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Abstract
The National Forestry Commission of Mexico continuously monitors forest struc-
ture within the country's continental territory by the implementation of the National 
Forest and Soils Inventory (INFyS). Due to the challenges involved in collecting data 
exclusively from field surveys, there are spatial information gaps for important forest 
attributes. This can produce bias or increase uncertainty when generating estimates 
required to support forest management decisions. Our objective is to predict the spa-
tial distribution of tree height and tree density in all Mexican forests. We performed 
wall-to-wall spatial predictions of both attributes in 1-km grids, using ensemble ma-
chine learning across each forest type in Mexico. Predictor variables include remote 
sensing imagery and other geospatial data (e.g., mean precipitation, surface tempera-
ture, canopy cover). Training data is from the 2009 to 2014 cycle (n > 26,000 sampling 
plots). Spatial cross validation suggested that the model had a better performance 
when predicting tree height r2 = .35 [.12, .51] (mean [min, max]) than for tree density 
r2 = .23 [.05, .42]. The best predictive performance when mapping tree height was 
for broadleaf and coniferous-broadleaf forests (model explained ~50% of variance). 
The best predictive performance when mapping tree density was for tropical forest 
(model explained ~40% of variance). Although most forests had relatively low uncer-
tainty for tree height predictions, e.g., values <60%, arid and semiarid ecosystems had 
high uncertainty, e.g., values >80%. Uncertainty values for tree density predictions 
were >80% in most forests. The applied open science approach we present is easily 
replicable and scalable, thus it is helpful to assist in the decision-making and future of 
the National Forest and Soils Inventory. This work highlights the need for analytical 
tools that help us exploit the full potential of the Mexican forest inventory datasets.
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1  |  INTRODUC TION

Forest inventories continuously monitor the status of forested 
ecosystems through the implementation of field campaigns for 
data collection and subsequent analysis (Smith, 2002). As forests 
play a key role in maintaining ecologic stability, national forest in-
ventories (NFI) are playing an increasingly-important role in driving 
academic and governmental decision making (Saarela et al., 2020). 
Traditionally, forest inventories have been used for the develop-
ment of environmental policy, such as land and timber manage-
ment strategies at regional and national scales. NFI later began to 
contribute to international reports. For example, Mexico's National 
Forest and Soils Inventory (INFyS) is a pillar for the measurement, 
reporting, and verification system (MRV): it is the foundation for 
the national inventory of greenhouse gasses (GHG) emissions in 
the Land Use, Land-Use Change, and Forestry (LULUCF) sector and 
for the national forest reference emissions level (FREL). MRV and 
FREL are components of a carbon accounting system used by the 
United Nations to incentivize practices that lower carbon emissions 
(Mitchell et al., 2017). NFI usually focus on collecting field data over 
large geographic areas. Developing analytical tools that enhance the 
accessibility and understanding of nation-wide forest inventory data 
is critical for democratizing information about forest structure at na-
tional and international scales.

The National Forestry Commission of Mexico (CONAFOR) has 
been in charge of implementing the INFyS from 2004 to the pres-
ent. The INFyS is a national program in which a stratified, systematic 
sample of permanent ground plots is used to measure trees (e.g., 
height, diameter at breast height, count) and site (e.g., forest type, 
site class, topographic data) variables across all forest lands every 
5 years (CONAFOR,  2017). The INFyS data have been collected 
across a range of climatic zones within Mexico including tropical 
forests, coniferous and broadleaf forests, cloud mountain forests, 
mangroves, and arid and semi-arid regions. Thereby, Mexico's NFI 
data are extremely valuable and useful at national and international 
scales, and in academia. INFyS data are openly available at https://
snmf.cnf.gob.mx/datos​-del-inven​tario/. In recent years, the INFyS 
has been working towards the development and update of data anal-
ysis methodologies such as geospatial analysis for the mapping of 
forest structure and also in overcoming the technical challenges that 
come with sample-based forest inventories.

