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Abstract
Traditionally, spline or kernel approaches in combination
with parametric estimation are used to infer the linear
coefficient (fixed effects) in a partially linear mixed-effects
model for repeated measurements. Using machine learn-
ing algorithms allows us to incorporate complex interac-
tion structures, nonsmooth terms, and high-dimensional
variables. The linear variables and the response are
adjusted nonparametrically for the nonlinear variables,
and these adjusted variables satisfy a linear mixed-effects
model in which the linear coefficient can be estimated with
standard linear mixed-effects methods. We prove that the
estimated fixed effects coefficient converges at the paramet-
ric rate, is asymptotically Gaussian distributed, and semi-
parametrically efficient. Two simulation studies demon-
strate that our method outperforms a penalized regression
spline approach in terms of coverage. We also illustrate
our proposed approach on a longitudinal dataset with
HIV-infected individuals. Software code for our method is
available in the R-package dmlalg.
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1554 EMMENEGGER and BÜHLMANN

1 INTRODUCTION

Repeated measurements data consists of observations from several experimental units, subjects,
or groups under different conditions. This grouping or clustering of the individual responses
into experimental units typically introduces dependencies: the different units are assumed to be
independent, but there may be heterogeneity across units and correlation within units.

Mixed-effects models provide a powerful and flexible tool to analyze grouped data by incor-
porating fixed and random effects. Fixed effects are associated with the entire population, and
random effects are associated with individual groups and model the heterogeneity across them
and the dependence structure within them (Pinheiro & Bates, 2000). Linear mixed-effects mod-
els (Demidenko, 2004; Laird & Ware, 1982; Pinheiro & Bates, 2000; Verbeke & Molenberghs, 2000)
impose a linear relationship between all covariates and the response. Partially linear mixed-effects
models (Zeger & Diggle, 1994) extend the linear ones.

We consider the partially linear mixed-effects model

Yi = Xi𝛽0 + g(Wi) + Zibi + 𝜺i, (1)

for groups i ∈ {1,…,N}. There are ni observations per group i. The unobserved random vari-
able bi, called random effect, introduces correlation within its group i because all ni observations
within this group share bi. We make the assumption generally made that both the random effect
bi and the error term 𝜺i follow a Gaussian distribution (Pinheiro & Bates, 2000). The matrices Zi
assigning the random effects to group-level observations are fixed. The linear covariables Xi and
the nonparametric and potentially high-dimensional covariables Wi are observed and random,
and they may have dependent columns. Furthermore, the nonparametric covariables may con-
tain nonlinear transformations and interaction terms of the linear ones. Please see Assumption 1
in Section 2 for further details.

Our aim is to estimate and make inference for the so-called fixed effect 𝛽0 in (1) in the presence
of a highly complex g using general machine learning algorithms. The parametric component 𝛽0
provides a simple summary of the covariate effects that are of main scientific interest. The non-
parametric component g enhances model flexibility because time trends and further covariates
with possibly nonlinear and interaction effects can be modeled nonparametrically.

Repeated measurements, or longitudinal, data is omnipresent in empirical research. For
example, assume we want to study the effect of a treatment over time. Observing the same sub-
jects repeatedly presents three main advantages over having cross-sectional data. First, subjects
can serve as their own controls. Second, the between-subject variability is explicitly modeled and
can be excluded from the experimental error. This yields more efficient estimators of the rel-
evant model parameters. Third, data can be collected more reliably (Davis, 2002; Fitzmaurice
et al., 2011).

Various approaches have been considered in the literature to estimate the nonparametric com-
ponent g in (1): kernel methods (Chen & Cao, 2017; Hart & Wehrly, 1986; Taavoni & Arashi, 2021b;
Zeger & Diggle, 1994), backfitting (Taavoni & Arashi, 2021b; Zeger & Diggle, 1994), spline meth-
ods (Aniley et al., 2019; Kim et al., 2017; Li & Zhu, 2010; Qin & Zhu, 2007, 2009; Rice &
Silverman, 1991; Zhang, 2004), and local linear regression (Liang, 2009; Taavoni & Arashi, 2021b).

