial phenomena
such as occlusions. As a result, we mentioned that a growing
line of research investigates textured 3D mesh generators, and we
proposed our convolutional mesh generation approach [Pav+20b] in
Chapter 3. These approaches (including ours) are trained with 2D
supervision from a collection of 2D images, but require camera
poses to be known in advance as learning a joint distribution over
shapes, textures, and cameras is particularly difficult. Usually, the
required camera poses are estimated from keypoint annotations
using a factorization algorithm such as structure-from-motion (SfM)
[MC09]. These keypoint annotations are, however, very expensive
to obtain and are usually only available on a few datasets.
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In this work, we propose a new approach for learning gen-
erative models of textured triangle meshes with minimal data
assumptions. Most notably, we do not require keypoint annota-
tions, which are often not available in real-world datasets. Instead,
we solely rely on: (i) a single mesh template (optionally, a set of
templates) for each image category, which is used to bootstrap
the pose estimation process, and (ii) a pretrained semi-supervised
object detector, which we modify to infer semantic part segmenta-
tions on 2D images. These, in turn, are used to augment the initial
mesh templates with a 3D semantic layout that allows us to refine
pose estimates and resolve potential ambiguities.

First, we evaluate our approach on benchmark datasets for this
task (Pascal3D+ [Liu+19a] and CUB [Wah+11]), for which key-
points are available, and show that our approach is quantitatively
on par with the state-of-the-art [Pav+20b] as demonstrated by FID
metrics [Heu+17], even though we do not use keypoints. Secondly,
we train a 3D generative model on a larger set of categories from
ImageNet [Den+09], where we set new baselines without any
class-specific hyperparameter tuning. To our knowledge, no prior
works have so far succeeded in training textured mesh genera-
tors on real-world datasets, as they focus either on synthetic data
or on simple datasets where poses/keypoints are available. We
also show that we can learn a single generator for all classes (as
opposed to different models for each class, as done in previous
work [Che+19; HTL20; Pav+20b]) and notice the emergence of
interesting disentanglement properties (e.g. color, lighting, style),
similar to what is observed on large-scale 2D image generators
[BDS19].

Finally, we quantitatively evaluate the pose estimation perfor-
mance of our method under varying assumptions (one or more
mesh templates; with or without semantic information), and show-
case a proof-of-concept where 3D meshes are generated from
sketches of semantic maps (semantic mesh generation), following
the paradigm of image-to-image translation. In summary, our
main contributions are as follows:
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• We introduce a new approach to 3D mesh generation that
does not require keypoint annotations, enabling its use on a
wider range of datasets as well as new image categories.

• We showcase 3D generative models in novel settings, in-
cluding learning a single 3D generator for all categories,
and conditional generation from semantic mesh layouts. In
addition, we provide a preliminary analysis of the disentan-
glement properties learned by these models.

• We propose a comprehensive 3D pose estimation framework
that combines the merits of template-based approaches and
semantic-based approaches. We further extend this frame-
work by explicitly resolving pose ambiguities and by adding
support to multiple templates.

4.2 related work

differentiable 3d representations . For a reference of
how various 3D representations have been used in both reconstruc-
tion and synthesis techniques, we refer the reader to the related
work section in the previous chapter (Section 3.2). Since we tackle
a similar task in this chapter, the referenced discussion is also
applicable to this work. Furthermore, as in [Pav+20b], this work
also adopts triangle meshes due to their convenient properties: (i)
their widespread use in computer graphics, movies, video games;
(ii) their support for UV texture mapping, which decouples shape
and color; (iii) the ability of efficiently manipulating and trans-
forming vertices via linear algebra. We use DIB-R [Che+19] as our
differentiable renderer of choice throughout this work, motivated
by its support for UV maps.

keypoint-free pose estimation. The use of keypoints for
pose estimation is limiting due to the lack of publicly available
data and an expensive annotation process. Thus, a growing line
of research focuses on inferring poses via semi-supervised ob-
jectives. To our knowledge, no approach has so far focused on
generation, but there have been some successful attempts in the
reconstruction literature. The initial pose estimation step of our
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framework is most closely related to [GKM20; Li+20], which both
propose approaches for 3D mesh reconstruction without keypoints.
In terms of assumptions, [GKM20] require a canonical mesh tem-
plate for each category. Object poses are estimated by fitting the
mesh template to the silhouette of the object and by concurrently
optimizing multiple camera hypotheses (which helps to deal with
the large amount of bad local minima). [Li+20] do not require a
mesh template, but instead use object part segmentations from a
self-supervised model (SCOPS [Hun+19]) to infer a 3D semantic
template that is matched to the reference segmented image. Based
on early experiments, we were unable to individually generalize
these methods to generation (our goal), which we found to have a
lower tolerance to errors due to the intrinsic difficulty in training
GANs. Instead, we here successfully combine both ideas (mesh
templates and semantics) and extend the overall framework with
(i) the optional support for multiple mesh templates, (ii) a princi-
pled ambiguity resolution step that leverages part semantics to re-
solve conflicts among camera hypotheses with similar reprojection
errors. We additionally adopt a more general object-part segmen-
tation framework. Namely, we use a pre-trained semi-supervised
object detector [Hu+18] modified to produce fine-grained seman-
tic templates (Figure 4.2), as opposed to SCOPS (used in [Li+20]),
which we found to require class-specific hyperparameter tuning.

mesh generation. Again, we refer the reader to the related
work section in the previous chapter (Section 3.2) for a discussion
of various techniques for mesh synthesis. Throughout this work,
we adopt our previously-proposed convolutional mesh generation ap-
proach [Pav+20b], since it represents a comprehensive framework
that can model both meshes and UV-mapped textures, and can
be applied to natural images (albeit with keypoint annotations).
More precisely, we borrow the GAN architecture but substantially
rework the supervision strategy to relax the keypoint requirement.

4.3 method

data requirements . As usual in both the reconstruction
[GKM20; Kan+18; KUH18; Li+20] and generation [Che+19; HF19;
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Figure 4.2: The dataset is initially processed into a clean collection of
images with associated object masks and semantic part segmentations.
This is done via off-the-shelf models and does not involve any addi-
tional data collection. Semantic classes have a precise meaning and are
shared between different categories (e.g. wheels appear in both cars and
motorbikes).

Pav+20b] literature, we require a dataset of segmented images.
Segmentation masks (a.k.a. silhouettes) can easily be obtained
through an off-the-shelf model (we use PointRend [Kir+20] pre-
trained on COCO [Lin+14]; details in Appendix 4.7.1). Whereas
prior approaches require keypoint annotations for every image,
we only require an untextured mesh template for each image
category, which can be downloaded freely from the web. Op-
tionally, our framework supports multiple mesh templates per
category, a choice we explicitly evaluate in Section 4.4.2. We note
that pose estimation from silhouettes alone can in some cases
be ambiguous, and therefore we rely on object part semantics
to resolve these ambiguities wherever possible. To this end, we
use the semi-supervised, large-vocabulary object detector from
[Hu+18; PLH20] to infer part segmentations on all images. We
adopt their pretrained model as-is, without further training or
fine-tuning, but post-process its output as described in Appendix
4.7.1.
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Figure 4.3: Schematic overview of the proposed pose estimation pipeline.
The left side shows our data requirements (a collection of 2D images
and one or more untextured mesh templates). For clarity, we only show
the optimization process for the circled airplane, although the semantic
template inference step involves multiple instances.

dataset preparation. Since our goal is to apply our method
to real-world data that has not been manually cleaned or anno-
tated – unlike the commonly-used datasets CUB [Wah+11] and
Pascal3D+ [Liu+19a] – we attempt to automatically detect and
remove images that do not satisfy some quality criteria. In par-
ticular, objects should not be (i) too small, (ii) truncated, or (iii)
occluded by other objects (implementation details in Appendix
4.7.1). This filtering step is tuned for high precision and low re-
call, as we empirically found that it is beneficial to give more
importance to the former. All our experiments and evaluations
(Section 4.4) are performed on the dataset that results from this
step. Finally, sample images and corresponding silhouettes/part
segmentations can be seen in Figure 4.2, which also highlights
how some semantic parts are shared across image categories.

4.3.1 Pose estimation framework

overview. Most reconstruction and generation approaches re-
quire some form of pose estimation to initialize the learning
process. Jointly learning a distribution over camera poses and
shapes/textures is extremely challenging and might return a triv-
ial solution that does not entail any 3D reasoning. Therefore, our
approach also requires a pose estimation step in order to allow
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Figure 4.4: Ambiguity arising from opposite poses. The two camera hy-
potheses produce almost-identical silhouettes which closely approximate
the target, but describe opposite viewpoints. This particular example
would initially be rejected by our ambiguity detection test, but it would
then be resolved once semantics are available.

the learning process to converge to meaningful solutions. Our
proposed pose estimation pipeline is summarized in Figure 4.3:
starting from a set of randomly-initialized camera hypotheses for
each object instance, we render the mesh template(s) using a dif-
ferentiable renderer and optimize the camera parameters so that
the rendered silhouette matches the target silhouette of the object.
At this point, no semantics, colors, or textures are involved, so the
approach can lead to naturally ambiguous poses (see Figure 4.4,
for an example). We then introduce a novel ambiguity detection
step to select only images whose inferred pose is unambiguous,
and use the most confident ones to infer a 3D semantic template,
effectively augmenting the initial mesh templates with semantic
information (more examples of such templates can be seen in
Figure 4.6). Afterwards, the process is repeated – this time lever-
aging semantic information – to resolve ambiguities and possibly
reinstate images that were previously discarded. The final output
is a camera pose for each object as well as a confidence score that
can be used to trade off recall (number of available images) for
precision (similarity to ground-truth poses). In the following, we
describe each step in detail.
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silhouette optimization. The first step is a fitting proce-
dure applied separately to each image. Following [GKM20], who
observe that optimizing multiple camera hypotheses with differ-
ing initializations is necessary to avoid local minima, we initialize
a set of Nc camera hypotheses for each image as described in
Appendix 4.7.1. Our camera projection model is the augmented
weak-perspective model of [Pav+20b], which comprises a rotation
q ∈ R4 (a unit quaternion), a scale s ∈ R, a screen-space transla-
tion t ∈ R2, and a perspective correction term z0 ∈ R which is
used to approximate perspective distortion for close objects. We
minimize the mean squared error (MSE) in pixel space between
the rendered silhouette R(·) and the target silhouette x:

min
q,t,s,z0

∥∥∥R(Vtpl, Ftpl; q, t, s, z0)− x
∥∥∥2

, (4.1)

where R is the differentiable rendering operation, Vtpl represents
the (fixed) mesh template vertices, and Ftpl represents the mesh
faces. Each camera hypothesis is optimized using a variant of
Adam [KB14] that implements full-matrix preconditioning as op-
posed to a diagonal one. Given the small number of learnable
parameters (8 for each hypothesis), the O(n3) cost of inverting the
preconditioning matrix is negligible compared to the convergence
speed-up. We provide hyperparameters and more details about
this choice in the Appendix 4.7.1. In the settings where we use
multiple mesh templates Nt, we simply replicate each initial cam-
era hypothesis Nt times so that the total number of hypotheses to
optimize is Nc · Nt. In this case, we compensate for the increase
in optimization time by periodically pruning the worst camera
hypotheses during optimization. Additionally, in all settings, we
start by rendering at a low image resolution and progressively
increase the resolution over time, which further speeds up the
process. We describe how both strategies are implemented in the
Appendix 4.7.1.

scoring and ambiguity detection. All symmetric objects
(i.e. many natural and man-made objects) present ambiguous poses:
opposite viewpoints that produce the same silhouette after 2D
projection (Figure 4.4). Similar ambiguities can also arise as a re-

91



learning 3d mesh generators from real-world images

sult of noisy segmentation masks, inappropriate mesh templates,
or camera hypotheses that converge to bad local minima. Since
wrong pose estimates have a significant negative impact on the
rest of the pipeline, this motivates the design of an ambiguity detec-
tion step. Ideally, we would like to accept pose estimates that are
both confident – using the intersection-over-union (IoU) between the
rendered/target silhouettes as a proxy measure – and unambigu-
ous, i.e. no two camera hypotheses with high IoU should describe
significantly different poses. We formalize this as follows: we first
score each hypothesis k as (vconf)k = (softmax(vIoU / τ))k, where
τ = 0.01 is a temperature coefficient that gives similar weights to
IoU values that are close to the maximum, and low weights to IoU
values that are significantly lower than the maximum. Next, we
require that highly-confident poses (as measured by vconf) should
describe similar rotations. We therefore construct a pairwise dis-
tance matrix D of shape Nc × Nc, where each entry dij describes
the geodesic distance between the rotation of the i-th hypothesis
and the rotation of the j-th hypothesis. Entries are then weighted
by vconf across both rows and columns, and are finally summed
up, yielding a scalar agreement score vagr for each image:

D = 1− (QTQ)◦2, vagr =
∥∥∥D⊙ (vconf vT

conf)
∥∥∥

1
(4.2)

where Q is a 4× Nc matrix of unit quaternions (one per hypoth-
esis), M◦2 denotes the element-wise square, and ⊙ denotes the
element-wise product.