Forest inventories based on a statistical sample are used to es-
timate mean or total amounts of forest inventory attributes within 
the population of interest (Tomppo, Haakana, et al., 2008). However, 
field surveys can be costly, time consuming and logistically-
challenging. Collecting data exclusively from field surveys can result 

in designs that do not satisfy the statistical assumptions and can lead 
to limited sample sizes due to the phenomenon of non-response, 
which occurs when field plots that were part of the design cannot 
be accessed. Improper management of nonresponse can produce 
bias or increase uncertainty when generating estimates (McRoberts 
et al., 2005). Emerging satellite and machine learning (ML) technolo-
gies give us the opportunity to build standardized analytical models, 
based on NFI field-data, which can help with problems associated 
with non-response (e.g., fill data gaps) and produce maps that serve 
for multiple purposes (Tomppo, Olsson, et al., 2008).

Mapping forest attributes through the integration of NFI and 
remote sensing data has been widely applied to better visualize 
national-scale estimates, reduce uncertainty, and improve data-
set robustness (Haakana et al., 2019; Ohmann et al., 2014; Saarela 
et al., 2020; Tomppo et al., 2010). This approach has played a key 
role in modeling national estimates of forest structure such as abo-
veground biomass (AGB) as well as attributes such as forest age 
(Saarela et al., 2020; Schumacher et al., 2020). To obtain accurate 
spatial predictions of forest attributes, many studies employ ML 
models using a multivariate approach (Khaledian & Miller, 2020; Li 
et al., 2020; Soriano-Luna et al., 2018; Wadoux et al., 2020). ML is 
a field of artificial intelligence (AI), and one of its main objectives is 
to identify and model relationships between dependent data (such 
as forest inventory attributes) and independent data (such as re-
mote sensing), and apply these models to generate predictions in a 
semi-autonomous approach (James et al., 2013a). The performance 
of different types of ML models often varies when modeling forest 
attributes. For example, spatially explicit estimates of AGB varied 
by as much as 19% when performing linear (LM), generalized addi-
tive (GAM) and random forest (RF) empirical models in a temperate 
forest in central Mexico (Soriano-Luna et al., 2018). The three fitted 
AGB models performed well when predicting AGB spatial distribu-
tion, but GAM was better for representing AGB variations across 
the landscape. Thus, different ML models yield different results and 
studies use multiple models or algorithms to identify the best solu-
tions for predicting forest attributes or specific response variables, 
as no silver bullets exist in ecological modeling (Qiao et al., 2015).

One commonly used set of ML approaches used to perform spa-
tial prediction are ensemble learners, which integrate multiple ML 
models and algorithms (Holloway & Mengersen,  2018). Ensemble 
ML models are used in mapping forest attributes because they 
offer improvements in accuracy to independent algorithms (Healey 
et al., 2018). Examples of popular ensemble ML algorithms include RF 
(Breiman, 2001), which applies a bagging method to create a forest 
of uncorrelated decision trees, another one is Super Learner, which 
applies a stacked method and uses cross-validation to estimate the 
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performance of multiple ML models (Polley & van der Laan, 2010). 
The latter has been shown to outperform the individual algorithms 
used to build the model (Davies & van der Laan, 2016; Taghizadeh-
Mehrjardi et al., 2021).