Our aim is to make inference for 𝛽0 in the presence of potentially highly complex effects of
Wi on Xi and Yi. First, we adjust Xi and Yi for Wi by regressing Wi out of them using machine
learning algorithms. These machine learning algorithms may yield biased results, especially if
regularization methods are used, like for instance with the lasso (Tibshirani, 1996). Second, we
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EMMENEGGER and BÜHLMANN 1555

fit a linear mixed-effects model to these regression residuals to estimate 𝛽0. Our estimator of
𝛽0 converges at the optimal 1∕

√
N rate, follows a Gaussian distribution asymptotically, and is

semiparametrically efficient.
We adapt double machine learning techniques of Chernozhukov et al. (2018) to estimate

𝛽0 using general machine learning algorithms. To the best of our knowledge, this is the first
work to allow the nonparametric nuisance components of a partially linear mixed-effects model
to be estimated with arbitrary machine learners like random forests (Breiman, 2001) or the
lasso (Bühlmann & van de Geer, 2011; Tibshirani, 1996). In contrast to the setting and proofs
of Chernozhukov et al. (2018), we have dependent data and need to incorporate this accordingly.
Chernozhukov et al. (2018) introduce double machine learning and develop estimation of the
low-dimensional linear regression parameter vector in a partially linear model. Their estimator
converges at the parametric rate and is asymptotically Gaussian due to Neyman orthogonality
and sample splitting with cross-fitting. We would like to remark that nonparametric nuisance
components can be estimated without sample splitting and cross-fitting if the underlying func-
tion class satisfies some entropy conditions; see for instance Mammen and van de Geer (1997).
However, these conditions limit the complexity of the function class, and machine learning algo-
rithms usually do not satisfy them. Particularly, these conditions fail to hold if the dimension
of the nonparametric variables increases with the sample size (Chernozhukov et al., 2018). We
show that the desirable properties of double machine learning also hold in the context of partially
linear mixed-effects models: such a further development of plug-in machine learning methods
is nontrivial and practically highly relevant.

1.1 Additional literature

Expositions and overviews of mixed-effects modeling techniques can be found in Pinheiro (1994),
Davidian and Giltinan (1995), Vonesh and Chinchilli (1997), Pinheiro and Bates (2000), and
Davidian and Giltinan (2003).

Zhang et al. (1998) consider partially linear mixed-effects models and estimate the nonpara-
metric component with natural cubic splines. They treat the smoothing parameter as an extra vari-
ance component that is jointly estimated with the other variance components of the model. Masci
et al. (2019) consider partially linear mixed-effects models for unsupervised classification with
discrete random effects. Schelldorfer et al. (2011) consider high-dimensional linear mixed-effects
models where the number of fixed effects coefficients may be much larger than the overall sam-
ple size. To estimate and make inference for the first, say, d components of the linear coefficient
in such a high-dimensional mixed-effects model, our approach may consider the remaining
components as an additive contribution Wi𝛽0,−(1∶d) in the model and may adjust for them using
the lasso (Tibshirani, 1996). Debiased fixed effects estimators in high-dimensional linear mixed
effects models are studied by Li et al. (2021) and Bradic et al. (2020). Taavoni and Arashi (2021a)
employ a regularization approach in generalized partially linear mixed-effects models using
regression splines to approximate the nonparametric component. Wood and Scheipl (2020)
use penalized regression splines where the penalized components are treated as random
effects.

The unobserved random variables in the partially linear mixed-effects model (1) are assumed
to follow a Gaussian distribution. Taavoni et al. (2021) introduce multivariate t partially lin-
ear mixed-effects models for longitudinal data. They consider t-distributed random effects to
account for outliers in the data. Fahrmeir and Kneib (2011, chapter 4) relax the assumption
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1556 EMMENEGGER and BÜHLMANN

of Gaussian random effects in generalized linear mixed models. They consider nonparametric
Dirichlet processes and Dirichlet process mixture priors for the random effects. Ohinata (2012,
chapter 3) consider partially linear mixed-effects models and make no distributional assump-
tions for the random terms, and the nonparametric component is estimated with kernel methods.
Lu (2016) consider a partially linear mixed-effects model that is nonparametric in time and that
features asymmetrically distributed errors and missing data.

Furthermore, methods have been developed to analyze repeated measurements data that are
robust to outliers. Guoyou and Zhongyi (2008) consider robust estimating equations and estimate
the nonparametric component with a regression spline. Tang et al. (2015) consider median-based
regression methods in a partially linear model with longitudinal data to account for highly skewed
responses. Lin et al. (2018) present an estimation technique in partially linear models for longitu-
dinal data that is doubly robust in the sense that it simultaneously accounts for missing responses
and mismeasured covariates.

It is prespecified in the partially linear mixed-effects model (1) which covariates are mod-
eled with random effects. Simultaneous variable selection for fixed effects variables and random
effects has been developed by Bondell et al. (2010); Ibrahim et al. (2011). They use penalized like-
lihood approaches. Li and Zhu (2010) use a nonparametric test to test the existence of random
effects in partially linear mixed-effects models. Zhang and Xue (2020) propose a variable selection
procedure for the linear covariates of a generalized partially linear model with longitudinal data.

