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Functional specialization and interaction in
the amygdala-hippocampus circuit during
working memory processing

Jin Li 1,8, Dan Cao 1,8, Shan Yu1,2, Xinyu Xiao1,2, Lukas Imbach3,4,
Lennart Stieglitz 5, Johannes Sarnthein 5,6 & Tianzi Jiang 1,2,7

Both the hippocampus and amygdala are involved in working memory (WM)
processing. However, their specific role in WM is still an open question. Here,
we simultaneously recorded intracranial EEG from the amygdala and hippo-
campus of epilepsy patients while performing a WM task, and compared their
representation patterns during the encoding and maintenance periods. By
combining multivariate representational analysis and connectivity analyses
with machine learning methods, our results revealed a functional specializa-
tion of the amygdala-hippocampal circuit: The mnemonic representations in
the amygdala were highly distinct and decreased from encoding to main-
tenance. Thehippocampal representations, however,weremore similar across
different items but remained stable in the absence of the stimulus. WM
encoding and maintenance were associated with bidirectional information
flow between the amygdala and the hippocampus in low-frequency bands
(1–40Hz). Furthermore, the decoding accuracy on WM load was higher by
using representational features in the amygdala during encoding and in the
hippocampus during maintenance, and by using information flow from the
amygdala during encoding and that from the hippocampus during main-
tenance, respectively. Taken together, our study reveals thatWMprocessing is
associated with functional specialization and interaction within the amygdala-
hippocampus circuit.

Various tasks in our everyday life require working memory (WM), for
example in language processing, temporarily remembering the begin-
ning of a phrase tomake sense of the phrase as it closes. WM refers to a
cognitive system storing information in an active and readily available
state for a short period1. In humans, several brain areas are thought to
be essential forWM2. Herewe focus on two areas: the amygdala and the
hippocampus. The amygdala is classically associated with emotional
processing3, while recent studies also showed that the amygdala has

multidimensional response properties4 and plays a role even in mem-
orizing non-emotional stimulus material5. The hippocampus is typically
studied for its role in long-term memories6. However, converging
evidencepoints that the amygdala and thehippocampus are involved in
WM7, such as persistent neural firing8–10 and elevated hippocampal
activation11,12 during WM processing. These studies suggested a general
involvement of these areas in WM. However, their specific role in dif-
ferent WM phases has not been established.
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Rather than looking at the mean level of activity, multivariate
representational analysis methods allow the detection of specific
patterns of activity and may be more informative about the repre-
sentation of specific stimulus (see ref. 13 for a review). Previous
studies identified two properties related to memory performance,
the representational dissimilarity among different stimulus14 and
the representational stability between differentmemoryperiods15. The
amygdala is known as a detector of goal-related stimuli16 and receives
major projections from the anterior temporal lobe17 that convey highly
processed object information18. On the other hand, the hippocampus
is crucial for memory consolidation19. For instance, recent studies
suggested notable overlap in representational patterns between the
encoding and the post-encoding period in the hippocampus15,20.
Therefore, we hypothesized a functional specialization in the amyg-
dala and the hippocampus in WM encoding andmaintenance periods.
However, no study has yet simultaneously tracked amygdala and hip-
pocampal representations in humans. Whether the perceptual repre-
sentations differed in the amygdala and the hippocampus or whether
they changed from the encoding to the maintenance phase remained
unclear.

WM relies on processing in functionally interconnected brain
areas2. But howdo the amygdala and thehippocampuswork together to
support WM? The inter-regional communications have started to be
addressed. At the anatomical level, tract tracing studies have uncovered
structural connections between the amygdala and the hippocampus21.
At the functional level, electrical stimulation of the hippocampus can
induce synaptic plasticity in the amygdala in rodent studies22 andhuman
studies indicated that stimulation of the amygdala led to increased
power in the hippocampus5. The structural and electrophysiological
evidence suggests inter-regional communication. However, studies of
inter-regional communication between the amygdala and hippocampus
primarily focused on emotional memory20,23, not WM processing with
non-emotional contents.

Here, we investigated how the two areas interact and transferWM
related information during WM. To address these issues, we recorded
iEEG simultaneously from the amygdala and the hippocampus in
human epilepsy patients while they performed a WM task. By com-
bining the high temporal resolution of human iEEG recordings with a
variety of approaches including representational similarity analysis
(Fig. 1a, b), information flow analysis (Fig. 1c) and neural pattern clas-
sification analysis (Fig. 1d), the current study examined the aspects of
memory representations in the amygdala and the hippocampus and
their interactions that contribute to WM. We found that the amygdala
forms distinct mnemonic representations during encoding while the
hippocampus keeps stable representations from encoding to main-
tenance. Next, we observed enhanced inter-regional information
transfer during both encoding andmaintenance. Finally, the functional
specialization and interaction patterns were predictive of WM load.