The main goal of this study is to develop a methodological frame-
work in which CONAFOR can generate country-level maps of INFyS 
forest attributes. Specifically, this involves operationalizing methods 
based on integrating field data with remote sensing data in an en-
semble ML framework to map forest attributes. We are starting with 
tree height and tree density, as these are key components of forest 
structure and can be useful to provide information that helps with 
the impacts of nonresponse, and in the estimation of AGB, carbon 
storage and forest productivity over time (Humagain et al., 2017; 
Pirotti, 2010; Selkowitz et al., 2012). Accurate spatial predictions of 
such structural variables are fundamental for the management and 
conservation of forest ecosystems, as they are important constitu-
ents in the study of land-atmosphere interactions, carbon cycling, 
assessment of fire hazards and timber volume estimation (Chopping 
et al., 2008; Selkowitz et al., 2012). By developing workflows and 
products based on INFyS data, this study aims to support CONAFOR 
in generating information that will be used by decision makers to 
manage forests more effectively, preserve the country's forest pat-
rimony, and improve national and international reporting associated 
with MRV and FREL. We envision this methodology could be fur-
ther applied for several other forest attributes such as AGB, carbon 
storage and timber volume, among others, and improve Mexico's na-
tional estimates of other relevant forest attributes.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The study was conducted at a national scale and included all forest 
types in Mexico (Figure 1a). The country is located between latitudes 
32° and 14°N, where the Nearctic and Neotropical biogeographic 
zones converge. Due to its geographical location, the territory has 
complex topographic and climatic characteristics (CONABIO, 1998). 
From the arid zones in the northwest to the humid rainforest in 
the southeast, forest ecosystems in Mexico are very diverse. They 
comprise a vast variety of vegetation, having tree heights ranging 
between 60 m in coniferous forests to 1.3 m in xerophilous scrubs 
(CONAFOR, 2017). Tree species of economic interest include ma-
hogany (Swietenia macrophylla) and cedar (Cedrela odorata), which are 
typical of tropical forests.

2.2  |  Mexico National Forest and Soils 
Inventory data

Tree height and tree density models were developed using plot 
level data collected between 2009 and 2014 and obtained from the 
INFyS database. The sampling design considered a total of 26,220 

plots distributed across the Mexican territory during 2009–2014 
(Figure 1b), however 9.5% of the total plots were categorized as in-
accessible sites (CONAFOR, 2017). The number of sampled plots 
for each forest ecosystem were 2606 for coniferous forests, 4111 
for coniferous-broadleaf, 3249 for broadleaf forest, 483 for cloud 
mountain forest, 3724 for tropical forest, 1466 for tropical dry 
forests, 240 for arid zones, 1334 for semiarid zones, and 157 for 
mangrove forests. Data are available from the Environmental Data 
Initiative (EDI): https://doi.org/10.6073/pasta/​46203​75aea​631ab​
6a09c​b573c​7bf8aff (Barreras et al., 2022) and at the official web 
page https://snmf.cnf.gob.mx/datos​-del-inven​tario/.

Sampled plots are distributed across all land cover types, ecolog-
ical stages, and land tenure classes (e.g., private, social, government). 
Plot distribution is accomplished through systematic, pre-stratified 
sampling with 5 × 5 km spacing in temperate and tropical forests 
(which included natural and cultivated forests), 10 × 10 km in dry 
and semi-arid vegetation communities and 20 × 20 km in arid veg-
etation strata (includes samples of succulents). These strata are de-
rived from a forest type map created by the Mexican government 
(Figure 1a; INEGI, 2017). The plot is considered a cluster design with 
four circular primary subplots, three of which are configured in a 
triangular array around a central subplot (Figure S2). Primary sub-
plots, where trees with a diameter at breast height (dbh, 1.3 m above 
ground) ≥7.5 cm are measured, have a radius of 12.56 m and are 
400 m2 in area; spacing between adjacent primary subplot centers is 
~45 m (CONAFOR, 2017). Tree height was measured at each primary 
subplot for all trees with a dbh ≥7.5 cm; then, an average tree height 
value was estimated for each plot. The height of trees was measured 
from the base of the tree to the tip of the canopy, including dead 
branches. In general, the predominant height categories in more 
than 90% of the data (all ecosystems) are between 5 and 10 m, which 
indicates that they are semi-regular masses (CONAFOR, 2017). For 
the purpose of this study, a tree is defined as those greater than or 
equal to 7.5 cm dbh.

2.3  |  Remotely sensed data as model predictors

As a cloud-based platform, Google Earth Engine (GEE) provides easy 
access to an extensive catalog of satellite imagery and other geo-
spatial data for scientific, business, and government users (Gorelick 
et al., 2017). We obtained a combination of topographic, climatic, 
and vegetation derived variables with pixel sizes of 1000 m for the 
period of 2009–2014 from GEE. In this manner, we assembled a 
nation-wide geospatial dataset of 39 covariates for tree height and 
tree density predictions.