The agreement score vagr can be roughly interpreted as follows:
a score of 0 (best) implies that all confident camera hypotheses
describe the same rotation (they agree with each other). A score of
0.5 describes two poses that are rotated by 180 degrees from one
another1. Empirically, we established that images with vagr > 0.3
should be rejected.

semantic template inference . Simply discarding am-
biguous images might significantly reduce the size and diversity
of the training set. Instead, we propose to resolve the ambiguous

1 For example, consider a D matrix of size 2× 2, where entries along the main
diagonal are 0, and 1 elsewhere.
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cases. While this is hardly possible when we only have access to
silhouettes, it becomes almost trivial once semantics are available
(Figure 4.4). A similar idea was proposed in [Li+20], who infer a
3D semantic template by averaging instances that are close to a
predetermined exemplar (usually an object observed from the left
or right side). Yet, our formulation does not require an exemplar
but directly leverages samples that have passed the ambiguity
detection test. Since our data requirements assume that mesh
templates are untextured, our first step in this regard aims at aug-
menting each mesh template with part semantics. Among images
that have passed the ambiguity test (vagr < 0.3), we select the cam-
era hypothesis with the highest IoU. For each mesh template, the
semantic template is computed using the top Ntop = 100 images
assigned to that template, as measured by the IoU. Then, we frame
this step as an optimization problem where the goal is to learn
vertex colors while keeping the camera poses fixed, minimizing
the MSE between the rendered (colored) mesh template and the
2D image semantics, averaged among the top samples:

min
Ctpl

1
Ntop

∑
i

∥∥∥R(Vtpl, Ftpl, Ctpl; qi, ti, si, z0i)− Ci

∥∥∥2
, (4.3)

where Ctpl represents the vertex colors of the template and Ci
denotes the 2D semantic image. For convenience, we represent
Ctpl as a K × Nv matrix, where Nv is the number of vertices
and K is the number of semantic classes (color channels, not
necessarily limited to 3), and Ci is a K× Npix matrix, where Npix
is the number of image pixels. In the Appendix 4.7.1, we derive
an efficient closed-form solution that requires only a single pass
through the dataset. Examples of the resulting semantic templates
are shown in Figure 4.6.

ambiguity resolution. In the last step of our pose estima-
tion pipeline, we repeat the scoring process described in “Scoring
and ambiguity detection" with the purpose of resolving ambiguities.
Instead of evaluating the scores on the IoU, however, we use the
mean intersection-over-union (mIoU) averaged across semantic
classes. Since our inferred semantic templates are continuous, we
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Figure 4.5: Generation framework using the convolutional mesh repre-
sentation. Images are fed into a network trained to reconstruct meshes
(parameterized as 2D displacement maps), given camera poses. The
meshes are then used to project natural images onto the UV map. Fi-
nally, the resulting partial textures, displacement maps, and (optionally)
predicted semantics are used to train a 2D convolutional GAN in UV
space.

adopt a smooth generalization of the mIoU (weighted Jaccard
similarity) in place of the discrete version:

mIoU =
1
K ∑

k

∥min(Ĉk, Ck)∥1

∥max(Ĉk, Ck)∥1
, (4.4)

where Ĉk is the rendered semantic class k and min, max (per-
formed element-wise) represent the weighted intersection and
union, respectively. We then recompute the confidence scores and
agreement scores as before (using the mIoU as a target metric),
discard the worst 10% images in terms of mIoU as well as those
whose vagr > 0.3, and select the best hypothesis for each image
as measured by the mIoU. We found no practical advantage in
repeating the semantic template inference another time, nor in
re-optimizing/fine-tuning the camera poses using semantics. We
show this quantitatively in Section 4.4.2 and discuss further details
on various exploratory attempts in Appendix 4.7.4.
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4.3.2 Generation framework

The camera poses obtained using the approach described in Sec-
tion 4.3.1 can be used to train a generative model as shown in
Figure 4.5. For this component, we build upon [Pav+20b], from
which we borrow the convolutional mesh representation and the
GAN architecture. Our generation approach mainly consists of
three steps. (i) Given a collection of images, segmentation masks,
and their poses2, we train a reconstruction model to predict mesh,
texture, and semantics given only the 2D image as input. Although
predicted textures are not used in subsequent steps (the GAN
learns directly from image pixels), [Pav+20b] observe that predict-
ing textures during training has a beneficial regularizing effect
on the mesh, and therefore we also keep this reconstruction term.
Unlike [Pav+20b] (where semantics were not available), however,
we also predict a 3D semantic part segmentation in UV space,
which provides further regularization and enables interesting con-
ditional generation settings (we showcase this in Section 4.4.2).
As in [Pav+20b], we parameterize the mesh as a 2D displace-
ment map that deforms a sphere template in its tangent space.
(ii) Through an inverse rendering approach, image pixels are pro-
jected onto the UV map of the mesh, yielding partially-occluded
textures. Occlusions are represented as a binary mask in UV space.
(iii) Finally, displacement maps and textures are modeled in UV
space using a standard 2D convolutional GAN, whose training
strategy compensates for occlusions by masking inputs to the
discriminator.

architecture . Our experiments (Section 4.4) analyze two
different settings: A where we train a separate model for each
category, and B where we train a single model for all categories. In
setting A, we reuse similar reconstruction and GAN architectures
to [Pav+20b] in order to establish a fair comparison with their
approach. We only modify the output head of the reconstruction
model, where we add K extra output channels for the semantic
class prediction (K depends on the category). In setting B, we

2 In [Pav+20b], poses are estimated via structure-from-motion on ground-truth
keypoints. In this work, we use our proposed approach (Section 4.3.1).

95



learning 3d mesh generators from real-world images
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Figure 4.6: Learned 3D semantic templates. We show one template per
category from two views (front/back). Colors are exaggerated for presen-
tation purposes, but in practice the probability maps are smoother. We
also highlight how semantic parts are shared among categories.

condition the model on the object category by modifying all Batch-
Norm layers and learning different gain and bias parameters
for each category. Additionally, in the output head we share
semantic classes among categories (for instance there is a unique
output channel for wheel that is shared for buses, trucks, etc.;
see Figure 4.6). We do not make any other change that would
affect the model’s capacity. As for the GAN, in both A and B, we
use the same architecture as [Pav+20b]. Further details regarding
hyperparameters, implementation and optimizations to improve
rendering speed can be found in Appendix 4.7.1.

loss . The reconstruction model is trained to jointly minimize
the MSE between (i) rendered and target silhouettes, (ii) predicted
RGB texture and target 2D image, (iii) predicted semantic texture
(with K channels) and target 2D semantic image. As in [Pav+20b],
we add a smoothness loss to encourage neighboring faces to have
similar normals. Finally, the availability of mesh templates allows
us to incorporate a strong shape prior into the model via a loss
term that can be regarded as an extreme form of semi-supervision:
on images with very confident poses (high IoU), we provide
supervision directly on the predicted 3D vertices by adding a
MSE loss between the latter and the vertices of the mesh template
(i.e. our surrogate ground-truth), only on the top 10% of images as
measured by the IoU. This speeds up convergence and helps with
modeling fine details such as wings of airplanes, where silhouettes
alone provide a weak learning signal from certain views. This
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step requires remeshing the templates to align them to a common
topology, which we describe in Appendix 4.7.1.

4.4 experiments

We quantitatively evaluate the aspects that are most central to our
approach: pose estimation and generation quality.

pose estimation. On datasets where annotated keypoints
are available, we compare the poses estimated by our approach
to poses estimated from structure-from-motion (SfM) on ground-
truth keypoints. Since the robustness of SfM depends on the
number of visible keypoints, we never refer to SfM poses as
“ground-truth poses", as these are not available in the real-world
datasets we use. Nonetheless, we believe that SfM poses serve as a
good approximation of ground-truth poses on most images. Our
evaluation metrics comprise (i) the geodesic distance 3 (GD) between
the rotation q predicted by our approach and the SfM rotation
p, defined as GD = 1− (p · q)2 for quaternions, where GD ∈
[0, 1]; and (ii) the recall, which measures the fraction of usable
images that have passed the ambiguity detection test. We evaluate
pose estimation at different stages: after silhouette optimization
(where no semantics are involved), and after the semantic template
inference. Additionally, we compare settings where only one mesh
template per category is available, and where multiple mesh
templates are employed (we use 2–4 templates per category).

generative modeling . Following prior work on textured 3D
mesh generation with GANs [Pav+20b], we evaluate the Fréchet
Inception Distance (FID) [Heu+17] on meshes rendered from
random viewpoints. For consistency, our implementation of this
metric follows that of [Pav+20b]. Since our pose estimation frame-
work discards ambiguous images and the FID is sensitive to the
number of evaluated images, we always use the full dataset for
computing reference statistics. As such, there is an incentive for

3 More commonly known as cosine distance when quaternions are used to describe
orientations, as in our case.
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optimizing both GD and recall metrics as opposed to trading one
off for the other. Finally, consistently with [Pav+20b], we generate
displacement maps at 32× 32 resolution, textures at 512× 512,
and sample from the generator using a truncated Gaussian at
σ = 1.0.

4.4.1 Datasets

We evaluate our approach on three datasets: CUB-200-2011 (CUB)
[Wah+11], Pascal3D+ (P3D) [Liu+19a], and a variety of classes
from ImageNet [Den+09]. The first two provide keypoint annota-
tions and serve as a comparison to previous work, whereas on the
latter we set new baselines. Combining all datasets, we evaluate
our approach on 13 categories.

cub (birds). For consistency with prior work, we adopt the
split of [Kan+18; Pav+20b] (≈6k training images). As we work in
the unconditional setting, we do not use class labels.

pascal3d+ (p3d). Again, we adopt the split of [Kan+18;
Pav+20b], and test our approach on both car and airplane cat-
egories. Since [Pav+20b] has only tested on cars, we train the
model of [Pav+20b] on airplanes and provide a comparison here.
P3D comprises a subset of images from ImageNet and [Pav+20b]
evaluates only on this subset; for consistency, we adopt the same
strategy.

imagenet. Our final selection of classes comprises the vehicles
and animals that can be seen in Figure 4.6/4.7. The list of synsets
used in each class as well as summary statistics are provided
in the Appendix 4.7.3. The set of ImageNet classes includes car
and airplane, which partially overlap with P3D. Therefore, when
we mention these two classes, we always specify the subset we
refer to (ImageNet or P3D). We also note that the dataset is heav-
ily imbalanced, ranging from ≈300 usable images for giraffe to
thousands of images for car. For this reason, in setting B we take
measures to balance the dataset during training (Appendix 4.7.1).
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Bird Car Airplane

Setting Step GD(1) GD (Recall) GD(1) GD (Recall) GD(1) GD (Recall)

Single

template

Silhouette 0.47 0.35 (52%) 0.12 0.05 (75%) 0.31 0.28 (85%)

Semantics 0.29 0.24 (74%) 0.11 0.06 (84%) 0.25 0.18 (78%)

Repeat x2 0.29 0.24 (76%) 0.15 0.11 (85%) 0.24 0.17 (75%)

Multiple

templates

Silhouette 0.47 0.33 (44%) 0.10 0.05 (78%) 0.28 0.22 (81%)

Semantics 0.32 0.27 (76%) 0.06 0.04 (88%) 0.22 0.15 (79%)

Repeat x2 0.32 0.27 (78%) 0.07 0.05 (89%) 0.21 0.16 (80%)

Table 4.1: Pose estimation results under different settings. Best in bold;
second best underlined. We report geodesic distance (GD; lower = better)
after each step and associated recall (higher = better) arising from am-
biguity detection. For comparison, we also report GD w/o ambiguity
detection, GD(1), assuming 100% recall.

Setting MBike Bus Truck Car Airplane Bird Sheep Elephant Zebra Horse Cow Bear Giraffe All

Single TPL (A) 107.4 219.3 164.1 30.73 77.84 55.75 173.7 114.5 28.19 113.3 137.0 187.1 157.7 –

Multi TPL (A) 107.0 160.7 206.1 32.19 102.2 56.54 155.1 135.9 22.10 107.1 133.0 195.5 126.0 –

Single TPL (B) 94.74 204.98 179.3 39.68 46.46 88.47 169.9 127.6 24.47 106.9 139.4 156.4 176.8 60.82

Multi TPL (B) 94.03 187.75 204.7 46.11 77.27 77.23 163.8 146.2 31.70 113.4 117.5 189.9 158.0 63.00

Table 4.2: FID of our approach on ImageNet (except bird, which refers
to CUB). We report results for models trained separately on different
classes (setting A) and a single model that generates all classes (setting
B). Legend: TPL = mesh template(s); lower = better, best in bold, second
best underlined.

4.4.2 Results

pose estimation. We evaluate our pose estimation frame-
work on bird, car, and airplane, for which we have keypoint annota-
tions. Reference poses are obtained using the SfM implementation
of [Kan+18]. For birds (CUB), the scores are computed on all
images, whereas for cars/airplanes they are computed on the
overlapping images between P3D and our ImageNet subset. Re-
sults are summarized in Table 4.1. Interestingly, using multiple
mesh templates does not seem to yield substantially different
results, suggesting that our approach can work effectively with as
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Method Bird (CUB) Car (P3D) Airplane (P3D)

Keypoints+SfM [Pav+20b] 41.56 43.09 147.8*

Silhouette (single TPL) 73.67 38.16 100.5

Silhouette (multi TPL) 88.39 36.17 96.28

Semantics (single TPL) 55.75 36.52 81.28

Semantics (multi TPL) 56.54 37.56 88.85

Table 4.3: Comparison of our FID w.r.t. prior work, using either silhou-
ettes alone or our full pipeline. Legend: * = trained by us; TPL = mesh
template(s); lower = better, best in bold, second best underlined.

little as one template per class. Moreover, incorporating seman-
tic information improves both GD and recall. Finally, we repeat
the ambiguity detection and semantic template inference steps
a second time, but observe no improvement. Therefore, in our
following experiments we only perform these steps once. We fur-
ther discuss these results in Appendix 4.7.2, where we aim to
understand the most common failure modes by analyzing the
full distribution of rotation errors. Qualitatively, the inferred 3D
semantic templates can be found in Figure 4.6.

generative model . We report the FID on ImageNet in Ta-
ble 4.2 (bird refers to CUB), where we set new baselines. As before,
we compare settings where we adopt a single mesh template vs
multiple templates. We also showcase a conditional model that
learns to synthesize all categories using a single generator (setting
B). Although this model has the same capacity as the individual
models (but was trained to generate all classes at once), we note
that its scores are in line with those of setting A, and in some
classes (e.g. airplane) they are significantly better, most likely due
to a beneficial regularizing effect. However, we also note that there
is no clear winner on all categories. To our knowledge, no prior
work has trained a single 3D generator on multiple categories
without some form of supervision from synthetic data. Therefore,
in one of the following paragraphs we analyze this model from
a disentanglement perspective. Next, in Table 4.3, we compare
our results to the state-of-the-art [Pav+20b] on the bird, car, and
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Motorbike Bus Truck Car Airplane Bird Giraffe