Results
Task, behavior, and recording channels
Fourteen patients with drug-resistant epilepsy (7 females) (Table 1)
performed a modified Sternberg WM task (65 total sessions from 14
participants) during an invasive presurgical evaluation. In this task, the
items were presented simultaneously rather than sequentially, thus
separating the encoding period from the maintenance period. In each
trial, the participant was asked to memorize a set of 4, 6, or 8 letters
presented for 2 s (encoding). The number of letters was thus specific
for thememory load. After a delay (maintenance) period of 3 s, a probe
letter was presented and the participant respondedwhether the probe
letter was identical to one of the letters held in memory (retrieval)
(Fig. 2a). The average accuracy was 91.9% ± 3.2% (range 86.1% − 97.6%).
The mean response time was faster for correct than incorrect trials
(1.44 ±0.36 versus 1.95 ± 0.66 sec, paired t-test: t (13) = −4.15,
p =0.0011). Hence, the participants performedwell in the task.We also

tested the effect of set size (WM load) on the participants’ response
accuracy. We found that the accuracy of WM decreased from load
4 (mean ± S.D.: 98.04% ± 1.91%) to load 6 (90.78% ± 5.36%) and 8
(85.36% ± 5.89%) (repeated-measures analysis of variance (ANOVA),
F(2,26) = 42.71, p <0.001, Fig. 2b). This finding indicates that the
behavioral performance was modulated by WM load, which is in line
with previous study that the factor of load had a significant impact on
working memory performance10.

Local field potentials (LFPs) were recorded simultaneously from
depth electrodes implanted in the amygdala and hippocampus
(Fig. 2c). In total from all participants,we recorded from92 channels in
the hippocampus and 50 channels in the amygdala (Table 1, see the
details in “Methods”).

Functional specification: distinct representation within the
amygdala during encoding
We appliedmultivariate analysis to investigate howWM information is
represented across neural activation patterns within the amygdala and
the hippocampus.We performed a series of representational similarity
analyses to investigate two representational properties crucial for
memory performance, i.e., the distinctiveness and the stability of
neural representations24.

In the first analysis, we examined whether there was repre-
sentational distinctiveness during WM encoding within the two
regions. To address this question, we first performed an encoding-
encoding dissimilarity (EED) analysis (see “Methods”). Neural activity
on 1–40Hz frequencies was included in representational analyses.
We chose this frequency range for the following two reasons. First,
both the amygdala and the hippocampus showed elevated activity
in the low-frequency range 1–40Hz (Fig. S1a). Second, the averaged
z-scored power on 1–40Hz was significantly above zero at most time
points during WM processing, while only a few time points showed
significantly elevated activity for the averaged z-scored power on
40–100Hz (Fig. S1b). These findings are in line with our previous
study25.

We then correlated the representational patterns from every two
trials across channels and frequencies (1 to 40Hz in steps of 1 Hz) in
consecutive overlapping time windows of 100ms (step width 10ms
Fig. 2d). The dissimilarity (1 − similarity) of the representational pat-
terns was averaged across all trial-pairs, resulting in a temporal EED
map across all participants for the amygdala (Fig. 2e left) and the
hippocampus (Fig. 2e right) separately. Next, we compared the EED
map between the amygdala and the hippocampus using cluster-based
permutation tests. Across all encoding time windows, a cluster with
higher EED values in the amygdala than in the hippocampus appeared
(outlined in black in Fig. 2f, cluster-based permutation, p =0.007); no
cluster with higher EED values in the hippocampus than in the amyg-
dala was observed. Further, we averaged the EED values in significant
clusters for all participants and compared them for the amygdala and
the hippocampus. This revealed higher EED values in the amygdala
than in the hippocampus across participants (paired t-test, p =0.027,
t(13) = 2.49, Fig. 2g). As the letter strings were different across trials,
these findings indicated that the activity patterns for different items
had a larger distance among each other within the amygdala, whereas
the hippocampus showed overlapping representations across differ-
ent items with reduced neural dissimilarity.

We could think of two possible explanations for the higher EED in
the amygdala, one is the specific representation of distinct items.
Alternatively, it could also be due to higher activity fluctuation across
trials in the amygdala. To test this explanation, we calculated the
variability (standard error) of the averaged z-scored power at 1–40Hz
during the encoding period across trials, in the amygdala and the
hippocampus for each participant, respectively. Then we compared
them using a paired t-test. Results showed no difference between the
variability in the amygdala and that in the hippocampus (paired t-test,
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p =0.94, Fig. S2a). Next, we compared the activity variability at each
time point in the encoding period between the amygdala and the
hippocampus. Again, the activity variability showed no significant
difference at each timepoint throughout the encoding period (cluster-
based permutation test, p > 0.05, Fig. S2b). These findings indicated
that less similarity across encoding items in the amygdala could not be
explained by differences in power variability.

Functional specification: stable representation within hippo-
campus during maintenance
Wenext examinedwhether and howstable representational structures
weremaintained in the absence of stimuli within the amygdala and the
hippocampus. Representational stability was indexed by memory

reinstatement, an approach borrowed from the long-term memory
literature26. Memory stability was quantified as the correlation
betweenpatterns of oscillatorypower across channels and frequencies
(1 to 40Hz in steps of 1 Hz) within consecutive overlapping time win-
dows of 100ms (step width 10ms) for each combination of the
encoding-maintenance time bins in the same trial. The correlation
matrix was then averaged across trials, resulting in a temporal map of
encoding-maintenance similarity (EMS) for the amygdala and the
hippocampus (Fig. 3a). The EMS values were higher in the hippo-
campus than in the amygdala for every encoding-maintenance time
pair in the EMS map (Fig. 3b). And, the averaged EMS values in the
hippocampus was higher than that in the amygdala across participants
(paired t-test, p =0.0049, t(13) = 3.38, Fig. 3c). These findings indicated