The number of potential predictor layers was reduced to 6 
through a dimension reduction process, guided by a random forest 
(RF) prediction for each target variable (tree height and density) and 
the set of 39 predictors. We used the randomForest package v4.7-
1.1 for R v4.1.0, a method that implements feature bagging to imple-
ment a prediction (Breiman, 2001). We then calculated predictors' 
importance using the importance function from the RF package. 
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F I G U R E  1 (a) Map of Mexico forest types and (b) map of INFyS sampling plots (black dots). Prepared from the Land Use and Vegetation 
map, scale 1:250,000, Series VI, Instituto Nacional de Geoestadística y Geografía (CONAFOR, 2017; INEGI, 2017).

(a)

(b)
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Variables with the higher percentage increase in mean squared error 
(%IncMSE) were selected as most important (Table S1). After iden-
tifying the most important predictors for each target variable, we 
used the ClustOfVar package v1.1 for R v4.1.0 to group strongly cor-
related predictors that potentially bring the same information and 
can cause overfitting in the data (Chavent et al., 2017). We selected 
the final set of predictors based on the results of both dimension 
reduction techniques. All covariates were resampled to 1000 m. The 
resampling was done with conventional bilinear interpolation as im-
plemented in GEE. Data are available from Zenodo under the name 
“Nationwide geospatial dataset of environmental covariates at 1km 
resolution in Mexico” (https://doi.org/10.5281/zenodo.7130164; 
Barreras & Guevara, 2022).

2.4  |  Spatial prediction using LANDMAP

To perform the spatial predictions, we used an ensemble ML ap-
proach called Super Learner, a meta-model that linearly combines 
the predictions from multiple models (e.g., kernel-based, tree-based, 
linear based or neural network based) (Polley & van der Laan, 2010; 
van der Laan et al., 2007). We applied the Super Learner algorithm as 
implemented in the LANDMAP package v0.0.14 for R v4.1.0, which 
provides a strategy for automated mapping (Hengl et al., 2018, 2021; 
Polley & van der Laan, 2010; RStudio Team, 2021) (https://github.
com/Envir​ometr​ix/landmap). Methods implemented in the model 
ensemble were decision trees-based methods (random forest), 
kernel-based methods (support vector machines), methods based 
on neural networks (NNET), and generalized linear models (GLM). 
We assumed that different methods describe relationships in our 
data in a different manner. The model was run on each forest type 
separately.

We took advantage of the geographical distances in our training 
data and used the oblique geographic coordinates technique to in-
corporate spatial dependence as an additional predictor, as used by 
previous studies (Møller et al., 2020). To eliminate covariances and 
dimensionality, predictors were converted to principal components 
before running the Super Learner model. Therefore, we transform 
the relationship between covariates in the multivariate space to vec-
tors of numbers that are not related to each other, that is, they are 
orthogonal in the statistical space. We expressed the uncertainty 
of our estimates in percentage form as the range of the 68% pre-
diction intervals divided by their mean for each pixel, as performed 
by Viscarra Rossel et al. (2014). We used a fivefold spatial cross val-
idation (spCV) approach to assess the predictive accuracy of our 
modeling framework. spCV differs from standard cross-validation by 
accounting for the spatial autocorrelation between data points used 
for model training and validation; this way, training points are statis-
tically independent from validation points (Brenning, 2012; James 
et al., 2013b). Ignoring spatial autocorrelation in data can lead to an 
overoptimistic evaluation of predictive power (Ploton et al., 2020). 
The spCV yields model independent residuals required to compute 
map quality indicators such as: the coefficient of determination (r2) 

and root mean square error (RMSE). To further compare model accu-
racy, we use conditional quantile plots (Carslaw, 2015).

3  |  RESULTS

3.1  |  Descriptive statistics of sampled inventory 
data

Maximum field measurements of tree height were 36 m and found 
in coniferous forests and coniferous-broadleaf forests. Mean tree 
heights measured in the field ranged from 5 to 10 m, with the excep-
tion of arid and semi-arid zones, where trees had an average height 
of ~4 m (Figure S4).