1.2 Outline of the paper

Section 2 presents our plug-in machine learning estimator of the linear coefficient in a par-
tially linear mixed-effects model. Section 3 presents our numerical results. Proofs and technical
assumptions are presented in the Data S1.

1.3 Notation

We denote by [N] the set {1, 2,…,N}. We add the probability law P as a subscript to the probabil-
ity operator P and the expectation operator E whenever we want to emphasize the corresponding
dependence. We denote the Lp(P) norm for p ≥ 1 by || ⋅ ||P,p and the Euclidean or operator norm
by || ⋅ ||, depending on the context. We implicitly assume that given expectations and conditional
expectations exist. We denote by



−−→ convergence in distribution. The symbol ⟂⟂ denotes inde-
pendence of random variables. We denote by 1n the n × n identity matrix and omit the subscript
n if we do not want to emphasize the dimension. We denote the d-variate Gaussian distribution
byd.

2 MODEL FORMULATION AND THE PLUG-IN MACHINE
LEARNING ESTIMATOR

We consider repeated measurements data that is grouped according to experimental units or
subjects. This grouping structure introduces dependency in the data. The individual experi-
mental units or groups are assumed to be independent, but there may be some between-group
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EMMENEGGER and BÜHLMANN 1557

heterogeneity and within-group correlation. We consider the partially linear mixed-effects
model

Yi = Xi𝛽0 + g(Wi) + Zibi + 𝜺i, i ∈ [N], (2)

for groups i as in (1) to model the between-group heterogeneity and within-group correlation
with random effects. We have ni observations per group that are concatenated row-wise into
Yi ∈ Rni , Xi ∈ Rni×d, and Wi ∈ Rni×𝜈 . The nonparametric variables may be high-dimensional, but
d is fixed. Both Xi and Wi are random. The Xi and Wi belonging to the same group i may be
dependent. For groups i ≠ j, we assume Xi ⟂⟂ Xj, Wi ⟂⟂Wj, and Xi ⟂⟂Wj. Moreover, we assume
that all within-unit observations of the linear and nonlinear covariates, namely ((Xi)t,⋅, (Wi)t,⋅) for
all i ∈ [N] and all t ∈ [ni], are independent and identically distributed. We assume that Zi ∈ Rni×q

is fixed. The random variable bi ∈ Rq denotes a group-specific vector of random regression coef-
ficients that is assumed to follow a Gaussian distribution. The dimension q of the random effects
model is fixed. Also the error terms are assumed to follow a Gaussian distribution as is com-
monly done in a mixed-effects models framework (Pinheiro & Bates, 2000). All groups i share the
common linear coefficient 𝛽0 and the potentially complex function g ∶ R𝜈 → R. The function g is
applied row-wise to Wi, denoted by g(Wi).

We denote the total number of observations by NT ∶=
∑N

i=1ni. We assume that the numbers
ni of within-group observations are uniformly upper bounded by nmax <∞. Asymptotically, the
number of groups, N, goes to infinity.

Our distributional and independency assumptions are summarized as follows:

Assumption 1. Consider the partially linear mixed-effects model (2). We assume
that there is some 𝜎0 > 0 and some symmetric positive definite matrix Γ0 ∈ Rq×q such
that the following conditions hold.

1.1 The random effects b1,…,bN are independent and identically distributedq(0,Γ0).
1.2 The error terms 𝜺1,…, 𝜺N are independent and follow a Gaussian distribution,

𝜺i∼ni(0, 𝜎
2
01ni) for i ∈ [N], with the common variance component 𝜎2

0 .
1.3 The variables b1,…,bN , 𝜺1,…, 𝜺N are independent.
1.4 For all i, j ∈ [N], i ≠ j, we have (bi, 𝜺i) ⟂⟂ (Wi,Xi) and (bi, 𝜺i) ⟂⟂ (Wj,Xj).
1.5 For all i ∈ [N] and all t ∈ [ni], we have that ((Xi)t,⋅, (Wi)t,⋅) are independent and identi-

cally distributed.

We would like to remark that the distribution of the error terms 𝜺i in Assumption 1.2 can
be generalized to 𝜺i∼ni(0, 𝜎

2
0Λi(𝝀)), where Λi(𝝀) ∈ Rni×ni is a symmetric positive definite matrix

parametrized by some finite-dimensional parameter vector 𝝀 that all groups have in common. For
the sake of notational simplicity, we restrict ourselves to Assumption 1.2.

