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Abstract
The	 National	 Forestry	 Commission	 of	Mexico	 continuously	 monitors	 forest	 struc-
ture	within	the	country's	continental	territory	by	the	implementation	of	the	National	
Forest	and	Soils	Inventory	(INFyS).	Due	to	the	challenges	involved	in	collecting	data	
exclusively	from	field	surveys,	there	are	spatial	information	gaps	for	important	forest	
attributes.	This	can	produce	bias	or	increase	uncertainty	when	generating	estimates	
required	to	support	forest	management	decisions.	Our	objective	is	to	predict	the	spa-
tial	distribution	of	tree	height	and	tree	density	in	all	Mexican	forests.	We	performed	
wall-	to-	wall	spatial	predictions	of	both	attributes	in	1-	km	grids,	using	ensemble	ma-
chine	learning	across	each	forest	type	in	Mexico.	Predictor	variables	include	remote	
sensing	imagery	and	other	geospatial	data	(e.g.,	mean	precipitation,	surface	tempera-
ture,	canopy	cover).	Training	data	is	from	the	2009	to	2014	cycle	(n > 26,000	sampling	
plots).	 Spatial	 cross	validation	 suggested	 that	 the	model	had	a	better	performance	
when	predicting	tree	height	r2 = .35	[.12,	.51]	(mean	[min,	max])	than	for	tree	density	
r2 = .23	 [.05,	 .42].	 The	best	 predictive	performance	when	mapping	 tree	height	was	
for	broadleaf	and	coniferous-	broadleaf	forests	 (model	explained	~50%	of	variance).	
The	best	predictive	performance	when	mapping	tree	density	was	for	tropical	forest	
(model	explained	~40%	of	variance).	Although	most	forests	had	relatively	low	uncer-
tainty	for	tree	height	predictions,	e.g.,	values	<60%,	arid	and	semiarid	ecosystems	had	
high	uncertainty,	e.g.,	values	>80%.	Uncertainty	values	for	tree	density	predictions	
were >80%	in	most	forests.	The	applied	open	science	approach	we	present	is	easily	
replicable	and	scalable,	thus	it	is	helpful	to	assist	in	the	decision-	making	and	future	of	
the	National	Forest	and	Soils	Inventory.	This	work	highlights	the	need	for	analytical	
tools	that	help	us	exploit	the	full	potential	of	the	Mexican	forest	inventory	datasets.
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1  |  INTRODUC TION

Forest	 inventories	 continuously	 monitor	 the	 status	 of	 forested	
ecosystems	 through	 the	 implementation	 of	 field	 campaigns	 for	
data	 collection	 and	 subsequent	 analysis	 (Smith,	2002).	 As	 forests	
play	a	key	 role	 in	maintaining	ecologic	 stability,	national	 forest	 in-
ventories	(NFI)	are	playing	an	increasingly-	important	role	in	driving	
academic	and	governmental	decision	making	 (Saarela	et	al.,	2020).	
Traditionally,	 forest	 inventories	 have	 been	 used	 for	 the	 develop-
ment	 of	 environmental	 policy,	 such	 as	 land	 and	 timber	 manage-
ment	strategies	at	 regional	and	national	 scales.	NFI	 later	began	to	
contribute	to	international	reports.	For	example,	Mexico's	National	
Forest	and	Soils	 Inventory	 (INFyS)	 is	a	pillar	 for	 the	measurement,	
reporting,	 and	 verification	 system	 (MRV):	 it	 is	 the	 foundation	 for	
the	 national	 inventory	 of	 greenhouse	 gasses	 (GHG)	 emissions	 in	
the	Land	Use,	Land-	Use	Change,	and	Forestry	(LULUCF)	sector	and	
for	 the	national	 forest	 reference	emissions	 level	 (FREL).	MRV	and	
FREL	are	components	of	a	carbon	accounting	system	used	by	 the	
United	Nations	to	incentivize	practices	that	lower	carbon	emissions	
(Mitchell	et	al.,	2017).	NFI	usually	focus	on	collecting	field	data	over	
large	geographic	areas.	Developing	analytical	tools	that	enhance	the	
accessibility	and	understanding	of	nation-	wide	forest	inventory	data	
is	critical	for	democratizing	information	about	forest	structure	at	na-
tional	and	international	scales.

The	National	Forestry	Commission	of	Mexico	 (CONAFOR)	has	
been	in	charge	of	 implementing	the	INFyS	from	2004	to	the	pres-
ent.	The	INFyS	is	a	national	program	in	which	a	stratified,	systematic	
sample	 of	 permanent	 ground	 plots	 is	 used	 to	measure	 trees	 (e.g.,	
height,	diameter	at	breast	height,	count)	and	site	(e.g.,	forest	type,	
site	class,	 topographic	data)	variables	across	all	 forest	 lands	every	
5 years	 (CONAFOR,	 2017).	 The	 INFyS	 data	 have	 been	 collected	
across	 a	 range	 of	 climatic	 zones	 within	Mexico	 including	 tropical	
forests,	 coniferous	 and	broadleaf	 forests,	 cloud	mountain	 forests,	
mangroves,	 and	arid	 and	 semi-	arid	 regions.	Thereby,	Mexico's	NFI	
data	are	extremely	valuable	and	useful	at	national	and	international	
scales,	and	in	academia.	INFyS	data	are	openly	available	at	https://
snmf.cnf.gob.mx/datos	-	del-	inven	tario/.	 In	 recent	 years,	 the	 INFyS	
has	been	working	towards	the	development	and	update	of	data	anal-
ysis	methodologies	 such	as	geospatial	 analysis	 for	 the	mapping	of	
forest	structure	and	also	in	overcoming	the	technical	challenges	that	
come	with	sample-	based	forest	inventories.