Cow Horse Bear Elephant Zebra Sheep

Figure 4.7: Qualitative results for all 13 classes used in our work. For
each class, we show one wireframe mesh on the left, the corresponding
textured mesh on the right, and two additional textured meshes on the
second row. Meshes are rendered from random viewpoints.

airplane categories from CUB/P3D. We find that our approach
outperforms [Pav+20b] on car and airplane (P3D) – even though
we do not exploit ground-truth keypoints – and performs slightly
worse on bird (CUB). We speculate this is mainly due to the fact
that, on CUB, all keypoints are annotated (including occluded
ones), whereas P3D only comprises annotations for visible key-
points, potentially reducing the effectiveness of SfM as a pose
estimation method. Finally, we point out that although there is
a large variability among the scores across classes, comparing
FIDs only makes sense within the same class, since the metric is
affected by the number of images.

qualitative results . In addition to those presented in Fig-
ure 4.1, we show further qualitative results in Figure 4.7. For
animals, we observe that generated textures are generally accu-
rate (e.g. the high-frequency details of zebra stripes are modeled
correctly), with occasional failures to model facial details. With
regards to shape, legs are sporadically merged but also appear
correct on many examples. We believe these issues are mostly due
to a pose misalignment, as animals are deformable but our mesh
templates are rigid. As part of future work, we would like to add
support for articulated mesh templates [Kul+20] to our method.
As for vehicles, the generated shapes are overall faithful to what
one would expect, especially on airplanes where modeling wings
is very challenging. We also note, however, that the textures of rare
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Skin color (white - brown) Specular reflections (matte - shiny)

Motorbike Bus Airplane Bird

Elephant Bear Horse Zebra

Figure 4.8: Disentanglement and interpolation in the model trained
to generate all classes (setting B). Top: directions in latent space that
correlate with certain style factors, such as skin color and lighting. The
effect is consistent across different classes. Bottom: interpolation between
different classes with a fixed latent code.

classes (truck above all) present some incoherent details. Since we
generally observe that the categories with more data are also those
with the best results, these issues could in principle be mitigated
by adding more images. Finally, we show additional qualitative
results in the Appendix 4.7.2.

disentanglement and interpolation. We attempt to
interpret the latent space of the model trained to synthesize all
classes (setting B), following [Här+20]. We identify some direc-
tions in the latent space that correlate with characteristics of the
3D scene, including light intensity (Figure 4.1, top-right), specu-
lar reflections and color (Figure 4.8). Importantly, these factors
seem to be shared across different classes and are learned without
explicit supervision. Although our analysis is preliminary, our
findings suggest that 3D GANs disentangle high-level features
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1. 2.

3. 4. Bumper

Wheel

Window

Windshield

Light

Headlight

Figure 4.9: Conditional mesh generation from semantic layouts. In this
demo, we progressively build a car by sketching its parts, proposing an
interesting way of controlling the generation process.

in an interpretable fashion, similar to what is observed in 2D
GANs to some extent (e.g. on pose and style). However, since
3D representations already disentangle appearance and pose, the
focus of the disentangled features is on other aspects such as
texture and lighting. Figure 4.8 (bottom) illustrates interpolation
between different classes while keeping the latent code fixed. Style
is preserved and there are no observable artifacts, suggesting that
the latent space is structured.

semantic mesh generation. Since our framework pre-
dicts a 3D semantic layout for each image, we can condition the
generator on such a representation. In Figure 4.9, we propose a
proof-of-concept where we train a conditional model on the car
class that takes as input a semantic layout in UV space and pro-
duces a textured mesh. Such a setting can be used to manipulate
fine details (e.g. the shape of the headlights) or the placement of
semantic parts.

4.5 conclusion

We proposed a framework for learning generative models of
textured 3D meshes. In contrast to prior work, our approach does
not require keypoint annotations, enabling its use on real-world
datasets. We demonstrated that our method matches the results
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of prior works that use ground-truth keypoints, without having to
rely on such information. Furthermore, we set new baselines on a
subset of categories from ImageNet [Den+09], where keypoints
are not available.

4.6 future developments

potential improvements . We believe there are still many
directions of interest to pursue in order to improve this work. In
addition to further analyzing disentanglement and exploring more
intuitive semantic generation techniques, an interesting direction
would be to experiment with articulated meshes, which should
provide superior results on deformable classes such as animals.

recent literature . Following the success of Neural Radi-
ance Fields (NeRF) in various areas of computer vision, NeRFs
have also been explored for unconditional mesh generation. In
such techniques, a 3D-aware generator is typically combined with
a 2D discriminator, where the latter discriminates objects/scenes
rendered from random viewpoints. Some examples are π-GAN
[Cha+21] and EG3D [Cha+22], although we provide a more com-
prehensive overview of these methods in Section 5.2. As antici-
pated, the main advantage of NeRFs over triangle meshes is their
ability to represent arbitrary topologies, instead of being restricted
to a fixed template. For the same reason, NeRFs are much better at
modelling fine shape details, but worse at modelling appearance
due to their lack of UV mapping. Another drawback is the higher
computational cost compared to triangle meshes. Nonetheless, the
use of NeRFs in 3D synthesis tasks is advancing quickly, and it is
likely that the future literature will be dominated by approaches
that combine NeRFs and triangle meshes to varying extents.

follow-up work . A natural question that comes to mind
when working with 3D-aware generative models is whether we
could use them to perform additional downstream tasks (other
than unconditional generation / content creation). For example,
a useful application in augmented reality (AR) and robotics is
single-view 3D reconstruction, where the goal is to reconstruct the
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3D representation corresponding to an input image. While there
is a variety of work on this topic, a recent trend is represented
by GAN inversion [Xia+22], where the objective is to leverage
an unconditional GAN to recover the latent code that best fits a
target image. As we will discuss in the next chapter (Chapter 5),
this framework presents several advantages over its conditional
counterpart.
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4.7 appendix

4.7.1 Implementation details

dataset preparation. We infer object silhouettes using
PointRend [Kir+20] with an X101-FPN backbone, using their pre-
trained model on COCO [Lin+14]. We set the object detection
threshold to 0.9 to select only confident objects. As mentioned
in Section 4.3, we discard object instances that are either (i) too
small (mask area < 962 pixels), (ii) touch the borders of the im-
age (indicator of possible truncation), or (iii) collide with other
detected objects (indicator of potential occlusion). For the object
part segmentations, we use the semi-supervised object detector
from [Hu+18], which can segment all 3000 classes available in
Visual Genome (VG) [Kri+17] while being supervised only on
mask annotations from COCO. Although this model was not con-
ceived for object part segmentation, we find that it can be used
as a cost-effective way of obtaining meaningful part segmenta-
tions without collecting extra data or using co-part segmentation
models that require class-specific hyperparameter tuning, such as
SCOPS [Hun+19]. Specifically, since VG presents a long tail of rare
classes, as in [PLH20] we found it beneficial to first pre-select a
small number of representative classes that are widespread across
categories (e.g. all land vehicles have wheels, all animals have
legs). We set the detection threshold of this model to 0.2 and, for
each image category, we only keep semantic classes that appear
in at least 25% of the images, which helps eliminate spurious
detections. On our data, this leads to a number of semantic classes
K ≈ 10 per image category (33 across all categories). The full list
of semantic classes can be seen in Figure 4.6. To deal with po-
tentially overlapping part detections (e.g. the segmentation mask
of the door of a car might overlap with a window), the output
semantic maps represent probability distributions over classes,
where we weight each semantic class proportionally to the object
detection score. Additionally, we add an extra class for “no class”
(depicted in gray in our figures).
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mesh templates and remeshing . We borrow a selection
of mesh templates from [Kul+20] as well as meshes freely avail-
able on the web. In the experiments where we adopt multiple
mesh templates, we only use 2–4 meshes per category. An im-
portant preliminary step of our approach, which is performed
even before the pose estimation step, consists in remeshing these
templates to align them to a common topology. This has the goal
of reducing their complexity (which translates into a speed-up
during optimization), removing potential invisible interiors, and
enabling efficient batching by making sure that every mesh has
the same number of vertices/faces. Additionally, as mentioned in
Section 4.3.2, remeshing is required for the semi-supervision loss
term in the reconstruction model. We frame this task as an opti-
mization problem where we deform a 32× 32 UV sphere to match
the mesh template. More specifically, we render each template
from 64 random viewpoints at 256× 256 resolution, and minimize
the MSE loss between the rendered deformed sphere and the
target template in pixel space (LMSE). Moreover, we regularize
the mesh by adding (i) a smoothness loss Lflat, which encourages
neighboring faces to have similar normals, (ii) a Laplacian smooth-
ing loss Llap with quad connectivity (i.e. using the topology of the
UV map as opposed to that of the triangle mesh), and (iii) an edge
length loss Llen with quad connectivity, which encourages edges
to have similar lengths. Lflat and Llen are defined as follows:

Lflat =
1
|E| ∑

i,j∈E
(1− cos θij)

2, (4.5)

Llen =
1
|UV| ∑

i∈U
∑
j∈V

∥vi+1,j − vi,j∥1 + ∥vi,j+1 − vi,j∥1

6
, (4.6)

where E is the set of edges, cos θij is the cosine similarity between
the normals of faces i and j, and vi,j represents the 3D vertex at
the coordinates i, j of the UV map.
Finally, we weight each term as follows:

L = LMSE + 0.00001Lflat + 0.003Llap + 0.01Llen. (4.7)
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Additionally, in the experiments with multiple mesh templates,
we add a pairwise similarity loss Lalign which penalizes large
variations of the vertex positions between different mesh templates
(only within the same category):

Lalign =
1

N2
t

Nt

∑
i=1

Nt

∑
j=1
∥Vi −Vj∥2, (4.8)

where Vi is a matrix that contains the vertex positions of the i-th
mesh template (of shape 3× Nv), and Nt is the number of mesh
templates. This loss term is added to the total loss with weight
0.001. Note that we use a non-squared L2 penalty for this term,
which encourages a sparse set of vertices to change between mesh
templates.
We optimize the final loss using SGD with momentum (initial
learning rate α = 0.0001 and momentum β = 0.9). We linearly
increase α to 0.0005 over the course of 500 iterations (warm-up)
and then exponentially decay α with rate 0.9999. We stop when
the learning rate falls below 0.0001. Additionally, we normalize
the gradient before each update. Figure 4.10 shows two qualitative
examples of remeshing.

Figure 4.10: Remeshing of the mesh templates. In this figure we show
two demos (one template for car and one for airplane).

pose estimation. For the silhouette optimization step, we
initialize Nc = 40 camera hypotheses per image by uniformly
quantizing azimuth and elevation (8 quantization levels along
azimuth and 5 levels along elevation). We optimize each camera
hypothesis using Adam [KB14] with full-matrix preconditioning,
where we set β1 = 0.9 and β2 = 0.95. The implementation of our
variant of Adam as well its theoretical justification are described
in the next paragraph. We optimize each hypothesis for 100 it-
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erations, with an initial learning rate α = 0.1 which is decayed
to 0.01 after the 80th iteration. After each iteration, we reproject
quaternions onto the unit ball. As a performance optimization,
silhouettes are initially rendered at 128×128 resolution, which is
increased to 192×192 after the 30th iteration and 256×256 after
the 60th iteration. Finally, in the settings where we prune camera
hypotheses, we discard the worst 50% hypotheses as measured
by the intersection-over-union (IoU) between projected and tar-
get silhouettes. This is performed twice: after the 30th and 60th
iteration.

Algorithm 1 Adam with full-matrix preconditioning.
Changes w.r.t. the original algorithm are highlighted .

1: require α (step size), β1, β2, ϵ

2: initialize time step t← 0
3: initialize parameters θ0 (d-dimensional col. vector)
4: initialize first moment m0 ← 0 (d-dimensional col. vector)
5: initialize second moment V0 ← 0 (d× d matrix )
6: repeat
7: t← t + 1
8: gt ← ∇θ ft(θt−1) ▷ gradient
9: mt ← β1mt−1 + (1− β1)gt ▷ first moment

10: Vt ← β2Vt−1 + (1− β2) gtg
T
t ▷ second moment

11: m̂t ← mt/(1− βt
1) ▷ bias correction

12: V̂t ← Vt/(1− βt
2) ▷ bias correction

13: θt ← θt−1 − α (V̂t + ϵId)
− 1

2 m̂t ▷ update
14: until stopping criterion
15: return θt

full-matrix preconditioning . Adam [KB14] is an estab-
lished optimizer for training neural networks. Its use of diagonal
preconditioning is an effective trick to avoid storing an O(d2) ma-
trix for the second moments (where d is the number of learnable
parameters), for which a matrix square root and inverse need to
be subsequently computed (an extra O(d3) cost for each of the
two operations). However, since our goal is to optimize camera
parameters, we observe that:
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1. Optimizers with diagonal preconditioning are not rotation
invariant, i.e. they have some preferential directions that
might bias the pose estimation result.

2. Since each camera hypothesis comprises only 8 parameters,
inverting an 8× 8 matrix has a negligible cost.

Using a rotation invariant optimizer such as SGD (with or without
momentum) is a more principled choice as it addresses the first
observation. However, based on our second observation, we take
the best of both worlds and modify Adam to implement full-
matrix preconditioning. This only requires a trivial modification
to the original implementation, which we show in Algorithm 1

(changes w.r.t. the original algorithm are highlighted in green).

semantic template inference . As mentioned in Sec-
tion 4.3.1, the goal of this step is to infer a 3D semantic tem-
plate for each mesh template, given an initial (untextured) mesh
template, the output of the silhouette optimization step, and a
collection of 2D semantic maps. Recapitulating from Section 4.3.1,
we solve the following optimization problem:

Li =
∥∥∥R(Vtpl, Ftpl, Ctpl; qi, ti, si, z0i)− Ci

∥∥∥2
(4.9)

C∗tpl = min
Ctpl

1
Ntop

∑
i
Li. (4.10)

Conceptually, our goal is to learn a shared semantic template
(parameterized using vertex colors) that averages all 2D semantic
maps in vertex space. We propose the following closed-form
solution which uses the gradients from the differentiable renderer
and requires only a single pass through the dataset:

A = ∑
i
∇Ctpl(Li) (4.11)

(C∗tpl)k =
ϵ + ak

Kϵ + ∑j aj
, (4.12)

where A is an accumulator matrix that has the same shape as
the Ctpl (the vertex colors), and ϵ is a small additive smoothing
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constant that leads to a uniform distribution on vertices that are
never rendered (and thus have no gradient). This operation can
be regarded as projecting the 2D object-part semantics onto the
mesh vertices and computing a color histogram on each vertex.
We show a sample illustration in Figure 4.11.