Moreover, we may consider stochastic random effects matrices Zi. Alternatively, the nonpara-
metric variables Wi may be part of the random effects matrix. In this case, we consider the random
effects matrix Z̃i = 𝜁(Zi,Wi) for some known function 𝜁 in (2) instead of Zi. Please see Section D
in the Data S1 for further details. For simplicity, we restrict ourselves to fixed random effects
matrices Zi that are disjoint from Wi.

The unknown parameters in our model are 𝛽0, Γ0, and 𝜎0. Our aim is to estimate 𝛽0 and make
inference for it. Although the variance parameters Γ0 and 𝜎0 need to be estimated consistently to
construct an estimator of 𝛽0, it is not our goal to perform inference for them.

 14679469, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12639 by E

T
H

 Z
urich, W

iley O
nline L

ibrary on [05/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1558 EMMENEGGER and BÜHLMANN

2.1 The plug-in machine learning estimator

Subsequently, we describe our plug-in machine learning estimator of 𝛽0 in (2). To motivate our
procedure, we first consider the population version with the residual terms

RXi ∶= Xi − E[Xi|Wi] and RYi ∶= Yi − E[Yi|Wi] for i ∈ [N],

that adjust Xi and Yi for Wi. On this adjusted level, we have the linear mixed-effects model

RYi = RXi𝛽0 + Zibi + 𝜺i, i ∈ [N], (3)

due to (2) and Assumption 1.4. In particular, the adjusted and grouped responses in this model
are independent in the sense that we have RYi ⟂⟂ RYj for i ≠ j. The strategy now is to first estimate
the residuals with machine learning algorithms and then use linear mixed model techniques to
infer 𝛽0. This is done with sample splitting and cross-fitting, and the details are described next.

Let us define Σ0 ∶= 𝜎−2
0 Γ0 and V0,i ∶= (ZiΣ0ZT

i + 1ni) so that we have

(RYi |Wi,Xi)∼ni(RXi𝛽0, 𝜎
2
0 V0,i). (4)

We assume that there exist functions m0
X ∶ R𝜈 → Rd and m0

Y ∶ R𝜈 → R that we can apply
row-wise to Wi to have E[Xi|Wi] = m0

X (Wi) and E[Yi|Wi] = m0
Y (Wi), which is conceivable

due to Assumption 1.5. In particular, m0
X and m0

Y do not depend on the grouping index i. Let
𝜂0 ∶= (m0

X ,m
0
Y ) denote the true unknown nuisance parameter. Let us denote by 𝜃0 ∶= (𝛽0, 𝜎

2
0 ,Σ0)

the complete true unknown parameter vector and by 𝜃 ∶= (𝛽, 𝜎2,Σ) and Vi ∶= ZiΣZT
i + 1ni

respective general parameters. The log-likelihood of group i is given by

𝓁i(𝜃, 𝜂0) = −ni

2
log(2𝜋) − ni

2
log(𝜎2) − 1

2
log (det(Vi))

− 1
2𝜎2 (RYi − RXi𝛽)

TV−1
i (RYi − RXi𝛽) − log (p(Wi,Xi)) , (5)

where p(Wi,Xi) denotes the joint density of Wi and Xi. We assume that p(Wi,Xi) does not
depend on 𝜃. The true nuisance parameter 𝜂0 in the log-likelihood (5) is unknown and estimated
with machine learning algorithms (see below). Denote by 𝜂 ∶= (mX ,mY ) some general nuisance
parameter. The terms that adjust Xi and Yi for Wi with this general nuisance parameter are given
by Xi −mX (Wi) and Yi −mY (Wi). Up to additive constants that do not depend on 𝜃 and 𝜂, we
thus consider maximum likelihood estimation with the likelihood

𝓁i(𝜃, 𝜂) = −
ni

2
log(𝜎2) − 1

2
log (det(Vi))

− 1
2𝜎2 (Yi −mY (Wi) − (Xi −mX (Wi)) 𝛽)TV−1

i (Yi −mY (Wi) − (Xi −mX (Wi)) 𝛽) ,

which is a function of both the finite-dimensional parameter 𝜃 and the infinite-dimensional
nuisance parameter 𝜂.

Our estimator of 𝛽0 is constructed as follows adapting double machine learning techniques.
We estimate 𝜂0 with machine learning algorithms and plug these estimators into the estimating
equations for 𝜃0, Equation (6) below, to obtain an estimator for 𝛽0. This procedure is done with
sample splitting and cross-fitting as explained next.
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EMMENEGGER and BÜHLMANN 1559

Consider repeated measurements from N experimental units, subjects, or groups as in (2).
Denote by Si ∶= (Wi,Xi,Zi,Yi) the observations of group i. First, we split the group indices [N]
into K ≥ 2 disjoint sets I1,…, IK of approximately equal size in the sense that the number of
unit-level observations belonging to each set are asymptotically of the same order. The number of
observations per unit may differ, but is assumed to be uniformly bounded. That is, we avoid too
unbalanced settings. Please see Section B in the Data S1 for further details.