WM task

Local Activity Connectivity

Neural Representations

a
Representational
distinctiveness

b
Representational

stability

c
Information
directionality

Information Flow

d Decoding analysis

Neural
features SVM

Enc

Maint

Enc Enc Maint

Fig. 1 | Study framework. To investigate the function of the amygdala and hip-
pocampus in WM processing, we performed a series of analyses. a First, we cal-
culated the encoding-encoding representational dissimilarity (EED) between trial
pairs; b then, the encoding-maintenance similarity (EMS) in the same trial was
computed; c next, we measured the directional information flow between the

amygdala and the hippocampus; d decoding analysis: we used machine-learning
analyses to investigate whether WM load (load 4, 6, and 8) could be predicted by
encoding-encoding dissimilarity (EED), encoding-maintenance similarity (EMS), or
phase slope index (PSI) features. The brain figurewas visualized byBrainNet Viewer
toolbox (www.nitrc.org/projects/bnv/) Xia et al.43.
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that the hippocampus retained WM information in a more stable
representation during maintenance than the amygdala.

We next exclude the possibility that the inter-regional differences
were due to the presence of visual information during encoding and its
absence duringmaintenance. To this end, we calculated the difference
of power between the two periods ((maintenance−encoding)/encod-
ing) to index the processing of visual information in the amygdala and
the hippocampus andmade comparison between regions using paired
t-tests. No difference was found between the two regions (paired t-test,
p =0.09, Fig. S2e). Among all 14 participants, the relative difference of
power was higher within the amygdala in 7 participants and higher
within the hippocampus in 7 participants. Further, we also extracted
this relative difference of power to decode the WM load. As shown in
Fig. S2f, the relative difference of power couldnot decode theWM load
regardless of using features within the amygdala (32.17% ± 10.79%) or
within the hippocampus (32.58% ± 8.13%; permutation test against
scrambled data, p >0.05). No difference of decoding accuracy was
found between the two regions (paired t-test, p = 0.76).

Functional interaction: bidirectional information transfer
within the amygdala-hippocampal circuit during WM encoding
and maintenance
In addition to functional specialization, functional interaction between
brain regions is considered to be another important mechanism in
WM25. To test whether the amygdala and hippocampus work inde-
pendently or interactively in WM, we investigated the directionality of
information transfer between the amygdala and hippocampus. We
used Phase Slope Index (PSI) to quantify the directional connectivity
between the amygdala and the hippocampus27. PSI quantifies phase
difference as a function of frequency, with a positive value indicating
that the signal from the first structure is leading the signal from the
second structure. PSI was computed for the data segments during
encoding and maintenance for all correct trials from 1 to 40Hz and
tested for significance of directional effects via a nonparametric per-
mutation procedure (see “Methods” for details). The directional
effects were averaged across channel pairs and participants, yielding a
z-score that indicates the information flow between the amygdala
and the hippocampus during encoding andmaintenance, respectively,
as previous studies did28. The encoding period was characterized
by unidirectional hippocampus-to-amygdala connectivity across
1–11 Hz (threshold z > 1.96, p <0.05), and unidirectional amygdala-to-
hippocampus connectivity across 13–27Hz and 36–40Hz (threshold
z < −1.96, p <0.05, Fig. 4a). The maintenance period was characterized

by unidirectional hippocampus-to-amygdala connectivity across
1–18Hz (threshold z > 1.96, p <0.05), and unidirectional amygdala-to-
hippocampus connectivity across 23–30Hz and 33–34Hz (threshold
z < −1.96,p <0.05, Fig. 4b). These results indicated a frequency-specific
directional connectivity in the amygdala-hippocampal circuit involved
in WM processing. Specifically, the direction of influence differed
across frequency band, with theta/alpha-driven unidirectional influ-
ence from the hippocampus and beta-driven influence from the
amygdala. Besides, frequency bands for both directions varied
between the encoding and the maintenance period. This resulted in a
wider frequency band range showing amygdala leads influence than
the opposite direction in the encoding period, and a wider frequency
with hippocampal leads influence in the maintenance period. These
findings are consistent with findings in the representational analyses
showing contribution of the amygdala to WM encoding and the hip-
pocampus to WM maintenance.

Functional specialization and interaction within the amygdala-
hippocampal circuit predicted WM load
To address whether the EED patterns within the amygdala or the hip-
pocampus could predict WM load, we developed an approach that
uses the EED patterns in the amygdala as well as the hippocampus to
predict the WM load (load 4, 6 or 8) with a linear support vector
machine (SVM)29 classifier. For each load, the EEDpatterns at trial-pairs
level for all participants were pooled as the data used in the classifi-
cation. We randomly extracted 70% of the data from each load and
pooled them across all loads to train the SVM classifier. We tested the
classifier in the remaining data to obtain the decoding accuracy as our
performance measure. The procedure was repeated 100 times for
cross-validations (see details in “Methods”), and the accuracy of the
classifier was averaged across these 100 cross-validations to measure
its performance. The significance of the difference in decoding accu-
racy between the amygdala and hippocampus was assessed using a
nonparametric permutation test. Specifically, we compared the actual
difference with a null distribution obtained from scrambled labels.
As shown in Fig. 2h, the decoding accuracy from the amygdala EED
pattern (33.54% ± 1.31%)was significantly higher than the hippocampus
EED pattern (32.96% ± 1.16%; permutation test: p =0.01). We also per-
formed analogical decoding analysis using the EMSpatterns within the
amygdala or the hippocampus, as described in the EED patterns.
Results (Fig. 3d) showed that the decoding accuracy (35.33% ± 1.70%)
from the hippocampus EMS pattern was significantly higher than the
amygdala EMS pattern (34.23% ± 1.50%; permutation test: p <0.001).