Project Project
Initial 3D semantic

template

2D part
segmentation

Final template
(After 100 steps)

Figure 4.11: Semantic template inference, starting from an untextured 3D
mesh template (left-to-right progression). In this figure we show a demo
with two sample images, and the final result using the top 100 images as
measured by the IoU.

In section Section 4.3.1 we explained that we compute the se-
mantic template using the top Ntop = 100 images as measured
by the IoU, among those that passed the ambiguity detection
test (vagr < 0.3). To further improve the quality of the inferred
semantic templates, we found it beneficial to add an additional
filter where we only select poses whose cosine distance is within
0.5 (i.e. 45 degrees) of the left/right side. Objects observed from
the left/right side are intrinsically unambiguous, since there is no
complementary pose that results in the same silhouette. There-
fore, we favor views that are close to the left/right as opposed
to the front/back or top/bottom, which are the most ambiguous
views. Note that this filter is only used for the semantic template
inference step.
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generative model . We train the single-category reconstruc-
tion networks (setting A) for 130k iterations, with a batch size of
32, and on a single GPU. The multi-category model (setting B)
is trained for 1000 epochs, with a total batch size of 128 across
4 GPUs, using synchronized batch normalization. In both set-
tings, we use Adam [KB14] (the original one, not our variant
with full-matrix preconditioning) with an initial learning rate of
0.0001 which is halved at 1/4, 1/2, 3/4 of the training schedule.
For the GAN, we use the same hyperparameters as [Pav+20b],
except in the multi-category model (setting B), which is trained
with a batch size of 64 instead of the default 32. Furthermore,
in setting B, and for both models (reconstruction and GAN), we
equalize classes during mini-batch sampling. This is motivated by
the large variability in the amount of training images, as explained
in Section 4.4.1, and as can also be seen in Table 4.4. Finally, as in
[GKM20; Kan+18; Li+20; Pav+20b], we force generated meshes to
be left/right symmetric.

semantic mesh generation. In the setting where we gen-
erate a 3D mesh from a semantic layout in UV space, we modify
the generator architecture of [Pav+20b]. Specifically, we replace
the input linear layer (the one that projects the latent code z onto
the first 8× 8 convolutional feature map) with four convolutional
layers. These progressively downsample the semantic layout from
128× 128 down to 8× 8 (i.e. each layer has stride 2). The first layer
takes as input a one-hot semantic map (with K semantic channels)
and yields 64 output channels (128, 256, 512 in the following lay-
ers). In these 4 layers, we use Leaky ReLU activations (slope 0.2),
spectral normalization, but no batch normalization. We leave the
rest of the network unchanged. In this model, we also found it
necessary to fine-tune the batch normalization statistics prior to
evaluation, which we do by running a forward pass over the entire
dataset on the running average model. As for the discriminator, we
simply resize the semantic map as required and concatenate it to
the input.
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4.7.2 Additional results

pose estimation. In Figure 4.12, we provide more insight
into the geodesic distance metric, which measures the cosine dis-
tance between the rotations predicted by our approach (Sec-
tion 4.3.1) and SfM rotations. In particular, as opposed to the
results presented in Table 4.1 (which shows only the average),
here we show the full distribution of errors. A distance of 0 means
that the two rotations match exactly, whereas a distance of 1 (max-
imum value) means that the rotations are rotated by 180 degrees
from one another. On the analyzed classes (car, airplane, and bird,
for which we have SfM poses), we can generally observe a bimodal
distribution: a majority of images where pose estimation is correct,
i.e. the GD is close to zero, and a small cluster of images where
the GD is close to one. This is often the case for ambiguities: for
instance, in cars we sometimes observe a front/back confusion.
As expected, exploiting semantics (step 2) mitigates this issue
and increases the amount of available images (this is particularly
visible on bird). We also note that, for rigid objects such as car and
airplane, the distribution is more peaky, whereas for bird the tail
of errors is longer, most likely because pose estimation is more
ill-defined for articulated objects.

qualitative results . We show extra qualitative results in
Figure 4.13. In particular, we render each generated mesh from
two random viewpoints and showcase the associated texture and
wireframe mesh. Additionally, in Figure 4.14 we show the most
common failure cases across categories. We can identify some
general patterns: for instance, in vehicles we sometimes observe
incoherent textures (this is particularly visible in truck due to the
small size of this dataset). On animals, as mentioned, we observe
occasional failures to model facial details, merged/distorted legs,
and more rarely, mesh distortions. To some extent, these issues
can be mitigated by sampling from the generator using a lower
truncation threshold (we use σ = 1.0 in our experiments), at the
expense of sample diversity.
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Figure 4.12: Distribution of pose estimation errors on car, airplane, and
bird. We compare settings where we use multiple mesh templates (left)
and a single template (right).
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Figure 4.13: Additional qualitative results. We show three examples per
category. Each example is rendered from two random views, and the
corresponding texture/wireframe mesh is also shown.
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Figure 4.14: Failure cases for a variety of categories.

semantic templates . Figure 4.15 shows the full set of
learned semantic templates for every category. Most results are
coherent, although we observe a small number of failure cases,
e.g. in truck one or two templates are mostly empty and are thus
ineffective for properly resolving ambiguities. This generally hap-
pens when the templates have too few images assigned to them
and explains why the multi-template setting does not consistently
outperform the single-template setting.

demo video. The supplementary material in [Pav+21] includes
a video where we show additional qualitative results. First, we
showcase samples generated by our models in setting A and
explore the latent space of the generator. Second, we analyze
the latent space of the model trained to generate multiple classes
(setting B), and discover interpretable directions in the latent space,
which can be used to control shared aspects between classes (e.g.
lighting, shadows). We also interpolate between different classes
while keeping the latent space fixed, and highlight that style is
preserved during interpolation. Finally, we showcase a setting
where we generate a mesh from a hand-drawn semantic layout in
UV space, similar to Figure 4.9.
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Motorbike Bus Truck Car Airplane

Bird Sheep Elephant Zebra Horse Cow Bear Giraffe

Wing

Engine

Fender

Seat

Handlebar

Door

Bumper

Grill

License plate

Wheel Window Windshield

MirrorLight

Headlight

Landing gear

Feather

Tail Leg

FootHoof

Neck

Mane Head

Face

MouthNoseCockpit

Trunk

Horn

Ear

Eye

Beak

Figure 4.15: Visualization of all the learned 3D semantic templates (2–4

per category). While most results are as expected, the figure highlights
some failure cases, e.g. in truck some templates have very few images
assigned to them, which leads to incoherent semantics.

4.7.3 Dataset information

For our experiments on ImageNet, we adopt the synsets specified
in Table 4.4. Since some of our required synsets are not available
in the more popular ImageNet1k, we draw all of our data from
the larger ImageNet22k set.

4.7.4 Negative results

To guide potential future work in this area, we provide a list of
ideas that we explored but did not work out.

silhouette optimization. For the silhouette optimization
step with multiple templates, before reaching our current formula-
tion, we explored a range of alternatives. In particular, we tried to
smoothly interpolate between multiple meshes by optimizing a set
of interpolation weights along with the camera parameters. This
yielded inconsistent results across categories, which convinced
us to work with a “discrete” approach as opposed to a smooth
one. We then tried a reinforcement learning approach inspired
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Class Synsets Raw images Valid instances

Motorbike n03790512, n03791053, n04466871 4037 1351

Bus n04146614, n02924116 2641 1190

Truck n03345487, n03417042, n03796401 3187 1245

Car
n02814533, n02958343, n03498781,

n03770085, n03770679, n03930630,

n04037443, n04166281, n04285965

12819 4992

Airplane
n02690373, n02691156, n03335030,

n04012084

5208 2540

Sheep
n10588074, n02411705, n02413050,

n02412210

4682 864

Elephant n02504013, n02504458 3927 1434

Zebra
n02391049, n02391234, n02391373,

n02391508

5536 1753

Horse n02381460, n02374451 2589 664

Cow n01887787, n02402425 2949 861

Bear
n02132136, n02133161, n02131653,

n02134084

6745 2688

Giraffe n02439033 1256 349

Table 4.4: Synsets and summary statistics for our ImageNet data. For
each category, we report the number of raw images in the dataset, and
the number of extracted object instances that have passed our quality
checks (size, truncation, occlusion).

by multi-armed bandits: we initialized each camera hypothesis
with a random mesh template, and used a UCB (upper confidence
bound) selection algorithm to select the optimal mesh template
during optimization. This led to slightly worse results than in-
terpolation. Finally, we reached our current formulation, where
we simply replicate each camera hypothesis and optimize the
different mesh templates separately. We adopt pruning to make
up for the increase in computation time.

re-optimizing poses multiple times . In our current for-
mulation, after the semantic template inference step, we use the
semantic templates to resolve ambiguities, but there is no further
optimization involved. Naturally, we explored the idea of repeat-
ing the silhouette optimization step using semantic information.
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However, we were unable to get this step to work reliably, even
after attempting with multiple renderers (we tried both with DIB-
R [Che+19] and SoftRas [Liu+19b]). We generally observed that
the color gradients are too uninformative for optimizing camera
poses, even after trying to balance the different components of
the gradient (silhouette and color). We believe this is a funda-
mental issue related to the non-convexity of the loss landspace,
which future work needs to address. We also tried to smooth out
the rendered images prior to computing the MSE loss, without
success.

remeshing . Since target 3D vertices are known in this step, we
initially tried to use a 3D chamfer loss to match the mesh template.
This, however, led to artifacts and merged legs in animals, and
was too sensitive to initialization. We found it more reliable to use
a differentiable render with silhouette-based optimization.
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chapter abstract. Neural Radiance Fields (NeRF) coupled
with GANs represent a promising direction in the area of 3D
reconstruction from a single view, owing to their ability to ef-
ficiently model arbitrary topologies. Recent work in this area,
however, has mostly focused on synthetic datasets where exact
ground-truth poses are known, and has overlooked pose esti-
mation, which is important for certain downstream applications
such as augmented reality (AR) and robotics. We introduce a
principled end-to-end reconstruction framework for natural im-
ages, where accurate ground-truth poses are not available. Our
approach recovers an SDF-parameterized 3D shape, pose, and
appearance from a single image of an object, without exploiting
multiple views during training. More specifically, we leverage an
unconditional 3D-aware generator, to which we apply a hybrid
inversion scheme where a model produces a first guess of the
solution which is then refined via optimization. Our framework
can de-render an image in as few as 10 steps, enabling its use in
practical scenarios. We demonstrate state-of-the-art results on a
variety of real and synthetic benchmarks.

open source . Code and models for this work are available at
https://github.com/google-research/nerf-from-image.

This chapter is based on our CVPR 2023 paper “Shape, Pose, and Appearance
from a Single Image via Bootstrapped Radiance Field Inversion” [Pav+23].
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Figure 5.1: Given a collection of 2D images representing a specific cat-
egory (e.g. cars), we learn a model that can fully recover shape, pose,
and appearance from a single image, without leveraging multiple views
during training. The 3D shape is parameterized as a signed distance
function (SDF), which facilitates its transformation to a triangle mesh for
further downstream applications.

5.1 introduction

In this chapter, we move from the unconditional generation task
and focus on the task of single-view 3D reconstruction, where the
goal is to reconstruct shape, appearance, and camera pose from
a single image of an object (Figure 5.1). Although – at first – the
latter may seem only loosely connected to the 3D-aware genera-
tion task described in the previous chapters, in this chapter we
will highlight how these tasks are closely interconnected, and how
advances in one task benefit the other. Single-view 3D reconstruc-
tion has applications in content creation, augmented & virtual
reality (AR/VR), robotics, and is also interesting from a scientific
perspective, as most neural architectures cannot reason about 3D
scenes. As humans, we learn object priors, abstract representations
that allow us to imagine what a partially-observed object would
look like from other viewpoints. Incorporating such knowledge
into a model would enable higher forms of 3D reasoning. While
early work on 3D reconstruction has focused on exploiting an-
notated data [Gir+16; HTM17; Wu+17; Yan+17a; Zhu+17b], e.g.
ground-truth 3D shapes or multiple 2D views, more recent work
has relaxed the assumptions required by the task. In particular,
there has been effort in learning this task from single-view col-
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lections of images depicting a specific category [GKM20; Kan+18;
Li+20] (e.g. a dataset of cars), and we also follow this line of work.

Most established 3D representations in the single-view recon-
struction literature are based on deformable triangle meshes
[GKM20; Kan+18; Li+20], although Neural Radiance Fields (NeRF)
[Bar+21; Mil+20] have recently become more prominent in the
broader 3D vision community owing to their ability to efficiently
model arbitrary topologies. These have been combined with GANs
[Goo+14] for unconditional 3D generation tasks [Cha+21; Cha+22;
NG21; Xue+22], as they produce more perceptually pleasing re-
sults. There has also been work on combining the two in the
single-view reconstruction task, e.g. Pix2NeRF [Cai+22], which
is however demonstrated on simple settings of faces or synthetic
datasets where perfect ground-truth poses are available. Further-
more, there has been less focus overall on producing an end-to-end
reconstruction system that additionally tackles pose estimation (be-
yond simple settings), which is particularly important for AR
applications. In our work, we bridge this gap by proposing a
more general NeRF-based end-to-end reconstruction pipeline that
tackles both reconstruction and pose estimation, and demonstrate
its broader applicability to natural images where poses cannot
be accurately estimated. We further characterize the problem by
comparing encoder-based approaches (the majority of methods
in the single-view reconstruction literature) to inversion-based
approaches (which invert a generator via optimization), and show
that the latter are more suited to real datasets without accurate
ground-truth poses.