Forest	inventories	based	on	a	statistical	sample	are	used	to	es-
timate	mean	or	total	amounts	of	forest	inventory	attributes	within	
the	population	of	interest	(Tomppo,	Haakana,	et	al.,	2008).	However,	
field	 surveys	 can	 be	 costly,	 time	 consuming	 and	 logistically-	
challenging.	Collecting	data	exclusively	from	field	surveys	can	result	

in	designs	that	do	not	satisfy	the	statistical	assumptions	and	can	lead	
to	 limited	 sample	 sizes	 due	 to	 the	 phenomenon	 of	 non-	response,	
which	occurs	when	field	plots	that	were	part	of	the	design	cannot	
be	 accessed.	 Improper	management	 of	 nonresponse	 can	 produce	
bias	or	increase	uncertainty	when	generating	estimates	(McRoberts	
et	al.,	2005).	Emerging	satellite	and	machine	learning	(ML)	technolo-
gies	give	us	the	opportunity	to	build	standardized	analytical	models,	
based	on	NFI	 field-	data,	which	can	help	with	problems	associated	
with	non-	response	(e.g.,	fill	data	gaps)	and	produce	maps	that	serve	
for	multiple	purposes	(Tomppo,	Olsson,	et	al.,	2008).

Mapping	 forest	 attributes	 through	 the	 integration	 of	 NFI	 and	
remote	 sensing	 data	 has	 been	 widely	 applied	 to	 better	 visualize	
national-	scale	 estimates,	 reduce	 uncertainty,	 and	 improve	 data-
set	robustness	(Haakana	et	al.,	2019;	Ohmann	et	al.,	2014;	Saarela	
et	al.,	2020;	Tomppo	et	al.,	2010).	This	approach	has	played	a	key	
role	in	modeling	national	estimates	of	forest	structure	such	as	abo-
veground	 biomass	 (AGB)	 as	 well	 as	 attributes	 such	 as	 forest	 age	
(Saarela	et	al.,	2020;	Schumacher	et	al.,	2020).	To	obtain	accurate	
spatial	 predictions	 of	 forest	 attributes,	 many	 studies	 employ	 ML	
models	using	a	multivariate	approach	(Khaledian	&	Miller,	2020; Li 
et	al.,	2020;	Soriano-	Luna	et	al.,	2018;	Wadoux	et	al.,	2020).	ML	is	
a	field	of	artificial	intelligence	(AI),	and	one	of	its	main	objectives	is	
to	identify	and	model	relationships	between	dependent	data	(such	
as	 forest	 inventory	 attributes)	 and	 independent	 data	 (such	 as	 re-
mote	sensing),	and	apply	these	models	to	generate	predictions	in	a	
semi-	autonomous	approach	(James	et	al.,	2013a).	The	performance	
of	different	types	of	ML	models	often	varies	when	modeling	forest	
attributes.	 For	 example,	 spatially	 explicit	 estimates	 of	AGB	varied	
by	as	much	as	19%	when	performing	linear	(LM),	generalized	addi-
tive	(GAM)	and	random	forest	(RF)	empirical	models	in	a	temperate	
forest	in	central	Mexico	(Soriano-	Luna	et	al.,	2018).	The	three	fitted	
AGB	models	performed	well	when	predicting	AGB	spatial	distribu-
tion,	 but	GAM	was	 better	 for	 representing	AGB	 variations	 across	
the	landscape.	Thus,	different	ML	models	yield	different	results	and	
studies	use	multiple	models	or	algorithms	to	identify	the	best	solu-
tions	for	predicting	forest	attributes	or	specific	response	variables,	
as	no	silver	bullets	exist	in	ecological	modeling	(Qiao	et	al.,	2015).

One	commonly	used	set	of	ML	approaches	used	to	perform	spa-
tial	prediction	are	ensemble	 learners,	which	 integrate	multiple	ML	
models	 and	 algorithms	 (Holloway	 &	Mengersen,	 2018).	 Ensemble	
ML	 models	 are	 used	 in	 mapping	 forest	 attributes	 because	 they	
offer	improvements	in	accuracy	to	independent	algorithms	(Healey	
et	al.,	2018).	Examples	of	popular	ensemble	ML	algorithms	include	RF	
(Breiman,	2001),	which	applies	a	bagging	method	to	create	a	forest	
of	uncorrelated	decision	trees,	another	one	is	Super	Learner,	which	
applies	a	stacked	method	and	uses	cross-	validation	to	estimate	the	
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performance	of	multiple	ML	models	(Polley	&	van	der	Laan,	2010).	
The	latter	has	been	shown	to	outperform	the	individual	algorithms	
used	to	build	the	model	(Davies	&	van	der	Laan,	2016;	Taghizadeh-	
Mehrjardi	et	al.,	2021).