We next asked whether the inter-regional interaction between the
amygdala and the hippocampus could predict WM load. Based on
previous observations, we separately extracted the directional con-
nectivity from the hippocampus leads and the amygdala leads on the
z-scored PSI at each channel pair for each participant. Then, for both
directions, the directional connectivity at channel-pairs level for all
participants were pooled as the data for each load classification
(see details in “Methods”). Similar decoding analyses were performed
for each direction during encoding and maintenance. As presented in
Fig. 4c, during encoding, the decoding accuracy using the features
from the amygdala leads (42.94% ± 3.22%) was significantly higher than
the opposite direction (40.85% ± 3.08%; permutation test: p <0.001).
Duringmaintenance (Fig. 4d) the decoding accuracy using the features
from the hippocampus leads (45.62% ± 3.57%) was higher than the
opposite direction (43.75% ± 3.21%; permutation test: p < 0.001).

In addition, we made a random effects analysis to directly com-
pare the EED patterns between WM load. We treated the regions
(amygdala/hippocampus) and WM load (low (set4)/high (set6/8)) as
fixed factors, the participants as random factor, and the extracted EED
values as the dependent variables. We observed higher EED values
for high-load trials versus low-load trials regardless of the regions,
although the load effect did not reach significance (mixed-effect

Table 1 | Participant characteristics

Participant Recording
sites
(amygdala)

Recording sites
(hippocampus)

Retrieval
accuracy
(%)

RT (s) for cor-
rect trials
(mean ± std)

1 2 6 92.5 1.26 ± 0.63

2 4 8 86.4 1.28 ± 0.65

3 2 6 93.2 1.10 ± 0.34

4 4 8 94.9 1.48 ± 0.63

5 2 4 91.3 1.41 ± 0.90

6 4 8 94.3 1.47 ± 0.59

7 4 8 94.9 1.44 ±0.57

8 4 7 90.0 1.41 ± 0.51

9 4 8 92.8 1.24 ± 0.33

10 4 6 93.0 1.64 ±0.73

11 4 6 91.4 1.30 ±0.58

12 4 5 89.5 1.49 ±0.77

13 4 4 97.6 1.05 ± 0.28

14 4 8 86.1 2.58 ± 1.22
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model: p =0.14; Fig. S2c). Similar comparison was also made between
WM load as described in EEDpatterns. As shown in Fig. S2d, lower EMS
values with high-load trials were obtained relative to the low-load trials
regardless of the regions, although the load effect did not reach sig-
nificance (mixed-effect model: p =0.25).

Taken together, our collective results that WM load can be pre-
dicted by representational features in the amygdala during encoding
and in the hippocampus during maintenance, and by information flow
from the amygdala during encoding and that from the hippocampus
during maintenance indicated that the amygdala contributed to WM

encoding and the hippocampus participated in WM maintenance in a
load-sensitive manner.

Success effect for high load conditions
In addition, we examined whether the neural representation and
directional connectivity varied as a function of behavioral success, as
the participants’ performance in the high load conditions (combined
load 6 and 8) was not at ceiling (mean performance over all partici-
pants 87%). First, we separately computed the EED and EMS for the
correct and incorrect trials in the high load conditions. We then

Fig. 2 | Working memory task, recording sites, representational dissimilarity
analysis and decoding analysis during encoding. a In each trial, a set of con-
sonants was presented (encoding 2 s) followed by a delay (maintenance 3 s). Then a
probe letter was shown and the participants indicatedwhether the probewas in the
initial set of consonants (retrieval). bAccuracy decreased from load 4 to load 6 and
8 (repeated-measures ANOVA, p <0.001, F(2,26) = 42.71). A line connects the data
from one participant (n = 14). ***p <0.001. c Channel location across participants in
MNI152 space. Recording regions are indicated by different colors (red, amygdala;
blue, hippocampus). The brain figure was visualized by BrainNet Viewer toolbox
(www.nitrc.org/projects/bnv/) Xia et al.43. d Schematic of encoding-encoding dis-
similarity (EED) analysis. Warmer color denotes higher dissimilarity and cooler
color means higher similarity. e Averaged EED map during the encoding period
across all participants, in the amygdala (left column) and the hippocampus (right
column). f EEDDifferencemap obtained by subtracting the hippocampus EED from