Motivated by this, we propose a hybrid GAN inversion technique
for NeRFs that can be regarded as a compromise between the two:
an encoder produces a first guess of the solution (bootstrapping),
which is then refined via optimization. We further propose a series
of technical contributions, including: (i) the adoption of an SDF
representation [Yar+21] to improve the reconstructed surfaces and
facilitate their conversion to triangle meshes, (ii) regularizers to
accelerate inversion, and (iii) the addition of certain equivariances
in the model architecture to improve generalization. We show
that we can invert an image in as few as 10 optimization steps,
making our approach usable even in constrained scenarios. Fur-
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thermore, we incorporate a principled pose estimation framework
[Wan+19] that frames the problem as a regression of a canonical
representation followed by Perspective-n-Point (PnP), and show
that it boosts pose estimation accuracy without additional data
assumptions. We summarize our main contributions as follows:

• We introduce an end-to-end single-view 3D reconstruction
pipeline based on NeRFs. In this setting, we successfully
demonstrate 360

◦ object reconstruction from natural images
under the CMR [GKM20] benchmark.

• We propose a hybrid inversion scheme for NeRFs to acceler-
ate the reversal of pre-trained 3D-aware generators.

• Inspired by the literature on pose estimation, we propose
a principled PnP-based pose estimator that leverages our
framework and does not require extra data assumptions.

To validate our contributions, we obtain state-of-the-art results on
both real/synthetic benchmarks. Furthermore, to our knowledge,
we are the first to demonstrate NeRF-based reconstruction on
in-the-wild datasets such as ImageNet.

5.2 related work

inverse rendering and scene representations . Al-
though 3D reconstruction is an established task, the representa-
tions and supervision methods used to tackle this problem have
evolved throughout the literature. Early approaches have focused
on reconstructing shapes using 3D supervision, adopting voxel
grids [Gir+16; HTM17; Wu+17; Yan+17a; Zhu+17b], point clouds
[FSG17], or SDFs [Par+19a], and require synthetic datasets where
ground-truth 3D shapes are available. The introduction of differ-
entiable rendering [Che+19; Che+21b; KUH18; Liu+19b; LB14]
has enabled a new line of work that attempts to reconstruct shape
and texture from single-view datasets, leveraging triangle mesh
representations [Bha+21; Che+19; GKM20; HF18; Kan+18; Li+20;
Zha+22]. Each 3D representation, however, comes with its own
set of trade-offs. For instance, voxels do not scale efficiently with
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resolution, while triangle meshes are efficient but struggle with
arbitrary topologies (most works deform a sphere template). In
recent developments, implicit representations encode a 3D scene
as the weights of an MLP that can be queried at specific coor-
dinates, which allows them to model arbitrary topologies using
lightweight networks. In such a setting, there has been work on 3D
reconstruction using implicit SDFs [DP22; LWL20] as well as neu-
ral radiance fields (NeRF) [Bar+21; Mil+20]. Finally, some works
incorporate additional structural information into 3D representa-
tions, e.g. [Yao+22] reconstructs articulated shapes using skeleton
priors, [Che+21b; WWR22] disentangle albedo from reflectance,
and [Xu+22] uses depth cues. These techniques are orthogonal to
ours and may positively benefit each other.

nerf-based reconstruction. The standard use-case of
a NeRF is to encode a single scene given multiple 2D views
and associated camera poses, which does not necessarily lead
to learned shared representations. There have however been at-
tempts at learning an object prior by training such models on a
category-specific dataset (e.g. a collection of cars). For instance,
[JA21; Reb+22] train a shared NeRF backbone conditioned on a
learned latent code for each object instance. [Yu+21] tackles recon-
struction conditioned on an image encoder, although it requires
multiple ground-truth views for supervision and does not adopt
an adversarial setting, thereby relying on accurate poses from
synthetic datasets and leading to blurry results. [Cai+22; Mi+22]
adopt an adversarial setting and only require a single view during
training, but they focus on settings with simple pose distributions.
Finally, there has been work on using diffusion models [HJA20;
Wat+22] and distillation [RTT21] for novel-view synthesis, though
such methods do not explicitly recover a 3D surface.

encoder- vs inversion-based methods . Most aforemen-
tioned methods can be categorized as encoder-based, where a 2D
ConvNet encodes the input image into a latent representation,
then decoded into a 3D scene. This paradigm is analogous to
an autoencoder, and therefore requires some form of pixel-level
loss between predicted and input images. While this is appro-
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priate for synthetic datasets with exact poses, it leads to blurry
or distorted results when such poses are inaccurate (i.e. the case
in natural images). Following the 2D GAN inversion literature
[Xia+22], there has been work on applying inversion methods
to 3D reconstruction, where the goal is to leverage a pretrained
unconditional GAN and find the latent code that best fits the
input image via optimization. Since unconditional GANs tend to
be more robust to inaccurate poses (as they mostly rely on the
overall pose distribution as opposed to the pose of each image),
we argue that inversion-based approaches are better suited to
natural images. As part of our work, we characterize this phe-
nomenon experimentally. 3D GAN inversion has been applied to
untextured shapes [Dug+22; Zha+21a], textured triangle meshes
[Zha+22], and its use with NeRF-based approaches is suggested
in [Cai+22; Cha+21; Cha+22], although it is not their focus.

our work . We propose a hybrid inversion paradigm, where
an encoder produces a first guess of the latent representation
and pose (bootstrapping), and these are then refined for a few
iterations via optimization. Although [Dug+22] introduce a similar
idea, they focus on shape completion from LiDAR data, whereas
we focus on shape, pose, and appearance prediction from an
image. Under our setting, Pix2NeRF [Cai+22] provides a proof-of-
concept of refinement using such a method, but it is still trained
using an encoder-based paradigm and is thus affected by the
aforementioned issues. By contrast, we propose a principled end-
to-end hybrid reconstruction approach that takes full advantage
of an unconditional generator and can also optimize with respect
to pose (unlike [Cai+22; Cha+21; Cha+22]), a task that requires a
suitable pose parameterization. We also mention that [Zha+21b]
propose a similar idea to bootstrapping (without inversion), but
they adopt a 2D image generator as opposed to a 3D-aware one,
which does not fully disentangle pose from appearance.

unconditional generation. Since inversion-based ap-
proaches rely on a pretrained generator, we briefly discuss recent
architectures for this task. Our works presented in the previous
chapters [HTL20; Pav+21; Pav+20b] learn to generate triangle
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meshes and textures using 2D supervision from single-view col-
lections of natural images. [Cha+21] learns this task using NeRFs,
although it suffers from the high computational cost of MLP-
based NeRFs. [Cha+22; Or-+22; Gu+21; NG21; Sch+20; SZW19;
Xue+22] incorporate both 2D and 3D components as a trade-off
between 3D consistency and efficiency. Finally, [Gao+22] proposes
an approach to train a NeRF-based generator whose outputs can
be distilled into triangle meshes. The generator used in our work
leverages an EG3D-like backbone [Cha+22].

5.3 method

We now present our single-view reconstruction approach. We
break down our method into three main steps. (i) Initially, we
train an unconditional generator following the literature on 3D-
aware GANs [Cha+21; Cha+22], where a NeRF-based generator
G is combined with a 2D image discriminator. This framework
requires minimal assumptions, namely 2D images and the corre-
sponding pose distribution. We further apply a series of technical
improvements to the overall framework in order to positively
impact the subsequent reconstruction step, as explained in Sec-
tion 5.3.1. (ii) We freeze G and train an image encoder E that
jointly estimates the pose of the object as well as an initial guess
of its latent code (bootstrapping). For pose estimation, we adopt a
principled approach that predicts a canonical map [Wan+19] in
screen space followed by a Perspective-n-Point (PnP) algorithm.
We explain these steps in Section 5.3.2. Finally, (iii) we refine the
pose and latent code for a few steps via gradient-based optimiza-
tion (hybrid inversion), as described in Section 5.3.3.

requirements . For training, our method requires a category-
specific collection of images, along with segmentation masks for
datasets with a background (we use an off-the-shelf segmentation
model, PointRend [Kir+20]), which we use to pre-segment the
images. An approximate pose distribution must also be known.
For inference, only a single, unposed input image is required.
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5.3.1 Unconditional generator pre-training

Mapping

network
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renderer

Pose

Radiance
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Figure 5.2: Unconditional generation framework.

We adopt EG3D [Cha+22] as a starting point for the backbone
of our generator. It consists of a mapping network that maps a
prior z ∼ N (0, I) to a latent code w ∈ W , the latter of which
is plugged into a StyleGAN2 generator [Kar+20b]. The output
feature map is then split into three orthogonal planes (xy, xz, yz),
which are queried at specific coordinates via bilinear sampling.
The resulting features are finally summed and plugged into a
tiny MLP (triplanar decoder) to output the values of the radiance
field (density and color). The generator G is trained using a GAN
framework where the discriminator takes 2D renderings as input.
We apply some adjustments to the triplanar decoder and training
objective, including the ability to model view-dependent effects as
well as improvements to the adaptive discriminator augmentation
(ADA) technique [Kar+20a], which is used on small datasets (see
Appendix 5.8.1). In the next paragraphs, we focus on the changes
that are central to our reconstruction approach.

sdf representation. We found it beneficial to parameterize
the object surface as a signed distance function (SDF), as opposed
to the standard volume density parameterization adopted in EG3D
[Cha+22]. In addition to an empirical advantage (Section 5.5),
SDFs facilitate the extraction of the surface and its subsequent
conversion to other representations (e.g. triangle meshes), since
they provide analytical information about surface boundaries
and normals. SDFs have already been explored in unconditional
generators [Or-+22] and in the broader NeRF literature [OPG21;
Wan+21; Yar+21; Yu+22], but less so in the single-view reconstruc-
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tion setting. We follow VolSDF [Yar+21], in which the volume
density σ(x) is described as:

σ(x) = (1/α)Ψβ(−d(x)) , (5.1)

where x are the query coordinates, d(x) is the SDF (i.e. the output
of the generator), and Ψβ is the cumulative density function (CDF)
of the Laplace distribution with scale β and zero mean. α, β > 0
are learnable parameters. We also incorporate an Eikonal loss to
encourage the network to approximate a valid distance function:

LEikonal = Ex[(∥∇xd(x)∥ − 1)2]. (5.2)

We efficiently approximate the expectation using stratified sam-
pling across the bounding volume of the scene, and employ a
custom bilinear sampling implementation in the triplanar en-
coder which supports double differentiation w.r.t. the input query
points. Furthermore, we initialize the SDF to a unit sphere via pre-
training. Implementation details can be found in the Appendix
5.8.1.

removing super-resolution network . In [Cha+22], the
rendered image is further processed through a super-resolution
network, which increases its resolution and corrects for any distri-
bution mismatch at the expense of 3D consistency. Since we aim
to address fully 3D-consistent reconstruction instead of a more
relaxed novel-view-synthesis task, we remove this component and
feed the rendered image directly through the discriminator. This
choice also makes it easier to fairly compare our approach to
existing work.

attention-based color mapping . A robust 3D reconstruc-
tion technique should be as much as possible equivariant to certain
transformations in order to improve generalization on unseen data.
These include geometric transformations (e.g. a 2D translation in
the input image should be reflected in the 3D pose, which moti-
vates our principled pose estimation technique in Section 5.3.2) as
well as color transformations, e.g. changing the hue of an object
(an image of a red car into that of a white car) should result in an
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Randomized color distribution

Figure 5.3: Illustration of our color mapping technique with two objects
generated by two different latent codes w1 and w2. The object generator
models a latent radiance field of keys K (each of which represents a
semantic embedding at a specific spatial position), which are multiplied
with a fixed set of queries Q (i.e. learned prototype embeddings for
each “semantic channel”) and processed through a softmax to produce a
probability distribution across these semantic channels, whose meaning
is learned. In the case of cars, the learned semantic channels include body,
headlights, wheels, and reflections. In the image, we show a rendering
of the result of this operation in false colors, where the weight of one
of the classes (car body) is highlighted. Finally, the latter is multiplied
with the values V (color distribution, i.e. a color for each semantic chan-
nel) produced by another module (color network), resulting in the final
RGB colors. While during training the same latent code goes into both
networks so as to learn the correct data distribution, at inference we can
split it to swap the color distribution among different object identities
(top-right) or randomize it entirely (bottom-left).

equivalent change in the radiance field. As an extreme example,
without such an equivariance incorporated in the architecture, a
model trained on a dataset of red cars will not generalize to one of
white cars. This motivates us to disentangle the color distribution
from the identity (pseudo-“semantics”) of the generated objects,
as shown in Figure 5.3.

Our formulation is a soft analogy to UV mapping, where the
lookup is done through an attention mechanism instead of texture
coordinates. This approach additionally provides simple manip-
ulation capabilities (see Figure 5.3). A useful property of our
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formulation is that the color mapping operator is linear w.r.t. the
colors. It can be applied either before (in the radiance field sampler)
or after the rendering operation (in the rendered multi-channel
“semantic image”), since the rendering operation is also linear
w.r.t. the colors. In a reconstruction scenario, this allows the end
user to efficiently reproduce the color distribution of the input
image with a single rendering pass. In Section 5.5 we show that,
in addition to the useful manipulation properties, this module
leads to an empirical advantage in the reconstruction task.

path length regularization revisited. Initially pro-
posed in StyleGAN2 [Kar+20b], this regularizer encourages the
mapping between the latent space W and the output space Y
to be orthogonal, which facilitates inversion (recovering the la-
tent code w corresponding to a certain image via optimization).
This is achieved by applying a gradient penalty to the Jacobian
∂g(w)/∂w. The use of path length regularization on the full back-
bone, however, is prohibitively expensive as this term requires
double differentiation, and this feature was dropped in EG3D
[Cha+22]. We propose to reinstate a more efficient variant of this
regularizer which computes the path length penalty up to the
three orthogonal planes, leaving the triplanar decoder unregular-
ized. We find that this compromise provides the desired benefits
without a significant added computational cost, as the main bot-
tleneck is represented by the triplanar decoder, and enables us
to greatly increase the learning rate during the inversion process
(and in turn reduce the number of iterations).