Mean field estimates of tree density were higher in tropical 
forests, with an average of ~790 trees per ha. Generally, the other 
forest types had an average of ~400 to 500 trees per ha, even man-
groves which had a relatively small number of sampled plots (157). 
Arid and semi-arid zones had an average of ~88 and ~162 trees per 
ha, respectively.

3.2  |  Model predictors

The parameter used for measuring covariate importance was the 
percentage increase in mean squared error (%IncMSE), as shown in 
Figure 2. The covariate “bio18”, which accounts for the precipitation 
of warmest quarter, is the most important covariate for tree height, 
while treeCanopyCover is the most important when predicting tree 
density (see Figure S1).

Results from the second dimension-reduction technique, which 
consisted in an unsupervised cluster analysis, showed the predictors 
related to each other (Figure S1). Predictors such as forestCanopy-
Cover and fpar (fraction of photosynthetic active radiation) were 
among the first 3 most important for tree density (Figure 2b); how-
ever, they turned out to be variables that share a high correlation ac-
cording to the cluster analysis. We decided to use only one of them 
as a predictor for our models. We followed this understanding to 
choose six predictors with high importance as well as with low cor-
relation between each other to further avoid statistical redundancy 
in our predictions.

The final set of predictors chosen for both target variables were 
(1) tree canopy cover (treeCanopyCover) (Hansen Global Forest 
Change v1.8 2000–2020) (Hansen et al., 2013), (2) mean precipita-
tion (precip_mean) (CHIRPS Pentad: Climate Hazards Group InfraRed 
Precipitation with Station Data v2.0) (Funk et al., 2015), (3) SRTM-
derived topographic diversity (topo_d) (Theobald et al., 2015), (4) 
Mean land surface temperature standard deviation (temp_c_sdev) 
(AG100: ASTER Global Emissivity Dataset 100-meter V003) (Hulley 
et al., 2009, 2012, 2015; Hulley & Hook, 2008, 2009, 2011; NASA 
JPL,  2014), (5) temperature seasonality (bio04), and (6) precipita-
tion of warmest quarter (bio18), both from WorldClim V1 (Hijmans 
et al., 2005; Table S2).
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3.3  |  Model summaries and evaluation

Descriptive statistics for each forest-type predicted tree height 
and density maps are presented in Table 1. The mean values of pre-
dictions are generally aligned with those of the plots. Tree height 
models with the highest r2 values were coniferous-broadleaf forest, 
broadleaf forest and mangroves (Table 1).

Moreover, the model performed tree density predictions with 
higher r2 in tropical forests and tropical dry forests. Despite tropical 

forests having the highest r2, it also was the ecosystem with the 
highest RMSE.

On average, predicted tree height ranged between 4 and 9 m in 
all forest ecosystems (averaged from all pixel values). Cloud forest, 
arid and semi-arid zones had smaller r2 for both target variables, 
which could be related to the smaller amount of sampled data in 
these ecosystems. However, arid and semi-arid zones seemed 
to have the smallest errors in both tree height and tree density 
predictions.

F I G U R E  2 Covariate importance for selected target variables (a) tree height and (b) tree density based on the percentage increase in 
mean squared error (%IncMSE).

(a) (b)

Forest type

Tree height Tree density

Mean 
(m) r2 RMSE

Mean 
(trees/ha) r2 RMSE

Coniferous forest 8.22 .4 3.35 457.42 .24 311.01

Coniferous and broadleaf 
forests

7.51 .50 2.78 425.79 .21 294.95

Broadleaf forest 5.8 .51 2.25 372.58 .21 300.72

Cloud forest 9.47 .12 2.69 460.42 .17 356.64

Tropical forest 8.93 .26 1.88 741.57 .42 469.56

Tropical dry forest 6.15 .40 1.78 501.58 .30 377.07

Arid zones 3.78 .16 1.16 65.79 .05 101.70

Semi-arid zones 4.11 .35 1.30 149.85 .23 181.54

Mangroves 6.40 .45 2.94 545.46 .16 426.36

Abbreviations: r2, coefficient of determination; RMSE, root mean square error.