the amygdala EED reveals a significant cluster (p <0.05, two-sided cluster-based
permutation test, outlined in black), indicating that the amygdala represents the
working memory information specifically during the encoding period (dark red
area, higher EED in the amygdala than the hippocampus). White areas indicate that
there was no significant difference (p >0.05) between the hippocampus and
amygdala. g EED values averaged over the significant cluster in b was extracted
within the hippocampus (blue,mean ± s.e.m.) and amygdala (red,mean± s.e.m.) for
each participant, respectively. 12 of 14 participants showed higher EED values
within the amygdala than within the hippocampus. h Decoding accuracy using the
EED patterns within the amygdala (red) is higher than in the hippocampus (blue)
from all cross-validations (n = 100; two-sided permutation test: p =0.01). Dotted
lines indicate the median. Broken lines above and below denote the quartiles.
*p <0.05. Source data are provided as a Source data file.
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performed two 2 (Performance: correct vs. incorrect) × 2 (Region:
amygdala vs. hippocampus) repeated-measures ANOVAs, one with the
EED value and one with the EMS value as the dependent variable. As
shown in Fig. S3a, the EED value of the correct trials were significantly
greater than incorrect trials (p =0.026, F(1,13) = 6.28). This indicated
that the activity patterns for correct trials showed a larger distance
among different trials, whereas incorrect trials showed overlapping
representations across different items with reduced neural dissim-
ilarity. The EMS showed no significant difference between the correct
trials and incorrect trials (p =0.17). Regarding to the PSI, for each
participant, we separately extracted the PSI from the hippocampus
leads and the amygdala leads for the correct and the incorrect trials.
We made comparisons between regions and performance by using
repeated-measures ANOVAs. During encoding, we found a significant
interaction effect (p =0.019, F(1,13) = 7.23). Further analysis showed
that the amygdala leads connectivity was significantly larger in the
correct trials than the incorrect trials (p = 0.042) and no difference
between correct and incorrect trials was found from the opposite
direction (p =0.21, Fig. S3b). During maintenance, a significant inter-
action effect (p =0.025, F(1,13) = 6.43) was also found. Further analysis
showed that the hippocampus leads connectivity was significantly
larger in the correct trials than the incorrect trials (p =0.034) and no
difference was found between correct and incorrect trials from the
opposite direction (p =0.14, Fig. S3c). This again indicated that the
information flow driven by the amygdala during encoding and that
driven by the hippocampus during maintenance contributed to WM.

Next, we also applied the EED/EMS/PSI patterns within the
amygdala and the hippocampus to decode the performance (correct
or incorrect) in the high load conditions. Using the SVM classifier as
described before, we found that the decoding accuracy by using
the EED patternwithin the amygdala (61.50% ± 13.73%)was higher than
the hippocampus (50.25% ± 10.66%; permutation test: p < 0.001;
Fig. S3d). The decoding accuracy by using the EMS pattern within the

hippocampus (59.63% ± 12.29%) was higher than the amygdala (56.13%
± 10.88%), although the difference did not reach significance (permu-
tation test: p = 0.062; Fig. S3e). Besides, during encoding, decoding
accuracy by using the “amygdala leads” PSI (59.50% ± 17.69%) was
higher than the “hippocampus leads” PSI (53.88% ± 14.40%; permuta-
tion test: p =0.005; Fig. S3f); and during maintenance, the decoding
accuracy by using the “hippocampus leads” PSI (61.75% ± 11.35%) was
higher than that the “amygdala leads” PSI (57.88% ± 14.40%; permu-
tation test: p =0.025; Fig. S3g). These results indicate that the con-
tribution of EED within the amygdala and amygdala leads directional
connectivity on WM performance during encoding, and the con-
tribution of EMS within the hippocampus and hippocampus leads
directional connectivity on WM performance during maintenance.

Discussion
By analyzing neural representations and inter-regional information
flow, we found that (1) the amygdala was involved in forming distinct
memory representations for different items during encoding; (2) the
hippocampus retained the representation of WM information in the
absence of a stimulus on the screen; (3) WM encoding and main-
tenance were associated with enhanced bidirectional inter-regional
information flow; and (4) WM load could be decoded by representa-
tional features in the amygdala during encoding and in the hippo-
campus during maintenance, and by information flow from the
amygdala during encoding and that from the hippocampus during
maintenance.

While the amygdala is known to serve emotion processing, its
contribution to WM encoding of non-emotional items may seem
surprising. However, a significant body of evidence has indirectly
implicated a role of the amygdala in memory encoding. First, a recent
human study reported that the amygdala has a higher proportion of
concept cells with specific responses to preferred stimulus than
the hippocampus9. Other studies suggested that the amygdala plays

Fig. 3 | Representational stability within the amygdala and the hippocampus
and decoding analysis. a Schematic of encoding-maintenance similarity (EMS)
analysis. Warmer color denotes higher similarity and cooler color means less
similarity.bGrand average EMSmap across all participants in the amygdala and the
hippocampus. c The average EMS was higher in the hippocampus (blue, mean ±
s.e.m.) than in the amygdala (red,mean ± s.e.m.; two-sided paired t-test: p =0.0049,

t(13) = 3.381). Each dot represents one participant (n = 14). **p <0.01. d The
decoding accuracy by using the EMS patterns in the hippocampus (blue) is higher
than in the amygdala (red) from all cross-validations (n = 100; two-sided permuta-
tion test:p <0.001). Dotted lines indicate themedian. Broken lines above andbelow
denote the quartiles. ***p <0.001. Source data are provided as a Source data file.
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a stimulus specific role in novelty detection30,31 and encodes state-
dependent exploratory behavior32. Both functions require distinct
memory representations among different encoding items. Our finding
is also consistent with recent literature highlighting a broader function
for the amygdala, including processing of sensory, memory, valence,
etc4. Taken together, our study provides evidence that the amygdala
might contribute to WM by encoding non-overlapping memories with
distinct representations.

The hippocampal representations showed less distinctiveness but
more stability between the encoding and themaintenance period. The
observed lower EED corroborates a recent view that the hippocampus
supports more overlapping representations that hold across
experiences33. The higher EMS in the hippocampus is in line with our
previous work revealing a higher proportion of maintenance cells in
the hippocampus than in the amygdala10. Studies in long termmemory
also suggested that memory consolidation in the hippocampus may
start early, even at the end of encoding20, suggesting that during this
post-encoding period, memory representations are maintained in the
hippocampus asmemory engrams, so that they can be used to recover
information later. Taken together, we infer that the hippocampus may
contribute to WM maintenance by keeping representations stable in
the absence of the stimulus.