The	main	goal	of	this	study	is	to	develop	a	methodological	frame-
work	in	which	CONAFOR	can	generate	country-	level	maps	of	INFyS	
forest	attributes.	Specifically,	this	involves	operationalizing	methods	
based	on	 integrating	field	data	with	remote	sensing	data	 in	an	en-
semble	ML	framework	to	map	forest	attributes.	We	are	starting	with	
tree	height	and	tree	density,	as	these	are	key	components	of	forest	
structure	and	can	be	useful	to	provide	information	that	helps	with	
the	impacts	of	nonresponse,	and	in	the	estimation	of	AGB,	carbon	
storage	 and	 forest	 productivity	 over	 time	 (Humagain	 et	 al.,	2017; 
Pirotti,	2010;	Selkowitz	et	al.,	2012).	Accurate	spatial	predictions	of	
such	structural	variables	are	fundamental	for	the	management	and	
conservation	of	forest	ecosystems,	as	they	are	important	constitu-
ents	 in	 the	 study	of	 land-	atmosphere	 interactions,	 carbon	cycling,	
assessment	of	fire	hazards	and	timber	volume	estimation	(Chopping	
et	al.,	2008;	Selkowitz	et	al.,	2012).	By	developing	workflows	and	
products	based	on	INFyS	data,	this	study	aims	to	support	CONAFOR	
in	 generating	 information	 that	will	 be	 used	 by	 decision	makers	 to	
manage	forests	more	effectively,	preserve	the	country's	forest	pat-
rimony,	and	improve	national	and	international	reporting	associated	
with	MRV	and	FREL.	We	envision	 this	methodology	could	be	 fur-
ther	applied	for	several	other	forest	attributes	such	as	AGB,	carbon	
storage	and	timber	volume,	among	others,	and	improve	Mexico's	na-
tional	estimates	of	other	relevant	forest	attributes.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The	study	was	conducted	at	a	national	scale	and	included	all	forest	
types	in	Mexico	(Figure 1a).	The	country	is	located	between	latitudes	
32°	and	14°N,	where	 the	Nearctic	 and	Neotropical	biogeographic	
zones	converge.	Due	to	 its	geographical	 location,	the	territory	has	
complex	topographic	and	climatic	characteristics	(CONABIO,	1998).	
From	 the	 arid	 zones	 in	 the	 northwest	 to	 the	 humid	 rainforest	 in	
the	southeast,	forest	ecosystems	in	Mexico	are	very	diverse.	They	
comprise	a	vast	variety	of	vegetation,	having	 tree	heights	 ranging	
between	60 m	 in	coniferous	 forests	 to	1.3 m	 in	xerophilous	scrubs	
(CONAFOR,	2017).	 Tree	 species	of	economic	 interest	 include	ma-
hogany	(Swietenia macrophylla)	and	cedar	(Cedrela odorata),	which	are	
typical	of	tropical	forests.

2.2  |  Mexico National Forest and Soils 
Inventory data

Tree	 height	 and	 tree	 density	 models	 were	 developed	 using	 plot	
level	data	collected	between	2009	and	2014	and	obtained	from	the	
INFyS	database.	The	sampling	design	considered	a	total	of	26,220	

plots	 distributed	 across	 the	 Mexican	 territory	 during	 2009–	2014	
(Figure 1b),	however	9.5%	of	the	total	plots	were	categorized	as	in-
accessible	 sites	 (CONAFOR,	2017).	 The	 number	 of	 sampled	 plots	
for	each	forest	ecosystem	were	2606	for	coniferous	forests,	4111	
for	 coniferous-	broadleaf,	 3249	 for	broadleaf	 forest,	 483	 for	 cloud	
mountain	 forest,	 3724	 for	 tropical	 forest,	 1466	 for	 tropical	 dry	
forests,	 240	 for	 arid	 zones,	 1334	 for	 semiarid	 zones,	 and	157	 for	
mangrove	forests.	Data	are	available	from	the	Environmental	Data	
Initiative	 (EDI):	 https://doi.org/10.6073/pasta/	46203	75aea	631ab	
6a09c	b573c	7bf8aff	 (Barreras	 et	 al.,	2022)	 and	 at	 the	 official	web	
page	https://snmf.cnf.gob.mx/datos	-	del-	inven	tario/.

Sampled	plots	are	distributed	across	all	land	cover	types,	ecolog-
ical	stages,	and	land	tenure	classes	(e.g.,	private,	social,	government).	
Plot	distribution	is	accomplished	through	systematic,	pre-	stratified	
sampling	 with	 5 × 5 km	 spacing	 in	 temperate	 and	 tropical	 forests	
(which	 included	 natural	 and	 cultivated	 forests),	 10 × 10 km	 in	 dry	
and	 semi-	arid	 vegetation	 communities	 and	 20 × 20 km	 in	 arid	 veg-
etation	strata	(includes	samples	of	succulents).	These	strata	are	de-
rived	from	a	forest	 type	map	created	by	the	Mexican	government	
(Figure 1a;	INEGI,	2017).	The	plot	is	considered	a	cluster	design	with	
four	 circular	 primary	 subplots,	 three	 of	which	 are	 configured	 in	 a	
triangular	array	around	a	central	 subplot	 (Figure S2).	Primary	 sub-
plots,	where	trees	with	a	diameter	at	breast	height	(dbh,	1.3 m	above	
ground)	 ≥7.5 cm	 are	 measured,	 have	 a	 radius	 of	 12.56 m	 and	 are	
400 m2	in	area;	spacing	between	adjacent	primary	subplot	centers	is	
~45 m	(CONAFOR,	2017).	Tree	height	was	measured	at	each	primary	
subplot	for	all	trees	with	a	dbh	≥7.5 cm;	then,	an	average	tree	height	
value	was	estimated	for	each	plot.	The	height	of	trees	was	measured	
from	the	base	of	 the	 tree	 to	 the	tip	of	 the	canopy,	 including	dead	
branches.	 In	 general,	 the	 predominant	 height	 categories	 in	 more	
than	90%	of	the	data	(all	ecosystems)	are	between	5	and	10 m,	which	
indicates	that	they	are	semi-	regular	masses	(CONAFOR,	2017).	For	
the	purpose	of	this	study,	a	tree	is	defined	as	those	greater	than	or	
equal	to	7.5 cm	dbh.

2.3  |  Remotely sensed data as model predictors

As	a	cloud-	based	platform,	Google	Earth	Engine	(GEE)	provides	easy	
access	 to	an	extensive	catalog	of	 satellite	 imagery	and	other	geo-
spatial	data	for	scientific,	business,	and	government	users	(Gorelick	
et	 al.,	2017).	We	obtained	 a	 combination	of	 topographic,	 climatic,	
and	vegetation	derived	variables	with	pixel	sizes	of	1000 m	for	the	
period	 of	 2009–	2014	 from	 GEE.	 In	 this	 manner,	 we	 assembled	 a	
nation-	wide	geospatial	dataset	of	39	covariates	for	tree	height	and	
tree	density	predictions.