TA B L E  1 Summary statistics of tree 
height and tree density predictions for all 
forest ecosystems in Mexico.

 20457758, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10090 by E

th Z
ürich E

th-B
ibliothek, W

iley O
nline L

ibrary on [07/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  7 of 14BARRERAS et al.

According to the conditional quantile plots, the model had 
a better predictive performance for tree height than tree density 
(Figure 3). Conditional quantiles plots examine how well predictions 
agree with observations. The data are divided into equally spaced 
bins. For each predicted value, the corresponding value of the ob-
servations is identified and the median, 25/75th and 10/90 percen-
tile (quantile) are calculated for that bin (Carslaw, 2015). As shown by 
the median (red line) in Figure 3a, model predictions agree precisely 
with observation from the range of 1 to ~10 m of tree height. From 
10 m onwards, model performance weakens. We also observe that 
the model slightly overestimated tree height values between 5 and 
10 m, as stated by the gray bar on Figure 3a.

Tree density predictions were less precise when compared 
against observed values. The model had the best performance when 
predicting tree densities of 500 trees/ha and below (Figure  3b). 
From 500 trees/ha onwards predictions were less precise, yet they 
followed a similar pattern as the “perfect model” (blue line). The 
model overestimated tree density values between 300 and 700 
trees/ha; however, predicted values follow a similar distribution to 
the observed values in both tree height and tree density scenarios. 
Conditional quantile plots for each forest type can be found in the 
Figure S5 for tree height predictions and Figure S6 for tree density.

3.4  |  Mapping the tree height and tree density of 
Mexico forests

The models were used to generate spatially continuous national 
maps of mean tree height (Figure 4) and the total number of trees 
(Figure  5), both at a 1000-m resolution, along with their associ-
ated uncertainties. At the forest type level, maximum predicted 

pixel values of tree height were observed in coniferous, coniferous-
broadleaf forests and cloud mountain forests (~20, 14.3 and 12.3 m, 
respectively). These types of forest ecosystems constitute Mexico's 
mountain chains Sierra Madre Oriental and Sierra Madre Occidental. 
Moreover, the smallest tree heights were predicted in arid and semi-
arid zones, having a mean of ~4 m. The model had the highest un-
certainty when predicting tree height in arid zones (60%–80%), the 
latter could be related to the limited sample size we had for that 
specific forest type (Figure 4b). Lower uncertainty was observed for 
tropical forest and tropical dry forest.

Tropical forests had the maximum predicted pixel values of tree 
density (~1457 trees/ha), followed by coniferous-broadleaf forest 
(1140 trees/ha), tropical dry forest (1091 trees/ha) and coniferous 
forest (1079 trees/ha) (Figure 5a). Uncertainty in predictions of tree 
density was higher compared to tree height (Figure  5b). High un-
certainty (e.g., <80%) was observed across all forest types except 
tropical forest (40%–60%).

4  |  DISCUSSION

Over the last 20 years, CONAFOR has invested significant time and 
resources to produce forest inventory data that accurately repre-
sents all forest ecosystems in Mexico. To further expand the utility 
of this data, we developed an analytical framework to model, predict, 
and map forest structural attributes across the country. By exploit-
ing the available remotely sensed data (e.g., mean surface tem-
perature, tree canopy cover, mean precipitation, and topographic 
diversity) (Gorelick et al., 2017), the ensemble ML method in the 
LANDMAP package v0.0.14 for R v4.1.0 (Hengl et al., 2021; RStudio 
Team, 2021), and the openly available INFyS data (CONAFOR, 2017), 