In addition to the functional specialization, we found bidirec-
tional inter-regional interaction between the amygdala and the hip-
pocampus duringWMencoding andmaintenance. The inter-regional
communication is consistent with rodent34 andmonkey35 studies that

report anatomical connection by tracing techniques, andwith rodent
studies that find synaptic plasticity in the amygdala induced
by electrical stimulation to the hippocampus22 and vice versa36.
Human iEEG studies found inter-regional functional connectivity
during emotional information37 and emotional memory23 processing.
In our current study, we extended the functional interaction in the
amygdala-hippocampal circuit toWMprocessing even in the absence
of explicit emotional content. We further found that the information
flow from the amygdala contributes to WM encoding and that the
information flow from the hippocampus contributes to WM main-
tenance in a load-sensitive manner. This is in line with our previous
study with the same task in which the inflow to the hippocampus
during the encoding period transfers external sensory information
from primary auditory cortex, while the outflow from the hippo-
campus during the maintenance period transfers memory informa-
tion as memory replay38.

There are two major views on the brain’s cognitive function.
The first view emphasizes that modularity supports functional
specialization39. Our results support this view by showing more dis-
tinct representational patterns in the amygdala during encoding and
a higher encoding-maintenance representational similarity in the
hippocampus. The second view emphasizes distributive processing
where the brain is highly interactive and its regions are functionally
interconnected40. Our findings support this view by showing inter-
regional information flow. During encoding, the amygdala forms
highly distinct representations for different encoding items and

maintenance

* hipp leads
* amy leads

encoding
a

b

* hipp leads
* amy leads

d

c

Fig. 4 | Directional information flow between the hippocampus and the
amygdala during encoding and maintenance. a The z-scored phase slope index
(PSI) across 1–40Hz during encoding. Asterisks in blue denote significant PSI from
the hippocampus to the amygdala and these in red denote the opposite direction
(significancewas thresholded at |z| > 1.96).bThe z-scoredPSI across 1–40Hzduring
maintenance. c Decoding accuracy of WM load by using PSI features of the
amygdala leads connectivity (red) was higher than those of the hippocampus leads

connectivity (blue) from all cross-validations (n = 100) during encoding (two-sided
permutation test: p <0.001). Dotted lines indicate the median. Broken lines above
and below denote the quartiles. ***p <0.001. d Decoding accuracy of WM load by
using PSI features of the hippocampus leads connectivity (blue) was higher than
those of the amygdala leads connectivity (red) from all cross-validations (n = 100)
during maintenance (two-sided permutation test: p <0.001). ***p <0.001. Source
data are provided as a Source data file.
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conveys this perceptual information to the hippocampus. During
maintenance, the hippocampus can well retain the encoded repre-
sentational patterns and transfers this memory information back to
the amygdala. Interestingly, we also observed that the representa-
tional features in specific region/direction during specificWMperiod
could predict WM load. Thus, our finding of modular processing in
the amygdala and the hippocampus at different WM periods and the
distributed processing in their interactions propose a mechanism
how the amygdala-hippocampus circuit supports WM processing.

In summary, our results demonstrated functional specialization
between the amygdala and hippocampus and their inter-regional
communication in WM processing. We provide a mechanistic expla-
nation of how neuronal activity patterns in the two structures differ-
entially contribute and orchestrate to support working memory.

Methods
Participants
Data were obtained from epilepsy patients undergoing intracranial
EEG monitoring at the Swiss Epilepsy Center, Klinik Lengg, Switzer-
land, to localize epileptic foci for potential surgical resection. Intra-
cranial depth electrodes (1.3mm diameter, 8 contacts of 1.6mm
length, 5mm spacing; Ad-Tech, Racine, WI, www.adtechmedical.com)
were stereotactically implanted. The electrode placements were gui-
ded exclusively by clinical needs. We included all patients that
accepted to participate in the study and that had electrodes implanted
in the amygdala and hippocampus in the same hemisphere. Before
testing, all participants provided written informed consent for the
study, which had been approved by the relevant institutional ethics
review board (Kantonale Ethikkommission Zürich, PB 2016–02055). In
total, 14 participants (mean ± SD [range]: 34.5 ± 12.6;[18–56] 7 females)
participated in this study. There were no seizures recorded during any
of the epochs, and any epochswith interictal epileptiformactivitywere
excluded from analysis.

Task
We used a modified Sternberg task in which the encoding of memory
content, maintenance, and recall were temporally separated (Fig. 2a).
Each trial started with a fixation period (1 s) followed by the pre-
sentation of the stimulus in the encoding period (2 s). In each trial, the
participant was asked to memorize a set of 4, 6, or 8 letters presented
for 2 s (encoding). The number of letters was thus specific for the
memory load. After the encoding period, the stimulus was replaced by
a fixation square during the maintenance period (3 s). Finally, a probe
letter appeared and the participants responded with a button press
(“IN” or “OUT”) to indicate whether the probe was part of the stimulus
letter set. The participants performed 50 trials per session, which las-
ted approximately 10min. Some participants performed up to seven
sessions of the task.