For each k ∈ [K], we estimate the conditional expectations m0
X (W) and m0

Y (W) with data
from Ic

k. We call the resulting estimators m̂Ic
k

X and m̂Ic
k

Y , respectively. Then, the adjustments

R̂
Ik
Xi
∶= Xi − m̂Ic

k
X (Wi), and R̂

Ik
Yi
∶= Yi − m̂Ic

k
Y (Wi) for i ∈ Ik are evaluated on Ik, the complement of

Ic
k. Let �̂�Ic

k ∶= (m̂Ic
k

X , m̂
Ic

k
Y ) denote the estimated nuisance parameter. Consider the score function

𝜓(Si; 𝜃, 𝜂) ∶= ∇𝜃𝓁i(𝜃, 𝜂), where ∇𝜃 denotes the gradient with respect to 𝜃 interpreted as a vector.
On each set Ik, we consider an estimator �̂�k = (𝛽k, �̂�

2
k, Σ̂k) of 𝜃0 that, approximately, in the sense

of Assumption 4.3 in the Data S1, solves

1
nT,k

∑

i∈Ik

𝜓(Si; �̂�k, �̂�
Ic

k ) = 1
nT,k

∑

i∈Ik

∇𝜃𝓁i(𝜃, 𝜂)
!
= 0, (6)

where nT,k ∶=
∑

i∈Ik
ni denotes the total number of observations from experimental units that

belong to the set Ik. These K estimators �̂�k for k ∈ [K] are assembled to form the final cross-fitting
estimator

𝛽 ∶= 1
K

K∑

k=1
𝛽k, (7)

of 𝛽0. We remark that one can simply use linear mixed model computation and software to
compute 𝛽k based on the estimated residuals R̂

Ik . The estimator 𝛽 fundamentally depends on
the particular sample split. To alleviate this effect, the overall procedure may be repeated 
times (Chernozhukov et al., 2018). The  point estimators are aggregated by the median, and an
additional term accounting for the random splits is added to the variance estimator of 𝛽; please
see Algorithm 1 that presents the complete procedure.

2.2 Theoretical properties of the plug-in machine learning estimator

The estimator 𝛽 as in (7) converges at the parametric rate, is asymptotically Gaussian distributed,
and semiparametrically efficient.

Theorem 1. Consider grouped observations {Si = (Wi,Xi,Yi)}i∈[N] from the partially
linear mixed-effects model (2) that satisfy Assumption 1 such that p(Wi,Xi) does not
depend on 𝜃. Let NT ∶=

∑N
i=1ni denote the total number of unit-level observations. Fur-

thermore, suppose the assumptions in Section B in the Data S1 hold, and consider the
symmetric positive-definite matrix T0 given in Assumption 3.8 in the Data S1. Then, �̂�
as in (7) concentrates in a 1∕

√
NT neighborhood of 𝛽0, is centered Gaussian, namely

√
NTT

1
2

0 (𝛽 − 𝛽0)


−−→d(0,1d) (N →∞), (8)

and semiparametrically efficient. The convergence in (8) is in fact uniformly over the law
P of {Si = (Wi,Xi,Yi)}i∈[N].
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1560 EMMENEGGER and BÜHLMANN

Algorithm 1: Plug-in machine learning for partially linear mixed-effects models with
repeated measurements

Input : N grouped observations {Si = (Wi,Xi,Zi,Yi)}i∈[N] from model (2) satisfying
Assumption 1, a natural number K, a natural number  .

Output: An estimator of 𝛽0 in (2) together with its estimated asymptotic variance.
1 for s ∈ [] do
2 Split the grouped observation index set [N] into K sets I1,… , IK of approximately

equal size.
3 for k ∈ K do
4 Compute the conditional expectation estimators m̂Ic

k
X and m̂Ic

k
Y with some machine

learning algorithm and data from Ic
k.

5 Evaluate the adjustments R̂Ik
Xi
= Xi − m̂Ic

k
X (Wi) and R̂Ik

Yi
= Yi − m̂Ic

k
Y (Wi) for i ∈ Ik.

6 Compute �̂�k,s = (𝛽k,s, �̂�
2
k,s, Σ̂k,s) using, for instance, linear mixed model techniques.

7 end
8 Compute 𝛽s = 1

K

∑K
k=1 𝛽k,s as an approximate solution to (6).