The	 number	 of	 potential	 predictor	 layers	 was	 reduced	 to	 6	
through	a	dimension	reduction	process,	guided	by	a	random	forest	
(RF)	prediction	for	each	target	variable	(tree	height	and	density)	and	
the	set	of	39	predictors.	We	used	the	randomForest	package	v4.7-	
1.1	for	R	v4.1.0,	a	method	that	implements	feature	bagging	to	imple-
ment	a	prediction	 (Breiman,	2001).	We	then	calculated	predictors'	
importance	 using	 the	 importance	 function	 from	 the	 RF	 package.	
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F I G U R E  1 (a)	Map	of	Mexico	forest	types	and	(b)	map	of	INFyS	sampling	plots	(black	dots).	Prepared	from	the	Land	Use	and	Vegetation	
map,	scale	1:250,000,	Series	VI,	Instituto	Nacional	de	Geoestadística	y	Geografía	(CONAFOR,	2017;	INEGI,	2017).

(a)

(b)
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Variables	with	the	higher	percentage	increase	in	mean	squared	error	
(%IncMSE)	were	selected	as	most	important	(Table S1).	After	iden-
tifying	 the	most	 important	predictors	 for	each	 target	variable,	we	
used	the	ClustOfVar	package	v1.1	for	R	v4.1.0	to	group	strongly	cor-
related	predictors	 that	potentially	bring	 the	 same	 information	and	
can	cause	overfitting	in	the	data	(Chavent	et	al.,	2017).	We	selected	
the	 final	 set	of	predictors	based	on	 the	 results	of	both	dimension	
reduction	techniques.	All	covariates	were	resampled	to	1000 m.	The	
resampling	was	done	with	conventional	bilinear	interpolation	as	im-
plemented	in	GEE.	Data	are	available	from	Zenodo	under	the	name	
“Nationwide	geospatial	dataset	of	environmental	covariates	at	1km	
resolution	 in	 Mexico”	 (https://doi.org/10.5281/zenodo.7130164; 
Barreras	&	Guevara,	2022).

2.4  |  Spatial prediction using LANDMAP

To	 perform	 the	 spatial	 predictions,	we	 used	 an	 ensemble	ML	 ap-
proach	 called	Super	Learner,	 a	meta-	model	 that	 linearly	 combines	
the	predictions	from	multiple	models	(e.g.,	kernel-	based,	tree-	based,	
linear	based	or	neural	network	based)	(Polley	&	van	der	Laan,	2010; 
van	der	Laan	et	al.,	2007).	We	applied	the	Super	Learner	algorithm	as	
implemented	in	the	LANDMAP	package	v0.0.14	for	R	v4.1.0,	which	
provides	a	strategy	for	automated	mapping	(Hengl	et	al.,	2018,	2021; 
Polley	&	van	der	Laan,	2010;	RStudio	Team,	2021)	 (https://github.
com/Envir	ometr	ix/landmap).	 Methods	 implemented	 in	 the	 model	
ensemble	 were	 decision	 trees-	based	 methods	 (random	 forest),	
kernel-	based	 methods	 (support	 vector	 machines),	 methods	 based	
on	neural	 networks	 (NNET),	 and	generalized	 linear	models	 (GLM).	
We	 assumed	 that	 different	methods	 describe	 relationships	 in	 our	
data	in	a	different	manner.	The	model	was	run	on	each	forest	type	
separately.

We	took	advantage	of	the	geographical	distances	in	our	training	
data	and	used	the	oblique	geographic	coordinates	technique	to	in-
corporate	spatial	dependence	as	an	additional	predictor,	as	used	by	
previous	studies	(Møller	et	al.,	2020).	To	eliminate	covariances	and	
dimensionality,	predictors	were	converted	to	principal	components	
before	running	the	Super	Learner	model.	Therefore,	we	transform	
the	relationship	between	covariates	in	the	multivariate	space	to	vec-
tors	of	numbers	that	are	not	related	to	each	other,	that	is,	they	are	
orthogonal	 in	 the	 statistical	 space.	We	 expressed	 the	 uncertainty	
of	our	estimates	 in	percentage	 form	as	 the	 range	of	 the	68%	pre-
diction	intervals	divided	by	their	mean	for	each	pixel,	as	performed	
by	Viscarra	Rossel	et	al.	(2014).	We	used	a	fivefold	spatial	cross	val-
idation	 (spCV)	 approach	 to	 assess	 the	 predictive	 accuracy	 of	 our	
modeling	framework.	spCV	differs	from	standard	cross-	validation	by	
accounting	for	the	spatial	autocorrelation	between	data	points	used	
for	model	training	and	validation;	this	way,	training	points	are	statis-
tically	 independent	 from	validation	points	 (Brenning,	2012;	 James	
et	al.,	2013b).	Ignoring	spatial	autocorrelation	in	data	can	lead	to	an	
overoptimistic	evaluation	of	predictive	power	(Ploton	et	al.,	2020).	
The	spCV	yields	model	independent	residuals	required	to	compute	
map	quality	indicators	such	as:	the	coefficient	of	determination	(r2)	

and	root	mean	square	error	(RMSE).	To	further	compare	model	accu-
racy,	we	use	conditional	quantile	plots	(Carslaw,	2015).