Channel localization
The channels were localized using postimplantation computed
tomography (CT) scans and postimplantation structural T1-weighted
MRI scans. For each patient, the CT scan was co-registered to the
postimplantation scan, as implemented in FieldTrip41,42. The channels
were visually marked on the coregistered CT-MR images. Channel
positions were verified by the neurosurgeon (L.S.) after merging pre-
operative MRI with postimplantation CT images of each individual
patient in the plane along the electrode (iPlan Stereotaxy 3.0, Brainlab,
München, Germany). Channel locations in native space for each
patient were projected to MNI space and are shown in Fig. 2c, which
was visualized by the BrainNet Viewer43. The final dataset contained 94
channels in the hippocampus and 50 channels in the amygdala across
all patients. Therewere6.7 ± 1.4 (range 4–8) channels per patient in the
hippocampus and 3.6 ± 0.9 (range 2–4) channels per participant in the
amygdala.

Channel selection
Eachparticipant had0–1 electrode targeting the anterior andposterior
hippocampus and the amygdalaper hemisphere. Targeted regions and
hemispheres varied across participants for clinical reasons and inclu-
ded the hippocampus in the left (n = 13) and right (n = 14) hemispheres
and the amygdala in the left (n = 13) and right (n = 11) hemispheres. We
selected the twomostmedial channels on each electrode targeting the
hippocampus or the amygdala, as was done in previous studies26,44.
This procedurewas used tominimize inter-individual variability, which
would be higher if different numbers of channels would have been
selected across participants. The final number of selected channels in
each region for each participant is listed in Table 1. We included only
ipsilateral channel pairs in the analysis.

Data acquisition and preprocessing
Intracranial data were acquired against a common intracranial refer-
ence using a Neuralynx ATLAS recording system, sampled at 4 kHz,
and analog-filtered above 0.5Hz. After data acquisition, neural
recordings were down sampled to 1 kHz and band-pass filtered
between 1 to 200Hz using the zero-phase delay finite impulse
response (FIR) filter with Hamming window. Line noise harmonics
were removed using a discrete Fourier transform. The filtered data
were manually inspected to mark any channels containing epilepti-
form activity or artifacts for exclusion. The data were then re-
referenced to the average of the signal over all the clean channels12.
We then segmented the preprocessed data into event-related epochs;
1 s fixation period, 2 s encoding period, 3 smaintenanceperiod, and 2 s
retrieval period. We rejected trials with artifacts by visual inspection
(53/3250 or 1.6% of all trials). Subsequent analyses were performed on
correct trials. We performed preprocessing routines with the
FieldTrip41, EEGLAB45 toolboxes and custom scripts inMATLAB version
R2018b (the MathWorks, Natick, MA, USA).

Time-frequency analysis
Time-frequency powerwas computed for each selected channel at each
trialwithin thehippocampus aswell as the amygdala in eachparticipant.
For each trial at each channel, we convolved the signal with complex-
valued Morlet wavelets (6 cycles) to obtain power information at each
frequency from 1 to 100Hz in 1Hz steps with a time resolution of 1ms15.
The task-induced power was analyzed per trial using a statistical boot-
strapping procedure as was done in previous studies12,46. Briefly, for
each channel and frequency, a null distribution was created by ran-
domly selecting and averaging several data points in the baseline power
(500ms pretrial) 1,000 times, the raw power for each time point during
task was then z-scored by comparing it to the null distribution to gen-
erate the z-scored power. Both the encoding and maintenance of WM
information elicited z-scored power changes across 1–40Hz frequency
range (Fig. S1). Therefore, the z-scored power in this frequency range
was used as the feature for the subsequent analyses.

Representational dissimilarity analysis
A sliding time window approach was applied to calculate the repre-
sentational dissimilarity in a 100ms sliding time window (step width
10ms). The z-scored power was first averaged across the time points
within each sliding window for each trial. The generated z-scored
power of all channels and frequencies (1–40Hz) within each time
window were then vectorized. The Spearman’s correlation between
the features of the two trials was calculated and Fisher z-transformed.
The generated valueswere subtracted from 1 and then averaged across
trial pairs to index the dissimilarity among trials in the given time
window pair. After these steps, we got the encoding-encoding dis-
similarity (EED) map across all time windows during encoding. The
analysis procedure is presented in Fig. 2d. We then compared the EED
map in the amygdala with the hippocampus at the group level by using
a cluster-based permutation test47. We also extracted the average EED
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values in the significant cluster in the two regions for each participant
and then contrasted them via paired t-tests at the group level.

Representational similarity between encoding andmaintenance
Next, we calculated the representation similarity between encoding
and maintenance (EMS) periods within the same trials for the correct
trials. First, we built representational patterns based on distributed
oscillatory power (1–40Hz) across all channels for each participant
between all pairs of time windows (one from encoding and the other
from maintenance), resulting in EMS maps within the same trials
between all encoding-maintenance time window pairs, which were
then averaged across trials. Figure 3a describes the detailed analysis
procedure. Next, we contrasted the EMS maps for the amygdala and
the hippocampus by using a cluster-based permutation test. Since we
found significant contrast in every encoding-maintenance time pair in
the EMS map, we then extracted the average EMS values in the whole
map for eachparticipant from the two regions and contrasted themvia
paired t-tests at the group level.