5.3.2 Bootstrapping and pose estimation

Given a pretrained generator, it is in principle possible to invert
it using one of the many techniques described in the literature
for 2D images [Roi+22], which usually involve minimizing some
pixel-level loss (e.g. L1 or VGG) w.r.t. the input latent code. For
the 3D case, the minimization needs to be carried out over both
the latent code and camera pose. In practice, however, recovering
the camera pose is a highly non-convex problem that can easily
get stuck in local minima. It is also crucial that the initial pose is

131



bootstrapped inversion for single-view 3d reconstruction
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Figure 5.4: Data generation process for training the encoder (E). We ran-
domly generate synthetic batches of images and associated 2D canonical
maps. The encoder is then trained to predict the latent code and canonical
map from the RGB image. We then use real images for inference. See
also the bounding volume on top, which describes how colors should be
interpreted.

“good enough”, otherwise the latent code will converge to a de-
generate solution. Therefore, most approaches [Cai+22; Cha+22]
initialize the pose using an off-the-shelf pose estimator and only
carry out the optimization w.r.t. the latent code. Moreover, existing
approaches start from an average or random latent code [Cha+22;
Zha+22], resulting in a slow convergence (often requiring hun-
dreds of steps), which makes these methods less applicable to
real-time scenarios. This motivates our hybrid inversion scheme,
where an encoder produces a first guess of the latent code and
pose, and these are both refined for a small number of iterations.
Thanks to the ensuing acceleration, we can invert an image in as
few as 10 optimization steps.

pose estimation. In previous methods [Cai+22; GKM20;
Kan+18; Li+20], poses are estimated by directly regressing the
pose parameters (e.g. view matrix or quaternion/scale/transla-
tion). While this strategy can learn the task to some extent, it
does not effectively incorporate the equivariances required by

132



5.3 method

the problem (e.g. translation equivariance) and instead relies on
learning them from the data, potentially generalizing poorly in
settings other than simple synthetic datasets. More principled
approaches can be found in the pose estimation literature, such
as NOCS [Wan+19], which frames the problem as a regression of
a canonical map (NOCS map) in image space, i.e. a 2D rendering
of the (x, y, z) world-space coordinates of an object (Figure 5.4).
The mapping is then inverted using a Perspective-n-Point (PnP)
solver to recover the pose parameters. The main limitation of
NOCS [Wan+19] is that it requires either ground-truth 3D meshes
or hand-modeled synthetic meshes that are representative of the
training dataset, since ground-truth canonical maps are not avail-
able on real datasets. By contrast, our availability of an object
generator allows us to overcome this limitation, as we describe
next.

training and inference . The main idea underlying our
approach – in contrast to NOCS [Wan+19] – is that we use data
generated from our unconditional generator to train the encoder
instead of handcrafted data. This allows us to obtain a mapping
between latent codes and images, as well as pseudo-ground truth
canonical maps that we can use for pose estimation. During train-
ing, we sample a minibatch of priors z ∼ N (0, I), feed them
through the mapping network to obtain the latent codes w ∈ W ,
and generate the corresponding RGB images and canonical maps
from randomly-sampled viewpoints1. Finally, we train the net-
work (a SegFormer [Xie+21] segmentation network with a custom
regression head) to predict the canonical map and the latent code
w from the RGB image. Losses, detailed architecture, and hyper-
parameters are described in the Appendix 5.8.1. For inference, we
feed a real image, convert the predicted canonical map to a point
cloud, and run a PnP solver to recover all pose parameters (view
matrix and focal length).

1 Rendering canonical maps requires only a trivial change to standard NeRF imple-
mentations, namely integrating the query coordinates (x, y, z) instead of the RGB
channels.
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5.3.3 Reconstruction via hybrid GAN inversion
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Figure 5.5: Hybrid inversion process. From the input image, the encoder
E predicts an initial latent code w and a canonical map, the latter of
which is used to recover the pose parameters through a PnP solver. Both
w and the pose are then refined via optimization using a multi-crop VGG
loss.

The final step of our pipeline is the refinement of the latent code
and pose via gradient-based optimization (Figure 5.5). In this step,
we found it beneficial to split the initial latent code w into a dif-
ferent vector for each layer, which we refer to as w+ ∈ W+. For a
fixed number of steps N, we update w+ and the pose to minimize
a reconstruction error between the rendered image and the input
image. We experimented with various loss functions including
MSE, L1 and a VGG perceptual loss [Zha+18b], finding that the
former two lead to overly blurry results. Eventually, we settled on
a VGG loss [Zha+18b] with random augmentations, where both
the predicted and target images are randomly augmented with
geometric image-space transformations (we use 16 augmentations
and average their losses). This helps reduce the variance of the
gradient, allowing us to further increase the learning rate. We
also find that the pose parameterization is an important aspect to
consider, and describe it in detail in the Appendix 5.8.1 (among
additional details for this step).

5.4 experimental setting

We compare against two main directions from the single-view 3D
reconstruction literature: real images, following CMR [Kan+18],
and synthetic images, following Pix2NeRF [Cai+22].
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real images . Firstly, we adopt the evaluation methodology
of CMR [Kan+18] and follow-up works [Bha+21; GKM20; Li+20;
Zha+22], which focus on real datasets where ground-truth novel
views are not available. These methods evaluate the mean IoU
between the input images and the reconstructions rendered from
the input view. While this metric describes how much the re-
construction matches the input image, it is limited since it does
not evaluate how realistic the object looks from other viewpoints.
Therefore, in the comparison to these works, we also include
the FID [Heu+17] evaluated from random viewpoints, which cor-
relates with the overall generative quality of the reconstructed
objects. In this setting, we evaluate our approach on the standard
datasets used in prior work – CUB Birds [Wah+11] and Pascal3D+
Cars [XMS14] – each of which comprise ∼5k training images
and an official test split which we use for reporting. For the pose
distribution used to train the unconditional generator, we rely
on the poses estimated by CMR [Kan+18] using keypoints. It
is worth noting that CMR uses a weak-perspective camera pro-
jection model. We found this appropriate for birds, which are
often photographed from a large distance, but not for cars, which
exhibit varying levels of perspective distortion. Therefore, we up-
graded the camera model of P3D Cars to a full-perspective one as
described in the Appendix 5.8.1.

extra baselines . To further demonstrate the applicability of
our method to real-world datasets, we establish new baselines on
a variety of categories from ImageNet: cars, motorbikes, airplanes,
as well as deformable categories such as zebras and elephants.
For these classes, we use the splits from [Pav+21], which comprise
1-4k training images each (allowing us to assess how well our
method fares on small datasets), and use the unsupervised pose
estimation technique in [Pav+21] to obtain the pose distribution,
which we also upgrade to a full-perspective camera model. Since
no test split is available, we evaluate all metrics on the training
split. Moreover, as we observe that the official test set of P3D
Cars is too small (∼200 images) to reliably estimate the FID, we
construct another larger test set for P3D using non-overlapping
images from the car class of ImageNet.
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synthetic images . Secondly, we evaluate our approach on
synthetic datasets: ShapeNet-SRN Cars & Chairs [Cha+15; SZW19],
and CARLA [Dos+17]. We follow the experimental setting of
Pix2NeRF [Cai+22], in which in addition to the FID from random
views, pixel-level metrics (PSNR, SSIM) are also evaluated on
ground-truth novel views from the test set. On these datasets, we
also evaluate the pose estimation performance, as exact ground-
truth poses are known. Following [Cai+22], we compute all met-
rics against a sample of 8k images from the test split, but use
all training images. Although ground-truth novel views are avail-
able on ShapeNet, we only use such information for evaluation
purposes and not for training.

implementation details . We describe training hyperpa-
rameters as well as additional details in the Appendix 5.8.1.

5.5 results

inversion dynamics and settings . Before presenting our
main results, we carry out a preliminary study on how to achieve
the best speed on the hybrid inversion task. In Figure 5.6, we
analyze the inversion dynamics under different gain factors for
the learning rate of the latent code w (1x, 5x, 10x, 20x) along with
a corresponding reduction in the number of optimization steps.
When both path length regularization and color mapping are used,
we find the dynamics to be almost linear up to a certain point.
Both the FID (evaluated on random views) and PSNR (computed
on the input view) improve monotonically, eventually reaching
a “sweet spot” after which the FID starts degrading, indicating
overfitting. When we remove these components, the inversion
dynamics become less predictable and the overall performance
is affected when higher gains are used. We also find that using a
lower learning rate is generally better, but requires more iterations.
As a result, we propose the following settings: a higher-quality
but slower schedule, Hybrid Slow, with N=30 inversion steps at 5x
gain, and Hybrid Fast, where we ramp up the gain to 20x and use
only N=10 steps. We also experimented with higher gains (up to
50x), but could not get these to reliably converge. Furthermore, for

136



5.5 results

14.0 14.5 15.0 15.5
FID 

19

20

21
PS

NR
 1x1x 5x

5x

10x

10x

20x
20x

(a)

Ours Full
No Path Length

14.0 14.5 15.0
FID 

1x1x
5x

5x
10x

10x

20x

20x

(b)

Ours Full
No Color Mapping

Figure 5.6: Inversion dynamics and ablations on P3D Cars on a larger
test set from ImageNet, under different learning rate gains (1x, 5x, 10x,
20x) for the latent code w. All curves start from the bottom-right corner.
When path length regularization is applied (a), the curves exhibit a higher
linearity, which allows us to increase the learning rate while reducing the
number of optimization steps. Conversely, when the regularizer is not
adopted, the curves are more spaced apart and performance degrades
quickly as the gain increases. Furthermore, our color mapping module (b)
allows for a better reconstruction. We also identify an overfitting region,
where the PSNR keeps increasing but the FID starts degrading, indicating
that there is a trade-off between these metrics.

a fair comparison with works that are purely feed-forward-based,
we also report a baseline with N=0, i.e. we evaluate the output of
the encoder with no inversion.

quantitative evaluation (real images). Table 5.1 (top)
shows our main comparison on datasets of real images, following
the CMR [Kan+18] protocol. On P3D Cars and CUB, our initial
guess of the pose and latent code (N=0) already provides an
advantage over existing approaches, with a 36% decrease in FID
on CUB over the state-of-the-art, and a 9% increase in IoU on P3D
Cars, despite our model not being trained to optimize the latter
metric (unlike the other approaches, which are all encoder-based
and include a supervised loss). We attribute this improvement
to our more powerful NeRF-based representation (as opposed to
sphere-topology triangle meshes used in prior works), as well as
a better pose estimation performance. Following refinement via
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Pascal3D+ Cars CUB Birds

Method IoU ↑ FID ↓ IoU ↑ FID ↓

CMR [Kan+18] 0.64 273.28 0.706 105.04

U-CMR [GKM20] 0.646 223.12 0.644 69.42

UMR [Li+20] - - 0.734 43.83

SDF-SRN [LWL20] 0.81 254.90 - -

ViewGeneralization [Bha+21] 0.78 - 0.629 -

StyleGANRender [Zha+21b] 0.80 - - -

Ours Init. (N=0) 0.883 75.90 (15.08) 0.739 28.15

MeshInv. (N=200) (∗) (†) [Zha+22] - - 0.752 31.60

Ours Hybrid Slow (N=30) (†) 0.920 73.53 (14.36) 0.844 24.70

Ours Hybrid Fast (N=10) (†) 0.917 73.12 (14.36) 0.835 25.65

Car Motorcycle Airplane Zebra Elephant

Method IoU ↑ FID ↓ IoU ↑ FID ↓ IoU ↑ FID ↓ IoU ↑ FID ↓ IoU ↑ FID ↓

Init. N=0 0.933 9.88 0.804 40.65 0.749 18.77 0.724 21.58 0.781 107.34

Slow N=30 (†) 0.953 8.77 0.851 38.6 0.813 19.78 0.802 24.47 0.848 99.77

Fast N=10 (†) 0.952 8.91 0.85 39.72 0.805 21.33 0.793 26.41 0.845 104.12

Table 5.1: Evaluation on real datasets (CMR setting with predicted cam-
era) on P3D/CUB (upper table) and ImageNet (bottom table). The first
rows are purely feed-forward-based, while the remaining are inversion-
based. All FIDs have been computed by us at 128×128 under uniform
settings, wherever a public implementation was available. Note that the
seemingly high FIDs on P3D are due to the small size of the test set
(∼200 images), and therefore in parentheses we report an additional
FID evaluated against a non-overlapping test set from ImageNet Cars.
Legend: (∗) Uses class-conditional model; (†) Uses optimization for N
iterations.

hybrid inversion, performance is further boosted in as few as 10

steps. Finally, we also establish new baselines on categories from
ImageNet (Table 5.1, bottom), demonstrating that our method is
effective beyond benchmark datasets.

quantitative evaluation (synthetic images). In Ta-
ble 5.2, we further evaluate our approach against [Cai+22] on
synthetic data. Again, even before applying hybrid inversion, we
observe an improvement in the FID (-68% on chairs and -83% on
CARLA) as well as in the novel-view evaluation (PSNR, SSIM).
Applying hybrid inversion further widens this gap.
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SRN Cars SRN Chairs CARLA

Method PSNR ↑ SSIM ↑ FID ↓ PSNR ↑ SSIM ↑ FID ↓ FID ↓

Pix2NeRF [Cai+22] - - - 18.14 0.84 26.81 38.51

Ours Init. (N=0) 18.54 0.848 12.39 18.26 0.857 8.64 6.49

Ours Hybrid Slow (N=30) 19.55 0.864 11.37 19.36 0.875 7.44 5.97

Ours Hybrid Fast (N=10) 19.24 0.861 12.26 19.02 0.871 7.62 6.18

Table 5.2: Evaluation on synthetic datasets. All metrics are computed at
128×128 using predicted poses. PSNR and SSIM are evaluated on novel
views (not available on CARLA), and the FID on random views. Since
[Cai+22] is not evaluated on SRN Cars, we establish baselines on this
category.