3  |  RESULTS

3.1  |  Descriptive statistics of sampled inventory 
data

Maximum	field	measurements	of	tree	height	were	36 m	and	found	
in	 coniferous	 forests	 and	 coniferous-	broadleaf	 forests.	Mean	 tree	
heights	measured	in	the	field	ranged	from	5	to	10 m,	with	the	excep-
tion	of	arid	and	semi-	arid	zones,	where	trees	had	an	average	height	
of	~4 m	(Figure S4).

Mean	 field	 estimates	 of	 tree	 density	 were	 higher	 in	 tropical	
forests,	with	an	average	of	~790	trees	per	ha.	Generally,	the	other	
forest	types	had	an	average	of	~400	to	500	trees	per	ha,	even	man-
groves	which	had	a	relatively	small	number	of	sampled	plots	(157).	
Arid	and	semi-	arid	zones	had	an	average	of	~88	and	~162 trees per 
ha,	respectively.

3.2  |  Model predictors

The	 parameter	 used	 for	 measuring	 covariate	 importance	 was	 the	
percentage	increase	in	mean	squared	error	(%IncMSE),	as	shown	in	
Figure 2.	The	covariate	“bio18”,	which	accounts	for	the	precipitation	
of	warmest	quarter,	is	the	most	important	covariate	for	tree	height,	
while	treeCanopyCover	is	the	most	important	when	predicting	tree	
density	(see	Figure S1).

Results	from	the	second	dimension-	reduction	technique,	which	
consisted	in	an	unsupervised	cluster	analysis,	showed	the	predictors	
related	to	each	other	(Figure S1).	Predictors	such	as	forestCanopy-
Cover	 and	 fpar	 (fraction	 of	 photosynthetic	 active	 radiation)	 were	
among	the	first	3	most	important	for	tree	density	(Figure 2b);	how-
ever,	they	turned	out	to	be	variables	that	share	a	high	correlation	ac-
cording	to	the	cluster	analysis.	We	decided	to	use	only	one	of	them	
as	 a	 predictor	 for	 our	models.	We	 followed	 this	 understanding	 to	
choose	six	predictors	with	high	importance	as	well	as	with	low	cor-
relation	between	each	other	to	further	avoid	statistical	redundancy	
in	our	predictions.

The	final	set	of	predictors	chosen	for	both	target	variables	were	
(1)	 tree	 canopy	 cover	 (treeCanopyCover)	 (Hansen	 Global	 Forest	
Change	v1.8	2000–	2020)	(Hansen	et	al.,	2013),	(2)	mean	precipita-
tion	(precip_mean)	(CHIRPS	Pentad:	Climate	Hazards	Group	InfraRed	
Precipitation	with	Station	Data	v2.0)	(Funk	et	al.,	2015),	(3)	SRTM-	
derived	 topographic	 diversity	 (topo_d)	 (Theobald	 et	 al.,	2015),	 (4)	
Mean	 land	 surface	 temperature	 standard	 deviation	 (temp_c_sdev)	
(AG100:	ASTER	Global	Emissivity	Dataset	100-	meter	V003)	(Hulley	
et	al.,	2009,	2012,	2015;	Hulley	&	Hook,	2008,	2009,	2011;	NASA	
JPL,	 2014),	 (5)	 temperature	 seasonality	 (bio04),	 and	 (6)	 precipita-
tion	of	warmest	quarter	(bio18),	both	from	WorldClim	V1	(Hijmans	
et	al.,	2005; Table S2).
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3.3  |  Model summaries and evaluation

Descriptive	 statistics	 for	 each	 forest-	type	 predicted	 tree	 height	
and	density	maps	are	presented	in	Table 1.	The	mean	values	of	pre-
dictions	 are	 generally	 aligned	with	 those	of	 the	plots.	 Tree	height	
models	with	the	highest	r2	values	were	coniferous-	broadleaf	forest,	
broadleaf	forest	and	mangroves	(Table 1).

Moreover,	 the	model	 performed	 tree	 density	 predictions	with	
higher r2	in	tropical	forests	and	tropical	dry	forests.	Despite	tropical	

forests	 having	 the	 highest	 r2,	 it	 also	was	 the	 ecosystem	with	 the	
highest	RMSE.

On	average,	predicted	tree	height	ranged	between	4	and	9 m	in	
all	forest	ecosystems	(averaged	from	all	pixel	values).	Cloud	forest,	
arid	and	semi-	arid	zones	had	smaller	r2	 for	both	target	variables,	
which	could	be	related	to	the	smaller	amount	of	sampled	data	in	
these	 ecosystems.	 However,	 arid	 and	 semi-	arid	 zones	 seemed	
to	 have	 the	 smallest	 errors	 in	 both	 tree	 height	 and	 tree	 density	
predictions.

F I G U R E  2 Covariate	importance	for	selected	target	variables	(a)	tree	height	and	(b)	tree	density	based	on	the	percentage	increase	in	
mean	squared	error	(%IncMSE).

(a) (b)

Forest type

Tree height Tree density

Mean 
(m) r2 RMSE

Mean 
(trees/ha) r2 RMSE

Coniferous	forest 8.22 .4 3.35 457.42 .24 311.01

Coniferous	and	broadleaf	
forests

7.51 .50 2.78 425.79 .21 294.95

Broadleaf	forest 5.8 .51 2.25 372.58 .21 300.72

Cloud	forest 9.47 .12 2.69 460.42 .17 356.64

Tropical	forest 8.93 .26 1.88 741.57 .42 469.56

Tropical	dry	forest 6.15 .40 1.78 501.58 .30 377.07

Arid	zones 3.78 .16 1.16 65.79 .05 101.70

Semi-	arid	zones 4.11 .35 1.30 149.85 .23 181.54

Mangroves 6.40 .45 2.94 545.46 .16 426.36

Abbreviations:	r2,	coefficient	of	determination;	RMSE,	root	mean	square	error.