9 Compute an estimate T̂0,s of the asymptotic variance-covariance matrix T0 in
Theorem 1.

10 end
11 Compute 𝛽 = medians∈[](𝛽s).
12 Estimate T0 by T̂0 = medians∈[](T̂0,s + (𝛽 − 𝛽s)(𝛽 − 𝛽s)T).

Please see Section C.4 in the Data S1 for a proof of Theorem 1. Our proof builds on Chernozhukov
et al. (2018), but we have to take into account the correlation within units that is introduced by
the random effects.

The inverse asymptotic variance-covariance matrix T0 can be consistently estimated; see
Lemma 23 in the Data S1. Semiparametric efficiency follows from (Lin & Carroll, 2001, section 5).

The assumptions in Section B of the Data S1 specify regularity conditions and required con-
vergence rates of the machine learning estimators. The machine learning errors need to satisfy
the product relationship

||m0
X (W) − m̂Ic

k
X (W)||P,2(||m0

Y (W) − m̂Ic
k

Y (W)||P,2 + ||m0
X (W) − m̂Ic

k
X (W)||P,2)≪ N− 1

2 .

This bound requires that only the products of the machine learning estimation errors ||m0
X (W) −

m̂Ic
k

X (W)||P,2 and ||m0
Y (W) − m̂Ic

k
Y (W)||P,2 but not the individual ones need to vanish at a rate smaller

than N−1∕2. In particular, the individual estimation errors may vanish at the rate smaller than
N−1∕4. This is achieved by many machine learning methods (cf. Chernozhukov et al., 2018):
𝓁1-penalized and related methods in a variety of sparse models (Belloni et al., 2011; Belloni
et al., 2012; Belloni & Chernozhukov, 2011, 2013; Bickel et al., 2009; Bühlmann & van de
Geer, 2011), forward selection in sparse models (Kozbur, 2020), L2-boosting in sparse linear mod-
els (Luo & Spindler, 2016), a class of regression trees and random forests (Wager & Walther, 2016),
and neural networks (Chen & White, 1999).

We note that so-called Neyman orthogonality makes score functions insensitive to inserting
potentially biased machine learning estimators of the nuisance parameters. A score function is
Neyman orthogonal if its Gateaux derivative vanishes at the true 𝜃0 and the true 𝜂0. In particular,
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EMMENEGGER and BÜHLMANN 1561

Neyman orthogonality is a first-order property. The product relationship of the machine learning
estimating errors described above is used to bound second-order terms. We refer to Section C.4 in
the Data S1 for more details.

3 NUMERICAL EXPERIMENTS

Subsequently, we apply our plug-in machine learning method to an empirical and a pseudo-
random dataset and in a simulation study. Our implementation is available in the R-package
dmlalg (Emmenegger, 2021).

3.1 Empirical analysis: CD4 cell count data

First, we apply our method to longitudinal CD4 cell counts data collected from human immun-
odeficiency virus (HIV) seroconverters. This data has previously been analyzed by Zeger and
Diggle (1994) and is available in the R-package jmcm (Pan & Pan, 2017) as aids. It contains 2376
observations of CD4 cell counts measured on 369 subjects. The data was collected during a period
ranging from 3 years before to 6 years after seroconversion. The number of observations per sub-
ject ranges from 1 to 12, but for most subjects, 4–10 observations are available. Please see Zeger
and Diggle (1994) for more details on this dataset.

Apart from time, five other covariates are measured: the age at seroconversion in years (age),
the smoking status measured by the number of cigarette packs consumed per day (smoking), a
binary variable indicating drug use (drugs), the number of sex partners (sex), and the depression
status measured on the Center for Epidemiologic Studies Depression (CESD) scale (cesd), where
higher CESD values indicate the presence of more depression symptoms.

We incorporate a random intercept per person. Furthermore, we consider a square-root trans-
formation of the CD4 cell counts to reduce the skewness of this variable as proposed by Zeger
and Diggle (1994). The CD4 counts are our response. The covariates that are of scientific inter-
est are considered as X ’s, and the remaining covariates are considered as W ’s in the partially
linear mixed-effects model (2). The effect of time is modeled nonparametrically, but there are
several options to model the other covariates. Other models than partially linear mixed-effects
model have also been considered in the literature to analyze this dataset. For instance, Fan and
Zhang (2000) consider a functional linear model where the linear coefficients are a function of
the time.