Method SRN Cars ↓ SRN Chairs ↓ CARLA ↓

Pix2NeRF Encoder [Cai+22] - 15.55
◦

4.23
◦

Direct pose regression 17.08
◦

19.51
◦

3.21
◦

Ours NOCS + PnP 10.84◦ 7.29◦ 1.08◦

Table 5.3: Pose estimation accuracy (mean rotation error in degrees) on
synthetic datasets, where ground-truth poses are available. All methods
are feed-forward (no inversion). Results for [Cai+22] are computed after
a rigid alignment to the ground-truth reference frame.

qualitative results . Figure 5.7 shows a side-by-side com-
parison to [GKM20; Kan+18; Li+20; Zha+22] on P3D/CUB, while
Figure 5.8 shows a comparison to [Cai+22] on synthetic datasets.
To further demonstrate the applicability of our approach to real-
world images, in Figure 5.9 we display extra results on ImageNet.
Furthermore, for our method, we also show the surface normals
obtained by analytically differentiating the SDF. We refer the
reader to the respective figures for a discussion of the advantages
and shortcomings of our method. Finally, we include additional
qualitative results in Appendix 5.8.2.2.

pose estimation. We evaluate pose estimation in Table 5.3.
For this experiment, we use synthetic datasets for which exact
ground-truth poses are known. We compare our NOCS-inspired
approach to two baselines: (i) direct regression of pose parame-
ters (using a quaternion-based parameterization, see Appendix
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Figure 5.7: Qualitative results and side-by-side comparison on the test
set of CUB (left) and Pascal3D+ Cars (right), at 128×128. The first row of
each sample is rendered from the input viewpoint, whereas the second
row illustrates a random view. Compared to the other works, which
adopt a triangle mesh representation with a fixed topology, our SDF
parameterization can model arbitrary topologies and can easily represent
fine details such as the legs of the birds or the geometry of the cars,
without enforcing any symmetry constraints. We observe occasional
artifacts in the surface that are not visible from the RGB image, e.g.
concave areas in the wings of birds or near the headlights of cars, which
arise from the unconditional generator and can in principle improve with
better supervision techniques.

5.8.1), where we keep the SegFormer backbone unchanged and
only switch the output regression head for a fair comparison,
and (ii) Pix2NeRF’s encoder [Cai+22], which is trained to predict
azimuth/elevation, a less expressive pose representation specific
to the pose distribution of these datasets. We evaluate the mean
rotation angle between predicted and ground-truth orientations,
and observe that our NOCS-inspired approach achieves a sig-
nificantly better error (53% and 74% reduction on chairs and
CARLA, respectively) while being more general. Interestingly, our
direct pose regression baseline achieves a similar performance to
Pix2NeRF’s encoder despite using a more expressive transformer
architecture, suggesting that the main bottleneck lies in the pose
representation itself and not in the architecture. As a side note, we
also observe that the NOCS-based model converges much faster
than the pose regression baseline, as the NOCS framework better
incorporates equivariances to certain geometric transformations,
while the baseline method has to learn them from the data.
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Input Ours Pix2NeRF

Figure 5.8: Qualitative results on synthetic datasets (test set of ShapeNet
Chairs & CARLA) and side-by-side comparison to Pix2NeRF [Cai+22] on
input and random views at 128×128. We observe that our method better
predicts fine details such as the legs of the chairs, the text on cars, and
color distributions.

ablations . In addition to those in Figure 5.6, we conduct
further ablation experiments in Appendix 5.8.2.1. Among other
things, we evaluate the impact of SDFs, compare our hybrid
inversion method to an encoder baseline with a comparable archi-
tecture, and assess the impact of pose estimation.

conversion to triangle mesh . We can easily convert
our reconstructions to triangle meshes in a principled way by
extracting the 0-level set of the SDF and using marching cubes
[LC87], as we show in the Appendix 5.8.2.2.

failure cases . We show and categorize these in Appendix
5.8.2.3. Furthermore, to guide future research, in Appendix 5.8.3
we discuss ideas that we explored but did not work out.
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Figure 5.9: Additional qualitative results produced by our method on
ImageNet. More results can be found in the appendix. Most classes learn
a correct geometry despite being trained with only 1-4k images. We only
observe some spurious concavities in the shape of the elephants, as well
as a failure to correctly disentangle the zebra stripes from the surface.

5.6 summary

We introduced a framework for reconstructing shape, appearance,
and pose from a single view of an object. Our approach lever-
ages recent advances in NeRF representations and frames the
problem as a 3D-aware GAN inversion task. In a hybrid fashion,
we accelerate this process by learning an encoder that provides
a first guess of the solution and incorporates a principled pose
estimation technique. We achieve state-of-the-art performance on
both synthetic and real benchmarks, and show that our approach
is efficient (requiring as few as 10 inversion steps to reconstruct
an image) and effective on small datasets.

5.7 future developments

In the future, we would like to scale to higher resolutions and
improve the reconstructed surface quality, e.g. by leveraging semi-
supervision on extra views or shape priors. We would also like to
explore ways to automatically infer the pose distribution from the
data.
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5.8 appendix

5.8.1 Implementation details

dataset preparation. For CUB [Wah+11], we use the seg-
mentation masks and poses from CMR [Kan+18] estimated using
structure-from-motion. These poses adopt a weak-perspective
camera model, which we keep as-is (our neural renderer imple-
mentation supports multiple projection models). Similarly, for
P3D Cars [XMS14], we use poses from CMR but obtain the seg-
mentation masks using Mask R-CNN [He+17] as was done in
previous work. Additionally, we upgrade its camera projection
model to a full perspective model by freezing the rotations and
re-estimating all the other parameters using the procedure de-
scribed in the next paragraph. For ImageNet, we estimate poses
from scratch using the same procedure and predict segmenta-
tion masks using PointRend [Kir+20]. Additionally, we augment
all real datasets mentioned so far with horizontal flips. We do
not augment synthetic datasets (CARLA [Dos+17] and ShapeNet
[Cha+15]).

pose estimation and parameterization. While most
neural renderers adopt camera-to-world view matrices (plus focal
length), this representation is not necessarily the best for optimiza-
tion purposes. Among various issues, we mention the necessity
to enforce orthogonality constraints in the rotation matrix, a de-
pendency between rotation and translation (which can be solved
by switching to a world-to-camera representation), and an entan-
glement between translation and focal length (ideally, as depth
increases, the learning rate for the translation needs to be am-
plified in order to keep a linear behavior in projective space).
Therefore, for all our steps where pose optimization is involved
(namely, the initial data preparation and the hybrid inversion
step), we adopt a custom pose parameterization that tackles these
issues and is easier to optimize, while being fully differentiable
and convertible to view matrices for use in neural renderers. We
also make sure that our neural renderer is fully differentiable w.r.t.
the pose, even when coarse-fine importance sampling is used and
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view-dependent effects are enabled, as we found that existing
implementations present gradient detachments in some nodes of
the pipeline.

Our pose representation can be regarded as an augmentation
of a weak-perspective camera model, and describes a world-to-
camera transformation parameterized by a rotation q ∈ R4 (a unit
quaternion), a screen-space scale s ∈ R, a screen-space translation
t2 ∈ R2, and a perspective distortion factor z0 ∈ R. At runtime,
we derive the focal length f = 1 + exp(z0) and the 3D transla-
tion t3 = [t2/s; f /s]. Such a parameterization is equivalent to a
full-perspective model, but results in more “linear” optimization
dynamics.

For the datasets where we estimate the poses ourselves (Ima-
geNet and, partially, P3D Cars), we use the template-based pose
estimation technique described in [Pav+21] with our pose param-
eterization.

unconditional generator . We train the unconditional
generator for 300k iterations, except for CUB and ImageNet ele-
phants, where we use 200k. Similarly, we adopt R1 regularization
on all datasets with γ = 5, except on elephants where we use
γ = 10. Optimizer, learning rate, and batch size are the same as
in [Cha+22]. We found it beneficial for stability to warm up the
learning rate of both the generator and discriminator, starting
from 1/10th of the specified value and linearly increasing it over
2000 iterations.

As in [Cha+22], we condition the discriminator on the pose, but
we nonetheless observe that all our models converge even without
such conditioning, although this sometimes leads to surface arti-
facts (such as objects appearing concave). On all datasets except
ShapeNet, we enable adaptive discriminator augmentation (ADA)
[Kar+20a], which reduces discriminator overfitting by enhancing
its input images with differentiable augmentations. We only adopt
geometric transformations (scale, translation, rotation). However,
we observe that the implementation of ADA in [Cha+22] is not 3D-
aware, as the augmentations are only carried out in image space,
while the discriminator is conditioned on the original camera pose,
leading to artifacts. We implemented a 3D-aware version of ADA
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where both the image and camera pose are augmented with the
same transformation, and the discriminator is conditioned on the
augmented pose.

sdf details . As for the SDF representation [Yar+21], the vol-
ume density is modulated by two learnable parameters α, β > 0.
Unlike [Yar+21], which ties α = β (according to Equation 5.1), we
found it helpful for convergence to learn them separately. We ini-
tialize α = 1 and β = 0.1, and clamp their lower bound to 10−3 for
stability during training. Before training the unconditional model,
we initialize the SDF to a unit sphere through optimization. We
pre-train the model for 1000 iterations using the following loss:

LSDF = Ex
[(

d(x)− (∥x∥ − 1)
)2]. (5.3)

A visualization of the SDF can be seen in Figure 5.12 (right).
For the Eikonal loss, we use a weight of 0.1 as recommended by
[Yar+21].

view-dependent effects . We also incorporate the ability
to efficiently model view-dependent effects. The view direction
of each pixel (which is constant across depth, and can therefore
be computed only once per pixel) is processed through a small
feed-forward network to produce a 32-dimensional vector, and
summed with another 32-dimensional vector coming from the
triplanar decoder. The result is then processed through a Leaky
ReLU activation and another linear layer to produce the final out-
put. This late fusion strategy ensures that memory consumption
is minimal. We enable this feature only on CARLA, as ShapeNet
does not have any specular reflections and the other datasets are
too small to properly disentangle appearance and specular effects.

bootstrapping and pose estimation. For the encoder ar-
chitecture, we adopt SegFormer B5 [Xie+21], a recently-proposed
transformer-based backbone for semantic segmentation. The out-
put feature map from the backbone is connected to two heads: a
fully-connected one that regresses the latent code w and a convo-
lutional one that regresses the canonical map and the associated
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SegFormer
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Figure 5.10: Architecture of the encoder used for bootstrapping the latent
code and pose estimation. Note that we include a Leaky ReLU activation
in the final layer of the latent code regressor, which mimics the behavior
of the mapping network.

segmentation mask. The detailed architecture is shown in Fig-
ure 5.10. We initialize the backbone using ImageNet weights and
train the model end-to-end for 120k iterations with a batch size of
32 samples, using Adam optimizer. We adopt an initial learning
rate of 6e-5, which we decay to 6e-6 after 60k iterations. As for
the losses, we use a simple mean squared error (MSE) loss for the
latent code (Llatent), an L1 loss for the segmentation mask (Lmask),
and a masked L2 loss (with square root) for the canonical map
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(Lmap), i.e. a rotation-invariant version of the L1 loss, for better
robustness to artifacts coming from the generator:

Llatent = ∥ŵ−w∥2, (5.4)

Lmask =
1

WH

W

∑
i=1

H

∑
j=1
|m̂i,j −mi,j|, (5.5)

Lmap =
1

WH

W

∑
i=1

H

∑
j=1

mi,j∥p̂i,j − pi,j∥, (5.6)

Ltotal = Llatent + Lmask + Lmap (5.7)

where ŵ is the predicted latent code, p̂i,j is the predicted canoni-
cal map at the i, j image-space coordinates (a 3D vector for each
position), p is the ground-truth one, m̂ is the predicted mask,
and m is the ground-truth mask. This contrasts NOCS [Wan+19],
which frames the task as a classification problem using quan-
tized coordinates. For inference, the regressed canonical map is
thresholded using the predicted mask, converted to a dense point
cloud, and used as the input for SQPnP [TL20], a fast PnP solver
that retrieves a global optimum (we use the implementation in
OpenCV [Bra00]). Since SQPnP – as most PnP methods – requires
the focal length to be pre-determined, we select 10 representative
focal lengths from the training set (one for each 10th percentile),
run the algorithm for each, and select the solution with the lowest
reprojection error.

gan inversion. For the hybrid inversion step, we use Adam
optimizer [KB14] with a base learning rate of 0.02, and optionally
amplify the learning rate of the latent code w by a gain factor
(as reported in the individual experiments). We additionally set
β2 = 0.95 for a faster reaction. We do not dynamically adjust the
hyperparameters throughout the procedure. For the pose, we use
our previously-described parameterization as this results in better
optimization dynamics. We optimize the following objective:

min
w,q,s,t2,z0

1
K

K

∑
k=1

LPIPS(c[k]pred, c[k]gt ) , (5.8)
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where cpred represents the predicted image, cgt is the ground-truth
one, k is the augmentation index (we use K = 16 augmentations),
and the LPIPS operator [Zha+18b] describes the distance between
the VGG embeddings of the two images. After each iteration, we
reproject the pose parameters onto the valid set of constraints (q
unit length).

evaluation details . For the evaluation on real datasets
(P3D, CUB, ImageNet), we follow the protocol of [Pav+21; Pav+20b]
and evaluate the FID on an empty background (value = 0, i.e.
gray). All scores are evaluated at 128 × 128, using antialiased
resampling (also referred to as area interpolation) if resizing is
needed, as the FID is sensitive to this aspect. For the approaches
we compare to, we compute their FID under the same settings by
modifying their public implementations.