F I G U R E  3 Conditional quantile plots for the observed versus predicted values of (a) tree height and (b) tree density. For each plot the 
blue line shows the results for a perfect model. The red line shows the median values of the predictions and corresponding observations. 
The yellow shading shows the predicted quantile intervals, for example the 25/75th and the 10/90th. A perfect model would lie on the blue 
line and have a very narrow spread. The histogram shows the counts of predicted values (gray bars) and observed values (blue outlined bars) 
(Carslaw, 2015).
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F I G U R E  4 National maps of (a) predicted mean tree height and (b) its associated uncertainty across all Mexico's forest ecosystems.
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F I G U R E  5 National maps of (a) predicted mean tree density and (b) its associated uncertainty across all Mexico's forest ecosystems.
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we have modeled and performed predictions of tree height and tree 
density across Mexico. Results suggest that the ensemble ML algo-
rithm had a better performance when predicting tree height over 
tree density (Table 1). In addition to providing numerical estimates, 
these maps are user-friendly devices that help users visualize forest 
structures across Mexico.

Mapping forest attributes along with associated uncertainties at 
a national scale requires substantial computational resources. Using 
high resolution covariates (e.g., 30 m) has helped achieve an increase 
in model predictive ability (Hengl et al., 2021). Here, we had limited 
computational resources. We decided to simplify our approach by 
modeling at a 1000-m resolution and reducing the number of model 
predictors, thus reducing computing costs and still displaying valu-
able nation-wide maps for political and ecological matters. However, 
it is important to acquire sufficient computational resources for the 
project's next stage and perform more accurate predictions with 
high-resolution covariates.

Remotely sensed predictors such as tree canopy cover, mean 
precipitation, mean temperature standard deviation, and topo-
graphic diversity had the highest importance in predicting both tar-
get variables, while maintaining a relatively low correlation between 
each other. Tree canopy cover ranked the most important predictor 
for tree density and was the third most important for tree height. 
Moreover, precipitation of the warmest quarter ranked the most im-
portant predictor for tree height. Previous studies have shown that 
using vegetation traits as model predictors can reduce prediction 
uncertainty when mapping forest attributes (Saarela et al., 2020). 
Moreover, Heilman et al.,  2022 found a strong positive effect of 
water-year precipitation when forecasting tree growth, which is di-
rectly related to tree height and density. Results from our feature 
selection approach agree with the a-priori understanding of forest 
structure, its environmental drivers and our conception of ecological 
modeling.

The range of mean predicted values for tree height were con-
sistent with forest inventory data (~5 to 10 m), suggesting that the 
super learner model reflected the input data adequately. On aver-
age, cloud mountain forest is the ecosystem with the tallest trees 
in Mexico (Table  1). This particular forest belongs to humid and 
temperate areas; it has the largest aerial biomass density and the 
greatest timber volume of all Mexico forest types, but it accounts 
for only ~1% of the national forest area (Villaseñor & Gual, 2014). 
According to CONAFOR (2017), more than half of its vegetation is 
in early stages of succession, with high densities of young trees due 
to the wide timber exploitation. Nonetheless, cloud forests were 
among the ecosystems with the less precise predictions (Table  1). 
Conditional quantile plots indicated that the model had the best pre-
dictive performance for broadleaf and coniferous-broadleaf forests 
(Figure S5), coinciding with other quality indicators (r2, RMSE) re-
sults. The model explains ~50% of the variance for both forest types 
(Table 1).

Globally, ~42% of the planet's trees exist in tropical and subtrop-
ical regions (Crowther et al.,  2015). Generally, optimal conditions 
for tree growth are warm temperatures and moisture availability 

(Leathwick & Austin,  2001). In accordance with this assumption, 
tropical forests have the highest tree density of all Mexico forest 
types (maximum values of ~1457 trees/ha). The model best ex-
plained tree density variance for tropical forests (~40%) (Table 1). 
Conditional quantile plots showed the best predictive performance 
for tropical forests as well (Figure  S6), especially in the range of 
500–1500 trees/ha. Overall, the model does a good job estimating 
mean values of tree densities. The highest number of trees can be 
observed in the Calakmul rainforest area located within the Yucatán 
Península, in the southeast of Mexico (Figure 5a). The Calakmul rain-
forest is part of an important ecological gradient, the Mesoamerican 
Biological Corridor. The conservation of this ecologically important 
region has been a challenge due to continuous forest disturbances. 
Tree density can be an indicator of forest degradation on tropical 
ecosystems (Román-Dañobeytia et al., 2014), therefore we encour-
age the long-term monitoring of tropical forest structure and the 
improvement of estimation techniques.