TA B L E  1 Summary	statistics	of	tree	
height	and	tree	density	predictions	for	all	
forest	ecosystems	in	Mexico.
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According	 to	 the	 conditional	 quantile	 plots,	 the	 model	 had	
a	 better	 predictive	 performance	 for	 tree	 height	 than	 tree	 density	
(Figure 3).	Conditional	quantiles	plots	examine	how	well	predictions	
agree	with	observations.	The	data	are	divided	 into	equally	 spaced	
bins.	For	each	predicted	value,	the	corresponding	value	of	the	ob-
servations	is	identified	and	the	median,	25/75th	and	10/90	percen-
tile	(quantile)	are	calculated	for	that	bin	(Carslaw,	2015).	As	shown	by	
the	median	(red	line)	in	Figure 3a,	model	predictions	agree	precisely	
with	observation	from	the	range	of	1	to	~10 m	of	tree	height.	From	
10 m	onwards,	model	performance	weakens.	We	also	observe	that	
the	model	slightly	overestimated	tree	height	values	between	5	and	
10 m,	as	stated	by	the	gray	bar	on	Figure 3a.

Tree	 density	 predictions	 were	 less	 precise	 when	 compared	
against	observed	values.	The	model	had	the	best	performance	when	
predicting	 tree	 densities	 of	 500	 trees/ha	 and	 below	 (Figure 3b).	
From	500	trees/ha	onwards	predictions	were	less	precise,	yet	they	
followed	 a	 similar	 pattern	 as	 the	 “perfect	 model”	 (blue	 line).	 The	
model	 overestimated	 tree	 density	 values	 between	 300	 and	 700	
trees/ha;	however,	predicted	values	follow	a	similar	distribution	to	
the	observed	values	in	both	tree	height	and	tree	density	scenarios.	
Conditional	quantile	plots	for	each	forest	type	can	be	found	in	the	
Figure S5	for	tree	height	predictions	and	Figure S6	for	tree	density.

3.4  |  Mapping the tree height and tree density of 
Mexico forests

The	 models	 were	 used	 to	 generate	 spatially	 continuous	 national	
maps	of	mean	tree	height	(Figure 4)	and	the	total	number	of	trees	
(Figure 5),	 both	 at	 a	 1000-	m	 resolution,	 along	 with	 their	 associ-
ated	 uncertainties.	 At	 the	 forest	 type	 level,	 maximum	 predicted	

pixel	values	of	tree	height	were	observed	in	coniferous,	coniferous-	
broadleaf	forests	and	cloud	mountain	forests	(~20,	14.3	and	12.3 m,	
respectively).	These	types	of	forest	ecosystems	constitute	Mexico's	
mountain	chains	Sierra	Madre	Oriental	and	Sierra	Madre	Occidental.	
Moreover,	the	smallest	tree	heights	were	predicted	in	arid	and	semi-	
arid	zones,	having	a	mean	of	~4 m.	The	model	had	the	highest	un-
certainty	when	predicting	tree	height	in	arid	zones	(60%–	80%),	the	
latter	 could	 be	 related	 to	 the	 limited	 sample	 size	we	 had	 for	 that	
specific	forest	type	(Figure 4b).	Lower	uncertainty	was	observed	for	
tropical	forest	and	tropical	dry	forest.

Tropical	forests	had	the	maximum	predicted	pixel	values	of	tree	
density	 (~1457	 trees/ha),	 followed	 by	 coniferous-	broadleaf	 forest	
(1140	trees/ha),	 tropical	dry	 forest	 (1091	trees/ha)	and	coniferous	
forest	(1079	trees/ha)	(Figure 5a).	Uncertainty	in	predictions	of	tree	
density	was	 higher	 compared	 to	 tree	 height	 (Figure 5b).	High	 un-
certainty	 (e.g.,	<80%)	was	observed	across	all	 forest	 types	except	
tropical	forest	(40%–	60%).

4  |  DISCUSSION

Over	the	last	20 years,	CONAFOR	has	invested	significant	time	and	
resources	 to	 produce	 forest	 inventory	 data	 that	 accurately	 repre-
sents	all	forest	ecosystems	in	Mexico.	To	further	expand	the	utility	
of	this	data,	we	developed	an	analytical	framework	to	model,	predict,	
and	map	forest	structural	attributes	across	the	country.	By	exploit-
ing	 the	 available	 remotely	 sensed	 data	 (e.g.,	 mean	 surface	 tem-
perature,	 tree	 canopy	 cover,	 mean	 precipitation,	 and	 topographic	
diversity)	 (Gorelick	 et	 al.,	2017),	 the	 ensemble	ML	method	 in	 the	
LANDMAP	package	v0.0.14	for	R	v4.1.0	(Hengl	et	al.,	2021;	RStudio	
Team,	2021),	and	the	openly	available	INFyS	data	(CONAFOR,	2017),	

F I G U R E  3 Conditional	quantile	plots	for	the	observed	versus	predicted	values	of	(a)	tree	height	and	(b)	tree	density.	For	each	plot	the	
blue	line	shows	the	results	for	a	perfect	model.	The	red	line	shows	the	median	values	of	the	predictions	and	corresponding	observations.	
The	yellow	shading	shows	the	predicted	quantile	intervals,	for	example	the	25/75th	and	the	10/90th.	A	perfect	model	would	lie	on	the	blue	
line	and	have	a	very	narrow	spread.	The	histogram	shows	the	counts	of	predicted	values	(gray	bars)	and	observed	values	(blue	outlined	bars)	
(Carslaw,	2015).
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8 of 14  |     BARRERAS et al.

F I G U R E  4 National	maps	of	(a)	predicted	mean	tree	height	and	(b)	its	associated	uncertainty	across	all	Mexico's	forest	ecosystems.