We consider two partially linear mixed-effects models for this dataset. First, we incorporate
all covariates except time linearly. Most approaches in the literature employing a partially linear
mixed-effects model for this data that model time nonparametrically report that sex and cesd
are significant and that either smoking or drugs is significant as well; see for instance Zeger and
Diggle (1994), Taavoni and Arashi (2021b), and Wang et al. (2005). Guoyou and Zhongyi (2008)
develop a robust estimation method for longitudinal data and estimate nonlinear effects from time
with regression splines. With the CD4 dataset, they find that smoking and cesd are significant.

We apply our method with K = 2 sample splits,  = 100 repetitions of splitting the data, and
learn the conditional expectations with random forests that consist of 500 trees whose minimal
node size is 5. Like Guoyou and Zhongyi (2008), we conclude that smoking and cesd are signifi-
cant; please see the first row of Table 1 for a more precise account of our findings. Apart from sex,
our point estimators are larger or of about the same size in absolute value as what Guoyou and
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1562 EMMENEGGER and BÜHLMANN

T A B L E 1 Estimates of the linear coefficient and its SD in parentheses with our method for
nonparametrically adjusting for time (first row) and for time, age, and sex (second row).

Age Smoking Drugs Sex cesd

W = (time) 0.004 (0.027) 0.752 (0.123) 0.704 (0.360) 0.001 (0.043) −0.042 (0.015)

W = (time, age, sex) — 0.620 (0.126) 0.602 (0.335) — −0.047 (0.015)

Zeger and
Diggle (1994)

0.037 (0.18) 0.27 (0.15) 0.37 (0.31) 0.10 (0.038) −0.058 (0.015)

Taavoni and
Arashi (2021b)

1.5 ⋅ 10−17

(3.5 ⋅ 10−17)
0.152 (0.208) 0.130 (0.071) 0.0184 (0.0039) −0.0141 (0.0061)

Wang et al. (2005) 0.010 (0.033) 0.549 (0.144) 0.584 (0.331) 0.080 (0.038) −0.045 (0.013)

Guoyou and
Zhongyi (2008)

0.006 (0.038) 0.538 (0.136) 0.637 (0.350) 0.066 (0.040) −0.042 (0.015)

Notes: The remaining rows display the results from (Zeger & Diggle, 1994, section 5), Taavoni and Arashi (2021b, table 1,
“Kernel”), (Wang et al., 2005, table 2, “Semiparametric efficient scenario I”), and (Guoyou & Zhongyi, 2008, table 5, “Robust”),
respectively.

Zhongyi (2008) obtain. However, apart from age, the SDs are slightly larger with our method. This
can be expected because random forests are more complex than the regression splines Guoyou
and Zhongyi (2008) employ.

We consider a second estimation approach where we model the variables time, age, and
sex nonparametrically and allow them to interact. It is conceivable that these variables are not
(causally) influenced by smoking, drugs, and cesd and that they are therefore exogenous. The
variables smoking, drugs, and cesd are modeled linearly, and they are considered as treatment
variables. Some direct causal effect interpretations are possible if one is willing to assume, for
instance, that the nonparametric adjustment variables are causal parents of the linear variables or
the response. However, we do not pursue this line of thought further. We estimate the conditional
expectations given the three nonparametric variables time, age, and sex again with random forests
that consist of 500 trees whose minimal node size is 5 and use K = 2 and  = 100 in Algorithm 1.
We again find that smoking and cesd are significant; please see the second row of Table 1. This
cannot be expected a priori because this second model incorporates more complex adjustments,
which can lead to less significant variables.

3.2 Pseudorandom simulation study: CD4 cell count data

Subsequently, we consider the CD4 cell count data from the previous subsection and perform
a pseudorandom simulation study. The variables smoking, drugs, and cesd are modeled lin-
early and the variables time, age, and sex nonparametrically. We condition on these six variables
in our simulation. That is, they are the same in all repetitions. The function g in (2) is cho-
sen as a regression tree that we built beforehand. We let 𝛽0 = (0.62, 0.6,−0.05)T , where the first
component corresponds to smoking, the second one to drugs, and the last one to cesd, con-
sider a standard deviation of the random intercept per subject of 4.36, and a SD of the error
term of 4.35. These are the point estimates of the respective quantities obtained in the previous
subsection.
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F I G U R E 1 Coverage and length of two-sided confidence intervals at significance level 5% and bias for our
method, mmdml, and gamm4. In the coverage plot, solid dots represent point estimators, and circles represent
95% confidence bands with respect to the 5000 simulation runs. The confidence interval length and bias are
displayed with box plots without outliers.