Phase slope index analysis
PSI estimates whether the slope of the phase differences between A-B
signal pairs is consistent across several adjacent frequency bins, in
which positive PSI indicates that signal A leads signal B, and negative
PSI indicates the reverse46. In this study, the data segments during
encoding and maintenance were zero padded and multiplied with a
Hann taper from 1 to 40Hz with 1 Hz step, from which we computed
the PSI at each inter-regional channel pair within the same hemisphere
in each participant (i.e., one channel from the anterior/posterior hip-
pocampus and the other from the amygdala) and pooled all possible
channel pairs between the hippocampus and the amygdala for each
participant. To correct for any spurious results, we randomly shuffled
the trials and recomputed the PSI at each channel pair. This step was
repeated 200 times to create normal distributions of channel pair-
resolved null PSI data. To construct a directional effect of the
amygdala-hippocampus on a population level,we averaged the rawPSI
across channel pairs and participants. Correspondingly, the null dis-
tributions were also averaged across channel pairs and participants.
Consequently, the rawPSI outputs canbe compared to thedistribution
of null PSI to derive a z-score in the frequency band 1–40Hz (for a
similar approach, see Solomon et al.28). Significant PSI was thresholded
at |z| > 1.96, in which the hippocampus leads were defined as z > 1.96
and the amygdala leads as z < −1.96, as previous studies performed12,46.

Decoding analysis
To investigate whether the neural data in the amygdala and the hip-
pocampus was modulated by WM load, we computed the EED, EMS,
and PSI from trials of load 4, 6 and 8, separately. Here we used a linear
support vector machine (SVM)29 as a classifier to decode the WM load
(load 4, 6 and 8). SVM is widely used in decoding analyses in neuroi-
maging studies48 because of its suitability for analyses with a relatively
small number of samples. The SVM analyses in the current study are
conducted by LIBSVM package29 in MATLAB. The details of our
decoding analyses were as follows:
(A) EED pattern: We first considered the EED patterns within the

amygdala and the hippocampus todecode theWM load. For each
load, the EED pattern at trial-pairs level for all participants were
merged as the data (100 trial-pairs × 14 participants =
1400 samples) used in the classification. The EED pattern
included 201 × 201 = 40401 (201 denotes time windows during
encoding) values, and these values were converted to a feature
vector. Then, we split 70%of the data fromeach load andmerged
them across all loads as the training data set. The remaining data
were pooled across all loads as the testing data set. Meanwhile, to
reduce the feature dimensionality, principal component analysis
(PCA) was applied to the training data set to keep several

principal components (K components) that explained 99% of the
variance in the data.We also transformed the testingdata setwith
the PCAmatrix that was already fitted to the training data set. In
total, we had the training data set with (980 × 3) samples × K
features and the testing data set with (420 × 3) samples × K
features. We trained an SVM classifier with a linear kernel with a
cost equal to one. This procedurewas replicated by 100 times for
the cross-validation. Accuracy of the classifier as performance
measures was averaged across 100 cross-validations. We per-
formed this classification by using EED features in the amygdala
and the hippocampus, separately.

(B) EMS pattern: Next, we decoded the WM load by using the EMS
features within the amygdala and the hippocampus, respectively.
Decoding analyses were performed as described for the EED
patterns. The EMS patterns included 201 × 301 = 60501 values
and were converted to a feature vector. Similar as described for
EED patterns, for each load, we combined the EMS features at
trial level for all participants as the data, then split 70%of the data
as the training data set (N samples), then applied PCA to the
training data set to K components that explained 99% of the
variance, then fed the features ((Nload4 +Nload6 +Nload8) samples ×
K features) into a linear SVM classifier for training, and tested the
model on the remaining pooled data set that already applied K
components matrix to the testing data set ((Mload4 + Mload6 +
Mload8) samples × K features). The accuracy was averaged across
100 cross-validations. Again, this classification was performed by
using EMS features in the amygdala and the hippocampus,
separately.

(C) PSI pattern: Then we tested whether WM load could be decoded
by the directional connectivity from the hippocampus leads as
well as the amygdala leads during encoding and maintenance,
separately.Wefirst extracted thedirectional connectivity from the
hippocampus leads as well as the amygdala leads based on the z-
scored PSI at each channel-pair for each participant. Then, the
directional connectivity was vectorized (K features) at channel-
pairs level for all participants and wasmerged as the data for each
load classification (172 channel-pairs). Again, we split the direc-
tional connectivity for each load using 70/30 split, with 70% of the
data (120 samples) for training and the remaining data (52 sam-
ples) for testing. Then, we fed the training data set ((120 × 3)
samples × K features) into the SVM classifier and tested it on the
testing data set ((52 × 3) samples × K features). This procedurewas
replicated 100 times for cross-validation. In total, we performed
four classifications using PSI features from the hippocampus leads
and from the reverse direction during encoding andmaintenance,
separately.

For each decoding analysis, we used a nonparametric permuta-
tion test to evaluate the significance of the decoding accuracy differ-
ence between two regions or directions. Specifically, we shuffled the
labels 200 times, and in each shuffling, we calculated decoding accu-
racy differences between two regions or directions, resulting a null
distribution that encompasses data. P values were computed by
comparing observed decoding accuracy difference with the entire
distribution of null difference in decoding accuracy. We considered
P <0.05 to be significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data used in this study49 have been downloaded from a public
database under accession link https://doi.gin.g-node.org/10.12751/g-
node.d76994/. The task is freely available for download at http://www.
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neurobs.com/ex_files/expt_view?id=266. Links to updates and further
data sets can be found at https://hfozuri.ch. Source data are provided
with this paper.

Code availability
FieldTrip and EEGLAB toolbox was used for processing the iEEG data.
The custom codes used for this study are available at https://doi.org/
10.5281/zenodo.780483450.
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