 20457758, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10090 by E

th Z
ürich E

th-B
ibliothek, W

iley O
nline L

ibrary on [07/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  9 of 14BARRERAS et al.

F I G U R E  5 National	maps	of	(a)	predicted	mean	tree	density	and	(b)	its	associated	uncertainty	across	all	Mexico's	forest	ecosystems.
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we	have	modeled	and	performed	predictions	of	tree	height	and	tree	
density	across	Mexico.	Results	suggest	that	the	ensemble	ML	algo-
rithm	had	 a	 better	 performance	when	predicting	 tree	 height	 over	
tree	density	(Table 1).	In	addition	to	providing	numerical	estimates,	
these	maps	are	user-	friendly	devices	that	help	users	visualize	forest	
structures	across	Mexico.

Mapping	forest	attributes	along	with	associated	uncertainties	at	
a	national	scale	requires	substantial	computational	resources.	Using	
high	resolution	covariates	(e.g.,	30 m)	has	helped	achieve	an	increase	
in	model	predictive	ability	(Hengl	et	al.,	2021).	Here,	we	had	limited	
computational	 resources.	We	decided	 to	simplify	our	approach	by	
modeling	at	a	1000-	m	resolution	and	reducing	the	number	of	model	
predictors,	thus	reducing	computing	costs	and	still	displaying	valu-
able	nation-	wide	maps	for	political	and	ecological	matters.	However,	
it	is	important	to	acquire	sufficient	computational	resources	for	the	
project's	 next	 stage	 and	 perform	more	 accurate	 predictions	 with	
high-	resolution	covariates.

Remotely	 sensed	 predictors	 such	 as	 tree	 canopy	 cover,	 mean	
precipitation,	 mean	 temperature	 standard	 deviation,	 and	 topo-
graphic	diversity	had	the	highest	importance	in	predicting	both	tar-
get	variables,	while	maintaining	a	relatively	low	correlation	between	
each	other.	Tree	canopy	cover	ranked	the	most	important	predictor	
for	 tree	density	and	was	the	third	most	 important	 for	 tree	height.	
Moreover,	precipitation	of	the	warmest	quarter	ranked	the	most	im-
portant	predictor	for	tree	height.	Previous	studies	have	shown	that	
using	 vegetation	 traits	 as	model	 predictors	 can	 reduce	 prediction	
uncertainty	when	mapping	 forest	 attributes	 (Saarela	 et	 al.,	2020).	
Moreover,	 Heilman	 et	 al.,	 2022	 found	 a	 strong	 positive	 effect	 of	
water-	year	precipitation	when	forecasting	tree	growth,	which	is	di-
rectly	 related	 to	 tree	height	and	density.	Results	 from	our	 feature	
selection	approach	agree	with	the	a-	priori	understanding	of	forest	
structure,	its	environmental	drivers	and	our	conception	of	ecological	
modeling.

The	 range	of	mean	predicted	values	 for	 tree	height	were	con-
sistent	with	forest	 inventory	data	(~5	to	10 m),	suggesting	that	the	
super	 learner	model	 reflected	the	 input	data	adequately.	On	aver-
age,	cloud	mountain	 forest	 is	 the	ecosystem	with	 the	 tallest	 trees	
in	 Mexico	 (Table 1).	 This	 particular	 forest	 belongs	 to	 humid	 and	
temperate	 areas;	 it	 has	 the	 largest	 aerial	 biomass	 density	 and	 the	
greatest	 timber	volume	of	all	Mexico	forest	 types,	but	 it	accounts	
for	only	~1%	of	 the	national	 forest	area	 (Villaseñor	&	Gual,	2014).	
According	to	CONAFOR	(2017),	more	than	half	of	its	vegetation	is	
in	early	stages	of	succession,	with	high	densities	of	young	trees	due	
to	 the	 wide	 timber	 exploitation.	 Nonetheless,	 cloud	 forests	 were	
among	 the	ecosystems	with	 the	 less	precise	predictions	 (Table 1).	
Conditional	quantile	plots	indicated	that	the	model	had	the	best	pre-
dictive	performance	for	broadleaf	and	coniferous-	broadleaf	forests	
(Figure S5),	 coinciding	with	 other	 quality	 indicators	 (r2,	 RMSE)	 re-
sults.	The	model	explains	~50%	of	the	variance	for	both	forest	types	
(Table 1).

Globally,	~42%	of	the	planet's	trees	exist	in	tropical	and	subtrop-
ical	 regions	 (Crowther	 et	 al.,	 2015).	 Generally,	 optimal	 conditions	
for	 tree	 growth	 are	 warm	 temperatures	 and	 moisture	 availability	

(Leathwick	 &	 Austin,	 2001).	 In	 accordance	 with	 this	 assumption,	
tropical	 forests	have	 the	highest	 tree	density	of	 all	Mexico	 forest	
types	 (maximum	 values	 of	 ~1457	 trees/ha).	 The	 model	 best	 ex-
plained	 tree	density	variance	 for	 tropical	 forests	 (~40%)	 (Table 1).	
Conditional	quantile	plots	showed	the	best	predictive	performance	
for	 tropical	 forests	 as	 well	 (Figure S6),	 especially	 in	 the	 range	 of	
500–	1500	trees/ha.	Overall,	the	model	does	a	good	job	estimating	
mean	values	of	tree	densities.	The	highest	number	of	trees	can	be	
observed	in	the	Calakmul	rainforest	area	located	within	the	Yucatán	
Península,	in	the	southeast	of	Mexico	(Figure 5a).	The	Calakmul	rain-
forest	is	part	of	an	important	ecological	gradient,	the	Mesoamerican	
Biological	Corridor.	The	conservation	of	this	ecologically	important	
region	has	been	a	challenge	due	to	continuous	forest	disturbances.	
Tree	density	 can	be	an	 indicator	of	 forest	degradation	on	 tropical	
ecosystems	(Román-	Dañobeytia	et	al.,	2014),	therefore	we	encour-
age	 the	 long-	term	monitoring	 of	 tropical	 forest	 structure	 and	 the	
improvement	of	estimation	techniques.