Our fitting procedure uses random forests consisting of 500 trees whose minimal node size
is 5 to estimate the conditional expectations, and we use K = 2 and  = 10 in Algorithm 1. We
perform 5000 simulation runs. We compare the performance of our method with that of the
spline-based function gamm4 from the package gamm4 (Wood & Scheipl, 2020) for the statisti-
cal software R (R Core Team, 2021). This method represents the nonlinear part of the model by
smooth additive functions and estimates them by penalized regression splines. The penalized
components are treated as random effects and the unpenalized components as fixed effects.

The results are displayed in Figure 1. With our method, mmdml, the two-sided confidence
intervals for 𝛽0 are of about the same length but achieve a coverage that is closer to the nomi-
nal 95% confidence level than with gamm4. The gamm4 method largely undercovers the packs
component of 𝛽0, which can be explained by the incorporated bias.

3.3 Simulation study

Finally, we carry out a simulation study with a partially linear mixed-effects model with q = 3
random effects and where 𝛽0 is one-dimensional. Every subject has their own random intercept
term and a nested random effect with two levels. Thus, the random effects structure is more com-
plex than in the previous two subsections because these models only used a random intercept. We
compare three data generating mechanisms: one where the function g is nonsmooth and the num-
ber of observations per group is balanced, one where the function g is smooth and the number of
observations per group is balanced, and one where the function g is nonsmooth and the number
of observations per group is unbalanced; please see Section A in the Data S1 for more details.

We estimate the nonparametric nuisance components, that is, the conditional expectations,
with random forests consisting of 500 trees whose minimal node size is 5. Furthermore, we use
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F I G U R E 2 Coverage and median length of two-sided confidence intervals for 𝛽0 at significance level 5%
(true 𝛽0 = 0.5) and median bias for three data generating scenarios for our method, mmdml, and gamm4. The
shaded regions in the coverage plot represent 95% confidence bands with respect to the 1000 simulation runs.
The dots in the coverage and bias plot are jittered, but neither are their interconnecting lines nor their confidence
bands.

K = 2 and  = 10 in Algorithm 1. We perform 1000 simulation runs and consider different num-
bers of groups N. As in the previous subsection, we compare the performance of our method
with gamm4.

The results are displayed in Figure 2. Our method, mmdml, highly outperforms gamm4 in
terms of coverage for nonsmooth g because the coverage of gamm4 equals 0 due to its substan-
tial bias. Our method overcovers slightly due to the correction factor that results from the 
repetitions. However, this correction factor is highly recommended in practice. With smooth g,
gamm4 is closer to the nominal coverage and has shorter confidence intervals than our method.
Because the underlying model is smooth and additive, a spline-based estimator is better suited.
In all scenarios, our method outputs longer confidence intervals than gamm4 because we use
random forests; consistent with theory, the difference in absolute value decreases though when
N increases.

4 CONCLUSION

Our aim was to develop inference for the linear coefficient 𝛽0 of a partially linear mixed-effects
model that includes a linear term and potentially complex nonparametric terms. Such models
can be used to describe heterogeneous and correlated data that feature some grouping structure,
which may result from taking repeated measurements. Traditionally, spline or kernel approaches
are used to cope with the nonparametric part of such a model. We presented a plug-in machine
learning scheme that adapts double machine learning techniques of Chernozhukov et al. (2018)
to estimate any nonparametric components with arbitrary machine learning algorithms. This
allowed us to consider complex nonparametric components with interaction structures and
high-dimensional variables.
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Our proposed method is as follows. First, the nonparametric variables are regressed out from
the response and the linear variables. This step adjusts the response and the linear variables
for the nonparametric variables and may be performed with any machine learning algorithm.
The adjusted variables satisfy a linear mixed-effects model, where the linear coefficient 𝛽0
can be estimated with standard linear mixed-effects techniques. We showed that the estimator
of 𝛽0 asymptotically follows a Gaussian distribution, converges at the parametric rate, and is
semiparametrically efficient. This asymptotic result allows us to perform inference for 𝛽0.

Empirical experiments demonstrated the performance of our proposed method. We con-
ducted an empirical and pseudorandom data analysis and a simulation study. The simulation
study and the pseudorandom experiment confirmed the effectiveness of our method in terms of
coverage, length of confidence intervals, and estimation bias compared to a penalized regression
spline approach relying on additive models. In the empirical experiment, we analyzed longitudi-
nal CD4 cell counts data collected from HIV-infected individuals. In the literature, most methods
only incorporate the time component nonparametrically to analyze this dataset. Because we
estimate nonparametric components with machine learning algorithms, we can allow several
variables to enter the model nonlinearly, and we can allow these variables to interact.

Implementations of our method are available in the R-package dmlalg (Emmenegger, 2021).
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