5.8.2 Additional results

5.8.2.1 Ablation experiments

encoder-based architecture . For our next experiment,
we build an encoder-based variant of our architecture and switch
to a conditional GAN setting. Instead of using a mapping network
to map z to w, we learn a convolutional encoder that takes a
2D image as input and directly predicts w. We also experiment
with various supervision strategies, including a dual discriminator
(an unconditional one that discriminates random views plus a
conditional one that discriminates the input view), and a single
unconditional discriminator with an L1 or MSE loss to fit the
input image, as in Pix2NeRF [Cai+22]. Based on early experiments,
we found that the dual discriminator approach yields the best
results (as it does not require balancing the losses), and we use this
strategy throughout our ablations. Moreover, for a fair comparison,
we use the same backbone for the conditional (encoder-based)
and unconditional (inversion-based) experiments.

encoder- vs inversion-based baselines . In Figure 5.11

(left), we compare our hybrid inversion approach to the afore-
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Figure 5.11: Additional ablations on ShapeNet Chairs, where we evaluate
the PSNR on novel views from the test set. Left: comparison of our
hybrid inversion approach (and initial bootstrapping without refinement)
to an encoder-based baseline under simulated pose perturbations. Right:
inversion on a vanilla EG3D backbone vs our proposed architecture.
Since the goal of this experiment is to evaluate only the impact of the
unconditional generator, we start from an average latent code (i.e. no
bootstrapping) and use the ground-truth pose.

mentioned encoder-based baseline. We conduct this experiment
on ShapeNet Chairs, where exact ground-truth poses are known.
In this setting, we randomly perturb individual poses by inject-
ing noise at different levels (from 0

◦ to 45
◦) without altering the

overall pose distribution, and study which approach is more ro-
bust to inaccurate poses as noise increases. Importantly, for a fair
comparison to encoder methods (which are feed-forward), we
also include a bootstrap only baseline where we do not refine the
initial guess of our solution. We immediately observe that our
bootstrap only baseline achieves a higher PSNR compared to the
encoder-based approach. Furthermore, the performance of our
approach decreases gracefully as noise increases, whereas with
the encoder-based method we can observe a sharp degradation as
early as 5

◦. Based on these findings, we conclude that inversion-
based approaches are more appropriate for real datasets where
poses are potentially inaccurate, as these methods rely on the over-
all pose distribution as opposed to the correctness of individual
poses.
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impact of the backbone . In Figure 5.11 (right), we assess
the impact of the backbone on the final reconstruction result.
We leave out some of our contributions (bootstrapping, pose
estimation, and hybrid inversion) and purely focus on our pro-
posed backbone components (SDF, color mapping, optimized path
length regularization, as well as the minor improvements over
[Cha+22]). To this end, we conduct a vanilla inversion experiments
on ShapeNet Chairs, using ground-truth poses and starting from
the “average” latent code in W . We compare our full backbone
to a vanilla EG3D, and observe an advantage when adopting our
proposed changes.

sdf representation. Similar to Figure 5.6, we conduct an
analysis of the inversion dynamics with and without our proposed
SDF representation (Figure 5.12). We find that the optimization
dynamics are similar, but the SDF baseline gets an FID boost
owing to a better unconditional generator, in addition to the other
practical benefits (e.g. ability to easily extract surface, normals,
and mesh).

14 15 16
FID 

19

20

21

PS
N

R
 

5x 5x

SDF
Baseline

Figure 5.12: Left: impact of the SDF representation on the inversion
dynamics (at gain 5x). As in Figure 5.6, the analysis is carried out on our
larger P3D Cars test set. Right: spherical initialization of the SDF and its
evolution as training progresses.
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color distribution disentanglement. To visually mo-
tivate our color mapping approach, we show examples of color
disentanglement in Figure 5.13. When our color mapping network
is used, the object identity is fully disentangled from its color
distribution. By contrast, attempting the same on a vanilla EG3D
architecture is unsuccessful, even when adopting techniques such
as style mixing.

pose estimation. Pose prediction is a useful feature for AR
applications and real-world datasets, where ground-truth poses
are imprecise or not available. As such, it is not meant to im-
prove performance, as it actually makes the learning task harder.
Nonetheless, it is interesting to evaluate its effect on quantitative
metrics. In Table 5.4, we conduct an ablation experiment on a
dataset of real images (P3D Cars) where we turn off pose pre-
diction and use ground-truth poses from the dataset (which are
imprecise). As expected, we find that qualitative metrics (FID) are
mostly unaffected, whereas the IoU is degraded when switching
to poses from the dataset, regardless of whether inversion is used.
This confirms that, on real datasets such as P3D, individual poses
are inaccurate, but our generative framework is robust to them as
it relies on the overall pose distribution.

Pascal3D+ Cars

IoU ↑ FID ↓

Ours (predicted poses) (N=0) 0.883 75.90 (15.08)

Ours (dataset poses) (N=0) 0.803 73.20 (16.39)

Ours (predicted poses) (N=30) 0.920 73.53 (14.36)

Ours (dataset poses) (N=30) 0.802 72.22 (15.10)

Table 5.4: Ablation experiment on pose prediction (P3D Cars dataset).
The first two rows are purely feed-forward-based, while the remaining
are inversion-based. In parentheses, we also report the FID on our larger
test set from ImageNet.
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(b) Ours Full


(with color
network)

(a) Baseline


(no color
network)

Figure 5.13: Disentanglement of the color distribution from the object
identity. (a) In the baseline network without color mapping (EG3D), we
attempt to achieve disentanglement via style mixing, i.e. we split the
latent code w into two sections (before and after the 8th layer) and mix it
between the two object instances. Although this leads to some variation in
color, we find that disentanglement is not properly achieved. (b) With our
color mapping technique, color and object identity are fully disentangled.
When two different latent codes are combined, it is possible to “borrow”
the color distribution from another image in a realistic way.
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Figure 5.14: Additional qualitative results produced by our method on
ImageNet (top rows) and ShapeNet Cars (last row).

5.8.2.2 Qualitative results

additional qualitative results . Following the format
in the main text, we report extra qualitative results for all datasets
in Figure 5.14 (novel results on ImageNet and ShapeNet Cars),
Figure 5.15 (ShapeNet Chairs & CARLA, and comparison to
Pix2NeRF [Cai+22]), and Figure 5.19 (CUB and P3D Cars, in-
cluding comparison to prior work).

conversion to triangle mesh . Our adoption of an SDF
representation allows us to easily extract a triangle mesh from a
generated object (Figure 5.16). We first quantize the SDF to a fixed-
size grid, and then extract its 0-level set (i.e. zero-crossings) via
marching cubes [LC87], obtaining a set of vertices and triangles.
Finally, we sample colors from the radiance field by querying the
network at the locations specified by the vertex positions.

5.8.2.3 Limitations and failure cases

In this section, we highlight the most common failure modes of
our method and attempt to categorize them in common patterns.

shape artifacts . In some cases, we observe that recon-
structed shapes present some artifacts, even though the appear-
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Input Ours Pix2NeRF

Figure 5.15: Additional qualitative results on synthetic datasets (test set
of ShapeNet Chairs & CARLA) and side-by-side comparison to Pix2NeRF
[Cai+22] on input and random views at 128×128.

ance of the object looks correct when rendered. For instance, in
animals, features such as the beaks of the birds are sometimes
bifurcated (Figure 5.17, top). We attribute this issue to a lack of
density in some areas of the pose distribution of the dataset, e.g.
most birds are observed from the side, but rarely from the front.
On some small datasets such as zebras and elephants – which
comprise only 1.7k and 1.4k images respectively – we also observe
concavities (see Figure 5.9 in the main text), and in the specific case
of zebras, a failure to disentangle the stripes from the shape. We
expect these entanglement issues to improve with larger datasets.

pose estimation errors . More rarely, failures are caused
by inaccurate pose estimation. If the initial estimated pose is
too far from the true one, the optimizer can get stuck in a local
minima and cause the reconstructed surface to become distorted
(Figure 5.17, bottom). We also notice that pose estimation is more
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Figure 5.16: Extraction of a colored triangle mesh from an SDF. On
the left, we show a car rendered using a neural renderer as well as
zoomed viewpoint. On the right, we show the corresponding triangle
mesh (including wireframe visualization) at different quantization steps.

challenging on examples with “extreme” postures, e.g. open wings
in birds and head flexion in zebras, but also observe that many
of these cases are handled correctly (Figure 5.18). Most likely, the
failure cases are due to these poses being underrepresented in the
unconditional generator, and are not due to a limitation of the
pose estimation framework itself.

incomplete inversion. For some hard examples, the en-
coder might return an initial solution which is far from the opti-
mum, which in turn needs to be optimized for longer to correctly
match the input image. Since we adopt a fixed schedule (i.e. the
same number of optimization steps for all images), some images
may only be partially inverted. As part of future work, this issue
could be mitigated by using an adaptive optimization schedule
that varies for each sample.
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Figure 5.17: Most common modes of failure on CUB Birds and P3D
Cars. On CUB (first two rows), we sometimes observe a “split beak”
phenomenon. On P3D (last two rows), in the rare instances the pose is
estimated imprecisely, the optimizer can get stuck in a local minima and
lead to a distorted reconstruction.

Input
Predicted

canonical map Output
Novel view with
camera direction

Figure 5.18: Our pose estimation approach can correctly handle “extreme”
postures (top and middle), although some failure cases are still possible
(bottom).
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Figure 5.19: Additional qualitative results and side-by-side comparison
on the test set of CUB (left) and Pascal3D+ Cars (right), at 128×128. The
first row of each sample is rendered from the input viewpoint, whereas
the second row illustrates a random view.
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5.8.3 Negative results

Throughout the development of our method, we experimented
with various techniques drawing inspiration from the literature
on GANs and representation learning. To guide further research
in this area, we provide a list of ideas we explored but did not
work out as expected.

• We initially experimented with various NeRF representa-
tions, including MLP-based, voxel-based, and triplanar-based.
We eventually settled with the triplanar representation of
[Cha+22] since it was as expressive as the other ones but
more efficient.

• Our initial attempts at solving the reconstruction task used
an encoder-based approach with multiple discriminators.
While this was appropriate for synthetic data, we quickly
found out that it was not robust on real datasets with impre-
cise poses, which is also one of the main motivating factors
for our approach. Based on the intuition that the issue might
have been caused by the limited expressivity of the encoder,
we tried to replace the encoder with an embedding layer
that learned a different latent code for each instance (similar
to [JA21; Reb+22], but using a GAN framework with multi-
ple discriminators), essentially decoupling the impact of the
encoder architecture from that of the learning framework. In
this setting, we found that the issue was not resolved, which
prompted us to explore other ideas.

• Before settling with our hybrid inversion framework, we
also explored techniques from the representation learning
literature, such as bidirectional GANs (BiGAN) [DKD17]. In
this setting, the encoder is not connected to the generator
and the learning signal comes from a joint discriminator. Our
expectation was that this setting would make the approach
less reliant on precise poses, but we found that the recon-
structions did not mirror the input images closely enough.
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6C O N C L U S I O N

Throughout this dissertation, we explored the field of generative
models through the lens of structured representations. The goal
of our research was to investigate ways to make image synthesis
models more controllable, more interpretable, and more useful for
downstream applications. To this end, we proposed techniques to
generate complex scenes using structured input representations
such as textual descriptions, high-level attributes, and sketches
based on sparse masks (Chapter 2). Afterwards, we presented a
series of approaches to generate textured 3D meshes using super-
vision from real-world 2D datasets (Chapter 3, Chapter 4), and
suggested that these types of generators will become increasingly
common in the future, as they are useful for creating interac-
tive content in AR/VR applications. Finally, we demonstrated
that these generators can be employed in applications beyond
content creation. In particular, in Chapter 5, we leveraged 3D
object generators and recently-proposed NeRF representations to
tackle the task of single-view 3D reconstruction, and achieved
state-of-the-art results across both qualitative and quantitative
metrics.

The field of image synthesis is expanding rapidly, yet it still
faces a series of unresolved issues. Despite recent technical ad-
vances in neural architectures – which have resulted in nearly
photorealistic quality – state-of-the-art approaches still exhibit
trivial failure cases that constrain their controllability. These are
particularly evident with complex prompts that consist of many
interacting objects. Furthermore, although the issue of biases is
perhaps less explored in image synthesis than in natural language
processing (NLP) [Bol+16], it is an important concern. Synthesis
models often reflect or amplify societal biases and stereotypes
present in the data [CZB22], posing risks for sensitive applica-
tions. Future research is expected to focus on mitigating some of
these issues. As for the generation of 3D content, while recent
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conclusion

approaches (including the ones we propose in this dissertation)
show very promising results, the data assumptions required by
these models can restrict their application in some cases. One such
example is the knowledge of the pose distribution of the dataset,
which is not easy to estimate on real-world datasets. Therefore,
further research in the area of 3D vision is likely to concentrate on
relaxing these assumptions. In this area, other promising research
directions include the adoption of diffusion models for 3D syn-
thesis tasks, as well as the ability to generate complex 3D scenes
as opposed to individual objects.

Finally, we also note that these models are undergoing a rapid
increase in complexity, often necessitating billions of parameters,
and are trained on massive datasets that are not readily accessible.
Consequently, the ability to train such models is concentrated
among a limited number of parties with adequate resources. In
light of these constraints, a further avenue of investigation involves
improving the data-efficiency of these models as well as their
performance in restricted hardware settings.

We conclude this dissertation with a note on the societal impli-
cations of this rapidly-growing field of research. Owing to their
effectiveness, generative models have also been the subject of sig-
nificant controversy in recent years, due to the ethical implications
that they raise. Potential concerns include the misuse of these
models to create misleading information and fake content (Deep-
Fakes). Some artists and content creators also worry that generative
models may be used to copy their work, without being able to
properly protect their intellectual property rights. Nonetheless,
this field is evolving rapidly and it is inevitable that generative
models will become increasingly ubiquitous in the future, as they
present a tremendous potential for advancing a wide range of
industries. It is therefore important to guarantee that these models
are deployed responsibly in the real world. For a more in-depth
discussion of this subject, we refer the reader to [CC19].
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