Tree height uncertainty map (Figure 4b) shows areas where the 
model performs poorly, especially in northern areas which consist of 
arid and semi-arid ecosystems (>80% uncertainty). These ecosys-
tems have fewer vegetation patches, which leaves less training data 
for modeling over a considerably large area of Mexico. Moreover, 
results from tree density predictions here show high RMSE, which 
is often above 50% of the mean, resulting in a very high uncertainty 
(<80%) across all forests as observed in Figure  5b. Uncertainty 
estimates are a tool to understand the sensitivity of the model to 
variations in the data. They help us identify certain areas that re-
quire more data points and finer covariates resolution due to poor 
modeling accuracy (e.g., areas with high uncertainty) or even suggest 
trying a different modeling approach. Another limitation we might 
be encountering with our ML modeling approach is the effects of 
anthropogenic influence on forest structure, e.g., combining planted 
with natural forests, which may reduce model accuracy.

We compared our modeling strategy to using geographic coor-
dinates alone as model predictors as suggested by recent studies 
(Møller et al., 2020). Results showed a reduction of the explained 
variance for both tree height and tree density models using this ap-
proach. Explained variance for tree height decreased from an aver-
age of 0.35% to 0.30%, and from an average of 0.23% to 0.15% for 
tree density. Therefore, even if our strategy had some limitations, it 
has a better predictive performance compared to other approaches. 
To improve map quality indicators (e.g., r2, RMSE) and uncertainty, 
we contemplate repeating the exercise by applying the following 
features: (1) upgrade computational resources to use covariates at 
a finer resolution (e.g., 30 m), (2) increase data points for the target 
variables at specific forest types with poor quality indicators (e.g., 
cloud forests and arid zones) and (3) assessing different spatial pre-
diction models.

Estimating forest structure is critical for projecting Mexican 
forests growth trajectories under different management scenarios. 
Continuous improvement in the study design we present here is en-
couraged in order to enhance the accuracy of predictions. Results 
of this study can facilitate the understanding of Mexican forest 
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ecosystems by further applying this methodological framework for 
the mapping of other forest attributes such as AGB, soil and veg-
etation carbon storage and their associated functional traits. To 
achieve this, it is important to continue with active forest inventory 
campaigns that facilitate the estimation of forest structure patterns 
through time. Data from this study was managed under the FAIR 
principles for scientific data management by setting up an open-
access online data repository available at the Environmental Data 
Initiative (EDI): https://doi.org/10.6073/pasta/​46203​75aea​631ab​
6a09c​b573c​7bf8aff.

5  |  CONCLUSIONS

Here, we develop a methodological framework for the spatial pre-
diction of forest attributes, which assists the understanding of for-
est structure and expands institutional and technical capabilities for 
data analysis within the National Forestry Commission of Mexico. 
Out of 10 forest ecosystems, our analyses show that the best pre-
dictive performance when mapping tree height was in broadleaf and 
coniferous-broadleaf forests (model explained ~50% of variance). 
The best predictive performance when mapping tree density was in 
tropical forest (model explained ~40% of variance). For tree height, 
uncertainties in our predictions were below 60% in most forests. 
Nonetheless, uncertainties were above 80% in most ecosystems for 
tree density.

Our results suggest that an ensemble learning framework can be 
used for the spatial prediction of forest attributes and can likely be 
improved by having a larger number of field observations and model 
predictors with a finer spatial resolution that reflect the environ-
ment of each forest ecosystem. In order to ensure best practices for 
forest management in Mexico, it is important that governmental and 
academic institutions work together to develop methodological ap-
proaches. This strategy helps improve the quality and transparency 
of forestry datasets.
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