Tree	height	uncertainty	map	(Figure 4b)	shows	areas	where	the	
model	performs	poorly,	especially	in	northern	areas	which	consist	of	
arid	 and	 semi-	arid	 ecosystems	 (>80%	uncertainty).	 These	 ecosys-
tems	have	fewer	vegetation	patches,	which	leaves	less	training	data	
for	modeling	over	 a	 considerably	 large	 area	of	Mexico.	Moreover,	
results	from	tree	density	predictions	here	show	high	RMSE,	which	
is	often	above	50%	of	the	mean,	resulting	in	a	very	high	uncertainty	
(<80%)	 across	 all	 forests	 as	 observed	 in	 Figure 5b.	 Uncertainty	
estimates	are	a	 tool	 to	understand	 the	sensitivity	of	 the	model	 to	
variations	 in	 the	data.	They	help	us	 identify	 certain	areas	 that	 re-
quire	more	data	points	and	finer	covariates	resolution	due	to	poor	
modeling	accuracy	(e.g.,	areas	with	high	uncertainty)	or	even	suggest	
trying	a	different	modeling	approach.	Another	 limitation	we	might	
be	encountering	with	our	ML	modeling	approach	 is	 the	effects	of	
anthropogenic	influence	on	forest	structure,	e.g.,	combining	planted	
with	natural	forests,	which	may	reduce	model	accuracy.

We	compared	our	modeling	strategy	to	using	geographic	coor-
dinates	 alone	 as	model	 predictors	 as	 suggested	 by	 recent	 studies	
(Møller	et	 al.,	2020).	Results	 showed	a	 reduction	of	 the	explained	
variance	for	both	tree	height	and	tree	density	models	using	this	ap-
proach.	Explained	variance	for	tree	height	decreased	from	an	aver-
age	of	0.35%	to	0.30%,	and	from	an	average	of	0.23%	to	0.15%	for	
tree	density.	Therefore,	even	if	our	strategy	had	some	limitations,	it	
has	a	better	predictive	performance	compared	to	other	approaches.	
To	improve	map	quality	indicators	(e.g.,	r2,	RMSE)	and	uncertainty,	
we	 contemplate	 repeating	 the	 exercise	 by	 applying	 the	 following	
features:	 (1)	upgrade	computational	 resources	to	use	covariates	at	
a	finer	resolution	(e.g.,	30 m),	(2)	increase	data	points	for	the	target	
variables	at	specific	 forest	 types	with	poor	quality	 indicators	 (e.g.,	
cloud	forests	and	arid	zones)	and	(3)	assessing	different	spatial	pre-
diction	models.

Estimating	 forest	 structure	 is	 critical	 for	 projecting	 Mexican	
forests	growth	trajectories	under	different	management	scenarios.	
Continuous	improvement	in	the	study	design	we	present	here	is	en-
couraged	 in	order	 to	enhance	the	accuracy	of	predictions.	Results	
of	 this	 study	 can	 facilitate	 the	 understanding	 of	 Mexican	 forest	
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ecosystems	by	further	applying	this	methodological	framework	for	
the	mapping	of	other	 forest	attributes	 such	as	AGB,	 soil	 and	veg-
etation	 carbon	 storage	 and	 their	 associated	 functional	 traits.	 To	
achieve	this,	it	is	important	to	continue	with	active	forest	inventory	
campaigns	that	facilitate	the	estimation	of	forest	structure	patterns	
through	 time.	Data	 from	 this	 study	was	managed	 under	 the	 FAIR	
principles	 for	 scientific	 data	 management	 by	 setting	 up	 an	 open-	
access	online	data	 repository	 available	 at	 the	Environmental	Data	
Initiative	 (EDI):	 https://doi.org/10.6073/pasta/	46203	75aea	631ab	
6a09c	b573c	7bf8aff.

5  |  CONCLUSIONS

Here,	we	develop	a	methodological	framework	for	the	spatial	pre-
diction	of	forest	attributes,	which	assists	the	understanding	of	for-
est	structure	and	expands	institutional	and	technical	capabilities	for	
data	analysis	within	 the	National	Forestry	Commission	of	Mexico.	
Out	of	10	forest	ecosystems,	our	analyses	show	that	the	best	pre-
dictive	performance	when	mapping	tree	height	was	in	broadleaf	and	
coniferous-	broadleaf	 forests	 (model	 explained	 ~50%	 of	 variance).	
The	best	predictive	performance	when	mapping	tree	density	was	in	
tropical	forest	(model	explained	~40%	of	variance).	For	tree	height,	
uncertainties	 in	 our	 predictions	were	 below	60%	 in	most	 forests.	
Nonetheless,	uncertainties	were	above	80%	in	most	ecosystems	for	
tree	density.

Our	results	suggest	that	an	ensemble	learning	framework	can	be	
used	for	the	spatial	prediction	of	forest	attributes	and	can	likely	be	
improved	by	having	a	larger	number	of	field	observations	and	model	
predictors	with	 a	 finer	 spatial	 resolution	 that	 reflect	 the	 environ-
ment	of	each	forest	ecosystem.	In	order	to	ensure	best	practices	for	
forest	management	in	Mexico,	it	is	important	that	governmental	and	
academic	institutions	work	together	to	develop	methodological	ap-
proaches.	This	strategy	helps	improve	the	quality	and	transparency	
of	forestry	datasets.
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